Science.gov

Sample records for achieving optimal growth

  1. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance

    PubMed Central

    Stern, Tomer; Aviram, Rona; Rot, Chagai; Galili, Tal; Sharir, Amnon; Kalish Achrai, Noga; Keller, Yosi; Shahar, Ron; Zelzer, Elazar

    2015-01-01

    One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of

  2. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance.

    PubMed

    Stern, Tomer; Aviram, Rona; Rot, Chagai; Galili, Tal; Sharir, Amnon; Kalish Achrai, Noga; Keller, Yosi; Shahar, Ron; Zelzer, Elazar

    2015-08-01

    One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of

  3. The Growth Patterns of General Medical Achievement.

    ERIC Educational Resources Information Center

    Shen, Linjun

    This longitudinal study investigates the growth of medical achievement as a multilevel process and emphasizes the structure of the growth. Subjects were students in all 15 U.S. osteopathic medical schools, a total of 1,060 (78 percent of the 1987 osteopathic cohort). Students took appropriate portions of the National Board of Osteopathic Medical…

  4. Student Achievement and National Economic Growth

    ERIC Educational Resources Information Center

    Ramirez, Francisco O.; Luo, Xiaowei; Schofer, Evan; Meyer, John W.

    2006-01-01

    Educational policy around the world has increasingly focused on improving aggregate student achievement as a means to increase economic growth. In the last two decades, attention has focused especially on the importance of achievement in science and mathematics. Yet, the policy commitments involved have not been based on research evidence. The…

  5. Mathematics Coursework Regulates Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jesse L. M.

    2007-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), we examined the extent to which students' mathematics coursework regulates (influences) the rate of growth in mathematics achievement during middle and high school. Graphical analysis showed that students who started middle school with higher achievement took individual mathematics…

  6. Optimal growth trajectories with finite carrying capacity.

    PubMed

    Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations. PMID:27627325

  7. Optimal growth trajectories with finite carrying capacity

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  8. Simulated annealing algorithm for optimal capital growth

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  9. The Effects of Academic Optimism on Elementary Reading Achievement

    ERIC Educational Resources Information Center

    Bevel, Raymona K.; Mitchell, Roxanne M.

    2012-01-01

    Purpose: The purpose of this paper is to explore the relationship between academic optimism (AO) and elementary reading achievement (RA). Design/methodology/approach: Using correlation and hierarchical linear regression, the authors examined school-level effects of AO on fifth grade reading achievement in 29 elementary schools in Alabama.…

  10. Academic Optimism and Student Achievement in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Smith, Page A.; Hoy, Wayne K.

    2007-01-01

    Purpose: The aim of this study was two-fold: to demonstrate a general construct of schools called academic optimism and to show it was related to student achievement in urban elementary schools, even controlling for socioeconomic factors, and school size. Design/methodology/approach: Data were collected from 99 urban elementary schools in Texas…

  11. The Role of Academic Achievement Growth in School Track Recommendations

    ERIC Educational Resources Information Center

    Caro, Daniel H.; Lenkeit, Jenny; Lehmann, Rainer; Schwippert, Knut

    2009-01-01

    Students in Germany are tracked into different forms of secondary schooling based on teachers' recommendations. The literature shows that school tracking is largely affected by academic achievement levels, but neglects the influence of individual achievement growth. The authors used data from the Berlin study ELEMENT (N = 2242) to characterize…

  12. Documenting Reading Achievement and Growth for Students Taking Alternate Assessments

    ERIC Educational Resources Information Center

    Tindal, Gerald; Nese, Joseph F. T.; Farley, Dan; Saven, Jessica L.; Elliott, Stephen N.

    2016-01-01

    Students with disabilities have been included in state accountability systems for more than a decade; however, only in the past few years have alternate assessments of alternate achievement standards (AA-AAS) become stable enough to allow examination of these students' achievement growth. Using data from Oregon's AA-AAS in Reading during the…

  13. Parent involvement and science achievement: A latent growth curve analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Ursula Yvette

    This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study - Kindergarten Class of 1998--1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day kindergarten class in 1998--1999. The present study's sample (N = 8,070) was based on students that had a sampling weight available from the public-use data file. Students were assessed in science achievement at third, fifth, and eighth grades and parents of the students were surveyed at the same time points. Analyses using latent growth curve modeling with time invariant and varying covariates in an SEM framework revealed a positive relationship between science achievement and parent involvement at eighth grade. Furthermore, there were gender and racial/ethnic differences in parents' school involvement as a predictor of science achievement. Findings indicated that students with lower initial science achievement scores had a faster rate of growth across time. The achievement gap between low and high achievers in earth, space and life sciences lessened from elementary to middle school. Parents' involvement with school usually tapers off after elementary school, but due to parent school involvement being a significant predictor of eighth grade science achievement, later school involvement may need to be supported and better implemented in secondary schooling.

  14. Growth mindset tempers the effects of poverty on academic achievement.

    PubMed

    Claro, Susana; Paunesku, David; Dweck, Carol S

    2016-08-01

    Two largely separate bodies of empirical research have shown that academic achievement is influenced by structural factors, such as socioeconomic background, and psychological factors, such as students' beliefs about their abilities. In this research, we use a nationwide sample of high school students from Chile to investigate how these factors interact on a systemic level. Confirming prior research, we find that family income is a strong predictor of achievement. Extending prior research, we find that a growth mindset (the belief that intelligence is not fixed and can be developed) is a comparably strong predictor of achievement and that it exhibits a positive relationship with achievement across all of the socioeconomic strata in the country. Furthermore, we find that students from lower-income families were less likely to hold a growth mindset than their wealthier peers, but those who did hold a growth mindset were appreciably buffered against the deleterious effects of poverty on achievement: students in the lowest 10th percentile of family income who exhibited a growth mindset showed academic performance as high as that of fixed mindset students from the 80th income percentile. These results suggest that students' mindsets may temper or exacerbate the effects of economic disadvantage on a systemic level. PMID:27432947

  15. Growth mindset tempers the effects of poverty on academic achievement.

    PubMed

    Claro, Susana; Paunesku, David; Dweck, Carol S

    2016-08-01

    Two largely separate bodies of empirical research have shown that academic achievement is influenced by structural factors, such as socioeconomic background, and psychological factors, such as students' beliefs about their abilities. In this research, we use a nationwide sample of high school students from Chile to investigate how these factors interact on a systemic level. Confirming prior research, we find that family income is a strong predictor of achievement. Extending prior research, we find that a growth mindset (the belief that intelligence is not fixed and can be developed) is a comparably strong predictor of achievement and that it exhibits a positive relationship with achievement across all of the socioeconomic strata in the country. Furthermore, we find that students from lower-income families were less likely to hold a growth mindset than their wealthier peers, but those who did hold a growth mindset were appreciably buffered against the deleterious effects of poverty on achievement: students in the lowest 10th percentile of family income who exhibited a growth mindset showed academic performance as high as that of fixed mindset students from the 80th income percentile. These results suggest that students' mindsets may temper or exacerbate the effects of economic disadvantage on a systemic level.

  16. Effects of Teacher Professional Learning Activities on Student Achievement Growth

    ERIC Educational Resources Information Center

    Akiba, Motoko; Liang, Guodong

    2016-01-01

    The authors examined the effects of six types of teacher professional learning activities on student achievement growth over 4 years using statewide longitudinal survey data collected from 467 middle school mathematics teachers in 91 schools merged with 11,192 middle school students' mathematics scores in a standardized assessment in Missouri. The…

  17. Parent Involvement and Science Achievement: A Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Johnson, Ursula Yvette

    2011-01-01

    This study examined science achievement growth across elementary and middle school and parent school involvement using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 (ECLS-K). The ECLS-K is a nationally representative kindergarten cohort of students from public and private schools who attended full-day or half-day…

  18. Growth in Mathematics Achievement: Analysis with Classification and Regression Trees

    ERIC Educational Resources Information Center

    Ma, Xin

    2005-01-01

    A recently developed statistical technique, often referred to as classification and regression trees (CART), holds great potential for researchers to discover how student-level (and school-level) characteristics interactively affect growth in mathematics achievement. CART is a host of advanced statistical methods that statistically cluster…

  19. Translational Geroscience: Emphasizing function to achieve optimal longevity

    PubMed Central

    Seals, Douglas R.; Melov, Simon

    2014-01-01

    Among individuals, biological aging leads to cellular and organismal dysfunction and an increased risk of chronic degenerative diseases and disability. This sequence of events in combination with the projected increases in the number of older adults will result in a worldwide healthcare burden with dire consequences. Superimposed on this setting are the adults now reaching traditional retirement ages--the baby boomers--a group that wishes to remain active, productive and physically and cognitively fit as they grow older. Together, these conditions are producing an unprecedented demand for increased healthspan or what might be termed “optimal longevity”—to live long, but well. To meet this demand, investigators with interests in the biological aspects of aging from model organisms to human epidemiology (population aging) must work together within an interactive process that we describe as translational geroscience. An essential goal of this new investigational platform should be the optimization and preservation of physiological function throughout the lifespan, including integrative physical and cognitive function, which would serve to increase healthspan, compress morbidity and disability into a shorter period of late-life, and help achieve optimal longevity. To most effectively utilize this new approach, we must rethink how investigators and administrators working at different levels of the translational research continuum communicate and collaborate with each other, how best to train the next generation of scientists in this new field, and how contemporary biological-biomedical aging research should be organized and funded. PMID:25324468

  20. Optimal growth strategies under divergent predation pressure.

    PubMed

    Aikio, S; Herczeg, G; Kuparinen, A; Merilä, J

    2013-01-01

    The conditions leading to gigantism in nine-spined sticklebacks Pungitius pungitius were analysed by modelling fish growth with the von Bertalanffy model searching for the optimal strategy when the model's growth constant and asymptotic fish size parameters are negatively related to each other. Predator-related mortality was modelled through the increased risk of death during active foraging. The model was parameterized with empirical growth data of fish from four different populations and analysed for optimal growth strategy at different mortality levels. The growth constant and asymptotic fish size were negatively related in most populations. Optimal fish size, fitness and life span decreased with predator-induced mortality. At low mortality, the fitness of pond populations was higher than that of sea populations. The differences disappeared at intermediate mortalities, and sea populations had slightly higher fitness at extremely high mortalities. In the scenario where all populations mature at the same age, the pond populations perform better at low mortalities and the sea populations at high mortalities. It is concluded that a trade-off between growth constant and asymptotic fish size, together with different mortality rates, can explain a significant proportion of body size differentiation between populations. In the present case, it is a sufficient explanation of gigantism in pond P. pungitius. PMID:23331153

  1. WFH: closing the global gap--achieving optimal care.

    PubMed

    Skinner, Mark W

    2012-07-01

    For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan

  2. WFH: closing the global gap--achieving optimal care.

    PubMed

    Skinner, Mark W

    2012-07-01

    For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan

  3. The optimal polarizations for achieving maximum contrast in radar images

    NASA Technical Reports Server (NTRS)

    Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Novak, L. M.; Shin, R. T.

    1988-01-01

    There is considerable interest in determining the optimal polarizations that maximize contrast between two scattering classes in polarimetric radar images. A systematic approach is presented for obtaining the optimal polarimetric matched filter, i.e., that filter which produces maximum contrast between two scattering classes. The maximization procedure involves solving an eigenvalue problem where the eigenvector corresponding to the maximum contrast ratio is an optimal polarimetric matched filter. To exhibit the physical significance of this filter, it is transformed into its associated transmitting and receiving polarization states, written in terms of horizontal and vertical vector components. For the special case where the transmitting polarization is fixed, the receiving polarization which maximizes the contrast ratio is also obtained. Polarimetric filtering is then applies to synthetic aperture radar images obtained from the Jet Propulsion Laboratory. It is shown, both numerically and through the use of radar imagery, that maximum image contrast can be realized when data is processed with the optimal polarimeter matched filter.

  4. Optimizing density patterns to achieve desired light extraction for displays

    NASA Astrophysics Data System (ADS)

    Davenport, T. L. R.; Cassarly, W. J.

    2007-01-01

    In displays such as backlights and signage, it is often desirable to produce a particular spatial luminance distribution of light. This work demonstrates an iterative optimization technique for determining the density of light extractors required to produce desired luminance distributions.

  5. Differential Growth Trajectories for Achievement among Children Retained in First Grade: A Growth Mixture Model

    ERIC Educational Resources Information Center

    Chen, Qi; Hughes, Jan N.; Kwok, Oi-Man

    2014-01-01

    The authors investigated the differential effect of retention on the development of academic achievement from grades 1 to 5 on children retained in grade 1 over 6 years. Growth mixture model (GMM) analyses supported the existence of two distinct trajectory groups of retained children for both reading and math among 125 ethnically and…

  6. Incorporating Student Mobility in Achievement Growth Modeling: A Cross-Classified Multiple Membership Growth Curve Model.

    PubMed

    Grady, Matthew W; Beretvas, S Natasha

    2010-05-28

    Multiple membership random effects models (MMREMs) have been developed for use in situations where individuals are members of multiple higher level organizational units. Despite their availability and the frequency with which multiple membership structures are encountered, no studies have extended the MMREM approach to hierarchical growth curve modeling (GCM). This study introduces a cross-classified multiple membership growth curve model (CCMM-GCM) for modeling, for example, academic achievement trajectories in the presence of student mobility. Real data are used to demonstrate and compare growth curve model estimates using the CCMM-GCM and a conventional GCM that ignores student mobility. Results indicate that the CCMM-GCM represents a promising option for modeling growth for multiple membership data structures.

  7. Aircraft optimization by a system approach: Achievements and trends

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1992-01-01

    Recently emerging methodology for optimal design of aircraft treated as a system of interacting physical phenomena and parts is examined. The methodology is found to coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all dependent on sensitivity analysis. A separate category of methods has also evolved independent of sensitivity analysis, hence suitable for discrete problems. References and numerical applications are cited. Massively parallel computer processing is seen as enabling technology for practical implementation of the methodology.

  8. Achieving Optimal Privacy in Trust-Aware Social Recommender Systems

    NASA Astrophysics Data System (ADS)

    Dokoohaki, Nima; Kaleli, Cihan; Polat, Huseyin; Matskin, Mihhail

    Collaborative filtering (CF) recommenders are subject to numerous shortcomings such as centralized processing, vulnerability to shilling attacks, and most important of all privacy. To overcome these obstacles, researchers proposed for utilization of interpersonal trust between users, to alleviate many of these crucial shortcomings. Till now, attention has been mainly paid to strong points about trust-aware recommenders such as alleviating profile sparsity or calculation cost efficiency, while least attention has been paid on investigating the notion of privacy surrounding the disclosure of individual ratings and most importantly protection of trust computation across social networks forming the backbone of these systems. To contribute to addressing problem of privacy in trust-aware recommenders, within this paper, first we introduce a framework for enabling privacy-preserving trust-aware recommendation generation. While trust mechanism aims at elevating recommender's accuracy, to preserve privacy, accuracy of the system needs to be decreased. Since within this context, privacy and accuracy are conflicting goals we show that a Pareto set can be found as an optimal setting for both privacy-preserving and trust-enabling mechanisms. We show that this Pareto set, when used as the configuration for measuring the accuracy of base collaborative filtering engine, yields an optimized tradeoff between conflicting goals of privacy and accuracy. We prove this concept along with applicability of our framework by experimenting with accuracy and privacy factors, and we show through experiment how such optimal set can be inferred.

  9. Optimizing the Growth of (111) Diamond for Diamond Based Magnetometry

    NASA Astrophysics Data System (ADS)

    Kamp, Eric; Godwin, Patrick; Samarth, Nitin; Snyder, David; de Las Casas, Charles; Awschalom, David D.

    Magnetometers based on nitrogen vacancy (NV) ensembles have recently achieved sub-picotesla sensitivities [Phys. Rev. X 5, 041001(2015)], putting the technique on par with SQUID and MFM magnetometry.Typically these sensors use (100) oriented diamond with NV centers forming along all four (111) crystal orientations.This allows for vector magnetometry, but is a hindrance to the absolute sensitivity. Diamond grown on (111) oriented substrates through microwave plasma enhanced chemical vapor deposition(MP-CVD) provides a promising route in this context since such films can exhibit preferential orientation greater than 99% [Appl. Phys. Lett.104, 102407 (2014)]. An important challenge though is to achieve sufficiently high NV center densities required for enhancing the sensitivity of an NV ensemble magnetometer.We report systematic studies of the MP-CVD growth and characterization of (111) oriented diamond, where we vary growth temperature, methane concentration, and nitrogen doping. For each film we study the Nitrogen to NV ratio, the NV- to NV0 ratio, and alignment percentage to minimize sources of decoherence and ensure preferential alignment. From these measurements we determine the optimal growth parameters for high sensitivity, NV center ensemble scalar magnetometry. Funded by NSF-DMR.

  10. Gout: optimizing treatment to achieve a disease cure

    PubMed Central

    Bernal, José Antonio; Quilis, Neus; Andrés, Mariano; Sivera, Francisca; Pascual, Eliseo

    2016-01-01

    Gout is one of the most common inflammatory arthritides. The disease is due to the deposition of monosodium urate crystals. These deposits are reversible with proper treatment, suggesting that gout is a curable disease. The main aim in gout is to lower serum uric acid levels to a pre-established target; there are different urate-lowering drugs (xanthine oxidase inhibitors, uricosurics and uricases) through which this can be achieved. Proper treatment of gout also involves correct management of acute flares and their prevention. To ensure treatment adherence it is necessary to explain to the patient what the objectives are. PMID:26977282

  11. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    SciTech Connect

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  12. Regulatory schemes to achieve optimal flux partitioning in bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Tang, Lei-Han; Yang, Zhu; Hui, Sheng; Kim, Pan-Jun; Li, Xue-Fei; Hwa, Terence

    2012-02-01

    The flux balance analysis (FBA) offers a way to compute the optimal performance of a given metabolic network when the maximum incoming flux of nutrient molecules and other essential ingredients for biosynthesis are specified. Here we report a theoretical and computational analysis of the network structure and regulatory interactions in an E. coli cell. An automated scheme is devised to simplify the network topology and to enumerate the independent flux degrees of freedom. The network organization revealed by the scheme enables a detailed interpretation of the three layers of metabolic regulation known in the literature: i) independent transcriptional regulation of biosynthesis and salvage pathways to render the network tree-like under a given nutrient condition; ii) allosteric end-product inhibition of enzyme activity at entry points of synthesis pathways for metabolic flux partitioning according to consumption; iii) homeostasis of currency and carrier compounds to maintain sufficient supply of global commodities. Using the amino-acid synthesis pathways as an example, we show that the FBA result can be reproduced with suitable implementation of the three classes of regulatory interactions with literature evidence.

  13. Optimization of lamp spectrum for vegetable growth

    NASA Technical Reports Server (NTRS)

    Prikupets, L. B.; Tikhomirov, A. A.

    1994-01-01

    An increase in the demand for and production of vegetables in the winter, mainly in northern and Siberian regions, inevitably leads to mass building of structures for growing plants under completely artificial conditions. An industrial lighting technology is required whose main parameters (spectrum, irradiance, photoperiod) should be assigned carefully and should uniquely determine, along with other important characteristics of the artificial climate, the productivity of the plant-production facility. The most widespread crops grown in our country under indoor conditions are cucumber and tomato plants, which account for more than 98% of the area in greenhouses. These plants are good prospects for growing completely under intense artificial lighting conditions (photocultures). Optimization of the main parameters of optical radiation when growing these plants is the most important task of achieving their profitable production. At present, considerable experience has been gained in studying the dependence of productivity of cucumber and tomato communities on irradiation conditions. Fundamental studies of the Agrophysical Research Institute of the Russian Academy of Sciences, Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Timiryazev Agricultural Academy, and other institutes create a good basis for a detailed study of the given problem. Commercial sources of radiation substantially differing in spectral characteristics in the region of photosynthetically active radiation (PAR) were used in the studies.

  14. Achievement Gaps: An Examination of Differences in Student Achievement and Growth. The Full Report

    ERIC Educational Resources Information Center

    McCall, Martha S.; Hauser, Carl; Cronin, John; Kingsbury, G. Gage; Houser, Ronald

    2006-01-01

    The difference between the academic performance of poor students and wealthier students and between minority students and their non-minority peers is commonly known as the achievement gap. The current study examines the achievement gap using a large sample of students from a wide variety of school districts across the United States. It examines…

  15. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    SciTech Connect

    Nainaparampil, Jose

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL's feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  16. The Impact of Linking Distinct Achievement Test Scores on the Interpretation of Student Growth in Achievement

    ERIC Educational Resources Information Center

    Airola, Denise Tobin

    2011-01-01

    Changes to state tests impact the ability of State Education Agencies (SEAs) to monitor change in performance over time. The purpose of this study was to evaluate the Standardized Performance Growth Index (PGIz), a proposed statistical model for measuring change in student and school performance, across transitions in tests. The PGIz is a…

  17. Growth and gaps in mathematics achievement of students with and without disabilities on a statewide achievement test.

    PubMed

    Stevens, Joseph J; Schulte, Ann C; Elliott, Stephen N; Nese, Joseph F T; Tindal, Gerald

    2015-02-01

    This study estimated mathematics achievement growth trajectories in a statewide sample of 92,045 students with and without disabilities over Grades 3 to 7. Students with disabilities (SWDs) were identified in seven exceptionality categories. Students without disabilities (SWoDs) were categorized as General Education (GE) or Academically/Intellectually Gifted (AIG). Students in all groups showed significant growth that decelerated over grades as well as significant variability in achievement by student group, both at the initial assessment in Grade 3 and in rates of growth over time. Race/ethnicity, gender, parental education, free/reduced lunch status, and English language proficiency were also significant predictors of achievement. Effect size estimates showed substantial year-to-year growth that decreased over grades. Sizeable achievement gaps that were relatively stable over grades were observed between SWoDs and students in specific exceptionality categories. Our study also demonstrated the importance of statistically controlling for variation related to student demographic characteristics. Additional research is needed that expands on these results with the same and additional exceptionality groups. PMID:25636260

  18. Growth and gaps in mathematics achievement of students with and without disabilities on a statewide achievement test.

    PubMed

    Stevens, Joseph J; Schulte, Ann C; Elliott, Stephen N; Nese, Joseph F T; Tindal, Gerald

    2015-02-01

    This study estimated mathematics achievement growth trajectories in a statewide sample of 92,045 students with and without disabilities over Grades 3 to 7. Students with disabilities (SWDs) were identified in seven exceptionality categories. Students without disabilities (SWoDs) were categorized as General Education (GE) or Academically/Intellectually Gifted (AIG). Students in all groups showed significant growth that decelerated over grades as well as significant variability in achievement by student group, both at the initial assessment in Grade 3 and in rates of growth over time. Race/ethnicity, gender, parental education, free/reduced lunch status, and English language proficiency were also significant predictors of achievement. Effect size estimates showed substantial year-to-year growth that decreased over grades. Sizeable achievement gaps that were relatively stable over grades were observed between SWoDs and students in specific exceptionality categories. Our study also demonstrated the importance of statistically controlling for variation related to student demographic characteristics. Additional research is needed that expands on these results with the same and additional exceptionality groups.

  19. Collective Responsibility, Academic Optimism, and Student Achievement in Taiwan Elementary Schools

    ERIC Educational Resources Information Center

    Wu, Hsin-Chieh

    2012-01-01

    Previous research indicates that collective efficacy, faculty trust in students and parents, and academic emphasis together formed a single latent school construct, called academic optimism. In the U.S., academic optimism has been proven to be a powerful construct that could effectively predict student achievement even after controlling for…

  20. Principal Leadership: Creating a Culture of Academic Optimism to Improve Achievement for All Students

    ERIC Educational Resources Information Center

    McGuigan, Leigh; Hoy, Wayne K.

    2006-01-01

    Since the Coleman Report (1966), educational researchers have tried to identify school properties that make a difference in student achievement and overcome the negative influence of low socioeconomic status. We theorized that academic optimism was a latent construct that enhanced student achievement and that enabling school structure provided a…

  1. Achieving and documenting closure in plant growth facilities

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Sager, John C.; Wheeler, Ray

    1992-01-01

    As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

  2. Exploring Gains in Reading and Mathematics Achievement among Regular and Exceptional Students Using Growth Curve Modeling

    ERIC Educational Resources Information Center

    Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D.; Chan, Chi-Keung; Heistad, David

    2013-01-01

    Using four-wave longitudinal reading and mathematics data (4th to 7th grades) from a large urban school district, growth curve modeling was used as a tool for examining three research questions: Are achievement gaps closing in reading and mathematics? What are the associations between prior-achievement and growth across the reading and mathematics…

  3. Once, Sometimes, or Always in Special Education: Mathematics Growth and Achievement Gaps

    ERIC Educational Resources Information Center

    Schulte, Ann C.; Stevens, Joseph J.

    2015-01-01

    This study used a statewide longitudinal sample to examine mathematics achievement gaps and growth in students with and without disabilities and to examine the impact of different methods of determining disability group membership on achievement gaps and growth. When disability status was determined on the basis of special education placement each…

  4. High-Achieving and Average Students' Reading Growth: Contrasting School and Summer Trajectories

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; McCoach, D. Betsy

    2015-01-01

    Much is unknown about how initially high-achieving students grow academically, especially given the measurement issues inherent in assessing growth for the highest performing students. This study compared initially high-achieving and average students' growth in reading (in a cohort of third-grade students from 2,000 schools) over 3 years.…

  5. Growth and Achievement Trends of Advanced Placement (AP) Exams in American High Schools

    ERIC Educational Resources Information Center

    Judson, Eugene; Hobson, Angela

    2015-01-01

    This exploratory study examined and compared overall trends in growth and student achievement of the Advanced Placement (AP) program. Using data from the past two decades, analyses indicated there has been steady and extensive growth of AP participation, particularly among underclassmen and some minority groups. However, overall achievement, as…

  6. Emergence of robust growth laws from optimal regulation of ribosome synthesis

    PubMed Central

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-01-01

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. PMID:25149558

  7. Emergence of robust growth laws from optimal regulation of ribosome synthesis.

    PubMed

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-08-22

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms.

  8. Optimization of a new mathematical model for bacterial growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to optimize a new mathematical equation as a primary model to describe the growth of bacteria under constant temperature conditions. An optimization algorithm was used in combination with a numerical (Runge-Kutta) method to solve the differential form of the new gr...

  9. Role of insulin-like growth factor monitoring in optimizing growth hormone therapy.

    PubMed

    Wetterau, L; Cohen, P

    2000-01-01

    Much has been learned over the past two decades regarding the management of growth hormone (GH) deficiency in children and adolescents. Current GH therapy under ideal circumstances enables children to attain a final height within the normal range and close to their target height. However, such a successful outcome is not always achieved and the necessity to individualize treatment according to the specific needs of each GH-deficient child is now well recognized. Consensus does not currently exist as to how to formulate individualized treatment plans. Nonetheless, a clear role for a biochemical, as well as an auxological, monitoring approach has been established. Accurate determinations of height velocity and interval height increase (expressed as the change in height Z-score) continue to be the most important parameters in monitoring the response to treatment. The importance of routinely monitoring serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 is an emerging paradigm. Firm roles have been established for this approach in the assurance of compliance and safety (particularly to avoid long-term theoretical risks). IGF monitoring also has important potential utility as a tool to assess and optimize the response to GH therapy through dose adjustments. In years to come, we expect the development of multiple GH treatment optimization strategies, including approaches such as prediction modeling, as well as serum IGF monitoring and dose adjustments, to evolve and improve. PMID:11202212

  10. Role of well-being therapy in achieving a balanced and individualized path to optimal functioning.

    PubMed

    Ruini, Chiara; Fava, Giovanni A

    2012-01-01

    A specific psychotherapeutic strategy for increasing psychological well-being and resilience, well-being therapy (WBT), based on Ryff's conceptual model, has been developed and tested in a number of randomized controlled trials. The findings indicate that flourishing and resilience can be promoted by specific interventions leading to a positive evaluation of one's self, a sense of continued growth and development, the belief that life is purposeful and meaningful, the possession of quality relations with others, the capacity to manage effectively one's life and a sense of self-determination. A decreased vulnerability to depression, mood swings and anxiety has been demonstrated after WBT in high-risk populations. School interventions based on the principles of WBT have been found to yield both promotion of well-being and decrease of distress compared with control groups. The differential technical characteristics and indications of WBT are described, with a special reference to the promotion of an individualized and balanced path to achieve optimal human functioning, avoiding the polarities in positive psychological dimensions. PMID:22570318

  11. Optimal control analysis of the dynamic growth behavior of microorganisms.

    PubMed

    Mandli, Aravinda R; Modak, Jayant M

    2014-12-01

    Understanding the growth behavior of microorganisms using modeling and optimization techniques is an active area of research in the fields of biochemical engineering and systems biology. In this paper, we propose a general modeling framework, based on Monod model, to model the growth of microorganisms. Utilizing the general framework, we formulate an optimal control problem with the objective of maximizing a long-term cellular goal and solve it analytically under various constraints for the growth of microorganisms in a two substrate batch environment. We investigate the relation between long term and short term cellular goals and show that the objective of maximizing cellular concentration at a fixed final time is equivalent to maximization of instantaneous growth rate. We then establish the mathematical connection between the generalized framework and optimal and cybernetic modeling frameworks and derive generalized governing dynamic equations for optimal and cybernetic models. We finally illustrate the influence of various constraints in the cybernetic modeling framework on the optimal growth behavior of microorganisms by solving several dynamic optimization problems using genetic algorithms.

  12. Fully localised nonlinear energy growth optimals in pipe flow

    NASA Astrophysics Data System (ADS)

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-01

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, "Optimal energy density growth in Hagen-Poiseuille flow," J. Fluid Mech. 277, 192-225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., "Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos," J. Fluid Mech. 702, 415-443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for "real" (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  13. Fully localised nonlinear energy growth optimals in pipe flow

    SciTech Connect

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-15

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  14. Achieving optimal aesthetics for direct and indirect restorations with microhybrid composite resins.

    PubMed

    Okuda, Wynn H

    2005-04-01

    In aesthetic dentistry, material science has played a key role in the development of natural-appearing restorations. Despite the progress, there have been challenges in achieving a harmonious integration of direct and indirect posterior restorations. Although porcelain restorations provide natural aesthetics, ceramics cannot be applied via direct techniques. Consequently, composite resins are valuable alternatives for conservative posterior restorations. In addition, because of their differing physical and optical properties, optimal aesthetic blending with porcelain and resin cannot be routinely achieved. This article explores the potential of composite resins as a direct and indirect restorative option in achieving the most favorable natural blend in the posterior region.

  15. Academic Optimism, Organizational Citizenship Behaviors, and Student Achievement at Charter Schools

    ERIC Educational Resources Information Center

    Guvercin, Mustafa

    2013-01-01

    The purpose of this study was to examine the relationship among academic optimism, Organizational Citizenship Behaviors (OCBs), and student achievement in college preparatory charter schools. A purposeful sample of elementary school teachers from college preparatory charter schools (N = 226) in southeast Texas was solicited to complete the…

  16. Parent Involvement and Science Achievement: A Cross-Classified Multilevel Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Johnson, Ursula Y.; Hull, Darrell M.

    2014-01-01

    The authors examined science achievement growth at Grades 3, 5, and 8 and parent school involvement at the same time points using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999. Data were analyzed using cross-classified multilevel latent growth curve modeling with time invariant and varying covariates. School-based…

  17. Promising Practices in Professional Growth & Support: "Case Study of Achievement First"

    ERIC Educational Resources Information Center

    Education Resource Strategies, 2013

    2013-01-01

    Four organizations with promising practices in teacher Professional Growth & Support have significantly raised outcomes for low-income students. The charter management networks, Achievement First and Aspire Public Schools, and the two reform organizations, Teach Plus and Agile Mind, have successfully increased student achievement with a…

  18. The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement

    ERIC Educational Resources Information Center

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…

  19. Reading and math achievement profiles and longitudinal growth trajectories of children with an autism spectrum disorder.

    PubMed

    Wei, Xin; Christiano, Elizabeth R A; Yu, Jennifer W; Wagner, Mary; Spiker, Donna

    2015-02-01

    This study examined the reading and math achievement profiles and longitudinal growth trajectories of a nationally representative sample of children ages 6 through 9 with an autism spectrum disorder. Four distinct achievement profiles were identified: higher-achieving (39%), hyperlexia (9%), hypercalculia (20%) and lower-achieving (32%). Children with hypercalculia and lower-achieving profiles were more likely to be from low socioeconomic families and had lower functional cognitive skills than the higher-achieving profile. All four profiles lost ground in passage comprehension over time. Slower improvement occurred for the higher-achieving group on letter-word identification, the hyperlexia group on conversation abilities and the hypercalculia group on calculation and functional cognitive skills relative to the lower-achieving group.

  20. Use of a Batch Reactive Distillation with Dynamic Optimization Strategy to Achieve Industrial Grade Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Konakom, Kwantip; Saengchan, Aritsara; Kittisupakorn, Paisan; Mujtaba, Iqbal M.

    2011-08-01

    Industrial grade ethyl acetate is available with minimum purity of 85.0%. It is mostly produced by an ethanol esterification in a distillation process on both batch and continuous modes. However, researches on high purity production with short operating time are rarely achieved. Therefore, the objective in this work is to study an approach to produce ethyl acetate of 90.0% by 8 hours using a batch reactive distillation column. Based on open-loop simulations, the distillation with constant reflux ratio cannot achieve the product specification. Thus, the dynamic optimization strategy is proposed to handle this problem. For the process safety—preventing the dried column and fractured, a minimum reflux ratio must be determined in advance and then an optimal reflux profile is calculated to achieve optimal product yield. Simulation results show that the industrial grade ethyl acetate can be produced by the dynamic optimization programming with two or more time intervals. Besides, the increasing of time intervals can produce more distillate product.

  1. Transaction fees and optimal rebalancing in the growth-optimal portfolio

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Medo, Matúš; Zhang, Liang; Zhang, Yi-Cheng

    2011-05-01

    The growth-optimal portfolio optimization strategy pioneered by Kelly is based on constant portfolio rebalancing which makes it sensitive to transaction fees. We examine the effect of fees on an example of a risky asset with a binary return distribution and show that the fees may give rise to an optimal period of portfolio rebalancing. The optimal period is found analytically in the case of lognormal returns. This result is consequently generalized and numerically verified for broad return distributions and returns generated by a GARCH process. Finally we study the case when investment is rebalanced only partially and show that this strategy can improve the investment long-term growth rate more than optimization of the rebalancing period.

  2. Global Optimization, Local Adaptation, and the Role of Growth in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2016-09-01

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature.

  3. Predictors of early growth in academic achievement: the head-toes-knees-shoulders task

    PubMed Central

    McClelland, Megan M.; Cameron, Claire E.; Duncan, Robert; Bowles, Ryan P.; Acock, Alan C.; Miao, Alicia; Pratt, Megan E.

    2014-01-01

    Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by assessing construct validity, including relations to EF measures, and predictive validity to academic achievement growth between prekindergarten and kindergarten. In the fall and spring of prekindergarten and kindergarten, 208 children (51% enrolled in Head Start) were assessed on the HTKS, measures of cognitive flexibility, working memory (WM), and inhibitory control, and measures of emergent literacy, mathematics, and vocabulary. For construct validity, the HTKS was significantly related to cognitive flexibility, working memory, and inhibitory control in prekindergarten and kindergarten. For predictive validity in prekindergarten, a random effects model indicated that the HTKS significantly predicted growth in mathematics, whereas a cognitive flexibility task significantly predicted growth in mathematics and vocabulary. In kindergarten, the HTKS was the only measure to significantly predict growth in all academic outcomes. An alternative conservative analytical approach, a fixed effects analysis (FEA) model, also indicated that growth in both the HTKS and measures of EF significantly predicted growth in mathematics over four time points between prekindergarten and kindergarten. Results demonstrate that the HTKS involves cognitive flexibility, working memory, and inhibitory control, and is substantively implicated in early achievement, with the strongest relations found for growth in achievement during kindergarten and associations with emergent mathematics. PMID:25071619

  4. Predictors of early growth in academic achievement: the head-toes-knees-shoulders task.

    PubMed

    McClelland, Megan M; Cameron, Claire E; Duncan, Robert; Bowles, Ryan P; Acock, Alan C; Miao, Alicia; Pratt, Megan E

    2014-01-01

    Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by assessing construct validity, including relations to EF measures, and predictive validity to academic achievement growth between prekindergarten and kindergarten. In the fall and spring of prekindergarten and kindergarten, 208 children (51% enrolled in Head Start) were assessed on the HTKS, measures of cognitive flexibility, working memory (WM), and inhibitory control, and measures of emergent literacy, mathematics, and vocabulary. For construct validity, the HTKS was significantly related to cognitive flexibility, working memory, and inhibitory control in prekindergarten and kindergarten. For predictive validity in prekindergarten, a random effects model indicated that the HTKS significantly predicted growth in mathematics, whereas a cognitive flexibility task significantly predicted growth in mathematics and vocabulary. In kindergarten, the HTKS was the only measure to significantly predict growth in all academic outcomes. An alternative conservative analytical approach, a fixed effects analysis (FEA) model, also indicated that growth in both the HTKS and measures of EF significantly predicted growth in mathematics over four time points between prekindergarten and kindergarten. Results demonstrate that the HTKS involves cognitive flexibility, working memory, and inhibitory control, and is substantively implicated in early achievement, with the strongest relations found for growth in achievement during kindergarten and associations with emergent mathematics. PMID:25071619

  5. Optimization of Dairy Sludge for Growth of Rhizobium Cells

    PubMed Central

    Singh, Ashok Kumar; Singh, Gauri; Gautam, Digvijay; Bedi, Manjinder Kaur

    2013-01-01

    In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with different synthetic media (tryptone yeast, Rhizobium minimal medium and yeast extract mannitol). Growth in 60% Dairy sludge was found to be superior to standard media used for Rhizobium. Media were optimized using 60% dairy sludge along with different concentrations of yeast extract (1–7 g/L) and mannitol (7–13 g/L) in terms of optical density at different time intervals, that is, 24, 48 and 72 hours. Maximum growth was observed in 6 g/L of yeast extract and 12 g/L of mannitol at 48-hour incubation period in all strains. The important environmental parameters such as pH were optimized using 60% dairy sludge, 60% dairy sludge +6 g/L yeast extract, and 60% dairy sludge +12 g/L mannitol. The maximum growth of all strains was found at pH 7.0. The present study recommends the use of 60% dairy sludge as a suitable growth medum for inoculant production. PMID:24089690

  6. Optimization of dairy sludge for growth of Rhizobium cells.

    PubMed

    Singh, Ashok Kumar; Singh, Gauri; Gautam, Digvijay; Bedi, Manjinder Kaur

    2013-01-01

    In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with different synthetic media (tryptone yeast, Rhizobium minimal medium and yeast extract mannitol). Growth in 60% Dairy sludge was found to be superior to standard media used for Rhizobium. Media were optimized using 60% dairy sludge along with different concentrations of yeast extract (1-7 g/L) and mannitol (7-13 g/L) in terms of optical density at different time intervals, that is, 24, 48 and 72 hours. Maximum growth was observed in 6 g/L of yeast extract and 12 g/L of mannitol at 48-hour incubation period in all strains. The important environmental parameters such as pH were optimized using 60% dairy sludge, 60% dairy sludge +6 g/L yeast extract, and 60% dairy sludge +12 g/L mannitol. The maximum growth of all strains was found at pH 7.0. The present study recommends the use of 60% dairy sludge as a suitable growth medum for inoculant production.

  7. Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber

    PubMed Central

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-01-01

    The objective of the present study was to investigate the optimal nutritional requirements for mycelial growth and sporulation of entomopathogenic fungus Aschersonia aleyrodis Webber by orthogonal layout methods. Herein the order of effects of nutrient components on mycelial growth was tryptone > Ca2+ > soluble starch > folacin, corresponding to the following optimal concentrations: 1.58% Soluble Starch, 3.16% Tryptone, 0.2 mmol l-1 Ca2+ and 0.005% Folacin. The optimal concentration of each factors for sporulation was 1.16% lactose, 0.394% tryptone, 0.4 mmol l-1 Fe2+ and 0.00125% VB1, and the effects of medium components on sporulation were found to be in the order lactose > VB1 > Fe2+ > tryptone. Under the optimal culture conditions, the maximum production of mycelial growth achieved 20.05 g l-1 after 7 days of fermentation, while the maximum spore yield reached 5.23 ×1010 spores l-1 after 22 days of cultivation. This is the first report on optimization of nutritional requirements and design of simplified semi-synthetic media for mycelial growth and sporulation of A. aleyrodis. PMID:24031305

  8. An Optimal Framework for Smart Growth Decision-Making

    NASA Astrophysics Data System (ADS)

    Moglen, G. E.; Gabriel, S. A.; Faria, J. A.

    2002-05-01

    Increasing awareness about the problems brought on by urban sprawl have led to proactive measures to guide future development. Such efforts have largely been grouped under the term, "Smart Growth". Although not widely recognized as such, the "smart" in smart growth implies an optimization of some quantity or objective while undertaking new forms of urban development. This presentation develops formal definitions of optimal development from the perspectives of four different types of individuals: a government planner, a land developer, a hydrologist, and a conservationist. Four different objective functions are posed that are consistent with each of these individuals' perspectives. We illustrate the differences in consequences on future development given these different objective functions in Montgomery County, Maryland. Differences between the solutions to the various perspectives graphically illustrate that "smart growth" is in the eye of the beholder. The mapped solutions to "smart growth" from the individual perspectives vary considerably. Aside from the obvious differences between these solutions, this presentation will highlight some interesting, but more subtle results, such as the existence of parcels that are considered "optimal" for development across all perspectives. The robustness of such parcels to varied definitions of optimality suggests they reflect a more broadly defined "smart growth". Although couched in the context of an illustrative example, this presentation emphasizes the need to apply rigorous, quantitative tools in a meaningful framework to address smart growth. The result is a tool that a range of parties can use to plan future development in ways that are environmentally and fiscally responsible and economically viable. The details of the construction of this framework involve precise articulation of individual objectives and good communication between all parties with a stake in the future land development.

  9. Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals

    NASA Astrophysics Data System (ADS)

    Fang, H. S.; Qiu, S. R.; Zheng, L. L.; Schaffers, K. I.; Tassano, J. B.; Caird, J. A.; Zhang, H.

    2008-08-01

    Yb:S-FAP [Yb 3+:Sr 5(PO 4) 3F] crystals are an important gain medium for diode-pumped laser applications. Growth of 7.0 cm diameter Yb:S-FAP crystals utilizing the Czochralski (CZ) method from SrF 2-rich melts often encounters cracks during the post-growth cool-down stage. To suppress cracking during cool-down, a numerical simulation of the growth system was used to understand the correlation between the furnace power during cool-down and the radial temperature differences within the crystal. The critical radial temperature difference, above which the crystal cracks, has been determined by benchmarking the simulation results against experimental observations. Based on this comparison, an optimal three-stage ramp-down profile was implemented, which produced high-quality, crack-free Yb:S-FAP crystals.

  10. Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals

    SciTech Connect

    Fang, H; Qiu, S; Kheng, L; Schaffers, K; Tassano, J; Caird, J; Zhang, H

    2007-08-20

    Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals are an important gain medium for diode-pumped laser applications. Growth of 7.0 cm diameter Yb:S-FAP crystals utilizing the Czochralski (CZ) method from SrF{sub 2}-rich melts often encounter cracks during the post growth cool down stage. To suppress cracking during cool down, a numerical simulation of the growth system was used to understand the correlation between the furnace power during cool down and the radial temperature differences within the crystal. The critical radial temperature difference, above which the crystal cracks, has been determined by benchmarking the simulation results against experimental observations. Based on this comparison, an optimal three-stage ramp-down profile was implemented and produced high quality, crack-free Yb:S-FAP crystals.

  11. Modeling stability of growth between mathematics and science achievement during middle and high school.

    PubMed

    Ma, Xin; Ma, Lingling

    2004-04-01

    In this study, the authors introduced a multivariate multilevel model to estimate the consistency among students and schools in the rates of growth between mathematics and science achievement during the entire middle and high school years with data from the Longitudinal Study of American Youth (LSAY). There was no evident consistency in the rates of growth between mathematics and science achievement among students, and this inconsistency was not much influenced by student characteristics and school characteristics. However, there was evident consistency in the average rates of growth between mathematics and science achievement among schools, and this consistency was influenced by student characteristics and school characteristics. Major school-level variables associated with parental involvement did not show any significant impacts on consistency among either students or schools. Results call for educational policies that promote collaboration between mathematics and science departments or teachers.

  12. Incorporating Student Mobility in Achievement Growth Modeling: A Cross-Classified Multiple Membership Growth Curve Model

    ERIC Educational Resources Information Center

    Grady, Matthew W.; Beretvas, S. Natasha

    2010-01-01

    Multiple membership random effects models (MMREMs) have been developed for use in situations where individuals are members of multiple higher level organizational units. Despite their availability and the frequency with which multiple membership structures are encountered, no studies have extended the MMREM approach to hierarchical growth curve…

  13. The controlled growth method - A tool for structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Sobieszczanski-Sobieski, J.

    1981-01-01

    An adaptive design variable linking scheme in a NLP based optimization algorithm is proposed and evaluated for feasibility of application. The present scheme, based on an intuitive effectiveness measure for each variable, differs from existing methodology in that a single dominant variable controls the growth of all others in a prescribed optimization cycle. The proposed method is implemented for truss assemblies and a wing box structure for stress, displacement and frequency constraints. Substantial reduction in computational time, even more so for structures under multiple load conditions, coupled with a minimal accompanying loss in accuracy, vindicates the algorithm.

  14. Faculty Sense of Academic Optimism and Its Relationship to Students' Achievement in Well Performing High Schools

    ERIC Educational Resources Information Center

    Cromartie, Michael Tyrone

    2013-01-01

    The aim of this study was to determine the organizational characteristics and behaviors that contribute to sustaining a culture of academic optimism as a mechanism of student achievement. While there is a developing research base identifying both the individual elements of academic optimism as well as the academic optimism construct itself as…

  15. Growth in Reading Achievement of Students with Disabilities, Ages 7 to 17

    ERIC Educational Resources Information Center

    Wei, Xin; Blackorby, Jose; Schiller, Ellen

    2011-01-01

    Using data from the Special Education Elementary Longitudinal Study (SRI International, 2002), this study estimated reading growth trajectories in a nationally representative sample of 3,421 students with disabilities ages 7 to 17 representing 11 federal disability categories. Reading achievement in all disability categories increased with age,…

  16. A Longitudinal Assessment of Early Acceleration of Students in Mathematics on Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, X.

    2005-01-01

    Early acceleration of students in mathematics (in the form of early access to formal abstract algebra) has been a controversial educational issue. The current study examined the rate of growth in mathematics achievement of accelerated gifted, honors, and regular students across the entire secondary years (Grades 7-12), in comparison to their…

  17. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers.

    PubMed

    Li, L H; Zhu, J X; Chen, L; Davies, A G; Linfield, E H

    2015-02-01

    The technique of molecular beam epitaxy has recently been used to demonstrate the growth of terahertz frequency GaAs/AlGaAs quantum cascade lasers (QCL) with Watt-level optical output powers. In this paper, we discuss the critical importance of achieving accurate layer thicknesses and alloy compositions during growth, and demonstrate that precise growth control as well as run-to-run growth reproducibility is possible. We also discuss the importance of minimizing background doping level in maximizing QCL performance. By selecting high-performance active region designs, and optimizing the injection doping level and device fabrication, we demonstrate total optical (two-facet) output powers as high as 1.56 W.

  18. Precollege science achievement growth: Racial-ethnic and gender differences in cognitive and psychosocial constructs

    NASA Astrophysics Data System (ADS)

    Muller, Patricia Ann

    The purpose of this study was to gain a more complete understanding of the differences in science, mathematics and engineering education among racial-ethnic and gender subgroups by exploring factors related to precollege science achievement growth rates. Using Hierarchical Linear Modeling (HLM) and multi-wave, longitudinal data from the first three waves of the National Education Longitudinal Study of 1988--1994 (NELS:88/94), this study examined precollege science achievement growth rates during the 8th to 10th grade period and the 10th to 12th grade period for African American males, African American females, Latino males, Latina females, Asian American males, Asian American females, White males and White females. For the 8th--10th grade period, previous grades were significantly and positively related to science achievement growth for all subgroups; and socio-economic status and high school program were significantly and positively related to science achievement growth for all subgroups except one (Latino males, and Asian American males respectively). For the 10th--12th grade period, the quantity of science courses completed (science units) was the only variable that was statistically significant for more than one racial-ethnic by gender subgroup. Science units taken were significantly and positively related to 10 th--12th grade growth rates for all racial-ethnic by gender subgroups except Latino males. Locus-of-control was the only cognitive or psychosocial factor included from Eccles, Adler, Futterman, Goff, Kaczala, Meece and Midgley's (1983) theoretical framework for achievement behaviors that appeared to exhibit any pattern across race-ethnicities. Locus-of-control was positively related to 8th--10 th grade science achievement growth for females across all racial-ethnic subgroups, as well as for African American males. However, for both the 8 th--10th grade and 10th--12 th grade periods, there was no consistency across racial-ethnic or gender subgroups in

  19. Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study.

    PubMed

    Geary, David C

    2011-11-01

    The study's goal was to identify the beginning of 1st grade quantitative competencies that predict mathematics achievement start point and growth through 5th grade. Measures of number, counting, and arithmetic competencies were administered in early 1st grade and used to predict mathematics achievement through 5th (n = 177), while controlling for intelligence, working memory, and processing speed. Multilevel models revealed intelligence and processing speed, and the central executive component of working memory predicted achievement or achievement growth in mathematics and, as a contrast domain, word reading. The phonological loop was uniquely predictive of word reading and the visuospatial sketch pad of mathematics. Early fluency in processing and manipulating numerical set size and Arabic numerals, accurate use of sophisticated counting procedures for solving addition problems, and accuracy in making placements on a mathematical number line were uniquely predictive of mathematics achievement. Use of memory-based processes to solve addition problems predicted mathematics and reading achievement but in different ways. The results identify the early quantitative competencies that uniquely contribute to mathematics learning.

  20. A Study of the Effects of the Accelerated Reader Program on Fifth Grade Students' Reading Achievement Growth

    ERIC Educational Resources Information Center

    Melton, Cindy M.; Smothers, Bobbie C.; Anderson, Eugene; Fulton, Ray; Replogle, William H.; Thomas, Lisa

    2004-01-01

    The purpose of this study was to compare the reading achievement growth of fifth grade students following a year of participation in the Accelerated Reader program with the reading achievement growth of fifth grade students who did not participate in the Accelerated Reader program. The Terra Nova standardized achievement test was used as the…

  1. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  2. Evaluating and optimizing horticultural regimes in space plant growth facilities

    NASA Astrophysics Data System (ADS)

    Berkovich, Y.; Chetirkin, R.; Wheeler, R.; Sager, J.

    In designing innovative Space Plant Growth Facilities (SPGF) for long duration space f ightl various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating onboard resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding of the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M · (EBI) 2 / (V · E · T) ], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is a volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. We analyzed the efficiency of plant crops and the environmental parameters by examining the criteria for 15 salad and 12 wheat crops from the data in the ALS database at Kennedy Space Center. Some following conclusion have been established: 1. The technology involved in growing salad crops on a cylindrical type surface provides a more meaningful Q-criterion; 2. Wheat crops were less efficient than leafy greens (salad crops) when examining resource utilization; 3. By increasing light intensity of the crop the efficiency of the resource utilization could decrease. Using the existing databases and Q-criteria we have found that the criteria can be used in optimizing design and horticultural regimes in the SPGF.

  3. Legionella pneumophilaRequires Polyamines for Optimal Intracellular Growth

    PubMed Central

    Nasrallah, Gheyath K.; Riveroll, Angela L.; Chong, Audrey; Murray, Lois E.; Lewis, P. Jeffrey; Garduño, Rafael A.

    2011-01-01

    The Gram-negative intracellular pathogen Legionella pneumophilareplicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophilaexpressing a translocation reporter consisting of the Bordetella pertussisadenylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophilamay require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophilareplication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophilaproliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila. PMID:21742865

  4. Legionella pneumophila requires polyamines for optimal intracellular growth.

    PubMed

    Nasrallah, Gheyath K; Riveroll, Angela L; Chong, Audrey; Murray, Lois E; Lewis, P Jeffrey; Garduño, Rafael A

    2011-09-01

    The Gram-negative intracellular pathogen Legionella pneumophila replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophila expressing a translocation reporter consisting of the Bordetella pertussisa denylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2 induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophila may require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophila replication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophila proliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila.

  5. Legionella pneumophila requires polyamines for optimal intracellular growth.

    PubMed

    Nasrallah, Gheyath K; Riveroll, Angela L; Chong, Audrey; Murray, Lois E; Lewis, P Jeffrey; Garduño, Rafael A

    2011-09-01

    The Gram-negative intracellular pathogen Legionella pneumophila replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophila expressing a translocation reporter consisting of the Bordetella pertussisa denylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2 induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophila may require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophila replication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophila proliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila. PMID:21742865

  6. Evaluating and optimizing horticultural regimes in space plant growth facilities

    NASA Technical Reports Server (NTRS)

    Berkovich, Y. A.; Chetirkin, P. V.; Wheeler, R. M.; Sager, J. C.

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Optimization of biomass composition explains microbial growth-stoichiometry relationships

    USGS Publications Warehouse

    Franklin, O.; Hall, E.K.; Kaiser, C.; Battin, T.J.; Richter, A.

    2011-01-01

    Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.

  8. Evaluating and optimizing horticultural regimes in space plant growth facilities.

    PubMed

    Berkovich, Y A; Chetirkin, P V; Wheeler, R M; Sager, J C

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production.

  9. Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

    PubMed

    Huot, Bethany; Yao, Jian; Montgomery, Beronda L; He, Sheng Yang

    2014-08-01

    Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands. PMID:24777989

  10. Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

    PubMed

    Huot, Bethany; Yao, Jian; Montgomery, Beronda L; He, Sheng Yang

    2014-08-01

    Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands.

  11. Modeling of urban growth using cellular automata (CA) optimized by Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Khalilnia, M. H.; Ghaemirad, T.; Abbaspour, R. A.

    2013-09-01

    In this paper, two satellite images of Tehran, the capital city of Iran, which were taken by TM and ETM+ for years 1988 and 2010 are used as the base information layers to study the changes in urban patterns of this metropolis. The patterns of urban growth for the city of Tehran are extracted in a period of twelve years using cellular automata setting the logistic regression functions as transition functions. Furthermore, the weighting coefficients of parameters affecting the urban growth, i.e. distance from urban centers, distance from rural centers, distance from agricultural centers, and neighborhood effects were selected using PSO. In order to evaluate the results of the prediction, the percent correct match index is calculated. According to the results, by combining optimization techniques with cellular automata model, the urban growth patterns can be predicted with accuracy up to 75 %.

  12. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation. PMID:25855209

  13. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation.

  14. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    PubMed

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling.

  15. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    PubMed

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling. PMID:18155518

  16. Perceived social support and academic achievement: cross-lagged panel and bivariate growth curve analyses.

    PubMed

    Mackinnon, Sean P

    2012-04-01

    As students transition to post-secondary education, they experience considerable stress and declines in academic performance. Perceived social support is thought to improve academic achievement by reducing stress. Longitudinal designs with three or more waves are needed in this area because they permit stronger causal inferences and help disentangle the direction of relationships. This study uses a cross-lagged panel and a bivariate growth curve analysis with a three-wave longitudinal design. Participants include 10,445 students (56% female; 12.6% born outside of Canada) transitioning to post-secondary education from ages 15-19. Self-report measures of academic achievement and a generalized measure of perceived social support were used. An increase in average relative standing in academic achievement predicted an increase in average relative standing on perceived social support 2 years later, but the reverse was not true. High levels of perceived social support at age 15 did not protect against declines in academic achievement over time. In sum, perceived social support appears to have no bearing on adolescents' future academic performance, despite commonly held assumptions of its importance.

  17. Using hierarchical linear growth models to evaluate protective mechanisms that mediate science achievement

    NASA Astrophysics Data System (ADS)

    von Secker, Clare Elaine

    The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.

  18. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity.

    PubMed

    Seals, Douglas R; Justice, Jamie N; LaRocca, Thomas J

    2016-04-15

    Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio-economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been 'compression of morbidity' and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, 'geroscience', is focused on healthspan extension. Superimposed on this background are new attitudes and demand for 'optimal longevity' - living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first-line function-preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel 'nutraceutical' compounds, serving as potential

  19. Academic abilities in children and adolescents with a history of autism spectrum disorders who have achieved optimal outcomes.

    PubMed

    Troyb, Eva; Orinstein, Alyssa; Tyson, Katherine; Helt, Molly; Eigsti, Inge-Marie; Stevens, Michael; Fein, Deborah

    2014-04-01

    This study examines the academic abilities of children and adolescents who were once diagnosed with an autism spectrum disorder, but who no longer meet diagnostic criteria for this disorder. These individuals have achieved social and language skills within the average range for their ages, receive little or no school support, and are referred to as having achieved "optimal outcomes." Performance of 32 individuals who achieved optimal outcomes, 41 high-functioning individuals with a current autism spectrum disorder diagnosis (high-functioning autism), and 34 typically developing peers was compared on measures of decoding, reading comprehension, mathematical problem solving, and written expression. Groups were matched on age, sex, and nonverbal IQ; however, the high-functioning autism group scored significantly lower than the optimal outcome and typically developing groups on verbal IQ. All three groups performed in the average range on all subtests measured, and no significant differences were found in performance of the optimal outcome and typically developing groups. The high-functioning autism group scored significantly lower on subtests of reading comprehension and mathematical problem solving than the optimal outcome group. These findings suggest that the academic abilities of individuals who achieved optimal outcomes are similar to those of their typically developing peers, even in areas where individuals who have retained their autism spectrum disorder diagnoses exhibit some ongoing difficulty.

  20. Predicting long-term growth in students' mathematics achievement: the unique contributions of motivation and cognitive strategies.

    PubMed

    Murayama, Kou; Pekrun, Reinhard; Lichtenfeld, Stephanie; Vom Hofe, Rudolf

    2013-01-01

    This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage  = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies.

  1. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  2. Calibration of STUD+ parameters to achieve optimally efficient broadband adiabatic decoupling in a single transient

    PubMed

    Bendall; Skinner

    1998-10-01

    for a single sech/tanh pulse. Residual splitting of the centerband, normally associated with incomplete or inefficient decoupling, is not seen in sech/tanh decoupling and therefore cannot be used as a measure of adiabatic decoupling efficiency. The calibrated experimental performance levels achieved in this study are within 20% of theoretical performance levels derived previously for ideal sech/tanh decoupling at high power, indicating a small scope for further improvement at practical RF power levels. The optimization procedures employed here will be generally applicable to any good combination of adiabatic inversion pulse and phase cycle. Copyright 1998 Academic Press. PMID:9761708

  3. Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range

    NASA Technical Reports Server (NTRS)

    Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

  4. An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations

    PubMed Central

    Sankaran, Sethuraman; Humphrey, Jay D.; Marsden, Alison L.

    2013-01-01

    Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are

  5. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  6. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory.

  7. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. PMID:26548947

  8. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  9. The Relationship of Mental Pressure with Optimism and Academic Achievement Motivation among Second Grade Male High School Students

    ERIC Educational Resources Information Center

    Sarouni, Ali Sedigh; Jenaabadi, Hossein; Pourghaz, Abdulwahab

    2016-01-01

    The present study aimed to examine the relationship of mental pressure with optimism and academic achievement motivation among second grade second period male high school students. This study followed a descriptive-correlational method. The sample included 200 second grade second period male high school students in Sooran. Data collection tools in…

  10. Should Schools Be Optimistic? An Investigation of the Association between Academic Optimism of Schools and Student Achievement in Primary Education

    ERIC Educational Resources Information Center

    Boonen, Tinneke; Pinxten, Maarten; Van Damme, Jan; Onghena, Patrick

    2014-01-01

    Academic emphasis, collective efficacy, and faculty trust in students and parents (3 school characteristics positively associated with student achievement) are assumed to form a higher order latent construct, "academic optimism" (Hoy, Tarter, & Woolfolk Hoy, 2006a, 2006b). The aim of the present study is to corroborate the latent…

  11. A Study of the Relationships between Distributed Leadership, Teacher Academic Optimism and Student Achievement in Taiwanese Elementary Schools

    ERIC Educational Resources Information Center

    Chang, I-Hua

    2011-01-01

    The purpose of this study was to explore the relationships between distributed leadership, teachers' academic optimism and student achievement in learning. The study targeted public elementary schools in Taiwan and adopted stratified random sampling to investigate 1500 teachers. Teachers' perceptions were collected by a self-report scale. In…

  12. Academic Optimism and Collective Responsibility: An Organizational Model of the Dynamics of Student Achievement

    ERIC Educational Resources Information Center

    Wu, Jason H.

    2013-01-01

    This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…

  13. Gender Differences in Growth in Mathematics Achievement: Three-Level Longitudinal and Multilevel Analyses of Individual, Home, and School Influences.

    ERIC Educational Resources Information Center

    Ai, Xiaoxia

    2002-01-01

    Focuses on gender differences in growth in mathematics achievement in relation to various social-psychological factors such as attitude towards mathematics, self-esteem, parents' academic encouragement, mathematics teachers' expectations, and peer influence. Results indicate that gender differences in growth in mathematics varied by the student's…

  14. Statistical optimization of medium components and physicochemical parameters to simultaneously enhance bacterial growth and esterase production by Bacillus thuringiensis.

    PubMed

    Mazzucotelli, Cintia Anabela; Moreira, María del Rosario; Ansorena, María Roberta

    2016-01-01

    Bacillus thuringiensis is a genus extensively studied because of its high potential for biotechnological application, principally in biocontrol techniques. However, the optimization of esterase production by this strain has been scarcely studied. The aim of this work was to select and optimize the physicochemical and nutritional parameters that significantly influence the growth and esterase production of B. thuringiensis. To this purpose, 6 nutritional factors and 2 physicochemical parameters were evaluated using a Plackett-Burman design. Significant variables were optimized using a Box-Behnken design and through the desirability function to select the levels of the variables that simultaneously maximize microbial growth and esterase production. The optimum conditions resulting from simultaneous optimization of the responses under study were found to be 1 g/L glucose, 15 g/L peptone, and 3.25 g/L NaCl. Under these optimal conditions, it was possible to achieve a 2.5 log CFU/mL increase in bacterial growth and a 113-fold increase in esterase productivity, compared with minimal medium without agitation.

  15. Logical definability and asymptotic growth in optimization and counting problems

    SciTech Connect

    Compton, K.

    1994-12-31

    There has recently been a great deal of interest in the relationship between logical definability and NP-optimization problems. Let MS{sub n} (resp. MP{sub n}) be the class of problems to compute, for given a finite structure A, the maximum number of tuples {bar x} in A satisfying a {Sigma}{sub n} (resp. II{sub n}) formula {psi}({bar x}, {bar S}) as {bar S} ranges over predicates on A. Kolaitis and Thakur showed that the classes MS{sub n} and MP{sub n} collapse to a hierarchy of four levels. Papadimitriou and Yannakakis previously showed that problems in the two lowest levels MS{sub 0} and MS{sub 1} (which they called Max Snp and Max Np) are approximable to within a contrast factor in polynomial time. Similarly, Saluja, Subrahmanyam, and Thakur defined SS{sub n} (resp. SP{sub n}) to be the class of problems to compute, for given a finite structure A, the number of tuples ({bar T}, {bar S}) satisfying a given {Sigma}{sub n} (resp. II{sub n}) formula {psi}({bar T}, {bar c}) in A. They showed that the classes SS{sub n} and SP{sub n} collapse to a hierarchy of five levels and that problems in the two lowest levels SS{sub 0} and SS{sub 1} have a fully polynomial time randomized approximation scheme. We define extended classes MSF{sub n}, MPF{sub n} SSF{sub n}, and SPF{sub n} by allowing formulae to contain predicates definable in a logic known as least fixpoint logic. The resulting hierarchies classes collapse to the same number of levels and problems in the bottom levels can be approximated as before, but now some problems descend from the highest levels in the original hierarchies to the lowest levels in the new hierarchies. We introduce a method characterizing rates of growth of average solution sizes thereby showing a number of important problems do not belong MSF{sub 1} and SSF{sub 1}. This method is related to limit laws for logics and the probabilistic method from combinatorics.

  16. Fairness: How to Achieve It and How to Optimize in a Fair-Division Procedure

    ERIC Educational Resources Information Center

    Jones, Michael A.; Cohen, Stanley F.

    2004-01-01

    A simple and practical application of mathematics is for fairly resolving the dispute of division of items for which two parties have equal claim. Basic properties of fair division are explained, which would enable students to learn concepts on optimization without introducing calculus.

  17. Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design.

    PubMed

    Tian, Xiao-Jun; Zhang, Hang; Sannerud, Jens; Xing, Jianhua

    2016-05-24

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology.

  18. Optimal Experience and Reading Achievement in Virtual Environments among College Level Developmental Readers

    ERIC Educational Resources Information Center

    Burgess, Melissa L.

    2010-01-01

    In this mixed methods study the potential for developmental readers to experience optimal experience (flow) within the multi-user virtual environment, "Second Life," was examined. In an educational context, "Second Life" provided a space for constructivist learning, socialization, exploration, discovery and creativity. The communicative, social…

  19. Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design.

    PubMed

    Tian, Xiao-Jun; Zhang, Hang; Sannerud, Jens; Xing, Jianhua

    2016-05-24

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology. PMID:27162367

  20. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  1. Proportion of corn silage in diets of feedlot steers fed to achieve stepwise increases in growth.

    PubMed

    Rossi, J E; Loerch, S C

    2001-06-01

    Two experiments were conducted to investigate the effects of proportion of dietary corn silage during periods of feed restriction on performance of steers. In Exp. 1, Simmental x Angus steer calves (n = 107; initial BW = 273 +/- 3.8 kg) were allotted to 12 pens with eight or nine steers/pen and four pens/treatment. Periods of growth were 273 to 366 kg BW (Period 1), 367 to 501 kg BW (Period 2), and 502 to 564 kg BW (Period 3). In two of the dietary regimens, steers were given ad libitum access to feed throughout the experiment and were fed either a 15% corn silage diet in each period or an 85, 50, and 15% corn silage diet in Periods 1, 2, and 3; respectively. In the third feeding regimen, a programmed intake feeding regimen was used. Steers were fed a 15% corn silage diet in each period. However, feed intake was restricted to achieve a predicted gain of 1.13 kg/d in Period 1 and 1.36 kg/d in Period 2, and feed was offered for ad libitum consumption in Period 3. For the entire experiment, ADG was similar (P = 0.41) among treatments and feed efficiency was lower (P < 0.10) for steers in the corn silage regimen than for steers in the programmed intake and ad libitum regimens. In Exp. 2, Simmental x Angus steer calves (n = 106; initial BW = 233 +/- 2 kg) were allotted by BW to 12 pens (three pens/treatment) and fed in three periods similar to those described in Exp. 1. Four feeding regimens were investigated: 1) AL; steers were offered a 15% corn silage diet for ad libitum consumption in all three periods; 2) PI; DMI was programmed to achieve gains as described in Exp. 1; 3) CS-HLL; programmed intake as described above except diets contained 85, 15, and 15% corn silage in Periods 1, 2, and 3, respectively; and 4) CS-HIL; same feeding regimens as CS-HLL, except diets contained 85, 50, and 15% corn silage in Periods 1, 2, and 3, respectively. Steers were given ad libitum access to feed in Period 3. Overall ADG was lower (P < 0.05) for steers in the CS-HLL and CS

  2. Understanding the mathematics and science achievement and growth trajectories of high ability high school students using hierarchical linear modeling

    NASA Astrophysics Data System (ADS)

    Belen-Ferrer, Bellasanta

    2009-12-01

    This study used longitudinal data and individual, family, and academic-related matriculation variables to examine trends in initial status and growth trajectories in overall academics, mathematics, and science achievement among 224 high ability high school Asian students. Results indicate that females have an advantage in both initial status and growth rates in overall academics and science. None of the family variables entered in the models were found to be significantly related to overall academics grade point average. All available matriculation variables entered into the models explained less than or at most about half the variance in initial achievement status and growth rate in overall academics and science but not in mathematics. These results strongly imply that other factors, notably family and school and/or classroom-related variables, not measured by the ones used in the models could explain the expected variance in initial status and growth rate of the students especially in Mathematics.

  3. Growth Trajectories of Mathematics Achievement: Longitudinal Tracking of Student Academic Progress

    ERIC Educational Resources Information Center

    Mok, Magdalena M. C.; McInerney, Dennis M.; Zhu, Jinxin; Or, Anthony

    2015-01-01

    Background: A number of methods to investigate growth have been reported in the literature, including hierarchical linear modelling (HLM), latent growth modelling (LGM), and multidimensional scaling applied to longitudinal profile analysis (LPAMS). Aims: This study aimed at modelling the mathematics growth of students over a span of 6 years from…

  4. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-01

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic. PMID:27403886

  5. Modeling urban growth by the use of a multiobjective optimization approach: environmental and economic issues for the Yangtze watershed, China.

    PubMed

    Zhang, Wenting; Wang, Haijun; Han, Fengxiang; Gao, Juan; Nguyen, Thuminh; Chen, Yarong; Huang, Bo; Zhan, F Benjamin; Zhou, Lequn; Hong, Song

    2014-11-01

    Urban growth is an unavoidable process caused by economic development and population growth. Traditional urban growth models represent the future urban growth pattern by repeating the historical urban growth regulations, which can lead to a lot of environmental problems. The Yangtze watershed is the largest and the most prosperous economic area in China, and it has been suffering from rapid urban growth from the 1970s. With the built-up area increasing from 23,238 to 31,054 km(2) during the period from 1980 to 2005, the watershed has suffered from serious nonpoint source (NPS) pollution problems, which have been mainly caused by the rapid urban growth. To protect the environment and at the same time maintain the economic development, a multiobjective optimization (MOP) is proposed to tradeoff the multiple objectives during the urban growth process of the Yangtze watershed. In particular, the four objectives of minimization of NPS pollution, maximization of GDP value, minimization of the spatial incompatibility between the land uses, and minimization of the cost of land-use change are considered by the MOP approach. Conventionally, a genetic algorithm (GA) is employed to search the Pareto solution set. In our MOP approach, a two-dimensional GA, rather than the traditional one-dimensional GA, is employed to assist with the search for the spatial optimization solution, where the land-use cells in the two-dimensional space act as genes in the GA. Furthermore, to confirm the superiority of the MOP approach over the traditional prediction approaches, a widely used urban growth prediction model, cellular automata (CA), is also carried out to allow a comparison with the Pareto solution of MOP. The results indicate that the MOP approach can make a tradeoff between the multiple objectives and can achieve an optimal urban growth pattern for Yangtze watershed, while the CA prediction model just represents the historical urban growth pattern as the future growth pattern

  6. Dimensions, maximal growth sites, and optimization in the dielectric breakdown model.

    PubMed

    Mathiesen, Joachim; Jensen, Mogens H; Bakke, Jan Oystein Haavig

    2008-06-01

    We study the growth of fractal clusters in the dielectric breakdown model (DBM) by means of iterated conformal mappings. In particular we investigate the fractal dimension and the maximal growth site (measured by the Hoelder exponent alpha_{min} ) as a function of the growth exponent eta of the DBM model. We do not find evidence for a phase transition from fractal to nonfractal growth for a finite eta value. Simultaneously, we observe that the limit of nonfractal growth (D-->1) is consistent with alpha_{min}-->12 . Finally, using an optimization principle, we give a recipe on how to estimate the effective value of eta from temporal growth data of fractal aggregates.

  7. Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study

    NASA Astrophysics Data System (ADS)

    Mangold, Claudia; Neogi, Sanghamitra; Donadio, Davide

    2016-08-01

    Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ˜7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.

  8. Predicting Long-Term Growth in Students' Mathematics Achievement: The Unique Contributions of Motivation and Cognitive Strategies

    ERIC Educational Resources Information Center

    Murayama, Kou; Pekrun, Reinhard; Lichtenfeld, Stephanie; vom Hofe, Rudolf

    2013-01-01

    This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10;…

  9. Estimating Correlates of Growth between Mathematics and Science Achievement via a Multivariate Multilevel Design with Latent Variables

    ERIC Educational Resources Information Center

    Ma, Lingling; Ma, Xin

    2005-01-01

    The purpose of the present study was to improve a multivariate multilevel model in the research literature which estimates the consistency in the rates of growth between mathematics and science achievement among students and schools. We introduced a new multivariate multilevel model via a latent variable approach. Data from the Longitudinal Study…

  10. Measuring Opportunity to Learn and Achievement Growth: Key Research Issues with Implications for the Effective Education of All Students

    ERIC Educational Resources Information Center

    Elliott, Stephen N.

    2015-01-01

    The related constructs of opportunity to learn (OTL) and achievement growth are fundamental aspects of the current large-scale assessment and accountability system in operation in the United States. For purposes of this article, OTL is defined as the degree to which a teacher dedicates instructional time and content coverage to the intended…

  11. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  12. Metal-binding sites are designed to achieve optimal mechanical and signaling properties.

    PubMed

    Dutta, Anindita; Bahar, Ivet

    2010-09-01

    Many proteins require bound metals to achieve their function. We take advantage of increasing structural data on metal-binding proteins to elucidate three properties: the involvement of metal-binding sites in the global dynamics of the protein, predicted by elastic network models, their exposure/burial to solvent, and their signal-processing properties indicated by Markovian stochastics analysis. Systematic analysis of a data set of 145 structures reveals that the residues that coordinate metal ions enjoy remarkably efficient and precise signal transduction properties. These properties are rationalized in terms of their physical properties: participation in hinge sites that control the softest modes collectively accessible to the protein and occupancy of central positions minimally exposed to solvent. Our observations suggest that metal-binding sites may have been evolutionary selected to achieve optimum allosteric communication. They also provide insights into basic principles for designing metal-binding sites, which are verified to be met by recently designed de novo metal-binding proteins.

  13. Population growth and the benefits from optimally priced externalities.

    PubMed

    Clarke, H R; Ng Y-k

    1995-06-01

    "In this article we show that, considering only economic effects, even if population growth, by natural increase or immigration, increases congestion, pollution, and other forms of external costs, that provided pre-existing citizens own the resources giving rise to the externalities, and provided they efficiently price usage of such, that existing citizens must, in net average terms, be better off with population growth than without it. In simple terms the increased revenues they gain from efficient pricing at increased demand levels will be strictly greater than the monetary value of the increased external costs together with the higher tax costs they incur as consumers of the resources." PMID:12347617

  14. High direct drive illumination uniformity achieved by multi-parameter optimization approach: a case study of Shenguang III laser facility.

    PubMed

    Tian, Chao; Chen, Jia; Zhang, Bo; Shan, Lianqiang; Zhou, Weimin; Liu, Dongxiao; Bi, Bi; Zhang, Feng; Wang, Weiwu; Zhang, Baohan; Gu, Yuqiu

    2015-05-01

    The uniformity of the compression driver is of fundamental importance for inertial confinement fusion (ICF). In this paper, the illumination uniformity on a spherical capsule during the initial imprinting phase directly driven by laser beams has been considered. We aim to explore methods to achieve high direct drive illumination uniformity on laser facilities designed for indirect drive ICF. There are many parameters that would affect the irradiation uniformity, such as Polar Direct Drive displacement quantity, capsule radius, laser spot size and intensity distribution within a laser beam. A novel approach to reduce the root mean square illumination non-uniformity based on multi-parameter optimizing approach (particle swarm optimization) is proposed, which enables us to obtain a set of optimal parameters over a large parameter space. Finally, this method is applied to improve the direct drive illumination uniformity provided by Shenguang III laser facility and the illumination non-uniformity is reduced from 5.62% to 0.23% for perfectly balanced beams. Moreover, beam errors (power imbalance and pointing error) are taken into account to provide a more practical solution and results show that this multi-parameter optimization approach is effective.

  15. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    PubMed

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc; Geiselmann, Johannes; de Jong, Hidde

    2016-03-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  16. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  17. Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose

    PubMed Central

    Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.

    2014-01-01

    The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403

  18. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes.

    PubMed

    Frye, Richard E; Rossignol, Daniel A

    2016-01-01

    the optimal treatments for these abnormalities. PMID:27330338

  19. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes

    PubMed Central

    Frye, Richard E.; Rossignol, Daniel A.

    2016-01-01

    the optimal treatments for these abnormalities. PMID:27330338

  20. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes.

    PubMed

    Frye, Richard E; Rossignol, Daniel A

    2016-01-01

    the optimal treatments for these abnormalities.

  1. Optimal control on bladder cancer growth model with BCG immunotherapy and chemotherapy

    NASA Astrophysics Data System (ADS)

    Dewi, C.; Trisilowati

    2015-03-01

    In this paper, an optimal control model of the growth of bladder cancer with BCG (Basil Calmate Guerin) immunotherapy and chemotherapy is discussed. The purpose of this optimal control is to determine the number of BCG vaccine and drug should be given during treatment such that the growth of bladder cancer cells can be suppressed. Optimal control is obtained by applying Pontryagin principle. Furthermore, the optimal control problem is solved numerically using Forward-Backward Sweep method. Numerical simulations show the effectiveness of the vaccine and drug in controlling the growth of cancer cells. Hence, it can reduce the number of cancer cells that is not infected with BCG as well as minimize the cost of the treatment.

  2. Initial Conditions for Optimal Growth in a Coupled Ocean-Atmosphere Model of ENSO*.

    NASA Astrophysics Data System (ADS)

    Thompson, C. J.

    1998-02-01

    Several studies have examined the conditions in the equatorial Pacific basin that lead to the maximum growth over a fixed time period, . These studies have the purpose of finding the characteristic precursor to an ENSO warm event, or more generally to explore error growth and predictability of the coupled ocean-atmosphere system. This paper develops a linearized version of the Battisti model (similar to the Zebiak-Cane model) with a time-invariant background state. The optimal initial conditions for time period (-optimals) were computed for a range of and for a selection of background states.A number of interesting characteristics of the -optimals emerged: 1) The -optimals grow more quickly than even the most unstable mode (the ENSO mode) of the system. 2) The -optimals develop quickly into the ENSO mode-in around 90 days. 3) The ENSO mode produced by a given -optimal does not in general peak at time . For less than 360 days the ENSO modes peak after time , and for greater than 360 days the ENSO mode first peaks before . At 360 days, designated max, the ENSO mode peaks at : this is also the -optimal, which produces the most growth. 4) Optimals were produced that used the SST only (T-optimals) and that used only the ocean dynamics (r-optimals). It is shown that for greater than 60 days, these two optimals both produce ENSO modes (of the same phase). This result makes a comparison of the relative importance of the SST versus the ocean dynamics straightforward: A T-optimal pattern with a 0.1 degree anomaly produces the same size ENSO as an r-optimal pattern with 1.2-m thermocline anomaly. 5) It is shown that the full optimal is the linear combination of these two suboptimals, where their relative sizes are determined by their relative weights (in the norm used).The paper also experiments with a neutral and a damped version of the model

  3. Effectiveness of increasing the frequency of posaconazole syrup administration to achieve optimal plasma concentrations in patients with haematological malignancy.

    PubMed

    Park, Wan Beom; Cho, Joo-Youn; Park, Sang-In; Kim, Eun Jung; Yoon, Seonghae; Yoon, Seo Hyun; Lee, Jeong-Ok; Koh, Youngil; Song, Kyoung-Ho; Choe, Pyoeng Gyun; Yu, Kyung-Sang; Kim, Eu Suk; Bang, Su Mi; Kim, Nam Joong; Kim, Inho; Oh, Myoung-Don; Kim, Hong Bin; Song, Sang Hoon

    2016-07-01

    Few data are available on whether adjusting the dose of posaconazole syrup is effective in patients receiving anti-cancer chemotherapy. The aim of this prospective study was to analyse the impact of increasing the frequency of posaconazole administration on optimal plasma concentrations in adult patients with haematological malignancy. A total of 133 adult patients receiving chemotherapy for acute myeloid leukaemia or myelodysplastic syndrome who received posaconazole syrup 200 mg three times daily for fungal prophylaxis were enrolled in this study. Drug trough levels were measured by liquid chromatography-tandem mass spectrometry. In 20.2% of patients (23/114) the steady-state concentration of posaconazole was suboptimal (<500 ng/mL) on Day 8. In these patients, the frequency of posaconazole administration was increased to 200 mg four times daily. On Day 15, the median posaconazole concentration was significantly increased from 368 ng/mL [interquartile range (IQR), 247-403 ng/mL] to 548 ng/mL (IQR, 424-887 ng/mL) (P = 0.0003). The median increase in posaconazole concentration was 251 ng/mL (IQR, 93-517 ng/mL). Among the patients with initially suboptimal levels, 79% achieved the optimal level unless the steady-state level was <200 ng/mL. This study shows that increasing the administration frequency of posaconazole syrup is effective for achieving optimal levels in patients with haematological malignancy undergoing chemotherapy. PMID:27234674

  4. Optimized growth of gold nanobars for energy responsive applications

    NASA Astrophysics Data System (ADS)

    Hobbs, Erik; Johnson, Anthony; Hart, Cacie; Schaefer, David; Kolagani, Rajeswari; Devadas, Mary Sajini

    The aim of this research is to create a reliable protocol for the synthesis of plasmonic gold nano bars for energy responsive applications such as light harvesting. The mechanism of growth in these metallic structures is not fully understood. Symmetry breaking by twinning introduces anisotropy in the shape of the nanostructures. This also results in the formation of highly faceted tip geometries that support the propagation of surface plasmon polaritons. Gold nanobars have been synthesized through chemical reduction in the presence of surfactants: cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP). Synthesis is executed by varying the concentrations of CTAB and PVP, as well as adjusting the growth temperature. The influence of additives such as metal ions will be presented. Resulting plasmonic gold nanobars are viewed using darkfield microscopy and scanning electron microscopy to visualize the nanoparticle product mixture. Atomic force microscopy is employed to measure the length and width of the nanobelts. X-ray diffraction determines the degree of crystallinity in the synthesized gold nanobars.

  5. Does Growth Rate in Oral Reading Fluency Matter in Predicting Reading Comprehension Achievement?

    ERIC Educational Resources Information Center

    Kim, Young-Suk; Petscher, Yaacov; Schatschneider, Christopher; Foorman, Barbara

    2010-01-01

    In this study, we examined the relationship of growth trajectories of oral reading fluency, vocabulary, phonological awareness, letter-naming fluency, and nonsense word reading fluency from 1st grade to 3rd grade with reading comprehension in 1st, 2nd, and 3rd grades. Data from 12,536 children who were followed from kindergarten to 3rd grade…

  6. Connection and Regulation at Home and in School: Predicting Growth in Achievement for Adolescents

    ERIC Educational Resources Information Center

    Gregory, Anne; Weinstein, Rhona S.

    2004-01-01

    Qualities of adolescent-adult relationships across home and school environments are examined as predictors of academic growth in mathematics. An ethnically diverse sample of adolescents was drawn from the National Educational Longitudinal Study, 1988. In separate analyses, adolescents' perceptions of (a) connection with parents and teachers and…

  7. Birth Weight, Math and Reading Achievement Growth: A Multilevel between-Sibling, between-Families Approach

    ERIC Educational Resources Information Center

    Goosby, Bridget J.; Cheadle, Jacob E.

    2009-01-01

    We used multilevel covariance structure analysis to study the relationship between birth weight, family context and youth math and reading comprehension growth from approximately ages 5 through 14 within and between families. Using data from the National Longitudinal Survey of Youth Child Sample, we examined the relationship between birth weight…

  8. A General Multivariate Latent Growth Model with Applications to Student Achievement

    ERIC Educational Resources Information Center

    Bianconcini, Silvia; Cagnone, Silvia

    2012-01-01

    The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context, the analysis of student performance and capabilities plays a fundamental role. In this work, the authors propose a multivariate latent growth model for studying the performances of a…

  9. Cultivating a Growth Mindset in Students at a High-Achieving High School

    ERIC Educational Resources Information Center

    Fegley, Alan D.

    2010-01-01

    The purpose of this EPP is to develop a plan for changing the mindset of a large number of Haddonfield Memorial High School (HMHS) students from a fixed mindset to a growth mindset. HMHS is by most conventional measures a high performing school. Typically 100% of the students graduate with 96% of the students attending two or four year colleges…

  10. Entrepreneurship Education in Delta State Tertiary Institution as a Means of Achieving National Growth and Development

    ERIC Educational Resources Information Center

    Osakwe, Regina N.

    2015-01-01

    This study examined entrepreneurship education in Delta Sate tertiary institutions as a means of national growth and development. Two research questions were asked to guide the study. The population comprised all the 1,898 academic staff in eight tertiary institutions in the state. A sample of 800 lecturers was drawn through the multi stage and…

  11. DASEES: A Tripartite Decision Analysis Framework to Achieve Sustainable Environment, Economy & Society Growth and Management Goals

    EPA Science Inventory

    Many of Societies management and growth decisions are often made without a balanced consideration of pertinent factors from environmental, economic and societal perspectives. All three of these areas are key players in many of the decisions facing societies as they strive to ope...

  12. Measuring the Impact of Substance Abuse on Student Academic Achievement and Academic Growth

    ERIC Educational Resources Information Center

    Rattermann, Mary Jo

    2014-01-01

    This research presents data linking the impact of substance disorder to academic achievement, using data gathered at a recovery high school. Recovery schools provide recovery supports and a high-quality education to students with substance use disorders. The Global Appraisal of Individual Needs -- Short Screener and the Northwest Evaluation…

  13. Utilizing Precision Teaching To Measure Growth of Reading Comprehension Skills in Low Achieving Students.

    ERIC Educational Resources Information Center

    Nitti, Joanne M.

    A practicum addressed the problem of reading comprehension skills in low achieving students by monitoring their progress utilizing precision teaching. Based on referrals from classroom teachers, guidance counselors, and parents, five students ranging in ability levels from kindergarten through grade 8 were accepted into the program for one or more…

  14. Perceived Social Support and Academic Achievement: Cross-Lagged Panel and Bivariate Growth Curve Analyses

    ERIC Educational Resources Information Center

    Mackinnon, Sean P.

    2012-01-01

    As students transition to post-secondary education, they experience considerable stress and declines in academic performance. Perceived social support is thought to improve academic achievement by reducing stress. Longitudinal designs with three or more waves are needed in this area because they permit stronger causal inferences and help…

  15. Emotions, Self-Regulated Learning, and Achievement in Mathematics: A Growth Curve Analysis

    ERIC Educational Resources Information Center

    Ahmed, Wondimu; van der Werf, Greetje; Kuyper, Hans; Minnaert, Alexander

    2013-01-01

    The purpose of the current study was twofold: (a) to investigate the developmental trends of 4 academic emotions (anxiety, boredom, enjoyment, and pride) and (b) to examine whether changes in emotions are linked to the changes in students' self-regulatory strategies (shallow, deep, and meta-cognitive) and achievement in mathematics. Four hundred…

  16. Predictors of Early Growth in Academic Achievement: The Head-Toes-Knees-Shoulders Task

    ERIC Educational Resources Information Center

    McClelland, Megan M.; Cameron, Claire E.; Duncan, Robert; Bowles, Ryan P.; Acock, Alan C.; Miao, Alicia; Pratt, Megan E.

    2014-01-01

    Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by…

  17. Selection of optimal measures of growth and reproduction for the sublethal Leptocheirus plumulosus sediment bioassay

    SciTech Connect

    Gray, B.R.; Wright, R.B.; Duke, B.M.; Farrar, J.D.; Emery, V.L. Jr.; Brandon, D.L.; Moore, D.W.

    1998-11-01

    This article describes the selection process used to identify optimal measures of growth and reproduction for the proposed 28-d sublethal sediment bioassay with the estuarine amphipod Leptocheirus plumulosus. The authors used four criteria (relevance of each measure to its respective endpoint, signal-to-noise ratio, redundancy relative to other measures of the same endpoint, and cost) to evaluate nine growth and seven reproductive measures. Optimal endpoint measures were identified as those receiving relatively high scores for all or most criteria. Measures of growth scored similarly on all criteria, except for cost. The cost of the pooled (female plus male) growth measures was substantially lower than the cost of the female and male growth measures because the latter required more labor (by approx. 25 min per replicate). Pooled dry weight was identified as the optimal growth measure over pooled length because the latter required additional labor and nonstandard software and equipment. Embryo and neonate measures of reproduction exhibited wide differences in labor costs but yielded similar scores for other criteria. In contrast, brooding measures of reproduction scored relatively low on endpoint relevance, signal-to-noise ratio, and redundancy criteria. The authors recommend neonates/survivor as the optimal measure of L. plumulosus reproduction because it exhibited high endpoint relevance and signal-to-noise ratios, was redundant to other reproductive measures, and required minimal time.

  18. Intrauterine-like growth rates can be achieved with premixed parenteral nutrition solution in preterm infants.

    PubMed

    Rigo, Jacques; Senterre, Thibault

    2013-12-01

    Growth failure in neonatal intensive care units is a major challenge for pediatricians and neonatologists. The use of early "aggressive" parenteral nutrition (PN), with >2.5 g/(kg ·d) of amino acids and at least 40 kcal/(kg ·d) of energy from the first day of life, has been shown to provide nutritional intakes in the range recommended by international guidelines, reducing nutritional deficit and the incidence of postnatal growth restriction in preterm infants. However, nutritional practices and adherence to recommendations may vary in different hospitals. Two ready-to-use (RTU), premixed parenteral solutions (PSs) designed for preterm infants have been prospectively evaluated: a binary RTU premixed PS from our hospital pharmacy and a commercially premixed 3-chamber bag (Baxter Healthcare). These premixed PSs provide nitrogen and energy intakes in the range of the most recent recommendations, reducing or eliminating the early cumulative nutritional deficit in very-low-birth-weight infants, and avoiding the development of postnatal growth restriction. A further rationale for RTU premixed PSs is that preterm infants require balanced PN that contains not only amino acids and energy but also minerals and electrolytes from the first day of life in order to reduce the incidence of metabolic disorders frequently reported in extremely-low-birth-weight infants during the early weeks of life.

  19. Intrauterine-like growth rates can be achieved with premixed parenteral nutrition solution in preterm infants.

    PubMed

    Rigo, Jacques; Senterre, Thibault

    2013-12-01

    Growth failure in neonatal intensive care units is a major challenge for pediatricians and neonatologists. The use of early "aggressive" parenteral nutrition (PN), with >2.5 g/(kg ·d) of amino acids and at least 40 kcal/(kg ·d) of energy from the first day of life, has been shown to provide nutritional intakes in the range recommended by international guidelines, reducing nutritional deficit and the incidence of postnatal growth restriction in preterm infants. However, nutritional practices and adherence to recommendations may vary in different hospitals. Two ready-to-use (RTU), premixed parenteral solutions (PSs) designed for preterm infants have been prospectively evaluated: a binary RTU premixed PS from our hospital pharmacy and a commercially premixed 3-chamber bag (Baxter Healthcare). These premixed PSs provide nitrogen and energy intakes in the range of the most recent recommendations, reducing or eliminating the early cumulative nutritional deficit in very-low-birth-weight infants, and avoiding the development of postnatal growth restriction. A further rationale for RTU premixed PSs is that preterm infants require balanced PN that contains not only amino acids and energy but also minerals and electrolytes from the first day of life in order to reduce the incidence of metabolic disorders frequently reported in extremely-low-birth-weight infants during the early weeks of life. PMID:24108133

  20. Growth Optimal Portfolio Selection Under Proportional Transaction Costs with Obligatory Diversification

    SciTech Connect

    Duncan, T. Pasik Duncan, B.; Stettner, L.

    2011-02-15

    A continuous time long run growth optimal or optimal logarithmic utility portfolio with proportional transaction costs consisting of a fixed proportional cost and a cost proportional to the volume of transaction is considered. The asset prices are modeled as exponent of diffusion with jumps whose parameters depend on a finite state Markov process of economic factors. An obligatory portfolio diversification is introduced, accordingly to which it is required to invest at least a fixed small portion of our wealth in each asset.

  1. Reduction of exposure to acrylamide: achievements, potential of optimization, and problems encountered from the perspectives of a Swiss enforcement laboratory.

    PubMed

    Grob, Koni

    2005-01-01

    The most important initiatives taken in Switzerland to reduce exposure of consumers to acrylamide are the separate sale of potatoes low in reducing sugars for roasting and frying, the optimization of the raw material and preparation of french fries, and campaigns to implement suitable preparation methods in the gastronomy and homes. Industry works on improving a range of other products. Although these measures can reduce high exposures by some 80%, they have little effect on the background exposure resulting from coffee, bread, and numerous other products for which no substantial improvement is in sight. At this stage, improvements should be achieved by supporting voluntary activity rather than legal limits. Committed and consistent risk communication is key, and the support of improvements presupposes innovative approaches.

  2. Achieving consistent image quality with dose optimization in 64-row multidetector computed tomography prospective ECG gated coronary calcium scoring.

    PubMed

    Pan, Zilai; Pang, Lifang; Li, Jianying; Zhang, Huan; Yang, Wenjie; Ding, Bei; Chai, Weimin; Chen, Kemin; Yao, Weiwu

    2011-04-01

    To evaluate the clinical value of a body mass index (BMI) based tube current (mA) selection method for obtaining consistent image quality with dose optimization in MDCT prospective ECG gated coronary calcium scoring. A formula for selecting mA to achieve desired image quality based on patient BMI was established using a control group (A) of 200 MDCT cardiac patients with a standard scan protocol. One hundred patients in Group B were scanned with this BMI-dependent mA for achieving a desired noise level of 18 HU at 2.5 mm slice thickness. The CTDIvol and image noise on the ascending aorta for the two groups were recorded. Two experienced radiologists quantitatively evaluated the image quality using scores of 1-4 with 4 being the highest. The image quality scores had no statistical difference (P = 0.71) at 3.89 ± 0.32, 3.87 ± 0.34, respectively, for groups A and B of similar BMI. The image noise in Group A had linear relationship with BMI. The image noise in Group B using BMI-dependent mA was independent of BMI with average value of 17.9 HU and smaller deviations for the noise values than in Group A (2.0 vs. 2.9 HU). There was a 35% dose reduction with BMI-dependent mA selection method on average with the lowest effective dose being only 0.35 mSv for patient with BMI of 18.3. A quantitative BMI-based mA selection method in MDCT prospective ECG gated coronary calcium scoring has been proposed to obtain a desired and consistent image quality and provide dose optimization across patient population.

  3. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth

    PubMed Central

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-01-01

    Background and Scope Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Methods Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. Key Results The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Conclusions Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to

  4. Optimization Correction Strength Using Contra Bending Technique without Anterior Release Procedure to Achieve Maximum Correction on Severe Adult Idiopathic Scoliosis

    PubMed Central

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Purnaning, Dyah; Kurniawati, Tri

    2016-01-01

    Adult scoliosis is defined as a spinal deformity in a skeletally mature patient with a Cobb angle of more than 10 degrees in the coronal plain. Posterior-only approach with rod and screw corrective manipulation to add strength of contra bending manipulation has correction achievement similar to that obtained by conventional combined anterior release and posterior approach. It also avoids the complications related to the thoracic approach. We reported a case of 25-year-old male adult idiopathic scoliosis with double curve. It consists of main thoracic curve of 150 degrees and lumbar curve of 89 degrees. His curve underwent direct contra bending posterior approach using rod and screw corrective manipulation technique to achieve optimal correction. After surgery the main thoracic Cobb angle becomes 83 degrees and lumbar Cobb angle becomes 40 degrees, with 5 days length of stay and less than 800 mL blood loss during surgery. There is no complaint at two months after surgery; he has already come back to normal activity with good functional activity. PMID:27064801

  5. Biodegradation of kerosene: Study of growth optimization and metabolic fate of P. janthinellum SDX7

    PubMed Central

    Khan, Shamiyan R.; Nirmal, J.I. Kumar; Kumar, Rita N.; Patel, Jignasha G.

    2015-01-01

    Penicillum janthinellum SDX7 was isolated from aged petroleum hydrocarbon-affected soil at the site of Anand, Gujarat, India, and was tested for different pH, temperature, agitation and concentrations for optimal growth of the isolate that was capable of degrading upto 95%, 63% and 58% of 1%, 3% and 5% kerosene, respectively, after a period of 16 days, at optimal growth conditions of pH 6.0, 30 °C and 180 rpm agitation. The GC/MS chromatograms revealed that then-alkane fractions are easily degraded; however, the rate might be lower for branched alkanes, n-alkylaromatics, cyclic alkanes and polynuclear aromatics. The test doses caused a concentration-dependent depletion of carbohydrates of P. janthinellum SDX7 by 3% to 80%, proteins by 4% to 81% and amino acids by 8% to 95% upto 16 days of treatment. The optimal concentration of 3% kerosene resulted in the least reduction of the metabolites of P. janthinellum such as carbohydrates, proteins and amino acids with optimal growth compared to 5% and 1% (v/v) kerosene doses on the 12th and 16th day of exposure. Phenols were found to be mounted by 43% to 66% at lower and higher concentrations during the experimental period. Fungal isolate P. janthinellum SDX7 was also tested for growth on various xenobiotic compounds. PMID:26273254

  6. The roles of hope and optimism on posttraumatic growth in oral cavity cancer patients.

    PubMed

    Ho, Samuel; Rajandram, Rama Krsna; Chan, Natalie; Samman, Nabil; McGrath, Colman; Zwahlen, Roger Arthur

    2011-02-01

    To investigate the association of the positive coping strategies, hope and optimism, on posttraumatic growth (PTG) in oral cavity (OC) cancer patients. A retrospective cross-sectional study was conducted and performed in the outpatient station of the Oral and Maxillofacial Surgery at the University of Hong Kong, Hong Kong SAR, PR China. Fifty patients successfully treated for OC cancer were recruited after their informed consents had been obtained during the review clinic. During their regular follow-up controls in the outpatient clinic, the patients compiled the posttraumatic growth inventory (PTGI) questionnaire, hope scale (HS) and the life orientation scale-revised (LOT-R). Hope and optimism correlated significantly positive with PTG and accounting together for a 25% variance of posttraumatic growth. Hope positively correlated with posttraumatic growth (r=.49, p<.001) as well as optimism (r=.31, p<.05). When compared to unmarried patients, married patients showed high levels of PTG and hope (married participants: mean=53.15, SD=11.04; unmarried participants: mean=41.00, SD=6.36; t (48)=2.403, p<.05). Hope and optimism represent important indicators for PTG in OC cancer patients. An intact dyad relationship seems to be important for hope and consecutive higher levels of PTG when compared to unmarried patients. Supportive psychological treatment strategies related to these two coping factors might be beneficial for OC cancer patients.

  7. Comparing immune-tumor growth models with drug therapy using optimal control

    NASA Astrophysics Data System (ADS)

    Martins, Marisa C.; Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper we compare the dynamics of three tumor growth models that include an immune system and a drug administration therapy using optimal control. The objective is to minimize a combined function of the total of tumor cells over time and a chemotherapeutic drug administration.

  8. The mycobacterial P55 efflux pump is required for optimal growth on cholesterol.

    PubMed

    Ramón-García, Santiago; Stewart, Gordon R; Hui, Zhao Kun; Mohn, William W; Thompson, Charles J

    2015-01-01

    Cholesterol catabolism is thought to be a key factor contributing to the pathogenesis of Mycobacterium tuberculosis. Previous epistasis and mutant screening studies predicted that the P55 efflux pump (Rv1410c) positively interacts with the Mce4 transporter, a major cholesterol import system of M. tuberculosis and is needed for optimal growth in vitro, in macrophages, and in vivo. Using a combination of cell growth kinetic techniques, cholesterol consumption, and [4-(14)C]cholesterol uptake studies, we demonstrated that the Mycobacterium bovis BCG rv1410c gene indeed is needed for optimal in vitro growth on cholesterol and other carbon sources. Our data, together with previous predictions, support hypotheses that the P55 efflux pump functions in maintaining general metabolism or as a subunit of the Mce4 transport apparatus (catalyzing its assembly or providing cell wall integrity) to allow more efficient cholesterol uptake.

  9. Lipid Encapsulation Provides Insufficient Total-Tract Digestibility to Achieve an Optimal Transfer Efficiency of Fatty Acids to Milk Fat

    PubMed Central

    Bainbridge, Melissa; Kraft, Jana

    2016-01-01

    Transfer efficiencies of rumen-protected n-3 fatty acids (FA) to milk are low, thus we hypothesized that rumen-protection technologies allow for biohydrogenation and excretion of n-3 FA. The objectives of this study were to i) investigate the ruminal protection and post-ruminal release of the FA derived from the lipid-encapsulated echium oil (EEO), and ii) assess the bioavailability and metabolism of the EEO-derived FA through measuring the FA content in plasma lipid fractions, feces, and milk. The EEO was tested for rumen stability using the in situ nylon bag technique, then the apparent total-tract digestibility was assessed in vivo using six Holstein dairy cattle. Diets consisted of a control (no EEO); 1.5% of dry matter (DM) as EEO and 1.5% DM as encapsulation matrix; and 3% DM as EEO. The EEO was rumen-stable and had no effect on animal production. EEO-derived FA were incorporated into all plasma lipid fractions, with the highest proportion of n-3 FA observed in cholesterol esters. Fecal excretion of EEO-derived FA ranged from 7–14%. Biohydrogenation products increased in milk, plasma, and feces with EEO supplementation. In conclusion, lipid-encapsulation provides inadequate digestibility to achieve an optimal transfer efficiency of n-3 FA to milk. PMID:27741299

  10. On growth-optimal tax rates and the issue of wealth inequalities

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jean-Philippe

    2015-11-01

    We introduce a highly stylized, yet non trivial model of the economy, with a public and private sector coupled through a wealth tax and a redistribution policy. The model can be fully solved analytically, and allows one to address the question of optimal taxation and of wealth inequalities. We find that according to the assumption made on the relative performance of public and private sectors, three situations are possible. Not surprisingly, the optimal wealth tax rate is either 0% for a deeply dysfunctional government and/or highly productive private sector, or 100 % for a highly efficient public sector and/or debilitated/risk averse private investors. If the gap between the public/private performance is moderate, there is an optimal positive wealth tax rate maximizing economic growth, even -- counter-intuitively -- when the private sector generates more growth. The compromise between profitable private investments and taxation however leads to a residual level of inequalities. The mechanism leading to an optimal growth rate is related the well-known explore/exploit trade-off.

  11. Enhanced Production of Insulin-like Growth Factor I Protein in Escherichia coli by Optimization of Five Key Factors

    PubMed Central

    Ranjbari, Javad; Babaeipour, Valiollah; Vahidi, Hossein; Moghimi, Hamidreza; Mofid, Mohammad Reza; Namvaran, Mohammad Mehdi; Jafari, Sevda

    2015-01-01

    Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. Up to now, E. coli expression system has been widely used as a host to produce rhIGF-1 with high yields. Batch cultures as non-continuous fermentations were carried out to overproduce rhIGF-I in E. coli. The major objective of this study is over- production of recombinant human insulin-like growth factor I (rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. In this study we investigated the effect of culture medium, induction temperature and amount of inducer on cell growth and IGF-1 production. Taguchi design of experiments (DOE) method was used as the statistical method. Analysis of experimental data showed that maximum production of rhIGF-I was occurred in 32y culture medium at 32 °C and 0.05 Mm IPTG. Under this condition, 0.694 g/L of rhIGF-I was produced as the inclusion bodies. Following optimization of these three factors, we have also optimized the amount of glucose and induction time in 5 liter top bench bioreactor. Full factorial design of experiment method was used for these two factors as the statistical method. 10 g/L and OD600=5 were selected as the optimum point of Glucose amount and induction time, respectively. Finally, we reached to a concentration of 1.26 g/L rhIGF-1 at optimum condition. PMID:26330880

  12. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat

    NASA Technical Reports Server (NTRS)

    Grotenhuis, T. P.; Bugbee, B.

    1997-01-01

    Although terrestrial atmospheric CO2 levels will not reach 1000 micromoles mol-1 (0.1%) for decades, CO2 levels in growth chambers and greenhouses routinely exceed that concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1(1%). Numerous studies have examined CO2 effects up to 1000 micromoles mol-1, but biochemical measurements indicate that the beneficial effects of CO2 can continue beyond this concentration. We studied the effects of near-optimal (approximately 1200 micromoles mol-1) and super-optimal CO2 levels (2400 micromoles mol-1) on yield of two cultivars of hydroponically grown wheat (Triticum aestivum L.) in 12 trials in growth chambers. Increasing CO2 from sub-optimal to near-optimal (350-1200 micromoles mol-1) increased vegetative growth by 25% and seed yield by 15% in both cultivars. Yield increases were primarily the result of an increased number of heads per square meter. Further elevation of CO2 to 2500 micromoles mol-1 reduced seed yield by 22% (P < 0.001) in cv. Veery-10 and by 15% (P < 0.001) in cv. USU-Apogee. Super-optimal CO2 did not decrease the number of heads per square meter, but reduced seeds per head by 10% and mass per seed by 11%. The toxic effect of CO2 was similar over a range of light levels from half to full sunlight. Subsequent trials revealed that super-optimal CO2 during the interval between 2 wk before and after anthesis mimicked the effect of constant super-optimal CO2. Furthermore, near-optimal CO2 during the same interval mimicked the effect of constant near-optimal CO2. Nutrient concentration of leaves and heads was not affected by CO2. These results suggest that super-optimal CO2 inhibits some process that occurs near the time of seed set resulting in decreased seed set, seed mass, and yield.

  13. Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.

    PubMed

    Ketseoglou, Irene; Bouwer, Gustav

    2013-08-10

    An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO₂ concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 μmol m⁻² s⁻¹ and air enriched with 3.18% (v/v) CO₂ supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors. PMID:23732832

  14. Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.

    PubMed

    Ketseoglou, Irene; Bouwer, Gustav

    2013-08-10

    An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO₂ concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 μmol m⁻² s⁻¹ and air enriched with 3.18% (v/v) CO₂ supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors.

  15. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.

    PubMed

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions(1). Microalgae not only capture solar energy more efficiently than plants(3), but also synthesize advanced biofuels(2-4). Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth(5). On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient "flue gas to algae" system. Researchers have proposed different photobioreactor configurations(4,6) and cultivation strategies(7,8) with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788

  16. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.

    PubMed

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions(1). Microalgae not only capture solar energy more efficiently than plants(3), but also synthesize advanced biofuels(2-4). Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth(5). On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient "flue gas to algae" system. Researchers have proposed different photobioreactor configurations(4,6) and cultivation strategies(7,8) with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation.

  17. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations

    PubMed Central

    He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie

    2013-01-01

    Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788

  18. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media

    PubMed Central

    2013-01-01

    Background Lack of accounting for proton uptake and secretion has confounded interpretation of the stoichiometry of photosynthetic growth of algae. This is also problematic for achieving growth of microalgae to high cell concentrations which is necessary to improve productivity and the economic feasibility of commercial-scale chemical production systems. Since microalgae are capable of consuming both nitrate and ammonium, this represents an opportunity to balance culture pH based on a nitrogen feeding strategy that does not utilize gas-phase CO2 buffering. Stoichiometry suggests that approximately 36 weight%N-NH4+ (balance nitrogen as NO3-) would minimize the proton imbalance and permit high-density photoautotrophic growth as it does in higher plant tissue culture. However, algal media almost exclusively utilize nitrate, and ammonium is often viewed as ‘toxic’ to algae. Results The microalgae Chlorella vulgaris and Chlamydomonas reinhardtii exclusively utilize ammonium when both ammonium and nitrate are provided during growth on excess CO2. The resulting proton imbalance from preferential ammonium utilization causes the pH to drop too low to sustain further growth when ammonium was only 9% of the total nitrogen (0.027 gN-NH4+/L). However, providing smaller amounts of ammonium sequentially in the presence of nitrate maintained the pH of a Chlorella vulgaris culture for improved growth on 0.3 gN/L to 5 gDW/L under 5% CO2 gas-phase supplementation. Bioreactor pH dynamics are shown to be predictable based on simple nitrogen assimilation as long as there is sufficient CO2 availability. Conclusions This work provides both a media formulation and a feeding strategy with a focus on nitrogen metabolism and regulation to support high-density algal culture without buffering. The instability in culture pH that is observed in microalgal cultures in the absence of buffers can be overcome through alternating utilization of ammonium and nitrate. Despite the highly regulated

  19. Optimizing Bi2O3 and TiO2 to achieve the maximum non-linear electrical property of ZnO low voltage varistor

    PubMed Central

    2013-01-01

    Background In fabrication of ZnO-based low voltage varistor, Bi2O3 and TiO2 have been used as former and grain growth enhancer factors respectively. Therefore, the molar ratio of the factors is quit important in the fabrication. In this paper, modeling and optimization of Bi2O3 and TiO2 was carried out by response surface methodology to achieve maximized electrical properties. The fabrication was planned by central composite design using two variables and one response. To obtain actual responses, the design was performed in laboratory by the conventional methods of ceramics fabrication. The actual responses were fitted into a valid second order algebraic polynomial equation. Then the quadratic model was suggested by response surface methodology. The model was validated by analysis of variance which provided several evidences such as high F-value (153.6), very low P-value (<0.0001), adjusted R-squared (0.985) and predicted R-squared (0.947). Moreover, the lack of fit was not significant which means the model was significant. Results The model tracked the optimum of the additives in the design by using three dimension surface plots. In the optimum condition, the molars ratio of Bi2O3 and TiO2 were obtained in a surface area around 1.25 point that maximized the nonlinear coefficient around 20 point. Moreover, the model predicted the optimum amount of the additives in desirable condition. In this case, the condition included minimum standard error (0.35) and maximum nonlinearity (20.03), while molar ratio of Bi2O3 (1.24 mol%) and TiO2 (1.27 mol%) was in range. The condition as a solution was tested by further experiments for confirmation. As the experimental results showed, the obtained value of the non-linearity, 21.6, was quite close to the predicted model. Conclusion Response surface methodology has been successful for modeling and optimizing the additives such as Bi2O3 and TiO2 of ZnO-based low voltage varistor to achieve maximized non-linearity properties. PMID

  20. Models for optimal harvest with convex function of growth rate of a population

    SciTech Connect

    Lyashenko, O.I.

    1995-12-10

    Two models for growth of a population, which are described by a Cauchy problem for an ordinary differential equation with right-hand side depending on the population size and time, are investigated. The first model is time-discrete, i.e., the moments of harvest are fixed and discrete. The second model is time-continuous, i.e., a crop is harvested continuously in time. For autonomous systems, the second model is a particular case of the variational model for optimal control with constraints investigated in. However, the prerequisites and the method of investigation are somewhat different, for they are based on Lemma 1 presented below. In this paper, the existence and uniqueness theorem for the solution of the discrete and continuous problems of optimal harvest is proved, and the corresponding algorithms are presented. The results obtained are illustrated by a model for growth of the light-requiring green alga Chlorella.

  1. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).

    PubMed

    Palstra, Arjan P; Mes, Daan; Kusters, Kasper; Roques, Jonathan A C; Flik, Gert; Kloet, Kees; Blonk, Robbert J W

    2014-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and sustained swimming at U opt on growth performance of juvenile yellowtail kingfish. U opt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s(-1) or 4.83 BL s(-1), (2) 0.82 m s(-1) or 3.25 BL s(-1), and (3) 0.85 m s(-1) or 2.73 BL s(-1). Combined with literature data from larger fish, a relation of U opt (BL s(-1)) = 234.07(BL)(-0.779) (R (2) = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s(-1) ("swimmers") or allowed to perform spontaneous activity at low water flow ("resters") in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min(-1), respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments. PMID:25620933

  2. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)

    PubMed Central

    Palstra, Arjan P.; Mes, Daan; Kusters, Kasper; Roques, Jonathan A. C.; Flik, Gert; Kloet, Kees; Blonk, Robbert J. W.

    2015-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s−1 or body lengths s−1, BL s−1) were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s−1 or 4.83 BL s−1, (2) 0.82 m s−1 or 3.25 BL s−1, and (3) 0.85 m s−1 or 2.73 BL s−1. Combined with literature data from larger fish, a relation of Uopt (BL s−1) = 234.07(BL)−0.779 (R2 = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s−1 (“swimmers”) or allowed to perform spontaneous activity at low water flow (“resters”) in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min−1, respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments. PMID:25620933

  3. Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals.

    PubMed

    Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R

    2016-07-01

    Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. PMID:27196637

  4. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. PMID:26253981

  5. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change.

  6. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    , molecular beam epitaxy (MBE) delivers high quality ZnMgO-ZnO quantum well structures. Other thin film techniques such as PLD or MOCVD are also widely used. The main problem at present is to consistently achieve reliable p-type doping. For this topic, see also Chap. 5. In the past years, there have been numerous publications on p-type doping of ZnO, as well as ZnO p-n junctions and light emitting diodes (LEDs). However, a lot of these reports are in one way or the other inconsistent or at least incomplete. It is quite clear from optical data that once a reliable hole injection can be achieved, high brightness ZnO LEDs should be possible. In contrast to that expectation, none of the LEDs reported so far shows efficient light emission, as would be expected from a reasonable quality ZnO-based LED. See also Chap. 13. As a matter of fact, there seems to be no generally accepted and reliable technique for p-type doping available at present. The reason for this is the unfavorable position of the band structure of ZnO relative to the vacuum level, with a very low lying valence band. See also Fig. 5.1. This makes the incorporation of electrically active acceptors difficult. Another difficulty is the huge defect density in ZnO. There are many indications that defects play a major role in transport and doping. In order to solve the doping problem, it is generally accepted that the quality of the ZnO material grown by the various techniques needs to be improved. Therefore, the optimization of ZnO epitaxy is thought to play a key role in the further development of this material system. Besides being used as an active material in optoelectronic devices, ZnO plays a major role as transparent contact material in thin film solar cells. Polycrystalline, heavily n-type doped ZnO is used for this, combining a high electrical conductivity with a good optical transparency. In this case, ZnO thin films are fabricated by large area growth techniques such as sputtering. For this and other

  7. ISS-Crystal Growth of Photorefractive Materials (BSO): Critical Design Issues for Optimized Data Extraction from Space Experiments

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Motakef, S.; Witt, A. F.; Wuensch, B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Realization of the full potential of photorefractive materials in device technology is seriously impeded by our inability to achieve controlled formation of critical defects during single crystal growth and by difficulties in meeting the required degree of compositional uniformity on a micro-scale over macroscopic dimensions. The exact nature and origin of the critical defects which control photorefractivity could not as yet be identified because of gravitational interference. There exists, however, strong evidence that the density of defect formation and their spatial distribution are adversely affected by gravitational interference which precludes the establishment of quantifiable and controllable heat and mass transfer conditions during crystal growth. The current, NASA sponsored research at MIT is directed at establishing a basis for the development of a comprehensive approach to the optimization of property control during melt growth of photorefractive materials, making use of the m-g environment, provided in the International Space Station. The objectives to be pursued in m-g research on photorefractive BSO (Bi12SiO20) are: (a) identification of the x-level(s) responsible for photorefractivity in undoped BSO; (b) development of approaches leading to the control of x-level formation at uniform spatial distribution; (c) development of doping and processing procedures for optimization of the critical, application specific parameters, spectral response, sensitivity, response time and matrix stability. The presentation will focus on: the rationale for the justification of the space experiment, ground-based development efforts, design considerations for the space experiments, strategic plan of the space experiments, and approaches to the quantitative analysis of the space experiments.

  8. Scaling and optimal synergy: Two principles determining microbial growth in complex media

    NASA Astrophysics Data System (ADS)

    Massucci, Francesco Alessandro; Guimerà, Roger; Nunes Amaral, Luís A.; Sales-Pardo, Marta

    2015-06-01

    High-throughput experimental techniques and bioinformatics tools make it possible to obtain reconstructions of the metabolism of microbial species. Combined with mathematical frameworks such as flux balance analysis, which assumes that nutrients are used so as to maximize growth, these reconstructions enable us to predict microbial growth. Although such predictions are generally accurate, these approaches do not give insights on how different nutrients are used to produce growth, and thus are difficult to generalize to new media or to different organisms. Here, we propose a systems-level phenomenological model of metabolism inspired by the virial expansion. Our model predicts biomass production given the nutrient uptakes and a reduced set of parameters, which can be easily determined experimentally. To validate our model, we test it against in silico simulations and experimental measurements of growth, and find good agreement. From a biological point of view, our model uncovers the impact that individual nutrients and the synergistic interaction between nutrient pairs have on growth, and suggests that we can understand the growth maximization principle as the optimization of nutrient synergies.

  9. An optimal control strategy for crop growth in advanced life support systems.

    PubMed

    Fleisher, D H; Baruh, H

    2001-01-01

    A feedback control method for regulating crop growth in advanced life support systems is presented. Two models for crop growth are considered, one developed by the agricultural industry and used by the Ames Research Center, and a mechanistic model, termed the Energy Cascade model. Proportional and pointwise-optimal control laws are applied to both models using wheat as the crop and light intensity as the control input. The control is particularly sensitive to errors in measurement of crop dry mass. However, it is shown that the proposed approach is a potentially viable way of controlling crop growth as it compensates for model errors and problems associated with applying the desired control input due to environmental disturbances. Grant numbers: NGT5-50229. PMID:11725784

  10. Assessing the Effects of a School-Wide Data-Based Decision-Making Intervention on Student Achievement Growth in Primary Schools

    ERIC Educational Resources Information Center

    van Geel, Marieke; Keuning, Trynke; Visscher, Adrie J.; Fox, Jean-Paul

    2016-01-01

    Despite growing international interest in the use of data to improve education, few studies examining the effects on student achievement are yet available. In the present study, the effects of a two-year data-based decision-making intervention on student achievement growth were investigated. Fifty-three primary schools participated in the project,…

  11. Reducing the Academic Risks of Over-Optimism: The Longitudinal Effects of Attributional Retraining on Cognition and Achievement

    ERIC Educational Resources Information Center

    Haynes, Tara L.; Ruthig, Joelle C.; Perry, Raymond P.; Stupnisky, Robert H.; Hall, Nathan C.

    2006-01-01

    Although optimism is generally regarded as a positive dispositional characteristic, unmitigated optimism can be problematic. The adaptiveness of overly optimistic expectations in novel or unfamiliar settings is questionable because individuals have little relevant experience on which to base such expectations. In this four-phase longitudinal…

  12. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models

    SciTech Connect

    Lewis, Nathan E.; Hixson, Kim K.; Conrad, Tom M.; Lerman, Joshua A.; Charusanti, Pep; Polpitiya, Ashoka D.; Adkins, Joshua N.; Schramm, Gunnar; Purvine, Samuel O.; Lopez-Ferrer, Daniel; Weitz, Karl K.; Eils, Roland; Konig, Rainer; Smith, Richard D.; Palsson, Bernhard O.

    2010-07-27

    After hundreds of generations of mid log phase growth, Escherichia coli acquires a higher growth rate as predicted using flux balance analysis (FBA) on genome-scale metabolic models (GEMs). FBA solutions contain hundreds of variables that can be examined using omics methods. We report that 99% of active reactions from FBA optimal growth solutions are supported by transcriptomic and proteomic data. Moreover, when E. coli adapts to growth rate selective pressure, the resulting evolved strains reinforce the optimal growth predictions. Specifically, through constraint-based analysis of the proteomic and transcriptomic data, we find: 1) selective pressure for the predicted optimal growth states and a minimization of network flux; 2) suppression of genes outside of the optimal growth solutions; and 3) a trend towards usage of more efficient metabolic pathways. For processes not in GEMs, we find 4) an increase in the transcription/translation machinery and stringent response suppression, and 5) that established regulons are significantly down-regulated. Thus, differential expression supports observed growth phenotype changes, and observed expression in evolved strains is consistent with GEM computed optimal growth states.

  13. Bacillus subtilis endospores at high purity and recovery yields: optimization of growth conditions and purification method.

    PubMed

    Tavares, Milene B; Souza, Renata D; Luiz, Wilson B; Cavalcante, Rafael C M; Casaroli, Caroline; Martins, Eduardo G; Ferreira, Rita C C; Ferreira, Luís C S

    2013-03-01

    Bacillus subtilis endospores have applications in different fields including their use as probiotics and antigen delivery vectors. Such specialized applications frequently require highly purified spore preparations. Nonetheless, quantitative data regarding both yields and purity of B. subtilis endospores after application of different growth conditions and purification methods are scarce or poorly reported. In the present study, we conducted several quantitative and qualitative analyses of growth conditions and purification procedures aiming generation of purified B. subtilis spores. Based on two growth media and different incubations conditions, sporulation frequencies up to 74.2 % and spore concentrations up to 7 × 10(9) spores/ml were achieved. Application of a simplified spore isolation method, in which samples were incubated with lysozyme and a detergent, resulted in preparations with highly purified spores at the highest yields. The present study represents, therefore, an important contribution for those working with B. subtilis endospores for different biotechnological purposes.

  14. Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Liu, Jian; Lu, Xinrong; Gao, Yandong; You, Xiaozeng; Xu, Xiangxing

    2015-12-01

    Perovskite-structured organic-inorganic materials such as CH3NH3PbI3 are attracting much interest in the scientific community because of their abilities to function as revolutionary light harvesters and charge transfer materials for solar cells. To achieve high power conversion efficiency (PCE), it is critical to optimize the perovskite film layer. This paper reports the temperature and concentration controls on the two-step solution process. A diffusion-controlled growth mechanism is proposed for this process in tuning the morphology and purity of the perovskite film, which are proven to be important factors contributing to the photovoltaic performance. The highest PCE of 11.92% is achieved with an optimized perovskite crystal size of ∼150 nm and an appropriate amount of residual PbI2. This study sheds light on the design and fabrication of highly efficient, low-cost, solution-processed perovskite solar cells.

  15. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period.

    PubMed

    Rosenlund, Grethe; Torstensen, Bente E; Stubhaug, Ingunn; Usman, Nafiha; Sissener, Nini H

    2016-01-01

    The nutritional requirement for n-3 long-chain PUFA in fast-growing Atlantic salmon (Salmo salar) during grow out in the sea is not well documented. Diets were formulated with levels of EPA (20 : 5n-3) and DHA (22 : 6n-3) ranging from 1·3 to 7·4 % of fatty acids (4-24 g/kg feed). Two long-term trials were conducted through the seawater phase, the first at 6 and 12°C, and the second at 12°C. In the first trial, growth at both temperatures was significantly lower in fish fed 1·4 % EPA+DHA of total fatty acids compared with the 5·2 % EPA+DHA group. In the second trial, growth was significantly lower in fish fed 1·3 and 2·7 % compared with 4·4 and 7·4 % EPA + DHA. Fatty acid composition in the fish reflected diet composition, but only after a 7-fold increase in body weight did the fatty acid profile of the fish stabilise according to dietary fatty acids (shown for EPA and DHA). The retention efficiency of DHA increased with decreasing dietary levels, and was 120-190 and 120-200 % in trials 1 and 2, respectively. The retention efficiency of EPA was lower (60-200 %), and values >100 % were only achieved at the lowest dietary levels in both trials. Temperature did not affect fatty acid retention efficiency. These results suggest that Atlantic salmon have a specific requirement for EPA + DHA >2·7 % of fatty acids for optimal long-term growth in seawater, and that short-term growth trials with less weight increase would not show these effects. PMID:27293556

  16. Ewe lambs with higher breeding values for growth achieve higher reproductive performance when mated at age 8 months.

    PubMed

    Nieto, C A Rosales; Ferguson, M B; Macleay, C A; Briegel, J R; Wood, D A; Martin, G B; Thompson, A N

    2013-09-15

    We studied the relationships among growth, body composition and reproductive performance in ewe lambs with known phenotypic values for depth of eye muscle (EMD) and fat (FAT) and Australian Sheep Breeding Values for post-weaning live weight (PWT) and depth of eye muscle (PEMD) and fat (PFAT). To detect estrus, vasectomized rams were placed with 190 Merino ewe lambs when on average they were 157 days old. The vasectomized rams were replaced with entire rams when the ewe lambs were, on average, 226 days old. Lambs were weighed every week and blood was sampled on four occasions for assay of ghrelin, leptin and ß-hydroxybutyrate. Almost 90% of the lambs attained puberty during the experiment, at an average live weight of 41.4 kg and average age of 197 days. Ewe lambs with higher values for EMD (P < 0.001), FAT (P < 0.01), PWT (P < 0.001), PEMD (P < 0.05) and PFAT (P < 0.05) were more likely to achieve puberty by 251 days of age. Thirty-six percent of the lambs conceived and, at the estimated date of conception, the average live weight was 46.9 ± 0.6 kg and average age was 273 days. Fertility, fecundity and reproductive rate were positively related to PWT (P < 0.05) and thus live weight at the start of mating (P < 0.001). Reproductive performance was not correlated with blood concentrations of ghrelin, leptin or ß-hydroxybutyrate. Many ewe lambs attained puberty, as detected by vasectomized rams, but then failed to become pregnant after mating with entire rams. Nevertheless, we can conclude that in ewe lambs mated at 8 months of age, higher breeding values for growth, muscle and fat are positively correlated with reproductive performance, although the effects of breeding values and responses to live weight are highly variable.

  17. Monitoring Plasmodium falciparum growth and development by UV flow cytometry using an optimized Hoechst-thiazole orange staining strategy.

    PubMed

    Grimberg, Brian T; Erickson, John J; Sramkoski, R Michael; Jacobberger, James W; Zimmerman, Peter A

    2008-06-01

    The complex life cycle of Plasmodium falciparum (Pf) makes it difficult to limit infections and reduce the risk of severe malaria. Improved understanding of Pf blood-stage growth and development would provide new opportunities to evaluate and interfere with successful completion of the parasite's life cycle. Cultured blood stage Pf was incubated with Hoechst 33342 (HO) and thiazole orange (TO) to stain DNA and total nucleic acids, respectively. Correlated HO and TO fluorescence emissions were then measured by flow cytometry. Complex bivariate data patterns were analyzed by manual cluster gating to quantify parasite life cycle stages. The permutations of viable staining with both reagents were tested for optimal detection of parasitized RBC (pRBC). Pf cultures were exposed to HO and TO simultaneously to achieve optimal staining of pRBC and consistent quantification of early and late stages of the replicative cycle (rings through schizonts). Staining of Pf nucleic acids allows for analysis of parasite development in the absence of fixatives, lysis, or radioactivity to enable examination of erythrocytes from parasite invasion through schizont rupture using sensitive and rapid assay procedures. Investigation of the mechanisms by which anti-malarial drugs and antibodies act against different Pf lifecycle stages will be aided by this cytometric strategy.

  18. A Longitudinal Study on State Mathematics and Reading Assessments: Comparisons of Growth Models on Students' Achievement Scores

    ERIC Educational Resources Information Center

    Chiu, Pui Chi

    2012-01-01

    This study examines student growth on mathematics and reading assessments across academic years (Spring 2006 through Spring 2009) using three different growth models: hierarchical linear model (HLM), value-added model (VAM), and student growth percentile model (SGP). Comparisons across these three growth models were conducted to investigate the…

  19. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures.

    PubMed

    Masani, Mat Yunus Abdul; Noll, Gundula; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2013-09-01

    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.

  20. Further developments in the controlled growth approach for optimal structural synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, P.

    1982-01-01

    It is pointed out that the use of nonlinear programming methods in conjunction with finite element and other discrete analysis techniques have provided a powerful tool in the domain of optimal structural synthesis. The present investigation is concerned with new strategies which comprise an extension to the controlled growth method considered by Hajela and Sobieski-Sobieszczanski (1981). This method proposed an approach wherein the standard nonlinear programming (NLP) methodology of working with a very large number of design variables was replaced by a sequence of smaller optimization cycles, each involving a single 'dominant' variable. The current investigation outlines some new features. Attention is given to a modified cumulative constraint representation which is defined in both the feasible and infeasible domain of the design space. Other new features are related to the evaluation of the 'effectiveness measure' on which the choice of the dominant variable and the linking strategy is based.

  1. Optimizing the combined application of amendments to allow plant growth in a multielement-contaminated soil.

    PubMed

    Sevilla-Perea, A; Romero-Puertas, M C; Mingorance, M D

    2016-04-01

    This study was aimed to 1) properly understand the dynamics of toxic elements (Al, Fe, Mn, Cu, Pb, Zn and As) in a sulphide-mine soil after combined application of compost from urban sewage sludge (SVC) and bottom ashes from biomass combustion (BA) and to 2) optimize the combination of both amendments for vegetation growth. Soil was amended following a D-optimal design and the mixtures (15 in total) were incubated during 30 d. At the end of the incubation, the effects of amendments on the assessed variables as well as the process modelling were evaluated by Response Surface Methodology (RSM). The process modelling confirmed that quadratic models were adequate to explain the behaviour of the assessed variables (R(2) ≥ 0.94 and Q(2) ≥ 0.75). Both amendments significantly increased pH and electrical conductivity, while reduced metal extractability. A different behaviour of As respect to metals was observed and high doses of BA sharply increased its extractability. The optimization process indicated that adequate conditions for vegetation growth would be reached adding the soil with 6.8% of SVC and 3.1% of BA (dry weight). After amendments application the germination and root elongation of three energy crops were significantly increased while lipid peroxidation was decreased. Therefore, the combined application of SVC and BA to a contaminated soil could improve soil conditions and might be expected to have an advantage during plant growth. Moreover, the RSM could be a powerful technique for the assessment of combined amendment effects on soil properties and their effective application in multielement-contaminated soils.

  2. Optimizing the combined application of amendments to allow plant growth in a multielement-contaminated soil.

    PubMed

    Sevilla-Perea, A; Romero-Puertas, M C; Mingorance, M D

    2016-04-01

    This study was aimed to 1) properly understand the dynamics of toxic elements (Al, Fe, Mn, Cu, Pb, Zn and As) in a sulphide-mine soil after combined application of compost from urban sewage sludge (SVC) and bottom ashes from biomass combustion (BA) and to 2) optimize the combination of both amendments for vegetation growth. Soil was amended following a D-optimal design and the mixtures (15 in total) were incubated during 30 d. At the end of the incubation, the effects of amendments on the assessed variables as well as the process modelling were evaluated by Response Surface Methodology (RSM). The process modelling confirmed that quadratic models were adequate to explain the behaviour of the assessed variables (R(2) ≥ 0.94 and Q(2) ≥ 0.75). Both amendments significantly increased pH and electrical conductivity, while reduced metal extractability. A different behaviour of As respect to metals was observed and high doses of BA sharply increased its extractability. The optimization process indicated that adequate conditions for vegetation growth would be reached adding the soil with 6.8% of SVC and 3.1% of BA (dry weight). After amendments application the germination and root elongation of three energy crops were significantly increased while lipid peroxidation was decreased. Therefore, the combined application of SVC and BA to a contaminated soil could improve soil conditions and might be expected to have an advantage during plant growth. Moreover, the RSM could be a powerful technique for the assessment of combined amendment effects on soil properties and their effective application in multielement-contaminated soils. PMID:26807942

  3. Predictability of a Coupled Model of ENSO Using Singular Vector Analysis: Optimal Growth and Forecast Skill.

    NASA Astrophysics Data System (ADS)

    Xue, Yan

    The optimal growth and its relationship with the forecast skill of the Zebiak and Cane model are studied using a simple statistical model best fit to the original nonlinear model and local linear tangent models about idealized climatic states (the mean background and ENSO cycles in a long model run), and the actual forecast states, including two sets of runs using two different initialization procedures. The seasonally varying Markov model best fit to a suite of 3-year forecasts in a reduced EOF space (18 EOFs) fits the original nonlinear model reasonably well and has comparable or better forecast skill. The initial error growth in a linear evolution operator A is governed by the eigenvalues of A^{T}A, and the square roots of eigenvalues and eigenvectors of A^{T}A are named singular values and singular vectors. One dominant growing singular vector is found, and the optimal 6 month growth rate is largest for a (boreal) spring start and smallest for a fall start. Most of the variation in the optimal growth rate of the two forecasts is seasonal, attributable to the seasonal variations in the mean background, except that in the cold events it is substantially suppressed. It is found that the mean background (zero anomaly) is the most unstable state, and the "forecast IC states" are more unstable than the "coupled model states". One dominant growing singular vector is found, characterized by north-south and east -west dipoles, convergent winds on the equator in the eastern Pacific and a deepened thermocline in the whole equatorial belt. This singular vector is insensitive to initial time and optimization time, but its final pattern is a strong function of initial states. The ENSO system is inherently unpredictable for the dominant singular vector can amplify 5-fold to 24-fold in 6 months and evolve into the large scales characteristic of ENSO. However, the inherent ENSO predictability is only a secondary factor, while the mismatches between the model and data is a

  4. Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie

    2000-01-01

    Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.

  5. Optimal policies aimed at stabilization of populations with logistic growth under human intervention.

    PubMed

    Cruz-Rivera, Erica; Vasilieva, Olga

    2013-02-01

    This work examines both positive and negative impacts that economic growth may have on the ecological dynamics and stability of a single biological species. Local extinction of the species may force the social planner to implement defensive expenditures aimed at conservation of the species population by means of habitat protection. The latter may lead to an ecological equilibrium that will be different from the natural equilibrium that would have arisen in the absence of human intervention. Moreover, the existence of such equilibrium is formally demonstrated and its stability properties are revised. Additionally, optimal-choice decision policies are constructed on the basis of Pontryagin's maximum principle. Under such policies together with initial abundance of the species, the growth trajectories will move the system towards the fixed point of maximum species abundance.

  6. Optimizing Performance on Linux Clusters Using Advanced Communication Protocols: Achieving Over 10 Teraflops on a 8.6 Teraflops Linpack-Rated Linux Cluster

    SciTech Connect

    Krishnan, Manoj Kumar; Nieplocha, Jarek

    2005-04-26

    Advancements in high-performance networks (Quadrics, Infiniband or Myrinet) continue to improve the efficiency of modern clusters. However, the average application efficiency is as small fraction of the peak as the system’s efficiency. This paper describes techniques for optimizing application performance on Linux clusters using Remote Memory Access communication protocols. The effectiveness of these optimizations is presented in the context of an application kernel, dense matrix multiplication. The result was achieving over 10 teraflops on HP Linux cluster on which LINPACK performance is measured as 8.6 teraflops.

  7. Monoraphidium sp. as an algal feedstock for biodiesel: Determining optimal growth conditions in wastewater

    NASA Astrophysics Data System (ADS)

    Davidson, Zachary William

    This thesis set out to investigate different conditions for growth of the freshwater algal species Monoraphidium sp. for use as a feedstock for biodiesel. The algae was inoculated into effluent gathered from a local water treatment plant and placed into 50gal mesocosms. Cells were grown at large scale in wastewater, harvested, and run through extractions to collect lipids (26%DW). The lipids were then turned into biodiesel. The algae also removed most of the pollutants in the wastewater, lowering nitrate and phosphate levels usually to less than 1mg/L. Erlenmeyer flask cultures (1L) were used to determine optimal growth conditions for temperature (10°C), light intensity (30microE/m2/sec with a 10 hour photoperiod), and initial inoculation density (1x104cells/mL). The addition of bicarbonate during the initial or exponential growth phase had no effect on growth. It was concluded that Monoraphidium sp. grown in USDA Hardiness Zone 5 is capable of producing biodiesel.

  8. Super-optimal CO2 reduces wheat yield in growth chamber and greenhouse environments

    NASA Astrophysics Data System (ADS)

    Grotenhuis, T.; Reuveni, J.; Bugbee, B.

    1997-01-01

    Seven growth chamber trials (six replicate trials using 0.035, 0.12, and 0.25 % CO_2 in air and one trial using 0.12, 0.80, and 2.0% CO_2 in air) and three replicate greenhouse trials (0.035, 0.10, 0.18, 0.26, 0.50, and 1.0% CO_2 in air) compare the effects of super-optimal CO_2 on the seed yield, harvest index, and vegetative growth rate of wheat (Triticum aestivum L. cvs. USU-Apogee and Veery-10). Plants in the growth chamber trials were grown hydroponically under fluorescent lamps, while the greenhouse trials were grown under sunlight and high pressure sodium lamps and in soilless media. Plants in the greenhouse trials responded similarly to those in the growth chamber trials; maximum yields occurred near 0.10 and 0.12 % CO_2 and decreased significantly thereafter. This research indicates that the toxic effects of elevated CO_2 are not specific to only one environment and has important implications for the design of bio-regenerative life support systems in space, and for the future of terrestrial agriculture.

  9. Language and Verbal Memory in Individuals with a History of Autism Spectrum Disorders Who Have Achieved Optimal Outcomes

    ERIC Educational Resources Information Center

    Tyson, Katherine; Kelley, Elizabeth; Fein, Deborah; Orinstein, Alyssa; Troyb, Eva; Barton, Marianne; Eigsti, Inge-Marie; Naigles, Letitia; Schultz, Robert T.; Stevens, Michael; Helt, Molly; Rosenthal, Michael

    2014-01-01

    Some individuals who lose their autism spectrum disorder diagnosis may continue to display subtle weaknesses in language. We examined language and verbal memory in 44 individuals with high-functioning autism (HFA), 34 individuals with "optimal outcomes" (OO) and 34 individuals with typical development (TD). The OO group scored in the…

  10. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  11. Optimal control oriented to therapy for a free-boundary tumor growth model.

    PubMed

    Calzada, M Carmen; Fernández-Cara, Enrique; Marín, Mercedes

    2013-05-21

    This paper is devoted to present and solve some optimal control problems, oriented to therapy, for a particular model of tumor growth. In the considered systems, the state is given by one or several functions that provide information on the cell population and also the tumor shape evolution and the control is a time dependent function associated to the therapy strategy (in practice, a cytotoxic drug). We first present and analyze the model (based on PDEs) and the related optimal control problems. The solutions are expected to provide the best therapy strategies for a given set of constraints (here, the cost or objective function is a measure of the number of cells at a given final time T). We also recall some mathematical techniques for solving the related optimization problems and we illustrate the behavior of the methods and the validity of the models with several numerical experiments. In view of the results, we are able to design appropriate strategies that, at least to some extent, are confirmed by real data. Finally, we present some conclusions and indications on future work.

  12. An axenic plant culture system for optimal growth in long-term studies.

    PubMed

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. CDII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as a rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 microg d(-1). Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  13. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  14. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation.

    PubMed

    Yoo, Chan; La, Hyun-Joon; Kim, Sun-Chang; Oh, Hee-Mock

    2015-02-01

    Microalgae cultures show wide range of pH depending on the availability of light and CO2 for their strain specific photosynthesis. Thus, the modulation of light irradiation and CO2 supply can be applied for the pH control of microalgae cultures. The optimal pH of Ettlia sp. YC001, for phototrophic growth and auto-flocculation was investigated by controlling light irradiation and 10% CO2 supply. Ettlia sp. YC001 showed the highest biomass productivity, 96.7 mg L(-1)  d(-1) , at pH 8.5. The flocculating activity of Ettlia sp. YC001 showed a sigmoid pattern with pH increase and was above 70% at pH 10.5. Based on these differentiated optimal pH regimes for the growth and flocculation, an integrated process consisting of cultivation and settling vessels was proposed. The integrated process demonstrated that high flocculation activity of Ettlia sp. YC001 could be achieved in the settling vessel with various hydraulic retention times by only irradiation of light to maintain high pH while maintaining the optimal growth in cultivation vessel with the light irradiation and CO2 supply at pH 8.5. Thus, the proposed strategy for pH control would provide a simple, cost-effective, and flexible design and operation for microalgae cultivation-harvest systems.

  15. Modelling and Optimization of Nannochloropsis and Chlorella Growth for Various Locations and Seasons

    NASA Astrophysics Data System (ADS)

    Gharagozloo, P. E.

    2014-12-01

    Efficient production of algal biofuels could reduce dependence on foreign oil providing domestic renewable energy. Algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural-resource requirements compared to terrestrial energy crops. Important factors controlling algal-lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae-growth kinetics for various bioreactor sizes and geometries without multiple, expensive measurement systems. In this work, we parameterize our physics-based computational algae growth model for the marine Nannochloropsis oceanica and freshwater Chlorella species. We then compare modelling results with experiments conducted in identical raceway ponds at six geographical locations in the United States (Hawaii, California, Arizona, Ohio, Georgia, and Florida) and three seasons through the Algae Testbed Public Private Partnership - Unified Field Studies. Results show that the computational model effectively predicts algae growth in systems across varying environments and identifies the causes for reductions in algal productivities. The model is then used to identify improvements to the cultivation system to produce higher biomass yields. This model could be used to study the effects of scale-up including the effects of predation, depth-decay of light (light extinction), and optimized nutrient and CO2 delivery. As more multifactorial data are accumulated for a variety of algal strains, the model could be used to select appropriate algal species for various geographic and climatic locations and seasons. Applying the model facilitates optimization of pond designs based on location and season.

  16. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris.

    PubMed

    Zhou, Wen-Jing; Yang, Jiang-Ke; Mao, Lin; Miao, Li-Hong

    2015-04-01

    Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262g/L, 38,500U/mL and 2.82g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field. PMID:25765312

  17. Export dynamics as an optimal growth problem in the network of global economy

    PubMed Central

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505

  18. Export dynamics as an optimal growth problem in the network of global economy.

    PubMed

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  19. [Parenteral nutrition in premature infants: practical aspects to optimize postnatal growth and development].

    PubMed

    Senterre, T; Rigo, J

    2013-09-01

    Nutrition and growth are still a major challenge in neonatal intensive care. Many studies have demonstrated that premature infants frequently develop severe cumulative nutritional deficit during the first weeks of life. This malnutrition is the primary etiology of postnatal growth restriction, which is still universally described in very premature infants. Furthermore, both postnatal nutritional deficit and postnatal growth restriction have been associated with adverse long-term outcome in adulthood. Due to their immaturity, premature infants are frequently not fed by the enteral route. Therefore, parenteral nutrition remains an essential therapy in neonatology. Most recent recommendations suggest starting parenteral nutrition as soon as possible after birth with a minimum of 40 kcal/kg/day with around 2-3g/kg/day of amino acids and 1g/kg/day of lipids. Afterwards, intake should increase rapidly during the first week of life, up to 90-120 kcal/kg/day with around 3.5 g/kg/day amino acids and 3g/kg/day of lipids. There is great heterogeneity in parenteral nutrition practices among neonatal units, with frequent discrepancies. This article discusses the principal theoretical aspects of parenteral nutrition in premature infants, the guidelines, and the opportunity to optimize nutritional support routinely, especially in very premature infants. PMID:23845601

  20. Export dynamics as an optimal growth problem in the network of global economy.

    PubMed

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505

  1. Export dynamics as an optimal growth problem in the network of global economy

    NASA Astrophysics Data System (ADS)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-08-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  2. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    NASA Astrophysics Data System (ADS)

    Ciambelli, P.; Arurault, L.; Sarno, M.; Fontorbes, S.; Leone, C.; Datas, L.; Sannino, D.; Lenormand, P.; Le Blond Du Plouy, S.

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  3. Sensitivity Analysis and Optimization of Enclosure Radiation with Applications to Crystal Growth

    NASA Technical Reports Server (NTRS)

    Tiller, Michael M.

    1995-01-01

    In engineering, simulation software is often used as a convenient means for carrying out experiments to evaluate physical systems. The benefit of using simulations as 'numerical' experiments is that the experimental conditions can be easily modified and repeated at much lower cost than the comparable physical experiment. The goal of these experiments is to 'improve' the process or result of the experiment. In most cases, the computational experiments employ the same trial and error approach as their physical counterparts. When using this approach for complex systems, the cause and effect relationship of the system may never be fully understood and efficient strategies for improvement never utilized. However, it is possible when running simulations to accurately and efficiently determine the sensitivity of the system results with respect to simulation to accurately and efficiently determine the sensitivity of the system results with respect to simulation parameters (e.g., initial conditions, boundary conditions, and material properties) by manipulating the underlying computations. This results in a better understanding of the system dynamics and gives us efficient means to improve processing conditions. We begin by discussing the steps involved in performing simulations. Then we consider how sensitivity information about simulation results can be obtained and ways this information may be used to improve the process or result of the experiment. Next, we discuss optimization and the efficient algorithms which use sensitivity information. We draw on all this information to propose a generalized approach for integrating simulation and optimization, with an emphasis on software programming issues. After discussing our approach to simulation and optimization we consider an application involving crystal growth. This application is interesting because it includes radiative heat transfer. We discuss the computation of radiative new factors and the impact this mode of heat

  4. Transient Growth Theory Prediction of Optimal Placing of Passive and Active Flow Control Devices for Separation Delay in LPT Airfoils

    NASA Technical Reports Server (NTRS)

    Tumin, Anatoli; Ashpis, David E.

    2003-01-01

    An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.

  5. SU-E-T-387: Achieving Optimal Patient Setup Imaging and Treatment Workflow Configurations in Multi-Room Proton Centers

    SciTech Connect

    Zhang, H; Prado, K; Langen, K; Yi, B; Mehta, M; Regine, W; D'Souza, W

    2014-06-01

    Purpose: To simulate patient flow in proton treatment center under uncertainty and to explore the feasibility of treatment preparation rooms to improve patient throughput and cyclotron utilization. Methods: Three center layout scenarios were modeled: (S1: In-Tx room imaging) patient setup and imaging (planar/volumetric) performed in treatment room, (S2: Patient setup in preparation room) each treatment room was assigned with preparation room(s) that was equipped with lasers only for patient setup and gross patient alignment, and (S3: Patient setup and imaging in preparation room) preparation room(s) was equipped with laser and volumetric imaging for patient setup, gross and fine patient alignment. A 'snap' imaging was performed in treatment room. For each scenario, the number of treatment rooms and the number of preparation rooms serving each treatment room were varied. We examined our results (average of 100 16-hour (two shifts) working days) by evaluating patient throughput and cyclotron utilization. Results: When the number of treatment rooms increased ([from, to]) [1, 5], daily patient throughput increased [32, 161], [29, 184] and [27, 184] and cyclotron utilization increased [13%, 85%], [12%, 98%], and [11%, 98%] for scenarios S1, S2 and S3 respectively. However, both measures plateaued after 4 rooms. With the preparation rooms, the throughput and the cyclotron utilization increased by 14% and 15%, respectively. Three preparation rooms were optimal to serve 1-3 treatment rooms and two preparation rooms were optimal to serve 4 or 5 treatment rooms. Conclusion: Patient preparation rooms for patient setup may increase throughput and decrease the need for additional treatment rooms (cost effective). Optimal number of preparation rooms serving each gantry room varies as a function of treatment rooms and patient setup scenarios. A 5th treatment room may not be justified by throughput or utilization.

  6. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method.

    PubMed

    Savari, Marzieh; Zarkesh Esfahani, Sayyed Hamid; Edalati, Masoud; Biria, Davoud

    2015-10-01

    Human growth hormone (hGH) is synthesized and stored by somatotroph cells of the anterior pituitary gland and can effect on body metabolism. This protein can be used to treat hGH deficiency, Prader-Willi syndrome and Turner syndrome. The limitations in current technology for soluble recombinant protein production, such as inclusion body formation, decrease its usage for therapeutic purposes. To achieve high levels of soluble form of recombinant human growth hormone (rhGH) we used suitable host strain, appropriate induction temperature, induction time and culture media composition. For this purpose, 32 experiments were designed using Taguchi method and the levels of produced proteins in all 32 experiments were evaluated primarily by ELISA and dot blotting and finally the purified rhGH protein products assessed by SDS-PAGE and Western blotting techniques. Our results indicate that media, bacterial strains, temperature and induction time have significant effects on the production of rhGH. The low cultivation temperature of 25°C, TB media (with 3% ethanol and 0.6M glycerol), Origami strain and a 10-h induction time increased the solubility of human growth hormone.

  7. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method.

    PubMed

    Savari, Marzieh; Zarkesh Esfahani, Sayyed Hamid; Edalati, Masoud; Biria, Davoud

    2015-10-01

    Human growth hormone (hGH) is synthesized and stored by somatotroph cells of the anterior pituitary gland and can effect on body metabolism. This protein can be used to treat hGH deficiency, Prader-Willi syndrome and Turner syndrome. The limitations in current technology for soluble recombinant protein production, such as inclusion body formation, decrease its usage for therapeutic purposes. To achieve high levels of soluble form of recombinant human growth hormone (rhGH) we used suitable host strain, appropriate induction temperature, induction time and culture media composition. For this purpose, 32 experiments were designed using Taguchi method and the levels of produced proteins in all 32 experiments were evaluated primarily by ELISA and dot blotting and finally the purified rhGH protein products assessed by SDS-PAGE and Western blotting techniques. Our results indicate that media, bacterial strains, temperature and induction time have significant effects on the production of rhGH. The low cultivation temperature of 25°C, TB media (with 3% ethanol and 0.6M glycerol), Origami strain and a 10-h induction time increased the solubility of human growth hormone. PMID:26151869

  8. The Effects of a Growth Mindset Intervention on the Beliefs about Intelligence, Effort Beliefs, Achievement Goal Orientations, and Academic Self-Efficacy of LD Students with Reading Difficulties

    ERIC Educational Resources Information Center

    Baldridge, Mary Caufield

    2010-01-01

    The overall purpose of this study was to examine the effects of a "growth mindset" intervention on the beliefs about intelligence, effort beliefs, achievement goals, and academic self-efficacy of learning disabled (LD) students with reading difficulties. The treatment group consisted of 12 high school LD students with reading difficulties. This…

  9. Native Language Proficiency, English Literacy, Academic Achievement, and Occupational Attainment in Limited-English-Proficient Students: A Latent Growth Modeling Perspective

    ERIC Educational Resources Information Center

    Guglielmi, R. Sergio

    2008-01-01

    The hypothesis that native language (L1) proficiency promotes English acquisition and overall academic achievement, a key theoretical assumption underlying bilingual education, was tested using latent growth modeling of data from 899 limited-English-proficient (LEP) eighth graders who were followed for 12 years in the National Education…

  10. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model.

    PubMed

    Brisbois, Elizabeth J; Bayliss, Jill; Wu, Jianfeng; Major, Terry C; Xi, Chuanwu; Wang, Stewart C; Bartlett, Robert H; Handa, Hitesh; Meyerhoff, Mark E

    2014-10-01

    Nitric oxide (NO) has many biological roles (e.g. antimicrobial agent, promoter of angiogenesis, prevention of platelet activation) that make NO releasing materials desirable for a variety of biomedical applications. Localized NO release can be achieved from biomedical grade polymers doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) and poly(lactic-co-glycolic acid) (PLGA). In this study, the optimization of this chemistry to create film/patches that can be used to decrease microbial infection at wound sites is examined. Two polyurethanes with different water uptakes (Tecoflex SG-80A (6.2±0.7wt.%) and Tecophilic SP-60D-20 (22.5±1.1wt.%)) were doped with 25wt.% DBHD/N2O2 and 10wt.% of PLGA with various hydrolysis rates. Films prepared with the polymer that has the higher water uptake (SP-60D-20) were found to have higher NO release and for a longer duration than the polyurethane with the lower water uptake (SG-80A). The more hydrophilic polymer enhances the hydrolysis rate of the PLGA additive, thereby providing a more acidic environment that increases the rate of NO release from the NO donor. The optimal NO releasing and control SG-80A patches were then applied to scald burn wounds that were infected with Acinetobacter baumannii. The NO released from these patches applied to the wounds is shown to significantly reduce the A. baumannii infection after 24h (∼4 log reduction). The NO release patches are also able to reduce the level of transforming growth factor-β in comparison to controls, which can enhance re-epithelialization, decrease scarring and reduce migration of bacteria. The combined DBHD/N2O2 and PLGA-doped polymer patches, which could be replaced periodically throughout the wound healing process, demonstrate the potential to reduce risk of bacterial infection and promote the overall wound healing process.

  11. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth.

    PubMed

    Chaiharn, Mathurot; Lumyong, Saisamorn

    2011-01-01

    A total of 216 bacterial strains were isolated from rice rhizospheric soils in Northern Thailand. The bacterial strains were initially tested for solubilization of inorganic phosphate, indole acetic acid (IAA) production, selected strains were then tested for optimized conditions for IAA production and whether these caused stimulatory effects on bean and maize seedling growth. It was found that all strains had solubilized inorganic phosphate (P), but only 18.05% produced IAA. The best IAA producer was identified by biochemical testing and 16S rDNA sequence analysis as Klebsiella SN 1.1. In addition to being the best IAA producer, this strain was a high P-solubilizer and produced the highest amount of IAA (291.97 ± 0.19 ppm) in culture media supplemented with L-tryptophan. The maximum production of IAA was achieved after 9 days of incubation. The culture requirements were optimized for maximum IAA production. The tested of IAA production by selected isolates was studied in a medium with 0, 0.1, 0.2, 0.5, 0.7, and 0.9% (v/v) L-tryptophan. Low levels (12.6 ppm) of IAA production was recorded without tryptophan addition. Production of IAA in Klebsiella SN 1.1 increased with an increase to 0.2% (v/v) tryptophan concentration. The production of IAA was further confirmed by extraction of crude IAA from this isolate and subsequent Thin Layer Chromatography (TLC) analysis. A specific spot from the extracted IAA production was found to correspond with a standard spot of IAA with the same R (f) value. The Klebsiella strain SN 1.1 also demonstrated stimulatory effects on bean seedlings in vivo. PMID:20552360

  12. Analysis of cell growth dynamics of Pediococcus acidilactici in the presence of inulin in an optimized microenvironment.

    PubMed

    Samanta Koruri, Sharmistha; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2015-09-01

    The present investigation deals with the optimization of cell growth rate of the candidate probiotic Pediococcus acidilactici in the presence of the specific prebiotic inulin. Three independent variables viz. concentration of inulin, concentration of glucose and pH have been selected for optimization study using response surface methodology. Theoretical analysis indicates that the maximum cell growth rate occurs at pH 7, 20 g/dm(3) concentration of inulin and 20 g/dm(3) concentration of glucose. Validation of these values has been done through a set of programmed experiments. Studies on cell dynamics in the presence of different concentrations of inulin have also been carried out to identify any limitation on the initial inulin concentration. Results clearly indicate that cell growth is enhanced with the increase in inulin concentration. However, there is a critical value of the prebiotic concentration (20 g/dm(3) inulin) beyond which the cell growth is inhibited. A summative type growth model has been proposed to explain the growth behaviour of P. acidilactici in the presence of the dual substrate, i.e. glucose and inulin. While growth on glucose follows Monod model, Haldane-type substrate-inhibited growth model holds good for growth on inulin. Intrinsic kinetic parameters for all the model equations have been determined experimentally.

  13. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved. PMID:27262567

  14. Real-time optical monitoring of microbial growth using optimal combination of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken-ichi; Yamada, Takeshi; Hiraishi, Akira; Nakauchi, Shigeki

    2012-12-01

    We developed a real-time optical monitoring system consisting of a monochrome complementary metal-oxide semiconductor (CMOS) camera and two light-emitting diodes (LEDs) with a constant temperature incubator for the rapid detection of microbial growth on solid media. As a target organism, we used Alicyclobacillus acidocaldarius, which is an acidophilic thermophilic endospore-forming bacterium able to survive in pasteurization processes and grow in acidic drink products such as apple juice. This bacterium was cultured on agar medium with a redox dye applied to improve detection sensitivity. On the basis of spectroscopic properties of the colony, medium, and LEDs, an optimal combination of two LED illuminations was selected to maximize the contrast between the colony and medium areas. We measured A. acidocaldarius and Escherichia coli at two different dilution levels using these two LEDs. From the results of time-course changes in the number of detected pixels in the detection images, a similar growth rate was estimated amongst the same species of microbes, regardless of the dilution level. This system has the ability to detect a colony of approximately 26 μm in diameter in a detection image, and it can be interpreted that the size corresponds to less than 20 μm diameter in visual inspection.

  15. Optimization of Corneal Epithelial Progenitor Cell Growth on Bombyx mori Silk Fibroin Membranes

    PubMed Central

    Hogerheyde, Thomas A.; Suzuki, Shuko; Walshe, Jennifer; Bray, Laura J.; Stephenson, Sally A.; Harkin, Damien G.

    2016-01-01

    Scaffolds prepared from silk fibroin derived from cocoons of the domesticated silkworm moth Bombyx mori have demonstrated potential to support the attachment and growth of human limbal epithelial (HLE) cells in vitro. In this study, we attempted to further optimize protocols to promote the expansion of HLE cells on B. mori silk fibroin- (BMSF-) based scaffolds. BMSF films were initially coated with different extracellular matrix proteins and then analysed for their impact on corneal epithelial cell adhesion, cell morphology, and culture confluency. Results showed that collagen I, collagen III, and collagen IV consistently improved HCE-T cell adherence, promoted an elongated cell morphology, and increased culture confluency. By contrast, ECM coating had no significant effect on the performance of primary HLE cells cultured on BMSF films. In the second part of this study, primary HLE cells were grown on BMSF films in the presence of medium (SHEM) supplemented with keratinocyte growth factor (KGF) and the Rho kinase inhibitor, Y-27632. The results demonstrated that SHEM medium supplemented with KGF and Y-27632 dramatically increased expression of corneal differentiation markers, keratin 3 and keratin 12, whereas expression of the progenitor marker, p63, did not appear to be significantly influenced by the choice of culture medium. PMID:27648078

  16. Optimization of Corneal Epithelial Progenitor Cell Growth on Bombyx mori Silk Fibroin Membranes

    PubMed Central

    Hogerheyde, Thomas A.; Suzuki, Shuko; Walshe, Jennifer; Bray, Laura J.; Stephenson, Sally A.; Harkin, Damien G.

    2016-01-01

    Scaffolds prepared from silk fibroin derived from cocoons of the domesticated silkworm moth Bombyx mori have demonstrated potential to support the attachment and growth of human limbal epithelial (HLE) cells in vitro. In this study, we attempted to further optimize protocols to promote the expansion of HLE cells on B. mori silk fibroin- (BMSF-) based scaffolds. BMSF films were initially coated with different extracellular matrix proteins and then analysed for their impact on corneal epithelial cell adhesion, cell morphology, and culture confluency. Results showed that collagen I, collagen III, and collagen IV consistently improved HCE-T cell adherence, promoted an elongated cell morphology, and increased culture confluency. By contrast, ECM coating had no significant effect on the performance of primary HLE cells cultured on BMSF films. In the second part of this study, primary HLE cells were grown on BMSF films in the presence of medium (SHEM) supplemented with keratinocyte growth factor (KGF) and the Rho kinase inhibitor, Y-27632. The results demonstrated that SHEM medium supplemented with KGF and Y-27632 dramatically increased expression of corneal differentiation markers, keratin 3 and keratin 12, whereas expression of the progenitor marker, p63, did not appear to be significantly influenced by the choice of culture medium.

  17. Optimization of Corneal Epithelial Progenitor Cell Growth on Bombyx mori Silk Fibroin Membranes.

    PubMed

    Hogerheyde, Thomas A; Suzuki, Shuko; Walshe, Jennifer; Bray, Laura J; Stephenson, Sally A; Harkin, Damien G; Richardson, Neil A

    2016-01-01

    Scaffolds prepared from silk fibroin derived from cocoons of the domesticated silkworm moth Bombyx mori have demonstrated potential to support the attachment and growth of human limbal epithelial (HLE) cells in vitro. In this study, we attempted to further optimize protocols to promote the expansion of HLE cells on B. mori silk fibroin- (BMSF-) based scaffolds. BMSF films were initially coated with different extracellular matrix proteins and then analysed for their impact on corneal epithelial cell adhesion, cell morphology, and culture confluency. Results showed that collagen I, collagen III, and collagen IV consistently improved HCE-T cell adherence, promoted an elongated cell morphology, and increased culture confluency. By contrast, ECM coating had no significant effect on the performance of primary HLE cells cultured on BMSF films. In the second part of this study, primary HLE cells were grown on BMSF films in the presence of medium (SHEM) supplemented with keratinocyte growth factor (KGF) and the Rho kinase inhibitor, Y-27632. The results demonstrated that SHEM medium supplemented with KGF and Y-27632 dramatically increased expression of corneal differentiation markers, keratin 3 and keratin 12, whereas expression of the progenitor marker, p63, did not appear to be significantly influenced by the choice of culture medium. PMID:27648078

  18. Maximizing and Optimizing the Large Scale Deployment of Renewable Energy: Achieving the U.S. Government's Goal of 20% by 2030

    NASA Astrophysics Data System (ADS)

    Alliss, R.; Apling, D.; Kiley, H.; Mason, M.

    2011-12-01

    The United States Government has an ambitious goal of growing renewable energy from 1% to 20% by 2030. Two key challenges exist in order to realize this target: Creating system-level approaches to overall generation capacity expansion and integration, including difficult policy changes, and addressing the variability issues of wind and solar generation. These challenges are addressed using MORE Power (Maximizing and Optimizing Renewable Energy), a system level planning tool designed to optimize the placement of wind and solar sites to maximize high quality, useable power. This planning tool uses historical, high resolution, measurements of wind and solar parameters along with a unique, non-linear, optimization algorithm to optimize the placement of sites given a set of user specified input parameters. MORE Power is quantifying the real value of transmission as an enabler to aggregate diverse variable resources which in turn is incentivizing transmission developers to expand the grid. In addition, the issue of grid stability becomes even more critical as larger deployment of renewable resources come online. MORE Power is identifying the benefits of larger balancing areas as an enabler for greater stability and therefore a reduced need to keep transmission capacity in reserve. In the end, by addressing and minimizing the impacts of the natural variability of wind and solar, a reduction in price volatility results which favorably impacts the consumer. This presentation will show examples of how MORE Power is being used to address the variability issue of renewables in order to achieve the 20% deployment target by 2030.

  19. ACHIEVING NEW SOURCE PERFORMANCE STANDARDS (NSPS) EMISSION STANDARDS THROUGH INTEGRATION OF LOW-NOx BURNERS WITH AN OPTIMIZATION PLAN FOR BOILER COMBUSTION

    SciTech Connect

    Wayne Penrod; David Moyeda

    2003-07-01

    The objective of this project is to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub x} emissions levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project consists of the integration of low-NO{sub x} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The project includes the use of sophisticated neural networks or other artificial intelligence technologies and complex software that can optimize several operating parameters, including NO{sub x} emissions, boiler efficiency, and CO emissions. The program is being performed in three phases. In Phase I, the boiler is being equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler will be equipped with burner modifications designed to reduce NO{sub x} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler will be equipped with an overfire air system to permit deep reductions in NO{sub x} emissions to be achieved. Integration of the overfire air system with the improvements made in Phases I and II will permit optimization of the boiler performance, output, and emissions. During this reporting period, efforts were focused on completion of Phase I and Phase II activities. The low-NO{sub x} burner modifications, the coal flow dampers, and the coal flow monitoring system were procured and installed during a boiler outage in March 2003. During this reporting period, optimization tests were performed to evaluate system performance and identify optimum operating conditions for the installed equipment. The overfire air system process design activities and preliminary engineering design were completed.

  20. Technology for monitoring shot-level light source performance data to achieve high-optimization of lithography processes

    NASA Astrophysics Data System (ADS)

    Moriya, Masato; Ochiai, Hideyuki; Watabe, Yoshinobu; Ishida, Keisuke; Masuda, Hiroyuki; Sasaki, Youichi; Kumazaki, Takahito; Kurosu, Akihiko; Ohta, Takeshi; Kakizaki, Kouji; Matsunaga, Takashi; Mizoguchi, Hakaru

    2014-03-01

    Gigaphoton has developed a new monitoring system that provides shot-level light source performance data to FDC systems during exposure time. The system provides basic monitoring data (e.g. Energy, Wavelength, Bandwidth, etc.) and beam performance data, such as Beam Profile, Pointing, Divergence, Polarization can also be monitored using a new metrology tool called the Beam Performance Monitor (BPM) module. During exposure time the system automatically identifies the start and end timing of the wafer and each shot based on the burst of firing signals from the scanner, and stores the measured data in sequence. The stored data is sorted by wafer or by shot, and sent to REDeeM Piece which in turn converts the data to the user's protocol and send it to the FDC system. The user also has the option to directly view or download the stored data using a GUI. Through this monitoring system, users can manage light sources data at the shot or reticle level to facilitate optimization of performance and running cost of the light source for each process. This monitoring system can be easily retrofitted to Gigaphoton's current ArF laser light sources. The beam splitter of the BPM was specially designed to bend only a small fraction of the source beam, so we are able to simply install the BPM without the need for special optical alignment.

  1. Optimal azimuthal orientation for Si(111) double-crystal monochromators to achieve the least amount of glitches in the hard X-ray region.

    PubMed

    Tang, Zheng; Zheng, Lirong; Chu, Shengqi; Wu, Min; An, Pengfei; Zhang, Long; Hu, Tiandou

    2015-09-01

    Simulations of the periods, split regularities and mirror symmetries of the glitch pattern of a Si(111) crystal along with the azimuthal angles are presented. The glitch patterns of Si(111) double-crystal monochromators (DCMs) are found to be the superposition of the two sets of glitch patterns from the two crystals. The optimal azimuthal orientation ϕ1,2 = [(2n+1)π]/6 (n = 0, ±1, ±2…) for Si(111) DCMs to achieve the least amount of glitches in the hard X-ray region has been suggested.

  2. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  3. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    PubMed Central

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  4. Modelling of salad plants growth and physiological status in vitamin space greenhouse during lighting regime optimization

    NASA Astrophysics Data System (ADS)

    Konovalova, Irina; Berkovich, Yuliy A.; Smolyanina, Svetlana; Erokhin, Alexei; Yakovleva, Olga; Lapach, Sergij; Radchenko, Stanislav; Znamenskii, Artem; Tarakanov, Ivan

    2016-07-01

    The efficiency of the photoautotrophic element as part of bio-engineering life-support systems is determined substantially by lighting regime. The artificial light regime optimization complexity results from the wide range of plant physiological functions controlled by light: trophic, informative, biosynthetical, etc. An average photosynthetic photon flux density (PPFD), light spectral composition and pulsed light effects on the crop growth and plant physiological status were studied in the multivariate experiment, including 16 independent experiments in 3 replicates. Chinese cabbage plants (Brassica chinensis L.), cultivar Vesnianka, were grown during 24 days in a climatic chamber under white and red light-emitting diodes (LEDs): photoperiod 24 h, PPFD from 260 to 500 µM/(m ^{2}*s), red light share in the spectrum varying from 33% to 73%, pulsed (pulse period from 30 to 501 µs) and non-pulsed lighting. The regressions of plant photosynthetic and biochemical indexes as well as the crop specific productivity in response to the selected parameters of lighting regime were calculated. Developed models of crop net photosynthesis and dark respiration revealed the most intense gas exchange area corresponding to PPFD level 450 - 500 µM/(m ^{2}*s) with red light share in the spectrum about 60% and the pulse length 30 µs with a pulse period from 300 to 400 µs. Shoot dry weight increased monotonically in response to the increasing PPFD and changed depending on the pulse period under stabilized PPFD level. An increase in ascorbic acid content in the shoot biomass was revealed when increasing red light share in spectrum from 33% to 73%. The lighting regime optimization criterion (Q) was designed for the vitamin space greenhouse as the maximum of a crop yield square on its ascorbic acid concentration, divided by the light energy consumption. The regression model of optimization criterion was constructed based on the experimental data. The analysis of the model made it

  5. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings

    PubMed Central

    Grandlic, Christopher J.; Palmer, Michael W.; Maier, Raina M.

    2009-01-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  6. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings.

    PubMed

    Grandlic, Christopher J; Palmer, Michael W; Maier, Raina M

    2009-08-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  7. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii.

    PubMed

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  8. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii

    PubMed Central

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  9. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    NASA Astrophysics Data System (ADS)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  10. Evidence of a Differential Effect of Ability Grouping on the Reading Achievement Growth of Language-Minority Hispanics

    ERIC Educational Resources Information Center

    Robinson, Joseph P.

    2008-01-01

    Ability grouping is sometimes thought to exacerbate inequality by increasing achievement gaps; however, ability grouping may in fact benefit a fast growing and often marginalized student population: children from non-English-speaking home environments. The level-appropriate, small-group instruction received in reading ability groups may be…

  11. Growth in Literacy and Numeracy Achievement: Evidence and Explanations of a Summer Slowdown in Low Socio-Economic Schools

    ERIC Educational Resources Information Center

    Vale, Colleen; Weaven, Mary; Davies, Anne; Hooley, Neil; Davidson, Kristy; Loton, Daniel

    2013-01-01

    The phenomenon of summer slide or setback has gained a great deal of attention in the USA. It is understood to account for as much as 80% of the difference in achievement for students between low and high socio-economic families over their elementary schooling. In a mixed method longitudinal study of reforms in low socio-economic school…

  12. Math and Science Achievement in English Language Learners: Multivariate Latent Growth Modeling of Predictors, Mediators, and Moderators

    ERIC Educational Resources Information Center

    Guglielmi, R. Sergio

    2012-01-01

    The effectiveness of various strategies for educating the growing U.S. population of English language learners (ELLs) has attracted a great deal of controversy. Bilingual education theory posits that retention and continued development of native language (L1) skills facilitate academic achievement through two mediating mechanisms. First, L1…

  13. Viewing How STEM Project-Based Learning Influences Students' Science Achievement through the Implementation Lens: A Latent Growth Modeling

    ERIC Educational Resources Information Center

    Erdogan, Niyazi; Navruz, Bilgin; Younes, Rayya; Capraro, Robert M.

    2016-01-01

    Recent studies on professional development programs indicate these programs, when sustained, have a positive impact on student achievement; however, many of these studies have failed to use longitudinal data. The purpose of this study is to understand how one particular instructional practice (STEM PBL) used consistently influences student…

  14. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  15. Maximize the benefit of SNCR: Combine SNCR with combustion optimization and achieve 50% NOx reduction from a low NOx burner baseline

    SciTech Connect

    Trego, P.; Schindler, E.

    2000-07-01

    PECO Energy Company operates one coal fired boiler at its Cromby Generating Facility. Cromby Unit 1 is a B and W front fired unit rated at 160 MW. The units boiler has been retrofitted with low NOx burners and overfire air ports. Due to NOx allowance pricing, PECO began evaluating options for reducing Cromby's NOx emissions. SNCR was evaluated at the best option for the plant even though the furnace exit temperatures and CO were high at practical injection locations. RJM Corporation, a Fuel Tech NOxOUT{trademark} Implementer, was selected to supply the system because of their extensive experience in solving combustion problems and applying NOxOUT SNCR systems on utility boilers. In order to reduce emissions during the 1999 NOx season, the deadline for an operational system was set at June 2nd. The project was issued on a fast track schedule starting February 2, 1999. The boiler was started up on June 2 on schedule after a six week maintenance outage. The project's 25% NOx reduction target was achieved after two weeks of combustion optimization. Combustion optimization was followed by NOxOUT A reagent injection system optimization which resulted in a 50% combined NOx reduction. Other benefits included a reduction in CO to less than 100 ppm and a 33% reduction in LOI.

  16. ACHIEVING NEW SOURCE PERFORMANCE STANDARDS (NSPS) EMISSION STANDARDS THROUGH INTEGRATION OF LOW-NOx BURNERS WITH AN OPTIMIZATION PLAN FOR BOILER COMBUSTION

    SciTech Connect

    Wayne Penrod; David Moyeda

    2003-04-01

    The objective of this project is to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub x} emissions levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project consists of the integration of low-NO{sub x} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The project includes the use of sophisticated neural networks or other artificial intelligence technologies and complex software that can optimize several operating parameters, including NO{sub x} emissions, boiler efficiency, and CO emissions. The program is being performed in three phases. In Phase I, the boiler is being equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler will be equipped with burner modifications designed to reduce NO{sub x} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler will be equipped with an overfire air system to permit deep reductions in NO{sub x} emissions to be achieved. Integration of the overfire air system with the improvements made in Phases I and II will permit optimization of the boiler performance, output, and emissions. During this reporting period, efforts were focused on Phase I and Phase II activities. The furnace sensors were procured and installed in February 2003. Baseline testing was performed following the sensor installation. The low-NO{sub x} burner modifications, the coal flow dampers, and the coal flow monitoring system were procured and installed during a boiler outage in March 2003. Process design activities were performed to support design of the equipment installed and to develop specifications for the overfire air system. The overfire air system preliminary engineering design was initiated.

  17. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway

    PubMed Central

    Fernando, Ruani N.; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A.; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry—diameter and length—is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy2j/2j mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  18. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway.

    PubMed

    Fernando, Ruani N; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-07-20

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry-diameter and length-is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy(2j/2j) mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments.

  19. Modeling dynamic urban growth using hybrid cellular automata and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Rabbani, Amirhosein; Aghababaee, Hossein; Rajabi, Mohammad A.

    2012-01-01

    Conventional raster-based cellular automata (CA) confront many difficulties because of cell size and neighborhood sensitivity. Alternatively, vector CA-based models are very complex and difficult to implement. We present a hybrid cellular automata (HCA) model as a combination of cellular structure and vector concept. The space is still defined by a set of cells, but rasterized spatial objects are also utilized in the structure of transition rules. Particle swarm optimization (PSO) is also used to calculate the urbanization probability of cells based on their distance from the development parameters. The proposed model is applied to Landsat satellite imagery of the city of Tehran, Iran with 28.5-m spatial resolution to simulate the urban growth from 1988 to 2010. Statistical comparison of the ground truth and the simulated image using a kappa coefficient shows an accuracy of 83.42% in comparison to the 81.13% accuracy for the conventional Geo-CA model. Moreover, decreasing the spatial resolution by a factor of one-fourth has reduced the accuracy of the HCA and Geo-CA models by 1.19% and 3.04%, respectively, which shows the lower scale sensitivity of the proposed model. The HCA model is developed to have the simplicity of cellular structure together with optimum features of vector models.

  20. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE

    NASA Astrophysics Data System (ADS)

    Cheng, Yutian; Liu, Peng; Wu, Jiejun; Xiang, Yong; Chen, Xinjuan; Ji, Cheng; Yu, Tongjun; Zhang, Guoyi

    2016-07-01

    The uniformity of flow field inner the reactor plays a crucial role for hydride vapor phase epitaxy (HVPE) crystal growth and its more important for large scale substrate. A new nozzle structure was designed by adding a push and dilution (PD) gas pipe in the center of gas channels for a 4-inch HVPE (PD-HVPE) system. Experimental results showed that the thickness inhomogeneity of 46 μm 4-inch GaN layer could reach ±1.8% by optimizing PD gas, greatly improved from ±14% grown with conventional nozzle. The simulations of the internal flow field were consistent with our experiment, and the enhancement in uniformity should be attributed to the redistribution of GaCl and NH3 upon the wafer induced by PD pipe. The full width at half maximum (FWHM) of X-ray diffraction rocking curves for the 4-inch GaN film were about 224 and 200 arcsec for (002) and (102) reflection. The dislocation density of as-grown GaN was about 6.4×107 cm-2.

  1. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics

  2. Using optimal combination of teaching-learning methods (open book assignment and group tutorials) as revision exercises to improve learning outcome in low achievers in biochemistry.

    PubMed

    Rajappa, Medha; Bobby, Zachariah; Nandeesha, H; Suryapriya, R; Ragul, Anithasri; Yuvaraj, B; Revathy, G; Priyadarssini, M

    2016-07-01

    Graduate medical students of India are taught Biochemistry by didactic lectures and they hardly get any opportunity to clarify their doubts and reinforce the concepts which they learn in these lectures. We used a combination of teaching-learning (T-L) methods (open book assignment followed by group tutorials) to study their efficacy in improving the learning outcome. About 143 graduate medical students were classified into low (<50%: group 1, n = 23), medium (50-75%: group 2, n = 74), and high (>75%: group 3, n = 46) achievers, based on their internal assessment marks. After the regular teaching module on the topics "Vitamins and Enzymology", all the students attempted an open book assignment without peer consultation. Then all the students participated in group tutorials. The effects on the groups were evaluated by pre and posttests at the end of each phase, with the same set of MCQs. Gain from group tutorials and overall gain was significantly higher in the low achievers, compared to other groups. High and medium achievers obtained more gain from open book assignment, than group tutorials. The overall gain was significantly higher than the gain obtained from open book assignment or group tutorials, in all three groups. All the three groups retained the gain even after 1 week of the exercise. Hence, optimal use of novel T-L methods (open book assignment followed by group tutorials) as revision exercises help in strengthening concepts in Biochemistry in this oft neglected group of low achievers in graduate medical education. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):321-325, 2016.

  3. Third and Final Shuttle Mission of the Isothermal Dendritic Growth Experiment Conducted: Highest Supercooling Ever Recorded Achieved

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Malarik, Diane C.

    1999-01-01

    Dendrites describe the treelike crystal morphology commonly assumed in metals and alloys that freeze from supercooled or supersaturated melts. There remains a high level of engineering interest in dendritic solidification because the size, shape, and orientation of the dendrites determine the final microstructure of a material. It is the microstructure that then determines the physical properties of cast or welded products. Although it is well known that dendritic growth is controlled by the transport of latent heat from the moving solid-liquid interface, an accurate and predictive model has not yet been developed. The effects of gravity-induced convection on the transfer of heat from the interface have prevented adequate testing, under terrestrial conditions, of solidification models. The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three microgravity experiments flown aboard the Space Shuttle Columbia. The apparatus was used to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, thereby producing a wealth of benchmark-quality data for testing solidification models and theories.

  4. Exploring How Technology Growth Limits Impact Optimal Carbon dioxide Mitigation Pathways

    EPA Science Inventory

    Energy system optimization models prescribe the optimal mix of technologies and fuels for meeting energy demands over a time horizon, subject to energy supplies, demands, and other constraints. When optimizing, these models will, to the extent allowed, favor the least cost combin...

  5. Optimization of Magnetosome Production and Growth by the Magnetotactic Vibrio Magnetovibrio blakemorei Strain MV-1 through a Statistics-Based Experimental Design

    PubMed Central

    Silva, Karen T.; Leão, Pedro E.; Abreu, Fernanda; López, Jimmy A.; Gutarra, Melissa L.; Farina, Marcos; Bazylinski, Dennis A.; Freire, Denise M. G.

    2013-01-01

    The growth and magnetosome production of the marine magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 were optimized through a statistics-based experimental factorial design. In the optimized growth medium, maximum magnetite yields of 64.3 mg/liter in batch cultures and 26 mg/liter in a bioreactor were obtained. PMID:23396329

  6. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment

    PubMed Central

    Wahl, Anna-Sophia; Schwab, Martin E.

    2014-01-01

    After stroke the central nervous system reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its circuits, form new contacts, erase others, and remap related cortical and spinal cord regions. This plasticity can lead to a surprising degree of spontaneous recovery. It includes the activation of neuronal molecular mechanisms of growth and of extrinsic growth promoting factors and guidance signals in the tissue. Rehabilitative training and pharmacological interventions may modify and boost these neuronal processes, but almost nothing is known on the optimal timing of the different processes and therapeutic interventions and on their detailed interactions. Finding optimal rehabilitation paradigms requires an optimal orchestration of the internal processes of re-organization and the therapeutic interventions in accordance with defined plastic time windows. In this review we summarize the mechanisms of spontaneous plasticity after stroke and experimental interventions to enhance growth and plasticity, with an emphasis on anti-Nogo-A immunotherapy. We highlight critical time windows of growth and of rehabilitative training and consider different approaches of combinatorial rehabilitative schedules. Finally, we discuss potential future strategies for designing repair and rehabilitation paradigms by introducing a “3 step model”: determination of the metabolic and plastic status of the brain, pharmacological enhancement of its plastic mechanisms, and stabilization of newly formed functional connections by rehabilitative training. PMID:25018717

  7. X-ray diffraction study of the optimization of MgO growth conditions for magnetic tunnel junctions

    SciTech Connect

    O, Se Young; Lee, Chan-Gyu; Shapiro, Alexander J.; Egelhoff, William F. Jr.; Mallett, Jonathan; Pong, Philip W. T.; Vaudin, Mark D.; Ruglovsky, Jennifer L.

    2008-04-01

    We have carried out a systematic study optimizing the MgO growth via preparation and sputtering conditions and underlayer structures. It was found that to prevent water vapor which is detrimental to MgO (200) growth, the chamber pressure needs to be reduced below 10{sup -8} Torr. Simple underlayers such as 5 nm CoFeB tend to give better MgO, but we have also succeeded in growing MgO on more complicated underlayers such as 1 Ta/20 Au/5 Co{sub 40}Fe{sub 40}B{sub 20} and 1 Ta/20 conetic (Ni{sub 77}Fe{sub 14}Cu{sub 5}Mo{sub 4})/1.5 Co{sub 40}Fe{sub 40}B{sub 20} (units in nanometers). We accomplished this by extensive baking of the deposition chamber and use of Ti-getter films. Short sputtering distance and high sputtering power were found to optimize MgO deposition. We found that both preparation and sputtering conditions have important effects on the MgO growth. X-ray diffraction analysis was used as the characterization tool for optimizing the MgO growth conditions.

  8. Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System

    PubMed Central

    Criddle, Craig S.

    2015-01-01

    Production of poly(3-hydroxybutyrate) (P3HB) from methane has economic and environmental advantages over production by agricultural feedstock. Identification of high-productivity strains and optimal growth conditions is critical to efficient conversion of methane to polymer. Current culture conditions, including serum bottles, shake flasks, and agar plates, are labor-intensive and therefore insufficient for systematic screening and isolation. Gas chromatography, the standard method for analysis of P3HB content in bacterial biomass, is also incompatible with high-throughput screening. Growth in aerated microtiter plates coupled with a 96-well Nile red flow-cytometric assay creates an integrated microbioreactor system for high-throughput growth and analysis of P3HB-producing methanotrophic cultures, eliminating the need for individual manipulation of experimental replicates. This system was tested in practice to conduct medium optimization for P3HB production in pure cultures of Methylocystis parvus OBBP. Optimization gave insight into unexpected interactions: for example, low calcium concentrations significantly enhanced P3HB production under nitrogen-limited conditions. Optimization of calcium and copper concentrations in the growth medium increased final P3HB content from 18.1% to 49.4% and P3HB concentration from 0.69 g/liter to 3.43 g/liter while reducing doubling time from 10.6 h to 8.6 h. The ability to culture and analyze thousands of replicates with high mass transfer in completely mixed culture promises to streamline medium optimization and allow the detection and isolation of highly productive strains. Applications for this system are numerous, encompassing analysis of biofuels and other lipid inclusions, as well as analysis of heterotrophic and photosynthetic systems. PMID:25956771

  9. Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System.

    PubMed

    Sundstrom, Eric R; Criddle, Craig S

    2015-07-01

    Production of poly(3-hydroxybutyrate) (P3HB) from methane has economic and environmental advantages over production by agricultural feedstock. Identification of high-productivity strains and optimal growth conditions is critical to efficient conversion of methane to polymer. Current culture conditions, including serum bottles, shake flasks, and agar plates, are labor-intensive and therefore insufficient for systematic screening and isolation. Gas chromatography, the standard method for analysis of P3HB content in bacterial biomass, is also incompatible with high-throughput screening. Growth in aerated microtiter plates coupled with a 96-well Nile red flow-cytometric assay creates an integrated microbioreactor system for high-throughput growth and analysis of P3HB-producing methanotrophic cultures, eliminating the need for individual manipulation of experimental replicates. This system was tested in practice to conduct medium optimization for P3HB production in pure cultures of Methylocystis parvus OBBP. Optimization gave insight into unexpected interactions: for example, low calcium concentrations significantly enhanced P3HB production under nitrogen-limited conditions. Optimization of calcium and copper concentrations in the growth medium increased final P3HB content from 18.1% to 49.4% and P3HB concentration from 0.69 g/liter to 3.43 g/liter while reducing doubling time from 10.6 h to 8.6 h. The ability to culture and analyze thousands of replicates with high mass transfer in completely mixed culture promises to streamline medium optimization and allow the detection and isolation of highly productive strains. Applications for this system are numerous, encompassing analysis of biofuels and other lipid inclusions, as well as analysis of heterotrophic and photosynthetic systems.

  10. Hype, harmony and human factors: applying user-centered design to achieve sustainable telehealth program adoption and growth.

    PubMed

    Rossos, P G; St-Cyr, O; Purdy, B; Toenjes, C; Masino, C; Chmelnitsky, D

    2015-01-01

    Despite decades of international experience with the use of information and communication technologies in healthcare delivery, widespread telehealth adoption remains limited and progress slow. Escalating health system challenges related to access, cost and quality currently coincide with rapid advancement of affordable and reliable internet based communication technologies creating unprecedented opportunities and incentives for telehealth. In this paper, we will describe how Human Factors Engineering (HFE) and user-centric elements have been incorporated into the establishment of telehealth within a large academic medical center to increase acceptance and sustainability. Through examples and lessons learned we wish to increase awareness of HFE and its importance in the successful implementation, innovation and growth of telehealth programs.

  11. A Novel Hybridization of Applied Mathematical, Operations Research and Risk-based Methods to Achieve an Optimal Solution to a Challenging Subsurface Contamination Problem

    NASA Astrophysics Data System (ADS)

    Johnson, K. D.; Pinder, G. F.

    2013-12-01

    The objective of the project is the creation of a new, computationally based, approach to the collection, evaluation and use of data for the purpose of determining optimal strategies for investment in the solution of remediation of contaminant source areas and similar environmental problems. The research focuses on the use of existing mathematical tools assembled in a unique fashion. The area of application of this new capability is optimal (least-cost) groundwater contamination source identification; we wish to identify the physical environments wherein it may be cost-prohibitive to identify a contaminant source, the optimal strategy to protect the environment from additional insult and formulate strategies for cost-effective environmental restoration. The computational underpinnings of the proposed approach encompass the integration into a unique of several known applied-mathematical tools. The resulting tool integration achieves the following: 1) simulate groundwater flow and contaminant transport under uncertainty, that is when the physical parameters such as hydraulic conductivity are known to be described by a random field; 2) define such a random field from available field data or be able to provide insight into the sampling strategy needed to create such a field; 3) incorporate subjective information, such as the opinions of experts on the importance of factors such as locations of waste landfills; 4) optimize a search strategy for finding a potential source location and to optimally combine field information with model results to provide the best possible representation of the mean contaminant field and its geostatistics. Our approach combines in a symbiotic manner methodologies found in numerical simulation, random field analysis, Kalman filtering, fuzzy set theory and search theory. Testing the algorithm for this stage of the work, we will focus on fabricated field situations wherein we can a priori specify the degree of uncertainty associated with the

  12. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    SciTech Connect

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai; Yan, Yanfa

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  13. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Yan, Yanfa; Wei, Su-Huai

    2015-10-01

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  14. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a

    PubMed Central

    Malheiros, Patrícia S.; Sant’Anna, Voltaire; Todorov, Svetoslav D.; Franco, Bernadette D.G.M.

    2015-01-01

    Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 24 factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R 2 = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L−1 and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL−1) occurred in the MRS broth supplemented with 5.5 g L−1 glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL−1. PMID:26413066

  15. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  16. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    PubMed

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  17. A Novel Liquid Medium for the Efficient Growth of the Salmonid Pathogen Piscirickettsia salmonis and Optimization of Culture Conditions

    PubMed Central

    Marshall, Sergio H.; Henríquez, Vitalia; Gómez, Fernando A.; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L−1 were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23–27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium. PMID:24039723

  18. Comparison of faecal and optimal growth conditions on in vitro pharmacodynamic activity of marbofloxacin against Escherichia coli.

    PubMed

    Pellet, T; Gicquel-Bruneau, M; Sanders, P; Laurentie, M

    2006-06-01

    The objective of the study was to compare the in vitro activity of marbofloxacin against Escherichia coli (E. coli) strains with differing marbofloxacin susceptibility levels under optimal growth conditions and under condition mimicking faecal environment in time-kill kinetic studies. Under optimal growth conditions, marbofloxacin exerted a bactericidal concentration-dependent activity against all E. coli strains with bactericidal concentrations equal to 1 or 4 times MIC. Under faecal growth conditions, marbofloxacin maintained a bactericidal concentration-dependent activity but a 4- to 16-fold increase in bactericidal concentration was required to produce a similar magnitude of effect at 8 h. The bactericidal activity decreased between 8 and 24 h and allowed a residual bacterial population to subsist with a significant regrowth for some of them. Under no-growth conditions, marbofloxacin produced a very low decrease of non-dividing bacteria during a short time. No concentration produced a reduction > or = 3log10 in viable count excepted for two susceptible strains at concentration > or = 64 x MIC after 4 h exposure. The pharmacodynamic parameters from time-kill kinetic studies provide a useful means of studying antimicrobial activity. The importance of using different growth conditions is indicated by the difference in the killing of E. coli in the absence of active dividing cells and in the presence of autoclaved faecal content, both of which have a detrimental effect on the activity of marbofloxacin.

  19. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  20. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c 5.

    PubMed

    Masanari, Misa; Wakai, Satoshi; Ishida, Manabu; Kato, Chiaki; Sambongi, Yoshihiro

    2014-05-01

    Shewanella species live widely in deep-sea and shallow-water areas, and thus grow piezophilically and piezosensitively. Piezophilic and psychrophilic Shewanella benthica cytochrome c 5 (SB cytc 5) was the most stable against guanidine hydrochloride (GdnHCl) and thermal denaturation, followed by less piezophilic but still psychrophilic Shewanella violacea cytochrome c 5 (SV cytc 5). These two were followed, as to stability level, by piezosensitive and mesophilic Shewanella amazonensis cytochrome c 5 (SA cytc 5), and piezosensitive and psychrophilic Shewanella livingstonensis cytochrome c 5 (SL cytc 5). The midpoint GdnHCl concentrations of SB cytc 5, SV cytc 5, SL cytc 5, and SA cytc 5 correlated with the optimal growth pressures of the species, the correlation coefficient value being 0.93. A similar trend was observed for thermal denaturation. Therefore, the stability of each cytochrome c 5 is related directly to its host's optimal growth pressure. Phylogenetic analysis indicated that Lys-37, Ala-41, and Leu-50 conserved in piezosensitive SL cytc 5 and SA cytc 5 are ancestors of the corresponding residues in piezophilic SB cytc 5 and SV cytc 5, Gln, Thr, and Lys, respectively, which might have been introduced during evolution on adaption to environmental pressure. The monomeric Shewanella cytochromes c 5 are suitable tools for examining protein stability with regard to the optimal growth pressures of the source species. PMID:24699850

  1. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c 5.

    PubMed

    Masanari, Misa; Wakai, Satoshi; Ishida, Manabu; Kato, Chiaki; Sambongi, Yoshihiro

    2014-05-01

    Shewanella species live widely in deep-sea and shallow-water areas, and thus grow piezophilically and piezosensitively. Piezophilic and psychrophilic Shewanella benthica cytochrome c 5 (SB cytc 5) was the most stable against guanidine hydrochloride (GdnHCl) and thermal denaturation, followed by less piezophilic but still psychrophilic Shewanella violacea cytochrome c 5 (SV cytc 5). These two were followed, as to stability level, by piezosensitive and mesophilic Shewanella amazonensis cytochrome c 5 (SA cytc 5), and piezosensitive and psychrophilic Shewanella livingstonensis cytochrome c 5 (SL cytc 5). The midpoint GdnHCl concentrations of SB cytc 5, SV cytc 5, SL cytc 5, and SA cytc 5 correlated with the optimal growth pressures of the species, the correlation coefficient value being 0.93. A similar trend was observed for thermal denaturation. Therefore, the stability of each cytochrome c 5 is related directly to its host's optimal growth pressure. Phylogenetic analysis indicated that Lys-37, Ala-41, and Leu-50 conserved in piezosensitive SL cytc 5 and SA cytc 5 are ancestors of the corresponding residues in piezophilic SB cytc 5 and SV cytc 5, Gln, Thr, and Lys, respectively, which might have been introduced during evolution on adaption to environmental pressure. The monomeric Shewanella cytochromes c 5 are suitable tools for examining protein stability with regard to the optimal growth pressures of the source species.

  2. Optimization of the parameters affecting the shape and position of crystal-melt interface in YAG single crystal growth

    NASA Astrophysics Data System (ADS)

    Asadian, Morteza; Seyedein, S. H.; Aboutalebi, M. R.; Maroosi, A.

    2009-01-01

    In Czochralski method, the shape of crystal-melt interface and its position play a major role on the quality of single crystals. In the Czochralski crystal growth process having a nearly flat interface, a single crystal with less structural defect, uniform physical properties and homogenous chemical composition is obtained. In the present study, firstly a 2-D fluid flow and solidification model was developed to simulate the YAG single crystal growth process using a finite volume method. The fluid flow and solidification heat transfer model was further tested by available experimental data. The verified fluid flow and solidification heat transfer model was used to build an artificial neural network and trained to optimize the parameters affecting the shape and position of the interface. Finally, the trained neural network was employed to optimize the operating parameters such as pulling rate, rotation speed of the crystal, ambient gas and temperature of crucible wall to obtain a closely flat crystal-melt interface. The optimized variables were eventually used in fluid flow model to evaluate the performance of the optimization model.

  3. Importance of growth temperature on achieving lattice-matched and strained InAlN/GaN heterostructure by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jeganathan, K.; Shimizu, M.

    2014-09-01

    We investigate the role of growth temperature on the optimization of lattice-matched In0.17Al0.83N/GaN heterostructure and its structural evolutions along with electrical transport studies. The indium content gradually reduces with the increase of growth temperature and approaches lattice-matched with GaN having very smooth and high structural quality at 450°C. The InAlN layers grown at high growth temperature (480°C) retain very low Indium content of ˜ 4 % in which cracks are mushroomed due to tensile strain while above lattice matched (>17%) layers maintain crack-free compressive strain nature. The near lattice-matched heterostructure demonstrate a strong carrier confinement with very high two-dimensional sheet carrier density of ˜2.9 × 1013 cm-2 with the sheet resistance of ˜450 Ω/□ at room temperature as due to the manifestation of spontaneous polarization charge differences between InAlN and GaN layers.

  4. Importance of growth temperature on achieving lattice-matched and strained InAlN/GaN heterostructure by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Jeganathan, K.; Shimizu, M.

    2014-09-15

    We investigate the role of growth temperature on the optimization of lattice-matched In{sub 0.17}Al{sub 0.83}N/GaN heterostructure and its structural evolutions along with electrical transport studies. The indium content gradually reduces with the increase of growth temperature and approaches lattice-matched with GaN having very smooth and high structural quality at 450ºC. The InAlN layers grown at high growth temperature (480ºC) retain very low Indium content of ∼ 4 % in which cracks are mushroomed due to tensile strain while above lattice matched (>17%) layers maintain crack-free compressive strain nature. The near lattice-matched heterostructure demonstrate a strong carrier confinement with very high two-dimensional sheet carrier density of ∼2.9 × 10{sup 13} cm{sup −2} with the sheet resistance of ∼450 Ω/□ at room temperature as due to the manifestation of spontaneous polarization charge differences between InAlN and GaN layers.

  5. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    NASA Astrophysics Data System (ADS)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control

  6. Reconstruction of ancestral 16S rRNA reveals mutation bias in the evolution of optimal growth temperature in the Thermotogae phylum.

    PubMed

    Green, Anna G; Swithers, Kristen S; Gogarten, Jan F; Gogarten, Johann Peter

    2013-11-01

    Optimal growth temperature is a complex trait involving many cellular components, and its physiology is not yet fully understood. Evolution of continuous characters, such as optimal growth temperature, is often modeled as a one-dimensional random walk, but such a model may be an oversimplification given the complex processes underlying the evolution of continuous characters. Recent articles have used ancestral sequence reconstruction to infer the optimal growth temperature of ancient organisms from the guanine and cytosine content of the stem regions of ribosomal RNA, allowing inferences about the evolution of optimal growth temperature. Here, we investigate the optimal growth temperature of the bacterial phylum Thermotogae. Ancestral sequence reconstruction using a nonhomogeneous model was used to reconstruct the stem guanine and cytosine content of 16S rRNA sequences. We compare this sequence reconstruction method with other ancestral character reconstruction methods, and show that sequence reconstruction generates smaller confidence intervals and different ancestral values than other reconstruction methods. Unbiased random walk simulation indicates that the lower temperature members of the Thermotogales have been under directional selection; however, when a simulation is performed that takes possible mutations into account, it is the high temperature lineages that are, in fact, under directional selection. We find that the evolution of Thermotogales optimal growth temperatures is best fit by a biased random walk model. These findings suggest that it may be easier to evolve from a high optimal growth temperature to a lower one than vice versa.

  7. Expert meeting on Child Growth and Micronutrient Deficiencies--New Initiatives for Developing Countries to Achieve Millennium Development Goals: executive summary report.

    PubMed

    Usfar, Avita A; Achadi, Endang L; Martorell, Reynaldo; Hadi, Hamam; Thaha, Razak; Jus'at, Idrus; Atmarita; Martianto, Drajat; Ridwan, Hardinsyah; Soekirman

    2009-01-01

    Undernutrition in early childhood has long-term physical and intellectual consequences. Improving child growth should start before the age of two years and be an integrated effort between all sectors, covering all aspects such as diet and nutrient intake, disease reduction, optimum child care, and improved environmental sanitation. To discuss these issues, the Indonesian Danone Institute Foundation organized an expert meeting on Child Growth and Micronutrient Deficiencies: New Initiatives for Developing Countries to Achieve Millennium Development Goals. The objective of the meeting was to have a retrospective view on child growth: lessons learned from programs to overcome under-nutrition in the developed countries and to relate the situation to the Indonesian context, as well as to discuss implications for future programs. Recommendations derived from the meeting include focus intervention on the window of opportunity group, re-activation of the Integrated Health Post at the village level, improvement of infant and young child feeding, expand food fortification intervention programs, strengthen supplementation programs with multi-micronutrient, and strengthening public and private partnership on food related programs.

  8. Planned Missing Designs to Optimize the Efficiency of Latent Growth Parameter Estimates

    ERIC Educational Resources Information Center

    Rhemtulla, Mijke; Jia, Fan; Wu, Wei; Little, Todd D.

    2014-01-01

    We examine the performance of planned missing (PM) designs for correlated latent growth curve models. Using simulated data from a model where latent growth curves are fitted to two constructs over five time points, we apply three kinds of planned missingness. The first is item-level planned missingness using a three-form design at each wave such…

  9. Optimized growth of graphene on SiC: from the dynamic flip mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Liu, Lei; Chen, Wei; Chen, Xiaobo; Huang, Han; He, Jun; Feng, Yuan-Ping; Wee, A. T. S.; Shen, D. Z.

    2015-02-01

    Thermal decomposition of single-crystal SiC is one of the popular methods for growing graphene. However, the mechanism of graphene formation on the SiC surface is poorly understood, and the application of this method is also hampered by its high growth temperature. In this study, based on the ab initio calculations, we propose a vacancy assisted Si-C bond flipping model for the dynamic process of graphene growth on SiC. The fact that the critical stages during growth take place at different energy costs allows us to propose an energetic-beam controlled growth method that not only significantly lowers the growth temperature but also makes it possible to grow high-quality graphene with the desired size and patterns directly on the SiC substrate.

  10. Optimal regeneration planning for old-growth forest: addressing scientific uncertainty in endangered species recovery through adaptive management

    USGS Publications Warehouse

    Moore, C.T.; Conroy, M.J.

    2006-01-01

    Stochastic and structural uncertainties about forest dynamics present challenges in the management of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge (Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure. We produced a regeneration policy that was indexed by current forest state and by current weight of evidence among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse fully adaptive approaches to the management of endangered species habitats in which predictive modeling, monitoring, and assessment are tightly linked.

  11. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b

    PubMed Central

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-01-01

    Background Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. Objectives To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). Materials and Methods We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. Results The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. Conclusions We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  12. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b

    PubMed Central

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-01-01

    Background Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. Objectives To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). Materials and Methods We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. Results The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. Conclusions We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections. PMID:27630761

  13. On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions.

    PubMed

    Araújo, Wagner L; Nunes-Nesi, Adriano; Fernie, Alisdair R

    2014-02-01

    Given that the pathways of photosynthesis and respiration catalyze partially opposing processes, it follows that their relative activities must be carefully regulated within plant cells. Recent evidence has shown that the components of the mitochondrial electron transport chain are essential for the proper maintenance of intracellular redox gradients, to allow considerable rates of photorespiration and in turn efficient photosynthesis. Thus considerable advances have been made in understanding the interaction between respiration and photosynthesis during the last decades and the potential mechanisms linking mitochondrial function and photosynthetic efficiency will be reviewed. Despite the fact that manipulation of various steps of mitochondrial metabolism has been demonstrated to alter photosynthesis under optimal growth conditions, it is likely that these changes will, by and large, not be maintained under sub-optimal situations. Therefore producing plants to meet this aim remains a critical challenge. It is clear, however, that although there have been a range of studies analysing changes in respiratory and photosynthetic rates in response to light, temperature and CO2, our knowledge of the environmental impact on these processes and its linkage still remains fragmented. We will also discuss the metabolic changes associated to plant respiration and photosynthesis as important components of the survival strategy as they considerably extend the period that a plant can withstand to a stress situation.

  14. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen

    PubMed Central

    Ma, Bin; Bao, Peng; Wei, Yan; Zhu, Guibing; Yuan, Zhiguo; Peng, Yongzhen

    2015-01-01

    Achieving nitrogen removal from domestic wastewater using anaerobic ammonium oxidation (anammox) has the potential to make wastewater treatment energy-neutral or even energy-positive. The challenge is to suppress the growth of nitrite-oxidizing bacteria (NOB). This study presents a promising method based on intermittent aeration with low dissolved oxygen to limit NOB growth, thereby providing an advantage to anammox bacteria to form a partnership with the ammonium-oxidizing bacteria (AOB). The results showed that NOB was successfully suppressed using that method, with the relative abundance of NOB maintained between 2.0–2.6%, based on Fluorescent in-situ Hybridization. Nitrogen could be effectively removed from domestic wastewater with anammox at a temperature above 20 °C, with an effluent total nitrogen (TN) concentration of 6.6 ± 2.7 mg/L, while the influent TN and soluble chemical oxygen demand were 62.6 ± 3.1 mg/L and 88.0 ± 8.1 mg/L, respectively. PMID:26354321

  15. Characterization and optimization of vascular endothelial growth factor(165) (rhVEGF(165)) expression in Escherichia coli.

    PubMed

    Kang, W; Kim, S; Lee, S; Jeon, E; Lee, Y; Yun, Y R; Suh, C K; Kim, H W; Jang, J H

    2013-02-01

    Vascular endothelial growth factors(165) (VEGF(165)) is the most potent and widely used pro-angiogenic factor. Here we determined optimal culture condition of recombinant human VEGF(165) (rhVEGF(165)) in Escherichia coli (E. coli). rhVEGF(165) expression was the highest in 0.25% of L-arabinose induction concentration, at 20 °C induction temperature, and for 5 h induction time under the control of araBAD promoter using pBADHisA vector. In biological activity test, rhVEGF(165) significantly increased the proliferative activity of CPAE cells (p<0.001) and upregulated the expressions of endothelial cell growth-related genes, such as platelet endothelial cell adhesion molecule (PECAM-1), endothelial-specific receptor tyrosine kinase (TEK), kinase insert domain protein receptor (KDR), and tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1) in calf pulmonary artery endothelial (CPAE) cells. PMID:23108225

  16. Challenges in achieving optimal glycemic control in type 2 diabetes patients with declining renal function: The Southeast Asia perspective.

    PubMed

    Cc Chow, Francis; Chan, Siew-Pheng; Hwu, Chii-Min; Suwanwalaikorn, Sompongse; Wu, Akira Yt; Gan, Susan Yu; Zacarias, Manuel B

    2012-12-20

    It is well recognised that Asia is at the epicenter of the global type 2 diabetes epidemic. Driven by socioeconomic changes involving industrialization, urbanization and adoption of Western lifestyles, the unprecedented increases in the prevalence of diabetes are particularly evident in Southeast Asia. The impact of diabetes is immense, and despite evidence of the benefit of optimal glucose control in reducing the risk of disease progression and development of macrovascular and microvascular complications, many individuals in this region remain poorly controlled. Chronic kidney disease (CKD) is an increasingly common diabetes-associated complication in Asian patients. Furthermore, Southeast Asia has one of the highest rates of end-stage renal disease (ESRD) in the world. Consequently, CKD in diabetes is associated with considerable morbidity and cardiovascular-related mortality, highlighting the need to screen and assess patients early in the course of the disease. The management of type 2 diabetes patients with declining renal function represents a significant challenge. Many of the older antidiabetic agents, such as metformin and sulfonylureas, are limited in their utility in CKD as a result of contraindications or hypoglycemic episodes. In contrast, dipeptidyl-peptidase IV inhibitors have provided a welcome addition to the therapeutic armamentarium for achieving glycemic control in these special populations. With comparable efficacy to and more favorable pharmacokinetic and side-effect profiles than traditional therapies, agents in this drug class, such as linagliptin, offer a more tailored approach to disease control in type 2 diabetes patients with declining renal function.

  17. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    PubMed Central

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only <0.3% from the initial red blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation

  18. Synonymous codon usage and its potential link with optimal growth temperature in prokaryotes.

    PubMed

    Lobry, J R; Necşulea, A

    2006-12-30

    The relationship between codon usage in prokaryotes and their ability to grow at extreme temperatures has been given much attention over the past years. Previous studies have suggested that the difference in synonymous codon usage between (hyper)thermophiles and mesophiles is a consequence of a selective pressure linked to growth temperature. Here, we performed an updated analysis of the variation in synonymous codon usage with growth temperature; our study includes a large number of species from a wide taxonomic and growth temperature range. The presence of psychrophilic species in our study allowed us to test whether the same selective pressure acts on synonymous codon usage at very low growth temperature. Our results show that the synonymous codon usage for Arg (through the AGG, AGA and CGT codons) is the most discriminating factor between (hyper)thermophilic and non-thermophilic species, thus confirming previous studies. We report the unusual clustering of an Archaeal psychrophile with the thermophilic and hyperthermophilic species on the synonymous codon usage factorial map; the other psychrophiles in our study cluster with the mesophilic species. Our conclusion is that the difference in synonymous codon usage between (hyper)thermophilic and non-thermophilic species cannot be clearly attributed to a selective pressure linked to growth at high temperatures.

  19. Analysis of environmental stress factors using an artificial growth system and plant fitness optimization.

    PubMed

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production.

  20. Analysis of environmental stress factors using an artificial growth system and plant fitness optimization.

    PubMed

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206

  1. Analysis of Environmental Stress Factors Using an Artificial Growth System and Plant Fitness Optimization

    PubMed Central

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206

  2. Developmental and Metabolite Transport Strategies to Optimize the Growth of Filamentous Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Rutenberg, Andrew

    2011-03-01

    Individual cells of filamentous cyanobacteria share nutrients through cytoplasmic and/or periplasmic connections. Under conditions of low fixed-nitrogen some cells terminally differentiate into heterocysts, which fix nitrogen for the remaining photosynthetic vegetative cells. Heterocysts are observed to occur in a regular pattern separated by clusters of vegetative cells. Using a quantitative model of nitrogen uptake, consumption and transport together with vegetative cell growth and division, we explore how the overall growth rate of the filament depends on different heterocyst positioning patterns and on particular strategies of nitrogen transport.

  3. Population growth, life-cycle saving, and international differences in steady-state optimal saving rates.

    PubMed

    Conroy, M E

    1979-08-01

    Life-cycle savings theories have been a seminal development in analyses of the relationship between rational savings patterns for individuals and the accumulation of wealth or capital at the level of the society as a whole. Applications of the theories in industrialized countries never investigated the significance of large differences in birth and death rates across societies. The strong demographic components of life-cycle saving analysis are here the center of focus. Illustrative general numerical applications of a modified version of the life-cycle approach suggest that mortality differentials comparable to those presently encountered among nations are consistent with very large differentials in steady-state optimal ratios of wealth-to-income. Specific application to Peru of the model estimated by Tobin for the United States indicates that high levels of mortality, current Peruvian birth rates, and Peruvian age-income profiles imply optimal rational savings rates far below those of the United States. PMID:510637

  4. Different Levels of Catabolite Repression Optimize Growth in Stable and Variable Environments

    PubMed Central

    New, Aaron M.; Cerulus, Bram; Govers, Sander K.; Perez-Samper, Gemma; Zhu, Bo; Boogmans, Sarah; Xavier, Joao B.; Verstrepen, Kevin J.

    2014-01-01

    Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called “lag phase”) and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are “specialist” strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This “generalist” strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow “stochastic sensing” of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth. PMID:24453942

  5. Different levels of catabolite repression optimize growth in stable and variable environments.

    PubMed

    New, Aaron M; Cerulus, Bram; Govers, Sander K; Perez-Samper, Gemma; Zhu, Bo; Boogmans, Sarah; Xavier, Joao B; Verstrepen, Kevin J

    2014-01-01

    Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called "lag phase") and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are "specialist" strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This "generalist" strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow "stochastic sensing" of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth. PMID:24453942

  6. A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh Akherat, S. M. Javid; Boghosian, Michael; Cassel, Kevin; Hammes, Mary

    2015-11-01

    End-stage-renal disease patients depend on successful long-term hemodialysis via vascular access, commonly facilitated via a Brachiocephalic Fistula (BCF). The primary cause of BCF failure is Cephalic Arch Stenosis (CAS). It is believed that low Wall Shear Stress (WSS) regions, which occur because of the high flow rates through the natural bend in the cephalic vein, create hemodynamic circumstances that trigger the onset and development of Intimal Hyperplasia (IH) and subsequent CAS. IH is hypothesized to be a natural effort to reshape the vessel, aiming to bring the WSS values back to a physiologically acceptable range. We seek to explore the correlation between regions of low WSS and subsequent IH and CAS in patient-specific geometries. By utilizing a shape optimization framework, a method is proposed to predict cardiovascular adaptation that could potentially be an alternative to vascular growth and remodeling. Based on an objective functional that seeks to alter the vessel shape in such a way as to readjust the WSS to be within the normal physiological range, CFD and shape optimization are then coupled to investigate whether the optimal shape evolution is correlated with actual patient-specific geometries thereafter. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  7. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis.

    PubMed

    Sanati Nezhad, Amir; Ghanbari, Mahmood; Agudelo, Carlos G; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama B; Geitmann, Anja

    2014-02-01

    A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes. The goal was to adjust the design of the microfluidic network with the aim to enhance the uniformly distributed positioning of pollen grains at the entrances of the microchannels and to provide identical fluid flow conditions for growing pollen tubes along each microchannel. Computational fluid analysis and experimental testing were carried out to estimate the trapping efficiencies of the different designs. PMID:24013680

  8. Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production.

    PubMed

    Halsey, Kimberly H; Milligan, Allen J; Behrenfeld, Michael J

    2010-02-01

    Characterization of physiological variability in phytoplankton photosynthetic efficiencies is one of the greatest challenges in assessing ocean net primary production (NPP) from remote sensing of surface chlorophyll (Chl). Nutrient limitation strongly influences phytoplankton intracellular pigmentation, but its impact on Chl-specific NPP (NPP(*)) is debated. We monitored six indices of photosynthetic activity in steady-state Dunaliella tertiolecta cultures over a range of nitrate-limited growth rates (μ), including photosynthetic efficiency of PSII (F(v)/F(m)), O(2)-based gross and net production, 20 min and 24 h carbon assimilation, and carbon- and μ-based NPP. Across all growth rates, O(2)-based Chl-specific gross primary production (GPP(*)(O(2))), NPP(*), and F(v)/F(m) were constant. GPP(*)(O(2)) was 3.3 times greater than NPP(*). In stark contrast, Chl-specific short-term C fixation showed clear linear dependence on μ, reflecting differential allocation of photosynthate between short-lived C products and longer-term storage products. Indeed, (14)C incorporation into carbohydrates was five times greater in cells growing at 1.2 day(-1) than 0.12 day(-1). These storage products are catabolized for ATP and reductant generation within the period of a cell cycle. The relationship between Chl-specific gross and net O(2) production, short-term (14)C-uptake, NPP(*), and growth rate reflects cellular-level regulation of fundamental metabolic pathways in response to nutrient limitation. We conclude that growth rate-dependent photosynthate metabolism bridges the gap between gross and net production and resolves a controversial question regarding nutrient limitation effects on primary production measures.

  9. Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.

    It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against

  10. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    SciTech Connect

    Groves, James R; Matias, Vladimir; Stan, Liliana; De Paula, Raymond F; Hammond, Robert H; Clemens, Bruce M

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  11. Optimization of the cell seeding density and modeling of cell growth and metabolism using the modified Gompertz model for microencapsulated animal cell culture.

    PubMed

    Wen-tao, Qi; Ying, Zhang; Juan, Ma; Xin, Guo; Yu-bing, Xie; Wei, Wang; Xiaojun, Ma

    2006-04-01

    Cell microencapsulation is one of the promising strategies for the in vitro production of proteins or in vivo delivery of therapeutic products. In order to design and fabricate the optimized microencapsulated cell system, the Gompertz model was applied and modified to describe the growth and metabolism of microencapsulated cell, including substrate consumption and product formation. The Gompertz model successfully described the cell growth kinetics and the modified Gompertz models fitted the substrate consumption and product formation well. It was demonstrated that the optimal initial cell seeding density was about 4-5 x 10(6) cells/mL of microcapsule, in terms of the maximum specific growth rate, the glucose consumption potential and the product formation potential calculated by the Gompertz and modified Gompertz models. Modeling of cell growth and metabolism in microcapsules provides a guideline for optimizing the culture of microencapsulated cells.

  12. Characterization and optimization of 2-step MOVPE growth for single-mode DFB or DBR laser diodes

    NASA Astrophysics Data System (ADS)

    Bugge, F.; Mogilatenko, A.; Zeimer, U.; Brox, O.; Neumann, W.; Erbert, G.; Weyers, M.

    2011-01-01

    We have studied the MOVPE regrowth of AlGaAs over a grating for GaAs-based laser diodes with an internal wavelength stabilisation. Growth temperature and aluminium concentration in the regrown layers considerably affect the oxygen incorporation. Structural characterisation by transmission electron microscopy of the grating after regrowth shows the formation of quaternary InGaAsP regions due to the diffusion of indium atoms from the top InGaP layer and As-P exchange processes during the heating-up procedure. Additionally, the growth over such gratings with different facets leads to self-organisation of the aluminium content in the regrown AlGaAs layer, resulting in an additional AlGaAs grating, which has to be taken into account for the estimation of the coupling coefficient. With optimized growth conditions complete distributed feedback laser structures have been grown for different emission wavelengths. At 1062 nm a very high single-frequency output power of nearly 400 mW with a slope efficiency of 0.95 W/A for a 4 μm ridge-waveguide was obtained.

  13. The Application of Various Nonlinear Models to Describe Academic Growth Trajectories: An Empirical Analysis Using Four-Wave Longitudinal Achievement Data from a Large Urban School District

    ERIC Educational Resources Information Center

    Shin, Tacksoo

    2012-01-01

    This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively…

  14. Heifer body weight gain and reproductive achievement in response to protein and energy supplementation while grazing dormant range forage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...

  15. Complementary Feeding: Critical Considerations to Optimize Growth, Nutrition, and Feeding Behavior

    PubMed Central

    Young, Bridget E.; Krebs, Nancy F.

    2014-01-01

    This review focuses on complementary feeding (CF) in westernized settings where primary health concerns are risk of obesity and micronutrient inadequacy. The current evidence is reviewed for: (1) when CF should be introduced, (2) what foods (nutrients and food types) should be prioritized and avoided, and (3) how the infant should be fed. Special attention is paid to the underlying physiological differences between breast- and formula-fed infants that often result in distinctly different nutritional and health risks. This difference is particularly acute in the case of micronutrient inadequacy, specifically iron and zinc, but is also relevant to optimal energy and macronutrient intakes. Emphasis is placed on the complex interplay among infants’ early dietary exposures; relatively high energy and nutrient requirements; rapid physical, social and emotional development; and the feeding environment—all of which interact to impact health outcomes. This complexity needs to be considered at both individual and population levels and in both clinical and research settings. PMID:25105082

  16. The Optimal Capital Stock and Consumption Evolution for Non Zero Consumers Growth Rate in the Framework of Ramsey Model on Finite Horizon

    NASA Astrophysics Data System (ADS)

    Bonchiş, N.; Balint, Şt.

    2010-09-01

    In this paper the Ramsey optimal growth of the capital stock and consumption on finite horizon is analyzed when the growth rate of consumers is strictly positive. The main purpose is to establish the dependence of the optimal capital stock and consumption evolution on the growth rate of consumers. The analysis reveals: for any initial value k0≥0 there exists a unique optimal evolution path of length N+1 for the capital stock; if k0 is strictly positive then all the elements of the optimal capital stock evolution path are strictly positives except the last one which is zero; the optimal capital stock evolution of length N+1 starting from k0≥0 satisfies the Euler equation; the value function VN is strictly increasing, strictly concave and continuous on R+. The family of functions {VN-T}T = 0…N-1 satisfies the Bellman equation and it is the unique solution of this equation which is both continuous and satisfies the transversality condition. The Mangasarian Lemma is also satisfied. For N tending to infinity the optimal evolution path of length N of the capital stock tends to those on the infinite time horizon. For any k0>0 the value function in k0 decreases when the consumers growth rate increases.

  17. Optimal study design with identical power: an application of power equivalence to latent growth curve models.

    PubMed

    von Oertzen, Timo; Brandmaier, Andreas M

    2013-06-01

    Structural equation models have become a broadly applied data-analytic framework. Among them, latent growth curve models have become a standard method in longitudinal research. However, researchers often rely solely on rules of thumb about statistical power in their study designs. The theory of power equivalence provides an analytical answer to the question of how design factors, for example, the number of observed indicators and the number of time points assessed in repeated measures, trade off against each other while holding the power for likelihood-ratio tests on the latent structure constant. In this article, we present applications of power-equivalent transformations on a model with data from a previously published study on cognitive aging, and highlight consequences of participant attrition on power.

  18. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli.

    PubMed

    Patra, A K; Mukhopadhyay, R; Mukhija, R; Krishnan, A; Garg, L C; Panda, A K

    2000-03-01

    Recombinant human growth hormone (r-hGH) was expressed in Escherichia coli as inclusion bodies. In 10 h of fed-batch fermentation, 1.6 g/L of r-hGH was produced at a cell concentration of 25 g dry cell weight/L. Inclusion bodies from the cells were isolated and purified to homogeneity. Various buffers with and without reducing agents were used to solubilize r-hGH from the inclusion bodies and the extent of solubility was compared with that of 8 M urea as well as 6 M Gdn-HCl. Hydrophobic interactions as well as ionic interactions were found to be the dominant forces responsible for the formation of r-hGH inclusion bodies during its high-level expression in E. coli. Complete solubilization of r-hGH inclusion bodies was observed in 100 mM Tris buffer at pH 12.5 containing 2 M urea. Solubilization of r-hGH inclusion bodies in the presence of low concentrations of urea helped in retaining the existing native-like secondary structures of r-hGH, thus improving the yield of bioactive protein during refolding. Solubilized r-hGH in Tris buffer containing 2 M urea was found to be less susceptible to aggregation during buffer exchange and thus was refolded by simple dilution. The r-hGH was purified by use of DEAE-Sepharose ion-exchange chromatography and the pure monomeric r-hGH was finally obtained by using size-exclusion chromatography. The overall yield of the purified monomeric r-hGH was approximately 50% of the initial inclusion body proteins and was found to be biologically active in promoting growth of rat Nb2 lymphoma cell lines.

  19. Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22.

    PubMed

    Sakamoto, Kohei; Baba, Masato; Suzuki, Iwane; Watanabe, Makoto M; Shiraiwa, Yoshihiro

    2012-04-01

    Optimization of the light conditions for biofuel production by the microalga Botryococcus braunii BOT-22 (race B) was performed using monochromatic red light. The lipid and sugar contents were approximately 40% and 20-30% of the cell dry weight, respectively, and about half of the lipids were liquid hydrocarbons. The half-saturation intensities for the production rate of lipids, hydrocarbons, and sugars were 63, 49, and 44μmolm(-2)s(-1), respectively. Fluorescence microscopic images of Nile Red-stained cells showed an increased number of intracellular neutral lipid granules due to increased light intensity. After 16days of incubation in the dark, lipid and sugar, but not hydrocarbon content decreased. Growth, metabolite production, and photosynthesis were saturated at 100, 200 and 1000μmolm(-2)s(-1), respectively. These results indicate that photosynthetically captured energy is not used efficiently for metabolite production; thus, improvements in metabolic regulation may increase hydrocarbon production.

  20. Enhancement of lipid productivity in oleaginous Colletotrichum fungus through genetic transformation using the yeast CtDGAT2b gene under model-optimized growth condition.

    PubMed

    Dey, Prabuddha; Mall, Nikunj; Chattopadhyay, Atrayee; Chakraborty, Monami; Maiti, Mrinal K

    2014-01-01

    Oleaginous fungi are of special interest among microorganisms for the production of lipid feedstocks as they can be cultured on a variety of substrates, particularly waste lingocellulosic materials, and few fungal strains are reported to accumulate inherently higher neutral lipid than bacteria or microalgae. Previously, we have characterized an endophytic filamentous fungus Colletotrichum sp. DM06 that can produce total lipid ranging from 34% to 49% of its dry cell weight (DCW) upon growing with various carbon sources and nutrient-stress conditions. In the present study, we report on the genetic transformation of this fungal strain with the CtDGAT2b gene, which encodes for a catalytically efficient isozyme of type-2 diacylglycerol acyltransferase (DGAT) from oleaginous yeast Candida troplicalis SY005. Besides the increase in size of lipid bodies, total lipid titer by the transformed Colletotrichum (lipid content ∼73% DCW) was found to be ∼1.7-fold more than the wild type (lipid content ∼38% DCW) due to functional activity of the CtDGAT2b transgene when grown under standard condition of growth without imposition of any nutrient-stress. Analysis of lipid fractionation revealed that the neutral lipid titer in transformants increased up to 1.8-, 1.6- and 1.5-fold compared to the wild type when grown under standard, nitrogen stress and phosphorus stress conditions, respectively. Lipid titer of transformed cells was further increased to 1.7-fold following model-based optimization of culture conditions. Taken together, ∼2.9-fold higher lipid titer was achieved in Colletotrichum fungus due to overexpression of a rate-limiting crucial enzyme of lipid biosynthesis coupled with prediction-based bioprocess optimization.

  1. Influence of protein solution in nucleation and optimized formulation for the growth of ARM lipase crystal

    NASA Astrophysics Data System (ADS)

    Rahman, Raja Noor Zaliha Raja Abd; Masomian, Malihe; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad

    2015-09-01

    ARM lipase is a thermostable and organic solvent tolerant enzyme which was highly purified prior to crystallization. The His-tagged ARM lipase was purified with immobilized metal affinity chromatography followed by anion-exchange chromatography. The effect of different salt concentrations on stability, solubility and crystal nucleation of the protein was studied. The highly purified and homogeneous ARM lipase with protein concentration of 2 mg/mL was successfully crystallized by a sitting drop, vapor diffusion method with the use of 0.1 M MES monohydrate pH 6.5 and 12% (v/v) polyethylene glycol (PEG) 20000 as precipitant. The crystallization conditions were optimized by changing the pH and concentration of the precipitant. The optimum crystallization condition was 2 mg/mL ARM lipase in 0.1 M Tris-HCl, 0.15 M NaCl, pH 8.0 protein solution, crystallized using 0.1 M Tris-HCl, pH 8.0 and 12% (v/v) PEG 20000 as precipitant.

  2. Optimized morphology properties of silver catalyst substrate for twisted carbon nanoribbon growth by PECVD method

    NASA Astrophysics Data System (ADS)

    Rosikhin, Ahmad; Syuhada, Ibnu; Fikri Hidayat, Aulia; Marimpul, Rinaldo; Winata, Toto

    2016-08-01

    A twisted carbon nanoribbon was deposited onto multicoated silver thin film using RF-PECVD method at relatively low radio frequency (rf) power, 8 watt. Plasma formation in the chamber is strongly influenced not only by rf power but also by methane flowrate hence in order to get optimum condition it need to be appropriated. At low rf power, deposited carbon atoms on catalyst substrate is obviously observed which is provides that even with a minimum power it still capable of resulted in carbon nanosheet but unable to enhance plasma formation therefore the properties of material absolutely need to be optimized. The fabrication process was carried out at 20 sccm of CH4 for 20 minutes with 70 MHz/8 watt and 300 mTorr pressure. From SEM images it shows that the morphology of silver catalyst substrates determine carbon formation. Even-times coating of silver film able to reduced holes surface and more smoothing textures therefore suitable enough for carbon nanosheet medium.

  3. Increasing Costs Due to Ocean Acidification Drives Phytoplankton to Be More Heavily Calcified: Optimal Growth Strategy of Coccolithophores

    PubMed Central

    Irie, Takahiro; Bessho, Kazuhiro; Findlay, Helen S.; Calosi, Piero

    2010-01-01

    Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump). Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith) serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO3 during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ∼200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO2 concentration. PMID:20976167

  4. Optimization of structural and growth parameters of metamorphic InGaAs/GaAs photoconverters grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Rybalchenko, D. V.; Mintairov, S. A.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-08-01

    Metamorphic Ga0.76In0.24As heterostructures for PV converters of 1064 nm laser radiation have been grown by the MOCVD. Parameters of the GaInAs metamorphic buffer layer with a stepwise profile of In composition variation were calculated. Its epitaxial growth conditions have been optimized, which allowed improving collection of charge carriers from the n-GaInAs base region and obtaining the photo-response quantum yield of 83% at 1064 nm wavelength. It has been found that, due to discontinuity of valence bands at the In0.24Al0.76As- p/Ga0.76In0.24As-p heterointerface (window/emitter) a potential barrier for holes arises as a result of low carrier concentration in the wide-band-gap material. The use of InAlGaAs solid solution with Al concentration of < 40% has allowed raising the holes concentration in the wide-band-gap window, eliminating completely the potential barrier and reducing the device series resistance. Optimization of the PV converter metamorphic heterostructure has resulted in obtaining 1064 nm laser radiation conversion efficiency at the level of 38.5%.

  5. Studies on growth kinetics of Serratia marcescens VITSD2 and optimization of fermentation conditions for serratiopeptidase production.

    PubMed

    Subathra, Devi C; Alam, Shah; Nag, Suraj Kumar; Jemimah, Naine S; Mohanasrinivasan, V; Vaishnavi, B

    2014-01-01

    Serratia is one of the most important groups of bacteria which produces proteolytic enzymes effectively and known to possess anti- inflammatory properties. The main focus of the current study was to optimize the culture conditions of Serratia marcescens VITSD2 for the mass production of serratiopeptidase. Effect of various nutritional and environmental factors were analysed and optimized. Among the different carbon and nitrogen sources tested, mannose and soya bean meal was found to be the best with enzyme activity of 1391 units /mL and 1800 U/mL respectively. The enzyme showed an optimum activity of 1668 U/mL at pH-8 and 1500 U/mL at 25ºC. Maximum peptidase production during fermentation was obtained after 24 h incubation with 1% inoculum in the medium at 25ºC and yielded 1668 U/mL. Lysine stimulated the production of peptidase and the yield obtained was 2410U/mL. Growth curve analysis was done. Maximum serratiopeptidase production was detected after 24 h incubation with 2155 units/mL and cell density of 2.4g/100mL. Hence the observation of the present study clearly indicates that the yield of Serratiopeptidase was found to be maximum by varying the cultural conditions.

  6. Comparative evaluation of five Beauveria isolates for housefly (Musca domestica L.) control and growth optimization of selected strain.

    PubMed

    Mishra, Sapna; Malik, Anushree

    2012-11-01

    Pathogenic potential of five native Beauveria isolates was assessed against housefly adult and larvae in laboratory bioassays. Beauveria isolate Beauveria bassiana HQ917687 showed highest virulence with 72.3 and 100 % mortality of larvae and adults of Musca domestica, respectively. Other Beauveria isolates caused 36-52 % housefly larval mortality while the adult mortalities varied between 72 and 82 %. B. bassiana HQ917687 also showed the fastest killing activity with LT(50) of 4 days (for larvae) and 3 days (for adults). This isolate showing highest virulence was selected for its growth optimization in terms of biomass and spore production using response surface methodology. The optimum value of temperature, yeast extract, and pH for maximum biomass and spore production was predicted as 27 °C, 5.00 g/l, and 6.75, respectively. Temperature was found to be the most critical factor influencing biomass and spore yield of the fungus and even nullified the effects of other factors at sufficiently higher value. The results obtained in this study depict the significance of appropriate strain selection and process parameter optimization in order to facilitate mass production of biocontrol agents.

  7. Optimization of treatment parameters for the use of FLYASH amended composts for plant growth

    SciTech Connect

    Bacon, B.B.; Menon, M.P.; Ghuman, G.S.; James, J.; Adriano, D.C.; Chandra, K. )

    1990-01-01

    In continuation of the authors efforts to utilize coal fly ash as an amendment to organic manure for vegetation, four parameters such as the nature of the manure, plant-type, ash to manure and soil to amended compost ratios were investigated. a high grade organic manure, Gotta Grow, and a low grade manure, compost-manure, compost-toast, (Bricko Farm products) along with a home-made composed were used to make fly ash-amended composts. Four plants, collard green, mustard green, corn and sorghum were selected for study under greenhouse conditions. Keeping other variables constant, the fly ash to manure ratio was changed from 0 to 60% FA, and compost to soil ratio from 0 to 25%. The plants were grown for approximately 8 weeks and harvested. The plant yield was measured both before and after drying. It was found that out of four plants, yield from corn is the highest when fly ash-amended compost-toast (20% FA) was used at a compost to soil ratio of 1:3. The plant samples are being analyzed for major and minor elements including boron which is detrimental to the growth of plants.

  8. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms

    NASA Astrophysics Data System (ADS)

    Jamshidi, Saeid; Boozarjomehry, Ramin Bozorgmehry; Pishvaie, Mahmoud Reza

    2009-10-01

    In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.

  9. Optimizing growth and post treatment of diamond for high capacitance neural interfaces.

    PubMed

    Tong, Wei; Fox, Kate; Zamani, Akram; Turnley, Ann M; Ganesan, Kumaravelu; Ahnood, Arman; Cicione, Rosemary; Meffin, Hamish; Prawer, Steven; Stacey, Alastair; Garrett, David J

    2016-10-01

    Electrochemical and biological properties are two crucial criteria in the selection of the materials to be used as electrodes for neural interfaces. For neural stimulation, materials are required to exhibit high capacitance and to form intimate contact with neurons for eliciting effective neural responses at acceptably low voltages. Here we report on a new high capacitance material fabricated using nitrogen included ultrananocrystalline diamond (N-UNCD). After exposure to oxygen plasma for 3 h, the activated N-UNCD exhibited extremely high electrochemical capacitance greater than 1 mF/cm(2), which originates from the special hybrid sp(2)/sp(3) structure of N-UNCD. The in vitro biocompatibility of the activated N-UNCD was then assessed using rat cortical neurons and surface roughness was found to be critical for healthy neuron growth, with best results observed on surfaces with a roughness of approximately 20 nm. Therefore, by using oxygen plasma activated N-UNCD with appropriate surface roughness, and considering the chemical and mechanical stability of diamond, the fabricated neural interfaces are expected to exhibit high efficacy, long-term stability and a healthy neuron/electrode interface. PMID:27424214

  10. Optimizing growth and post treatment of diamond for high capacitance neural interfaces.

    PubMed

    Tong, Wei; Fox, Kate; Zamani, Akram; Turnley, Ann M; Ganesan, Kumaravelu; Ahnood, Arman; Cicione, Rosemary; Meffin, Hamish; Prawer, Steven; Stacey, Alastair; Garrett, David J

    2016-10-01

    Electrochemical and biological properties are two crucial criteria in the selection of the materials to be used as electrodes for neural interfaces. For neural stimulation, materials are required to exhibit high capacitance and to form intimate contact with neurons for eliciting effective neural responses at acceptably low voltages. Here we report on a new high capacitance material fabricated using nitrogen included ultrananocrystalline diamond (N-UNCD). After exposure to oxygen plasma for 3 h, the activated N-UNCD exhibited extremely high electrochemical capacitance greater than 1 mF/cm(2), which originates from the special hybrid sp(2)/sp(3) structure of N-UNCD. The in vitro biocompatibility of the activated N-UNCD was then assessed using rat cortical neurons and surface roughness was found to be critical for healthy neuron growth, with best results observed on surfaces with a roughness of approximately 20 nm. Therefore, by using oxygen plasma activated N-UNCD with appropriate surface roughness, and considering the chemical and mechanical stability of diamond, the fabricated neural interfaces are expected to exhibit high efficacy, long-term stability and a healthy neuron/electrode interface.

  11. Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal or poor hygienic conditions.

    PubMed

    Berrocoso, J D; Menoyo, D; Guzmán, P; Saldaña, B; Cámara, L; Mateos, G G

    2015-08-01

    Two experiments were conducted to study the effects of inclusion of additional fiber in the Phase I diet on growth performance and nutrient digestibility in piglets reared under "optimal" or "poor" hygienic conditions. In both experiments, the design was completely randomized with a control diet that contained 2.2% crude fiber and 8 additional isonutritive diets that included 2.5 or 5.0% of sugar beet pulp (SBP), straw, oat hulls (OH), or wheat middlings (WHM). Preplanned polynomial contrasts were used to study the effects of 1) fiber inclusion (control diet vs. average of the 8 fiber-containing diets), 2) source of fiber, 3) level of fiber, and 4) interaction between source and level of fiber. In Exp. 1 (clean barn), fiber inclusion increased ( < 0.01) the incidence of postweaning diarrhea (PWD) and reduced ( < 0.05) feed efficiency and apparent total tract digestibility (ATTD) of all nutrients except that of CP, which was not affected. Piglet performance was not affected by source or level of dietary fiber. The ATTD of all nutrients decreased ( < 0.05) as the level of fiber increased and was lower in pigs fed straw or OH than in pigs fed SBP or WHM. The apparent ileal digestibility of GE and DM decreased ( < 0.05) with fiber inclusion, a reduction that was more pronounced ( < 0.05) with straw or SBP than with OH inclusion, with WHM inclusion being intermediate. Fiber inclusion did not affect villous height to crypt depth ratio of the ileum mucosa. The inclusion of 5% of a fiber source increased and counts in the cecum ( < 0.001) but the to ratio was not affected. In Exp. 2 (dirty barn), fiber inclusion did not affect piglet performance but tended to increase PWD ( = 0.07). Also, fiber inclusion reduced ( < 0.05) the ATTD of all dietary components except that of CP, which was not affected. Source and level of fiber did not affect ATTD of nutrients except for DM, which was greater for pigs fed SBP than for pigs fed straw ( < 0.05). In conclusion, in the current

  12. Planting geometry to optimize growth and productivity in faba bean (Vicia faba L.) and soil fertility.

    PubMed

    Singh, A K; Bhatt, B P; Sundaram, P K; Gupta, A K; Singh, Deepak

    2013-01-01

    Faba bean (Vicia faba L.) responses to alteration of its ambient environment leads to certain modification in the crop phenology, yield attributes and economic yield. To know the extent and pattern of response by faba bean to alterations, a two year field experimentation was carried out with two crop establishment methods (i) flatbed planting (ii) raised bed planting, four planting geometry (i) 30 x 20 cm(ii) 30 x 30 cm (iii) 30 x 45 cm and (iv) 45X45cm and three seeding depth. All the treatment (two crop establishment methods, four planting geometry and three seeding depth) were combined together consisting twenty four treatments, were organized in factorial experiment in complete randomized block design (CRBD) with three replications. Data were recorded on growth and development; yield attributes and yield. Soil analysis was done and finally statistical tool were applied to come in to valid conclusion. Raised bed planting proves superior over flatbed in case of seed yield. Square planting architect with 30 cm apart prove better (3690.9 kg ha(-1)) than other tested planting geometry. Seeding at 10 cm depth showed, significant improvement in seed yield per plant and per ha over other two tested seeding depth. Phosphorus availability was significantly higher in raised bed planting (36.9 kg ha(-1)). However, available K (kg ha(-1)) was significantly influenced by planting geometry and seeding depth. It was maximum (155.2 kg ha(-1)) with 30 x 45 cm plant geometry, proved significantly higher than 30 x 20 cm and 30 x 30 cm and at par with 45 x 45 cm planting.

  13. Elemental Economy: microbial strategies for optimizing growth in the face of nutrient limitation

    PubMed Central

    Merchant, Sabeeha S.; Helmann, John D.

    2014-01-01

    Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility at fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental-sparing and elemental-recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels; including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. PMID:22633059

  14. Optimization of Growth Conditions for Purification and Production of L-Asparaginase by Spirulina maxima

    PubMed Central

    El Baroty, Gamal S.

    2016-01-01

    L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA from Spirulina maxima (SM) were tested. SM cultures grown in Zarrouk medium containing different N2 (in NaNO3 form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2 concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2 cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production in S. maxima. PMID:27525017

  15. Optimizing control of acromegaly: integrating a growth hormone receptor antagonist into the treatment algorithm.

    PubMed

    Clemmons, David R; Chihara, Kazuo; Freda, Pamela U; Ho, Ken K Y; Klibanski, Anne; Melmed, Shlomo; Shalet, Stephen M; Strasburger, Christian J; Trainer, Peter J; Thorner, Michael O

    2003-10-01

    Acromegaly is associated with significant morbidities and a 2- to 3-fold increase in mortality because of the excessive metabolic action of GH and IGF-I, a marker of GH output. Reductions in morbidity correspond with decreases in IGF-I, and mortality is lowered following normalization of IGF-I or GH levels. Therefore, this has become an important end point. Current guidelines for the treatment of acromegaly have not considered recent advances in medical therapy, in particular, the place of pegvisomant, a GH receptor antagonist. Treatment goals include normalizing biochemical markers, controlling tumor mass, preserving pituitary function, and relieving signs and symptoms. Surgery reduces tumor volume and is considered first-line therapy. Radiation reduces tumor volume and GH and IGF-I levels, but the onset of action is slow and hypopituitarism typically develops. Therefore, pharmacotherapy is often used following surgery or as first-line therapy for nonresectable tumors. Dopamine agonists can be considered in patients exhibiting minimal disease or those with GH-prolactin-cosecreting tumors but will not achieve hormone normalization in most patients. Somatostatin analogs effectively suppress GH and IGF-I in most patients, but intolerance (e.g. diarrhea, cramping, gallstones) can occur. Pegvisomant, the newest therapeutic option, blocks GH action at peripheral receptors, normalizes IGF-I levels, reduces signs and symptoms, and corrects metabolic defects. Pegvisomant does not appear to affect tumor size and has few adverse effects. Pegvisomant is the most effective drug treatment for acromegaly in normalizing IGF-I and producing a clinical response; it is the preferred agent in patients resistant to or intolerant of somatostatin analogs.

  16. Optimization of Growth Conditions for Purification and Production of L-Asparaginase by Spirulina maxima.

    PubMed

    Abd El Baky, Hanaa H; El Baroty, Gamal S

    2016-01-01

    L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA from Spirulina maxima (SM) were tested. SM cultures grown in Zarrouk medium containing different N2 (in NaNO3 form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2 concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2 cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production in S. maxima. PMID:27525017

  17. Purification optimization for a recombinant single-chain variable fragment against type 1 insulin-like growth factor receptor (IGF-1R) by using design of experiment (DoE).

    PubMed

    Song, Yong-Hong; Sun, Xue-Wen; Jiang, Bo; Liu, Ji-En; Su, Xian-Hui

    2015-12-01

    Design of experiment (DoE) is a statistics-based technique for experimental design that could overcome the shortcomings of traditional one-factor-at-a-time (OFAT) approach for protein purification optimization. In this study, a DoE approach was applied for optimizing purification of a recombinant single-chain variable fragment (scFv) against type 1 insulin-like growth factor receptor (IGF-1R) expressed in Escherichia coli. In first capture step using Capto L, a 2-level fractional factorial analysis and successively a central composite circumscribed (CCC) design were used to identify the optimal elution conditions. Two main effects, pH and trehalose, were identified, and high recovery (above 95%) and low aggregates ratio (below 10%) were achieved at the pH range from 2.9 to 3.0 with 32-35% (w/v) trehalose added. In the second step using cation exchange chromatography, an initial screening of media and elution pH and a following CCC design were performed, whereby the optimal selectivity of the scFv was obtained on Capto S at pH near 6.0, and the optimal conditions for fulfilling high DBC and purity were identified as pH range of 5.9-6.1 and loading conductivity range of 5-12.5 mS/cm. Upon a further gel filtration, the final purified scFv with a purity of 98% was obtained. Finally, the optimized conditions were verified by a 20-fold scale-up experiment. The purities and yields of intermediate and final products all fell within the regions predicted by DoE approach, suggesting the robustness of the optimized conditions. We proposed that the DoE approach described here is also applicable in production of other recombinant antibody constructs.

  18. Low high-density lipoprotein cholesterol is a residual risk factor associated with long-term clinical outcomes in diabetic patients with stable coronary artery disease who achieve optimal control of low-density lipoprotein cholesterol.

    PubMed

    Ogita, Manabu; Miyauchi, Katsumi; Miyazaki, Tadashi; Naito, Ryo; Konishi, Hirokazu; Tsuboi, Shuta; Dohi, Tomotaka; Kasai, Takatoshi; Yokoyama, Takayuki; Okazaki, Shinya; Kurata, Takeshi; Daida, Hiroyuki

    2014-01-01

    Diabetes mellitus is recognized an independent risk factor for coronary artery disease (CAD) and mortality. Clinical trials have shown that statins significantly reduce cardiovascular events in diabetic patients. However, residual cardiovascular risk persists despite the achievement of target low-density lipoprotein cholesterol (LDL-C) levels with statin. High-density lipoprotein cholesterol (HDL-C) is an established coronary risk factor that is independent of LDL-C levels. We evaluated the impact of HDL-C on long-term mortality in diabetic patients with stable CAD who achieved optimal LDL-C. We enrolled 438 consecutive diabetic patients who were scheduled for percutaneous coronary intervention between 2004 and 2007 at our institution. We identified 165 patients who achieved target LDL-C <100 mg/dl. Patients were stratified into two groups according to HDL-C levels (low HDL-C group, baseline HDL-C <40 mg/dl; high HDL-C group, ≥40 mg/dl). Major adverse cardiac events (MACE) that included all-cause death, acute coronary syndrome, and target lesion revascularization were evaluated between the two groups. The median follow-up period was 946 days. The rate of MACE was significantly higher in diabetic patients with low-HDL-C who achieved optimal LDL-C (6.9 vs 17.9 %, log-rank P = 0.030). Multivariate Cox regression analysis showed that HDL-C is significantly associated with clinical outcomes (adjusted hazard ratio for MACE 1.33, 95 % confidence interval 1.01-1.75, P = 0.042). Low HDL-C is a residual risk factor that is significantly associated with long-term clinical outcomes among diabetic patients with stable CAD who achieve optimal LDL-C levels.

  19. Use of Lipid-Lowering Medications and the Likelihood of Achieving Optimal LDL-Cholesterol Goals in Coronary Artery Disease Patients.

    PubMed

    Karalis, Dean G; Victor, Brett; Ahedor, Lilian; Liu, Longjian

    2012-01-01

    Background. In clinical practice, most coronary artery disease patients are not achieving their recommend LDL-cholesterol goal of <70 mg/dL. Methods. We conducted a retrospective analysis of outpatient electronic health records and the most recent lipid profile, lipid-lowering medications and doses were collected. Results. We identified 9950 coronary artery disease patients. Only 37% on a statin alone achieved an LDL-cholesterol of <70 mg/dL, and most were on moderate-to-high-potency statins. The intensity of statin therapy did not improve LDL-cholesterol goal attainment. Among patients on combination therapy, 41% on statin plus ezetimibe and 46% on statin plus niacin achieved an LDL-cholesterol of <70 mg/dL (P = 0.01 and <0.0001 versus statin alone). If patients were switched to a high-potency statin LDL-cholesterol goal attainment of <70 mg/dL would increase to 46% and would increase up to 72% with combination therapy. Conclusions. Most coronary artery disease patients in clinical practice do not attain an LDL-cholesterol of <70 mg/dL, even among patients on high potency statins. The combination of statin plus either ezetimibe or niacin is the most effective regimen to achieve an LDL-cholesterol of <70 mg/dL, however, these drug combinations are used infrequently in clinical practice.

  20. Effect of Optimal Daily Fertigation on Migration of Water and Salt in Soil, Root Growth and Fruit Yield of Cucumber (Cucumis sativus L.) in Solar-Greenhouse

    PubMed Central

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (P<0.05) increased the partial factor productivity of applied nitrogen by 88% and 209% in the early-spring and autumn-winter seasons, respectively, when compared to conventional interval fertigation. Although soils under the treatments optimal interval fertigation and optimal daily fertigation received the same amount of fertilizers, the treatment optimal daily fertigation maintained the relatively stable water, electrical conductivity and mineral nitrogen levels in surface soils, promoted fine root (<1.5 mm diameter) growth of cucumber, and eventually increased cucumber economic yield by 6.2% and 8.3% and partial factor productivity of applied nitrogen by 55% and 75% in the early-spring and autumn-winter seasons, respectively, when compared to the treatment optimal interval fertigation. These results suggested that optimal daily fertigation is a beneficial practice for improving crop yield and

  1. Effect of optimal daily fertigation on migration of water and salt in soil, root growth and fruit yield of cucumber (Cucumis sativus L.) in solar-greenhouse.

    PubMed

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (P<0.05) increased the partial factor productivity of applied nitrogen by 88% and 209% in the early-spring and autumn-winter seasons, respectively, when compared to conventional interval fertigation. Although soils under the treatments optimal interval fertigation and optimal daily fertigation received the same amount of fertilizers, the treatment optimal daily fertigation maintained the relatively stable water, electrical conductivity and mineral nitrogen levels in surface soils, promoted fine root (<1.5 mm diameter) growth of cucumber, and eventually increased cucumber economic yield by 6.2% and 8.3% and partial factor productivity of applied nitrogen by 55% and 75% in the early-spring and autumn-winter seasons, respectively, when compared to the treatment optimal interval fertigation. These results suggested that optimal daily fertigation is a beneficial practice for improving crop yield and

  2. Effect of optimal daily fertigation on migration of water and salt in soil, root growth and fruit yield of cucumber (Cucumis sativus L.) in solar-greenhouse.

    PubMed

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (P<0.05) increased the partial factor productivity of applied nitrogen by 88% and 209% in the early-spring and autumn-winter seasons, respectively, when compared to conventional interval fertigation. Although soils under the treatments optimal interval fertigation and optimal daily fertigation received the same amount of fertilizers, the treatment optimal daily fertigation maintained the relatively stable water, electrical conductivity and mineral nitrogen levels in surface soils, promoted fine root (<1.5 mm diameter) growth of cucumber, and eventually increased cucumber economic yield by 6.2% and 8.3% and partial factor productivity of applied nitrogen by 55% and 75% in the early-spring and autumn-winter seasons, respectively, when compared to the treatment optimal interval fertigation. These results suggested that optimal daily fertigation is a beneficial practice for improving crop yield and

  3. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model

    PubMed Central

    Brisbois, Elizabeth J.; Bayliss, Jill; Wu, Jianfeng; Major, Terry C.; Xi, Chuanwu; Wang, Stewart C.; Bartlett, Robert H.; Handa, Hitesh; Meyerhoff, Mark E.

    2014-01-01

    Nitric oxide (NO) has many biological roles (e.g., antimicrobial agent, promoter of angiogenesis, prevention of platelet activation, etc.) that make NO releasing materials desirable for a variety of biomedical applications. Localized NO release can be achieved from biomedical grade polymers doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) and poly(lactic-co-glycolic acid) (PLGA). In this study, the optimization of this chemistry to create film/patches that can be used to decrease microbial infection at wound sites is examined. Two polyurethanes with different water uptakes (Tecoflex SG-80A (6.2 ± 0.7 wt %) and Tecophillic SP-60D-20 (22.5 ± 1.1 wt%)) were doped with 25 wt% DBHD/N2O2 and 10 wt% of PLGA with various hydrolysis rates. Films prepared with the polymer that has the higher water uptake (SP-60D-20) were found to have higher NO release and for a longer duration than the polyurethane with lower water uptake (SG-80A). The more hydrophilic polymer enhances the hydrolysis rate of the PLGA additive, thereby providing a more acidic environment that increases the rate of NO release from the NO donor. The optimal NO releasing and control SG-80A patches were then applied to scald burn wounds that were infected with Acinetobacter baumannii. The NO released from these patches applied to the wounds is shown to significantly reduce the A. baumannii infection after 24 h (~4 log reduction). The NO release patches are also able to reduce the TGF-β levels, in comparison to controls, which can enhance reepithelialization, decrease scarring, and reduce migration of bacteria. The combined DBHD/N2O2 and PLGA-doped polymer patches, which could be replaced periodically throughout the wound healing process, demonstrate the potential to reduce risk of bacterial infection and promote the overall wound healing process. PMID:24980058

  4. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    SciTech Connect

    Shibuya, Keisuke Sawa, Akihito

    2015-10-15

    We systematically examined the effects of the substrate temperature (T{sub S}) and the oxygen pressure (P{sub O2}) on the structural and optical properties polycrystalline V O{sub 2} films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O{sub 2} phase was formed at a T{sub S} ≥ 450 °C at P{sub O2} values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O{sub 2} films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O{sub 2} on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O{sub 2} films grown at a T{sub S} of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the T{sub S} and P{sub O2}, and was maximal for a V O{sub 2} film grown at 450 °C under 20 mTorr. Based on the results, we derived the P{sub O2} versus 1/T{sub S} phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O{sub 2} films on silicon platforms.

  5. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  6. The Effects of Middle School Bullying and Victimization on Adjustment through High School: Growth Modeling of Achievement, School Attendance, and Disciplinary Trajectories

    ERIC Educational Resources Information Center

    Feldman, Marissa A.; Ojanen, Tiina; Gesten, Ellis L.; Smith-Schrandt, Heather; Brannick, Michael; Wienke Totura, Christine M.; Alexander, Lizette; Scanga, David; Brown, Ken

    2014-01-01

    The current 5-year longitudinal study examined the effects of middle school bullying and victimization on adolescent academic achievement, disciplinary referrals, and school attendance through high school (N = 2030; 1016 both boys and girls). Greater engagement in bullying behaviors was concurrently associated with lower achievement and school…

  7. Fatty acid as structure directing agent for controlled secondary growth of CoFe2O4 nanoparticles to achieve mesoscale assemblies: A facile approach for developing hierarchical structures

    NASA Astrophysics Data System (ADS)

    Saikia, K.; Kaushik, S. D.; Sen, D.; Mazumder, S.; Deb, P.

    2016-08-01

    Mesoscale hierarchical assemblies have emerged out as a new class of structures between fine dimension nanoparticles and bulk structures, having distinctly different physical properties from either side. Controlling the self-assembly process of primary nanoparticles and subsequent secondary growth mechanism is the key aspect for achieving such ordered structures. In this work, we introduce a new insight on achieving hierarchical assemblies of CoFe2O4 nanoparticles based on the temporal stability of the primary nanoparticles, where, the growth and stability of the primary particles are controlled by using oleic acid. It is found that the developed particles, at a critical concentration of oleic acid, prefer a secondary growth process, rather than promoting their individual growth. Domination of the attractive hydrophobic interaction over steric repulsion among the primary particles at this critical concentration of oleic acid is found to be the key factor for the initial aggregation of the primary particles, which eventually leads to the formation of spherical hierarchical assemblies via oriented attachment. It is also realized that the extremely well or poor stability conditions of the primary particles do not allow this secondary growth process. Estimated values of Co2+ distribution factor show that the cation distribution factor of CoFe2O4 system is not affected by the nature of dominant growth processes, when these are controlled. Interestingly, magnetic measurements reflect the stronger interparticle interaction in the hierarchical system and high magnetic moment values at low magnetic field.

  8. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    PubMed Central

    Cabeza, Ricardo A.; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  9. The activity of nodules of the supernodulating mutant Mtsunn is not limited by photosynthesis under optimal growth conditions.

    PubMed

    Cabeza, Ricardo A; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-04-10

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants.

  10. Optimal conditions for freezing CHO-S and HEK293-EBNA cell lines: influence of Me2SO, freeze density, and PEI-mediated transfection on revitalization and growth of cells, and expression of recombinant protein.

    PubMed

    Kleman, Marika I; Oellers, Kerstin; Lullau, Elke

    2008-08-01

    To avoid the time consuming, labor intensive seed-train expansion and to improve production reliability and consistency, portions of bulk cryopreserved cells from the same cultivation can be utilized as inocula or alternatively may be used to undertake transient transfections for large-scale bioreactor production. In this study, the conditions for large-scale freezing in cryobags were optimized utilizing a design of experiment approach. We showed that relatively high density of 30-40 x 10(6) cells/mL and relatively low Me(2)SO concentrations of 5-6% in the freezing media are optimal to freeze HEK293-EBNA and CHO-S cells in a controlled manner in order to achieve high viable cell recovery and growth post-thawing. The immediate transfer of freshly thawed cells into culture medium resulted in better cell growth compared to cells that were centrifuged in order to remove Me(2)SO. This was the case as long as the residual Me(2)SO did not exceed 0.2-0.3%. The best time to perform transient 25 kDa polyethylenimine-mediated transfection of pCEP4-EGFP plasmid into freshly thawed, one-step inoculated cells is after 72-96 h in culture. At this time point, the numbers of EGFP-positive cells in the freshly thawed culture mimic perfectly that of cells grown continuously. Finally, our data showed that it is possible to freeze transiently polyethyleneimine-transfected HEK293-EBNA cells and maintain growth rate and expression of recombinant protein following thawing. The optimal time point for freezing cells was 4 h after transfection.

  11. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1.

    PubMed

    Nasri Nasrabadi, Mohammad Reza; Razavi, Seyed Hadi

    2010-04-01

    In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM.

  12. Slow release of growth factors and thrombospondin-1 in Choukroun's platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies.

    PubMed

    Dohan Ehrenfest, David M; de Peppo, Giuseppe M; Doglioli, Pierre; Sammartino, Gilberto

    2009-02-01

    Platelet concentrates for surgical topical applications are nowadays often used, but quantification of the long-term growth factor release from these preparations in most cases is impossible. Indeed, in most protocols, platelets are massively activated and there is no significant fibrin matrix to support growth factor release and cell migration. Choukroun's platelet-rich fibrin (PRF), a second generation platelet concentrate, is a leucocyte- and platelet-rich fibrin biomaterial. Here, we show that this dense fibrin membrane releases high quantities of three main growth factors (Transforming Growth Factor b-1 (TGFbeta-1), platelet derived growth factor AB, PDGF-AB; vascular endothelial growth factor, VEGF) and an important coagulation matricellular glycoprotein (thrombospondin-1, TSP-1) during 7 days. Moreover, the comparison between the final released amounts and the initial content of the membrane (after forcible extraction) allows us to consider that the leucocytes trapped in the fibrin matrix continue to produce high quantities of TGFbeta-1 and VEGF during the whole experimental time.

  13. Optical and crystal quality improvement in green emitting InxGa1-xN multi-quantum wells through optimization of MOCVD growth

    NASA Astrophysics Data System (ADS)

    Berkman, Erkan A.; Lee, Soo Min; Ramos, Frank; Tucker, Eric; Arif, Ronald A.; Armour, Eric A.; Papasouliotis, George D.

    2016-02-01

    We report on green-emitting In0.18Ga0.82N/GaN multi-quantum well (MQW) structures over a variety of metalorganic chemical vapor deposition (MOCVD) growth conditions to examine the morphology, optical quality, and micron-scale emission properties. The MOCVD growth parameter space was analyzed utilizing two orthogonal metrics which allows comparing and optimizing growth conditions over a wide range of process parameters: effective gas speed, S*, and effective V/III ratio, V/III*. Optimized growth conditions with high V/III, low gas speed, and slow growth rates resulted in improved crystal quality, PL emission efficiency, and micron-scale wavelength uniformity. One of the main challenges in green MQWs with high Indium content is the formation of Indium inclusion type defects due to the large lattice mismatch combined with the miscibility gap between GaN and InN. An effective way of eliminating Indium inclusions was demonstrated by introducing a small fraction of H2 (2.7%) in the gas composition during the growth of high temperature GaN quantum barriers. In addition, the positive effects of employing an InGaN/GaN superlattice (SL) underlayer to crystal quality and micron-scale emission uniformity was demonstrated, which is of special interest for applications such as micro-LEDs.

  14. The content of African diets is adequate to achieve optimal efficacy with fixed-dose artemether-lumefantrine: a review of the evidence.

    PubMed

    Premji, Zulfiqarali G; Abdulla, Salim; Ogutu, Bernhards; Ndong, Alice; Falade, Catherine O; Sagara, Issaka; Mulure, Nathan; Nwaiwu, Obiyo; Kokwaro, Gilbert

    2008-01-01

    A fixed-dose combination of artemether-lumefantrine (AL, Coartem(R)) has shown high efficacy, good tolerability and cost-effectiveness in adults and children with uncomplicated malaria caused by Plasmodium falciparum. Lumefantrine bioavailability is enhanced by food, particularly fat.As the fat content of sub-Saharan African meals is approximately a third that of Western countries, it raises the question of whether fat consumption by African patients is sufficient for good efficacy. Data from healthy volunteers have indicated that drinking 36 mL soya milk (containing only 1.2 g of fat) results in 90% of the lumefantrine absorption obtained with 500 mL milk (16 g fat). African diets are typically based on a carbohydrate staple (starchy root vegetables, fruit [plantain] or cereals) supplemented by soups, relishes and sauces derived from vegetables, pulses, nuts or fish. The most important sources of dietary fat in African countries are oil crops (e.g. peanuts, soya beans) and cooking oils as red palm, peanut, coconut and sesame oils. Total fat intake in the majority of subSaharan countries is estimated to be in the range 30-60 g/person/day across the whole population (average 43 g/person/day). Breast-feeding of infants up to two years of age is standard, with one study estimating a fat intake of 15-30 g fat/day from breast milk up to the age of 18 months. Weaning foods typically contain low levels of fat, and the transition from breast milk to complete weaning is associated with a marked reduction in dietary fat. Nevertheless, fat intake >10 g/day has been reported in young children post-weaning. A randomized trial in Uganda reported no difference in the efficacy of AL between patients receiving supervised meals with a fixed fat content (~23 g fat) or taking AL unsupervised, suggesting that fat intake at home was sufficient for optimal efficacy. Moreover, randomized trials in African children aged 5-59 months have shown similar high cure rates to those observed in

  15. The content of African diets is adequate to achieve optimal efficacy with fixed-dose artemether-lumefantrine: a review of the evidence

    PubMed Central

    Premji, Zulfiqarali G; Abdulla, Salim; Ogutu, Bernhards; Ndong, Alice; Falade, Catherine O; Sagara, Issaka; Mulure, Nathan; Nwaiwu, Obiyo; Kokwaro, Gilbert

    2008-01-01

    A fixed-dose combination of artemether-lumefantrine (AL, Coartem®) has shown high efficacy, good tolerability and cost-effectiveness in adults and children with uncomplicated malaria caused by Plasmodium falciparum. Lumefantrine bioavailability is enhanced by food, particularly fat. As the fat content of sub-Saharan African meals is approximately a third that of Western countries, it raises the question of whether fat consumption by African patients is sufficient for good efficacy. Data from healthy volunteers have indicated that drinking 36 mL soya milk (containing only 1.2 g of fat) results in 90% of the lumefantrine absorption obtained with 500 mL milk (16 g fat). African diets are typically based on a carbohydrate staple (starchy root vegetables, fruit [plantain] or cereals) supplemented by soups, relishes and sauces derived from vegetables, pulses, nuts or fish. The most important sources of dietary fat in African countries are oil crops (e.g. peanuts, soya beans) and cooking oils as red palm, peanut, coconut and sesame oils. Total fat intake in the majority of subSaharan countries is estimated to be in the range 30–60 g/person/day across the whole population (average 43 g/person/day). Breast-feeding of infants up to two years of age is standard, with one study estimating a fat intake of 15–30 g fat/day from breast milk up to the age of 18 months. Weaning foods typically contain low levels of fat, and the transition from breast milk to complete weaning is associated with a marked reduction in dietary fat. Nevertheless, fat intake >10 g/day has been reported in young children post-weaning. A randomized trial in Uganda reported no difference in the efficacy of AL between patients receiving supervised meals with a fixed fat content (~23 g fat) or taking AL unsupervised, suggesting that fat intake at home was sufficient for optimal efficacy. Moreover, randomized trials in African children aged 5–59 months have shown similar high cure rates to those observed

  16. Nutrition and Growth in Cystic Fibrosis.

    PubMed

    Lusman, Sarah; Sullivan, Jillian

    2016-08-01

    Close attention to nutrition and growth is essential in caring for children with cystic fibrosis (CF). Growth and nutritional status should be monitored as part of routine CF care. Children with CF should achieve growth and nutritional status comparable with that of well-nourished children without CF. Children with CF are at risk for nutritional deficiencies. Optimal nutritional and growth status may be difficult to attain in this population given risk of insufficient caloric intake and likelihood of increased caloric expenditure. Various methods to attain optimal nutritional status may be used, including oral supplementation, behavioral treatment, pharmacotherapy, and enteral nutrition. PMID:27469181

  17. A non-cold-inducible cold shock protein homolog mainly contributes to translational control under optimal growth conditions.

    PubMed

    Tanaka, Toshiko; Mega, Ryosuke; Kim, Kwang; Shinkai, Akeo; Masui, Ryoji; Kuramitsu, Seiki; Nakagawa, Noriko

    2012-03-01

    Cold shock proteins (Csps) include both cold-induced and non-cold-induced proteins, contrary to their name. Cold-induced Csps are well studied; they function in cold acclimation by controlling transcription and translation. Some Csps have been reported to contribute to other cellular processes. However, the functions of non-cold-induced Csps under optimal growth conditions remain unknown. To elucidate these functions, we used transcriptome and proteome analyses as comprehensive approaches and have compared the outputs of wild-type and non-cold-induced Csp-deletion mutant cells. As a model organism, we selected Thermus thermophilus HB8 because it has only two csp genes (ttcsp1 and ttcsp2); ttCsp1 is the only non-cold-induced Csp. Surprisingly, the amount of transcripts and proteins upon deletion of the ttcsp1 gene was quite different. DNA microarray analysis revealed that the deletion of ttcsp1 did not affect the amount of transcripts, although the ttcsp1 gene was constantly expressed in the wild-type cell. Nonetheless, proteomic analysis revealed that the expression levels of many proteins were significantly altered when ttcsp1 was deleted. These results suggest that ttCsp1 functions in translation independent of transcription. Furthermore, ttCsp1 is involved in both the stimulation and inhibition of translation of specific proteins. Here, we have determined the crystal structure of ttCsp1 at 1.65 Å. This is the first report to present the structure of a non-cold-inducible cold shock protein. We also report the nucleotide binding affinity of ttCsp1. Finally, we discuss the functions of non-cold-induced Csps and propose how they modulate the levels of specific proteins to suit the prevailing environmental conditions.

  18. Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities, Part II - A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix

    SciTech Connect

    Knupp, P.M.

    1999-03-26

    Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.

  19. Family and Contextual Socioeconomic Effects across Seasons: When Do They Matter for the Achievement Growth of Young Children? WCER Working Paper No. 2007-5, August 2007

    ERIC Educational Resources Information Center

    Benson, James G.; Borman, Geoffrey D.

    2007-01-01

    Researchers have disagreed about the extent to which differences in achievement based on socioeconomic status (SES) accumulate during the school year as compared to the summer, and the literature has not fully assessed the contributions of social contexts--in the form of both school and neighborhood poverty concentration and racial and ethnic…

  20. 1 + 1 Is Not Always 2: Variation in the Relations between Mathematics Self-Efficacy Development and Longitudinal Mathematics Achievement Growth

    ERIC Educational Resources Information Center

    Shanley, Lina

    2015-01-01

    Preparing every student to be college and career ready by the time they graduate from high school has become a national policy priority. Although a variety of academic skills are required for postsecondary success, mathematics achievement is a particularly influential factor in college and career readiness (Pellegrino & Hilton, 2012). Research…

  1. The Economic Benefits of Closing Educational Achievement Gaps: Promoting Growth and Strengthening the Nation by Improving the Educational Outcomes of Children of Color

    ERIC Educational Resources Information Center

    Lynch, Robert G.; Oakford, Patrick

    2014-01-01

    Our nation is currently experiencing growing levels of income and wealth inequality, which are contributing to longstanding racial and ethnic gaps in education outcomes and other areas. This report quantifies the economic benefits of closing one of the most harmful racial and ethnic gaps: the educational achievement gap that exists between black…

  2. The Relationship of Leadership Styles, Gender and Years of Experience of Middle School Principals in North Carolina on Achievement and Growth Trends on the End of Grade Exams

    ERIC Educational Resources Information Center

    Brooks, Morris, Jr.

    2009-01-01

    Leadership is an ever changing process and principals play a key role in the instructional focus of a school which often times created success in instruction (Riordan, 2003). Principals face different challenges today while improving schools and student academic achievement. The perceptions of an effective school leader has changed over the years…

  3. Linking Student Achievement Growth to Professional Development Participation and Changes in Instruction: A Longitudinal Study of Elementary Students and Teachers in Title I Schools

    ERIC Educational Resources Information Center

    Desimone, Laura; Smith, Thomas M.; Phillips, Kristie J. R.

    2013-01-01

    Background/Context: Most reforms in elementary education rely on teacher learning and improved instruction to increase student learning. This study increases our understanding of which types of professional development effectively change teaching practice in ways that boost student achievement. Purpose/Objective/Research Question/Focus of Study:…

  4. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin.

    PubMed

    Lindström, M; Mokkila, M; Skyttä, E; Hyytiä-Trees, E; Lähteenmäki, L; Hielm, S; Ahvenainen, R; Korkeala, H

    2001-06-01

    The safety of refrigerated processed foods of extended durability (REPFEDs) with respect to nonproteolytic Clostridium botulinum is under continuous evaluation. In the present study, mild (P7.0(85.0) values 0 to 2 min [P, pasteurization value; z-value 7.0 degrees C; reference temperature 85.0 degrees C]) and increased (P7.0(85.0) values 67 to 515 min) heat treatments were evaluated in relation to survival of nonproteolytic C. botulinum type B spores in sous vide processed ground beef and pork cubes. The use of two concentrations of nisin in inhibition of growth and toxin production by nonproteolytic C. botulinum in the same products was also evaluated. A total of 96 samples were heat processed and analyzed for C. botulinum by BoNT/B gene-specific polmerase chain reaction and for botulinum toxin by a mouse bioassay after storage of 14 to 28 days at 4 and 8 degrees C. Predictably, after mild processing all samples of both products showed botulinal growth, and one ground beef sample became toxic at 8 degrees C. The increased heat processing, equivalent to 67 min at 85 degrees C. resulted in growth but not toxin production of C. botulinum in one ground beef sample in 21 days at 8 degrees C: in the pork cube samples no growth was detected. The increased heating of both products resulted in higher sensory quality than the milder heat treatment. Nisin did not inhibit the growth of nonproteolytic C. botulinum in either product; growth was detected in both products at 4 and 8 degrees C, and ground beef became toxic with all nisin levels within 21 to 28 days at 8 degrees C. Aerobic and lactic acid bacterial counts were reduced by the addition of nisin at 4 degrees C. The study demonstrates that the mild processing temperatures commonly employed in sous vide technology do not eliminate nonproteolytic C. botulinum type B spores. The intensity of each heat treatment needs to be carefully evaluated individually for each product to ensure product safety in relation to

  5. Enhanced heteroepitaxial growth of CoCrPt-SiO{sub 2} perpendicular magnetic recording media on optimized Ru intermediate layers

    SciTech Connect

    Srinivasan, Kumar; Piramanayagam, S. N.

    2008-01-15

    The crystallographic growth, interfacial roughness, and magnetic properties of CoCrPt-SiO{sub 2} perpendicular magnetic recording media prepared on various types of Ru intermediate growth layers were systematically investigated based on high angle and omega offset x-ray diffraction scans, rocking curve scans, synchrotron radiation based grazing incidence reflectivity scans, and magneto-optical Kerr hysteresis loops. For samples that make use of one Ru growth layer, voltage bias applied on the Ru layer was seen to have two observable effects: (1) the dispersion in the Ru(00{center_dot}2) perpendicular texture increased, but that of the Co(00{center_dot}2) remained unchanged, leading to identical layered growth and (2) the in-plane a-lattice parameter of the Ru decreased leading to enhanced heteroepitaxy with the Co. There was no significant change in the Ru-Co interfacial roughness with changing the bias on the Ru layer. The bias effect can be used to optimize the design of the Ru intermediate layers. A scheme that makes use of two Ru growth layers consisting of a bottom Ru layer prepared under zero bias, which is inserted below a second Ru layer prepared under biased conditions, is shown to lead to significant benefits such as improved texture without affecting the magnetic properties. This is due to the different functional roles ascribed to each of the Ru growth layers.

  6. Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides

    PubMed Central

    Thakur, Chandar S.; Brown, Margaret E.; Sama, Jacob N.; Jackson, Melantha E.

    2010-01-01

    Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtaining labeled nucleotides is to harvest these nucleotides from bacteria grown in defined minimal media supplemented with 15NH4Cl and various carbon sources. Given the high cost of carbon precursors required for labeling nucleic acids for NMR studies, it becomes important to evaluate the optimal growth for commonly used strains under standard minimal media conditions. Such information is lacking. In this study, we characterize the growth for Escherichia coli strains K12, K10zwf, and DL323 in three minimal media with isotopic-labeled carbon sources of acetate, glycerol, and glycerol combined with formate. Of the three media, the LeMaster-Richards and the Studier media outperform the commonly used M9 media and both support optimal growth of E. coli for the production of nucleotides. However, the growth of all three E. coli strains in acetate is reduced almost twofold compared to growth in glycerol. Analysis of the metabolic pathway and previous gene array studies help to explain this differential growth in glycerol and acetate. These studies should benefit efforts to make selective 13C-15N isotopic-labeled nucleotides for synthesizing biologically important RNAs. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2813-y) contains supplementary material, which is available to authorized users. PMID:20730533

  7. Achieving optimal SERS through enhanced experimental design

    PubMed Central

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J.

    2016-01-01

    One of the current limitations surrounding surface‐enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal‐based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd. PMID:27587905

  8. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  9. [Soil dryness characteristics of alfalfa cropland and optimal growth years of alfalfa on the Loess Plateau of central Gansu, China].

    PubMed

    Luo, Zhu-zhu; Li, Ling-ling; Niu, Yi-ning; Cai, Li-qun; Zhang, Ren-zhi; Xie, Jun-hong

    2015-10-01

    This paper investigated soil moisture in alfalfa (Medicago sativa) cropland with different growth years (1, 3, 8, 12 and 14 years) and discussed the optimum growth years of alfalfa on the Loess Plateau of central Gansu. The results showed that the soil moisture along 0-300 cm soil profile of alfalfa croplands with different growth years was obviously lower than that of the local soil stable moisture. The soil water contents in croplands with alfalfa that had grown for 12 and 14 years were only 9.2% and 7.1% of local soil stable moisture, respectively, which were even lower than the lower limit of alfalfa growth. The average soil dryness indexes along 0-300 cm soil profile in 1, 3, 8, 12 and 14 years alfalfa croplands were 125.4%, 30.5%, 18.4%, -34.2% and -83.3% respectively. The results indicated that soil dryness occurred to varying degrees with different growth years except croplands with alfalfa grown for 1 year. With the increase of growth years of alfalfa, the soil dryness intensity increased and the soil dryness rate decreased. According to the soil moisture and alfalfa productivity results in this study, it could be concluded that the optimum growth years of alfalfa are 8-10 years in semiarid areas of the Loess Plateau.

  10. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    PubMed Central

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  11. Achieving scale strategies for sustained competitive performance.

    PubMed

    Grube, Mark E; Gish, Ryan S; Tkach, Sasha N

    2008-05-01

    Growth to achieve scale requires the following strategic initiatives: Having a clear understanding of what the organization is and what it wants to become. Ensuring a structured and rigorous growth process. Leveraging size to achieve benefits of scale. Recognizing the importance of physicians, ambulatory care, and primary care. Establishing and maintaining accountability as growth occurs.

  12. Growth parameter optimization and interface treatment for enhanced electron mobility in heavily strained GaInAs/AlInAs high electron mobility transistor structures

    SciTech Connect

    Fedoryshyn, Yuriy; Ostinelli, Olivier; Alt, Andreas; Pallin, Angel; Bolognesi, Colombo R.

    2014-01-28

    The optimization of heavily strained Ga{sub 0.25}In{sub 0.75}As/Al{sub 0.48}In{sub 0.52}As high electron mobility transistor structures is discussed in detail. The growth parameters and the channel layer interfaces were optimized in order to maximize the mobility of the two-dimensional electron gas. Structures composed of an 11 nm thick channel layer and a 4 nm thick spacer layer exhibited electron mobilities as high as 15 100 cm{sup 2}/Vs and 70 000 cm{sup 2}/Vs at 300 and 77 K, respectively, for channels including InAs strained layers. The sheet carrier density was kept above 2.5 × 10{sup 12} cm{sup −2} throughout the entire study.

  13. Acclimation dynamics and sub-optimality in carbon allocation for C3 and C4 plants subject to growth under elevated CO2

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Kumar, P.

    2012-12-01

    with respect to maximizing end of season seed biomass. Furthermore, when comparing observed carbon allocation patterns with the optimality results under elevated CO2 growing conditions, the extent of sub-optimality is amplified in C3 plant species. Experimental manipulations of plant carbon allocation patterns guided by model results confirm this sub-optimal effect. Our results demonstrate that allometric relationships cannot be used to model carbon allocation and growth of C3 plants under acclimation due to elevated CO2. The observed sub-optimality in ambient CO2 conditions and the increased sub-optimality under elevated CO2 conditions indicate that a teleonomic approach might be incomplete in capturing acclimation aspects of plant growth. We hypothesize that the observed sub-optimality is caused by a resilience constraint whereby plants device a carbon allocation strategy that maximizes end of season seed yield subject to variability in climate forcing. Since, the teleonomic approach provides the necessary degrees of freedom to capture changes in allometric relationships we suggest that incorporating a suitable resilience constraint within the optimality framework can explain the observed sub-optimal behavior.

  14. Risk assessment of the use of sub-optimal levels of weak-acid preservatives in the control of mould growth on bakery products.

    PubMed

    Marín, S; Guynot, M E; Neira, P; Bernadó, M; Sanchis, V; Ramos, A J

    2002-12-15

    The hurdle technology approach was used to prevent fungal growth of common contaminants of bakery products including isolates belonging to the genera Eurotium, Aspergillus and Penicillium. Several levels (0.003%, 0.03% and 0.3%) of calcium propionate, potassium sorbate and sodium benzoate were assayed on a model agar system in a full-factorial experimental design in which the other factors assayed were pH (4.5, 6 and 7.5) and a(w) (0.80, 085, 0.90 and 0.95). Potassium sorbate was found to be the more suitable preservative to be used in combination with the common levels of pH and a(w) in Spanish bakery products. Sub-optimal concentrations (0.003% and sometimes 0.03%) led to an enhancement of fungal growth. None of the preservatives had a significant inhibitory effect at neutral pH.

  15. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor

    PubMed Central

    Zhou, Hui; Vonk, Brenda; Roubos, Johannes A.; Bovenberg, Roel A.L.; Voigt, Christopher A.

    2015-01-01

    Optimizing bio-production involves strain and process improvements performed as discrete steps. However, environment impacts genotype and a strain that is optimal under one set of conditions may not be under different conditions. We present a methodology to simultaneously vary genetic and process factors, so that both can be guided by design of experiments (DOE). Advances in DNA assembly and gene insulation facilitate this approach by accelerating multi-gene pathway construction and the statistical interpretation of screening data. This is applied to a 6-aminocaproic acid (6-ACA) pathway in Escherichia coli consisting of six heterologous enzymes. A 32-member fraction factorial library is designed that simultaneously perturbs expression and media composition. This is compared to a 64-member full factorial library just varying expression (0.64 Mb of DNA assembly). Statistical analysis of the screening data from these libraries leads to different predictions as to whether the expression of enzymes needs to increase or decrease. Therefore, if genotype and media were varied separately this would lead to a suboptimal combination. This is applied to the design of a strain and media composition that increases 6-ACA from 9 to 48 mg/l in a single optimization step. This work introduces a generalizable platform to co-optimize genetic and non-genetic factors. PMID:26519464

  16. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics.

    PubMed

    Williams, Sarah L; Kirisits, Mary Jo; Ferron, Raissa Douglas

    2016-04-01

    Microbial-induced calcium carbonate precipitation has been identified as a novel method to improve durability and remediate cracks in concrete. One way to introduce microorganisms to concrete is by replacing the mixing water with a bacterial culture in nutrient medium. In the literature, yeast extract often has been used as a carbon source for this application; however, severe retardation of hydration kinetics has been observed when yeast extract is added to cement. This study investigates the suitability of alternative carbon sources to replace yeast extract for microbial-induced calcium carbonate precipitation in cement-based materials. A combination of meat extract and sodium acetate was identified as a suitable replacement in growth medium for Sporosarcina pasteurii; this alternative growth medium reduced retardation by 75 % (as compared to yeast extract) without compromising bacterial growth, urea hydrolysis, cell zeta potential, and ability to promote calcium carbonate formation.

  17. Osmoregulated Periplasmic Glucans (OPGs) of Salmonella enterica serovars Typhimurium are needed for optimal growth under nutrient limiting- hypoosmotic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of gram negative bacteria. Synthesis of OPGs is regulated by the osmolarity of the growth medium. The role of OPGs has been postulated in plant-symbiotic as well as pathogenic microorganisms. On the other hand, opg mutant...

  18. Optimal deposition conditions of TiN barrier layers for the growth of vertically aligned carbon nanotubes onto metallic substrates

    NASA Astrophysics Data System (ADS)

    García-Céspedes, J.; Álvarez-García, J.; Zhang, X.; Hampshire, J.; Bertran, E.

    2009-05-01

    Plasma enhanced chemical deposition (PECVD) has proven over the years to be the preferred method for the growth of vertically aligned carbon nanotubes and nanofibres (VACNTs and VACNFs, respectively). In particular, carbon nanotubes (CNTs) grown on metallic surfaces present a great potential for high power applications, including low resistance electrical contacts, high power switches, electron guns or supercapacitors. Nevertheless, the deposition of CNTs onto metallic substrates is challenging, due to the intrinsic incompatibility between such substrates and the metallic precursor layers required to promote the growth of CNTs. In particular, the formation of CNT films is assisted by the presence of a nanometric (10-100 nm) monolayer of catalyst clusters, which act as nucleation sites for CNTs. The nanometric character of the precursor layer, together with the high growth temperature involved during the PECVD process (~700 °C), strongly favours the in-diffusion of the catalyst nanoclusters into the bulk of the metallic substrate, which results in a dramatic reduction in the nucleation of CNTs. In order to overcome this problem, it is necessary to coat the metallic substrate with a diffusion barrier layer, prior to the growth of the catalyst precursor. Unlike other conventional ceramic barrier layers, TiN provides high electrical conductivity, thus being a promising candidate for use as barrier material in applications involving low resistance contacts. In this work we investigate the anti-diffusion properties of TiN sputtered coatings and its potential applicability to the growth of CNTs onto copper substrates, using Fe as catalyst material. The barrier and catalyst layers were deposited by magnetron sputtering. Auger electron spectroscopy was used to determine the diffusivity of Fe into TiN. Morphological characterization of the CNTs coatings was performed on scanning and transmission electron microscopes. Raman spectroscopy and x-ray diffraction were employed to

  19. Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments.

    PubMed

    Xu, Sheng; Adiga, Nagesh; Ba, Shan; Dasgupta, Tirthankar; Wu, C F Jeff; Wang, Zhong Lin

    2009-07-28

    Controlling the morphology of the as-synthesized nanostructures is usually challenging, and there lacks of a general theoretical guidance in experimental approach. In this study, a novel way of optimizing the aspect ratio of hydrothermally grown ZnO nanowire (NW) arrays is presented by utilizing a systematic statistical design and analysis method. In this work, we use pick-the-winner rule and one-pair-at-a-time main effect analysis to sequentially design the experiments and identify optimal reaction settings. By controlling the hydrothermal reaction parameters (reaction temperature, time, precursor concentration, and capping agent), we improved the aspect ratio of ZnO NWs from around 10 to nearly 23. The effect of noise on the experimental results was identified and successfully reduced, and the statistical design and analysis methods were very effective in reducing the number of experiments performed and in identifying the optimal experimental settings. In addition, the antireflection spectrum of the as-synthesized ZnO NWs clearly shows that higher aspect ratio of the ZnO NW arrays leads to about 30% stronger suppression in the UV-vis range emission. This shows great potential applications as antireflective coating layers in photovoltaic devices.

  20. Lowering bone mineral affinity of bisphosphonates as a therapeutic strategy to optimize skeletal tumor growth inhibition in vivo.

    PubMed

    Fournier, Pierrick G J; Daubiné, Florence; Lundy, Mark W; Rogers, Michael J; Ebetino, Frank H; Clézardin, Philippe

    2008-11-01

    Bisphosphonates bind avidly to bone mineral and are potent inhibitors of osteoclast-mediated bone destruction. They also exhibit antitumor activity in vitro. Here, we used a mouse model of human breast cancer bone metastasis to examine the effects of risedronate and NE-10790, a phosphonocarboxylate analogue of the bisphosphonate risedronate, on osteolysis and tumor growth. Osteolysis was measured by radiography and histomorphometry. Tumor burden was measured by fluorescence imaging and histomorphometry. NE-10790 had a 70-fold lower bone mineral affinity compared with risedronate. It was 7-fold and 8,800-fold less potent than risedronate at reducing, respectively, breast cancer cell viability in vitro and bone loss in ovariectomized animals. We next showed that risedronate given at a low dosage in animals bearing human B02-GFP breast tumors reduced osteolysis by inhibiting bone resorption, whereas therapy with higher doses also inhibited skeletal tumor burden. Conversely, therapy with NE-10790 substantially reduced skeletal tumor growth at a dosage that did not inhibit osteolysis, a higher dosage being able to also reduce bone destruction. The in vivo antitumor activity of NE-10790 was restricted to bone because it did not inhibit the growth of subcutaneous B02-GFP tumor xenografts nor the formation of B16-F10 melanoma lung metastases. Moreover, NE-10790, in combination with risedronate, reduced both osteolysis and skeletal tumor burden, whereas NE-10790 or risedronate alone only decreased either tumor burden or osteolysis, respectively. In conclusion, our study shows that decreasing the bone mineral affinity of bisphosphonates is an effective therapeutic strategy to inhibit skeletal tumor growth in vivo.

  1. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth

    USGS Publications Warehouse

    Choi, M.K.; Moon, C.H.; Ko, M.S.; Lee, U.-H.; Cho, W.J.; Cha, S.J.; Do, J.W.; Heo, G.J.; Jeong, S.G.; Hahm, Y.S.; Harmache, A.; Bremont, M.; Kurath, G.; Park, J.-W.

    2011-01-01

    The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I:C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I:C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV.

  2. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    SciTech Connect

    Ansah-Antwi, KwaDwo Konadu Chua, Soo Jin; Soh, Chew Beng; Liu, Hongfei

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holes resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.

  3. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates.

    PubMed

    Zervakis, G; Philippoussis, A; Ioannidou, S; Diamantopoulou, P

    2001-01-01

    The influence of environmental parameters on mycelial linear growth of Pleurotus ostreatus, P. eryngii, P. pulmonarius, Agrocybe aegerita, Lentinula edodes, Volvariella volvacea and Auricularia auricula-judae was determined in two different nutrient media in a wide range of temperature, forming the basis for the assessment of their temperature optima. V. volvacea grew faster at 35 degrees C, P. eryngii at 25 degrees C, P. ostreatus and P. pulmonarius at 30 degrees C, A. aegerita at 25 or 30 degrees C and A. auricula-judae at 20 or 25 degrees C depending on the nutrient medium used and L. edodes at 20 or 30 degrees C depending on the strain examined. The mycelium extension rates were evaluated on seven mushroom cultivation substrates: wheat straw, cotton gin-trash, peanut shells, poplar sawdust, oak sawdust, corn cobs and olive press-cake. The mycelium extension rates (linear growth and colonization rates) were determined by the 'race-tube' technique, and were found to be the highest on cotton gin-trash, peanut shells and poplar sawdust for Pleurotus spp. and A. aegerita. Wheat straw, peanut shells and particularly cotton gin-trash supported fast growth of V. volvacea, whereas wheat straw was the most suitable substrate for L. edodes and A. auricula-judae. Supplemented oak sawdust and olive press-cake were poor substrates for most species examined, while almost all strains performed adequately on corn cobs.

  4. Optimizing dietary levels of menhaden and soybean oils and soybean lecithin for pre-gonadal somatic growth in juveniles of the sea urchin Lytechinus variegatus

    PubMed Central

    Gibbs, Victoria K.; Heflin, Laura E.; Jones, Warren T.; Powell, Mickie L.; Lawrence, Addison L.; Makowsky, Robert; Watts, Stephen A.

    2015-01-01

    Dietary lipids serve as important sources of energy and essential fatty acids for aquatic animals. Sources of animal and plant oils are increasingly limited as well as expensive, and dietary requirements associated with the inclusion of these oils must be carefully evaluated to facilitate sustainable and affordable formulations. In this study, we investigated quantities of menhaden oil (MO) with and without soybean lecithin or soybean oil (SO) to determine appropriate levels for optimal somatic growth for pre-gonadal juvenile Lytechinus variegatus. We prepared semi-purified diets that varied in neutral lipid content (0, 2, 4, or 8% dry matter) and soy lecithin (0 or 2%) and exchanged lipids reciprocally with purified starch while holding constant all other nutrients. We maintained laboratory-reared juvenile L. variegatus (average initial wet weight 82 ± 0.7 mg, mean ± SE , n = 9 treatment−1) in recirculating seawater systems and fed each daily a sub-satiation ration for five weeks. We assessed wet weights and test diameters every two weeks and at the end of the experiment (5 wk). Level of MO with or without soybean lecithin did not significantly affect wet weight gain; however, increasing levels of SO in the diet reduced wet weight gain and dry matter production efficiency and increased feed conversion ratio. Dry gut weight was positively correlated with level of MO. Lipid level in the gut increased with increasing dietary lipid level, regardless of source. These data suggest the composition of the SO is inhibitory for either nutrient absorption or metabolic processes associated with growth at this life stage. Diets containing total lipid levels of approximately 5 to 6% that include sources of n-3 fatty acids may support optimal growth for pre-gonadal juvenile L. variegatus. PMID:26146422

  5. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants

    PubMed Central

    Nord, Eric A.; Shea, Katriona; Lynch, Jonathan P.

    2011-01-01

    Background and Aims Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils. Methods To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments. Key Results The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater. Conclusions Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments. PMID:21712299

  6. Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters

    NASA Astrophysics Data System (ADS)

    Nayar, Priyanka; Zhu, Xue-Yi; Yang, Fuyi; Lu, Minghui; Lakshminarayana, G.; Liu, Xiao Ping; Chen, Yan-Feng; Kityk, I. V.

    2016-10-01

    Erbium doped amorphous alumina thin films were fabricated using Co-sputtering technique in various depositions runs with varying parameters for optimizing the deposition parameters to obtain the films with best optical performance. The main subject of investigation includes the effects of change in various deposition parameters such as substrate heating, radio frequency (RF) power and oxygen pressure inside the chamber while deposition. High quality as-deposited films with various Er concentrations and low carbon content have been confirmed by XPS. Substrate heating ∼500 °C was found to be very effective in getting highly dense films with high refractive index of 1.70 at 1530-1570 nm emission band. The Er3+-doped films showed very intense near-infrared luminescence peak at 1550 nm even without any post-deposition annealing treatment.

  7. Experimental Horizontal Gene Transfer of Methylamine Dehydrogenase Mimics Prevalent Exchange in Nature and Overcomes the Methylamine Growth Constraints Posed by the Sub-Optimal N-Methylglutamate Pathway

    PubMed Central

    Nayak, Dipti D.; Marx, Christopher J.

    2015-01-01

    Methylamine plays an important role in the global carbon and nitrogen budget; microorganisms that grow on reduced single carbon compounds, methylotrophs, serve as a major biological sink for methylamine in aerobic environments. Two non-orthologous, functionally degenerate routes for methylamine oxidation have been studied in methylotrophic Proteobacteria: Methylamine dehydrogenase and the N-methylglutamate pathway. Recent work suggests the N-methylglutamate (NMG) pathway may be more common in nature than the well-studied methylamine dehydrogenase (MaDH, encoded by the mau gene cluster). However, the distribution of these pathways across methylotrophs has never been analyzed. Furthermore, even though horizontal gene transfer (HGT) is commonly invoked as a means to transfer these pathways between strains, the physiological barriers to doing so have not been investigated. We found that the NMG pathway is both more abundant and more universally distributed across methylotrophic Proteobacteria compared to MaDH, which displays a patchy distribution and has clearly been transmitted by HGT even amongst very closely related strains. This trend was especially prominent in well-characterized strains of the Methylobacterium extroquens species, which also display significant phenotypic variability during methylamine growth. Strains like Methylobacterium extorquens PA1 that only encode the NMG pathway grew on methylamine at least five-fold slower than strains like Methylobacterium extorquens AM1 that also possess the mau gene cluster. By mimicking a HGT event through the introduction of the M. extorquens AM1 mau gene cluster into the PA1 genome, the resulting strain instantaneously achieved a 4.5-fold increase in growth rate on methylamine and a 11-fold increase in fitness on methylamine, which even surpassed the fitness of M. extorquens AM1. In contrast, when three replicate populations of wild type M. extorquens PA1 were evolved on methylamine as the sole carbon and energy

  8. Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue

    PubMed Central

    Palace, Samantha G.; Proulx, Megan K.; Lu, Shan; Baker, Richard E.

    2014-01-01

    ABSTRACT Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent insertion mutants representing nearly 200,000 unique genotypes were generated in fully virulent Y. pestis. Each mutant in the library was assayed for its ability to proliferate in vitro on rich medium and in mice following intravenous injection. Virtually all genes previously established to contribute to virulence following intravenous infection showed significant fitness defects, with the exception of genes for yersiniabactin biosynthesis, which were masked by strong intercellular complementation effects. We also identified more than 30 genes with roles in nutrient acquisition and metabolism as experiencing strong selection during infection. Many of these genes had not previously been implicated in Y. pestis virulence. We further examined the fitness defects of strains carrying mutations in two such genes—encoding a branched-chain amino acid importer (brnQ) and a glucose importer (ptsG)—both in vivo and in a novel defined synthetic growth medium with nutrient concentrations matching those in serum. Our findings suggest that diverse nutrient limitations in deep tissue play a more important role in controlling bacterial infection than has heretofore been appreciated. Because much is known about Y. pestis pathogenesis, this study also serves as a test case that assesses the ability of Tn-seq to detect virulence genes. PMID:25139902

  9. 64 μW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions

    SciTech Connect

    Dietz, Roman J. B.; Globisch, Björn; Stanze, Dennis; Roehle, Helmut; Göbel, Thorsten; Schell, Martin; Gerhard, Marina; Velauthapillai, Ajanthkrishna; Koch, Martin

    2013-08-05

    We present results on optimized growth temperatures and layer structure design of high mobility photoconductive Terahertz (THz) emitters based on molecular beam epitaxy grown In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As multilayer heterostructures (MLHS). The photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer and with a Golay cell. We measured a THz bandwidth in excess of 4 THz and average THz powers of up to 64 μW corresponding to an optical power-to-THz power conversion efficiency of up to 2 × 10{sup −3}.

  10. Growth and layer structure optimization of 2.26 μm (AlGaIn)(AsSb) diode lasers for room temperature operation

    NASA Astrophysics Data System (ADS)

    Simanowski, S.; Mermelstein, C.; Walther, M.; Herres, N.; Kiefer, R.; Rattunde, M.; Schmitz, J.; Wagner, J.; Weimann, G.

    2001-07-01

    The optimization of MBE growth conditions and layer structures for room temperature operation of 2.26 μm AlGaAsSb/GaInAsSb laser structures is investigated. Index guided triple quantum well large optical cavity diode lasers with 64 μm×1000 μm cavities and high reflection/antireflection coated facets reveal a cw output power of 350 mW at T=280 K. An internal quantum efficiency ηi of 69%, internal losses αi of 7.7 cm -1 and a threshold current density for infinite cavity length of j ∞=144 A/cm 2 are obtained for this structure.

  11. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    PubMed

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  12. Quantitative Genetics and Functional–Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    PubMed Central

    Letort, Véronique; Mahe, Paul; Cournède, Paul-Henry; de Reffye, Philippe; Courtois, Brigitte

    2008-01-01

    Background and Aims Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype × environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional–structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits – such as cob weight – and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment × genotype

  13. Self-Beliefs and Student Goal Achievement

    ERIC Educational Resources Information Center

    Wesson, Caroline J.; Derrer-Rendall, Nicola M.

    2011-01-01

    Two preliminary studies are presented investigating the self-beliefs that may affect goal achievement in a student population. In Study 1, goal achievement on an abstract task, where goals are externally set by others, is considered in relation to students' levels of optimism. In Study 2, goal achievement on academic performance, where goals are…

  14. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results.

  15. Toward chelerythrine optimization: Analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells.

    PubMed

    Yang, Rosania; Tavares, Maurício T; Teixeira, Sarah F; Azevedo, Ricardo A; C Pietro, Diego; Fernandes, Thais B; Ferreira, Adilson K; Trossini, Gustavo H G; Barbuto, José A M; Parise-Filho, Roberto

    2016-10-01

    A series of novel chelerythrine analogues was designed and synthesized. Antitumor activity was evaluated against A549, NCI-H1299, NCI-H292, and NCI-H460 non-small-cell lung cancer (NSCLC) cell lines in vitro. The selectivity of the most active analogues and chelerythrine was also evaluated, and we compared their cytotoxicity in NSCLC cells and non-tumorigenic cell lines, including human umbilical vein endothelial cells (HUVECs) and LL24 human lung fibroblasts. In silico studies were performed to establish structure-activity relationships between chelerythrine and the analogues. The results showed that analogue compound 3f induced significant dose-dependent G0/G1 cell cycle arrest in A549 and NCI-H1299 cells. Theoretical studies indicated that the molecular arrangement and electron characteristics of compound 3f were closely related to the profile of chelerythrine, supporting its activity. The present study presents a new and simplified chelerythrinoid scaffold with enhanced selectivity against NSCLC tumor cells for further optimization. PMID:27561984

  16. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.

  17. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics. PMID:27184146

  18. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. PMID:27378223

  19. Optimization of ligninolytic enzyme activity and production rate with Ceriporiopsis subvermispora for application in bioremediation by varying submerged media composition and growth immobilization support.

    PubMed

    Babič, Janja; Likozar, Blaž; Pavko, Aleksander

    2012-01-01

    Response surface methodology (central composite design of experiments) was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM), where the highest experimentally obtained activities and productivities were 41 U L(-1) and 16 U L(-1) day(-1) for laccase (Lac), and 193 U L(-1) and 80 U L(-1) day(-1) for manganese peroxidase (MnP). Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM). Enzyme activities in culture filtrate were 152 U L(-1) for Lac and 58 U L(-1) for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR) was decolorized faster and more efficiently than Copper(II)phthalocyanine (CuP) with BWCM (80% and 60%), since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes. PMID:23109859

  20. Optimization of Ligninolytic Enzyme Activity and Production Rate with Ceriporiopsis subvermispora for Application in Bioremediation by Varying Submerged Media Composition and Growth Immobilization Support

    PubMed Central

    Babič, Janja; Likozar, Blaž; Pavko, Aleksander

    2012-01-01

    Response surface methodology (central composite design of experiments) was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM), where the highest experimentally obtained activities and productivities were 41 U L−1 and 16 U L−1 day−1 for laccase (Lac), and 193 U L−1 and 80 U L−1 day−1 for manganese peroxidase (MnP). Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM). Enzyme activities in culture filtrate were 152 U L−1 for Lac and 58 U L−1 for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR) was decolorized faster and more efficiently than Copper(II)phthalocyanine (CuP) with BWCM (80% and 60%), since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes. PMID:23109859

  1. Optimization of potent DFG-in inhibitors of platelet derived growth factor receptorβ (PDGF-Rβ) guided by water thermodynamics.

    PubMed

    Horbert, Rebecca; Pinchuk, Boris; Johannes, Eugen; Schlosser, Joachim; Schmidt, Dorian; Cappel, Daniel; Totzke, Frank; Schächtele, Christoph; Peifer, Christian

    2015-01-01

    In this study we report on the hit optimization of substituted 3,5-diaryl-pyrazin-2(1H)-ones toward potent and effective platelet-derived growth factor receptor (PDGF-R) β-inhibitors. Originally, the 3,5-diaryl-pyrazin-2-one core was derived from the marine sponge alkaloid family of hamacanthins. In our first series compound 2 was discovered as a promising hit showing strong activity against PDGF-Rβ in the kinase assay (IC50 = 0.5 μM). Furthermore, 2 was shown to be selective for PDGF-Rβ in a panel of 24 therapeutically relevant protein kinases. Molecular modeling studies on a PDGF-Rβ homology model using prediction of water thermodynamics suggested an optimization strategy for the 3,5-diaryl-pyrazin-2-ones as DFG-in binders by using a phenolic OH function to replace a structural water molecule in the ATP binding site. Indeed, we identified compound 38 as a highly potent inhibitor with an IC50 value of 0.02 μM in a PDGF-Rβ enzymatic assay also showing activity against PDGF-R dependent cancer cells.

  2. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures

    PubMed Central

    Khachane, Amit N.; Timmis, Kenneth N.; dos Santos, Vítor A. P. Martins

    2005-01-01

    We report here the finding of a highly significant inverse correlation of the uracil content of 16S rRNA and the optimum growth temperature (Topt) of cultured thermophilic and psychrophilic prokaryotes. This correlation was significantly different from the weaker correlations between the contents of other nucleotides and Topt. Analysis of the 16S rRNA secondary structure regions revealed a fall in the A:U base-pair content in step with the increase in Topt that was much steeper than that of mismatched base-pairs, which are thermodynamically less stable. These findings indicate that the 16S rRNA sequences of thermophiles and psychrophiles are under a strong thermo-adaptive pressure, and that structure–function constraints play a crucial role in determining their 16S rRNA nucleotide composition. The derived relationship between uracil content and Topt was used to develop an algorithm to predict the Topt values of uncultured prokaryotes lacking cultured close relatives and belonging to the phyla predominantly containing thermophiles. This algorithm may be useful in guiding the design of cultivation conditions for hitherto uncultured microbes. PMID:16030352

  3. Carbon nanofiber growth optimization for their use as electrocatalyst support in proton exchange membrane (PEM) fuel cells.

    PubMed

    Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R

    2009-07-01

    Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.

  4. Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways.

    PubMed

    Zhou, Wenbo; Tang, Wenshu; Sun, Zhenliang; Li, Yunqi; Dong, Yanmin; Pei, Haixiang; Peng, Yangrui; Wang, Jinhua; Shao, Ting; Jiang, Zhenran; Yi, Zhengfang; Chen, Yihua

    2016-01-01

    Inhibition of angiogenesis is considered as one of the desirable pathways for the treatment of tumor growth and metastasis. Herein we demonstrated that a series of pyridinyl-thiazolyl carboxamide derivatives were designed, synthesized and examined against angiogenesis through a colony formation and migration assays of human umbilical vein endothelial cells (HUVECs) in vitro. A structure-activity relationship (SAR) study was carried out and optimization toward this series of compounds resulted in the discovery of N-(3-methoxyphenyl)-4-methyl-2-(2-propyl-4-pyridinyl)thiazole-5-carboxamide (3k). The results indicated that compound 3k showed similar or better effects compared to Vandetanib in suppressing HUVECs colony formation and migration as well as VEGF-induced angiogenesis in the aortic ring spreading model and chick embryo chorioallantoic membrane (CAM) model. More importantly, compound 3k also strongly blocked tumor growth with the dosage of 30 mg/kg/day, and subsequent mechanism exploration suggested that this series of compounds took effect mainly through angiogenesis signaling pathways. Together, these results suggested compound 3k may serve as a lead for a novel class of angiogenesis inhibitors for cancer treatments. PMID:27633259

  5. Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways

    PubMed Central

    Zhou, Wenbo; Tang, Wenshu; Sun, Zhenliang; Li, Yunqi; Dong, Yanmin; Pei, Haixiang; Peng, Yangrui; Wang, Jinhua; Shao, Ting; Jiang, Zhenran; Yi, Zhengfang; Chen, Yihua

    2016-01-01

    Inhibition of angiogenesis is considered as one of the desirable pathways for the treatment of tumor growth and metastasis. Herein we demonstrated that a series of pyridinyl-thiazolyl carboxamide derivatives were designed, synthesized and examined against angiogenesis through a colony formation and migration assays of human umbilical vein endothelial cells (HUVECs) in vitro. A structure-activity relationship (SAR) study was carried out and optimization toward this series of compounds resulted in the discovery of N-(3-methoxyphenyl)-4-methyl-2-(2-propyl-4-pyridinyl)thiazole-5-carboxamide (3k). The results indicated that compound 3k showed similar or better effects compared to Vandetanib in suppressing HUVECs colony formation and migration as well as VEGF-induced angiogenesis in the aortic ring spreading model and chick embryo chorioallantoic membrane (CAM) model. More importantly, compound 3k also strongly blocked tumor growth with the dosage of 30 mg/kg/day, and subsequent mechanism exploration suggested that this series of compounds took effect mainly through angiogenesis signaling pathways. Together, these results suggested compound 3k may serve as a lead for a novel class of angiogenesis inhibitors for cancer treatments. PMID:27633259

  6. Optimization of chemical vapor deposition diamond films growth on steel: correlation between mechanical properties, structure, and composition.

    PubMed

    Laikhtman, A; Rapoport, L; Perfilyev, V; Moshkovich, A; Akhvlediani, R; Hoffman, A

    2011-09-01

    In the present work we perform optimization of mechanical and crystalline properties of CVD microcrystalline diamond films grown on steel substrates. A chromium-nitride (Cr-N) interlayer had been previously proposed to serve as a buffer for carbon and iron inter-diffusion and as a matching layer for the widely differing expansion coefficients of diamond and steel. However, adhesion and wear as well as crystalline perfection of diamond films are strongly affected by conditions of both Cr-N interlayer preparation and CVD diamond deposition. In this work we assess the effects of two parameters. The first one is the temperature of the Cr-N interlayer preparation: temperatures in the range of 500 degrees C-800 degrees C were used. The second one is diamond film thickness in the 0.5 microm-2 microm range monitored through variation of the deposition time from approximately 30 min to 2 hours. The mechanical properties of so deposited diamond films were investigated. For this purpose, scratch tests were performed at different indentation loads. The friction coefficient and wear loss were assessed. The mechanical and tribological properties were related to structure, composition, and crystalline perfection of diamond films which were extensively analyzed using different microscopic and spectroscopic techniques. It was found that relatively thick diamond film deposited on the Cr-N interlayer prepared at the temperature similar to that of the CVD process has the best mechanical and adhesion strength. This film was stable without visible cracks around the wear track during all scratch tests with different indentation loads. In other cases, cracking and delamination of the films took place at low to moderate indentation loads.

  7. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  8. Optimal dietary energy and amino acids for gilt development: Growth, body composition, feed intake, and carcass composition traits.

    PubMed

    Calderón Díaz, J A; Vallet, J L; Prince, T J; Phillips, C E; DeDecker, A E; Stalder, K J

    2015-03-01

    The objective of this study was to determine if body composition of developing gilts could be altered at the onset of estrus by ad libitum feeding diets differing in standard ileal digestible (SID) lysine and ME using levels that are within those used in practice by pig producers in the United States. Crossbred Large White × Landrace gilts ( = 1,221), housed in groups, were randomly allotted to 6 corn-soybean diets in a 2 × 3 factorial arrangement formulated to provide 2 SID lysine and 3 ME levels. Gilts received grower diets formulated to provide 0.86 (low) or 1.02% (high) SID lysine and 2.94 (low), 3.25 (medium), or 3.57 (high) Mcal of ME/kg from 100 d of age until approximately 90 kg BW. Then, gilts were fed finisher diets containing 0.73 (low) or 0.85% (high) SID lysine and 2.94 (low), 3.26 (medium) or 3.59 (high) Mcal of ME/kg until 260 d of age. The medium SID lysine and medium-ME diets were based on an informal survey from the U.S. commercial swine industry to obtain average levels that are currently being formulated for developing gilts. Gilts were weighed and backfat thickness and loin area were recorded at the beginning of the trial and then every 28 d. Feed intake (FI) was recorded as feed disappearance within the pen at 2-wk intervals. Lysine (g) and ME (Mcal) consumed were calculated based on diet formulations. At approximately 260 d of age, gilts were slaughtered and warm carcass weight and fat thickness were recorded. There were no differences between lysine or ME levels for growth and body composition, except for backfat, which was slightly greater for gilts fed a high-ME diet. Gilts fed high-ME diets had a lower FI but a greater ME intake compared with gilts fed low ME ( < 0.05). Additionally, gilts fed the high-ME diet had lower FI and lysine intake per kilogram of BW gain when compared with gilts fed low- or medium-ME diets ( < 0.05). However, there was no difference in the megacalories consumed per kilogram of BW gain among treatments ( > 0

  9. Optimization of struvite fertilizer formation from baker's yeast wastewater: growth and nutrition of maize and tomato plants.

    PubMed

    Uysal, Ayla; Demir, Sinan; Sayilgan, Emine; Eraslan, Figen; Kucukyumuk, Zeliha

    2014-03-01

    Struvite precipitate obtained from yeast industry anaerobic effluent with high ammonium nitrogen (NH4-N) was investigated for fertilizer effect on plant growth and nutrition according to applications of N, nitrogen/phosphorus/potassium (NPK), and control. Optimum struvite formation conditions were determined via Box-Behnken design. Optimum condition was obtained at pH 9.0 and Mg/N/P molar ratio of 1.5:1:1. Under these conditions, heavy metal concentrations in the obtained struvite precipitate (except Cu) were below the detection limits. In addition to high N, P, and Mg content, energy-dispersive X-ray (EDX) analysis showed that the struvite also included the nutritional elements Ca, K, Na, and Fe. X-ray diffraction (XRD) analysis revealed the complex structures of NaAl(SO4)2(H2O)12, NaMn(2+)Fe2(PO4)3, and (Na2,Ca)O2(Fe,Mn)O.P2O5 in the precipitate. High Na(+) and Ca(2+) concentrations in the anaerobic effluent reacted with phosphate during struvite precipitation. Different applications and struvite dosages significantly affected fresh and dry weights and nutrient element uptakes by plants (P < 0.05). N, P, and Mg uptakes of plants were significantly higher at struvite ×2, ×3, and ×4 dosages compared with NPK application. For adequate nutrition and supply of optimum dry weight, struvite ×2 dosage (5.71 g struvite/kg soil) was found appropriate for both maize and tomato plants. PMID:24217971

  10. Optimization of an in vitro bioassay to monitor growth and formation of myotubes in real time

    PubMed Central

    Murphy, Sylvia M.; Kiely, Maeve; Jakeman, Philip M.; Kiely, Patrick A.; Carson, Brian P.

    2016-01-01

    The importance of growth and maintenance of skeletal muscle is vital for long term health and quality of life. Appropriate nutrition with specific bioactivities relevant to the functionalities of tissues such as skeletal muscle, can assist in maintaining and promoting adaptive responses to biological and environmental stresses which prevent muscle atrophy and promote hypertrophy. The aim of this investigation was to develop a novel in vitro cell-based electric impedance assay to study myoblast to myotube formation on the real time cell analysis (RTCA) platform (xCELLigence™, ACEA) and to validate the system by testing myotube responses to hypertrophic stimuli. C2C12 myoblasts were proliferated until 70% confluent in Dulbecco's Modified Eagles Medium (DMEM) (10% FBS) and subsequently differentiated to myotubes over 8 days in DMEM [2% horse serum (HS)]. Changes in cell behaviour and adhesion properties were monitored by measuring impedance via interdigitated microelectrodes in the base of E-16 cell culture dishes. To establish the suitability of this assay to monitor nutrient regulation of muscle hypertrophy, leucine, a known potent regulator of MPS was then supplemented to the fully formed myotubes in physiologically relevant conditions–0.20 mM, 0.40 mM, 0.6 mM, 0.8 mM and above 1.0 mM, 1.5 mM, 2.0 mM and impedance subsequently monitored. Parallel experiments highlighting alterations in myotube thickness, muscle protein synthesis (MPS) (mammalian target of rapamycin; mTOR) and differentiation (myogenin) were conducted to support RTCA bioassay findings. This in vitro bioassay can be used to monitor skeletal muscle behaviour and identify nutrient compounds with bioactivities promoting skeletal muscle hypertrophy, reducing muscle atrophy and thus inform the development of novel nutrient formulations for the maintenance of skeletal muscle. PMID:27009307

  11. Variation in Patient Profiles and Outcomes in US and Non-US Subgroups of the Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition (CHAMPION) PHOENIX Trial

    PubMed Central

    Vaduganathan, Muthiah; Harrington, Robert A.; Stone, Gregg W.; Steg, Ph. Gabriel; Gibson, C. Michael; Hamm, Christian W.; Price, Matthew J.; Prats, Jayne; Deliargyris, Efthymios N.; Mahaffey, Kenneth W.; White, Harvey D.

    2016-01-01

    Background— The Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition (CHAMPION) PHOENIX trial demonstrated superiority of cangrelor in reducing ischemic events at 48 hours in patients undergoing percutaneous coronary intervention compared with clopidogrel. Methods and Results— We analyzed all patients included in the modified intention-to-treat analysis in US (n=4097; 37.4%) and non-US subgroups (n=6845; 62.6%). The US cohort was older, had a higher burden of cardiovascular risk factors, and had more frequently undergone prior cardiovascular procedures. US patients more frequently underwent percutaneous coronary intervention for stable angina (77.9% versus 46.2%). Almost all US patients (99.1%) received clopidogrel loading doses of 600 mg, whereas 40.5% of non-US patients received 300 mg. Bivalirudin was more frequently used in US patients (56.7% versus 2.9%). At 48 hours, rates of the primary composite end point were comparable in the US and non-US cohorts (5.5% versus 5.2%; P=0.53). Cangrelor reduced rates of the primary composite end point compared with clopidogrel in US (4.5% versus 6.4%; odds ratio 0.70 [95% confidence interval 0.53–0.92]) and in non-US patients (4.8% versus 5.6%; odds ratio 0.85 [95% confidence interval 0.69–1.05]; interaction P=0.26). Similarly, rates of the key secondary end point, stent thrombosis, were reduced by cangrelor in both regions. Rates of Global Use of Strategies to Open Occluded Arteries (GUSTO)–defined severe bleeding were low and not significantly increased by cangrelor in either region. Conclusions— Despite broad differences in clinical profiles and indications for percutaneous coronary intervention by region in a large global cardiovascular clinical trial, cangrelor consistently reduced rates of ischemic end points compared with clopidogrel without an excess in severe bleeding in both the US and non-US subgroups. Clinical Trial Registration— URL: http

  12. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function

    PubMed Central

    Daniell, Henry; Ruiz, Gricel; Denes, Bela; Sandberg, Laurence; Langridge, William

    2009-01-01

    Background Transgenic chloroplasts are potential bioreactors for recombinant protein production, especially for achievement of high levels of protein expression and proper folding. Production of therapeutic proteins in leaves provides transgene containment by elimination of reproductive structures. Therefore, in this study, human Insulin like Growth Factor-1 is expressed in transgenic chloroplasts for evaluation of structural identity and function. Results Expression of the synthetic Insulin like Growth Factor 1 gene (IGF-1s, 60% AT) was observed in transformed E. coli. However, no native IGF-1 gene (IGF-1n, 41% AT) product was detected in the western blots in E. coli. Site-specific integration of the transgenes into the tobacco chloroplast genome was confirmed after transformation using PCR. Southern blot analysis confirmed that the transgenic lines were homoplasmic. The transgenic plant lines had IGF-1s expression levels of 11.3% of total soluble protein (TSP). The IGF-1n plants contained 9.5% TSP as IGF-1n, suggesting that the chloroplast translation machinery is more flexible than E. coli in codon preference and usage. The expression of IGF-1 was increased up to 32% TSP under continuous illumination by the chloroplast light regulatory elements. IgG-Sepharose affinity column chromatographic separation of Z domain containing chloroplast derived IGF-1 protein, single and two dimensional electrophoresis methods and mass spectrometer analysis confirmed the identity of human IGF-1 in transgenic chloroplasts. Two spots analyzed from 2-D focusing/phoresis acrylamide gel showed the correct amino acid sequence of human IGF-1 and the S. aureus Z-tag. Cell proliferation assays in human HU-3 cells demonstrated the biological activity of chloroplast derived IGF-1 even in the presence of the S. aureus Z tag. Conclusion This study demonstrates that the human Insulin like Growth Factor-1 expressed in transgenic chloroplasts is identical to the native protein and is fully

  13. The htrA (degP) Gene of Listeria monocytogenes 10403S Is Essential for Optimal Growth under Stress Conditions

    PubMed Central

    Wonderling, Laura D.; Wilkinson, Brian J.; Bayles, Darrell O.

    2004-01-01

    This report describes a mutant of Listeria monocytogenes strain 10403S (serotype 1/2a) with a defective response to conditions of high osmolarity, an environment that L. monocytogenes encounters in some ready-to-eat foods. A library of L. monocytogenes clones mutagenized with Tn917 was generated and scored for sensitivity to 4% NaCl in order to identify genes responsible for growth or survival in elevated-NaCl environments. One of the L. monocytogenes Tn917 mutants, designated strain OSM1, was selected, and the gene interrupted by the transposon was sequenced. A BLAST search with the putative translated amino acid sequence indicated that the interrupted gene product was a homolog of htrA (degP), a gene coding for a serine protease identified as a stress response protein in several gram-positive and gram-negative bacteria. An htrA deletion strain, strain LDW1, was constructed, and the salt-sensitive phenotype of this strain was complemented by introduction of a plasmid carrying the wild-type htrA gene, demonstrating that htrA is necessary for optimal growth under conditions of osmotic stress. Additionally, strain LDW1 was tested for its response to temperature and H2O2 stresses. The results of these growth assays indicated that strain LDW1 grew at a lower rate than the wild-type strain at 44°C but at a rate similar to that of the wild-type strain when incubated at 4°C. In addition, strain LDW1 was significantly more sensitive to a 52°C heat shock than the wild-type strain. Strain LDW1 was also defective in its response to H2O2 challenge at 37°C, since 100 or 150 μg of H2O2 was more inhibitory for the growth of strain LDW1 than for that of the parent strain. The stress response phenotype observed for strain LDW1 is similar to that observed for other HtrA− organisms, which suggests that L. monocytogenes HtrA may play a role in degrading misfolded proteins that accumulate under stress conditions. PMID:15066783

  14. Molecular characterization and growth optimization of halo-tolerant protease producing Bacillus Subtilis Strain BLK-1.5 isolated from salt mines of Karak, Pakistan.

    PubMed

    Ali, Nawab; Ullah, Nimat; Qasim, Muhammad; Rahman, Hazir; Khan, Shahid Niaz; Sadiq, Abdul; Adnan, Muhammad

    2016-07-01

    Microbial proteolytic enzyme is one of the most important industrial enzymes that hydrolyze proteins. The applications of proteases under harsh industrial conditions like alkalinity, salinity, and temperature make them inactive and unstable. This suggests need for search for novel microbial sources for protease production having diverse properties. For this purpose, 54 bacterial strains were isolated from different salt mines of Karak, Pakistan and were investigated for their proteolytic activity on skim milk agar plates. The strain which showed maximum protease activity was characterized by 16S rRNA gene sequence analysis. Furthermore, growth and protease production was optimized for the characterized bacteria under different physical factors, i.e., pH, temperature and salinity. The isolate BLK-1.5 exhibited strong protease production and was identified as Bacillus subtilis based on biochemical characteristics and 16S rRNA gene sequence analysis. Maximum production of protease was recorded at pH 10, 37 °C and 7 % (w/v) NaCl. Molecular weight of proteases was estimated 38 kDa and its optimum activity was observed at pH 10, 50 °C and 2 % (w/v) NaCl. In conclusion, the protease produced by halo-tolerant Bacillus subtilis strain BLK-1.5 has diverse characteristics and could be useful in various industrial applications. PMID:27114252

  15. Synthesis, growth, optimization, bulk SR method growth, fabrication of indigenous optical element and anisotropic studies on guanidinium L-monohydrogen tartrate (GuHT) single crystal for nonlinear optical device applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Roop Kumar, R.; Murugakoothan, P.

    2015-02-01

    An organic NLO material guanidinium L-monohydrogen tartrate (GuHT) was grown by the slow evaporation technique using water as a solvent. The solubility and meta stable zone width was determined. The GuHT crystal belongs to orthorhombic system with noncentrosymmetric space group P212121. The morphology of the GuHT crystal was studied. The most prominent plane (0 0 1) was encouraged to grow in unidirection by Sankaranarayanan-Ramasamy (SR) method using water as a solvent. The growth conditions were optimized. The transparent GuHT single crystal of maximum width 15 mm and length 101 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, laser damage threshold and birefringence studies in different planes. The particle size dependent second harmonic generation efficiency for guanidinium L-monohydrogen tartrate was evaluated by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of GuHT crystal was investigated by the SHG Maker fringes technique.

  16. Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, Frederick

    1990-01-01

    The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.

  17. Prospective Optimization

    PubMed Central

    Sejnowski, Terrence J.; Poizner, Howard; Lynch, Gary; Gepshtein, Sergei; Greenspan, Ralph J.

    2014-01-01

    Human performance approaches that of an ideal observer and optimal actor in some perceptual and motor tasks. These optimal abilities depend on the capacity of the cerebral cortex to store an immense amount of information and to flexibly make rapid decisions. However, behavior only approaches these limits after a long period of learning while the cerebral cortex interacts with the basal ganglia, an ancient part of the vertebrate brain that is responsible for learning sequences of actions directed toward achieving goals. Progress has been made in understanding the algorithms used by the brain during reinforcement learning, which is an online approximation of dynamic programming. Humans also make plans that depend on past experience by simulating different scenarios, which is called prospective optimization. The same brain structures in the cortex and basal ganglia that are active online during optimal behavior are also active offline during prospective optimization. The emergence of general principles and algorithms for goal-directed behavior has consequences for the development of autonomous devices in engineering applications. PMID:25328167

  18. Pathology of growth hormone excess.

    PubMed

    Kovacs, K

    1988-09-01

    This paper briefly reviews the pathology of growth hormone excess. Prolonged oversecretion of growth hormone is associated with elevated serum growth hormone as well as somatomedian C levels and the clinical signs and symptoms of acromegaly or gigantism. Morphologic studies, including immunohistochemistry and electron microscopy, revealed that several distinct morphologic lesions can be present in the pituitary gland of patients with acromegaly or gigantism. Although substantial progress has been achieved during the last two decades, more work is required to correlate the morphologic features of adenoma cells with their biologic behavior. We feel that the future can be viewed with optimism and further exciting results can be expected by the interaction of pathologists, clinical endocrinologists and basic scientists. PMID:3070506

  19. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  20. Mobility and Reading Achievement.

    ERIC Educational Resources Information Center

    Waters, Theresa Z.

    A study examined the effect of geographic mobility on elementary school students' achievement. Although such mobility, which requires students to make multiple moves among schools, can have a negative impact on academic achievement, the hypothesis for the study was that it was not a determining factor in reading achievement test scores. Subjects…

  1. Using School-Level Student Achievement to Engage in Formative Evaluation: Comparative School-Level Rates of Oral Reading Fluency Growth Conditioned by Initial Skill for Second Grade Students

    ERIC Educational Resources Information Center

    Cummings, Kelli D.; Stoolmiller, Michael L.; Baker, Scott K.; Fien, Hank; Kame'enui, Edward J.

    2015-01-01

    We present a method for data-based decision making at the school level using student achievement data. We demonstrate the potential of a national assessment database [i.e., the University of Oregon DIBELS Data System (DDS)] to provide comparative levels of school-level data on average student achievement gains. Through the DDS as a data source,…

  2. Vitamin D and skeletal growth and development.

    PubMed

    Koo, Winston; Walyat, Nitin

    2013-09-01

    Vitamin D is critical to bone mineral metabolism and to the growth and development of the skeleton. Optimizing vitamin D status could be one of the cornerstones to optimize skeletal growth and achieving the maximum peak bone mass soon after the completion of adolescence. Maximizing peak bone mass is considered to be the key to primary prevention of osteoporosis. There is controversy, however, about what constitutes a healthy vitamin D status based on the most abundant circulating metabolite of vitamin D, namely 25 hydroxyvitamin D (25 OHD) in plasma or serum; and even the value of 25 OHD that should be used to define vitamin D deficiency. We reviewed the recent data on circulating 25 OHD concentrations and its relationship with skeletal growth in apparently healthy children and in those with nutritional vitamin D deficiency.

  3. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  4. A new optimization based approach to experimental combination chemotherapy.

    PubMed

    Pereira, F L; Pedreira, C E; de Sousa, J B

    1995-01-01

    A new approach towards the design of optimal multiple drug experimental cancer chemotherapy is presented. Once an adequate model is specified, an optimization procedure is used in order to achieve an optimal compromise between after treatment tumor size and toxic effects on healthy tissues. In our approach we consider a model including cancer cell population growth and pharmacokinetic dynamics. These elements of the model are essential in order to allow less empirical relationships between multiple drug delivery policies, and their effects on cancer and normal cells. The desired multiple drug dosage schedule is computed by minimizing a customizable cost function subject to dynamic constraints expressed by the model. However, this additional dynamic wealth increases the complexity of the problem which, in general, cannot be solved in a closed form. Therefore, we propose an iterative optimization algorithm of the projected gradient type where the Maximum Principle of Pontryagin is used to select the optimal control policy.

  5. General Achievement Trends: Oklahoma

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  6. General Achievement Trends: Georgia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  7. General Achievement Trends: Nebraska

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  8. General Achievement Trends: Arkansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  9. General Achievement Trends: Maryland

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  10. General Achievement Trends: Maine

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  11. General Achievement Trends: Iowa

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  12. General Achievement Trends: Texas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  13. General Achievement Trends: Hawaii

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  14. General Achievement Trends: Kansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  15. General Achievement Trends: Florida

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  16. General Achievement Trends: Massachusetts

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  17. General Achievement Trends: Tennessee

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  18. General Achievement Trends: Alabama

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  19. General Achievement Trends: Virginia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  20. General Achievement Trends: Michigan

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  1. General Achievement Trends: Colorado

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  2. Inverting the Achievement Pyramid

    ERIC Educational Resources Information Center

    White-Hood, Marian; Shindel, Melissa

    2006-01-01

    Attempting to invert the pyramid to improve student achievement and increase all students' chances for success is not a new endeavor. For decades, educators have strategized, formed think tanks, and developed school improvement teams to find better ways to improve the achievement of all students. Currently, the No Child Left Behind Act (NCLB) is…

  3. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  4. School Effects on Achievement.

    ERIC Educational Resources Information Center

    Nichols, Robert C.

    The New York State Education Department conducts a Pupil Evaluation Program (PEP) in which each year all third, sixth, and ninth grade students in the state are given a series of achievement tests in reading and mathematics. The data accumulated by the department includes achievement test scores, teacher characteristics, building and curriculum…

  5. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  6. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  7. Achieving Public Schools

    ERIC Educational Resources Information Center

    Abowitz, Kathleen Knight

    2011-01-01

    Public schools are functionally provided through structural arrangements such as government funding, but public schools are achieved in substance, in part, through local governance. In this essay, Kathleen Knight Abowitz explains the bifocal nature of achieving public schools; that is, that schools are both subject to the unitary Public compact of…

  8. Entropy production of a steady-growth cell with catalytic reactions

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2014-10-01

    Cells generally convert external nutrient resources to support metabolism and growth. Understanding the thermodynamic efficiency of this conversion is essential to determine the general characteristics of cellular growth. Using a simple protocell model with catalytic reaction dynamics to synthesize the necessary enzyme and membrane components from nutrients, the entropy production per unit-cell-volume growth is calculated analytically and numerically based on the rate equation for chemical kinetics and linear nonequilibrium thermodynamics. The minimal entropy production per unit-cell growth is found to be achieved at a nonzero nutrient uptake rate rather than at a quasistatic limit as in the standard Carnot engine. This difference appears because the equilibration mediated by the enzyme exists only within cells that grow through enzyme and membrane synthesis. Optimal nutrient uptake is also confirmed by protocell models with many chemical components synthesized through a catalytic reaction network. The possible relevance of the identified optimal uptake to optimal yield for cellular growth is also discussed.

  9. Our Lady of Hungary Catholic School, Indiana. School Achieves Double-Digit Growth with the Help of Interim and Classroom Formative Assessment Data. Case Study: Measures of Academic Progress & Professional Development.

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2015

    2015-01-01

    In 2014, South Bend's Our Lady of Hungary Catholic School welcomed its third principal in four years: Kevin Goralczyk, an Indiana native and seasoned educator. Together with the parish's pastor, Reverend Kevin Bauman, Principal Goralczyk began exploring how OLH could raise its pre-K-8 student achievement and better support teachers and staff…

  10. Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Xing; Qi, Ming; Ai, Li-Kun; Xu, An-Huai

    2016-09-01

    The structure of InP-based InxGa1-xAs/In0.52Al0.48As pseudomorphic high electron mobility transistor (PHEMT) was optimized in detail. Effects of growth temperature, growth interruption time, Si δ-doping condition, channel thickness and In content, and inserted AlAs monolayer (ML) on the two-dimensional electron gas (2DEG) performance were investigated carefully. It was found that the use of the inserted AlAs monolayer has an enhancement effect on the mobility due to the reduction of interface roughness and the suppression of Si movement. With optimization of the growth parameters, the structures composed of a 10 nm thick In0.75Ga0.25As channel layer and a 3 nm thick AlAs/In0.52Al0.48As superlattices spacer layer exhibited electron mobilities as high as 12500 cm2·V-1·s-1 (300 K) and 53500 cm2·V-1·s-1 (77 K) and the corresponding sheet carrier concentrations (Ns) of 2.8 × 1012 cm-2 and 2.9 × 1012 cm-2, respectively. To the best of the authors’ knowledge, this is the highest reported room temperature mobility for InP-based HEMTs with a spacer of 3 nm to date. Project supported by the National Natural Science Foundation of China (Grant No. 61434006).

  11. Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1‑xAs/In0.52Al0.48As HEMT structures

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Xing; Qi, Ming; Ai, Li-Kun; Xu, An-Huai

    2016-09-01

    The structure of InP-based InxGa1‑xAs/In0.52Al0.48As pseudomorphic high electron mobility transistor (PHEMT) was optimized in detail. Effects of growth temperature, growth interruption time, Si δ-doping condition, channel thickness and In content, and inserted AlAs monolayer (ML) on the two-dimensional electron gas (2DEG) performance were investigated carefully. It was found that the use of the inserted AlAs monolayer has an enhancement effect on the mobility due to the reduction of interface roughness and the suppression of Si movement. With optimization of the growth parameters, the structures composed of a 10 nm thick In0.75Ga0.25As channel layer and a 3 nm thick AlAs/In0.52Al0.48As superlattices spacer layer exhibited electron mobilities as high as 12500 cm2·V‑1·s‑1 (300 K) and 53500 cm2·V‑1·s‑1 (77 K) and the corresponding sheet carrier concentrations (Ns) of 2.8 × 1012 cm‑2 and 2.9 × 1012 cm‑2, respectively. To the best of the authors’ knowledge, this is the highest reported room temperature mobility for InP-based HEMTs with a spacer of 3 nm to date. Project supported by the National Natural Science Foundation of China (Grant No. 61434006).

  12. Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Flammer, Gordon H.; Mecham, Robert C.

    1974-01-01

    Compares the lecture and self-paced methods of instruction on the basis of student motivation and achieveme nt, comparing motivating and demotivating factors in each, and their potential for motivation and achievement. (Authors/JR)

  13. Parathyroid hormone and growth in chronic kidney disease.

    PubMed

    Waller, Simon

    2011-02-01

    Growth failure is common in children with chronic kidney disease, and successful treatment is a major challenge in the management of these children. The aetiology is multi-factorial with "chronic kidney disease-metabolic bone disorder" being a key component that is particularly difficult to manage. Parathyroid hormone is at the centre of this mineral imbalance, consequent skeletal disease and, ultimately, growth failure. When other aetiologies are treated, good growth can be achieved throughout the course of the disease when parathyroid hormone (PTH) levels are in the normal range or slightly elevated. A direct correlation between PTH levels and growth has not been convincingly established, and the direct effect of PTH on growth has not been adequately described; furthermore, direct actions of PTH on the growth plate are unproven. The effects of PTH on growth stem from the pivotal role that PTH plays in the development of renal osteodystrophy. In severe secondary hyperparathyroidism, the growth plate is altered and growth is affected. At the other end of the spectrum, with an over-suppressed parathyroid gland, the rate of bone turnover and remodelling is markedly diminished, and some data suggest this is associated with poor growth. Most of the data available suggests that avoiding the development of significant bone disease through the strict control of PTH levels permits good growth. Absolute optimal ranges for PTH that maximise growth or minimise growth failure are not yet established.

  14. Fully automated molecular biology routines on a plasmid-based functional proteomic workcell: Evaluation and Characterization of Yeast Strains Optimized for Growth on Xylose Expressing "Stealth" Insecticidal Peptides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimization of genes important to production of fuel ethanol from hemicellulosic biomass for use in developing improved commercial yeast strains is necessary to meet the rapidly expanding need for ethanol. The United States Department of Agriculture has developed a fully automated platform for mol...

  15. Achieving yield gains in wheat.

    PubMed

    Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo

    2012-10-01

    Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.

  16. Longitudinal Outcomes for Mathematics Achievement for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Judge, Sharon; Watson, Silvana M. R.

    2011-01-01

    Using longitudinal data from the first 6 waves of the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K), the authors examined mathematics achievement and growth trajectories by learning disability (LD) subgroups. The 2-level (time-student) growth curve model showed that lower levels of mathematics achievement were already evident at…

  17. Achieving Zero Net Migration.

    ERIC Educational Resources Information Center

    Mann, Donald

    1984-01-01

    Unemployment in the United States can only be made worse by continued high levels of legal immigration. Especially serious is the threat from Latin America. We must help developing countries halt their population growth and impose a ceiling of 100,000 a year for total immigration to the United States. (RM)

  18. Bilingualism and Academic Achievement

    ERIC Educational Resources Information Center

    Han, Wen-Jui

    2012-01-01

    Using the Early Childhood Longitudinal Study, Kindergarten Cohort, this study examines the role that bilingualism plays in children's academic developmental trajectories during their early school years, with particular attention on the school environment (N = 16,380). Growth-curve results showed that despite starting with lower math scores in…

  19. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  20. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  1. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  2. Leadership Issues: Raising Achievement.

    ERIC Educational Resources Information Center

    Horsfall, Chris, Ed.

    This document contains five papers examining the meaning and operation of leadership as a variable affecting student achievement in further education colleges in the United Kingdom. "Introduction" (Chris Horsfall) discusses school effectiveness studies' findings regarding the relationship between leadership and effective schools, distinguishes…

  3. Achievements or Disasters?

    ERIC Educational Resources Information Center

    Goodwin, MacArthur

    2000-01-01

    Focuses on policy issues that have affected arts education in the twentieth century, such as: interest in discipline-based arts education, influence of national arts associations, and national standards and coordinated assessment. States that whether the policy decisions are viewed as achievements or disasters are for future determination. (CMK)

  4. Achieving True Consensus.

    ERIC Educational Resources Information Center

    Napier, Rod; Sanaghan, Patrick

    2002-01-01

    Uses the example of Vermont's Middlebury College to explore the challenges and possibilities of achieving consensus about institutional change. Discusses why, unlike in this example, consensus usually fails, and presents four demands of an effective consensus process. Includes a list of "test" questions on successful collaboration. (EV)

  5. School Students' Science Achievement

    ERIC Educational Resources Information Center

    Shymansky, James; Wang, Tzu-Ling; Annetta, Leonard; Everett, Susan; Yore, Larry D.

    2013-01-01

    This paper is a report of the impact of an externally funded, multiyear systemic reform project on students' science achievement on a modified version of the Third International Mathematics and Science Study (TIMSS) test in 33 small, rural school districts in two Midwest states. The systemic reform effort utilized a cascading leadership strategy…

  6. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  7. Assessing Handwriting Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Teachers in the school setting need to emphasize quality handwriting across the curriculum. Quality handwriting means that the written content is easy to read in either manuscript or cursive form. Handwriting achievement can be assessed, but not compared to the precision of assessing basic addition, subtraction, multiplication, and division facts.…

  8. Intelligence and Educational Achievement

    ERIC Educational Resources Information Center

    Deary, Ian J.; Strand, Steve; Smith, Pauline; Fernandes, Cres

    2007-01-01

    This 5-year prospective longitudinal study of 70,000+ English children examined the association between psychometric intelligence at age 11 years and educational achievement in national examinations in 25 academic subjects at age 16. The correlation between a latent intelligence trait (Spearman's "g"from CAT2E) and a latent trait of educational…

  9. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  10. NCLB: Achievement Robin Hood?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2008-01-01

    In his "Wall Street Journal" op-ed on the 25th of anniversary of "A Nation At Risk", former assistant secretary of education Chester E. Finn Jr. applauded the report for turning U.S. education away from equality and toward achievement. It was not surprising, then, that in mid-2008, Finn arranged a conference to examine the potential "Robin Hood…

  11. Achieving All Our Ambitions

    ERIC Educational Resources Information Center

    Hartley, Tricia

    2009-01-01

    National learning and skills policy aims both to build economic prosperity and to achieve social justice. Participation in higher education (HE) has the potential to contribute substantially to both aims. That is why the Campaign for Learning has supported the ambition to increase the proportion of the working-age population with a Level 4…

  12. INTELLIGENCE, PERSONALITY AND ACHIEVEMENT.

    ERIC Educational Resources Information Center

    MUIR, R.C.; AND OTHERS

    A LONGITUDINAL DEVELOPMENTAL STUDY OF A GROUP OF MIDDLE CLASS CHILDREN IS DESCRIBED, WITH EMPHASIS ON A SEGMENT OF THE RESEARCH INVESTIGATING THE RELATIONSHIP OF ACHIEVEMENT, INTELLIGENCE, AND EMOTIONAL DISTURBANCE. THE SUBJECTS WERE 105 CHILDREN AGED FIVE TO 6.3 ATTENDING TWO SCHOOLS IN MONTREAL. EACH CHILD WAS ASSESSED IN THE AREAS OF…

  13. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  14. Taurine supplementation of plant derived protein 1 and n-3 fatty acids are critical for optimal growth and development of cobia, rachycentron canadum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined growth performance and lipid content in juvenile cobia, Rachycentron canadum, fed a taurine supplemented (1.5%), plant protein based diet with two fish oil replacements. The first fish oil replacement was a thraustochytrid meal (TM+SOY) plus soybean oil (~9% CL) and the second was a cano...

  15. On-line optimal control for fed-batch culture of baker's yeast production

    SciTech Connect

    Wu, W.T.; Chen, K.C.; Chiou, H.W.

    1985-05-01

    A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved. 11 references.

  16. How much detail and accuracy is required in plant growth sub-models to address questions about optimal management strategies in agricultural systems?

    PubMed Central

    Renton, Michael

    2011-01-01

    Background and aims Simulations that integrate sub-models of important biological processes can be used to ask questions about optimal management strategies in agricultural and ecological systems. Building sub-models with more detail and aiming for greater accuracy and realism may seem attractive, but is likely to be more expensive and time-consuming and result in more complicated models that lack transparency. This paper illustrates a general integrated approach for constructing models of agricultural and ecological systems that is based on the principle of starting simple and then directly testing for the need to add additional detail and complexity. Methodology The approach is demonstrated using LUSO (Land Use Sequence Optimizer), an agricultural system analysis framework based on simulation and optimization. A simple sensitivity analysis and functional perturbation analysis is used to test to what extent LUSO's crop–weed competition sub-model affects the answers to a number of questions at the scale of the whole farming system regarding optimal land-use sequencing strategies and resulting profitability. Principal results The need for accuracy in the crop–weed competition sub-model within LUSO depended to a small extent on the parameter being varied, but more importantly and interestingly on the type of question being addressed with the model. Only a small part of the crop–weed competition model actually affects the answers to these questions. Conclusions This study illustrates an example application of the proposed integrated approach for constructing models of agricultural and ecological systems based on testing whether complexity needs to be added to address particular questions of interest. We conclude that this example clearly demonstrates the potential value of the general approach. Advantages of this approach include minimizing costs and resources required for model construction, keeping models transparent and easy to analyse, and ensuring the model

  17. Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control

    SciTech Connect

    Beronio, P.B. Jr. . Amoco Research Center); Tsao, G.T. . Lab. of Renewable Resources Engineering)

    1993-12-01

    Production of 2,3-butanediol by Klebsiella oxytoca is influenced by the degree of oxygen limitation. During batch culture studies, two phases of growth are observed: energy-coupled growth, during which cell growth and oxygen supply are coupled; and, energy-uncoupled growth, which arises when the degree of oxygen limitation reaches a critical value. Optimal 2,3-butanediol productivity occurs during the energy-coupled growth phase. In this article, a control system which maintains the batch culture at a constant level of oxygen limitation in the energy-coupled growth regime has been designed. Control, which involves feedback control on the oxygen transfer coefficient, is achieved by continually increasing the partial pressure of oxygen in the feed gas, which in turn continually increases the oxygen transfer rate. Control has resulted in a balanced state of growth, a repression of ethanol formation, and an increase in 2,3-butanediol productivity of 18%.

  18. A Novel Method to Achieve Grain Refinement in Aluminum

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Jiang, Haiyan; Wang, QuDong; Ye, Bing; Ding, Wenjiang

    2016-10-01

    A significant grain refinement of pure aluminum is achieved upon addition of TiCN nanoparticles (NPs). Unlike the conventional inoculation, NPs can induce the physical growth restriction through the formation of NP layer on the growing grain surface. An analytical model is developed to quantitatively account for the NP effects on grain growth. The NP-induced growth control can overcome the inherent limitations of inoculation and shed light on a potential method to achieve grain refinement.

  19. Project ACHIEVE final report

    SciTech Connect

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  20. Treatment of Escherichia coli O157:H7 with lactic acid, neutralized electrolyzed oxidizing water and chlorine dioxide followed by growth under sub-optimal conditions of temperature, pH and modified atmosphere.

    PubMed

    Smigic, Nada; Rajkovic, Andreja; Antal, Eszter; Medic, Helga; Lipnicka, Barbara; Uyttendaele, Mieke; Devlieghere, Frank

    2009-09-01

    The utilization of sub-lethal decontamination treatments gains more and more interest due to the increased consumers' demand for fresh, minimally processed and convenient food products. These products rely on cold chain and hurdle (combination) technology to provide microbiological safety and quality during their shelf life. To investigate the ability of surviving cells to resuscitate and grow in a food simulating environment, sub-lethal decontamination treatments were coupled with subsequent storage under sub-optimal growth conditions. For this purpose chlorine dioxide (ClO2) and neutralized electrolyzed oxidizing water (NEW)-treated cultures of Escherichia coli O157:H7 were inoculated in TSB-YE of pH 5.8 and aw 0.99, and stored at 10 degrees C, 12.5 degrees C and 15 degrees C, under four different atmospheres (0%, 30% and 60% CO2 balanced with N2, and air). Due to the severity of injury, lactic acid-treated cells were inoculated in TSB-YE pH 7.0. Data obtained reveal that the fraction of sub-lethally injured E. coli O157:H7 undergoes an additional inhibitory effect during the storage period under of sub-optimal conditions. Observed extension in the lag growth phase was a direct consequence prior sub-lethal injury. The effects of liquid ClO2 and NEW were less pronounced in comparison to lactic acid. The current study signifies the potential utilization of appropriate combination of different extrinsic and intrinsic factors in the elimination or growth inhibition of food-borne pathogens.

  1. Sustaining School Achievement in California's Elementary Schools after State Monitoring

    ERIC Educational Resources Information Center

    McCabe, Molly

    2010-01-01

    This study examined the Academic Performance Index (API) and Adequate Yearly Progress (AYP) achievement trends between 2004 and 2006 of 58 California public elementary schools after exiting state monitoring and investigated practices for sustaining consistent achievement growth. Statistical methods were used to analyze statewide achievement trends…

  2. Does achievement motivation mediate the semantic achievement priming effect?

    PubMed

    Engeser, Stefan; Baumann, Nicola

    2014-10-01

    The aim of our research was to understand the processes of the prime-to-behavior effects with semantic achievement primes. We extended existing models with a perspective from achievement motivation theory and additionally used achievement primes embedded in the running text of excerpts of school textbooks to simulate a more natural priming condition. Specifically, we proposed that achievement primes affect implicit achievement motivation and conducted pilot experiments and 3 main experiments to explore this proposition. We found no reliable positive effect of achievement primes on implicit achievement motivation. In light of these findings, we tested whether explicit (instead of implicit) achievement motivation is affected by achievement primes and found this to be the case. In the final experiment, we found support for the assumption that higher explicit achievement motivation implies that achievement priming affects the outcome expectations. The implications of the results are discussed, and we conclude that primes affect achievement behavior by heightening explicit achievement motivation and outcome expectancies. PMID:24820250

  3. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent.

    PubMed

    Wu, Yin-Hu; Li, Xin; Yu, Yin; Hu, Hong-Ying; Zhang, Tian-Yuan; Li, Feng-Min

    2013-09-01

    Microalgal growth is the key to the coupled system of wastewater treatment and microalgal biomass production. In this study, Monod model, Droop model and Steele model were incorporated to obtain an integrated growth model describing the combined effects of nitrogen, phosphorus and light intensity on the growth rate of Scenedesmus sp. LX1. The model parameters were obtained via fitting experimental data to these classical models. Furthermore, the biomass production of Scenedesmus sp. LX1 in open pond under nutrient level of secondary effluent was analyzed based on the integrated model, predicting a maximal microalgal biomass production rate about 20 g m(-2) d(-1). In order to optimize the biomass production of open pond the microalgal biomass concentration, light intensity on the surface of open pond, total depth of culture medium and hydraulic retention time should be 500 g m(-3), 16,000 lx, 0.2 m and 5.2 d in the conditions of this study, respectively. PMID:23891148

  4. The Cytoplasmic Carbonic Anhydrases βCA2 and βCA4 Are Required for Optimal Plant Growth at Low CO21[OPEN

    PubMed Central

    Quebedeaux, Jennifer C.; Longstreth, David J.

    2016-01-01

    Carbonic anhydrases (CAs) are zinc metalloenzymes that interconvert CO2 and HCO3−. In plants, both α- and β-type CAs are present. We hypothesize that cytoplasmic βCAs are required to modulate inorganic carbon forms needed in leaf cells for carbon-requiring reactions such as photosynthesis and amino acid biosynthesis. In this report, we present evidence that βCA2 and βCA4 are the two most abundant cytoplasmic CAs in Arabidopsis (Arabidopsis thaliana) leaves. Previously, βCA4 was reported to be localized to the plasma membrane, but here, we show that two forms of βCA4 are expressed in a tissue-specific manner and that the two proteins encoded by βCA4 localize to two different regions of the cell. Comparing transfer DNA knockout lines with wild-type plants, there was no reduction in the growth rates of the single mutants, βca2 and βca4. However, the growth rate of the double mutant, βca2βca4, was reduced significantly when grown at 200 μL L−1 CO2. The reduction in growth of the double mutant was not linked to a reduction in photosynthetic rate. The amino acid content of leaves from the double mutant showed marked reduction in aspartate when compared with the wild type and the single mutants. This suggests the cytoplasmic CAs play an important but not previously appreciated role in amino acid biosynthesis. PMID:26993617

  5. Taurine supplementation of plant derived protein and n-3 fatty acids are critical for optimal growth and development of cobia, Rachycentron canadum.

    PubMed

    Watson, Aaron M; Barrows, Frederic T; Place, Allen R

    2013-09-01

    We examined growth performance and the lipid content in juvenile cobia, Rachycentron canadum, fed a taurine supplemented (1.5 %), plant protein based diet with two fish oil replacements. The first fish oil replacement was a thraustochytrid meal (TM + SOY) plus soybean oil (~9 % CL) and the second was a canola oil supplemented with the essential fatty acids (EFA) docosahexaenoic acid (DHA) and arachidonic acid (ARA) (~8 % CL). The diet using the thraustochytrid meal plus soybean oil performed equivalently to the fish oil diet; both resulting in significantly higher growth rates, lower feed conversion ratios, and higher survival than the supplemented canola oil diet, even though all three diets were similar in overall energy and met known protein and lipid requirements for cobia. The poor performance of the canola oil diet was attributed to insufficient addition of EFA in the supplemented canola oil source. Increasing levels of EFA in the supplemented canola oil above 0.5 g EFA kg(-1) would likely improve results with cobia. When fish fed either of the fish oil replacement diets were switched to the fish oil control diet, fatty acid profiles of the fillets were observed to transition toward that of the fish oil diet and could be predicted based on a standard dilution model. Based on these findings, a formulated diet for cobia can be produced without fish products providing 100 % survivorship, specific growth rates greater than 2.45 and feed conversion ratios less than 1.5, as long as taurine is added and EFA levels are above 0.5 g EFA kg(-1).

  6. Quantification of human epidermal growth factor receptor 2 immunohistochemistry using the Ventana Image Analysis System: correlation with gene amplification by fluorescence in situ hybridization: the importance of instrument validation for achieving high (>95%) concordance rate.

    PubMed

    Dennis, Jake; Parsa, Rezvaneh; Chau, Donnie; Koduru, Prasad; Peng, Yan; Fang, Yisheng; Sarode, Venetia Rumnong

    2015-05-01

    The use of computer-based image analysis for scoring human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) has gained a lot of interest recently. We investigated the performance of the Ventana Image Analysis System (VIAS) in HER2 quantification by IHC and its correlation with fluorescence in situ hybridization (FISH). We specifically compared the 3+ IHC results using the manufacturer's machine score cutoffs versus laboratory-defined cutoffs with the FISH assay. Using the manufacturer's 3+ cutoff (VIAS score; 2.51 to 3.5), 181/536 (33.7%) were scored 3+, and FISH was positive in 147/181 (81.2%), 2 (1.1%) were equivocal, and 32 (17.6%) were FISH (-). Using the laboratory-defined 3+ cutoff (VIAS score 3.5), 52 (28.7%) cases were downgraded to 2+, of which 29 (55.7%) were FISH (-), and 23 (44.2%) were FISH (+). With the revised cutoff, there were improvements in the concordance rate from 89.1% to 97.0% and in the positive predictive value from 82.1% to 97.6%. The false-positive rate for 3+ decreased from 9.0% to 0.8%. Six of 175 (3.4%) IHC (-) cases were FISH (+). Three cases with a VIAS score 3.5 showed polysomy of chromosome 17. In conclusion, the VIAS may be a valuable tool for assisting pathologists in HER2 scoring; however, the positive cutoff defined by the manufacturer is associated with a high false-positive rate. This study highlights the importance of instrument validation/calibration to reduce false-positive results.

  7. Population growth and economic growth.

    PubMed

    Narayana, D L

    1984-01-01

    the exponential growth of population as the source of several complications for economic growth and human welfare. Stabilization of population by reducing fertility is conducive for improving the quality of population and also advances the longterm management of the population growth and work force utilization. The perspective of longterm economic management involves populatio n planning, control of environmental pollution, conservation of scarce resources, exploration of resources, realization of technological possibilities in agriculture and industry and in farm and factory, and achievement of economic growth and its equitable distribution.

  8. Population growth and economic growth.

    PubMed

    Narayana, D L

    1984-01-01

    the exponential growth of population as the source of several complications for economic growth and human welfare. Stabilization of population by reducing fertility is conducive for improving the quality of population and also advances the longterm management of the population growth and work force utilization. The perspective of longterm economic management involves populatio n planning, control of environmental pollution, conservation of scarce resources, exploration of resources, realization of technological possibilities in agriculture and industry and in farm and factory, and achievement of economic growth and its equitable distribution. PMID:12314595

  9. Plant-atmosphere interactions and effects of elevated carbon dioxide on growth and photosynthesis of black cottonwood at ambient and optimal nutrient supply

    SciTech Connect

    Thorgeirsson, H.; Sigurdsson, B.D.

    1995-06-01

    In 1990 a 14 ha stand of black cottonwood was planted on an exposed site in Gunnarsholt in south Iceland to investigate the long-term modification of microclimate as tree canopy develops on an exposed site and the effects of microclimate on tree physiology and growth. The homogenous treeless surroundings of the site provide excellent fetch and meet the most stringent criteria of energy balance models. Site energy balance is partitioned using the Bowen ratio approach based on data from both a reversing temperature difference measurement system and a fixed profile system. Key characteristics of the site energy balance and microclimate will be presented. In the beginning of the 1994 growing season a five-year study of the interaction between nutrient supply and elevated carbon dioxide was initiated using sixteen trees enclosed individually in chambers and given either 350 or 700 ppm carbon dioxide and either ambient or optimum nutrition in a randomized block design. Reference trees are used to determine the effect of the chambers which is significant on exposed sites due to sheltering effects. Growth of the trees was monitored non-destructively. Photosynthetic rates, light response and A/C{sub i} curves were determined on selected leaves. Examples of results from the first growing season will be presented.

  10. Conserved histidine of metal transporter AtNRAMP1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures.

    PubMed

    Ihnatowicz, Anna; Siwinska, Joanna; Meharg, Andrew A; Carey, Manus; Koornneef, Maarten; Reymond, Matthieu

    2014-06-01

    Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown. Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (G × E interaction) was identified. Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4°C. Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this G × E interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.

  11. Expert system for controlling plant growth in a contained environment

    NASA Technical Reports Server (NTRS)

    May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)

    2009-01-01

    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an ''expert system'' which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the ''expert system'' remotely, to assess activity within the growth chamber, and can override the ''expert system''.

  12. Expert system for controlling plant growth in a contained environment

    NASA Technical Reports Server (NTRS)

    May, George A. (Inventor); Lanoue, Mark Allen (Inventor); Bethel, Matthew (Inventor); Ryan, Robert E. (Inventor)

    2011-01-01

    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system".

  13. Tailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface.

    PubMed

    Xiu, Peng; Jia, Zhaojun; Lv, Jia; Yin, Chuan; Cheng, Yan; Zhang, Ke; Song, Chunli; Leng, Huijie; Zheng, Yufeng; Cai, Hong; Liu, Zhongjun

    2016-07-20

    3D printed porous titanium (Ti) holds enormous potential for load-bearing orthopedic applications. Although the 3D printing technique has good control over the macro-sturctures of porous Ti, the surface properties that affect tissue response are beyond its control, adding the need for tailored surface treatment to improve its osseointegration capacity. Here, the one step microarc oxidation (MAO) process was applied to a 3D printed porous Ti6Al4V (Ti64) scaffold to endow the scaffold with a homogeneous layer of microporous TiO2 and significant amounts of amorphous calcium-phosphate. Following the treatment, the porous Ti64 scaffolds exhibited a drastically improved apatite forming ability, cyto-compatibility, and alkaline phosphatase activity. In vivo test in a rabbit model showed that the bone in-growth at the untreated scaffold was in a pattern of distance osteogenesis by which bone formed only at the periphery of the scaffold. In contrast, the bone in-growth at the MAO-treated scaffold exhibited a pattern of contact osteogenesis by which bone formed in situ on the entire surface of the scaffold. This pattern of bone in-growth significantly increased bone formation both in and around the scaffold possibly through enhancement of bone formation and disruption of bone remodeling. Moreover, the implant surface of the MAO-treated scaffold interlocked with the bone tissues through the fabricated microporous topographies to generate a stronger bone/implant interface. The increased osteoinetegration strength was further proven by a push out test. MAO exhibits a high efficiency in the enhancement of osteointegration of porous Ti64 via optimizing the patterns of bone in-growth and bone/implant interlocking. Therefore, post-treatment of 3D printed porous Ti64 with MAO technology might open up several possibilities for the development of bioactive customized implants in orthopedic applications. PMID:27341499

  14. Tailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface.

    PubMed

    Xiu, Peng; Jia, Zhaojun; Lv, Jia; Yin, Chuan; Cheng, Yan; Zhang, Ke; Song, Chunli; Leng, Huijie; Zheng, Yufeng; Cai, Hong; Liu, Zhongjun

    2016-07-20

    3D printed porous titanium (Ti) holds enormous potential for load-bearing orthopedic applications. Although the 3D printing technique has good control over the macro-sturctures of porous Ti, the surface properties that affect tissue response are beyond its control, adding the need for tailored surface treatment to improve its osseointegration capacity. Here, the one step microarc oxidation (MAO) process was applied to a 3D printed porous Ti6Al4V (Ti64) scaffold to endow the scaffold with a homogeneous layer of microporous TiO2 and significant amounts of amorphous calcium-phosphate. Following the treatment, the porous Ti64 scaffolds exhibited a drastically improved apatite forming ability, cyto-compatibility, and alkaline phosphatase activity. In vivo test in a rabbit model showed that the bone in-growth at the untreated scaffold was in a pattern of distance osteogenesis by which bone formed only at the periphery of the scaffold. In contrast, the bone in-growth at the MAO-treated scaffold exhibited a pattern of contact osteogenesis by which bone formed in situ on the entire surface of the scaffold. This pattern of bone in-growth significantly increased bone formation both in and around the scaffold possibly through enhancement of bone formation and disruption of bone remodeling. Moreover, the implant surface of the MAO-treated scaffold interlocked with the bone tissues through the fabricated microporous topographies to generate a stronger bone/implant interface. The increased osteoinetegration strength was further proven by a push out test. MAO exhibits a high efficiency in the enhancement of osteointegration of porous Ti64 via optimizing the patterns of bone in-growth and bone/implant interlocking. Therefore, post-treatment of 3D printed porous Ti64 with MAO technology might open up several possibilities for the development of bioactive customized implants in orthopedic applications.

  15. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  16. Optimal husbandry of hatchling Eastern Indigo Snakes (Drymarchon couperi) during a captive head-start program.

    PubMed

    Wines, Michael P; Johnson, Valerie M; Lock, Brad; Antonio, Fred; Godwin, James C; Rush, Elizabeth M; Guyer, Craig

    2015-01-01

    Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711 g of prey, and displayed constant growth for individuals exceeding 1711 g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes. PMID:25866094

  17. Optimal husbandry of hatchling Eastern Indigo Snakes (Drymarchon couperi) during a captive head-start program.

    PubMed

    Wines, Michael P; Johnson, Valerie M; Lock, Brad; Antonio, Fred; Godwin, James C; Rush, Elizabeth M; Guyer, Craig

    2015-01-01

    Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711 g of prey, and displayed constant growth for individuals exceeding 1711 g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes.

  18. Optimal disturbances in shearing and swirling flows

    NASA Astrophysics Data System (ADS)

    Daly, Conor

    2011-11-01

    Over the past twenty years transient energy density growth of linearly stable disturbances has shown to be the likely instigator for transition to turbulence in parallel shear flows. In this vein, optimal linear perturbations are calculated for two flows which have a mixture of forces acting on the fluid body. These are; rotating plane Couette flow (RPCF), which combines pressure-driven shear and swirl, and cylindrical Couette-Poiseuille flow (CCPF), which combines pressure-driven and Couette shear. Contours are presented of the maximum achievable linear transient growth, G, over the full range of wavenumbers within the linearly stable parameter regimes. Reference is made to experimental works on each flow and we examine the role that optimal disturbances have in the different transition phenomena that are observed. It is found that the contours of G fall qualitatively alongside the points of transition in the two flows, in support of the notion that large linear transient growth can act a precursor to transition. Despite the combination of effects acting on each fluid, transition in both flows falls in the range 102 < G <10 2 . 5 suggesting that in both flows the same mechanism may be at work. This work is funded by EPSRC.

  19. Achievement Goals and Achievement Emotions: A Meta-Analysis

    ERIC Educational Resources Information Center

    Huang, Chiungjung

    2011-01-01

    This meta-analysis synthesized 93 independent samples (N = 30,003) in 77 studies that reported in 78 articles examining correlations between achievement goals and achievement emotions. Achievement goals were meaningfully associated with different achievement emotions. The correlations of mastery and mastery approach goals with positive achievement…

  20. Growth hormone and growth?

    PubMed

    Harvey, Steve

    2013-09-01

    Pituitary GH is obligatory for normal growth in mammals, but the importance of pituitary GH in avian growth is less certain. In birds, pituitary GH is biologically active and has growth promoting actions in the tibia-test bioassay. Its importance in normal growth is indicated by the growth suppression following the surgical removal of the pituitary gland or after the immunoneutralization of endogenous pituitary GH. The partial restoration of growth in some studies with GH-treated hypophysectomized birds also suggests GH dependency in avian growth, as does the dwarfism that occurs in some strains with GHR dysfunctions. Circulating GH concentrations are also correlated with body weight gain, being high in young, rapidly growing birds and low in slower growing older birds. Nevertheless, despite these observations, there is an extensive literature that concludes pituitary GH is not important in avian growth. This is based on numerous studies with hypophysectomized and intact birds that show only slight, transitory or absent growth responses to exogenous GH-treatment. Moreover, while circulating GH levels correlate with weight gain in young birds, this may merely reflect changes in the control of pituitary GH secretion during aging, as numerous studies involving experimental alterations in growth rate fail to show positive correlations between plasma GH concentrations and the alterations in growth rate. Furthermore, growth is known to occur in the absence of pituitary GH, as most embryonic development occurs prior to the ontogenetic appearance of pituitary somatotrophs and the appearance of GH in embryonic circulation. Early embryonic growth is also independent of the endocrine actions of pituitary GH, since removal of the presumptive pituitary gland does not impair early growth. Embryonic growth does, however, occur in the presence of extrapituitary GH, which is produced by most tissues and has autocrine or paracrine roles that locally promote growth and development