Science.gov

Sample records for achieving transformational materials

  1. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema

    John Sarrao

    2016-07-12

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  2. Transformational School Leadership Effects on Student Achievement

    ERIC Educational Resources Information Center

    Sun, Jingping; Leithwood, Kenneth

    2012-01-01

    Based on a synthesis of unpublished transformational school leadership (TSL) research completed during the last 14 years, this study inquired into the nature of TSL and its effects on student achievement using review methods including standard meta-analysis and vote-counting techniques. Results identify a wider range of TSL practices than…

  3. Overlapping illusions by transformation optics without any negative refraction material

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2016-01-01

    A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.

  4. Materials Science and Technology, Volume 5, Phase Transformations in Materials

    NASA Astrophysics Data System (ADS)

    Haasen, Peter

    1996-12-01

    This volume covers phase transformations, a general phenomenon central to understanding the behavior of materials and to creating high-performance materials. From the Contents: Pelton: Thermodynamics and Phase Diagrams of Materials. Murch: Diffusion in Crystalline Solids. Binder: Statistical Theories of Phase Transitions/Spinodal Decomposition. Wagner/Kampmann: Homogeneous Second Phase Precipitation. Purdy: Transformations Involving Interfacial Diffusion. Delaey: Diffusionless Transformations. Ruoff: High Pressure Phase Transformations. Pitsch/Inden: Atomic Ordering. Müller- Krumbhaar/Kurz: Solidification.

  5. Steps toward Transformation: One College's Achieving the Dream Story

    ERIC Educational Resources Information Center

    Wilson, Dawna; Bower, Beverly L.

    2016-01-01

    Tarrant County College's Achieving the Dream transformation has not only changed the college but all who engaged in the initiative. In four years, through ATD TCC became a college with one purpose, one goal, and one focus--student success through data informed decision making. From TCC Chancellor Dr. Erma Johnson Hadley to campus administrators,…

  6. The Effects of Integrated Transformational Leadership on Achievement

    ERIC Educational Resources Information Center

    Boberg, John Eric; Bourgeois, Steven J.

    2016-01-01

    Purpose: Greater understanding about how variables mediate the relationship between leadership and achievement is essential to the success of reform efforts that hold leaders accountable for student learning. The purpose of this paper is to test a model of integrated transformational leadership including three important school mediators.…

  7. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  8. Preparation of Reference Material 8504, Transformer Oil.

    PubMed

    Poster, Dianne L; Schantz, Michele M; Wise, Stephen A

    2005-01-01

    A new reference material (RM), RM 8504, has been prepared for use as a diluent oil with Aroclors in transformer oil Standard Reference Materials (SRMs) 3075 to 3080 and SRM 3090 when developing and validating methods for the determination of polychlorinated biphenyls (PCBs) as Aroclors in transformer oil or similar matrices. SRMs 3075-3080 and SRM 3090 consist of individual Aroclors in the same transformer oil that was used to prepare RM 8504. A unit of RM 8504 consists of one bottle containing approximately 100 mL of transformer oil. No additional constituents have been added to the oil.

  9. Transforming Space in the Curriculum Materials Center

    ERIC Educational Resources Information Center

    Teel, Linda

    2013-01-01

    Transforming space to facilitate and compliment learning has become an integral component in the redesign and renovation of academic libraries. This article offers a framework of discussion based on the redesign and renovation of the existing curriculum materials center at East Carolina University Joyner Library. The curriculum materials center,…

  10. Achievement Plus: A Partnership to Transform Underachieving Schools. Brief

    ERIC Educational Resources Information Center

    Wilder Research, 2010

    2010-01-01

    Achievement Plus is a partnership between the Amherst H. Wilder Foundation and the Saint Paul Public Schools to improve the academic achievement of low-income children in Saint Paul urban schools. Developed in 1997, Achievement Plus integrates the school community, families, and the resources of public and private organizations to ensure academic…

  11. NSF ADVANCE: Institutional Transformation to Achieve Faculty Diversity

    NASA Astrophysics Data System (ADS)

    Anthony, E. Y.

    2004-12-01

    The NSF ADVANCE initiative is designed to enhance gender equity in academic science and engineering faculty. One of its components - Institutional Transformation - has the goal of establishing strategies and policies that will revolutionize institutional climate so that diverse faculty flourish. The University of Texas at El Paso is one of 19 institutions to currently hold a 5-year grant under the Institutional Transformation program. This poster presentation highlights practices from the participating institutions. Two general aspects of the program are: 1) co-principal investigators are a blend of administrators and active researchers. This blend ensures a bottom-up, top-down approach to presenting gender equity to faculty. 2) Many of the investigators have diversity as their research focus, which is intended to result in rigorous, peer-reviewed dissemination of institutional results. Specific effors for all institutions relate to recruitment, retention, and advancement of female faculty and, by establishing equitable conditions, to improvement of the workplace for all faculty. To aid recruitment, institutions have committed faculty involved in the search process, including training of search committees in diversity strategies and interaction with candidates. A close working relationship with the campus EO officer is essential. Retention strategies center on mentoring, monetary support for research, and policy implementation. Policies focus on work-family balance. Advancement of females to important administrative and non-administrative leadership roles is the third focus. Workshops and seminars on leadership skills are common in the various institutions. Finally, a central theme of the program is that, in addition to specific strategies, institutions must articulate diversity as a core value and reflect on the means to actualize this value. More information on the NSF ADVANCE program, including links to the Institutional Transformation grantees, may be found on

  12. Transformations: Immigration, Family Life, and Achievement Motivation among Latino Adolescents.

    ERIC Educational Resources Information Center

    Suarez-Orozco, Carola; Suarez-Orozco, Marcelo

    Focusing on the ethnic identity and achievement motivation of adolescents, this book reports on a study of Mexican-origin and Anglo American adolescents and sets it in sociopolitical, theoretical, ethnohistorical, and demographic contexts. The opening chapters examine public malaise over immigration and ethnic diversification in the United States…

  13. Design and material selection for inverter transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    Report is announced which studied magnetic properties of candidate materials for use in spacecraft transformers, static inverters, converters, and transformer-rectifier power supplies. Included are material characteristics for available alloy compositions in tabular form, including: trade names, saturated flux density, dc coercive force, loop squareness, material density, and watts per pound at 3 KHz.

  14. Transforming wealth: using the inverse hyperbolic sine (IHS) and splines to predict youth's math achievement.

    PubMed

    Friedline, Terri; Masa, Rainier D; Chowa, Gina A N

    2015-01-01

    The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement.

  15. Changing Apples into Pears--Transforming Existing Materials.

    ERIC Educational Resources Information Center

    Davis, Hayley J.; Smith, Alison J.

    1996-01-01

    Describes how the prereading material for an introductory banking course at the Loughborough University Business School (United Kingdom) was transformed into a distance learning package. Highlights include a review of relevant literature; a transformation model; and evaluation of the transformation process and of the distance learning package.…

  16. Comparing the Effects of Instructional and Transformational Leadership on Student Achievement: Implications for Practice

    ERIC Educational Resources Information Center

    Shatzer, Ryan H.; Caldarella, Paul; Hallam, Pamela R.; Brown, Bruce L.

    2014-01-01

    The purpose of this study was to compare transformational and instructional leadership theories, examine the unique impact that school leaders have on student achievement, and determine which specific leadership practices are associated with increased student achievement. The sample for this study consisted of 590 teachers in 37 elementary schools…

  17. Instructional, Transformational, and Managerial Leadership and Student Achievement: High School Principals Make a Difference

    ERIC Educational Resources Information Center

    Valentine, Jerry W.; Prater, Mike

    2011-01-01

    This statewide study examined the relationships between principal managerial, instructional, and transformational leadership and student achievement in public high schools. Differences in student achievement were found when schools were grouped according to principal leadership factors. Principal leadership behaviors promoting instructional and…

  18. Materials for programmed, functional transformation in transient electronic systems.

    PubMed

    Hwang, Suk-Won; Kang, Seung-Kyun; Huang, Xian; Brenckle, Mark A; Omenetto, Fiorenzo G; Rogers, John A

    2015-01-07

    Materials and device designs are presented for electronic systems that undergo functional transformation by a controlled time sequence in the dissolution of active materials and/or encapsulation layers. Demonstration examples include various biocompatible, multifunctional systems with autonomous behavior defined by materials selection and layout.

  19. [Study on path of transforming traditional Chinese medicine research achievement into guideline].

    PubMed

    Zhang, Wen; Xie, Yan-Ming; Yuwen, Ya

    2014-09-01

    At present, a number of scientific research achievements has been formed. Scientific achievement is the crystallization of great efforts from scientific workers, and it's also the valuable treasure of human civilization. Standardization is an important way to promote the international communication of Chinese medicine, and it's significant in boosting China's scientific and technological progress, improving market competitiveness and promoting international trade. Transformation of scientific research to the guideline is not only beneficial to improving the technology content of the standard, but also to the conversion from scientific research achievements into productivity. Therefore, only by absorbing the advanced scientific and technological achievements, reproducing the theory of traditional Chinese medicine (TCM) and medical technology in standard form, can make TCM keep pace with the times. This study preliminarily explores for the method to transform scientific research achievements into guideline, in order to provide reference for the future technical specifications, thus to further the development of TCM.

  20. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1971-01-01

    Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. One of the characteristics in magnetic materials deterimental in transformer design is the residual flux density, which can be additive on turn-on and cause the transformer to saturate. Investigation of this problem led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. The optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  1. The Federal Transformation Intervention Model in Persistently Lowest Achieving High Schools: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Le Patner, Michelle B.

    2012-01-01

    This study examined the American Recovery and Reinvestment Act federal mandate of the Transformation Intervention Model (TIM) outlined by the School Improvement Grant, which was designed to turn around persistently lowest achieving schools. The study was conducted in four high schools in a large Southern California urban district that selected the…

  2. A Transformational Analysis of Low Achievers' Writing at the Ninth and Eleventh Grade Levels.

    ERIC Educational Resources Information Center

    Dupuis, Mary Miles

    This study assesses an analytical process which seeks to describe the writing style of a student in terms of the four basic transformational operations: addition, deletion, combining, and reordering. Application of the process to writing skills of low achievers in English is evaluated. All ninth and eleventh grade students in the Falls Church,…

  3. Transforming Schools with Technology: How Smart Use of Digital Tools Helps Achieve Six Key Education Goals

    ERIC Educational Resources Information Center

    Zucker, Andrew A.

    2008-01-01

    In this timely and thoughtful book, Andrew Zucker argues that technology can and will play a central role in efforts to achieve crucial education goals, and that it will be an essential component of further improvement and transformation of schools. The book is marked not only by Zucker's cutting-edge sophistication about digital technologies, but…

  4. Does Leadership Matter? Examining the Relationship among Transformational Leadership, School Climate, and Student Achievement

    ERIC Educational Resources Information Center

    Allen, Nancy; Grigsby, Bettye; Peters, Michelle L.

    2015-01-01

    The purpose of this correlational study was to examine the relationship between transformational leadership, school climate, and student mathematics and reading achievement. Survey data were collected from a purposeful sample of elementary school principals and a convenience sample of his or her respective teachers located in a small suburban…

  5. School and Community Wellness: Transforming Achievement Using a Holistic Orientation to Learning

    ERIC Educational Resources Information Center

    Oser, Rick; Beck, Ellen; Alvarado, Jose Luis; Pang, Valerie Ooka

    2014-01-01

    A comprehensive school and community wellness plan was developed and implemented to transform "Lemon Grove Academy" for the Sciences and Humanities, an urban school, where student achievement and faculty satisfaction has soared. The school has become the center for the local neighborhood where culture, language, and equity are valued.…

  6. Structural transformation in monolayer materials: a 2D to 1D transformation.

    PubMed

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  7. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    A program to study magnetic materials is described for use in spacecraft transformers used in static inverters, converters, and transformer-rectifier supplies. Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. The materials evaluated were the magnetic alloys: (1) 50% Ni, 50% Fe; (2) 79% Ni, 17% Fe, 4% Mo; (3) 48% Ni, 52% Fe; (4) 78% Ni, 17% Fe, 5% Mo; and (5) 3% Si, 97% Fe. Investigations led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. When the data of many transformers in many configurations were compiled the optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  8. Enhanced reversibility and unusual microstructure of a phase-transforming material.

    PubMed

    Song, Yintao; Chen, Xian; Dabade, Vivekanand; Shield, Thomas W; James, Richard D

    2013-10-03

    Materials undergoing reversible solid-to-solid martensitic phase transformations are desirable for applications in medical sensors and actuators, eco-friendly refrigerators and energy conversion devices. The ability to pass back and forth through the phase transformation many times without degradation of properties (termed 'reversibility') is critical for these applications. Materials tuned to satisfy a certain geometric compatibility condition have been shown to exhibit high reversibility, measured by low hysteresis and small migration of transformation temperature under cycling. Recently, stronger compatibility conditions called the 'cofactor conditions' have been proposed theoretically to achieve even better reversibility. Here we report the enhanced reversibility and unusual microstructure of the first martensitic material, Zn45Au30Cu25, that closely satisfies the cofactor conditions. We observe four striking properties of this material. (1) Despite a transformation strain of 8%, the transformation temperature shifts less than 0.5 °C after more than 16,000 thermal cycles. For comparison, the transformation temperature of the ubiquitous NiTi alloy shifts up to 20 °C in the first 20 cycles. (2) The hysteresis remains approximately 2 °C during this cycling. For comparison, the hysteresis of the NiTi alloy is up to 70 °C (refs 9, 12). (3) The alloy exhibits an unusual riverine microstructure of martensite not seen in other martensites. (4) Unlike that of typical polycrystal martensites, its microstructure changes drastically in consecutive transformation cycles, whereas macroscopic properties such as transformation temperature and latent heat are nearly reproducible. These results promise a concrete strategy for seeking ultra-reliable martensitic materials.

  9. Subpixel shift with Fourier transform to achieve efficient and high-quality image interpolation

    NASA Astrophysics Data System (ADS)

    Chen, Qin-Sheng; Weinhous, Martin S.

    1999-05-01

    A new approach to image interpolation is proposed. Different from the conventional scheme, the interpolation of a digital image is achieved with a sub-unity coordinate shift technique. In the approach, the original image is first shifted by sub-unity distances matching the locations where the image values need to be restored. The original and the shifted images are then interspersed together, yielding an interpolated image. High quality sub-unity image shift which is crucial to the approach is accomplished by implementing the shift theorem of Fourier transformation. It is well known that under the Nyquist sampling criterion, the most accurate image interpolation can be achieved with the interpolating function (sinc function). A major drawback is its computation efficiency. The present approach can achieve an interpolation quality as good as that with the sinc function since the sub-unity shift in Fourier domain is equivalent to shifting the sinc function in spatial domain, while the efficiency, thanks to the fast Fourier transform, is very much improved. In comparison to the conventional interpolation techniques such as linear or cubic B-spline interpolation, the interpolation accuracy is significantly enhanced. In order to compensate for the under-sampling effects in the interpolation of 3D medical images owing to a larger inter-slice distance, proper window functions were recommended. The application of the approach to 2- and 3-D CT and MRI images produced satisfactory interpolation results.

  10. Transformation of Printed Course Materials into Self Instructional Materials (SIMs): Some Basic Issues.

    ERIC Educational Resources Information Center

    Rausaria, R. R.; Bhushan, Bharat

    2001-01-01

    Discussion of the use of self-instructional materials (SIMs) in distance learning at Indira Gandhi National Open University (IGNOU) and State Open Universities (SOUs) in India. Focuses on the need for Correspondence Course Institutes in conventional Indian universities to transform printed course materials into SIMs. Discusses revision and…

  11. Achieving tunable sensitivity in composite high-energy density materials

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Rashkeev, Sergey

    2017-01-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural point defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  12. Rapid Solidification and Phase Transformations in Additive Manufactured Materials

    DOE PAGES

    Asle Zaeem, Mohsen; Clarke, Amy Jean

    2016-01-14

    Within the past few years, additive manufacturing (AM) has emerged as a promising manufacturing technique to enable the production of complex engineering structures with high efficiency and accuracy. Among the important factors establishing AM as a sustainable manufacturing process is the ability to control the microstructures and properties of AM products. In most AM processes, such as laser sintering (LS), laser melting (LM), and laser metal deposition (LMD), rapid solidification and high-temperature phase transformations play primary roles in determining nano- and microstructures, and consequently the mechanical and other properties of AM products. This topic of JOM is dedicated to summarizingmore » the current research efforts in the area of rapid solidification and phase transformations in additively manufactured materials. Finally, a brief summary follows below of 10 journal articles in this topic.« less

  13. Rapid Solidification and Phase Transformations in Additive Manufactured Materials

    SciTech Connect

    Asle Zaeem, Mohsen; Clarke, Amy Jean

    2016-01-14

    Within the past few years, additive manufacturing (AM) has emerged as a promising manufacturing technique to enable the production of complex engineering structures with high efficiency and accuracy. Among the important factors establishing AM as a sustainable manufacturing process is the ability to control the microstructures and properties of AM products. In most AM processes, such as laser sintering (LS), laser melting (LM), and laser metal deposition (LMD), rapid solidification and high-temperature phase transformations play primary roles in determining nano- and microstructures, and consequently the mechanical and other properties of AM products. This topic of JOM is dedicated to summarizing the current research efforts in the area of rapid solidification and phase transformations in additively manufactured materials. Finally, a brief summary follows below of 10 journal articles in this topic.

  14. Closing the Student Achievement Gap in California's Elementary Schools: A Lead Teachers' Perspective on Transformational Instructional Leadership

    ERIC Educational Resources Information Center

    Hays, Kelli

    2010-01-01

    This study has tackled the thorny problem of closing the Student Achievement Gap (SAG) in California's elementary schools. To address that problem, an "Integrated" form of educational leadership called Transformational Instructional Leadership (TIL), a form grounded in "best practices" of Transformational and Instructional…

  15. What have health care reforms achieved in Turkey? An appraisal of the "Health Transformation Programme".

    PubMed

    Ökem, Zeynep Güldem; Çakar, Mehmet

    2015-09-01

    Poor health status indicators, low quality care, inequity in the access to health services and inefficiency due to fragmented health financing and provision have long been problems in Turkey's health system. To address these problems a radical reform process known as the Health Transformation Programme (HTP) was initiated in 2003. The health sector reforms in Turkey are considered to have been among the most successful of middle-income countries undergoing reform. Numerous articles have been published that review these reforms in terms of, variously, financial sustainability, efficiency, equity and quality. Evidence suggests that Turkey has indeed made significant progress, yet these achievements are uneven among its regions, and their long-term financial sustainability is unresolved due to structural problems in employment. As yet, there is no comprehensive evidence-based analysis of how far the stated reform objectives have been achieved. This article reviews the empirical evidence regarding the outcomes of the HTP during 10 years of its implementation. Strengthening the strategic purchasing function of the Social Security Institution (SSI) should be a priority. Overall performance can be improved by linking resource allocation to provider performance. More emphasis on prevention rather than treatment, with an effective referral chain, can also bring better outcomes, greater efficiency gains and contribute to sustainability.

  16. Accounting for nonlinear material characteristics in modeling ferroresonant transformers

    NASA Astrophysics Data System (ADS)

    Voisine, J. T.

    1985-04-01

    A mathematical model relating core material properties, including nonlinear magnetization characteristics, to the performance of ferroresonant transformers has been developed. In accomplishing this, other factors such as fabrication destruction factors, leakage flux, air gap characteristics, loading, and coil resistances and self-inductances are also accounted for. From a material manufacturer's view, knowing such information facilitates isolating sources of performance variations between units of similar design and is therefore highly desirable. The model predicts the primary induction necessary to establish a specified secondary induction and determines peak induction at other points in the magnetic circuit. A study comparing the model with a transformer indicated that each predicted peak induction was within ±5% of the corresponding measured peak induction. A generalized 4-node magnetic circuit having two shunt paths was chosen and modeled. Such a circuit is easily modified facilitating the analyses of numerous other core designs. A computer program designed to run on an HP-41 programmable calculator was also developed and is briefly described.

  17. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative

    SciTech Connect

    Maxwell, R; Fried, L; Campbell, G; Saab, A; Kotovsky, J; Carter, C; Chang, J

    2009-10-11

    As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear materials are becoming increasingly difficult to replace because manufacturing methods and formulations have evolved in such a way as to render formerly available materials unprofitable, unsafe, or otherwise obsolete. Subtle formulation changes in available materials that occur without the knowledge of the weapons community for proprietary reasons have frequently affected the long-term performance of materials in the nuclear weapon environment. Significant improvements in performance, lifetime, or production cost can be realized with modern synthesis, modeling, and manufacturing methods. For example, there are currently supply and aging issues associated with the insensitive high explosive formulations LX-17 and PBX 9502 that are based on triaminotrinitrobenzene (TATB) and Kel-F, neither of which are commercially available today. Assuring the reliability of the stockpile through surveillance and regularly scheduled Life Extension Programs is an increasingly expensive endeavor. Transforming our current stockpile surveillance--a system based on destructive testing of increasingly valuable assets--to a system based on embedded sensors has a number of potential advantages that include long-term cost savings, reduced risk associated with asset transportation, state-of-health assessments in the field, and active management of the stockpile.

  18. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  19. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    PubMed

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity.

  20. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  1. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  2. Principals' Perspectives on How Transformational, Instructional, and Managerial Leadership Practices Influence Teacher Effectiveness and Student Achievement

    ERIC Educational Resources Information Center

    Fernandez, Julie A.

    2012-01-01

    In the context of a global school reform movement, defining the extent of a principal's influence on teacher effectiveness and student achievement is essential. A principal must be more than a manager, but also a transformational and an instructional leader. This concurrent mix methods study incorporated guided interviews and an online survey…

  3. A Study of Relationship between Principals' Self-Reported Degree of Transformational Leadership and Students' Mathematics and Reading Achievement

    ERIC Educational Resources Information Center

    Onorato, Michael

    2011-01-01

    A non-experimental research study was performed in which the researcher investigated the relationship between principals' use of transformational leadership practices and students' reading and mathematics achievement. A sample of principals from 2,500 randomly selected elementary, middle, and high schools in New York State were recruited by…

  4. Phosphate sludge: thermal transformation and use as lightweight aggregate material.

    PubMed

    Loutou, M; Hajjaji, M; Mansori, M; Favotto, C; Hakkou, R

    2013-11-30

    Phosphate sludge generated from beneficiation plants of Moroccan phosphate rocks was investigated at 900-1200 °C by X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier-transform infrared spectroscopy. Mixtures of the phosphate sludge and a swelling clay (up to 30 wt.%) were investigated and their properties (shrinkage, density, water absorption and compressive strength) were measured as a function of temperature and clay addition. The results showed that gehlenite neoformed from lime of decomposed carbonates and breakdown products of clay minerals and that fluorapatite (original mineral) resisted heating until fusion. The measured properties were mainly controlled by temperature, and the effect of clay addition was less regular, except for water absorption. Considering the mixtures densities (1.44-3.02 g/cm(3)), lightweight agglomerates can be produced at 900 or 1100 °C, but their compressive strengths were relatively low (2-4.5 MPa). Based on SiO2-Al2O3-Fluxes diagram and taking account of the chemical composition of the materials used, the production of expanded aggregates requires clay additions as high as 80 wt.%.

  5. Shoot regeneration of mesophyll protoplasts transformed by Agrobacterium tumefaciens, not achievable with untransformed protoplasts.

    PubMed

    Steffen, A; Eriksson, T; Schieder, O

    1986-04-01

    Alternative methods for shoot regeneration in protoplast derived cultures were developed in Nicotiana paniculata and Physalis minima. In both species protoplast derived callus is not regeneratable to shoots by conventional methods, e.g. hormone treatment. Leaf discs and stem segments of N. paniculata and P. minima were incubated with Agrobacterium tumefaciens "shooter" strains harbouring pGV 2215 or pGV 2298 or wildtype strain B6S3. After 36 h of co-incubation protoplasts were prepared. (Leaf disc and stem segment cloning). Co-cultivation experiments were also undertaken with protoplasts of both species. Transformed clones, characterized by their hormone independent growth and octopine production, could be isolated after about two months. Transformation frequencies of "leaf disc and stem segment cloning" and co-cultivation experiments varied from 5×10(-3) to 5×10(-5). After about one year of cultivation on hormone-free culture medium, shoots could be recovered from colonies of N. paniculata, transformed by the strain harbouring pGV 2298. In protoplast derived colonies of P. minima, shoot induction was obtained only after transformation by bacteria carrying pGV 2215. This demonstrates the importance of the particular "shooter" mutant, as well as the response of the host plant. Transformed shoots of P. minima produced octopine, whereas octopine production in transformed shoots and callus of N. paniculata was undetectable after one year of cultivation, though T-DNA was still present in the plant genome. Transformed shoots of N. paniculata and P. minima do not produce any roots. Shoots of N. paniculata have an especially tumerous phenotype. Shoots of both species were successfully grafted to normal donor plants of N. tabacum.

  6. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010

    SciTech Connect

    Hunt, Warren H.; Brindle, Ross; James, Mallory; Justiniano, Mauricio; Sabouni, Ridah; Seader, Melanie; Ruch, Jennifer; Andres, Howard; Zafar, Muhammad

    2010-06-01

    The Energy Materials Blue Ribbon Panel, representing experts from industry, academia, and government, identifies new materials and processing breakthroughs that could lead to transformational advances in energy efficiency, energy security, and carbon reduction.

  7. The Hands-On Guide to School Improvement: Transform Culture, Empower Teachers, and Raise Student Achievement

    ERIC Educational Resources Information Center

    Randle-Robins, Evelyn

    2016-01-01

    This no-nonsense handbook from a working principal helps school leaders bring transformational change to struggling or underperforming schools. Based on the wisdom and experience gained during the author's years as a teacher and principal in Chicago public schools, the book shows you how to become a visionary leader and build a culture of respect…

  8. Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials

    SciTech Connect

    Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

    2001-04-01

    The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

  9. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  10. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    ERIC Educational Resources Information Center

    Korur, Fikret; Toker, Sacip; Eryilmaz, Ali

    2016-01-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…

  11. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    NASA Astrophysics Data System (ADS)

    Korur, Fikret; Toker, Sacip; Eryılmaz, Ali

    2016-08-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science grade, and pretest scores were analyzed. No significant treatment effects were found between the inquiry and expository approaches. However, both groups demonstrated significant pretest-posttest gains in achievement and attitude. Independent from the method used, ONACOM was judged effective in both groups as students demonstrated increased achievement and attitude scores. ONACOM has a social and semantic network-aided infrastructure that can be adapted to both methods to increase students' achievement and improve their attitude.

  12. Achieving clinical statement interoperability using R-MIM and archetype-based semantic transformations.

    PubMed

    Kilic, Ozgur; Dogac, Asuman

    2009-07-01

    Effective use of electronic healthcare records (EHRs) has the potential to positively influence both the quality and the cost of health care. Consequently, sharing patient's EHRs is becoming a global priority in the healthcare information technology domain. This paper addresses the interoperability of EHR structure and content. It describes how two different EHR standards derived from the same reference information model (RIM) can be mapped to each other by using archetypes, refined message information model (R-MIM) derivations, and semantic tools. It is also demonstrated that well-defined R-MIM derivation rules help tracing the class properties back to their origins when the R-MIMs of two EHR standards are derived from the same RIM. Using well-defined rules also enable finding equivalences in the properties of the source and target EHRs. Yet an R-MIM still defines the concepts at the generic level. Archetypes (or templates), on the other hand, constrain an R-MIM to domain-specific concepts, and hence, provide finer granularity semantics. Therefore, while mapping clinical statements between EHRs, we also make use of the archetype semantics. Derivation statements are inferred from the Web Ontology Language definitions of the RIM, the R-MIMs, and the archetypes. Finally, we show how to transform Health Level Seven clinical statement instances to EHRcom clinical statement instances and vice versa by using the generated mapping definitions.

  13. Specificity of perceptual processing in rereading spatially transformed materials.

    PubMed

    Horton, K D; McKenzie, B D

    1995-05-01

    While most studies using the task of reading spatially transformed text do not reveal evidence of specific perceptual transfer, a study by Masson (1986, Experiment 3) provides clear evidence of such effects. Several experiments were designed to identify the basis for this empirical discrepancy. The only substantive evidence of specific perceptual transfer occurred when the words were presented in an unfamiliar typography, although each study suggested a trend toward perceptual specificity effects. The results are discussed in terms of Graf and Ryan's (1990) ideas about the role of distinctive memory representations.

  14. Classical electrodynamics in material media and relativistic transformation of magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2016-09-01

    We consider the relativistic transformation of the magnetic dipole moment and disclose its physical meaning, shedding light on the related difficulties in the physical interpretation of classical electrodynamics in material media.

  15. Does Transformational Leadership Encourage Teachers' Use of Digital Learning Materials

    ERIC Educational Resources Information Center

    Vermeulen, Marjan; Van Acker, Frederik; Kreijns, Karel; van Buuren, Hans

    2015-01-01

    To gain insight into how to promote teachers' use of digital learning materials (DLMs) in their pedagogical practices we adopted the Integrated Model of Behaviour Prediction to investigate the relationships between organizational and teacher-related variables. A representative sample of 772 teachers from primary, secondary or vocational education…

  16. Chemical and Materials Information Management to Achieve Sustainable Engineering and Design for the 21st Century

    DTIC Science & Technology

    2011-11-01

    Approved for Public Release ; Distribution Unlimited Chemical and Materials Information Management to Achieve Sustainable Engineering and Design for...Data Sources Solution – Distributed Information System Logistics Sustainability Approved for Public Release ; Distribution Unlimited • Single point...currently valid OMB control number. 1. REPORT DATE NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE

  17. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    NASA Astrophysics Data System (ADS)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  18. Modeling the amorphous-to-crystalline phase transformation in network materials

    NASA Astrophysics Data System (ADS)

    Kohary, K.; Burlakov, V. M.; Pettifor, D. G.

    2005-06-01

    We have developed a computationally efficient rate equation model to study transformations between amorphous and crystalline phases of network forming materials. Amorphous and crystalline phases are treated in terms of their atomic ring distributions. The transformation between the two phases is considered to be driven by the conversion of one set of rings into another, following the Wooten-Winer-Weaire bond-switching algorithm. Our rate equation model describes both the generation and collapse of amorphous regions in thin crystalline films, the processes crucial for phase-change data storage materials. It is found that the amorphous spot collapse is assisted by the motion of certain crystal facets.

  19. Materials ``alchemy'': Shape-preserving chemical transformation of micro-to-macroscopic 3-D structures

    NASA Astrophysics Data System (ADS)

    Sandhage, Kenneth H.

    2010-06-01

    The scalable fabrication of nano-structured materials with complex morphologies and tailorable chemistries remains a significant challenge. One strategy for such synthesis consists of the generation of a solid structure with a desired morphology (a “preform”), followed by reactive conversion of the preform into a new chemistry. Several gas/solid and liquid/solid reaction processes that are capable of such chemical conversion into new micro-to-nano-structured materials, while preserving the macroscopic-to-microscopic preform morphologies, are described in this overview. Such shape-preserving chemical transformation of one material into another could be considered a modern type of materials “alchemy.”

  20. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  1. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    SciTech Connect

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  2. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    SciTech Connect

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2007-11-27

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  3. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOEpatents

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  4. Development and Validation of a Materials Preparation Model from the Perspective of Transformative Pedagogy

    ERIC Educational Resources Information Center

    Barjesteh, Hamed; Birjandi, Parviz; Maftoon, Parviz

    2015-01-01

    This study is a report on the design, development, and validation of a model within the main tenets of critical pedagogy (CP) with a hope to implement in education in general and applied linguistics in particular. To develop a transformative L2 materials preparation (TLMP) model, the researchers drew on Crawford's (1978) principles of CP as a…

  5. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  6. Unusual molecular material formed through irreversible transformation and revealed by 4D electron microscopy.

    PubMed

    van der Veen, Renske M; Tissot, Antoine; Hauser, Andreas; Zewail, Ahmed H

    2013-05-28

    Four-dimensional (4D) electron microscopy (EM) uniquely combines the high spatial resolution to pinpoint individual nano-objects, with the high temporal resolution necessary to address the dynamics of their laser-induced transformation. Here, using 4D-EM, we demonstrate the in situ irreversible transformation of individual nanoparticles of the molecular framework Fe(pyrazine)Pt(CN)4. The newly formed material exhibits an unusually large negative thermal expansion (i.e. contraction), which is revealed by time-resolved imaging and diffraction. Negative thermal expansion is a unique property exhibited by only few materials. Here we show that the increased flexibility of the metal-cyanide framework after the removal of the bridging pyrazine ligands is responsible for the negative thermal expansion behavior of the new material. This in situ visualization of single nanostructures during reactions should be extendable to other classes of reactive systems.

  7. Indentation-induced structural phase transformations of semiconductor materials and applications

    NASA Astrophysics Data System (ADS)

    Khayyat, Maha; Sosa, Norma; Chaudhri, M. Munawar; Cavendish laboratory, University of Cambridge Team; T. J. Watson Research Center, IBM Collaboration

    During hardness indentation materials are subjected to highly localized pressures. These pressures may cause a complete change of the crystal structure of the material within the indented zone. Such structural phase transformations were observed within Vickers indentations made at room temperature in single crystals and amorphous films of Si and Ge. However, when indentations were made at 77 K in Si and Ge, no phase transitions were observed in either. Measurements were also taken from indentations made in silicon single crystals at different temperatures namely 263, 243, 235 and 206 K, and they showed a strong correlation of phase transformation with temperature. It was suggested that during room temperature indentations there is a significant temperature rise approximately to 760 K, which may assist phase transformation. Raman spectroscopy was used as an ex-situ tool monitoring phase transformations in semiconductor materials. In-situ electrical characterizations of indentation-induced metallization in single crystals of silicon were performed using two- and four-contact measurements. The previous work has led to a technique relates to semiconductor device manufacturing, including solar cells, which is a method for controlling the removal of a surface layer from a base substrate utilizing low-temperature. KACST is acknowledged for support.

  8. The Effects of Aural versus Notated Instructional Materials on Achievement and Self-Efficacy in Jazz Improvisation

    ERIC Educational Resources Information Center

    Watson, Kevin E.

    2010-01-01

    The purpose of the present study was to investigate the effects of aural versus notated pedagogical materials on achievement and self-efficacy in instrumental jazz improvisation performance. A secondary purpose of this study was to investigate how achievement and self-efficacy may be related to selected experience variables. The sample for the…

  9. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  10. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  11. The Effect of Mathematics Curriculum Materials on the Perceived Behavior of Urban Junior High School Teachers of Low Achievers.

    ERIC Educational Resources Information Center

    Chandler, Arnold Marvin

    This study was designed to assess changes in low achievers' perceptions of classroom climate and junior high teachers' opinions of their teaching practices as a result of introducing a new set of mathematics curriculum materials. Nineteen teachers with two classes each participated. One class of each teacher used the new curriculum materials,…

  12. Effects of a classroom intervention with spatial play materials on children's object and viewer transformation abilities.

    PubMed

    Vander Heyden, Karin M; Huizinga, Mariette; Jolles, Jelle

    2017-02-01

    Children practice their spatial skills when playing with spatial toys, such as construction materials, board games, and puzzles. Sex and SES differences are observed in the engagement in such spatial play activities at home, which relate to individual differences in spatial performance. The current study investigated the effects of explicitly providing spatial play activities in the school setting on different types of spatial ability. We presented 8- to 10-year-old children with a short and easy-to-adopt classroom intervention comprising a set of different spatial play materials. The design involved a pretest-posttest comparison between the intervention group (n = 70) and a control group without intervention (n = 70). Effects were examined on object transformation ability (i.e., a paper-and-pencil mental rotation and paper folding task) and viewer transformation ability (i.e., a hands-on 3D spatial perspective-taking task). Results showed specific effects: there were no differences between the intervention and control group in progress on the two object transformation tasks. Substantial improvements were found for the intervention group compared to the control group on the viewer transformation task. Training progress was not related to sex and socioeconomic background of the child. These findings support the value of spatial play in the classroom for the spatial development of children between 8 and 10 years of age. (PsycINFO Database Record

  13. What Is More Important for Fourth-Grade Primary School Students for Transforming Their Potential into Achievement: The Individual or the Environmental Box in Multidimensional Conceptions of Giftedness?

    ERIC Educational Resources Information Center

    Stoeger, Heidrun; Steinbach, Julia; Obergriesser, Stefanie; Matthes, Benjamin

    2014-01-01

    Multidimensional models of giftedness specify individual and environmental moderators or catalysts that help transform potential into achievement. However, these models do not state whether the importance of the "individual boxes" and the "environmental boxes" changes during this process. The present study examines whether,…

  14. The Relationship between Transformational Leadership Behaviors of Middle School Principals, the Development of Learning Communities, and Student Achievement in Rural Middle Schools in the Mississippi Delta

    ERIC Educational Resources Information Center

    Keys, Mario R., Sr.

    2010-01-01

    The purpose of this study was to examine the relationship between transformational leadership behaviors of middle school principals and the development of learning communities in middle schools in rural areas of Mississippi. Additionally, this study examined the relationship between learning communities and student academic achievement in middle…

  15. Meta-lens design with low permittivity dielectric materials through smart transformation optics

    NASA Astrophysics Data System (ADS)

    Kim, Junhyun; Shin, Dongheok; Choi, Seungjae; Yoo, Do-Sik; Seo, Ilsung; Kim, Kyoungsik

    2015-09-01

    We report here a design method based on smart transformation optics (STO) to control the range of the permittivity values of the materials required to manufacture transformation optics devices. In particular, we show that it is possible to reduce the maximum electric permittivity value required to realize a STO device with certain functionality by means of a simple conceptual elastic stretching process. We illustrate the design procedure with two types of collimator meta-lens designs, which we call warping space collimator meta-lens and half fisheye collimator meta-lens, respectively. We provide design examples of these two types of lenses with the help of COMSOL Multiphysics software. These two design examples are fabricated with commonly available dielectric materials by means of 3D printing technology. For the functional verification of these two collimator lenses, we provide measurement results obtained with transverse electric waves of frequency range 7-13GHz.

  16. Damage monitoring of aircraft structures made of composite materials using wavelet transforms

    NASA Astrophysics Data System (ADS)

    Molchanov, D.; Safin, A.; Luhyna, N.

    2016-10-01

    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  17. Crystal-amorphous transformation via defect-templating in phase-change materials

    NASA Astrophysics Data System (ADS)

    Nukala, Pavan

    Phase-change materials (PCM) such as GeTe and Ge-Sb-Te alloys are potential candidates for non-volatile memory applications, because they can reversibly and rapidly transform between a crystalline phase and an amorphous phase with medium-range order. Traditionally, crystal-amorphous transformation in these materials has been carried out via melt-quench pathway, where the crystalline phase is heated beyond its melting point by the rising edge of an electric pulse, and the melt phase is quenched by the falling edge into a glassy phase. Formation of an intermediate melt phase in this transformation pathway requires usage of large switching current densities, resulting in energy wastage, and device degradation issues. Furthermore, melt-quench pathway is a brute force strategy of amorphizing PCM, and does not utilize the peculiar structural properties in crystalline phase. It will be beneficial from a device perspective that crystal-amorphous transformation is carried out via subtler solid-state pathways. Single-crystalline nanowire phase-change memory, owing to its lateral geometry and large volumes of active material, offers a platform to construct a crystal-amorphous transformation pathway via gradually increasing disorder in the crystalline phase, and study it. Using in situ transmission electron microscopy on GeTe and Ge2Sb2Te5 systems, we showed that the application of an electric pulse (heat-shock) creates dislocations in the PCM that migrate with the hole-wind force, and interact with the already existing ferroelectric boundaries in case of GeTe, changing their nature. We adapted novel tools such as optical second harmonic generation polarimety to carefully study these defect interactions. These defects accumulate at a region of local inhomogeneity, and upon addition of defects beyond a critical limit to that region via electrical pulsing, an amorphous phase "nucleates". We also studied the effect of defect dynamics on carrier transport using temperature

  18. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials

    PubMed Central

    Kelly, Stephen T.; Trenkle, Jonathan C.; Koerner, Lucas J.; Barron, Sara C.; Walker, Nöel; Pouliquen, Philippe O.; Tate, Mark W.; Gruner, Sol M.; Dufresne, Eric M.; Weihs, Timothy P.; Hufnagel, Todd C.

    2011-01-01

    A pair of techniques have been developed for performing time-resolved X-ray microdiffraction on irreversible phase transformations. In one technique capillary optics are used to focus a high-flux broad-spectrum X-ray beam to a 60 µm spot size and a fast pixel array detector is used to achieve temporal resolution of 55 µs. In the second technique the X-rays are focused with Kirkpatrick–Baez mirrors to achieve a spatial resolution better than 10 µm and a fast shutter is used to provide temporal resolution better than 20 µs while recording the diffraction pattern on a (relatively slow) X-ray CCD camera. Example data from experiments are presented where these techniques are used to study self-propagating high-temperature synthesis reactions in metal laminate foils. PMID:21525656

  19. The Rite of Relocation: Social and Material Transformations in the Midwest US

    PubMed Central

    2014-01-01

    Concerns of appropriate housing may arise in older adulthood. Some older adults may make life work in the place we call home; others take steps to voluntarily relocate in anticipation of health and other needs. While moving at any age can be challenging, moving from one’s home in later life also represents multiple reflections: past, present and future selves, control of one’s space and relinquishing the care of one’s space to another person or corporation, family support and family fissures, and the body’s capacities and limitations. Moving is examined as a moment where regimes of value are negotiated through competing semiotic ideologies and at times social roles are transformed. Ethnographic fieldwork occurred from January 2009–May 2012 in the Midwest United States. This paper presents experiences of relocation of material and social role transformation as older adults make this housing, and writ large, life transition. PMID:25506598

  20. A Mixed-Methods Study of the Transformation Model for Rapid Improvement of Low Achieving Rural Schools

    ERIC Educational Resources Information Center

    Atkinson Duina, Angela

    2013-01-01

    New regulations attached to ARRA funding of federal School Improvement Fund grants aimed at producing rapid turnaround of low performing schools were highly criticized as unsuitable for rural schools. This mixed-methods study looked at the implementation of the School Improvement Fund Transformation Model in two rural Maine high schools during the…

  1. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites.

  2. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    SciTech Connect

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  3. Design of conformal lens by drilling holes materials using quasi-conformal transformation optics.

    PubMed

    Li, Shouliang; Zhang, Zhan; Wang, Junhong; He, Xianshi

    2014-10-20

    In this paper, based on quasi-conformal transformation optics, a 3D conformal lens made of isotropic and non-resonant metamaterial is designed, which can make a cylindrical conformal array behave similarly to a uniform linear array. After discussion and simplification in the two-dimensional model, we realize the proposed lens by utilizing drilling-hole material in the three-dimensional structure. The ring-like shape and forward-only radiation make it possible to equip the lens on a cylindrical device.

  4. Inquiry-Oriented Learning Material to Increased General Physics Competence Achievement

    ERIC Educational Resources Information Center

    Sinuraya, Jurubahasa

    2016-01-01

    This study aims to produce inquiry-oriented general physics learning material to improve student learning outcome. Development steps of learning materials were adapted from the design model of Dick and Carey. Stages of development consists of three phases: planning, development, and formative evaluation and revision. Implementation of formative…

  5. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  6. Dynamically driven phase transformations in heterogeneous materials. II. Applications including damage

    NASA Astrophysics Data System (ADS)

    Plohr, JeeYeon N.; Clements, B. E.; Addessio, F. L.

    2006-12-01

    A model, developed for heterogeneous materials undergoing dynamically driven phase transformations in its constituents, has been extended to include the evolution of damage. Damage is described by two mechanisms: interfacial debonding between the constituents and brittle failure micro-crack growth within the constituents. The analysis is applied to silicon carbide-titanium (SiC-Ti) unidirectional metal matrix composites that undergo the following phenomena: Ti has a yield stress of approximately 0.5 GPa and above a pressure of about 2 GPa undergoes a solid-solid phase transformation. The inelastic work from plastic dissipation contributes to the temperature and pressure rise in the Ti. SiC behaves elastically below a critical stress, above which it is damaged by microcrack growth. Finally, under tensile loading, the interface between Ti and SiC debonds according to an interfacial decohesion law. Each process is first examined independently in order to understand how its characteristic behavior is manifested in the stress-strain response of the composite. The complex interplay between loading states, viscoplasticity, damage, and solid-solid phase transformations is then studied at both the micromechanics and macromechanics levels.

  7. A structured continuum modelling framework for martensitic transformation and reorientation in shape memory materials.

    PubMed

    Bernardini, Davide; Pence, Thomas J

    2016-04-28

    Models for shape memory material behaviour can be posed in the framework of a structured continuum theory. We study such a framework in which a scalar phase fraction field and a tensor field of martensite reorientation describe the material microstructure, in the context of finite strains. Gradients of the microstructural descriptors naturally enter the formulation and offer the possibility to describe and resolve phase transformation localizations. The constitutive theory is thoroughly described by a single free energy function in conjunction with a path-dependent dissipation function. Balance laws in the form of differential equations are obtained and contain both bulk and surface terms, the latter in terms of microstreses. A natural constraint on the tensor field for martensite reorientation gives rise to reactive fields in these balance laws. Conditions ensuring objectivity as well as the relation of this framework to that provided by currently used models for shape memory alloy behaviour are discussed.

  8. The Effect of Subsuming Concepts on Student Achievement on Unfamiliar Science Learning Material

    ERIC Educational Resources Information Center

    Graber, Richard A.; And Others

    1972-01-01

    Presents data that contradict the facilitating effect of advanced organizers demonstrated in 1960 by Ausubel when using the same materials. Suggests possible reasons for the discrepancy and lists conditions where organizers may be effective. (AL)

  9. Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.

    2015-01-01

    Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.

  10. A Revolution in the Making: Advances in Materials That May Transform Future Exploration Infrastructures and Missions

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.

    2001-01-01

    The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.

  11. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    PubMed Central

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2015-01-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”. PMID:26105979

  12. Corrosion issues in joining lightweight materials: A review of the latest achievements

    NASA Astrophysics Data System (ADS)

    Montemor, M. F.

    2016-02-01

    Multimaterials assemblies and, in particular, assemblies made of lightweight components are of utmost relevance in many technical applications. These assemblies include multimetal, metal-polymer, metal-adhesive, and metal-composites combinations, among others. Presently, the transportation sector is looking for lighter materials that allow for reducing fuel consumption and the environmental footprint. Aluminum and magnesium alloys, as well as composites and polymers, are considered strategic for such purposes, and their joining in metal-metal or hybrid assemblies has been explored to develop lightweight components. These multimaterial assemblies are often exposed to aggressive environments in which moisture and aggressive species are present. Under these conditions corrosion phenomena are a major source of material failures. Depending on the nature of the metals and nonmetals and of the joining process, the mechanism and extent of corrosion can vary significantly. Thus, it is essential to understand the impact of corrosion in joined materials and to know which counter-measures can be adopted to mitigate corrosion events in the system of concern. This chapter aims at reviewing the latest results of studies focused in corrosion issues in the joining of lightweight materials. It describes the most common corrosion phenomena observed in joined materials, and it emphasizes corrosion issues in assemblies that combine different metals and that combine metals with nonmetals. Moreover, it overviews the state-of-the-art in corrosion protection strategies that can be applied and, finally, it overlooks the future trends.

  13. Reactions and Surface Transformations of a Bone-Bioactive Material in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Radin, S.; Ducheyne, P.; Ayyaswamy, P. S.

    1999-01-01

    A comprehensive program to investigate the expeditious in vitro formation of three-dimensional bone-like tissue is currently underway at the University of Pennsylvania. The study reported here forms a part of that program. Three-dimensional bone-like tissue structures may be grown under the simulated microgravity conditions of NASA designed Rotating Wall Bioreactor Vessels (RWV's). Such tissue growth will have wide clinical applications. In addition, an understanding of the fundamental changes that occur to bone cells under simulated microgravity would yield important information that will help in preventing or minimizing astronaut bone loss, a major health issue with travel or stay in space over long periods of time. The growth of three-dimensional bone-like tissue structures in RWV's is facilitated by the use of microcarriers which provide structural support. If the microcarrier material additionally promotes bone cell growth, then it is particularly advantageous to employ such microcarriers. We have found that reactive, bone-bioactive glass (BBG) is an attractive candidate for use as microcarrier material. Specifically, it has been found that BBG containing Ca- and P- oxides upregulates osteoprogenitor cells to osteoblasts. This effect on cells is preceded by BBG reactions in solution which result in the formation of a Ca-P surface layer. This surface further transforms to a bone-like mineral (i.e., carbonated crystalline hydroxyapatite (c-HA)). At normal gravity, time-dependent, immersion-induced BBG reactions and transformations are greatly affected both by variations in the composition of the milieu in which the glass is immersed and on the immersion conditions. However, the nature of BBG reactions and phase transformations under the simulated microgravity conditions of RWV's are unknown, and must be understood in order to successfully use BBG as microcarrier material in RWV'S. In this paper, we report some of our recent findings in this regard using

  14. Thermally-induced transformation of hexabromocyclo dodecanes and isobutoxypenta bromocyclododecanes in flame-proofed polystyrene materials.

    PubMed

    Heeb, Norbert V; Graf, Heidi; Schweizer, W Bernd; Lienemann, P

    2010-08-01

    Polystyrenes (PS) are produced in quantities exceeding 10 Mt y(-1). They are used for insulation and packaging materials, often in flame-proofed forms with hexabromocyclododecanes (HBCDs) added as flame retardants. Polystyrenes are also constituents of plastic debris found in the aquatic environment. HBCDs are now considered as persistent, bioaccumulative, and toxic compounds. Lately, we reported that isobutoxypenta bromocyclododecanes (iBPBCDs), a formerly unknown class of polybrominated compounds, are also present in flame-proofed polystyrenes. It is therefore likely that iBPBCDs are released along with HBCDs from these materials. Herein, we report on changes of the HBCD- and iBPBCD-patterns when exposing expanded (EPS) and extruded (XPS) polystyrenes at temperatures of 140-160 degrees C. Substantial transformation reactions were observed in EPS, which was rich in gamma-HBCDs and delta-, eta-, and theta-iBPBCDs at the beginning, but changed to materials rich in alpha-HBCDs and alpha-, beta-, epsilon-, and xi-iBPBCDs. Patterns of untreated XPS already resembled those of the thermally treated EPS. Upon thermal exposure, some further enrichment of alpha-HBCDs and alpha-, beta-, epsilon-, and xi-iBPBCDs was also noticed for the XPS samples, indicating similar transformation mechanisms. Comparable apparent first-order transformation rate constants (k(trans)) of -0.003, -0.008, and -0.020 min(-1) and -0.004, -0.009, and -0.019 min(-1) are found for gamma-HBCD- and delta-iBPBCD-conversion at 140, 150, and 160 degrees C, respectively. We conclude that a thermal treatment of flame-proofed polystyrenes alters their HBCD- and iBPBCD-patterns. Thus depending on the proportions of EPS and XPS materials reaching the environment, more of the lipophilic (late-eluting) or of the more polar (early-eluting) HBCD- and iBPBCD-stereoisomers will be released. Several properties such as partitioning coefficients, degradation rates, and bioaccumulation factors are stereoisomer

  15. Achieving a Wealth of Riches: Delivering on the Promise of Data to Transform Teaching and Learning. Policy Brief

    ERIC Educational Resources Information Center

    Miller, M.

    2009-01-01

    Ensuring that teachers are rich in data, rich in information, and rich in the skills that enable them to improve student achievement requires focused attention from leaders at all levels, including federal policymakers. For federal policy to best support teachers' use of data to prepare all students for college and careers, there must be a…

  16. Bridging Research on Learning and Student Achievement: The Role of Instructional Materials

    ERIC Educational Resources Information Center

    Taylor, Joseph A.; Van Scotter, Pamela; Coulson, Doug

    2007-01-01

    For decades the National Science Foundation has been funding the development of instructional materials whose design is based upon the recommendations of educational research. These recommendations include the idea that learning be sequenced and organized using an experiential learning cycle or an instructional model such as the Biological Science…

  17. Improved Student Achievement Using Personalized Online Homework for a Course in Material and Energy Balances

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.

    2011-01-01

    Personalized, online homework was used to supplement textbook homework, quizzes, and exams for one section of a course in material and energy balances. The objective of this study was to test the hypothesis that students using personalized, online homework earned better grades in the course. The online homework system asks the same questions of…

  18. Efficiency of Students' Achievement Using Black/White and Color Coded Learning and Test Materials.

    ERIC Educational Resources Information Center

    Lamberski, Richard J.; Roberts, Dennis M.

    The purpose of this study was to compute and analyze descriptive indices of efficiency assessing the relative effectiveness of a verbal and visual color code applied to self-paced learning and testing materials. The sample consisted of 176 college subjects randomly assigned to one of four treatment conditions receiving black/white (B) or color…

  19. The determination of water in crude oil and transformer oil reference materials.

    PubMed

    Margolis, Sam A; Hagwood, Charles

    2003-05-01

    The measurement of the amount of water in oils is of significant economic importance to the industrial community, particularly to the electric power and crude oil industries. The amount of water in transformer oils is critical to their normal function and the amount of water in crude oils affects the cost of the crude oil at the well head, the pipeline, and the refinery. Water in oil Certified Reference Materials (CRM) are essential for the accurate calibration of instruments that are used by these industries. Three NIST Standard Reference Materials (SRMs) have been prepared for this purpose. The water in these oils has been measured by both coulometric and volumetric Karl Fischer methods. The compounds (such as sulfur compounds) that interfere with the Karl Fischer reaction (interfering substances) and inflate the values for water by also reacting with iodine have been measured coulometrically. The measured water content of Reference Material (RM) 8506a Transformer Oil is 12.1+/-1.9 mg kg(-1) (plus an additional 6.2+/-0.9 mg kg(-1) of interfering substances). The measured water content of SRM 2722 Sweet Crude Oil, is 99+/-6 mg kg(-1) (plus an additional 5+/-2 mg kg(-1) of interfering substances). The measured water content of SRM 2721 Sour Crude Oil, is 134+/-18 mg kg(-1) plus an additional 807+/-43 mg kg(-1) of interfering substances. Interlaboratory studies conducted with these oil samples (using SRM 2890, water saturated 1-octanol, as a calibrant) are reported. Some of the possible sources of bias in these measurements were identified, These include: improperly calibrated instruments, inability to measure the calibrant accurately, Karl Fischer reagent selection, and volatilization of the interfering substances in SRM 2721.

  20. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE PAGES

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  1. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.

  2. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    SciTech Connect

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  3. New insulating materials and their use to achieve high operating stresses in electrostatic machines

    NASA Astrophysics Data System (ADS)

    Cooke, Chathan M.

    1986-02-01

    Compressed gas insulation has provided the main insulation for sustaining terminal voltages of electrostatic accelerators. Essentially coaxial geometry is used with mechanical support of the terminal achieved by long columns which also support the acceleration tubes. Because of the vacuum insulation in the acceleration tubes, the electric gradient along the columns is typically 10-20 kV/cm, whereas the radial gas gap can operate at stresses about ten times larger. Until now, the terminal support has always been located in the low stress axial direction along the column and not in the radial high stress region. This paper is concerned with support insulation to be used in the radial direction. Advantages of radial supports include: simpler, more compact column structures, higher total voltages, and support of discrete stress redistribution electrodes such as vivitron. Important factors to the design of radial support insulators include the insulation constraints imposed by the gas gap, mechanical contact to the solid insulator, and basic limits of gas-solid dielectric interfaces. The gas gap insulation strength is shown to be limited by surface microirregularities and this accounts for electrode area and pressure effects. Based on the gas gap requirements, a design strategy for the insulators is developed. Epoxy is employed as the dielectric to allow the use of cast-in metal inserts at the ends. The inserts provide mechanical contact, shielding of the triple junction, and redistribution of the interface electric stresses. By careful design, the electric stress on the interface is made lower than that in the plain coaxial electrode gap. Practical experience shows that voltage increases linearly with insulator length and that designs achieve more than 10 MV/m into the multimegavolt region.

  4. Pressure-driven transformation of the ordering in amorphous network-forming materials

    NASA Astrophysics Data System (ADS)

    Zeidler, Anita; Salmon, Philip S.

    2016-06-01

    The pressure-induced changes to the structure of disordered oxide and chalcogenide network-forming materials are investigated on the length scales associated with the first three peaks in measured diffraction patterns. The density dependence of a given peak position does not yield the network dimensionality, in contrast to metallic glasses where the results indicate a fractal geometry with a local dimensionality of ≃5 /2 . For oxides, a common relation is found between the intermediate-range ordering, as described by the position of the first sharp diffraction peak, and the oxygen-packing fraction, a parameter that plays a key role in driving changes to the coordination number of local motifs. The first sharp diffraction peak can therefore be used to gauge when topological changes are likely to occur, events that transform network structures and their related physical properties.

  5. Shear-transformation-zone theory of yielding in athermal amorphous materials

    SciTech Connect

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.

  6. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    SciTech Connect

    Beznosyuk, Sergey A. Maslova, Olga A.; Zhukovsky, Mark S.

    2015-10-27

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{sub 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.

  7. Shear-transformation-zone theory of yielding in athermal amorphous materials

    DOE PAGES

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models withmore » short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.« less

  8. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    NASA Astrophysics Data System (ADS)

    Beznosyuk, Sergey A.; Zhukovsky, Mark S.; Maslova, Olga A.

    2015-10-01

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru256, Rh256, Pd256) accumulate next storage energies: ERu = 2.27 eV/at, ERh = 1.67 eV/at, EPd = 3.02 eV/at.

  9. Achieving Innovation and Affordability Through Standardization of Materials Development and Testing

    NASA Technical Reports Server (NTRS)

    Bray, M. H.; Zook, L. M.; Raley, R. E.; Chapman, C.

    2011-01-01

    The successful expansion of development, innovation, and production within the aeronautics industry during the 20th century was facilitated by collaboration of government agencies with the commercial aviation companies. One of the initial products conceived from the collaboration was the ANC-5 Bulletin, first published in 1937. The ANC-5 Bulletin had intended to standardize the requirements of various government agencies in the design of aircraft structure. The national space policy shift in priority for NASA with an emphasis on transferring the travel to low earth orbit to commercial space providers highlights an opportunity and a need for the national and global space industries. The same collaboration and standardization that is documented and maintained by the industry within MIL-HDBK-5 (MMPDS-01) and MIL-HBDK-17 (nonmetallic mechanical properties) can also be exploited to standardize the thermal performance properties, processing methods, test methods, and analytical methods for use in aircraft and spacecraft design and associated propulsion systems. In addition to the definition of thermal performance description and standardization, the standardization for test methods and analysis for extreme environments (high temperature, cryogenics, deep space radiation, etc) would also be highly valuable to the industry. Its subsequent revisions and conversion to MIL-HDBK-5 and then MMPDS-01 established and then expanded to contain standardized mechanical property design values and other related design information for metallic materials used in aircraft, missiles, and space vehicles. It also includes guidance on standardization of composition, processing, and analytical methods for presentation and inclusion into the handbook. This standardization enabled an expansion of the technologies to provide efficiency and reliability to the consumers. It can be established that many individual programs within the government agencies have been overcome with development costs

  10. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits.

    PubMed

    Wang, Ying; Tashiro, Yukihiro; Sonomoto, Kenji

    2015-01-01

    The development and implementation of renewable materials for the production of versatile chemical resources have gained considerable attention recently, as this offers an alternative to the environmental problems caused by the petroleum industry and the limited supply of fossil resources. Therefore, the concept of utilizing biomass or wastes from agricultural and industrial residues to produce useful chemical products has been widely accepted. Lactic acid plays an important role due to its versatile application in the food, medical, and cosmetics industries and as a potential raw material for the manufacture of biodegradable plastics. Currently, the fermentative production of optically pure lactic acid has increased because of the prospects of environmental friendliness and cost-effectiveness. In order to produce lactic acid with high yield and optical purity, many studies focus on wild microorganisms and metabolically engineered strains. This article reviews the most recent advances in the biotechnological production of lactic acid mainly by lactic acid bacteria, and discusses the feasibility and potential of various processes.

  11. Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material.

    PubMed

    Wu, Long-Hua; Hu, Xiao

    2015-06-05

    We derive in the present work topological photonic states purely based on conventional dielectric material by deforming a honeycomb lattice of cylinders into a triangular lattice of cylinder hexagons. The photonic topology is associated with a pseudo-time-reversal (TR) symmetry constituted by the TR symmetry supported in general by Maxwell equations and the C_{6} crystal symmetry upon design, which renders the Kramers doubling in the present photonic system. It is shown explicitly for the transverse magnetic mode that the role of pseudospin is played by the angular momentum of the wave function of the out-of-plane electric field. We solve Maxwell equations and demonstrate the new photonic topology by revealing pseudospin-resolved Berry curvatures of photonic bands and helical edge states characterized by Poynting vectors.

  12. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  13. Dynamically driven phase transformations in heterogeneous materials. I. Theory and microstructure considerations

    NASA Astrophysics Data System (ADS)

    Clements, B. E.; Plohr, JeeYeon N.; Addessio, F. L.

    2006-12-01

    A theoretical model recently developed for heterogeneous materials undergoing dynamically driven thermodynamic phase transitions [F. L. Addessio et al. J. Appl. Phys. 97, 083509 (2005)] has been extended to allow for complex material microstructures. The model is applied to silicon carbide—titanium (SiC-Ti) unidirectional metal matrix composites where the aligned SiC fibers are filler and Ti is the matrix. Ti is known to undergo a low pressure and temperature solid-solid first-order phase transition. The microstructural analysis uses the generalized method of cells, which partitions a representative volume element into subcells containing the SiC fibers and the Ti matrix. The thermomechanical analysis has been reformulated from the previous work. In the reformulation it is found that thermodynamic quantities are naturally expressed as mass fraction averages over the two coexisting phases while the mechanical quantities are expressed naturally as volume averages. Consequently, the thermomechanical reformulation merges the mass averages typically found in thermodynamics with the volume averages used for mechanical properties of composites. Simulations have been pursued to study the complex interplay between loading, microstructure, and the thermomechanical response of the system as it undergoes the solid-solid Ti phase transformation. This is done for several different representative volume elements. For different orientations of loads relative to the fiber axes, the effect of local microstructure on the macroscopic stress-strain and thermodynamic response of the SiC-Ti composite is investigated.

  14. Detection of exposure damage in composite materials using Fourier transform infrared technology.

    SciTech Connect

    Roach, Dennis Patrick; Duvall, Randy L.

    2010-09-01

    Goal: to detect the subtle changes in laminate composite structures brought about by thermal, chemical, ultraviolet, and moisture exposure. Compare sensitivity of an array of NDI methods, including Fourier Transform Infrared Spectroscopy (FTIR), to detect subtle differences in composite materials due to deterioration. Inspection methods applied: ultrasonic pulse echo, through transmission ultrasonics, thermography, resonance testing, mechanical impedance analysis, eddy current, low frequency bond testing & FTIR. Comparisons between the NDI methods are being used to establish the potential of FTIR to provide the necessary sensitivity to non-visible, yet significant, damage in the resin and fiber matrix of composite structures. Comparison of NDI results with short beam shear tests are being used to relate NDI sensitivity to reduction in structural performance. Chemical analyses technique, which measures the infrared intensity versus wavelength of light reflected on the surface of a structure (chemical and physical information via this signature). Advances in instrumentation have resulted in hand-held portable devices that allow for field use (few seconds per scan). Shows promise for production quality assurance and in-service applications on composite aircraft structures (scarfed repairs). Statistical analysis on frequency spectrums produced by FTIR interrogations are being used to produce an NDI technique for assessing material integrity. Conclusions are: (1) Use of NDI to assess loss of composite laminate integrity brought about by thermal, chemical, ultraviolet, and moisture exposure. (2) Degradation trends between SBS strength and exposure levels (temperature and time) have been established for different materials. (3) Various NDI methods have been applied to evaluate damage and relate this to loss of integrity - PE UT shows greatest sensitivity. (4) FTIR shows promise for damage detection and calibration to predict structural integrity (short beam shear). (5

  15. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent metal - field experiment results

    NASA Astrophysics Data System (ADS)

    Dror, I.; Merom Jacov, O.; Berkowitz, B.

    2010-12-01

    A new composite material based on deposition of nanosized zero valent iron (ZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with ZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nanosized ZVI by preventing agglomeration of iron particles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material and in turn faster rates of remediation. The ability of the material to degrade or transform rapidly and completely a large spectrum of water pollutants will be demonstrated, based on results from two field site experiments where polluted groundwater containing a mixture of industrial and agricultural persistent pollutants was treated. In addition a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions will be presented.

  16. Modeling the viscoplastic micromechanical response of two-phase materials using fast Fourier transforms

    SciTech Connect

    Lebensohn, Ricardo A; Lee, Sukbin; Rollett, Anthony D

    2009-01-01

    A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local mechanical response is utilized to study microstructure-property relationships in composite materials. Specifically, three-dimensional, two-phase digital materials containing isotropically coarsened particles surrounded by a matrix phase, generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calculate the stress and strain rate fields under uniaxial tension. The effects of the morphology of the matrix phase, the volume fraction and the contiguity of particles, and the polycrystallinity of matrix phase, on the stress and strain rate fields under uniaxial tension are examined. It is found that the first moments of the stress and strain rate fields have a different dependence on the particle volume fraction and the particle contiguity from their second moments. The average stresses and average strain rates of both phases and of the overall composite have rather simple relationships with the particle volume fraction whereas their standard deviations vary strongly, especially when the particle volume fraction is high, and the contiguity of particles has a noticeable effect on the mechanical response. It is also found that the shape of stress distribution in the BCC hard particle phase evolves as the volume fraction of particles in the composite varies, such that it agrees with the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it is observed that the stress and strain rate fields in the microstructures with a polycrystalline matrix are less sensitive to changes in volume fraction and contiguity of particles.

  17. Science in the community: An ethnographic account of social material transformation

    NASA Astrophysics Data System (ADS)

    Lee, Stuart Henry

    This dissertation is about the learning and use of science at the level of local community. It is an ethnographic account, and its theoretical approach draws on actor-network theory as well as neo-Marxist practice theory and the related notion of situated cognition. This theoretical basis supports a work that focuses on the many heterogeneous transformations that materials and people undergo as science is used to help bring about social and political change in a quasi-rural community. The activities that science becomes involved in, and the hybrid formations as it encounters local issues are stressed. Learning and knowing as outcomes of community action are theorized. The dissertation links four major themes throughout its narrative: scientific literacy, representations, relationships and participatory democracy. These four themes are not treated in isolation. Different facets of their relation to each other are stressed in different chapters, each of which analyze different particular case studies. This dissertation argues for the conception of a local scientific praxis, one that is markedly different than the usual notion of science, yet is necessary for the uptake of scientific information into a community.

  18. High-temperature superconducting transformer evaluation

    SciTech Connect

    DeSteese, J.G.; Dagle, J.E.; Dirks, J.A.

    1995-04-01

    The advancing development of high-temperature superconducting (HTS) materials is encouraging the evaluation of many practical applications. This paper summarizes a study that examined the future potential of HTS power transformers in the 30-MVA to 1000-MVA capacity range. Transformer performance was characterized on the basis of potentially achievable HTS materials capabilities and dominant transformer design parameters. Life-cycle costs were estimated and compared with those of conventional transformers to evaluate the economic viability and market potential of HTS designs. HTS transformers are projected to have both capital and energy cost advantages attributable to their ability to be intrinsically smaller and lighter than conventional transformers of comparable capacity.

  19. Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Williams, D Keith; Kovach, Alexander L; Muddiman, David C; Hanck, Kenneth W

    2009-07-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level.

  20. A comparison of literature-based and content-based guided reading materials on elementary student reading and science achievement

    NASA Astrophysics Data System (ADS)

    Guns, Christine

    Guided reading, as developed by Fountas and Pinnell (2001), has been a staple of elementary reading programs for the past decade. Teachers in the elementary school setting utilize this small group, tailored instruction in order to differentiate and meet the instructional needs of the students. The literature shows academic benefit for students who have special needs, such as learning disabilities, autism, and hearing impairments but consideration of academic impact has not been investigated for regular education students. The purpose of this quasi-experimental study was to investigate the academic impact of the use of content-related (Group C) and the traditional literature-based (Group L) reading materials. During the Living Systems and Life Processes unit in science, two teachers self-selected to utilized science-related materials for guided reading instruction while the other three teacher participants utilized their normal literature-based guided reading materials. The two groups were compared using an ANCOVA in this pre-test/post-test design. The dependent variables included the Reading for Application and Instruction assessment (RAI) and a Living Systems and Life Processes assessment (LSA). Further analysis compared students of different reading levels and gender. The data analyses revealed a practical but not statistical significance for students in science performance. It was discovered that below level male and female students performed better on the LSA when provided with content-related guided reading materials. As far as reading achievement is concerned, students in both groups had comparable results. The teachers provided guided reading instruction to their students with fidelity and made adjustments to their practices due to the needs of their students. The content-related teachers utilized a larger number of expository texts than the literature-based teachers. These teachers expressed the desire to continue the practice of providing the students with

  1. Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: effect of dielectric electrode materials on ozone generation

    NASA Astrophysics Data System (ADS)

    Teranishi, Kenji; Shimomura, Naoyuki; Suzuki, Susumu; Itoh, Haruo

    2009-11-01

    The dependence of ozone generation on the types of dielectric electrode material has been investigated using an ozone generator constructed with the piezoelectric transformer developed in our laboratory. The ozone generator is based on the excitation of the dielectric barrier discharge (DBD), which has the advantage of a compact configuration for generating ozone. Four kinds of dielectric materials are prepared for dielectric barrier electrodes. Electrical properties of the DBD and the ozone generation characteristics are investigated for the different dielectric materials. Differences in the discharge mode among the barrier electrode materials are recognized and discussed on the basis of the results of the Lissajous figures and voltage-current waveforms. During the continuous running of the generator, a temporal decrease in ozone concentration is observed owing to the temperature increase inside the reactor. Although the ozone generation characteristics are influenced by many properties of dielectrics, two important factors for achieving high-efficiency ozone generation are identified in this study. One is the use of a high-thermal conductivity material for the dielectric electrode, which functions well as a heat sink for transferring the generated heat to the outside through the material. The other factor is the control of the discharge mode. Our results show that the discharge mode that is considered as Townsend-like DBD is suitable for high-efficiency ozone generation.

  2. In pursuit of high-value healthcare: the case for improving quality and achieving equity in a time of healthcare transformation.

    PubMed

    Betancourt, Joseph R

    2014-01-01

    The passage of the Patient Protection and Affordable Care Act and current efforts in payment reform signal the beginning of a significant transformation for the US healthcare system. As we embark on this transformation, disparities have emerged as the hallmark of low-value healthcare--care that does not meet quality standards, is inefficient, and is usually of high cost. A new set of structures is being developed to facilitate increased access to care that is cost-effective and high in quality--otherwise known as high-value healthcare. Addressing disparities and achieving equity are the perfect target areas for recouping value, and doing so will pave the way for high-value healthcare. As healthcare leaders make difficult choices, they should consider the realities of healthcare equity. First, racial and ethnic disparities in healthcare persist and are a clear sign of poor-quality, low-value healthcare. Second, the root causes of these disparities are complex, but a well-developed set of evidence-based approaches is available to help leaders address healthcare inequity. Third, evidence suggests that being inattentive to the root causes of disparities adversely affects efficiency and an organization's bottom line. Finally, if healthcare organizations are progressive, thoughtful, and prepared for success in such an environment, a new healthcare system that offers accessible, high-value, equitable, culturally competent, and high-quality care to all is well within reach.

  3. Synthesis and transformations of alkylphosphate and alkoxysiloxide metal complexes to multicomponent oxide materials

    NASA Astrophysics Data System (ADS)

    Lugmair, Claus Guenter

    This thesis describes the synthesis of mixed element oxide materials utilizing oxygen rich ``single-source precursor'' molecules. The key attributes of these precursor complexes are that they possess the stoichiometry of the targeted oxide material and that they can be converted to carbon free materials by mild thermal treatment. Complexes of Al, Cu, Fe, Hf, Nb, Ta, Ti, and Zr were prepared that contain tris(tert-butoxy)siloxy ligands as precursors to silica based materials. The pyrolytic decomposition of these complexes occur under mild conditions, with onset temperatures to decomposition between 95 and 200sp°C. The resulting metal-silica or metal oxide-silica materials contain very little carbon. The solid state transformation of Zrlbrack OSi(OsptBu)sb3rbracksb4 to ZrOsb2{*}4SiOsb2 produced an open fibrous material with pores which are ca. 20 nm in diameter. The solution phase thermolysis of the various metal siloxide complexes in anhydrous organic solvents led to xerogels consisting of small spherical primary particles (≤ca. 5 nm). These xerogels typically possess very high surface areas. The ZrOsb2{*}4SiOsb2 materials are amorphous as initially formed, and subsequent crystallizations of tetragonal ZrOsb2, monoclinic ZrOsb2, and cristobalite occur at relatively high temperatures. The enhanced stabilization of the amorphous and tetragonal phases of zirconia, relative to those derived from many sol-gel systems, implies that these single-source precursors initially produce highly homogeneous materials and that subsequent crystallizations are to a large degree diffusion-controlled, Careful addition of 1 or 2 equiv of water to THF solutions of Mlbrack OSi(OsptBu)sb3rbracksb4 (M = Zr, Hf) produced the isolable aqua complexes Mlbrack OSi(OsptBu)sb3rbracksb4(Hsb2O) and Mlbrack OSi(OsptBu)sb3rbracksb4(Hsb2O)sb2. It is likely that the hydrolysis of Zrlbrack OSi(OsptBu)sb3rbracksb4(Hsb2O)sb2 also occurs by an associative mechanism via the tris(aqua) intermediate

  4. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  5. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  6. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.

    PubMed

    Dror, Ishai; Jacov, Osnat Merom; Cortis, Andrea; Berkowitz, Brian

    2012-07-25

    A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions.

  7. Microbial mediated retention/transformation of organic and inorganic materials in freshwater and marine ecosystems

    EPA Science Inventory

    Aquatic ecosystems are globally connected by hydrological and biogeochemical cycles. Microorganisms inhabiting aquatic ecosystems form the basis of food webs, mediate essential element cycles, decompose natural organic matter, transform inorganic nutrients and metals, and degrad...

  8. The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.

    PubMed

    Gondek, Krzysztof; Baran, Agnieszka; Kopeć, Michał

    2014-12-01

    The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130°C for 40 min) focused on drying the material, whereas in the second stage (200°C for 30 min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum.

  9. From flab to fab: transforming surgical waste into an effective bioactive coating material.

    PubMed

    Luo, Baiwen; Yuan, Shaojun; Foo, Selin Ee Min; Wong, Marcus Thien Chong; Lim, Thiam Chye; Tan, Nguan Soon; Choong, Cleo

    2015-03-11

    Cellular events are regulated by the interaction between integrin receptors in the cell membrane and the extracellular matrix (ECM). Hence, ECM, as a material, can potentially play an instructive role in cell-material interactions. Currently, adipose tissue in the form of lipoaspirate is often discarded. Here, it is demonstrated how our chemical-free decellularization method could be used to obtain ECM from human lipoaspirate waste material. These investigations show that the main biological components are retained in the lipoaspirate-derived ECM (LpECM) material and that this LpECM material could subsequently be used as a coating material to confer bioactivity to an otherwise inert biodegradable material (i.e., polycaprolactone). Overall, lipoaspirate material, a complex blend of endogenous proteins, is effectively used a bioactive coating material. This work is an important stepping-stone towards the development of biohybrid scaffolds that contain cellular benefits without requiring the use of additional biologics based on commonly discarded lipoaspirate material.

  10. Genetic transformation of Knufia petricola A95 - a model organism for biofilm-material interactions

    PubMed Central

    2014-01-01

    We established a protoplast-based system to transfer DNA to Knufia petricola strain A95, a melanised rock-inhabiting microcolonial fungus that is also a component of a model sub-aerial biofilm (SAB) system. To test whether the desiccation resistant, highly melanised cell walls would hinder protoplast formation, we treated a melanin-minus mutant of A95 as well as the type-strain with a variety of cell-degrading enzymes. Of the different enzymes tested, lysing enzymes from Trichoderma harzianum were most effective in producing protoplasts. This mixture was equally effective on the melanin-minus mutant and the type-strain. Protoplasts produced using lysing enzymes were mixed with polyethyleneglycol (PEG) and plasmid pCB1004 which contains the hygromycin B (HmB) phosphotransferase (hph) gene under the control of the Aspergillus nidulans trpC. Integration and expression of hph into the A95 genome conferred hygromycin resistance upon the transformants. Two weeks after plating out on selective agar containing HmB, the protoplasts developed cell-walls and formed colonies. Transformation frequencies were in the range 36 to 87 transformants per 10 μg of vector DNA and 106 protoplasts. Stability of transformation was confirmed by sub-culturing the putative transformants on selective agar containing HmB as well as by PCR-detection of the hph gene in the colonies. The hph gene was stably integrated as shown by five subsequent passages with and without selection pressure. PMID:25401079

  11. Effects of teacher- versus student-created tactual instructional materials versus interactive whiteboards on the achievement of sixth-grade suburban science students

    NASA Astrophysics Data System (ADS)

    Marino, Anthony Joseph

    The purpose of this researcher was to examine the effects of compatibility between the learning style preferences and instructional strategies which include learning with tactual or interactive whiteboard materials created either by the teacher or the student on students' science achievement gains. A counterbalanced-research design was employed for implementing four instructional strategies with pretests and posttests for 87 sixth graders. The highest mean gain in science achievement was shown in learning with interactive whiteboard materials regardless of the creator. Significantly higher science achievement gains were exhibited when students learned with instructional strategy aligned with their learning style preference than when they learned with unaligned instructional strategies. Significant science achievement gains were found for low SES students when they learned using interactive whiteboards regardless of the creator of the materials. Stepwise multiple regression analyses showed that the compatible learning-style preference explained most of the variances of students' science achievement gains in each instructional strategy of using teacher-created materials, student-created materials, tactual materials, and interactive whiteboard materials.

  12. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  13. Inquiry and Blended Learning Based Learning Material Development for Improving Student Achievement on General Physics I of Mathematics and Natural Science of State University of Medan

    ERIC Educational Resources Information Center

    Motlan; Sinulinggga, Karya; Siagian, Henok

    2016-01-01

    The aim of this research is to determine if inquiry and blended learning based materials can improve student's achievement. The learning materials are: book, worksheet, and test, website, etc. The type of this research is quasi experiment using two-group pretest posttest design. The population is all students of first year who take general physics…

  14. The Effects of Realistic Versus Nonrealistic Play Materials on Young Children's Symbolic Transformation of Objects.

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey

    This study compared the influence of two play environments on young children's make-believe object transformation behaviors. One environment contained traditional realistic play props; the other contained nonrealistic objects. Subjects were 32 Caucasian children, 17 boys and 15 girls, between 40 and 73 months of age, from working- or middle-class…

  15. [The misery of degeneration: Buffon's materialism and the 'limitations' of his transformism].

    PubMed

    Caponi, Gustavo

    2009-01-01

    In "Of the degeneration of animals" (1766), Buffon espoused a kind of limited transformism. Yet twelve years later, in Epochs of Nature, he supplemented this with a materialist theory on the origin of life that left no room for this alternative: the conditions under which living beings develop could explain how the different species within each animal genus had formed through the degeneration of an originating species. But the formation of these multiple, originating varieties could only be explained by a sudden process of spontaneous generation. A limitation inherent to the very system of ideas that had taken Buffon to limited transformism the underlying theory of generation and reproduction -preempted the possibility of its radicalization.

  16. Phase Transformations and Microstructural Evolution: Part I

    DOE PAGES

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less

  17. Phase Transformations and Microstructural Evolution: Part I

    SciTech Connect

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution are highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.

  18. Closing the health and nutrition gap in Odisha, India: A case study of how transforming the health system is achieving greater equity.

    PubMed

    Thomas, Deborah; Sarangi, Biraj Laxmi; Garg, Anu; Ahuja, Arti; Meherda, Pramod; Karthikeyan, Sujata R; Joddar, Pinaki; Kar, Rajendra; Pattnaik, Jeetendra; Druvasula, Ramesh; Dembo Rath, Alison

    2015-11-01

    Health equity is high on the international agenda. This study provides evidence of how health systems can be strengthened to improve health equity in a low-income state. The paper presents a case study of how the Government of Odisha in eastern India is transforming the health system for more equitable health and nutrition outcomes. Odisha has a population of over 42 million, high levels of poverty, and poor maternal and child health concentrated in its Southern districts and among Scheduled Tribe and Scheduled Caste communities. Conducted between 2008 and 2012 with the Departments of Health and Family Welfare, and Women and Child Development, the study reviewed a wide range of literature including policy and programme documents, evaluations and studies, published and grey material, and undertook secondary analysis of state level household surveys. It identifies innovative and expanded provision of health services, reforms to the management and development of human resources for health, and the introduction of a number of cash transfer and entitlement schemes as contributing to closing the gap between maternal and child health and nutrition outcomes of Scheduled Tribes, and the Southern districts, compared to the state average. The institutional delivery rate for Scheduled Tribes has risen from 11.7% in 2005-06 to 67.3% in 2011, and from 35.6% to 79.8% for all women. The social gradient has also closed for antenatal and postnatal care and immunisation. Nutrition indicators though improving are proving slower to budge. The paper identifies how political will, committed policy makers and fiscal space energised the health system to promote equity. Sustained political commitment will be required to continue to address the more challenging human resource, health financing and gender issues.

  19. Electronic structure and ferromagnetism in the martensitic-transformation material Ni2FeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Hu, H. N.; Liu, G. D.; Cui, Y. T.; Zhang, M.; Chen, J. L.; Wu, G. H.; Xiao, Gang

    2004-04-01

    We calculated the electronic structures of the Heusler alloy Ni2FeGa for both the cubic and the orthorhombic structures by self-consistent full-potential linearized-augmented plane-wave method. The localized moment of Fe atom is interpreted based on the electronic structure and the popular explanation of the localized moment of Mn in Heusler alloy X2MnY. Comparing the density of states of cubic and orthorhombic structures, we observed that a Ni peak near the density of states of d band for the cubic structure splits for the orthorhombic structure, indicating a band Jahn-Teller mechanism should be responsible for the structural transition. Accompanied by this transformation, an increase of Ni moment and magnetization redistribution occurred. Temperature-dependence anisotropy field shows an evidence of martensitic transformation between 125 and 190 K. The magnetic behavior seems to contain a transition from Heisenberg-like at temperature below 70 K to itinerant magnetism at temperature higher than 160 K upon martensitic transformation. Temperature dependence of saturation magnetization reveals the spontaneous magnetization at martensite and parent phase are 3.170μB and 3.035μB, respectively. The calculated magnetic moment at martensite is 3.171μB, which is quite consistent with the experimental value. The magnetic moment of Fe and Ni atom in Heusler alloy Ni2FeGa is analyzed based on the computational results and the experimental magnetization curves. It is found that the magnetic moment of Fe atoms is about 10 43% larger than that of α-Fe.

  20. Nonequilibrium thermodynamics of driven amorphous materials. III. Shear-transformation-zone plasticity.

    PubMed

    Bouchbinder, Eran; Langer, J S

    2009-09-01

    We use the internal-variable, effective-temperature thermodynamics developed in two preceding papers to reformulate the shear-transformation-zone (STZ) theory of amorphous plasticity. As required by the preceding analysis, we make explicit approximations for the energy and entropy of the STZ internal degrees of freedom. We then show that the second law of thermodynamics constrains the STZ transition rates to have an Eyring form as a function of the effective temperature. Finally, we derive an equation of motion for the effective temperature for the case of STZ dynamics.

  1. Fourier Transform Infrared Spectroscopic Analysis Of Plastic Capsule Materials Exposed To Deuterium-Tritium (DT) Gas

    SciTech Connect

    Schoonover, J R; Steckle, Jr., W P; Elliot, N; Ebey, P S; Nobile, A; Nikroo, A; Cook, R C; Letts, S A

    2005-06-16

    Planar samples of varying thicknesses of both CH and CD glow discharge polymer have been measured with Fourier transform infrared (FTIR) spectroscopy before and after exposure to deuterium-tritium (DT) gas at elevated temperature and pressure. Planar samples of polyimide films made from both hydrogenated and deuterated precursors have also been examined by FTIR before and after DT exposure. The post-exposure FTIR spectra demonstrated no measurable exchange of hydrogen with deuterium or tritium for either polymer. Evidence for oxidation of the glow discharge polymer due to atmospheric oxygen was the only chemical change indicated by the FTIR data.

  2. Novel Electro-Analytical Tools for Phase-Transformation Electrode Materials

    DTIC Science & Technology

    2009-08-13

    words) We measured and compared phase transformation accommodation energy (AE) for Li4Ti5O12 and LiFePO4 with different particle size by using...larger than next cycles due to inducing of defects; Because of smaller volume difference, AE of Li4Ti5O12 was lower than that of LiFePO4 ; AE of... LiFePO4 with small particle size was lower than that of LiFePO4 with large particle size. By plugging the AE measured by GITT into mixed control

  3. Biological effects and comparative cytotoxicity of thermal transformed asbestos-containing materials in a human alveolar epithelial cell line.

    PubMed

    Giantomassi, Federica; Gualtieri, Alessandro F; Santarelli, Lory; Tomasetti, Marco; Lusvardi, Gigliola; Lucarini, Guendalina; Governa, Mario; Pugnaloni, Armanda

    2010-09-01

    Asbestos fibres can be transformed into potentially non-hazardous silicates by high-temperature treatment via complete solid-state transformation. A549 cells were exposed to standard concentrations of raw cement asbestos (RCA), chrysotile and cement asbestos subjected to an industrial process at 1200 degrees C (Cry_1200 and KRY.AS, respectively), raw commercial grey cement (GC). Cell growth rate and viability (MTT test) were detected in vitro. RCA and KRY.AS subjected to comprehensive microstructural study by electron microscopy were further in vitro assayed to compare their cytotoxic potential by morphostructural studies, proliferation index (Ki-67 antigen), apoptosis induction (AO/EB staining) assays and detection of intracellular reactive oxygen species (ROS) with the fluorescent DCFA dye. More severe cytotoxic damage was induced by RCA than by KRY.AS after each incubation period. Exposure to KRY.AS and GC resulted in comparable cell growth rates and cytotoxic effects. Cells incubated with RCA showed greater apoptotic induction and ROS production and a lower cell proliferation index than those exposed to KRY.AS. Chrysotile asbestos and RCA subjected to heat treatment underwent complete microstructure transformation. The final product of heat treatment of cement asbestos, KRY.AS, was considerably more inert and had lower cytotoxic potential than the original asbestos material in all in vitro tests.

  4. Identification of trace additives in polymer materials by attenuated total reflection Fourier transform infrared mapping coupled with multivariate curve resolution.

    PubMed

    Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun

    2017-03-07

    Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.

  5. Laboratory illustrations of the transformations and deposition of inorganic material in biomass boilers

    SciTech Connect

    Baxter, L.L.; Jenkins, B.M.

    1995-12-31

    Boilers fired with certain woody biomass fuels have proven to be a viable, reliable means of generating electrical power. The behavior of the inorganic material in die fuels is one of the greatest challenges to burning the large variety of fuels available to biomass combustors. Unmanageable ash deposits and interactions between ash and bed material cause loss in holler availability and significant increase in maintenance costs. The problems related to the behavior of inorganic material now exceed all other combustion-related challenges in biomass-fired boilers. This paper reviews the mechanisms of ash deposit formation, the relationship between fuel properties and ash deposit properties, and a series of laboratory tests in Sandia`s Multifuel Combustor designed to illustrate how fuel type, boiler design, and boiler operating conditions impact ash deposit properties.

  6. Laboratory illustrations of the transformations and deposition of inorganic material in biomass boilers

    SciTech Connect

    Baxter, L.L.; Jenkins, B.M.

    1995-12-31

    Boilers fired with certain woody biomass fuels have proven to be a viable, reliable means of generating electrical power. The behavior of the inorganic material in the fuels is one of the greatest challenges to burning the large variety of fuels available to biomass combustors. Unmanageable ash deposits and interactions between ash and bed material cause loss in boiler availability and significant increase in maintenance costs. The problems related to the behavior of inorganic material now exceed all other combustion-related challenges in biomass-fired boilers. This paper reviews the mechanisms of ash deposit formation, the relationship between fuel properties and ash deposit properties, and a series of laboratory tests in Sandia`s Multifuel Combustor designed to illustrate how fuel type, boiler design, and boiler operating conditions impact ash deposit properties.

  7. Laboratory illustrations of the transformations and deposition of inorganic material in biomass boilers

    SciTech Connect

    Baxter, L.L.; Jenkins, B.M.

    1995-08-01

    Boilers fired with certain woody biomass fuels have proven to be a viable, reliable means of generating electrical power. The behavior of the inorganic material in the fuels is one of the greatest challenges to burning the large variety of fuels available to biomass combustors. Unmanageable ash deposits and interactions between ash and bed material cause loss in boiler availability and significant increase in maintenance costs. The problems related to the behavior of inorganic material now exceed all other combustion-related challenges in biomass-fired boilers. This paper reviews the mechanisms of ash deposit formation, the relationship between fuel properties and ash deposit properties, and a series of laboratory tests in Sandia`s Multifuel Combustor designed to illustrate how fuel type, boiler design, and boiler operating conditions impact ash deposit properties.

  8. Transforming Middle School Geometry: Designing Professional Development Materials that Support the Teaching and Learning of Similarity

    ERIC Educational Resources Information Center

    Seago, Nanette; Jacobs, Jennifer; Driscoll, Mark

    2010-01-01

    Although there are increasing numbers of professional development (PD) materials intended to foster teachers' mathematical knowledge for teaching within the topics of number and algebra, little attention has been given to geometry. In this article we describe the Learning and Teaching Geometry project's approach to the development of PD materials…

  9. Effects of a Classroom Intervention with Spatial Play Materials on Children's Object and Viewer Transformation Abilities

    ERIC Educational Resources Information Center

    Vander Heyden, Karin M.; Huizinga, Mariette; Jolles, Jelle

    2017-01-01

    Children practice their spatial skills when playing with spatial toys, such as construction materials, board games, and puzzles. Sex and SES differences are observed in the engagement in such spatial play activities at home, which relate to individual differences in spatial performance. The current study investigated the effects of explicitly…

  10. Impedance spectroscopy in photovoltaic materials of Cu2ZnSnS4 (CZTS) and use of the KK transform

    NASA Astrophysics Data System (ADS)

    Patarroyo, M.; Vera, E.; Pineda, Y.; Gómez, J.; Soracá, G.; Sánchez, D.

    2017-01-01

    The article presents some details about the synthesis and evaluation of photovoltaic materials related with the Cu2ZnSnS4 system (abbreviated CZTS), using a hydrothermal route that provide the optimal way to synthesize the proposed materials. The ceramic was obtained starting from corresponding metal nitrates and thiourea as sulphur source in stoichiometric amounts. Corresponding reagents were dossed in a steel Teflon lined vessel and treated at different temperatures to evaluate the effect of external variables in synthesis process. The structure was evaluated by means scanning electron microscopy (SEM) and X-ray diffraction. The electrical characteristics were evaluated by solid state spectroscopy using a statistical analysis coupled with a simple model fitted to the data of electrical conductivity of the material as function of synthesis temperature, for this, the mathematical formulation of the impedance was analyzed, with the use of the Kramers-Kronig transform (KK), (mathematical equations that describe the relationship between the real and imaginary parts of certain complex functions analytic) as well as documentation and research related with the subject of this article. The results show a good behavior of the material, showing that the higher synthesis temperatures promotes a corresponding increase in the electrical conductivity in accordance with previous works [1].

  11. Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores

    SciTech Connect

    Whittemore, Sean M.; Bowden, Mark; Karkamkar, Abhijeet; Parab, Kshitij; Neiner, Doinita; Autrey, Tom; Ishibashi, Jacob S. A.; Chen, Gang; Liu, Shih-Yuan; Dixon, David A.

    2015-12-02

    Energy storage remains a key challenge for the advancement of fuel cell applications. Because of this, hydrogen has garnered much research attention for its potential as an energy carrier. This can be attributed to its abundance from non-petroleum sources, and its energy conversion efficiency. Our group, among others, has been studying the use of ammonia borane as a chemical hydrogen storage material for the past several years. Ammonia borane (AB, NH3BH3), a solid state complex composed of the light weight main group elements of nitrogen and boron, is isoelectronic with ethane and as such is an attractive hydrogen storage material with a high gravimetric capacity of H2 (19.6 wt%). However, the widespread use of AB as a chemical hydrogen storage material has been stalled by some undesirable properties and reactivity. Most notably, AB is a solid and this presents compatibility issues with the existing liquid fuel infrastructure. The thermal release of H2 from AB also results in the formation of volatile impurities (borazine and ammonia) that are detrimental to operation of the fuel cell. Additionally, the major products in the spent fuel are polyborazylene and amine borane oligomers that present challenges in regenerating AB. This research was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  12. An exploratory study of the viscoelasticity of phase-transforming material

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Liping; Vaughan, Michael

    2009-05-01

    Attenuation and modulus dispersion are typically associated with shear stress and strain. Time-dependent volume changes accompanying pressure variations can give rise to bulk modulus attenuation and dispersion. Phase transformations in a two-phase region are candidates for such phenomena. Here we report laboratory data that are consistent with bulk modulus softening as pressure is cycled in a region of coexisting olivine and spinel. We use Fay70For30 olivine as our sample. Experiments are performed in a multi-anvil high-pressure apparatus (Deformation DIA) using synchrotron (NSLS) X-ray radiation as the probing tool. Pressure is up to 12 GPa and temperature is up to 1450 °C. Measurements were carried out within the binary loop where the olivine and spinel phases coexist. We apply a uniaxial oscillation stress onto the sample and Young's modulus and Q-1 are measured at frequencies of 0.1-0.01 Hz. Our results indicate that the sinusoidal force applied to the sample in olivine-ringwoodite region has much lower bulk modulus and higher Q-1 than in the single-phase regions. Our data are consistent with the diffusion controlled model of [Jackson, I., 2007. Physical origins of anelasticity and attenuation in rock, In: Price, G.D. (Ed.) Mineral Physics. Treatise On Geophysics. Elsevier], where the characteristic time decreases with decreasing strain.

  13. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    PubMed

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-06

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.

  14. Setting up the criteria and credit-awarding scheme for building interior material selection to achieve better indoor air quality.

    PubMed

    Niu, J L; Burnett, J

    2001-06-01

    Methods, standards, and regulations that are aimed to reduce indoor air pollution from building materials are critically reviewed. These are classified as content control and emission control. Methods and standards can be found in both of these two classes. In the regulation domain, only content control is enforced in some countries and some regions, and asbestos is the only building material that is banned for building use. The controlled pollutants include heavy metals, radon, formaldehyde, and volatile organic compounds (VOCs). Emission rate control based upon environment chamber testing is very much in the nature of voluntary product labeling and ranking, and this mainly targets formaldehyde and VOC emissions. It is suggested that radon emission from building materials should be subject to similar emission rate control. A comprehensive set criteria and credit-awarding scheme that encourages the use of low-emission building material is synthesized, and how this scheme can be practiced in building design is proposed and discussed.

  15. Development of non-conventional instrument transformers (NCIT) using smart materials

    NASA Astrophysics Data System (ADS)

    Nikolić, Bojan; Khan, Sanowar; Gabdullin, Nikita

    2016-11-01

    In this paper is presented a novel approach for current measurement using smart materials, magnetic shape memory (MSM) alloys. Their shape change can be controlled by the application of magnetic field or mechanical stress. This gives the possibility to measure currents by correlating the magnetic field produced by the current, shape change in an MSM- based sensor and the voltage output of a Linear Variable Differential Transducer (LVDT) actuated by this shape change. In the first part of the paper is presented a review of existing current measurement sensors by comparing their properties and highlighting their advantages and disadvantages.

  16. Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew

    1994-01-01

    Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.

  17. On consistent micromechanical estimation of macroscopic elastic energy, coherence energy and phase transformation strains for SMA materials

    NASA Astrophysics Data System (ADS)

    Ziółkowski, Andrzej

    2017-01-01

    An apparatus of micromechanics is used to isolate the key ingredients entering macroscopic Gibbs free energy function of a shape memory alloy (SMA) material. A new self-equilibrated eigenstrains influence moduli (SEIM) method is developed for consistent estimation of effective (macroscopic) thermostatic properties of solid materials, which in microscale can be regarded as amalgams of n-phase linear thermoelastic component materials with eigenstrains. The SEIM satisfy the self-consistency conditions, following from elastic reciprocity (Betti) theorem. The method allowed expressing macroscopic coherency energy and elastic complementary energy terms present in the general form of macroscopic Gibbs free energy of SMA materials in the form of semilinear and semiquadratic functions of the phase composition. Consistent SEIM estimates of elastic complementary energy, coherency energy and phase transformation strains corresponding to classical Reuss and Voigt conjectures are explicitly specified. The Voigt explicit relations served as inspiration for working out an original engineering practice-oriented semiexperimental SEIM estimates. They are especially conveniently applicable for an isotropic aggregate (composite) composed of a mixture of n isotropic phases. Using experimental data for NiTi alloy and adopting conjecture that it can be treated as an isotropic aggregate of two isotropic phases, it is shown that the NiTi coherency energy and macroscopic phase strain are practically not influenced by the difference in values of austenite and martensite elastic constants. It is shown that existence of nonzero fluctuating part of phase microeigenstrains field is responsible for building up of so-called stored energy of coherency, which is accumulated in pure martensitic phase after full completion of phase transition. Experimental data for NiTi alloy show that the stored coherency energy cannot be neglected as it considerably influences the characteristic phase transition

  18. Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials.

    PubMed

    Toja, Francesca; Nevin, Austin; Comelli, Daniela; Levi, Marinella; Cubeddu, Rinaldo; Toniolo, Lucia

    2011-03-01

    The preservation of design object collections requires an understanding of their constituent materials which are often polymeric blends. Challenges associated with aging of complex polymers from objects with an unknown physical history may compromise the interpretation of data from analytical techniques, and therefore complicate the assessment of the condition of polymers in indoor museum environments. This study focuses on the analysis of polymeric materials from three well-known Italian design lamps from the 1960s. To assess the degree of chemical modifications in the polymers, non-destructive molecular spectroscopic techniques, Fourier-transform infrared (FTIR) and fluorescence spectroscopy, have been applied directly on the object surfaces using an optical fiber probe and through examination of micro samples. FTIR spectra of the different polymers, polyvinylacetate (PVAc) for the lamps Taraxacum and Fantasma, and both acrylonitrile-butadiene-styrene polymer (ABS) and cellulose acetate (CA) for the lamp Nesso, allowed the detection of ongoing deterioration processes. Fluorescence spectroscopy proved particularly sensitive for the detection of molecular changes in the polymeric objects, as the spectra obtained from the examined lamps differ significantly from those of the unaged reference materials. Differences in fluorescence spectra are also detected between different points on the same object further indicating the presence of different chemical species on the surfaces. With the aid of complementary data from FTIR spectroscopy, an interpretation of the emission spectra of the studied polymeric objects is here proposed, further suggesting that fluorescence spectroscopy may be useful for following the degradation of historical polymeric objects.

  19. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  20. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.

    PubMed

    Arzhantsev, Sergey; Li, Xiang; Kauffman, John F

    2011-02-01

    We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.

  1. Development of Competency-Based Web Learning Material and Effect Evaluation of Self-Directed Learning Aptitudes on Learning Achievements

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng

    2006-01-01

    This study aims to develop and evaluate competency-based web learning material (CBWLM) for the college practicum Microprocessor Laboratory. After using the CBWLM for 8 weeks, this study investigates CBWL's learning effects and self-directed learning aptitudes (SDLAs) as well as exploring the influence of SDLA on learning effects based on the…

  2. Investigating Learning Achievements of Thai High School Students in a Sequences and Series Lesson Delivered on CAI-Based Materials

    ERIC Educational Resources Information Center

    Chundang, Ungsana; Singhaprink, Wipawaan; Pongpullponsak, Adisak; Tantipisalkul, Tasanee; Praekhaow, Puchong

    2012-01-01

    The current experimental research aims to investigate students' learning outcomes in classes in which the interactive CAI (computer-assisted instruction)-based materials were implemented. It also aims to compare the learning outcomes of the students based on regions in which their school is located. The participants were 326 Matthayom-4 students…

  3. Use of tactual materials on the achievement of content specific vocabulary and terminology acquisition within an intermediate level science curriculum

    NASA Astrophysics Data System (ADS)

    Terry, Brian H.

    In this quasi-experimental study, the researcher investigated the effectiveness of three tactual strategies and one non-tactual strategy of content specific vocabulary acquisition. Flash cards, task cards, and learning wheels served as the tactual strategies, and vocabulary review sheets served as a non-tactual strategy. The sample (n=85) consisted of all middle school students in a small high performing middle school located in the northern suburbs of New York City. All of the vocabulary words and terms came from the New York State Intermediate Level Science Core Curriculum. Pre-tests and post-tests were used to collect the data. A repeated measures ANOVA was conducted on the gain scores from each of the treatments. Multiple paired sample t-tests were conducted to analyze the results. Repeated measures ANOVAs were used to determine if there was a variance between the academic achievement levels of the students, gender, and grade level for each of the treatments. All of the treatments significantly improved the science achievement of the students, but significance was found between them. Significance was found between the achievement groups with the above average students attaining a higher mean on the pre-test and post-test for each treatment, whereas the below average students had the lowest mean on both assessments. The sixth grade students showed significant improvement over the seventh grade students while using the flash cards (p=.004) and learning wheel (p=.007). During the learning wheel treatment, the males scored significantly better (p=.021) than the females on the pre-test and post-test. During the worksheet treatment, significance (p=.034) was found between gender and achievement group. The below average male students had the greatest gain from the pre-test to the post-test, but the post-test mean was still the lowest of the groups. Limitations, implications for future research and current practice are discussed. Key words are: flash cards, task cards

  4. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    SciTech Connect

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  5. Transforming Spatial Reasoning Skills in the Upper-Level Undergraduate Geoscience Classroom Through Curricular Materials Informed by Cognitive Science Research

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2014-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geosciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may be unable to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. As a group of geoscience faculty members and cognitive psychologists, we have developed a set of curricular materials for Mineralogy, Sedimentology & Stratigraphy, and Structural Geology courses. These materials are designed to improve students' spatial skills, and in particular to improve students' abilities to reason about spatially complex 3D geological concepts and problems. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate STEM education by removing one significant barrier to success in the STEM disciplines. The curricular materials we have developed are based on several promising teaching strategies that have emerged from cognitive science research on spatial thinking. These strategies include predictive sketching, making visual comparisons, gesturing, and the use of analogy. We have conducted a three-year study of the efficacy of these materials in strengthening the spatial skills of students in upper-level geoscience courses at three universities. Our methodology relies on a pre- and post-test study design, with several tests of spatial thinking skills administered at the beginning and end of each semester. In 2011-2012, we used a "business as usual" approach to gather baseline data, measuring how much students' spatial thinking skills improved in response to the existing curricula. In the two subsequent years we have incorporated our new curricular materials, which can be found on the project website: http://serc.carleton.edu/spatialworkbook/activities.html Structural Geology

  6. The thermal transformation of Man Made Vitreous Fibers (MMVF) and safe recycling as secondary raw materials (SRM).

    PubMed

    Gualtieri, A F; Foresti, E; Lesci, I G; Roveri, N; Gualtieri, M Lassinantti; Dondi, M; Zapparoli, M

    2009-03-15

    This work describes the high temperature reaction sequence of commercial Man Made Vitreous Fibers (MMVF) Cerafiber, Superwool, Rock wool and Glass wool which may be used as substitute for asbestos in some industrial applications. Knowledge of the reaction path and transformation sequence is very important to assess whether carcinogenic crystalline phases are formed during devitrification, which may occur when used as insulators. In addition, knowledge about the nature of the phases formed at high temperature is mandatory to assess if thermally transformed MMVF can be safely recycled as secondary raw material (SRM). In this scenario, this study provides useful information for the optimization of the industrial annealing process aimed to attain a safe, recyclable product. The results of this work show that one of the high-temperature products of Cerafiber and Superwool is cristobalite which is classified as a carcinogenic. It was possible to define the temperature interval at which Cerafiber and Superwool fibers can be safely used as thermal insulators (e.g. insulators in tunnel and/or roller kilns, etc.). As cristobalite is formed in both synthetic fiber products at temperatures higher than 1200 degrees C, their use should be limited to devices operating at lower temperatures. Rock and Glass wool melt upon thermal treatment. As far as the industrial process of inertization is concerned, a maximum firing temperature of 1100 and 600 degrees C is required to melt Rock wool and Glass wool, respectively, with the high-temperature products that can be safely recycled as SRM. Recycling of these products in stoneware tile mixtures were subsequently attempted. The addition of 1-2 wt.% of the melts of Rock and Glass wool gave promising results in terms of viscous sintering reactions and resistance to staining with the only weak characteristic being the color properties of the fired bodies which tend to worsen.

  7. Immunohistochemical demonstration of oestrogen and progesterone receptors: correlation of standards achieved on in house tumours with that achieved on external quality assessment material in over 150 laboratories from 26 countries

    PubMed Central

    Rhodes, A; Jasani, B; Balaton, A; Miller, K

    2000-01-01

    the view that results achieved on EQA material are accurate indicators of in house laboratory performance. Although most laboratories adequately detected tumours with high receptor expression, a large proportion of in house tumours classified initially by participants' staining as being of low or medium ER expression had a higher degree of expression when stained by the UK NEQAS-ICC centre. The efficiency of the organising centre's routine IHC method for ER and PR in optimally demonstrating participants in house breast tumours shows that variations in fixation and tissue preparation are not limiting factors preventing a different laboratory achieving optimal demonstration. Key Words: immunohistochemistry • oestrogen receptors • progesterone receptors • external quality assessment PMID:10823126

  8. Rupture process of oceanic transform faults linked to material variability: local observations and models of the Gofar Fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Collins, J. A.; Lizarralde, D.; Liu, Y.; Behn, M. D.

    2011-12-01

    seismogenic zone are consistent with porosity values of 0.1 to 0.6% for water saturated gabbro. Combined, these observations and models provide convincing evidence for extreme along-strike heterogeneity in material properties that likely has a first order influence on the frictional properties of the fault zone. Specifically, the location of a stationary rupture barrier that sustains only small-magnitude seismicity and temporal variation in the shear modulus during swarm events appears to correspond with a deep low velocity zone that extends throughout the entire lower crust. Additionally, the along-strike distribution of large earthquakes provides some evidence for changes in the seismogenic width of the fault with proximity to the ridge-transform intersection. By combining these new observations and models, we seek to identify variations in material properties that allow RTFs to slip largely aseismically, rupturing only a small fraction of the thermally determined fault area in large mainshock earthquakes.

  9. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials.

    PubMed

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-14

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  10. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-01

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  11. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  12. Awakening Sleepy Knowledge: Transformative Learning in Action. Final Report of the Transformative Learning through Environmental Action Project.

    ERIC Educational Resources Information Center

    York Univ., Toronto (Ontario).

    This document summarizes and presents materials produced during a qualitative international study of the role of transformative learning in achieving sustainable societies and global responsibility that included the following activities: case studies of experiences with transformative learning in seven countries; international survey and workshop;…

  13. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO4 material phase transformations in direct methanol synthesis from methane

    NASA Astrophysics Data System (ADS)

    Dasireddy, Venkata D. B. C.; Khan, Faiza B.; Hanzel, Darko; Bharuth-Ram, Krish; Likozar, Blaž

    2017-11-01

    The effect of the FePO4 material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O2, H2O and N2O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO4 (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe2P2O7, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  14. Development of a carburizing and quenching simulation tool: A material model for low carbon steels undergoing phase transformations

    SciTech Connect

    Bammann, D.; Prantil, V.; Kumar, A.

    1996-06-24

    An internal state variable formulation for phase transforming alloy steels is presented. We have illustrated how local transformation plasticity can be accommodated by an appropriate choice for the corresponding internal stress field acting between the phases. The state variable framework compares well with a numerical micromechanical calculation providing a discrete dependence of microscopic plasticity on volume fraction and the stress dependence attributable to a softer parent phase. The multiphase model is used to simulate the stress state of a quenched bar and show qualitative trends in the response when the transformation phenomenon is incorporated on the length scale of a global boundary value problem.

  15. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    PubMed

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with

  16. [Transformation toughening

    SciTech Connect

    Rafa, M.J.

    1993-04-19

    In NiAl, we have succeeded in determining the complete Ginzburg-Landau strain free energy function necessary to model the cubic to tetragonal martensite transformation in a sample of any size. We believe that this is the first time that the parameters of a Ginzburg-Landau functional and the complete strain spinodal for any three-dimensional displacive transformation were used in simulating the transformation near a crack tip under Mode I loading; the transformation pattern and toughening are different from standard transformation toughening theories. Furthermore, the strain spinodal has an approximately conical shape which can be specified by two material dependent experimentally accessible parameters, rather than the ellipsoidal shape in standard theories. Stress induced martensitic transformation in a polycrystalline sample of NiAl was simulated. In the ZrO[sub 2] system, first principles calculations to determine the semi-empirical potentials for simulating the cubic-tetragonal and tetragonal-monoclinic transformations have been started by doing a more elaborate total energy calculation.In the Al[sub 2]0[sub 3] system, we have discovered that the first principles calculations and semi-empirical potentials have just been completed byanother group in England which we will use instead to base our molecular dynamics simulations on.

  17. Rapid Copper Metallization of Textile Materials: a Controlled Two-Step Route to Achieve User-Defined Patterns under Ambient Conditions.

    PubMed

    Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong

    2015-09-30

    Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.

  18. Closing the Achievement Gap Means Transformation

    ERIC Educational Resources Information Center

    Colgren, Chris; Sappington, Neil E.

    2015-01-01

    Educating students in public schools has never been at a higher priority. As this nation enters the informational-based economy public schools are going to be required to educate far more students at a higher and more rigorous level. Inspired by theories of educational equity, this study sought to explore the problem that not all students in…

  19. A continuum mechanics approach to modeling and simulating engineering materials undergoing phase transformation using the evolving micro-structural model of inelasticity

    NASA Astrophysics Data System (ADS)

    Adedoyin, Adetokunbo Adelana

    Heat treatment for the purpose of material strengthening is accompanied by residual stresses and distortion. During these processing steps, steel alloys experience a phase change that in turn modify their overall mechanical response. To properly account for the cumulative composite behavior, the mechanical response, transformation kinetics and subsequent interaction of each phase have to be properly accounted for. Of interest to material designers and fabricators is modeling and simulating the evolutionary process a part undergoes for the sake of capturing the observable residual stress states and geometric distortion accumulated after processing. In an attempt to capture the aforementioned physical phenomena, this investigation is premised upon a consistent thermodynamic framework. Following this, the single phase Evolving Microstructural Model of Inelasticity state variable model is extended to accommodate the occurrence of multiphases, affirming that the interaction between coexisting phases is through an interfacial stress. Since the efficacy of a multiphase model is dependent on its ability to capture the behavior of constituents phases and their subsequent interaction, we introduce a physically based self-consistent strain partitioning algorithm. With synthesis of the aforementioned ideas, the additional transformation induced plasticity is numerically accounted for by modifying each phase's flowrule to accommodate an interfacial stress. In addition, for simulating the cohabitation of two phases, the mechanical multiphase model equations is coupled with a previously developed non-diffusional phase transformation kinetics model. A qualitative assessment of the material response based on a Taylor, Sachs and self-consistent polycrystalline approximation is carried out. Further analysis of the multiphase model and its interaction with transformation kinetics is evaluated.

  20. Transformational Learners: Transformational Teachers

    ERIC Educational Resources Information Center

    Jones, Marguerite

    2009-01-01

    Transformational learning, according to Mezirow (1981), involves transforming taken-for-granted frames of reference into more discriminating, flexible "habits of mind". In teacher education, transformative learning impacts on the development of students' action theories, self-efficacy and professional attributes. Although considered…

  1. Postassembly Transformation of a Catalytically Active Composite Material, Pt@ZIF-8, via Solvent-Assisted Linker Exchange.

    PubMed

    Stephenson, Casey J; Hupp, Joseph T; Farha, Omar K

    2016-02-15

    2-Methylimidazolate linkers of Pt@ZIF-8 are exchanged with imidazolate using solvent-assisted linker exchange (SALE) to expand the apertures of the parent material and create Pt@SALEM-2. Characterization of the material before and after SALE was performed. Both materials are active as catalysts for the hydrogenation of 1-octene, whereas the hydrogenation of cis-cyclohexene occurred only with Pt@SALEM-2, consistent with larger apertures for the daughter material. The largest substrate, β-pinene, proved to be unreactive with H2 when either material was employed as a candidate catalyst, supporting the contention that substrate molecules, for both composites, must traverse the metal-organic framework component in order to reach the catalytic nanoparticles.

  2. Topochemical Transformations of CaX2 (X=C, Si, Ge) to Form Free-Standing Two-Dimensional Materials.

    PubMed

    Pratik, Saied Md; Nijamudheen, A; Datta, Ayan

    2015-12-07

    Topochemical transformations of layered materials CaX2 (X=Si, Ge) are the method of choice for the high-yield synthesis of pristine, defect-free two-dimensional systems silicane and germanane, which have advanced electronic properties. Based on solid-state dispersion-corrected calculations, mechanisms for such transformations are elucidated that provide an in-depth understanding of phase transition in these layered materials. While formation of such layered materials is highly favorable for silicane and germanane, a barrier of 1.2 eV in the case of graphane precludes its synthesis from CaC2 topochemically. The energy penalty required for distorting linear acetylene into a trans-bent geometry accounts for this barrier. In contrast it is highly favorable in the heavier analogues, resulting in barrierless topochemical generation of silicane and germanane. Photochemical generation of the trans-bent structure of acetylene in its first excited state (S1 ) can directly generate graphane through a barrierless condensation. Unlike the buckled structure of silicene, the phase-h of CaSi2 with perfectly planar silicene layers exhibits the Dirac cones at the high symmetry points K and H. Interestingly, topochemical acidification of the cubic phase of calcium carbide is predicted to generate the previously elusive platonic hydrocarbon, tetrahedrane.

  3. Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts.

    PubMed

    Wang, Jing; Schlagenhauf, Lukas; Setyan, Ari

    2017-02-20

    Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5-10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.

  4. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts

    PubMed Central

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-01-01

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT2−) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. PMID:27869221

  5. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5'-azotetrazolate Cr(III) salts.

    PubMed

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-11-21

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5'-azotetrazolate(AZT(2-)) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials.

  6. Informatics Infrastructure for the Materials Genome Initiative

    NASA Astrophysics Data System (ADS)

    Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief

    2016-08-01

    A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.

  7. TRANSFORMER APPARATUS

    DOEpatents

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  8. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  9. High-resolution solid-state NMR study of the occurrence and thermal transformations of silicon-containing species in biomass materials

    SciTech Connect

    Freitas, J.C.C.; Emmerich, F.G.; Bonagamba, T.J.

    2000-03-01

    The occurrence of silicon in two kinds of biomass (rice hulls and endocarp of babassu coconut) and the thermal transformations taking place in these materials under heat treatments are studied here. The authors report also the production, characterization, and study of carbonaceous materials with high SiC content through the carbothermal reduction of silica, using these natural precursors. X-ray diffraction, scanning electron microscopy, and {sup 13}C and {sup 29}Si room temperature high-resolution solid-state NMR measurements are used in the characterization and study of the materials as well as the process of SiC formation. Important conclusions about the nature of silicon in these types of biomass and the effects of heat treatments on the structure of silicon-containing species are derived from the results presented. It is shown that silicon in these materials occurs in two distinct forms: amorphous hydrated silica and organically bound silicon species. The influence of spin-lattice relaxation dynamics on the NMR spectra is discussed, evidencing the role played by the paramagnetic defects produced in the materials through pyrolysis.

  10. Future utilization of space: Silverton Conference on material science and phase transformations in zero-gravity, summary of proceeding

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1975-01-01

    The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.

  11. SISGR -- Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect

    Wang, Yu U.

    2013-12-06

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  12. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  13. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  14. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  15. Quantitative determinations of SiC and SiO2 in new ceramic materials by Fourier transform infrared spectroscopy.

    PubMed

    Vereda Alonso, E; García de Torres, A; Siles Cordero, M T; Cano Pavón, J M

    2008-04-15

    Silicon carbide-based biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (mukali and pine) with molten silicon. The results of the process of synthesis have been studied in this and other biomorphic ceramics using thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) analysis and scanning electron microscopy (SEM). For evaluating the yield of the synthesis, a new method by Fourier transform infrared spectrometry (FTIR) has been developed for the direct determination of SiC and the simultaneous determination of SiC and SiO2 by absorbance measurements in KBr pellets. The procedure was based on the use of the ratio between the absorbance of the characteristic band of silicon carbide or silica and those of an acetate internal standard added to samples. A multivariate calibration strategy based on inverse least squares and the standard addition approach were employed for quantification. The results obtained for all biomorphic ceramics studied and synthetic samples prepared by mixing pyrolyzed wood with pure SiC were satisfactory. The relative standard deviation for all samples was lower than 2.9%.

  16. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  17. Periodic mesoporous hydridosilica--synthesis of an "impossible" material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite.

    PubMed

    Xie, Zhuoying; Henderson, Eric J; Dag, Ömer; Wang, Wendong; Lofgreen, Jennifer E; Kübel, Christian; Scherer, Torsten; Brodersen, Peter M; Gu, Zhong-Ze; Ozin, Geoffrey A

    2011-04-06

    There has always been a fascination with "impossible" compounds, ones that do not break any rules of chemical bonding or valence but whose structures are unstable and do not exist. This instability can usually be rationalized in terms of chemical or physical restrictions associated with valence electron shells, multiple bonding, oxidation states, catenation, and the inert pair effect. In the pursuit of these "impossible" materials, appropriate conditions have sometimes been found to overcome these instabilities and synthesize missing compounds, yet for others these tricks have yet to be uncovered and the materials remain elusive. In the scientifically and technologically important field of periodic mesoporous silicas (PMS), one such "impossible" material is periodic mesoporous hydridosilica (meso-HSiO(1.5)). It is the archetype of a completely interrupted silica open framework material: its pore walls are comprised of a three-connected three-dimensional network that should be so thermodynamically unstable that any mesopores present would immediately collapse upon removal of the mesopore template. In this study we show that meso-HSiO(1.5) can be synthesized by template-directed self-assembly of HSi(OEt)(3) under aqueous acid-catalyzed conditions and after template extraction remains stable to 300 °C. Above this temperature, bond redistribution reactions initiate a metamorphic transformation which eventually yields periodic mesoporous nanocrystalline silicon-silica, meso-ncSi/SiO(2), a nanocomposite material in which brightly photoluminescent silicon nanocrystallites are embedded within a silica matrix throughout the mesostructure. The integration of the properties of silicon nanocrystallinity with silica mesoporosity provides a wealth of new opportunities for emerging nanotechnologies.

  18. Support Principals, Transform Schools

    ERIC Educational Resources Information Center

    Aguilar, Elena; Goldwasser, Davina; Tank-Crestetto, Kristina

    2011-01-01

    The Transformational Coaching Team in Oakland Unified School District provides differentiated, sustained, job-embedded support to the district's school leaders. In this article, members of the team describe how they work with principals to transform the culture of schools. Student achievement data show above-average improvement in schools in which…

  19. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.

    2015-11-01

    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  20. Micro-shock Wave Assisted Plant Transformation

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Datey, Akshay; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Genetically modified (GM) crops are developed by transforming the desired DNA to plant. There are various methods employed to achieve the required transformation in plants. Agrobacterium mediated transformation and Biolistics or particle bombardment method are the most commonly used methods.

  1. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    PubMed

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  2. Bifunctional star-burst amorphous molecular materials for OLEDs: achieving highly efficient solid-state luminescence and carrier transport induced by spontaneous molecular orientation.

    PubMed

    Kim, Jun Yun; Yasuda, Takuma; Yang, Yu Seok; Adachi, Chihaya

    2013-05-21

    Bifunctional star-burst amorphous molecular materials displaying both efficient solid-state luminescence and high hole-transport properties are developed in this study. A high external electroluminescence quantum efficiency up to 5.9% is attained in OLEDs employing the developed amorphous materials. It is revealed that the spontaneous horizontal orientation of these light-emitting molecules in their molecular-condensed states leads to a remarkable enhancement of the electroluminescence efficiencies and carrier-transport properties.

  3. Relationship of Non-Verbal Intelligence Materials as Catalyst for Academic Achievement and Peaceful Co-Existence among Secondary School Students in Nigeria

    ERIC Educational Resources Information Center

    Sambo, Aminu

    2015-01-01

    This paper examines students' performance in Non-verbal Intelligence tests relative academic achievement of some selected secondary school students. Two hypotheses were formulated with a view to generating data for the ease of analyses. Two non-verbal intelligent tests viz: Raven's Standard Progressive Matrices (SPM) and AH[subscript 4] Part II…

  4. Metamaterial-enabled transformation optics

    NASA Astrophysics Data System (ADS)

    Landy, Nathan

    Transformation Optics is a design methodology that uses the form invariance of Maxwell's equations to distort electromagnetic fields. This distortion is imposed on a region of space by mimicking a curvilinear coordinate system with prescribed magnetoelectric material parameters. By simply specifying the correct coordinate transformation, researchers have created such exotic devices as invisibility cloaks, ``perfect'' lenses, and illusion devices. Unfortunately, these devices typically require correspondingly exotic material parameters that do not occur in Nature. Researchers have therefore turned to complex artificial media known as metamaterials to approximate the desired responses. However, the metamaterial design process is complex, and there are limitations on the responses that they achieve. In this dissertation, we explore both the applicability and limitations of metamaterials in Transformation Optics design. We begin in Chapter 2 by investigating the freedoms available to use in the transformation optics design process itself. We show that quasi-conformal mappings may be used to alleviate some of the complexity of material design in both two- and three-dimensional design. We then go on in Chapter 3 to apply this method to the design of a transformation-optics modified optic. We show that even a highly-approximate implementation of such a lens would retain many of the key performance feautures that we would expect from a full material prescription. However, the approximations made in the design of our lens may not be valid in other areas of transformation optical design. For instance, the high-frequency approximations of our lens design ignore the effects of impedance mismatch, and the approximation is not valid when the material parameters vary on the order of a wavelength. Therefore, in Chapter 4 we use other freedoms available to us to design a full-parameter cloak of invisibility. By tailoring the electromagnetic environment of our cloak, we are able to

  5. Bioglass 45S5 transformation and molding material in the processing of biodegradable poly-DL-lactide scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Abdollahi, Sara

    When bone is damaged, a scaffold can temporarily replace it in the site of injury and incite bone tissue to repair itself. A biodegradable scaffold resorbs into the body, generating non-toxic degradation products as new tissue reforms; a bioactive scaffold encourages the surrounding tissue to regenerate. In the present study, we make composite biodegradable and bioactive scaffolds using poly-DL-lactide (PDLLA), a biodegradable polymer, and incorporate Bioglass 45S5 (BG) to stimulate scaffold bioactivity. BG has an interesting trait when immersed in body fluid, a layer of hydroxycarbonate apatite, similar to the inorganic component of bone, forms on its surface. It is of utmost importance to understand the fate of BG throughout the scaffold’s processing in order to assess the scaffold’s bioactivity. In this study, the established different stages of BG reactivity have been verified by monitoring pH during BG dissolution experiments and by conducting an elemental analysis using inductively coupled plasma optical emission spectroscopy (ICP-OES). The composite scaffolds are synthesized by the solvent casting and particulate leaching technique and their morphology assessed by scanning electron microscopy (SEM). To understand the transformations occurred in BG during scaffold synthesis, BG as received, as well BG treated in acetone and water (the fluids involved in scaffold processing) are characterized by Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS). The results are then compared with BG extracted from scaffolds after processing. BG has been determined to start reacting during the scaffold processing. In addition, its reactivity is influenced by BG particle size. The study suggests that the presence of the polymer provides a reactive environment for BG due to pH effects. Teflon molds in scaffold fabrication are inert and biocompatibile, but their stiffness presents a challenge during de-molding. Silicone-based and polyurethane molds

  6. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens.

    PubMed

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-01

    Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

  7. WORKING WITH ALKALINE MATERIALS TO ACHIEVE A CLASS B, CLASS A, AND/OR A BIOSOLIDS THAT DOES NOT ATTRACT VECTORS

    EPA Science Inventory

    This workshop presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA ar...

  8. Materials on the brink: unprecedented transforming materials

    DTIC Science & Technology

    2013-09-10

    antiferroelectric phase boundary in epitaxial Sm -doped BiFeO3 thin films, Physical Review B (accepted), (07 2009): 1409. doi: 02/27/2013 89.00 L. J. Li, Y. C...Valanoor Nagarajan. Nanoscale Structural and Chemical Properties of Antipolar Clusters in Sm -Doped BiFeO3 Ferroelectric Epitaxial Thin Films...Kan, F. J. Rueckert, S. P. Alpay, V. Nagarajan, I. Takeuchi, B. O. Wells. Phase coexistence near a morphotropic phase boundary in Sm -doped BiFeO3

  9. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    Technical memorandum includes transformer area product numbers, which are used to summarize dimensional and electrical properties of C-cores, pot cores, lamination, powder cores, and tape-wound cores. To aid in core selection, comparison of five common core materials is presented to indicate their influence on overall transformer efficiency and weight.

  10. Transformation optics and metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  11. Steerable Discrete Cosine Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Fosson, Sophie M.; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  12. Steerable Discrete Cosine Transform.

    PubMed

    Fracastoro, Giulia; Fosson, Sophie M; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely, a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  13. Multi-wavelength and time-domain diffuse optical tomography data processing by using a material basis and Mellin-Laplace transform

    NASA Astrophysics Data System (ADS)

    Hervé, Lionel; Planat-Chrétien, Anne; Di Sieno, Laura; Berger, Michel; Puszka, Agathe; Dalla Mora, Alberto; Contini, Davide; Boso, Gianluca; Dinten, Jean-Marc

    2014-03-01

    In order to increase sensitivity in the depth of diffusive media and to separate chromophores with distinct spectral signatures, we developed a method to process time-domain/multi-wavelength diffuse optical acquisitions: 3D Reconstructions of chromophore concentrations are performed with an algorithm based on the use of Mellin-Laplace Transform and material basis. A noise weighted data matching term is optimized by using the conjugated gradients method without expressing the Jacobian matrix of the system. As the algorithm uses reference measurements on a known medium, it does not require measurements or computations of the instrument response function of the system. Validations are performed in the reflectance geometry on a tissue-mimicking phantom composed of intralipid and black ink and a cylindrical blue dye inclusion with a radius of 4mm located at 15mm in depth. The optical tomography setup includes a laser whose picosecond pulses are injected via an optical fiber to the probed diffusive medium and the light collected by two fibers (located 15mm apart from the source), is sent to a Single-Photon Avalanche Diode (SPAD) connected to a Time-Correlated Single-Photon Counting (TCSPC) board. The source and two detectors scan the surface of the medium so as to provide 30 source-detector couples, 900 time-bins and 5 wavelength signals. 3D reconstructions performed on the black ink and blue dye materials on a mesh of around 10000 nodes show that we are able to detect, localize and determine the composition of the inclusion and the background.

  14. Achieving Acetylcholine Receptor Clustering in Tissue-Engineered Skeletal Muscle Constructs In vitro through a Materials-Directed Agrin Delivery Approach

    PubMed Central

    Scott, John B.; Ward, Catherine L.; Corona, Benjamin T.; Deschenes, Michael R.; Harrison, Benjamin S.; Saul, Justin M.; Christ, George J.

    2017-01-01

    Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries. PMID:28123368

  15. Achieving Acetylcholine Receptor Clustering in Tissue-Engineered Skeletal Muscle Constructs In vitro through a Materials-Directed Agrin Delivery Approach.

    PubMed

    Scott, John B; Ward, Catherine L; Corona, Benjamin T; Deschenes, Michael R; Harrison, Benjamin S; Saul, Justin M; Christ, George J

    2016-01-01

    Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries.

  16. Nanostructured catalysts for organic transformations.

    PubMed

    Chng, Leng Leng; Erathodiyil, Nandanan; Ying, Jackie Y

    2013-08-20

    The development of green, sustainable and economical chemical processes is one of the major challenges in chemistry. Besides the traditional need for efficient and selective catalytic reactions that will transform raw materials into valuable chemicals, pharmaceuticals and fuels, green chemistry also strives for waste reduction, atomic efficiency and high rates of catalyst recovery. Nanostructured materials are attractive candidates as heterogeneous catalysts for various organic transformations, especially because they meet the goals of green chemistry. Researchers have made significant advances in the synthesis of well-defined nanostructured materials in recent years. Among these are novel approaches that have permitted the rational design and synthesis of highly active and selective nanostructured catalysts by controlling the structure and composition of the active nanoparticles (NPs) and by manipulating the interaction between the catalytically active NP species and their support. The ease of isolation and separation of the heterogeneous catalysts from the desired organic product and the recovery and reuse of these NPs further enhance their attractiveness as green and sustainable catalysts. This Account reviews recent advances in the use of nanostructured materials for catalytic organic transformations. We present a broad overview of nanostructured catalysts used in different types of organic transformations including chemoselective oxidations and reductions, asymmetric hydrogenations, coupling reactions, C-H activations, oxidative aminations, domino and tandem reactions, and more. We focus on recent research efforts towards the development of the following nanostructured materials: (i) nanostructured catalysts with controlled morphologies, (ii) magnetic nanocomposites, (iii) semiconductor-metal nanocomposites, and (iv) hybrid nanostructured catalysts. Selected examples showcase principles of nanoparticle design such as the enhancement of reactivity, selectivity

  17. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  18. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  19. A Multi-omics Approach to Understand the Microbial Transformation of Lignocellulosic Materials in the Digestive System of the Wood-Feeding Beetle Odontotaenius disjunctus

    NASA Astrophysics Data System (ADS)

    Ceja Navarro, J. A.; Karaoz, U.; White, R. A., III; Lipton, M. S.; Adkins, J.; Mayali, X.; Blackwell, M.; Pett-Ridge, J.; Brodie, E.; Hao, Z.

    2015-12-01

    Odontotaenius disjuctus is a wood feeding beetle that processes large amounts of hardwoods and plays an important role in forest carbon cycling. In its gut, plant material is transformed into simple molecules by sequential processing during passage through the insect's digestive system. In this study, we used multiple 'omics approaches to analyze the distribution of microbial communities and their specific functions in lignocellulose deconstruction within the insect's gut. Fosmid clones were selected and sequenced from a pool of clones based on their expression of plant polymer degrading enzymes, allowing the identification of a wide range of carbohydrate degrading enzymes. Comparison of metagenomes of all gut regions demonstrated the distribution of genes across the beetle gut. Cellulose, starch, and xylan degradation genes were particularly abundant in the midgut and posterior hindgut. Genes involved in hydrogenotrophic production of methane and nitrogenases were more abundant in the anterior hindgut. Assembled contigs were binned into 127 putative genomes representing Bacteria, Archaea, Fungi and Nematodes. Eleven complete genomes were reconstructed allowing to identify linked functions/traits, including organisms with cellulosomes, and a combined potential for cellulose, xylan and starch hydrolysis and nitrogen fixation. A metaproteomic study was conducted to test the expression of the pathways identified in the metagenomic study. Preliminary analyses suggest enrichment of pathways related to hemicellulosic degradation. A complete xylan degradation pathway was reconstructed and GC-MS/MS based metabolomics identified xylobiose and xylose as major metabolite pools. To relate microbial identify to function in the beetle gut, Chip-SIP isotope tracing was conducted with RNA extracted from beetles fed 13C-cellulose. Multiple 13C enriched bacterial groups were detected, mainly in the midgut. Our multi-omics approach has allowed us to characterize the contribution of

  20. Transformation method and wave control

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Hu, Jin; Hu, Geng-Kai

    2010-12-01

    Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.

  1. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1976-01-01

    Material was presented to assist transformer designers in the transition from long-used English units to the less familiar metric equivalents. A coordination between the area product numbers ap (product of window and core cross-section areas) and current density J was developed for a given regulation and temperature rise. Straight-line relationships for Ap and Volume, Ap and surface area At and, Ap and weight were developed. These relationships can now be used as new tools to simplify and standardize the process of transformer design. They also made it possible to design transformers of small bulk and volume or to optimize efficiency.

  2. Design of nanophotonic elements with transformation optics

    NASA Astrophysics Data System (ADS)

    Ginis, Vincent; Tassin, Philippe; Danckaert, Jan; Soukoulis, Costas M.; Veretennicoff, Irina

    2012-10-01

    In this contribution we show that the fundamental diffraction limit of optical cavities can be overcome using a transformation-optical approach. Transformation optics has recently provided a new method for the design of devices to control electromagnetic fields, based on the analogy between the macroscopic Maxwell's equations in complex dielectrics and the free-space Maxwell's equations in a curved coordinate system. It offers an elegant approach to exploit the full potential of metamaterials. We show how transformation optics can be used to achieve the opposite e ect of an invisibility cloak; instead of prohibiting the electromagnetic waves from entering a predefi ned region, we encapsulate the light waves within such a finite region. This allows us to design cavities with extraordinary properties. We have been able to demonstrate theoretically the existence of eigenmodes whose wavelength is much larger than the characteristic dimensions of the device. Furthermore, our cavities avoid the bending losses observed in traditional microcavities, so the quality factor is only limited by the intrinsic absorption of the materials. Finally, we also demonstrate how the combination of radial and angular transformations allows developing cavities without bending losses using right-handed material parameters only.1, 2

  3. High-temperature superconducting transformer performance, cost, and market evaluation

    SciTech Connect

    Dirks, J.A.; Dagle, J.E.; DeSteese, J.G.; Huber, H.D.; Smith, S.A.; Currie, J.W.; Merrick, S.B.; Williams, T.A.

    1993-09-01

    Recent laboratory breakthroughs in high-temperature superconducting (HTS) materials have stimulated both the scientific community and general public with questions regarding how these materials can be used in practical applications. While there are obvious benefits from using HTS materials (most notably the potential for reduced energy losses in the conductors), a number of issues (such as overall system energy losses, cost, and reliability) may limit applications of HTS equipment, even if the well known materials problems are solved. This study examined the future application potential of HTS materials to power transformers. This study effort was part of a US Department of Energy (DOE) Office of Energy Storage and Distribution (OESD) research program, Superconductivity Technology for Electric Power Systems (STEPS). The study took a systems perspective to gain insights to help guide DOE in managing research designed to realize the vision of HTS applications. Specific objectives of the study were as follows: to develop an understanding of the fundamental HTS transformer design issues that can provide guidance for developing practical devices of interest to the electric utility industry; to identify electric utility requirements for HTS transformers and to evaluate the potential for developing a commercial market; to evaluate the market potential and national benefits for HTS transformers that could be achieved by a successful HTS development program; to develop an integrated systems analysis framework, which can be used to support R&D planning by DOE, by identifying how various HTS materials characteristics impact the performance, cost, and national benefits of the HTS application.

  4. Construction of sequences of exact analytical solutions for heat diffusion in graded heterogeneous materials by the Darboux transformation method. Examples for half-space

    NASA Astrophysics Data System (ADS)

    Krapez, J.-C.

    2016-09-01

    The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).

  5. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  6. PT-symmetric planar devices for field transformation and imaging

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, C. A.; Monticone, F.; Alù, A.

    2016-04-01

    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging.

  7. Transformational Events

    ERIC Educational Resources Information Center

    Denning, Peter J.; Hiles, John E.

    2006-01-01

    Transformational Events is a new pedagogic pattern that explains how innovations (and other transformations) happened. The pattern is three temporal stages: an interval of increasingly unsatisfactory ad hoc solutions to a persistent problem (the "mess"), an offer of an invention or of a new way of thinking, and a period of widespread adoption and…

  8. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  9. A Year of Exceptional Achievements FY 2008

    SciTech Connect

    devore, L; Chrzanowski, P

    2008-11-06

    2008 highlights: (1) Stockpile Stewardship and Complex Transformation - LLNL achieved scientific breakthroughs that explain some of the key 'unknowns' in nuclear weapons performance and are critical to developing the predictive science needed to ensure the safety, reliability, and security of the U.S. nuclear deterrent without nuclear testing. In addition, the National Ignition Facility (NIF) passed 99 percent completion, an LLNL supercomputer simulation won the 2007 Gordon Bell Prize, and a significant fraction of our inventory of special nuclear material was shipped to other sites in support of complex transformation. (2) National and Global Security - Laboratory researchers delivered insights, technologies, and operational capabilities that are helping to ensure national security and global stability. Of particular note, they developed advanced detection instruments that provide increased speed, accuracy, specificity, and resolution for identifying and characterizing biological, chemical, nuclear, and high-explosive threats. (3) Exceptional Science and Technology - The Laboratory continued its tradition of scientific excellence and technical innovation. LLNL scientists made significant contributions to Nobel Prize-winning work on climate change. LLNL also received three R&D 100 awards and six Nanotech 50 awards, and dozens of Laboratory scientists and engineers were recognized with professional awards. These honors provide valuable confirmation that peers and outside experts recognize the quality of our staff and our work. (4) Enhanced Business and Operations - A major thrust under LLNS is to make the Laboratory more efficient and cost competitive. We achieved roughly $75 million in cost savings for support activities through organizational changes, consolidation of services, improved governance structures and work processes, technology upgrades, and systems shared with Los Alamos National Laboratory. We realized nonlabor cost savings of $23 million. Severe

  10. Modeling framework for materials capable of solid-solid phase transformation: application to the analytical solution of the semi-infinite mode III crack problem in an idealized shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zaki, Wael; Moumni, Ziad

    2015-04-01

    We propose two frameworks for the derivation of constitutive models for solids undergoing phase transformations. The first is based on the assumption that solid phases within the material are finely mixed whereas the second considers the material as a heterogeneous solution of phase fragments and uses the homogenization theory to derive equilibrium conditions for displacement fields and phase distributions. It is shown that in the case of reversible phase transformation, the energy of the material can be obtained by taking the convex envelope of the energy functions of the constituent phases. As an application, a schematic model is derived for an idealized shape memory alloy and used to obtain a novel analytical solution for the problem of semi-infinite mode III crack in this material. The derivation of the analytical solution uses the hodograph method to map Cartesian coordinates into the hodograph plane. The resulting boundary-value problem for the mode III crack considered becomes analytically tractable for the idealized shape memory alloy considered and leads to closed-form expressions for the displacement and phase volume fraction fields near the crack tip as well as for the boundaries between different phase regions.

  11. Transformation optofluidics for large-angle light bending and tuning.

    PubMed

    Yang, Y; Chin, L K; Tsai, J M; Tsai, D P; Zheludev, N I; Liu, A Q

    2012-10-07

    Transformation optics is a new art of light bending by designing materials with spatially variable parameters for developing wave-manipulation devices. Here, we introduce a transformation optofluidic Y-branch splitter with large-angle bending and tuning based on the design of a spatially variable index. Differing from traditional splitters, the optofluidic splitter is achieved in an inhomogeneous medium by coordinate transformation. The designed bidirectional gradient index (GRIN) distribution can be achieved practically by the convection-diffusion process of liquid flowing streams. The transformation optofluidic splitter can achieve a much larger split angle with little bend loss than the traditional ones. In the experiments, a large tunable split angle up to 30° is achieved by tuning the flow rates, allowing optical signals to be freely transferred to different channels. Besides the symmetrical branch splitting, asymmetrical Y-branch splitting with approximately equal power splitting is also demonstrated by changing the composition of the liquids. The optofluidic splitter has high potential applications in biological, chemical and biomedical solution measurement and detection.

  12. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    In space, power system transformer components are frequently the heaviest and bulkiest items in the power conversion circuit. They also have a significant effect upon the overall performance and efficiency of the system. Accordingly, the design of such transformers has an important effect on overall system weight, power-inversion efficiency, and cost. Relationships were between the parameters used by transformer designers that can be used as new tools to standardize and simplify transformer design. They can be used to optimize the design either for small size and weight or efficiency. The metric system of units, rather than the familiar English units, is used; however, material is presented to assist the reader in the transition from one system to the other.

  13. Materials Frontiers to Empower Quantum Computing

    SciTech Connect

    Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  14. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  15. Transformational leadership.

    PubMed

    Luzinski, Craig

    2011-12-01

    This month, the director of the Magnet Recognition Program® takes an in-depth look at the Magnet® model component transformational leadership. The author examines the expectations for Magnet organizations around this component. What are the qualities that make a nursing leader truly transformational, and what is the best approach to successfully lead a healthcare organization through today's volatile healthcare environment?

  16. Effect of Peculiarities of Heat Transfer, Diffusion and Phase Transformation on Joint Formation During Welding of Dissimilar Materials by High Power Fiber Laser

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Klimova, Olga; Valdaytseva, Ekaterina

    The article describes mathematical models of diffusion and thermal processes for welding of dissimilar materials and kinetic model of diffusion-controlled deposition and growth of intermetallic inclusions in the weld. Developed models were combined and implemented in the model of weld joint formation for dissimilar materials. To verify a model the microstructure analysis of weld joints and elemental analysis in the diffusion zone by SEM has been made for welding of systems Fe-Cu, Al-Ti, Fe-Al. The good agreement between calculated and experimental data has been obtained. Examples of developed technologies of welding of dissimilar materials using high-power fiber lasers were discussed also.

  17. Natural competence for transformation.

    PubMed

    Blokesch, Melanie

    2016-11-07

    While most molecular biologists are familiar with the artificial transformation of bacteria in the context of laboratory cloning experiments, natural competence for transformation refers to a specific physiological state in which prokaryotes are able to take up genetic material from their surroundings. Occasionally, such absorbed DNA is recombined into the organism's own genome, resulting in natural transformation (Figure 1). As a consequence, natural competence for transformation is considered a primary mode of horizontal gene transfer (HGT) in prokaryotes, together with conjugation (direct cell to cell transfer of DNA via a specialized conjugal pilus) and phage transduction (DNA transfer mediated by viruses). HGT plays a major role in bacterial evolution, and past research has demonstrated that HGT, including natural competence for transformation, contributes to the emergence of pathogens and the spread of virulence factors. Indeed, Frederick Griffith discovered natural competence for transformation in 1928 while he was investigating the exchange of pathogenic traits in pneumococci. Due to the increase in the abundance and spread of multidrug-resistant microbes, research on HGT is even more important today than ever before.

  18. Development of a High-Throughput Method for the Optical Screening of Phase Transformations Related to Amorphous Materials for Harsh Environment Applications

    DTIC Science & Technology

    2012-02-01

    characterize them. Combinatorial libraries of two materials systems were studied during the course of this project: Ti-Ni-Cu and Cr- Si -Nb. Physical...vapor deposition was used to deposit the libraries. Atomic mixing and partial layer /atomic layer approaches for coating material growth were both used... oxidation corrosion investigations. High-throughput characterization techniques developed and/or employed included automated surface profilometry

  19. Transformation plasticity in ductile solids

    SciTech Connect

    Olson, G.B.

    1993-02-01

    Research has addressed the role of martensitic transformation plasticity in the enhancement of toughness in high-strength austenitic steels, and the enhancement of formability in multiphase low-alloy sheet steels. In the austenitic steels, optimal processing conditions have been established to achieve a significant increase in strength level, in order to investigate the interaction of strain-induced transformation with the microvoid nucleation and shear localization mechanisms operating at ultrahigh strength levels. The stress-state dependence of transformation and fracture mechanisms has been investigated in model alloys, comparing behavior in uniaxial tension and blunt-notch tension specimens. A numerical constitutive model for transformation plasticity has been reformulated to allow a more thorough analysis of transformation/fracture interactions. Processing of a new low alloy steel composition has been optimized to stabilize retained austenite by isothermal bainitic transformation after intercritical annealing. Preliminary results show a good correlation of uniform ductility with the austenite amount and stability.

  20. Psychoanalytic transformations.

    PubMed

    Riolo, Fernando

    2007-12-01

    The author describes how Bion took Freud's conception of dreams as a form of thought and used it as the basis of his theory of transformations. Bion developed an expanded theory of 'dream thought', understood as a process of selection and transformation of sensory and emotional experiences. In this theory, the work of analysis is in turn conceived as a process not only of deciphering symbols, of revealing already existing unconscious meanings, but also of symbol production--of a process for generating thoughts and conferring meaning on experiences that have never been conscious and never been repressed because they have never been 'thought'. Analysis, in its specific operational sense, becomes a system of transformation whereby unconscious somatopsychic processes acquire the conditions for representability and become capable of translation into thoughts, words and interpretations. The rules of transformation applied by the patient in his representations and those applied by the analyst in his interpretations have the same importance for the analytic process as those described by Freud for the process of dreaming. The author discusses the broad categories of transformation adduced by Bion (rigid motion, projective, and in hallucinosis) and introduces some further distinctions within them.

  1. Leader as achiever.

    PubMed

    Dienemann, Jacqueline

    2002-01-01

    This article examines one outcome of leadership: productive achievement. Without achievement one is judged to not truly be a leader. Thus, the ideal leader must be a visionary, a critical thinker, an expert, a communicator, a mentor, and an achiever of organizational goals. This article explores the organizational context that supports achievement, measures of quality nursing care, fiscal accountability, leadership development, rewards and punishments, and the educational content and teaching strategies to prepare graduates to be achievers.

  2. Solvent cleaning of pole transformers containing PCB contaminated insulating oil.

    PubMed

    Kanbe, H; Shibuya, M

    2001-01-01

    In 1989, it was discovered that the recycled insulation oil in pole transformers for electric power supply was contaminated with trace amounts of polychlorinated biphenyls (PCBs; maximum 50 mg-PCB/kg-insulation oil). In order to remove the PCBs from transformer components using n-hexane as a solvent, we investigated the relationship between progressive stages of dismantling and cleaning results. The results are summarized as follows: (1) Based on the cleaning test results, we made an estimate of the residual PCB amount on iron and copper components. By dismantling the test pole transformers into the "iron core and coil portion" and cleaning the components, we achieved a residual PCB amount that was below the limit of detection (0.05 mg-PCB/kg-material). To achieve a residual PCB amount below the limit of detection for the transformer paper component, it was necessary to cut the paper into pieces smaller than 5 mm. We were unable to achieve a residual PCB amount below the limit of detection for the wood component. (2) Compared to Japan's stipulated limited concentration standard values for PCBs, the results of the cleaning test show that cleaning iron or copper components with PCBs only on their surface with the solvent n-hexane will satisfy the limited concentration standard values when care is taken to ensure the component surfaces have adequate contact with the cleaning solvent.

  3. Molecular Mechanisms in Smart Materials

    NASA Astrophysics Data System (ADS)

    Newnham, Robert E.

    1997-03-01

    One of the qualities that distinguishes living systems from inanimate matter is the ability to adapt to changes in the environment. Smart materials have the ability to perform both sensing and actuating functions and are, therefore, capable of imitating this rudimentary aspect of life. Four of the most widely used smart materials are piezoelectric Pb(Zr,Ti)O3, electrostrictive Pb(Mg,Nb)O3, magnetostrictive (Tb,Dy)Fe2, and the shape memory alloy NiTi. All four are ferroic with active domain walls, and two phase transformations which help tune the properties of these active materials. Pb(Zr,Ti)O3 is a ferroelectric ceramic which is cubic at high temperature and becomes ferroelectric on cooling through the Curie temperature. At room temperature, it is poised on a rhombohedral-tetragonal phase boundary which enhances the piezoelectric coefficients. Terfenol, (Tb,Dy)Fe2, is also cubic at high temperature and then becomes magnetic on cooling through its Curie temperature. At room temperature, it too, is poised on rhombohedral-tetragonal transition which enhances its magnetostriction coefficients. Pb(Mg,Nb)O3 and Nitinol (NiTi) are also cubic at high temperatures, and on annealing, transform to a partially ordered state. On further cooling, Pb(Mg,Nb)O3 passes through a diffuse phase transformation at room temperature where it exhibits very large dielectric and electrostrictive coefficients. Just below room temperature, it transforms to a ferroelectric rhombohedral phase. The partially ordered shape memory alloy NiTi undergoes an austenitic (cubic) to martensitic (monoclinic) phase change just above room temperature. It is easily deformed in the martensitic state but recovers its original shape when reheated to austenite. The structural similarities between these four superb actuator materials are remarkable, and provide a key to the development of future smart materials. Remarkable results are also achieved with composite sensors and actuators in which two phases with

  4. Density of Spray-Formed Materials

    SciTech Connect

    Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr

    2008-06-01

    Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditions at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.

  5. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.

    1980-01-01

    The theory of eutectic transformation was examined to find guidelines to the best material combinations to examine. The heats of transformation were measured calorimetrically, and the volume changes of expanding solid mixtures and homogeneous liquid solutions, especially during the transformation between the two states at fixed temperature, were measured by changes in X-ray absorption. Heat flow models appropriate to storage in phase change materials were developed along with efficient calculating procedures so that the relative importance of the problems associated with energy storage density, heat conduction, and similar properties could be assessed.

  6. Crystallographic Features of The Martensitic Transformation in PbTiO3 Compound

    NASA Astrophysics Data System (ADS)

    Navruz, N.

    2010-01-01

    Martensitic transformations are displacive in nature and occur in the solid state in a wide variety of metallic and non metallic materials. Although the occurrence of martensitic transformations in inorganic and ceramic compounds has been well recognized for many years, it is only in the last decade that they have achieved prominence. An important group of materials in which martensitic transformations play a significant role in determining microstructure and thus properties are the perovskite-type oxides such as PbTiO3. In this study, emphasis is given to the crystallography of the paraelectric cubic to ferroelectric tetragonal phase transformation in PbTiO3 compound. A detailed crystallographic analysis is performed in Lead Titanate (PbTiO3) and the crystallographic parameters are calculated. The predictions of the crystallographic analysis are compared with the experimental results available.

  7. Transforming Schools.

    ERIC Educational Resources Information Center

    Cookson, Peter W., Jr., Ed.; Schneider, Barbara, Ed.

    The authors in this book address the issues that relate to the crisis in American education and review some of the proposed solutions. To transform education, schools must be examined as social systems that are interrelated with families, communities, and the world of work. Following the introduction, section 1, "Conditions for Educational…

  8. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  9. Transforming Curriculum.

    ERIC Educational Resources Information Center

    Cronin, C. H.; Feldman, Phillip

    1994-01-01

    Presents comparisons between the traditional curriculum and the essential learnings curriculum implemented at the Moss Point School District in Moss Point, Mississippi. Describes in detail the curriculum transformation process. Provides insight into the role of technology in the reading/language arts curriculum. (RS)

  10. Transformation Time

    ERIC Educational Resources Information Center

    Berry, John N., III

    2007-01-01

    The program for the march by librarians on America's capital for the American Library Association (ALA) conference is predictably loaded with lobbying, legislation, and DC tours. It also abounds with professional opportunity and reflects the impact of Leslie Burger, one of the most activist ALA presidents in recent history. Her "Transformation"…

  11. Transformative Assessment

    ERIC Educational Resources Information Center

    Popham, W. James

    2008-01-01

    If you're at all skeptical that "formative assessment" is just another buzzword, then here's a book that will change the way you think about the role that formative assessment can play in transforming education into a more powerful and positive process. Renowned expert W. James Popham clarifies what formative assessment really is, why…

  12. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  13. Sustainment Transformation: Achieving a Revolution in Distribution Based Logistics

    DTIC Science & Technology

    2013-03-01

    AND ADDRESS(ES) Colonel Louis H. Jordan Jr. Strategic Research and Analysis Department 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Revolution in Distribution Based Logistics by Colonel Kevin M. Powers United States Army Colonel Louis H. Jordan...Logistics DBL is an operational concept that relies on distribution velocity and precision rather than redundant supply mass… – Robert McKay & Kathy

  14. Transforming Turnaround Schools in China: Strategies, Achievements, and Challenges

    ERIC Educational Resources Information Center

    Liu, Peng

    2016-01-01

    The existence of turnaround schools has been a problem in the Chinese education system. There are diverse causes including the education system itself, the financial system, and other issues. However, there has been a lack of research to help us fully understand this phenomenon. This article provides a holistic perspective on the strategies the…

  15. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  16. Nonprojective Transformations In Optics

    NASA Astrophysics Data System (ADS)

    Cornwell, Dean F.

    1982-02-01

    Optical systems that perform non-projective transformations are rarely synthesized by intent. Most systems familiar in practice are designed to provide the closest approximation to a projective transformation that is allowed by physics, technology, or economy. The advent of the laser brings many new applications for optical transformations - the non-projective variety being a late-comer. Requirements in the fields of laser materials processing, optical data processing, high energy lasers, and laser fusion, just to name those areas already penetrated, lead one to consideration for unconventional grooming of wavefront irradiance profiles. Transformations such as changing a wavefront irradiance distribution from flat-like to gaussian-like, or vice versa, or changing the wavefront area obscuration while maintaining its focusability, are typical examples of applications gaining an increasing interest. Following the laws of geometrical optics, yet violating certain fundamental rules of imaging, the present paper develops principles of design and analysis of non-projective transformations in optics, and explores one possible application.

  17. Genetic transformation of Metroxylon sagu (Rottb.) cultures via Agrobacterium-mediated and particle bombardment.

    PubMed

    Ibrahim, Evra Raunie; Hossain, Md Anowar; Roslan, Hairul Azman

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance.

  18. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  19. Learning and the transformative potential of citizen science.

    PubMed

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production.

  20. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  1. Characterization of organic material in ice core samples from North America, Greenland, and Antarctica using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.

    2013-12-01

    Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.

  2. RF transformer

    DOEpatents

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  3. Transformation plasmonics

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Guenneau, Sébastien; Enoch, Stefan; Huidobro, Paloma A.; Martín-Moreno, Luis; García-Vidal, Francisco J.; Renger, Jan; Quidant, Romain

    2012-07-01

    Surface plasmons polaritons (SPPs) at metal/dielectric interfaces have raised lots of expectations in the on-going quest towards scaling down optical devices. SPP optics offers a powerful and flexible platform for real two-dimensional integrated optics, capable of supporting both light and electrons. Yet, a full exploitation of the features of SPPs is conditioned by an accurate control of their flow. Most efforts have so far focused on the extrapolation of concepts borrowed from guided optics. This strategy has already led to many important breakthroughs but a fully deterministic control of SPP modes remains a challenge. Recently, the field of optics was stimulated by a novel paradigm, transformation optics, which offers the capability to control light flow in any desired fashion. While it has already significantly contributed to the design of metamaterials with unprecedented optical properties, its versatility offers new opportunities towards a fully deterministic control of SPPs and the design of a new class of plasmonic functionalities. Here, we review recent progress in the application of transformation optics to SPPs. We first briefly describe the theoretical formalism of transformation plasmonics, focusing on its specificities over its three-dimensional optical counterpart. Numerical simulations are then used to illustrate its capability to tame SPP flows at a metal interface patterned with a dielectric load. Finally, we review recent experimental implementations leading to unique SPP functionalities at optical frequencies.

  4. Tracking the Superefficient Anion Exchange of a Dynamic Porous Material Constructed by Ag(I) Nitrate and Tripyridyltriazole via Multistep Single-Crystal to Single-Crystal Transformations.

    PubMed

    Li, Cheng-Peng; Liu, Bo-Lan; Wang, Lei; Liu, Yue; Tian, Jia-Yue; Liu, Chun-Sen; Du, Miao

    2017-03-01

    To avoid the instability and inefficiency for anion-exchange resins and layered double-hydroxides materials, we present herein a flexible coordination network [Ag(L(243))](NO3)(H2O)(CH3CN) (L(243) = 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole) with superefficient trapping capacity for permanganate, as a group-7 oxoanion model for radiotoxic pertechnetate pollutant. Furthermore, a high-throughput screening strategy has been developed based on concentration-gradient design principle to ascertain the process and mechanism for anion exchange. Significantly, a series of intermediates can be successfully isolated as the qualified crystals for single-crystal X-ray diffraction. The result evidently indicates that such a dynamic material will show remarkable breathing effect of the three-dimensional host framework upon anion exchange, which mostly facilitates the anion trapping process. This established methodology will provide a general strategy to discover the internal secrets of complicated solid-state reactions in crystals at the molecular level.

  5. Phase Transformations and Microstructural Evolution: Part II

    DOE PAGES

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less

  6. Phase Transformations and Microstructural Evolution: Part II

    SciTech Connect

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in this issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.

  7. Transformation plasticity in ductile solids. Final report, August 1, 1988--November 30, 1995

    SciTech Connect

    Olson, G.B.

    1996-09-01

    Throughout history, the development of stronger materials has enabled the realization of countless technological advances. Unfortunately, any increase in strength is rarely achieved without concomitant decreases in toughness and ductility: a fact which severely limits the utility of materials such as ultrahigh-strength alloy steels. Typical precipitation-strengthened stainless steels have very little toughness at high strength levels. In the last decade, however, several investigators have reported exceptionally large fracture toughness values in high-strength precipitation-hardened metastable austenitic steels. This remarkable achievement is directly attributable to the process of transformation toughening. This report describes studies on tranformations and enhancement of plane-strain ductility in high strength steels.

  8. Novel and potential application of cryopreservation to plant genetic transformation.

    PubMed

    Wang, Biao; Zhang, Zhibo; Yin, Zhenfang; Feng, Chaohong; Wang, Qiaochun

    2012-01-01

    The world population now is 6.7 billion and is predicted to reach 9 billion by 2050. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops. Further development of new GM crops will with no doubt contribute to meeting the requirements for food by the increasing population. The present article provides updated comprehensive information on novel and potential application of cryopreservation to genetic transformation. The major progresses that have been achieved in this subject include (1), long-term storage of a large number of valuable plant genes, which offers a good potential for further development of novel cultivars by genetic transformation; (2), retention of regenerative capacity of embryogenic tissues and protoplasts, which ensures efficient plant regeneration system for genetic transformation; (3), improvement of transformation efficiency and plant regeneration of transformed cells; (4), long-term preservation of transgenic materials with stable expression of transgenes and productive ability of recombinant proteins, which allows transgenic materials to be stored in a safe manner before being analyzed and evaluated, and allows establishment of stable seed stocks for commercial production of homologous proteins. Data provided in this article clearly demonstrate that cryo-technique has an important role to play in the whole chain of genetic transformation. Further studies coupling cryotechnique and genetic transformation are expected to significantly improve development of new GM crops.

  9. A DC Transformer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  10. A Phalaenopsis variety with floral organs showing C class homeotic transformation and its revertant may enable Phalaenopsis as a potential molecular genetic material.

    PubMed

    Ejima, Chika; Kobayashi, Yuuki; Honda, Hiroaki; Shimizu, Noriko; Kiyohara, Shunsuke; Hamasaki, Ryota; Sawa, Shinichiro

    2011-01-01

    The Orchidaceae is one of the most famous garden plants, and improvement of the orchid is very important in horticulture field. However, molecular information is largely unknown. We found a Phalaenopsis variety harboring floral organs showing C class homeotic change. Column is composed of the anthers with the receptive stigmatic surface just underneath them in wild type. However the C class variety produced column with sepal or petal like structure at the abaxial side. This is the typical abnormality as C class mutants in plants. Further, wild type looking revertant was found from the meristem tissue cultured population. This result strongly indicates the existence of active transposable element in Phalaenopsis genome. This transposon may enable Phalaenopsis as a good material for molecular genetic analysis in Orchidaceae.

  11. Transformation of wetlands in the NE part of the Tuchola Pinewoods over the last 200 years on the basis of cartographic materials

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Kaczmarek, Halina

    2015-04-01

    Transformation of wetlands is conditioned by climatic, geological, hydrological and biotic as well as anthropogenic factors. Dynamic changes in lake and river systems in Northern Poland occurred at the time of the dead ice blocks melting and permafrost decay. Over the following periods of time, these changes tended to be more evolutionary. The disappearance of lakes and formation of wetlands occurred in the process of slow shallowing by filling lake basins with biogenic sediments. Only in the last few hundred years the process has been disturbed and significantly remodelled by human activity. A particularly important role was played by reclamation which led to the drainage of many wetlands and disappearance of lakes. Draining of wetlands has led to an increase in the participation of birch, oak, maple and hornbeam in the stands which in turn might have lead to a change in sedimentation in water bodies. Furthermore, due to mineralisation of peat some micro- and macroelements have become available to plants and incorporated back into circulation in the ecosystem. The goal of the research is to determine the direction and rate of change of wetlands over the last 200 years in the selected test area around Lake Czechowskie in the Tuchola Pinewoods. The study area is located in northern Poland, within the Weichselian glaciation. From earlier studies it is known that in this area over the last 200 years the biggest changes resulted from massive tree felling between the end of the eighteenth century and mid-nineteenth century. At the same time since the mid-eighteenth century, in this area very intensive reclamation works were carried out whose main objective was to convert peatlands into meadows. The biggest changes caused by land reclamation took place between mid-nineteenth and early twentieth century. At the same time, this area was abundant in dams and water mills. This study is based on historical and contemporary maps, including the following: Schr

  12. Hamlet's Transformation.

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.

  13. Rotary Transformer

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  14. Detecting Faults In High-Voltage Transformers

    NASA Technical Reports Server (NTRS)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  15. 'No delays achiever'.

    PubMed

    2007-05-01

    The latest version of the NHS Institute for Innovation and Improvement's 'no delays achiever', a web based tool created to help NHS organisations achieve the 18-week target for GP referrals to first treatment, is available at www.nodelaysachiever.nhs.uk.

  16. Vicarious Achievement Orientation.

    ERIC Educational Resources Information Center

    Leavitt, Harold J.; And Others

    This study tests hypotheses about achievement orientation, particularly vicarious achievement. Undergraduate students (N=437) completed multiple-choice questionnaires, indicating likely responses of one person to the success of another. The sex of succeeder and observer, closeness of relationship, and setting (medical school or graduate school of…

  17. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  18. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  19. Achievement-Based Resourcing.

    ERIC Educational Resources Information Center

    Fletcher, Mike; And Others

    1992-01-01

    This collection of seven articles examines achievement-based resourcing (ABR), the concept that the funding of educational institutions should be linked to their success in promoting student achievement, with a focus on the application of ABR to postsecondary education in the United Kingdom. The articles include: (1) "Introduction" (Mick…

  20. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  1. Spacecraft transformer and inductor design

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. This handbook pertains to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core dc inductor design, toroidal power core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used. The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.

  2. Lithographically defined tapered waveguides for transformation optics device applications

    NASA Astrophysics Data System (ADS)

    Adams, Todd; Ermer, Kurt; Piazza, Alex; Schaefer, Dave; Smolyaninova, Vera; Smolyaninov, Igor

    2013-03-01

    Recent progress in metamaterials and transformation optics (TO) give rise to such fascinating devices as perfect lenses, invisibility cloaks, etc., which are typically achieved with metamaterials. Realization of these devices using electromagnetic metamaterials would require sophisticated nanofabrication techniques. Recently we have demonstrated that the same effect may be achieved by much simpler means. By tapering a waveguide, one can literally ``bend'' optical space and achieve the same result. Our approach leads to much simpler designs, which require conventional lithographic techniques and readily available dielectric materials. Here we report fabrication of low cost TO devices, such as analogues of metamaterial lenses and invisibility cloaks. Their broadband properties will be demonstrated and performance for light of different polarization will be discussed. This work is supported by NSF grants DMR-0348939 and DMR-110476.

  3. Achievability for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Kress, Reid L.; Draper, John V.; Hamel, William R.

    2001-02-01

    Methods are needed to improve the capabilities of autonomous robots to perform tasks that are difficult for contemporary robots, and to identify those tasks that robots cannot perform. Additionally, in the realm of remote handling, methods are needed to assess which tasks and/or subtasks are candidates for automation. We are developing a new approach to understanding the capability of autonomous robotic systems. This approach uses formalized methods for determining the achievability of tasks for robots, that is, the likelihood that an autonomous robot or telerobot can successfully complete a particular task. Any autonomous system may be represented in achievability space by the volume describing that system's capabilities within the 3-axis space delineated by perception, cognition, and action. This volume may be thought of as a probability density with achievability decreasing as the distance from the centroid of the volume increases. Similarly, any task may be represented within achievability space. However, as tasks have more finite requirements for perception, cognition, and action, each may be represented as a point (or, more accurately, as a small sphere) within achievability space. Analysis of achievability can serve to identify, a priori, the survivability of robotic systems and the likelihood of mission success; it can be used to plan a mission or portions of a mission; it can be used to modify a mission plan to accommodate unpredicted occurrences; it can also serve to identify needs for modifications to robotic systems or tasks to improve achievability. .

  4. Transformation optics using graphene.

    PubMed

    Vakil, Ashkan; Engheta, Nader

    2011-06-10

    Metamaterials and transformation optics play substantial roles in various branches of optical science and engineering by providing schemes to tailor electromagnetic fields into desired spatial patterns. We report a theoretical study showing that by designing and manipulating spatially inhomogeneous, nonuniform conductivity patterns across a flake of graphene, one can have this material as a one-atom-thick platform for infrared metamaterials and transformation optical devices. Varying the graphene chemical potential by using static electric field yields a way to tune the graphene conductivity in the terahertz and infrared frequencies. Such degree of freedom provides the prospect of having different "patches" with different conductivities on a single flake of graphene. Numerous photonic functions and metamaterial concepts can be expected to follow from such a platform.

  5. Transforming Schools: Illusion or Reality?

    ERIC Educational Resources Information Center

    Barker, Bernard

    2005-01-01

    This paper explores the claim that appropriately trained heads can motivate teachers and students to achieve challenging targets and transform the prospects of future generations. Theory derived from the leadership literature is tested against the experience of three headteachers in the field. Case study evidence is used to examine how Hillside…

  6. Candidacy as a Transformational Process.

    ERIC Educational Resources Information Center

    Butler, Marylou; Waterman, Robert D.

    This paper analyzes the accreditation candidacy of New Mexico's Southwestern College (SC) and sees it as a transformational process for the institution. SC is a private, non-profit, special-purpose, graduate level institution in Santa Fe, New Mexico which offers masters programs in counseling and art therapy. The school achieved candidacy for…

  7. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  8. Culture and Achievement Motivation

    ERIC Educational Resources Information Center

    Maehr, Martin L.

    1974-01-01

    A framework is suggested for the cross-cultural study of motivation that stresses the importance of contextual conditions in eliciting achievement motivation and emphasizes cultural relativity in the definition of the concept. (EH)

  9. Achieving Salary Equity

    ERIC Educational Resources Information Center

    Nevill, Dorothy D.

    1975-01-01

    Three techniques are outlined for use by higher education institutions to achieve salary equity: salary prediction (using various statistical procedures), counterparting (comparing salaries of persons of similar rank), and grievance procedures. (JT)

  10. Proof Systems and Transformation Games

    NASA Astrophysics Data System (ADS)

    Bachrach, Yoram; Zuckerman, Michael; Wooldridge, Michael; Rosenschein, Jeffrey S.

    We introduce Transformation Games (TGs), a form of coalitional game in which players are endowed with sets of initial resources, and have capabilities allowing them to derive certain output resources, given certain input resources. The aim of a TG is to generate a particular target resource; players achieve this by forming a coalition capable of performing a sequence of transformations from its combined set of initial resources to the target resource. After presenting the TG model, and discussing its interpretation, we consider possible restrictions on the transformation chain, resulting in different coalitional games. After presenting the basic model, we consider the computational complexity of several problems in TGs, such as testing whether a coalition wins, checking if a player is a dummy or a veto player, computing the core of the game, computing power indices, and checking the effects of possible restrictions on the coalition. Finally, we consider extensions to the model in which transformations have associated costs.

  11. Waveguide taper engineering using coordinate transformation technology

    NASA Astrophysics Data System (ADS)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2010-01-01

    Spatial coordinate transformation is a suitable tool for the design of complex electromagnetic structures. In this paper, we define three spatial coordinate transformations which show the possibility of designing a taper between two different waveguides. A parametric study is presented for the three transformations and we propose achievable values of permittivity and permeability that can be obtained with existing metamaterials. The performances of such defined structures are demonstrated by finite element numerical simulations.

  12. Waveguide taper engineering using coordinate transformation technology.

    PubMed

    Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2010-01-18

    Spatial coordinate transformation is a suitable tool for the design of complex electromagnetic structures. In this paper, we define three spatial coordinate transformations which show the possibility of designing a taper between two different waveguides. A parametric study is presented for the three transformations and we propose achievable values of permittivity and permeability that can be obtained with existing metamaterials. The performances of such defined structures are demonstrated by finite element numerical simulations.

  13. Phase transformations in some hafnium-tantalum-titanium-zirconium alloys

    SciTech Connect

    Ohriner, E.K.; Kapoor, D.

    1997-11-01

    Phase transformations in hafnium alloys are of interest as a means of achieving a material which exhibits flow softening and high localized strains during deformation at high strain rates. Hafnium transforms from a body-centered-cubic beta phase to a hexagonal alpha phase upon cooling below 1749{degrees}C. Hafnium-based alloys containing up to 17.5% Ti, up to 17.5% Ta, and up to 7.3% Zr by weight were button-arc melted and, in some cases, hot extruded to obtain a refined grain size. A number of alloys were shown to have beta solvus temperatures in the range of 1100 to 1300{degrees}C and showed evidence of a shear transformation upon water quenching. The Vickers microhardness of the quenched materials are typically above 350 HV as compared to 300 HV or less for materials with an alpha plus beta structure. Quenching dilatometry indicates a martensite start temperature of about 750{degrees}C for the Hf-7.5 Ta-10 Ti-1 Zr alloy and 800{degrees}C or more for the Hf-7.5 Ta-7.5 Ti-1 Zr alloy. Tensile tests at 1 s{sup {minus}1} strain rate show a constant ultimate tensile strength for temperatures up to 600{degrees}C for the above two alloys and a rapid decrease in strength with a further increase in temperature.

  14. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect

    Olson, D.

    2014-08-01

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  15. Social Work Education: Achieving Transformative Learning through a Cultural Competence Model for Transformative Education

    ERIC Educational Resources Information Center

    Blunt, Kesha

    2007-01-01

    Migration across national borders has resulted in demographic changes in the United States, causing the country to become more multi-ethnic. This presents considerable challenges for graduate level educators who need to be responsive to the unique academic needs of diverse populations by considering students' previous experiences, values, and…

  16. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  17. Transformable topological mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material.

  18. Transformable topological mechanical metamaterials

    PubMed Central

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material. PMID:28112155

  19. [Transformation toughening]. Annual progress report

    SciTech Connect

    Rafa, M.J.

    1993-04-19

    In NiAl, we have succeeded in determining the complete Ginzburg-Landau strain free energy function necessary to model the cubic to tetragonal martensite transformation in a sample of any size. We believe that this is the first time that the parameters of a Ginzburg-Landau functional and the complete strain spinodal for any three-dimensional displacive transformation were used in simulating the transformation near a crack tip under Mode I loading; the transformation pattern and toughening are different from standard transformation toughening theories. Furthermore, the strain spinodal has an approximately conical shape which can be specified by two material dependent experimentally accessible parameters, rather than the ellipsoidal shape in standard theories. Stress induced martensitic transformation in a polycrystalline sample of NiAl was simulated. In the ZrO{sub 2} system, first principles calculations to determine the semi-empirical potentials for simulating the cubic-tetragonal and tetragonal-monoclinic transformations have been started by doing a more elaborate total energy calculation.In the Al{sub 2}0{sub 3} system, we have discovered that the first principles calculations and semi-empirical potentials have just been completed byanother group in England which we will use instead to base our molecular dynamics simulations on.

  20. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  1. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  2. Schools Achieving Gender Equity.

    ERIC Educational Resources Information Center

    Revis, Emma

    This guide is designed to assist teachers presenting the Schools Achieving Gender Equity (SAGE) curriculum for vocational education students, which was developed to align gender equity concepts with the Kentucky Education Reform Act (KERA). Included in the guide are lesson plans for classes on the following topics: legal issues of gender equity,…

  3. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  4. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  5. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  6. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  7. Cognitive Processes and Achievement.

    ERIC Educational Resources Information Center

    Hunt, Dennis; Randhawa, Bikkar S.

    For a group of 165 fourth- and fifth-grade students, four achievement test scores were correlated with success on nine tests designed to measure three cognitive functions: sustained attention, successive processing, and simultaneous processing. This experiment was designed in accordance with Luria's model of the three functional units of the…

  8. Graders' Mathematics Achievement

    ERIC Educational Resources Information Center

    Bond, John B.; Ellis, Arthur K.

    2013-01-01

    The purpose of this experimental study was to investigate the effects of metacognitive reflective assessment instruction on student achievement in mathematics. The study compared the performance of 141 students who practiced reflective assessment strategies with students who did not. A posttest-only control group design was employed, and results…

  9. Achieving All Our Ambitions

    ERIC Educational Resources Information Center

    Hartley, Tricia

    2009-01-01

    National learning and skills policy aims both to build economic prosperity and to achieve social justice. Participation in higher education (HE) has the potential to contribute substantially to both aims. That is why the Campaign for Learning has supported the ambition to increase the proportion of the working-age population with a Level 4…

  10. Improving Educational Achievement.

    ERIC Educational Resources Information Center

    New York University Education Quarterly, 1979

    1979-01-01

    This is a slightly abridged version of the report of the National Academy of Education panel, convened at the request of HEW Secretary Joseph Califano and Assistant Secretary for Education Mary F. Berry, to study recent declines in student achievement and methods of educational improvement. (SJL)

  11. The Achievement Club

    ERIC Educational Resources Information Center

    Rogers, Ibram

    2009-01-01

    When Gabrielle Carpenter became a guidance counselor in Northern Virginia nine years ago, she focused on the academic achievement gap and furiously tried to close it. At first, she was compelled by tremendous professional interest. However, after seeing her son lose his zeal for school, Carpenter joined forces with other parents to form an…

  12. Achievement in Problem Solving

    ERIC Educational Resources Information Center

    Friebele, David

    2010-01-01

    This Action Research Project is meant to investigate the effects of incorporating research-based instructional strategies into instruction and their subsequent effect on student achievement in the area of problem-solving. The two specific strategies utilized are the integration of manipulatives and increased social interaction on a regular basis.…

  13. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  14. Advancing Student Achievement

    ERIC Educational Resources Information Center

    Walberg, Herbert J.

    2010-01-01

    For the last half century, higher spending and many modern reforms have failed to raise the achievement of students in the United States to the levels of other economically advanced countries. A possible explanation, says Herbert Walberg, is that much current education theory is ill informed about scientific psychology, often drawing on fads and…

  15. NCLB: Achievement Robin Hood?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2008-01-01

    In his "Wall Street Journal" op-ed on the 25th of anniversary of "A Nation At Risk", former assistant secretary of education Chester E. Finn Jr. applauded the report for turning U.S. education away from equality and toward achievement. It was not surprising, then, that in mid-2008, Finn arranged a conference to examine the…

  16. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  17. Science Achievement for All: Improving Science Performance and Closing Achievement Gaps

    NASA Astrophysics Data System (ADS)

    Jackson, Julie K.; Ash, Gwynne

    2012-11-01

    This article addresses the serious and growing need to improve science instruction and science achievement for all students. We will describe the results of a 3-year study that transformed science instruction and student achievement at two high-poverty ethnically diverse public elementary schools in Texas. The school-wide intervention included purposeful planning, inquiry science instruction, and contextually rich academic science vocabulary development. In combination, these instructional practices rapidly improved student-science learning outcomes and narrowed achievement gaps across diverse student populations.

  18. High-Voltage Isolation Transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  19. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis

  20. Methods of Assessing and Achieving Normality Applied to Environmental Data

    PubMed

    Mateu

    1997-09-01

    / It has been recognized for a long time that data transformation methods capable of achieving normality of distributions could have a crucial role in statistical analysis, especially towards an efficient application of techniques such as analysis of variance and multiple regression analysis. Normality is a basic assumption in many of the statistical methods used in the environmental sciences and is very often neglected. In this paper several techniques to test normality of distributions are proposed and analyzed. Confidence intervals and nonparametric tests are used and discussed. Basic and Box-Cox transformations are the suggested methods to achieve normal variables. Finally, we develop an application related to environmental data with atmospheric parameters and SO2 and particle concentrations. Results show that the analyzed transformations work well and are very useful to achieve normal distributions.KEY WORDS: Normal distribution; Kurtosis; Skewness; Confidence intervals; Box-Cox transformations; Nonparametric tests

  1. Faculty achievement tracking tool.

    PubMed

    Pettus, Sarah; Reifschneider, Ellen; Burruss, Nancy

    2009-03-01

    Faculty development and scholarship is an expectation of nurse educators. Accrediting institutions, such as the Commission on Collegiate Nursing Education, the National League for Nursing Accrediting Commission, and the Higher Learning Commission, all have criteria regarding faculty achievement. A faculty achievement tracking tool (FATT) was developed to facilitate documentation of accreditation criteria attainment. Based on criteria from accrediting organizations, the roles that are addressed include scholarship, service, and practice. Definitions and benchmarks for the faculty as an aggregate are included. Undergoing reviews from different accrediting organizations, the FATT has been used once for accreditation of the undergraduate program and once for accreditation of the graduate program. The FATT is easy to use and has become an excellent adjunct for the preparation for accreditation reports. In addition, the FATT may be used for yearly evaluations, advancement, and merit.

  2. Project ACHIEVE final report

    SciTech Connect

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  3. Transforming learning?

    NASA Astrophysics Data System (ADS)

    1999-09-01

    A new Learning and Skills Council for post-16 learning is the latest proposal from the UK Government in its attempt to ensure a highly skilled workforce for the next century. Other aims will be to reduce the variability in standards of the existing post-16 system, coordination and coherence between further education and training, and a reduction in the duplication and layers in contracting and funding. The proposals include: a national Learning and Skills Council, with 40-50 local Learning and Skills Councils to develop local plans; a strengthened strategic role for business in education and training, influencing a budget of #5bn a radical new youth programme entitled `Connexions', with dedicated personal advisors for young people; greater cooperation between sixth forms and colleges; and the establishment of an independent inspectorate covering all work-related learning and training, to include a new role for Ofsted in inspecting the provision for 16-19 year-olds in schools and colleges. It is hoped that this programme will build on the successes of the previous systems and that savings of at least #50m can be achieved through streamlining and the reduction in bureaucracy. The intentions are set out in a White Paper, Learning to Succeed, which is available from the Stationery Office and bookshops, as well as on the website www.dfee.gov.uk/post16. Published in addition to the White Paper was `School Sixth form funding: a consultation paper' (available from DfEE publications, Prolog, PO Box 5050, Sherwood Park, Annesley, Nottingham NG15 0DJ) and `Transition plan for the post-16 education and training and for local delivery of support for small firms' (available from Trevor Tucknutt, TECSOP Division, Level 3, Department for Education and Employment, Moorfoot, Sheffield S1 4PQ). The deadline for comments on both the sixth form consultation document and the White Paper is 15 October 1999. Almost simultaneously with the announcement of the above proposals came the

  4. Efficient pressure-transformer for fluids

    NASA Technical Reports Server (NTRS)

    Morando, J. A.

    1970-01-01

    Fluid transformer utilizes fluid under pressure at one level to drive series of free pistons in positive displacement pump. Pump in turn delivers hydraulic fluid at different pressure level to a load. Transformer is constructed of corrosion resistant materials and is extremely light and compact in relation to capacity.

  5. Sea-Floor Spreading and Transform Faults

    ERIC Educational Resources Information Center

    Armstrong, Ronald E.; And Others

    1978-01-01

    Presents the Crustal Evolution Education Project (CEEP) instructional module on Sea-Floor Spreading and Transform Faults. The module includes activities and materials required, procedures, summary questions, and extension ideas for teaching Sea-Floor Spreading. (SL)

  6. Issues in Business Education Programme: Challenges to National Transformation

    ERIC Educational Resources Information Center

    Ajisafe, Olatunbosun Emmanuel; Bolarinwa, Kayode Omotayo; Tuke, Edeh

    2015-01-01

    Transformation engenders change, and change denotes a departure from the old order to a new one. National transformation therefore implies fundamental change in the building block of a nation; change in the social, economic, infrastructural and political landscape of a nation. For transformation to be achieved, it must encompass all levels of…

  7. Digital image pattern recognition system using normalized Fourier transform and normalized analytical Fourier-Mellin transform

    NASA Astrophysics Data System (ADS)

    Vélez-Rábago, Rodrigo; Solorza-Calderón, Selene; Jordan-Aramburo, Adina

    2016-12-01

    This work presents an image pattern recognition system invariant to translation, scale and rotation. The system uses the Fourier transform to achieve the invariance to translation and the analytical Forier-Mellin transform for the invariance to scale and rotation. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.

  8. Rate-distortion optimized adaptive transform coding

    NASA Astrophysics Data System (ADS)

    Lim, Sung-Chang; Kim, Dae-Yeon; Jeong, Seyoon; Choi, Jin Soo; Choi, Haechul; Lee, Yung-Lyul

    2009-08-01

    We propose a rate-distortion optimized transform coding method that adaptively employs either integer cosine transform that is an integer-approximated version of discrete cosine transform (DCT) or integer sine transform (IST) in a rate-distortion sense. The DCT that has been adopted in most video-coding standards is known as a suboptimal substitute for the Karhunen-Loève transform. However, according to the correlation of a signal, an alternative transform can achieve higher coding efficiency. We introduce a discrete sine transform (DST) that achieves the high-energy compactness in a correlation coefficient range of -0.5 to 0.5 and is applied to the current design of H.264/AVC (advanced video coding). Moreover, to avoid the encoder and decoder mismatch and make the implementation simple, an IST that is an integer-approximated version of the DST is developed. The experimental results show that the proposed method achieves a Bjøntegaard Delta-RATE gain up to 5.49% compared to Joint model 11.0.

  9. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  10. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  11. The Funk transform as a Penrose transform

    NASA Astrophysics Data System (ADS)

    Bailey, Toby N.; Eastwood, Michael G.; Gover, A. Rod; Mason, Lionel J.

    1999-01-01

    The Funk transform is the integral transform from the space of smooth even functions on the unit sphere S2[subset or is implied by][open face R]3 to itself defined by integration over great circles. One can regard this transform as a limit in a certain sense of the Penrose transform from [open face C][open face P]2 to [open face C][open face P]*ast;2. We exploit this viewpoint by developing a new proof of the bijectivity of the Funk transform which proceeds by considering the cohomology of a certain involutive (or formally integrable) structure on an intermediate space. This is the simplest example of what we hope will prove to be a general method of obtaining results in real integral geometry by means of complex holomorphic methods derived from the Penrose transform.

  12. Transformations of nanomaterials in the environment.

    PubMed

    Lowry, Gregory V; Gregory, Kelvin B; Apte, Simon C; Lead, Jamie R

    2012-07-03

    Increasing use of engineered nanomaterials with novel properties relative to their bulk counterparts has generated a need to define their behaviors and impacts in the environment. The high surface area to volume ratio of nanoparticles results in highly reactive and physiochemically dynamic materials in environmental media. Many transformations, e.g. reactions with biomacromolecules, redox reactions, aggregation, and dissolution, may occur in both environmental and biological systems. These transformations and others will alter the fate, transport, and toxicity of nanomaterials. The nature and extent of these transformations must be understood before significant progress can be made toward understanding the environmental risks posed by these materials.

  13. Achievement Goals and Achievement Emotions: A Meta-Analysis

    ERIC Educational Resources Information Center

    Huang, Chiungjung

    2011-01-01

    This meta-analysis synthesized 93 independent samples (N = 30,003) in 77 studies that reported in 78 articles examining correlations between achievement goals and achievement emotions. Achievement goals were meaningfully associated with different achievement emotions. The correlations of mastery and mastery approach goals with positive achievement…

  14. Steerable Discrete Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Magli, Enrico

    2017-03-01

    Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms.

  15. Saturable inductor and transformer structures for magnetic pulse compression

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1990-01-01

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  16. Cumulative achievement testing: progress testing in reverse.

    PubMed

    Swanson, D B; Holtzman, K Z; Butler, A

    2010-01-01

    This collaborative project between the National Board of Medical Examiners (NBME) and Case Western Reserve University (CWRU) School of Medicine explored the design and use of cumulative achievement tests in basic science education. In cumulative achievement testing, integrative end-of-unit tests are deliberately constructed to systematically retest topics covered in previous units as well as material from the just-completed unit. CWRU faculty developed and administered a series of six web-based cumulative achievement tests using retired United States Medical Licensing Examination (USMLE) step 1 test material and tools provided by NBME's Customized Assessment Services, and trends in student performance were examined as the new CWRU basic science curriculum unfolded. This article provides the background information about test design and administration, as well as samples of score reporting information for students and faculty. While firm conclusions about the effectiveness of cumulative achievement testing are not warranted after a pilot test at a single school, preliminary results suggest that cumulative achievement testing may be an effective complement to progress testing, with the former used to encourage retention of already-covered material and the latter used to assess growth toward the knowledge and skills expected of a graduating student.

  17. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  18. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  19. Genetic transformation of mature citrus plants.

    PubMed

    Cervera, Magdalena; Juárez, José; Navarro, Luis; Peña, Leandro

    2005-01-01

    Most woody fruit species have long juvenile periods that drastically prolong the time required to analyze mature traits. Evaluation of characteristics related to fruits is a requisite to release any new variety into the market. Because of a decline in regenerative and transformation potential, genetic transformation procedures usually employ juvenile material as the source of plant tissue, therefore resulting in the production of juvenile plants. Direct transformation of mature material could ensure the production of adult transgenic plants, bypassing in this way the juvenile phase. Invigoration of the source adult material, establishment of adequate transformation and regeneration conditions, and acceleration of plant development through grafting allowed us to produce transgenic mature sweet orange trees flowering and bearing fruits in a short time period.

  20. Implementing wavelet inverse-transform processor with surface acoustic wave device.

    PubMed

    Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan

    2013-02-01

    The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device.

  1. Infrared transform spectral imager

    NASA Astrophysics Data System (ADS)

    Vujkovic-Cvijin, Pajo; Lee, Jamine; Gregor, Brian; Goldstein, Neil; Panfili, Raphael; Fox, Marsha

    2012-10-01

    A dispersive transform spectral imager named FAROS (FAst Reconfigurable Optical Sensor) has been developed for high frame rate, moderate-to-high resolution hyperspectral imaging. A programmable digital micromirror array (DMA) modulator makes it possible to adjust spectral, temporal and spatial resolution in real time to achieve optimum tradeoff for dynamic monitoring requirements. The system's F/2.8 collection optics produces diffraction-limited images in the mid-wave infrared (MWIR) spectral region. The optical system is based on a proprietary dual-pass Offner configuration with a single spherical mirror and a confocal spherical diffraction grating. FAROS fulfills two functions simultaneously: one output produces two-dimensional polychromatic imagery at the full focal plane array (FPA) frame rate for fast object acquisition and tracking, while the other output operates in parallel and produces variable-resolution spectral images via Hadamard transform encoding to assist in object discrimination and classification. The current version of the FAROS spectral imager is a multispectral technology demonstrator that operates in the MWIR with a 320 x 256 pixel InSb FPA running at 478 frames per second resulting in time resolution of several tens of milliseconds per hypercube. The instrument has been tested by monitoring small-scale rocket engine firings in outdoor environments. The instrument has no macro-scale moving parts, and conforms to a robust, small-volume and lightweight package, suitable for integration with small surveillance vehicles. The technology is also applicable to multispectral/hyperspectral imaging applications in diverse areas such as atmospheric contamination monitoring, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.

  2. Ultradirective antenna via transformation optics

    NASA Astrophysics Data System (ADS)

    Tichit, P.-H.; Burokur, S. N.; de Lustrac, A.

    2009-05-01

    Spatial coordinate transformation is used as a reliable tool to control electromagnetic fields. In this paper, we derive the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain. We show that the directivity of this antenna is competitive with regard to conventional directive antennas (horn and reflector antennas), besides its dimensions are smaller. Numerical simulations using finite element method are performed to illustrate these properties. A reduction in the electromagnetic material parameters is also proposed for an easy fabrication of this antenna from existing materials. Following that, the design of the proposed antenna using a layered metamaterial is presented. The different layers are all composed of homogeneous and uniaxial anisotropic metamaterials, which can be obtained from simple metal-dielectric structures. When the radiating source is embedded in the layered metamaterial, a highly directive beam is radiated from the antenna.

  3. Materials for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2009-03-01

    The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.

  4. Transformation of fruit trees. Useful breeding tool or continued future prospect?

    PubMed

    Petri, César; Burgos, Lorenzo

    2005-02-01

    Regeneration and transformation systems using mature plant material of woody fruit species have to be achieved as a necessary requirement for the introduction of useful genes into specific cultivars and the rapid evaluation of resulting horticultural traits. Although the commercial production of transgenic annual crops is a reality, commercial genetically-engineered fruit trees are still far from common. In most woody fruit species, transformation and regeneration of commercial cultivars are not routine, generally being limited to a few genotypes or to seedlings. The future of genetic transformation as a tool for the breeding of fruit trees requires the development of genotype-independent procedures, based on the transformation of meristematic cells with high regeneration potential and/or the use of regeneration-promoting genes. The public concern with the introduction of antibiotic resistance into food and the restrictions due to new European laws that do not allow deliberate release of plants transformed with antibiotic-resistance genes highlight the development of methods that avoid the use of antibiotic-dependent selection or allow elimination of marker genesfrom the transformed plant as a research priority in coming years.

  5. Crystal Level Continuum Modeling of Phase Transformations: The (alpha) <--> (epsilon) Transformation in Iron

    SciTech Connect

    Barton, N R; Benson, D J; Becker, R; Bykov, Y; Caplan, M

    2004-10-18

    We present a crystal level model for thermo-mechanical deformation with phase transformation capabilities. The model is formulated to allow for large pressures (on the order of the elastic moduli) and makes use of a multiplicative decomposition of the deformation gradient. Elastic and thermal lattice distortions are combined into a single lattice stretch to allow the model to be used in conjunction with general equation of state relationships. Phase transformations change the mass fractions of the material constituents. The driving force for phase transformations includes terms arising from mechanical work, from the temperature dependent chemical free energy change on transformation, and from interaction energy among the constituents. Deformation results from both these phase transformations and elasto-viscoplastic deformation of the constituents themselves. Simulation results are given for the {alpha} to {epsilon} phase transformation in iron. Results include simulations of shock induced transformation in single crystals and of compression of polycrystals. Results are compared to available experimental data.

  6. 77 FR 52758 - Large Power Transformers From Korea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... COMMISSION Large Power Transformers From Korea Determination On the basis of the record \\1\\ developed in the... the United States is materially injured, by reason of imports from Korea of large power transformers... power transformers from Korea were being sold at LTFV within the meaning of section 733(b) of the...

  7. An orientation-selective orthogonal lapped transform.

    PubMed

    Kunz, Dietmar

    2008-08-01

    A novel critically sampled orientation-selective orthogonal lapped transform called the lapped Hartley transform (LHT) is derived. In a first step, overlapping basis functions are generated by modulating basis functions of a 2-D block Hartley transform by a cosine wave. To achieve invertibility and orthogonality, an iterative filter is applied as prefilter in the analysis and as postfilter in the synthesis operation, respectively. Alternatively, filtering can be restricted to analysis or synthesis, ending up with a biorthogonal transform (LHT-PR, LHT-PO). A statistical analysis based on a 4000-image data base shows that the LHT and LHT-PO have better redundancy removal properties than other block or lapped transforms. Finally, image compression and noise removal examples are given, showing the advantages of the LHT especially in images containing oriented textures.

  8. Genetic transformation of carnation (Dianthus caryophylus L.).

    PubMed

    Nontaswatsri, Chalermsri; Fukai, Seiichi

    2010-01-01

    This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).

  9. Preferential Nucleation during Polymorphic Transformations

    PubMed Central

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  10. Preferential Nucleation during Polymorphic Transformations.

    PubMed

    Sharma, H; Sietsma, J; Offerman, S E

    2016-08-03

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR's with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR's. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  11. Neoplastic transformation of human cells in vitro.

    PubMed

    Rhim, J S

    1993-01-01

    Efforts to investigate the progression of events that lead normal human cells in culture to become neoplastic in response to carcinogenic agents have been aided by the development of the suitable in vitro model systems. For initial human cell transformation studies, a flat, nontumorigenic clonal line, originally derived from a human osteosarcoma (HOS), was used. When treated with chemical carcinogens such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and 3-methyl-cholanthrene (3MC), the HOS cells underwent morphological alterations and acquired tumorigenic properties. These cell lines were very useful inasmuch as a non-ras cellular transforming gene, met, and an activated H-ras oncogene have been isolated from MNNG-transformed and 3MC-transformed HOS lines, respectively, by DNA transfection procedure. Alteration of p53 gene in chemically transformed HOS cell lines has recently been shown. Although carcinogens cause human cancer, normal human cells in culture have proven difficult to achieve. Neoplastic transformation of human cells in culture has recently been achieved by a stepwise fashion-immortalization and conversion of the immortalized cells to tumorigenic cells. One of the critical initial events in the progression of normal human cells to tumor cells is the escape from cellular senescence. With few exceptions, normal human cells require immortalization to provide a practical system for transformation studies. Thus, the role of carcinogenic agents in the development of human cancers is now being defined using a variety of human cells. The neoplastic transformation in human cell cultures is reviewed. In doing so, this author attempts to put into perspective the history of human cell transformation by carcinogenic agents, and to discuss the current state of the art in transformation of human cells in culture; thus providing insight into the molecular and cellular mechanisms involved in the conversion of normal cells to a neoplastic state of growth.

  12. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  13. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  14. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  15. Lifting Minority Achievement: Complex Answers. The Achievement Gap.

    ERIC Educational Resources Information Center

    Viadero, Debra; Johnston, Robert C.

    2000-01-01

    This fourth in a four-part series on why academic achievement gaps exist describes the Minority Achievement Committee scholars program at Shaker Heights High School in Cleveland, Ohio, a powerful antidote to the achievement gap between minority and white and Asian American students. It explains the need to break down stereotypes about academic…

  16. Achievement Motivation of Women: Effects of Achievement and Affiliation Arousal.

    ERIC Educational Resources Information Center

    Gama, Elizabeth Maria Pinheiro

    1985-01-01

    Assigned 139 Brazilian women to neutral, affiliation arousal, and achievement arousal conditions based on their levels of achievement (Ach) and affiliative (Aff) needs. Results of story analyses revealed that achievement arousal increased scores of high Ach subjects and that high Aff subjects obtained higher scores than low Aff subjects. (BL)

  17. Attitude Towards Physics and Additional Mathematics Achievement Towards Physics Achievement

    ERIC Educational Resources Information Center

    Veloo, Arsaythamby; Nor, Rahimah; Khalid, Rozalina

    2015-01-01

    The purpose of this research is to identify the difference in students' attitude towards Physics and Additional Mathematics achievement based on gender and relationship between attitudinal variables towards Physics and Additional Mathematics achievement with achievement in Physics. This research focused on six variables, which is attitude towards…

  18. The Impact of Reading Achievement on Overall Academic Achievement

    ERIC Educational Resources Information Center

    Churchwell, Dawn Earheart

    2009-01-01

    This study examined the relationship between reading achievement and achievement in other subject areas. The purpose of this study was to determine if there was a correlation between reading scores as measured by the Standardized Test for the Assessment of Reading (STAR) and academic achievement in language arts, math, science, and social studies…

  19. Interplay between interstitial displacement and displacive lattice transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg

    2016-09-01

    Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.

  20. Stable Eutectoid Transformation in Nodular Cast Iron: Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2017-01-01

    This paper presents a new microstructural model of the stable eutectoid transformation in a spheroidal cast iron. The model takes into account the nucleation and growth of ferrite grains and the growth of graphite spheroids. Different laws are assumed for the growth of both phases during and below the intercritical stable eutectoid. At a microstructural level, the initial conditions for the phase transformations are obtained from the microstructural simulation of solidification of the material, which considers the divorced eutectic and the subsequent growth of graphite spheroids up to the initiation of the stable eutectoid transformation. The temperature field is obtained by solving the energy equation by means of finite elements. The microstructural (phase change) and macrostructural (energy balance) models are coupled by a sequential multiscale procedure. Experimental validation of the model is achieved by comparison with measured values of fractions and radius of 2D view of ferrite grains. Agreement with such experiments indicates that the present model is capable of predicting ferrite phase fraction and grain size with reasonable accuracy.

  1. Nuclear transformation of Volvox carteri.

    PubMed Central

    Schiedlmeier, B; Schmitt, R; Müller, W; Kirk, M M; Gruber, H; Mages, W; Kirk, D L

    1994-01-01

    Stable nuclear transformation of Volvox carteri was achieved using the cloned V. carteri nitA+ gene (which encodes nitrate reductase) to complement a nitA- mutation. Following bombardment of mutant cells with plasmid-coated gold particles, putative transformants able to utilize nitrate as a nitrogen source were recovered with an efficiency of approximately 2.5 x 10(5). DNA analysis indicated that the plasmid integrated into the genome, often in multiple copies, at sites other than the nitA locus. Cotransformants were recovered with a frequency of 40-80% when cells were cobombarded with a selected and an unselected marker. Thus, V. carteri becomes one of the simplest multicellular organisms that is accessible to detailed molecular studies of genes regulating cellular differentiation and morphogenesis. Images PMID:8197189

  2. Mechanisms of transformation toughening

    SciTech Connect

    Olson, G.B.

    1992-02-01

    Modelling the thermodynamics and kinetics of isothermal martensitic transformation under stress, transformation toughening in austenitic steels, and dispersed phase transformation plasticity in low alloy steels are discussed briefly in this progress report for Doe Grant DE-FG02-88ER45365.

  3. Achievements in Stratospheric Ozone Protection

    EPA Pesticide Factsheets

    This report describes achievements in protecting the ozone layer, the benefits of these achievements, and strategies involved (e.g., using alternatives to ozone-depleting substances, phasing out harmful substances, and creating partnerships).

  4. Interplay between diffusive and displacive phase transformations: time-temperature-transformation diagrams and microstructures.

    PubMed

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-08-04

    Materials which can undergo extremely fast displacive transformations as well as very slow diffusive transformations are studied using a Ginzburg-Landau framework. This simple model captures the essential physics behind microstructure formation and time-temperature-transformation diagrams in alloys such as steels. It also predicts the formation of mixed microstructures by an interplay between diffusive and displacive mechanisms. The intrinsic volume changes associated with the transformations stabilize mixed microstructures such as martensite-retained austenite (responsible for the existence of a martensite finish temperature) and martensite-pearlite.

  5. Students’ Achievement Goals, Learning-Related Emotions and Academic Achievement

    PubMed Central

    Lüftenegger, Marko; Klug, Julia; Harrer, Katharina; Langer, Marie; Spiel, Christiane; Schober, Barbara

    2016-01-01

    In the present research, the recently proposed 3 × 2 model of achievement goals is tested and associations with achievement emotions and their joint influence on academic achievement are investigated. The study was conducted with 388 students using the 3 × 2 Achievement Goal Questionnaire including the six proposed goal constructs (task-approach, task-avoidance, self-approach, self-avoidance, other-approach, other-avoidance) and the enjoyment and boredom scales from the Achievement Emotion Questionnaire. Exam grades were used as an indicator of academic achievement. Findings from CFAs provided strong support for the proposed structure of the 3 × 2 achievement goal model. Self-based goals, other-based goals and task-approach goals predicted enjoyment. Task-approach goals negatively predicted boredom. Task-approach and other-approach predicted achievement. The indirect effects of achievement goals through emotion variables on achievement were assessed using bias-corrected bootstrapping. No mediation effects were found. Implications for educational practice are discussed. PMID:27199836

  6. Fourier-Transform Ghost Imaging with Hard X Rays

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  7. Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH3NH3PbI3

    DOE PAGES

    Chen, Qiong; Liu, Henan; Kim, Hui -Seon; ...

    2016-09-15

    In this study, by performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3) to the fully degraded state (i.e., PbI2) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditions (e.g., power, illumination time,more » and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.« less

  8. Achieving acoustical performance with fire safe products

    NASA Astrophysics Data System (ADS)

    Fritz, Thomas

    2005-09-01

    Recent serious fires in North and South America have pointed out potential problems with attempts to improve acoustical performance in building spaces at the expense of using acoustical treatments that may have poor performance in fire situations. Foam plastic products, sometimes not designed for exposed use in buildings, can ignite quickly and spread fire rapidly throughout a building space, resulting in fire victims being trapped within the building or not being afforded the needed safe egress time. There are ways of achieving equivalent and even superior acoustical performance without sacrificing fire safety. Acoustical products are available which can add comparable or superior acoustical treatment without the fire hazard associated with exposed foam plastic materials. This presentation is a review of the U.S. code requirements of interior finish materials, the various types of fire tests that are applied to these products, and a discussion of the achievable fire and acoustical performance.

  9. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications . Advanced Materials, 25, 825-831 (2012). 6. L. Dou, J. Gao, E. Richard...Hong, Zheng Xu, Gang Li, Robert A. Street, Yang Yang. 25th Anniversary Article: A Decade of Organic / Polymeric Photovoltaic Research Advanced... Organization / Institution name UCLA Grant/Contract Title The full title of the funded effort. Achieving 15% tandem polymer solar cells Grant/Contract

  10. Modelling the pulse transformer in SPICE

    NASA Astrophysics Data System (ADS)

    Godlewska, Malgorzata; Górecki, Krzysztof; Górski, Krzysztof

    2016-01-01

    The paper is devoted to modelling pulse transformers in SPICE. It shows the character of the selected models of this element, points out their advantages and disadvantages, and presents the results of experimental verification of the considered models. These models are characterized by varying degrees of complexity - from linearly coupled linear coils to nonlinear electrothermal models. The study was conducted for transformer with ring cores made of a variety of ferromagnetic materials, while exciting the sinusoidal signal of a frequency 100 kHz and different values of load resistance. The transformers operating conditions under which the considered models ensure the acceptable accuracy of calculations are indicated.

  11. Transformational Leadership & Decision Making in Schools

    ERIC Educational Resources Information Center

    Brower, Robert E.; Balch, Bradley V.

    2005-01-01

    It is essential for every school leader to possess the savvy to effect positive change, raise achievement levels, and foster a positive school climate. Now it seems that the struggle for school leaders to make productive decisions has become clouded with ever-growing uncertainty and skepticism. "Transformational Leadership & Decision Making in…

  12. Transforming Power Systems through Global Collaboration

    SciTech Connect

    None, None

    2016-04-01

    Ambitious and integrated policy and regulatory frameworks are crucial to achieve power system transformation. The 21st Century Power Partnership -- a multilateral initiative of the Clean Energy Ministerial -- serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with energy efficiency and grid modernization.

  13. Anti-optic-null medium: Achieving the optic-null medium effect by enclosing an air region with relatively low-anisotropy media

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Liu, Yichao; He, Sailing

    2016-07-01

    A so-called anti-optic-null medium (anti-ONM), which can be utilized to cancel the optic-null medium (ONM) and create many novel optical illusions, is introduced and designed by transformation optics (TO). Optical separation illusions can be achieved with an anti-ONM. With the help of the anti-ONM, we can achieve the same optical illusions where ONM is required via a shelled structure filled with low anisotropic medium, which is easier to realize for some novel optical devices designed by TO and optical surface transformation. The special function of the anti-ONM will lead to a new way to design optical devices or simplify the material requirements. Overlapping illusions, and wave-front reshapers are designed to demonstrate the function of the proposed method.

  14. Calcium carbonate phase transformations during the carbonation reaction of calcium heavy alkylbenzene sulfonate overbased nanodetergents preparation.

    PubMed

    Chen, Zhaocong; Xiao, Shan; Chen, Feng; Chen, Dongzhong; Fang, Jianglin; Zhao, Min

    2011-07-01

    The preparation and application of overbased nanodetergents with excess alkaline calcium carbonate is a good example of nanotechnology in practice. The phase transformation of calcium carbonate is of extensive concern since CaCO(3) serves both as an important industrial filling material and as the most abundant biomineral in nature. Industrially valuable overbased nanodetergents have been prepared based on calcium salts of heavy alkylbenzene sulfonate by a one-step process under ambient pressure, the carbonation reaction has been monitored by the instantaneous temperature changes and total base number (TBN). A number of analytical techniques such as TGA, DLS, SLS, TEM, FTIR, and XRD have been utilized to explore the carbonation reaction process and phase transformation mechanism of calcium carbonate. An enhanced understanding on the phase transformation of calcium carbonate involved in calcium sulfonate nanodetergents has been achieved and it has been unambiguously demonstrated that amorphous calcium carbonate (ACC) transforms into the vaterite polymorph rather than calcite, which would be of crucial importance for the preparation and quality control of lubricant additives and greases. Our results also show that a certain amount of residual Ca(OH)(2) prevents the phase transformation from ACC to crystalline polymorphs. Moreover, a vaterite nanodetergent has been prepared for the first time with low viscosity, high base number, and uniform particle size, nevertheless a notable improvement on its thermal stability is required for potential applications.

  15. Stacked Transformer for Driver Gain and Receive Signal Splitting

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.

    2013-01-01

    In a high-speed signal transmission system that uses transformer coupling, there is a need to provide increased transmitted signal strength without adding active components. This invention uses additional transformers to achieve the needed gain. The prior art uses stronger drivers (which require an IC redesign and a higher power supply voltage), or the addition of another active component (which can decrease reliability, increase power consumption, reduce the beneficial effect of serializer/deserializer preemphasis or deemphasis, and/or interfere with fault containment mechanisms), or uses a different transformer winding ratio (which requires redesign of the transformer and may not be feasible with high-speed signals that require a 1:1 winding ratio). This invention achieves the required gain by connecting the secondaries of multiple transformers in series. The primaries of these transformers are currently either connected in parallel or are connected to multiple drivers. There is also a need to split a receive signal to multiple destinations with minimal signal loss. Additional transformers can achieve the split. The prior art uses impedance-matching series resistors that cause a loss of signal. Instead of causing a loss, most instantiations of this invention would actually provide gain. Multiple transformers are used instead of multiple windings on a single transformer because multiple windings on the same transformer would require a redesign of the transformer, and may not be feasible with high-speed transformers that usually require a bifilar winding with a 1:1 ratio. This invention creates the split by connecting the primaries of multiple transformers in series. The secondary of each transformer is connected to one of the intended destinations without the use of impedance-matching series resistors.

  16. The Mechanics of Human Achievement.

    PubMed

    Duckworth, Angela L; Eichstaedt, Johannes C; Ungar, Lyle H

    2015-07-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers.

  17. The Mechanics of Human Achievement

    PubMed Central

    Duckworth, Angela L.; Eichstaedt, Johannes C.; Ungar, Lyle H.

    2015-01-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers. PMID:26236393

  18. Transformative environmental governance

    USGS Publications Warehouse

    Chaffin, Brian C.; Garmestani, Ahjond S.; Gunderson, Lance H.; Harm Benson, Melinda; Angeler, David G.; Arnold, Craig Anthony (Tony); Cosens, Barbara; Kundis Craig, Robin; Ruhl, J.B.; Allen, Craig R.

    2016-01-01

    Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.

  19. Transformation Toughening of Ceramics

    DTIC Science & Technology

    1992-03-01

    TRANSFORMATION ZONE SHAPE EFFECTS IN CRACK SHIELDING IN CERIA-PARTIALLY STABILIZED ZIRCONIA (Ce-TZP). ALUMINA COMPOSITES to be published in J. Am. Ceram. Soc. 13 Cl...lS85HWejw TRANSFORMATION ZONE SHAPE EFFECTS ON CRACK SHIELDING IN CERIA-PARTIALLY-STABILIZED ZIRCONIA (Ce-TZP)- ALUMINA S..COMPOSITES Cheng-Sheng Yu...zones in Ce-TZP/Al203 composites, in which the transformation zone sizes were changed significantly by varying the sintering temperature to control

  20. Plastid transformation in potato: Solanum tuberosum.

    PubMed

    Valkov, Vladimir T; Gargano, Daniela; Scotti, Nunzia; Cardi, Teodoro

    2014-01-01

    Although plastid transformation has attractive advantages and potential applications in plant biotechnology, for long time it has been highly efficient only in tobacco. The lack of efficient selection and regeneration protocols and, for some species, the inefficient recombination using heterologous flanking regions in transformation vectors prevented the extension of the technology to major crops. However, the availability of this technology for species other than tobacco could offer new possibilities in plant breeding, such as resistance management or improvement of nutritional value, with no or limited environmental concerns. Herein we describe an efficient plastid transformation protocol for potato (Solanum tuberosum subsp. tuberosum). By optimizing the tissue culture system and using transformation vectors carrying homologous potato flanking sequences, we obtained up to one transplastomic shoot per bombardment. Such efficiency is comparable to that usually achieved in tobacco. The method described in this chapter can be used to regenerate potato transplastomic plants expressing recombinant proteins in chloroplasts as well as in amyloplasts.

  1. STEM Career Changers' Transformation into Science Teachers

    NASA Astrophysics Data System (ADS)

    Snyder, Catherine; Oliveira, Alandeom W.; Paska, Lawrence M.

    2013-06-01

    This study examines the transformation (professional growth) of career-changing women scientists who decided to become teachers. Drawing upon Mezirow's Transformative Learning Theory, we tracked their transformation for 3 years. Our findings revealed multiple identities, disorientation, a perceived sense of meaninglessness, loss and eventual regain in confidence, gain in pedagogical knowledge and skill, and changed perceptions of the social roles of science teachers and scientists. Driven by personal choice or need (financial, intellectual), such transformations were achieved through active pursuit of meaning in one's work, critical assessment of assumptions, planning, and trying on the unfamiliar role of a science teacher. It is argued that such transition entails complex changes in thinking about science teaching and identifying oneself as a science teacher.

  2. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility

    DTIC Science & Technology

    2014-11-18

    Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility Qi An and William A. Goddard, III* Materials and Process... Boron carbide (B4C) is a hard material whose value for extended engineering applications such as body armor; is limited by its brittleness under...Plasmonics, Optical Materials, and Hard Matter Superhard materials, such as diamond, cubic boron nitride,and boron carbide (B4C), exhibit many

  3. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  4. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    SciTech Connect

    Ozolins, Vidvuds

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  5. Program Transformation in HATS

    SciTech Connect

    Winter, V.L.

    1999-02-24

    HATS is a general purpose syntax derivation tree based transformation system in which transformation sequences are described in special purpose language. A powerful feature of this language is that unification is an explicit operation. By making unification explicit, an elegant framework arises in which to express complex application conditions which in turn enables refined control strategies to be realized. This paper gives an overview of HATS, focusing especially on the framework provided by the transformation language and its potential with respect to control and general purpose transformation.

  6. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  7. Development of Toroidal Core Transformers

    SciTech Connect

    de Leon, Francisco

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  8. Transforming System Engineering through Model-Centric Engineering

    DTIC Science & Technology

    2015-01-31

    technologies that improve automation and efficiencies , it is not necessarily “radically transformative ” While our directive is to focus on the...automation and efficiencies , however we still need to better characterize how NAVAIR can achieve a radical transformation . One key discussion topic that has...the risk of SE transformation to MCE will fail to provide an efficient , effective and reliable alternative to the current process. This is an

  9. Entropy, materials, and posterity

    USGS Publications Warehouse

    Cloud, P.

    1977-01-01

    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  10. Educational transformation in upper-division physics: The Science Education Initiative model, outcomes, and lessons learned

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Wilcox, Bethany; Caballero, Marcos D.; Perkins, Katherine K.; Pollock, Steven J.; Wieman, Carl E.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] In response to the need for a scalable, institutionally supported model of educational change, the Science Education Initiative (SEI) was created as an experiment in transforming course materials and faculty practices at two institutions—University of Colorado Boulder (CU) and University of British Columbia. We find that this departmentally focused model of change, which includes an explicit focus on course transformation as supported by a discipline-based postdoctoral education specialist, was generally effective in impacting courses and faculty across the institution. In CU's Department of Physics, the SEI effort focused primarily on upper-division courses, creating high-quality course materials, approaches, and assessments, and demonstrating an impact on student learning. We argue that the SEI implementation in the CU Physics Department, as compared to that in other departments, achieved more extensive impacts on specific course materials, and high-quality assessments, due to guidance by the physics education research group—but with more limited impact on the departmental faculty as a whole. We review the process and progress of the SEI Physics at CU and reflect on lessons learned in the CU Physics Department in particular. These results are useful in considering both institutional and faculty-led models of change and course transformation.

  11. EDUCATIONAL ACHIEVEMENT AND THE NAVAJO.

    ERIC Educational Resources Information Center

    HAAS, JOHN; MELVILLE, ROBERT

    A STUDY WAS DEVISED TO APPRAISE THE ACADEMIC ACHIEVEMENT OF NAVAJO STUDENTS LIVING IN DORMITORIES AWAY FROM THE INDIAN RESERVATION. THE FOLLOWING SEVEN FACTORS WERE CHOSEN TO BE INVESTIGATED AS BEING DIRECTLY RELATED TO ACHIEVEMENT--(1) INTELLIGENCE, (2) READING ABILITY, (3) ANXIETY, (4) SELF-CONCEPT, (5) MOTIVATION, (6) VERBAL DEVELOPMENT, (7)…

  12. Sociocultural Origins of Achievement Motivation

    ERIC Educational Resources Information Center

    Maehr, Martin L.

    1977-01-01

    Presents a theoretical review of work on sociocultural influences on achievement, focusing on a critical evaluation of the work of David McClellan. Offers an alternative conception of achievement motivation which stresses the role of contextual and situational factors in addition to personality factors. Available from: Transaction Periodicals…

  13. Raising Boys' Achievement in Schools.

    ERIC Educational Resources Information Center

    Bleach, Kevan, Ed.

    This book offers insights into the range of strategies and good practice being used to raise the achievement of boys. Case studies by school-based practitioners suggest ideas and measures to address the issue of achievement by boys. The contributions are: (1) "Why the Likely Lads Lag Behind" (Kevan Bleach); (2) "Helping Boys Do…

  14. Teaching the Low Level Achiever.

    ERIC Educational Resources Information Center

    Salomone, Ronald E., Ed.

    1986-01-01

    Intended for teachers of the English language arts, the articles in this issue offer suggestions and techniques for teaching the low level achiever. Titles and authors of the articles are as follows: (1) "A Point to Ponder" (Rachel Martin); (2) "Tracking: A Self-Fulfilling Prophecy of Failure for the Low Level Achiever" (James Christopher Davis);…

  15. Early Intervention and Student Achievement

    ERIC Educational Resources Information Center

    Hormes, Mridula T.

    2009-01-01

    The United States Department of Education has been rigorous in holding all states accountable with regard to student achievement. The No Child Left Behind Act of 2001 clearly laid out federal mandates for all schools to follow. K-12 leaders of public schools are very aware of the fact that results in terms of student achievement need to improve…

  16. Parental Involvement and Academic Achievement

    ERIC Educational Resources Information Center

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  17. Asperger Syndrome and Academic Achievement.

    ERIC Educational Resources Information Center

    Griswold, Deborah E.; Barnhill, Gena P.; Myles, Brenda Smith; Hagiwara, Taku; Simpson, Richard L.

    2002-01-01

    A study focused on identifying the academic characteristics of 21 children and youth who have Asperger syndrome. Students had an extraordinary range of academic achievement scores, extending from significantly above average to far below grade level. Lowest achievement scores were shown for numerical operations, listening comprehension, and written…

  18. Perils of Standardized Achievement Testing

    ERIC Educational Resources Information Center

    Haladyna, Thomas M.

    2006-01-01

    This article argues that the validity of standardized achievement test-score interpretation and use is problematic; consequently, confidence and trust in such test scores may often be unwarranted. The problem is particularly severe in high-stakes situations. This essay provides a context for understanding standardized achievement testing, then…

  19. Stress Correlates and Academic Achievement.

    ERIC Educational Resources Information Center

    Bentley, Donna Anderson; And Others

    An ongoing concern for educators is the identification of factors that contribute to or are associated with academic achievement; one such group of variables that has received little attention are those involving stress. The relationship between perceived sources of stress and academic achievement was examined to determine if reactions to stress…

  20. School Size and Student Achievement

    ERIC Educational Resources Information Center

    Riggen, Vicki

    2013-01-01

    This study examined whether a relationship between high school size and student achievement exists in Illinois public high schools in reading and math, as measured by the Prairie State Achievement Exam (PSAE), which is administered to all Illinois 11th-grade students. This study also examined whether the factors of socioeconomic status, English…

  1. Mechanical cloak design by direct lattice transformation.

    PubMed

    Bückmann, Tiemo; Kadic, Muamer; Schittny, Robert; Wegener, Martin

    2015-04-21

    Spatial coordinate transformations have helped simplifying mathematical issues and solving complex boundary-value problems in physics for decades already. More recently, material-parameter transformations have also become an intuitive and powerful engineering tool for designing inhomogeneous and anisotropic material distributions that perform wanted functions, e.g., invisibility cloaking. A necessary mathematical prerequisite for this approach to work is that the underlying equations are form invariant with respect to general coordinate transformations. Unfortunately, this condition is not fulfilled in elastic-solid mechanics for materials that can be described by ordinary elasticity tensors. Here, we introduce a different and simpler approach. We directly transform the lattice points of a 2D discrete lattice composed of a single constituent material, while keeping the properties of the elements connecting the lattice points the same. After showing that the approach works in various areas, we focus on elastic-solid mechanics. As a demanding example, we cloak a void in an effective elastic material with respect to static uniaxial compression. Corresponding numerical calculations and experiments on polymer structures made by 3D printing are presented. The cloaking quality is quantified by comparing the average relative SD of the strain vectors outside of the cloaked void with respect to the homogeneous reference lattice. Theory and experiment agree and exhibit very good cloaking performance.

  2. Heat storage in alloy transformations. Final report

    SciTech Connect

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  3. Creating a Safe Environment for Women's Leadership Transformation

    ERIC Educational Resources Information Center

    Debebe, Gelaye

    2011-01-01

    This study used qualitative data to describe how transformational learning was achieved in a women-only training (WOT) program. The article argues that an environment conducive to transformational learning for women was created from the harmonious coalescing of the presence of all-women participants and instructors with gender-sensitive teaching…

  4. Transformational Leadership in Special Education: Leading the IEP Team

    ERIC Educational Resources Information Center

    Lentz, Kirby

    2012-01-01

    Using the principles of transformational leadership, IEP teams become effective tools to ensure student success and achievements. There is a difference of teams that are simply chaired and those that are lead. Teams with transformational leaders promote the best efforts of all participants including parents and students to effectively deliver…

  5. Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation

    SciTech Connect

    Reed, B W; Browning, N D; Santala, M K; LaGrange, T; Gilmer, G H; Masiel, D J; Campbell, G H; Raoux, S; Topuria, T; Meister, S; Cui, Y

    2011-01-04

    information. Using a novel specimen geometry, we also achieved repeated switching between the amorphous and crystalline phases enabling in situ study of structural change after phase cycling, which is relevant to device performance. We also observed the coupling between the phase transformations and the evolution of morphology on the nanometer scale, revealing the gradual development of striations in uniform films and preferential melting at sharp edges in laser-heated nanopatterned GST. This nonuniform melting, interpreted through simulation as being a direct result of geometrical laser absorption effects, appears to be responsible for a marked loss in morphological stability even at moderate laser intensities and may be an important factor in the longevity of nanostructured phase change materials in memory applications.

  6. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  7. Genetic Transformation of Bacteria.

    ERIC Educational Resources Information Center

    Moss, Robert.

    1991-01-01

    An activity in which students transform an ampicillin-sensitive strain of E. coli with a plasmid containing a gene for ampicillin resistance is described. The procedure for the preparation of competent cells and the transformation of competent E. coli is provided. (KR)

  8. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2011-07-01

    Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches Yaroslav A Urzhumov, Nathan B Kundtz ...B82, 205109, (2010). 9. Electromagnetic design with transformation optics Nathan B. Kundtz , David R. Smith, and John B. Pendry Proceedings of the

  9. Transformative environmental governance

    EPA Science Inventory

    Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to ...

  10. Transformative Learning and Identity

    ERIC Educational Resources Information Center

    Illeris, Knud

    2014-01-01

    Transformative learning has usually been defined as transformations of meaning perspectives, frames of reference, and habits of mind--as proposed initially by Jack Mezirow. However, several authors have found this definition too narrow and too cognitively oriented, and Mezirow has later emphasized that emotional and social conditions are also…

  11. Adaptive Wavelet Transforms

    SciTech Connect

    Szu, H.; Hsu, C.

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  12. Deployment & Market Transformation (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  13. Micropillar sequence designs for fundamental inertial flow transformations.

    PubMed

    Stoecklein, Daniel; Wu, Chueh-Yu; Owsley, Keegan; Xie, Yu; Di Carlo, Dino; Ganapathysubramanian, Baskar

    2014-11-07

    The ability to control the shape of a flow in a passive microfluidic device enables potential applications in chemical reaction control, particle separation, and complex material fabrication. Recent work has demonstrated the concept of sculpting fluid streams in a microchannel using a set of pillars or other structures that individually deform a flow in a predictable pre-computed manner. These individual pillars are then placed in a defined sequence within the channel to yield the composition of the individual flow deformations - and ultimately complex user-defined flow shapes. In this way, an elegant mathematical operation can yield the final flow shape for a sequence without an experiment or additional numerical simulation. Although these approaches allow for programming complex flow shapes without understanding the detailed fluid mechanics, the design of an arbitrary flow shape of interest remains difficult, requiring significant design iteration. The development of intuitive basic operations (i.e. higher-level functions that consist of combinations of obstacles) that act on the flow field to create a basis for more complex transformations would be useful in systematically achieving a desired flow shape. Here, we show eight transformations that could serve as a partial basis for more complex transformations. We initially used in-house, freely available custom software (uFlow), which allowed us to arrive at these transformations that include making a fluid stream concave and convex, tilting, stretching, splitting, adding a vertex, shifting, and encapsulating another flow stream. The pillar sequences corresponding to these transformations were subsequently fabricated and optically analyzed using confocal imaging - yielding close agreement with uFlow-predicted shapes. We performed topological analysis on each transformation, characterizing potential sequences leading to these outputs and trends associated with changing diameter and placement of the pillars. We

  14. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  15. Achieving That Elusive "Leadership Zone"

    ERIC Educational Resources Information Center

    Martin, Ann M.

    2016-01-01

    Reaching the "leadership zone" happens when librarians tap into the extraordinary skills lying within to overcome obstacles and transform sometimes-difficult situations into meaningful outcomes. Maturing into an experienced leader who stays in the leadership zone requires knowledge, training, and practice. This article provides tactical…

  16. Achievement Motivation Development Project. Final Report. Appendix IV, Part 2.

    ERIC Educational Resources Information Center

    McClelland, David C.; Alschuler, Alfred S.

    The Achievement Motivation Development Project is described. The Project has culminated in the development of course materials designed explicitly to promote aspects of psychological growth. As such, it is viewed as but one thrust in an emerging psychological education movement. Achievement motivation is defined as a way of planning, a set of…

  17. Achievement Motivation and Physical Fitness of 15-Year Old Girls

    ERIC Educational Resources Information Center

    Guszkowska, Monika; Rychta, Tadeusz

    2007-01-01

    Study aim: To determine the relations between the general and physical education-specific achievement motivation, and physical fitness of adolescent girls. Material and methods: A group of 52 girls aged 15 years were studied by applying two questionnaires: P-O scale of Widerszal-Bazyl for evaluating the general achievement motivation and Nishida's…

  18. Transformation optics and cloaking

    NASA Astrophysics Data System (ADS)

    McCall, Martin

    2013-11-01

    Invisibility, a long sought-for speculation in science fiction, has been turned into reality in the laboratory through the use of a theoretical technique called Transformation Optics. The principles of transformation optics show that any desired smooth deformation of the electromagnetic field can be implemented exactly by an appropriately engineered metamaterial. All demonstrations of cloaking to date have had limitations, however, reflecting our technological inability to implement the transformation optics algorithm exactly. However, the scientific principles leading to perfect invisibility are now established, and practical improvements on the initial designs are now occurring very rapidly. Most recently, researchers have re-examined transformation optics to include time as well as space, describing and then implementing the concept of a cloak that hides events, a conceptual breakout that promises many new applications. This review describes the general ideas underlying transformation optics, and how the various types of cloak based on these ideas have been implemented practically to date.

  19. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  20. Materializing superghosts

    NASA Astrophysics Data System (ADS)

    Alexandrov, V.; Krotov, D.; Losev, A.; Lysov, V.

    2007-12-01

    The off-shell Batalin-Vilkovysky (BV) realization has been constructed for N = 1, d = 10 super-Yang-Mills theory with seven auxiliary fields. This becomes possible due to the materialized ghost phenomenon. Namely, supersymmetry ghosts are coordinates on a manifold B of ten-dimensional spinors with the pure spinors cut out. Auxiliary fields are sections of a bundle over B, and supersymmetry transformations are nonlinear in ghosts. By integrating out the auxiliary fields, we obtain an on-shell supersymmetric BV action with quadratic terms in the antifields. Exactly this on-shell BV action was obtained in our previous paper after integration out of auxiliary fields in the framework of a pure spinor superfield formalism.

  1. A "Solid Dual-Ions-Transformation" Route to S,N Co-Doped Carbon Nanotubes as Highly Efficient "Metal-Free" Catalysts for Organic Reactions.

    PubMed

    Wang, Fan; Song, Shuyan; Li, Kai; Li, Junqi; Pan, Jing; Yao, Shuang; Ge, Xin; Feng, Jing; Wang, Xiao; Zhang, Hongjie

    2016-12-01

    A green and cost-effective method, named the "solid dual-ions-transformation reaction", is reported to achieve the goal of successfully doping S and N into hollow carbon nanotubes. No harmful raw material is needed during the whole synthesis. Importantly, in the catalytic test of chemical reduction of p-nitrophenol by NaBH4 , the as-obtained S,N co-doped hollow carbon nanotubes exhibit ultrahigh catalytic performances.

  2. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2015-02-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.

  3. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    SciTech Connect

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz Lustrac, André de

    2015-02-28

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.

  4. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions

    DOE PAGES

    Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji; ...

    2015-05-25

    The rapid development of self-assembly approaches has enabled the creation of materials with desired organization of nanoscale components. However, achieving dynamic control, wherein the system can be transformed on demand into multiple entirely different states, is typically absent in atomic and molecular systems and has remained elusive in designed nanoparticle systems. Here, we demonstrate with in situ small-angle x-ray scattering that, by using DNA strands as inputs, the structure of a three-dimensional lattice of DNA-coated nanoparticles can be switched from an initial 'mother' phase into one of multiple 'daughter' phases. The introduction of different types of re-programming DNA strands modifiesmore » the DNA shells of the nanoparticles within the superlattice, thereby shifting interparticle interactions to drive the transformation into a particular daughter phase. We mapped quantitatively with free-energy calculations the selective re-programming of interactions onto the observed daughter phases.« less

  5. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions

    SciTech Connect

    Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji; Vo, Thi; Kumar, Sanat; Gang, Oleg

    2015-05-25

    The rapid development of self-assembly approaches has enabled the creation of materials with desired organization of nanoscale components. However, achieving dynamic control, wherein the system can be transformed on demand into multiple entirely different states, is typically absent in atomic and molecular systems and has remained elusive in designed nanoparticle systems. Here, we demonstrate with in situ small-angle x-ray scattering that, by using DNA strands as inputs, the structure of a three-dimensional lattice of DNA-coated nanoparticles can be switched from an initial 'mother' phase into one of multiple 'daughter' phases. The introduction of different types of re-programming DNA strands modifies the DNA shells of the nanoparticles within the superlattice, thereby shifting interparticle interactions to drive the transformation into a particular daughter phase. We mapped quantitatively with free-energy calculations the selective re-programming of interactions onto the observed daughter phases.

  6. Impurities block the alpha to omega martensitic transformation in titanium.

    PubMed

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  7. Transformations of asymptotic gravitational-wave data

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2016-04-01

    Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data may be expressed, there will still be an infinite-dimensional group of transformations allowed while remaining in this class, and almost as many different—though physically equivalent—waveforms as there are transformations. This paper presents a method for calculating the effects of the most important transformation group, the Bondi-Metzner-Sachs (BMS) group, consisting of rotations, boosts, and supertranslations (which include time and space translations as special cases). To a reasonable approximation, these transformations result in simple coupling between the modes in a spin-weighted spherical-harmonic decomposition of the waveform. It is shown that waveforms from simulated compact binaries in the publicly available SXS waveform catalog contain unmodeled effects due to displacement and drift of the center of mass, accounting for mode mixing at typical levels of 1%. However, these effects can be mitigated by measuring the average motion of the system's center of mass for a portion of the inspiral, and applying the opposite transformation to the waveform data. More generally, controlling the BMS transformations will be necessary to eliminate the gauge ambiguity inherent in gravitational-wave data for both numerical and analytical waveforms. Open-source code implementing BMS transformations of waveforms is supplied along with this paper in the supplemental materials.

  8. Nanowire transformation and annealing by Joule heating.

    PubMed

    Hummelgård, Magnus; Zhang, Renyun; Carlberg, Torbjörn; Vengust, Damjan; Dvorsek, Damjan; Mihailovic, Dragan; Olin, Håkan

    2010-04-23

    Joule heating of bundles of Mo(6)S(3)I(6) nanowires, in real time, was studied using in situ TEM probing. TEM imaging, electron diffraction, and conductivity measurements showed a complete transformation of Mo(6)S(3)I(6) into Mo via thermal decomposition. The resulting Mo nanowires had a conductivity that was 2-3 orders higher than the starting material. The conductivity increased even further, up to 1.8 x 10(6) S m( - 1), when the Mo nanowires went through annealing phases. These results suggest that Joule heating might be a general way to transform or anneal nanowires, pointing to applications such as metal nanowire fabrication, novel memory elements based on material transformation, or in situ improvement of field emitters.

  9. Childhood Obesity and Cognitive Achievement.

    PubMed

    Black, Nicole; Johnston, David W; Peeters, Anna

    2015-09-01

    Obese children tend to perform worse academically than normal-weight children. If poor cognitive achievement is truly a consequence of childhood obesity, this relationship has significant policy implications. Therefore, an important question is to what extent can this correlation be explained by other factors that jointly determine obesity and cognitive achievement in childhood? To answer this question, we exploit a rich longitudinal dataset of Australian children, which is linked to national assessments in math and literacy. Using a range of estimators, we find that obesity and body mass index are negatively related to cognitive achievement for boys but not girls. This effect cannot be explained by sociodemographic factors, past cognitive achievement or unobserved time-invariant characteristics and is robust to different measures of adiposity. Given the enormous importance of early human capital development for future well-being and prosperity, this negative effect for boys is concerning and warrants further investigation.

  10. Using Design To Achieve Sustainability

    EPA Science Inventory

    Sustainability is defined as meeting the needs of this generation without compromising the ability of future generations to meet their needs. This is a conditional statement that places the responsibility for achieving sustainability squarely in hands of designers and planners....

  11. Achieving Efficiencies in Army Installations.

    DTIC Science & Technology

    2007-11-02

    34" ’■■"■" 1 USAWC STRATEGY RESEARCH PROJECT Achieving Efficiencies in Army Installations by Richard Fliss Col. Richard M. Meinhart Project...government agency. STRATEGY RESEARCH PROJECT ACHIEVING EFFICIENCIES IN ARMY INSTALLATIONS BY RICHARD FLISS DISTRIBUTION STATEMENT A: Approved...for public release. Distribution is unlimited. DTIC QUALITY INSPECTED & USAWC CLASS OF 1998 U.S. ARMY WAR COLLEGE, CARLISLE BARRACKS, PA 17013-5050

  12. Biolistics Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  13. EDITORIAL: Focus on Cloaking and Transformation Optics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Ulf; Smith, David R.

    2008-11-01

    'Any sufficiently advanced technology is indistinguishable from magic', as the late Arthur C Clarke wrote. So what does it take to do magic by technology? Transformation optics has developed some tantalizing ideas and the first practical demonstrations of 'pure and applied magic'. Transformation optics gathers an unusual mix of scientists, ranging from practically-minded engineers to imaginative theoretical physicists and mathematicians or hybrids of all three. The engineers have been developing new materials with extraordinary electromagnetic properties, from materials for microwaves, to be used in radar or wireless technology, to materials for terahertz radiation and visible light. These materials typically are composites—they consist of artificial structures much smaller than the wavelength that act like man-made atoms, apart being much larger in size. The properties of these artificial atoms depend on their shapes and sizes and so they are tunable, in contrast to most real atoms or molecules. This degree of control is what makes these materials—called metamaterials—so interesting. Such new-won freedom invites the other side of the spectrum of scientists, the theorists, to dream. Just imagine there are no practical limits on electromagnetic materials—what could we do with them? One exciting application of metamaterials has been Veselago's idea of negative refraction, dating back to the 1960s. Metamaterials have breathed life into Veselago's idea, culminating in recent optical demonstrations (see for example [1,2]). Another application is cloaking, developing ideas and first experimental demonstrations for invisibility devices [3]. It turns out that both negative refraction and cloaking are examples where materials seem to transform the geometry of space. Any optical material appears to change light's perception of space, as countless optical illusions prove, but the materials of transformation optics act in more specific ways: they appear to perform

  14. The Practice of Transformative Pedagogy

    ERIC Educational Resources Information Center

    Ukpokodu, Omiunota

    2009-01-01

    The author examined the practice of transformative pedagogy in an undergraduate teacher education program. The research was guided by two questions: What is the impact of transformative pedagogy on fostering preservice teachers' transformative learning? and What practices of transformative pedagogy impact student transformative learning?…

  15. Distributed transform coding via source-splitting

    NASA Astrophysics Data System (ADS)

    Yahampath, Pradeepa

    2012-12-01

    Transform coding (TC) is one of the best known practical methods for quantizing high-dimensional vectors. In this article, a practical approach to distributed TC of jointly Gaussian vectors is presented. This approach, referred to as source-split distributed transform coding (SP-DTC), can be used to easily implement two terminal transform codes for any given rate-pair. The main idea is to apply source-splitting using orthogonal-transforms, so that only Wyner-Ziv (WZ) quantizers are required for compression of transform coefficients. This approach however requires optimizing the bit allocation among dependent sets of WZ quantizers. In order to solve this problem, a low-complexity tree-search algorithm based on analytical models for transform coefficient quantization is developed. A rate-distortion (RD) analysis of SP-DTCs for jointly Gaussian sources is presented, which indicates that these codes can significantly outperform the practical alternative of independent TC of each source, whenever there is a strong correlation between the sources. For practical implementation of SP-DTCs, the idea of using conditional entropy constrained (CEC) quantizers followed by Slepian-Wolf coding is explored. Experimental results obtained with SP-DTC designs based on both CEC scalar quantizers and CEC trellis-coded quantizers demonstrate that actual implementations of SP-DTCs can achieve RD performance close to the analytically predicted limits.

  16. Overview of transformer platform showing three original stepup transformer (center), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of transformer platform showing three original step-up transformer (center), steel switchback (right), and modern step-down transformer (foreground), view to northwest - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT

  17. Designed materials: what and how

    NASA Astrophysics Data System (ADS)

    Mazumder, Jyotirmoy; Dutta, Debasish; Ghosh, Amit K.; Kikuchi, Noboru

    2003-03-01

    Quest for a material to suit the service performance is almost as old as human civilization. So far materials engineers have developed a series of alloys, polymers, ceramics, and composites to serve many of the performance requirements in a modern society. However, challenges appear when one needs to satisfy more than one boundary condition. For example, a component with negative Coefficient of Thermal Expansion (CTE) using a ductile metal was almost impossible until recently. Synthesis of various technologies such as Direct Metal Deposition (DMD) Homogenization Design Method (HDM) and mutli material Computer Aided Design (CAD) was necessary to achieve this goal. Rapid fabrication of three-dimensional shapes of engineering materials such as H13 tool steel and nickel super alloys are now possible using Direct Materials Deposition (DMD) technique as well as similar techniques such as Light Engineered New Shaping (LENS) or Directed Light Fabrication (DLF). However, DMD has closed loop capability that enables better dimension and thermal cycle control. This enables one to deposit different material at different pixels with a given height directly from a CAD drawing. The feedback loop also controls the thermal cycle. H13 tool steel is one of the difficult alloys for deposition due to residual stress accumulation from martensitic transformation. However, it is the material of choice for the die and tool industry. DMD has demonstrated successful fabrication of complicated shapes and dies and tools, even with H13 alloys. This process also offers copper chill blocks and water-cooling channels as the integral part of the tool. On the other hand ZrO2 was co-deposited with nickel super alloys using DMD. Flexibility of the process is enormous and essentially it is an enabling technology to marterialize many a design. Using DMD in conjunction with HDM and multi-material CAD, one can produce components with predetermined performance such as negative co-efficient of expansion, by

  18. Preferential nucleation during polymorphic transformations

    DOE PAGES

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-03

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and thereforemore » nucleation more probable - with increasing number of special OR’s. As a result, these insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.« less

  19. Preferential nucleation during polymorphic transformations

    SciTech Connect

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-03

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. As a result, these insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  20. Fractals and Transformations.

    ERIC Educational Resources Information Center

    Bannon, Thomas J.

    1991-01-01

    Discussed are several different transformations based on the generation of fractals including self-similar designs, the chaos game, the koch curve, and the Sierpinski Triangle. Three computer programs which illustrate these concepts are provided. (CW)

  1. A Classical Science Transformed.

    ERIC Educational Resources Information Center

    Kovalevsky, Jean

    1979-01-01

    Describes how satellites and other tools of space technology have transformed classical geodesy into the science of space geodynamics. The establishment and the activities of the French Center for Geodynamic and Astronomical Research Studies (CERGA) are also included. (HM)

  2. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  3. Series Transmission Line Transformer

    DOEpatents

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  4. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2014-01-31

    research is extend the analytical work in transformation optics (relating complex systems to simpler systems with the same spectral properties ) to... optics which via a transformation relates complex systems to simpler systems possessed of the same spectral properties . One good example is to be...mediated by the quantum fluctuations in electron density at the metal surfaces and are the most long ranged forces between nanoparticles . Fig. 1(a

  5. 25. VIEW, LOOKING SOUTHWEST INSIDE TRANSFORMER ROOM, SHOWING TRANSFORMERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW, LOOKING SOUTHWEST INSIDE TRANSFORMER ROOM, SHOWING TRANSFORMERS AND KNIFE SWITCHES - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  6. A School Transformed: The Case of Norman S. Weir.

    ERIC Educational Resources Information Center

    Emmons, Christine L.; Hagopian, Gloria; Efimba, Maloke O.

    1998-01-01

    Describes the Norman S. Weir Elementary School, Paterson (New Jersey), which epitomizes the transformation that occurs when the Comer School Development Program is implemented well. The school has risen from being one of the lowest achieving schools in its district to one of the highest achievers. The role of the principal is highlighted. (SLD)

  7. New Community Schools and the Measurement of Transformation

    ERIC Educational Resources Information Center

    Remedios, Richard; Allan, Julie

    2006-01-01

    The New Community Schools initiative was introduced in Scotland in 1998 with the aims of improving participation, raising achievement, improving health and transforming communities. The success of the initiative was evaluated in terms of the stated aims. In relation to improving participation and raising achievement, this was straightforward:…

  8. New Advances in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  9. Activities: Geometric Transformations. Part 2.

    ERIC Educational Resources Information Center

    Eddins, Susan K.; And Others

    1994-01-01

    Presents a lesson that connects basic transformational concepts with transformations on a Cartesian-coordinate system, culminating with the application of matrix operations to perform geometric transformations. Includes reproducible student worksheets and assessment activities. (MKR)

  10. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  11. Transforming the junior level: Outcomes from instruction and research in E&M

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Pollock, Steven J.; Pepper, Rachel E.; Perkins, Katherine K.

    2012-12-01

    Over the course of four years, we have researched and transformed a key course in the career of an undergraduate physics major—junior-level electricity and magnetism. With the aim of educating our majors based on a more complete understanding of the cognitive and conceptual challenges of upper-division courses, we used principles of active engagement and learning theory to develop course materials and conceptual assessments. Our research results from student and faculty interviews and observations also informed our approach. We present several measures of the outcomes of this work at the University of Colorado at Boulder and external institutions. Students in the transformed courses achieved higher learning gains compared to those in the traditionally taught courses, particularly in the areas of conceptual understanding and ability to articulate their reasoning about a problem. The course transformations appear to close a gender gap, improving female students’ scores on conceptual and traditional assessments so that they are more similar to those of male students. Students enthusiastically support the transformations, and indicate that several course elements provide useful scaffolding in conceptual understanding, as well as physicists’ “habits of mind” such as problem-solving approaches and work habits. Despite these positive outcomes, student conceptual learning gains do not fully meet faculty expectations, suggesting that it is valuable to further investigate how the content and skills indicative of “thinking like a physicist” can be most usefully taught at the upper division.

  12. Childhood vaccination: achievements and challenges.

    PubMed

    Ndumbe, P

    1996-09-01

    As the goal of eradicating smallpox was being met, the World Health Organization created its Expanded Programme on Immunisation (EPI) in 1974 and reached its initial goal of achieving full vaccination of 80% of the world's children by 1990. This effort was aided by the creation of "cold chain" delivery systems and resulted in the annual saving of 3.5 million children in less-developed countries. Current EPI vaccination goals include 1) eradication of poliomyelitis by the year 2000, 2) elimination of neonatal tetanus by the year 1995, 3) control of measles and hepatitis B, and 4) immunization of 90% of the world's children 1 year or younger by the year 2000. Goals of the Children's Vaccine Initiative (formed in 1991) include 1) provision of an adequate supply of affordable, safe, and effective vaccines; 2) production of improved and new vaccines; and 3) simplification of the logistics of vaccine delivery. Future challenges are to sustain high vaccination coverage, reach the unreached, achieve proper storage of vaccines and reduce waste, integrate new vaccines into national programs, and achieve vaccine self-sufficiency. The fact that these challenges will be difficult to achieve is illustrated by the situation in Africa where the high immunization levels achieved in 1990 have dropped dramatically. Those who must act to implement immunization programs are health personnel, families, governments, and development partners. In order to achieve equity in health, every child must be reached, governments must be made accountable for programs, health workers must convince families of the importance of vaccination, delivery systems must be in place to take advantage of the new vaccines being delivered, and a multisectoral approach must be taken to assure sustainability.

  13. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; Ju, Tina; Kunin, Daniel; Lieberman, Erica; Nguyen, Thai; Tran, Forrest; Xiang, Daniel; Fujishima, Kosuke

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  14. Transformation in fungi.

    PubMed Central

    Fincham, J R

    1989-01-01

    Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater

  15. Granular media in transformation: dynamics and structure

    NASA Astrophysics Data System (ADS)

    Merceron, Aymeric; Jop, Pierre; Sauret, Alban; SVI, CNRS/Saint-Gobain Team

    2015-11-01

    Sintering, glass melting and other industrially relevant processes turn batches of grains into continuous end products. Such processes involve complex and mostly misunderstood chemical and physical transformations of the granular packing. Affecting the contact network, physicochemical reactions entail mechanical rearrangements. But such reorganizations may also trigger new potential reactions. Granular reactive systems are strongly coupled and need investigations for achieving industrial optimizations. This study is focused on how transformations appearing on its components affect the response of the granular packing. Inert brass disks and grains undergoing well-known transformations like volume decrease are mixed and then confined in a vertical 2D cell. While the system reacts, the granular packing is regularly photographed with a high-resolution camera. Events largely distributed both spatially and temporally occur around reactive grains. Thanks to image processing, this reorganization process is then analyzed. Spatial and temporal amplitudes of events are quantified as well as their local and global impacts on the granular structure.

  16. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  17. Transformation of bulk alloys to oxide nanowires

    NASA Astrophysics Data System (ADS)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  18. Managing and Transforming Waste Streams – A Tool for Communities

    EPA Pesticide Factsheets

    The Managing and Transforming Waste Streams Tool features 100 policy and program options communities can pursue to increase rates of recycling, composting, waste reduction, and materials reuse across waste stream generators.

  19. Reverse ray tracing for transformation optics.

    PubMed

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  20. Washington State's Student Achievement Initiative

    ERIC Educational Resources Information Center

    Pettitt, Maureen; Prince, David

    2010-01-01

    This article describes Washington State's Student Achievement Initiative, an accountability system implemented in 2005-06 that measures students' gains in college readiness, college credits earned, and degree or certificate completion. The goal of the initiative is to increase educational attainment by focusing on the critical momentum points…

  1. Meeting a Math Achievement Crisis

    ERIC Educational Resources Information Center

    Jennings, Lenora; Likis, Lori

    2005-01-01

    An urban community spotlighted declining mathematics achievement and took some measures, in which the students' performance increased substantially. The Benjamin Banneker Charter Public School in Cambridge, Massachusetts, engaged the entire community and launched the campaign called "Math Everywhere", which changed Benjamin Banneker's…

  2. Socioeconomic Determinants of Academic Achievement

    ERIC Educational Resources Information Center

    Tomul, Ekber; Savasci, Havva Sebile

    2012-01-01

    This study aims to investigate the relationship between academic achievement and the socioeconomic characteristics of elementary school 7th grade students in Burdur. The population of the study are 7th grade students who had education at elementary schools in Burdur in the 2007-2008 academic year. Two staged sampling was chosen as suitable for the…

  3. Goal Setting to Achieve Results

    ERIC Educational Resources Information Center

    Newman, Rich

    2012-01-01

    Both districts and individual schools have a very clear set of goals and skills for their students to achieve and master. In fact, except in rare cases, districts and schools develop very detailed goals they wish to pursue. In most cases, unfortunately, only the teachers and staff at a particular school or district-level office are aware of the…

  4. School Districts and Student Achievement

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; Whitehurst, Grover J.; Gallaher, Michael R.

    2015-01-01

    School districts are a focus of education reform efforts in the United States, but there is very little existing research about how important they are to student achievement. We fill this gap in the literature using 10 years of student-level, statewide data on fourth- and fifth-grade students in Florida and North Carolina. A variance decomposition…

  5. Student Achievement, 1986-87.

    ERIC Educational Resources Information Center

    Mangino, Evangelina

    This report summarizes results of student achievement in the Austin (Texas) Independent School District (AISD) on the Texas Educational Assessment of Minimum Skills (TEAMS) tests in 1986-87. Major findings indicate the following: (1) 99.4% of AISD seniors to graduate in May 1987 passed the Exit-Level TEAMS tests, with only 17 denied diplomas in…

  6. Sociocultural Variation in Literacy Achievement

    ERIC Educational Resources Information Center

    Verhoeven, Ludo

    2006-01-01

    The purpose of this study was to describe the variations in literacy achievement among native and non-native upper primary school children (grades three to six) in the Netherlands. Various measures of word decoding, reading literacy and writing skill were collected from 1091 native Dutch children, 753 children with a former Dutch colonial…

  7. Game Addiction and Academic Achievement

    ERIC Educational Resources Information Center

    Sahin, Mehmet; Gumus, Yusuf Yasin; Dincel, Sezen

    2016-01-01

    The primary aim of this study was to investigate the correlation between game addiction and academic achievement. The secondary aim was to adapt a self-report instrument to measure game addiction. Three hundred and seventy high school students participated in this study. Data were collected via an online questionnaire that included a brief…

  8. The Widening Income Achievement Gap

    ERIC Educational Resources Information Center

    Reardon, Sean F.

    2013-01-01

    Has the academic achievement gap between high-income and low-income students changed over the last few decades? If so, why? And what can schools do about it? Researcher Sean F. Reardon conducted a comprehensive analysis of research to answer these questions and came up with some striking findings. In this article, he shows that income-related…

  9. Attribution Theory in Science Achievement

    ERIC Educational Resources Information Center

    Craig, Martin

    2013-01-01

    Recent research reveals consistent lags in American students' science achievement scores. Not only are the scores lower in the United States compared to other developed nations, but even within the United States, too many students are well below science proficiency scores for their grade levels. The current research addresses this problem by…

  10. Grouping Students for Increased Achievements.

    ERIC Educational Resources Information Center

    Holloway, John H.

    2001-01-01

    Reviews results of four recent studies exploring the effects of various student-grouping schemes on academic achievement. Grouping plans included multiage classrooms, full-time ability grouping, and within-classroom grouping. Two studies investigated administrator attitudes toward student grouping. Several studies found that grouping plans…

  11. Achievement, Hedonism and the Teacher.

    ERIC Educational Resources Information Center

    Ryan, Kevin

    1991-01-01

    The problem of poor school achievement is in part because students lack work and discipline values. The article suggests moral and ethical teachings inspire students to be better scholars and people; and teacher education must prepare teachers to be moral educators by reintroducing moral education into the curriculum. (SM)

  12. School Desegregation and Black Achievement.

    ERIC Educational Resources Information Center

    Cook, Thomas; And Others

    Seven papers commissioned by the National Institute of Education in order to clarify the state of recent knowledge about the effects of school desegregation on the academic achievement of black students are contained in this report. The papers, which analyze 19 "core" empirical studies on this topic, include: (1) "What Have Black Children Gained…

  13. Institutional Climate and Minority Achievement.

    ERIC Educational Resources Information Center

    Richardson, Richard C.

    This paper discusses ways that institutions can change the higher education system and environment to accommodate more minority students. The first section, "Institutional Climate and Minority Achievement," presents an overview of the problems facing colleges and universities with respect to recruiting and retaining minority students. In the…

  14. Faculty Development: Assessing Learner Achievement.

    ERIC Educational Resources Information Center

    Frey, Barbara A.; Overfield, Karen

    This study addressed the challenges of developing a faculty professional development workshop on assessment, measurement, and evaluation of achievement in adult learners. The setting for the workshop was a system of postsecondary career colleges throughout the United States. The curriculum development model of D. Kirkpatrick (1994) was used as a…

  15. Can Judges Improve Academic Achievement?

    ERIC Educational Resources Information Center

    Greene, Jay P.; Trivitt, Julie R.

    2008-01-01

    Over the last 3 decades student achievement has remained essentially unchanged in the United States, but not for a lack of spending. Over the same period a myriad of education reforms have been suggested and per-pupil spending has more than doubled. Since the 1990s the education reform attempts have frequently included judicial decisions to revise…

  16. Achieving a sustainable service advantage.

    PubMed

    Coyne, K P

    1993-01-01

    Many managers believe that superior service should play little or no role in competitive strategy; they maintain that service innovations are inherently copiable. However, the author states that this view is too narrow. For a company to achieve a lasting service advantage, it must base a new service on a capability gap that competitors cannot or will not copy.

  17. Teacher Dispositions and Student Achievement

    ERIC Educational Resources Information Center

    Vaughn, Kathleen Adams

    2012-01-01

    In an effort to close the achievement gap between students of minority and majority populations and between students in higher and lower economic circumstances, the National Council for the Accreditation of Teacher Education (NCATE) added instruction and evaluation of teacher dispositions to its requirements for credentialing prospective teachers.…

  18. Epistemological Beliefs and Academic Achievement

    ERIC Educational Resources Information Center

    Arslantas, Halis Adnan

    2016-01-01

    This study aimed to identify the relationship between teacher candidates' epistemological beliefs and academic achievement. The participants of the study were 353 teacher candidates studying their fourth year at the Education Faculty. The Epistemological Belief Scale was used which adapted to Turkish through reliability and validity work by…

  19. Genetic transformation of the sugar beet plastome.

    PubMed

    De Marchis, Francesca; Wang, Yongxin; Stevanato, Piergiorgio; Arcioni, Sergio; Bellucci, Michele

    2009-02-01

    It is very important for the application of chloroplast engineering to extend the range of species in which this technology can be achieved. Here, we describe the development of a chloroplast transformation system for the sugar beet (Beta vulgaris L. ssp. vulgaris, Sugar Beet Group) by biolistic bombardment of leaf petioles. Homoplasmic plastid-transformed plants of breeding line Z025 were obtained. Transformation was achieved using a vector that targets genes to the rrn16/rps12 intergenic region of the sugar beet plastome, employing the aadA gene as a selectable marker against spectinomycin and the gfp gene for visual screening of plastid transformants. gfp gene transcription and protein expression were shown in transplastomic plants. Detection of GFP in Comassie blue-stained gels suggested high GFP levels. Microscopy revealed GFP fluorescence within the chloroplasts. Our results demonstrate the feasibility of engineering the sugar beet chloroplast genome; this technology provides new opportunities for the genetic improvement of this crop and for social acceptance of genetically modified sugar beet plants.

  20. Planar LTCC transformers for high voltage flyback converters.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill; Roesler, Alexander William; Ewsuk, Kevin Gregory; Slama, George; Abel, Dave

    2007-06-01

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

  1. Design of toroidal transformers for maximum efficiency

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1972-01-01

    The design of the most efficient toroidal transformer that can be built given the frequency, volt-ampere rating, magnetic flux density, window fill factor, and materials is described. With the above all held constant and only the dimensions of the magnetic core varied, the most efficient design occurs when the copper losses equal 60 percent of the iron losses. When this criterion is followed, efficiency is only slightly dependent on design frequency and fill factor. The ratios of inside diameter to outside diameter and height to build of the magnetic core that result in transformers of maximum efficiency are computed.

  2. NUCLEAR FUEL MATERIAL

    DOEpatents

    Goeddel, W.V.

    1962-06-26

    An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

  3. On spinors transformations

    NASA Astrophysics Data System (ADS)

    Budinich, Marco

    2016-07-01

    We begin showing that for even dimensional vector spaces V all automorphisms of their Clifford algebras are inner. So all orthogonal transformations of V are restrictions to V of inner automorphisms of the algebra. Thus under orthogonal transformations P and T—space and time reversal—all algebra elements, including vectors v and spinors φ, transform as v → xvx-1 and φ → xφx-1 for some algebra element x. We show that while under combined PT spinor φ → xφx-1 remains in its spinor space, under P or T separately φ goes to a different spinor space and may have opposite chirality. We conclude with a preliminary characterization of inner automorphisms with respect to their property to change, or not, spinor spaces.

  4. Transformation based endorsement systems

    NASA Technical Reports Server (NTRS)

    Sudkamp, Thomas

    1988-01-01

    Evidential reasoning techniques classically represent support for a hypothesis by a numeric value or an evidential interval. The combination of support is performed by an arithmetic rule which often requires restrictions to be placed on the set of possibilities. These assumptions usually require the hypotheses to be exhausitive and mutually exclusive. Endorsement based classification systems represent support for the alternatives symbolically rather than numerically. A framework for constructing endorsement systems is presented in which transformations are defined to generate and update the knowledge base. The interaction of the knowledge base and transformations produces a non-monotonic reasoning system. Two endorsement based reasoning systems are presented to demonstrate the flexibility of the transformational approach for reasoning with ambiguous and inconsistent information.

  5. Translating and Transforming Care

    PubMed Central

    Gillespie, Alex; Moore, Helen

    2015-01-01

    This article examines how the Disability Living Allowance claim form, used in the United Kingdom to allocate £13 billion of disability benefits, translates and transforms disability and care. Twenty-two people with acquired brain injury and their main informal caregivers (n = 44) were video-recorded filling in the disability claim form. Participants disagreed on 26% of the questions, revealing two types of problems. Translation problems arose as participants struggled to provide categorical responses to ambiguous questions and were unable to report contextual variability in care needs or divergences of perception. Transformation problems arose as participants resisted the way in which the form positioned them, forcing them to conceptualize their relationship in terms of dependency and burden. The disability claim form co-opts claimants to translate care and disability into bureaucratically predefined categories, and it transforms the care relationship that it purports to document. PMID:25792487

  6. Strain-Temperature-Transformation (STT) Diagram for Soft Solids

    NASA Astrophysics Data System (ADS)

    Li, Shoubo; Xiong, Wentao; Wang, Xiaorong

    Soft materials comprise a variety of physical states that are easily deformed by shear stains or thermal fluctuations. They include suspensions, colloids, polymers, foams, gels, liquid crystals, and a number of biological materials. In this contribution, a generalized strain-temperature-transformation (STT) diagram for many soft materials is presented in which the physical states encountered are related to the strain and temperature changes. The boundary defined for the solid-to-liquid transformation in the STT diagram displays a surprising Z-shaped curve. We discuss this feature with respect to the physical nature of materials.

  7. Advances in Maize Transformation Technologies and Development of Transgenic Maize

    PubMed Central

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K.

    2017-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area. PMID:28111576

  8. Transformer room fire tests

    NASA Astrophysics Data System (ADS)

    Fustich, C. D.

    1980-03-01

    A series of transformer room fire tests are reported to demonstate the shock hazard present when automatic sprinklers operate over energized electrical equipment. Fire protection was provided by standard 0.5 inch pendent automatic sprinklers temperature rated at 135 F and installed to give approximately 150 sq ft per head coverage. A 480 v dry transformer was used in the room to provide a three phase, four wire distribution system. It is shown that the induced currents in the test room during the various tests are relatively small and pose no appreciable personnel shock hazard.

  9. Earth Limb Radiance Transformation.

    DTIC Science & Technology

    1981-03-02

    AD-A097 523 AEROSPACE CORP EL SEGUNDO CA CHEMISTRY AND PHYSICS LAB F/G 4/1 EARTH LIMB RADIANCE TRANSFORMATION (U) MAR AI S 4 YOUNG F0701-80 -C-0081... Earth Limb Radiance Trafisformation Prepared by S. J. YOUNG Chemistr and Physics Laboratory Laboratory Operations The Aerospace Corporation S.El...ITLEK (and Subtitle) TYPE OF REPORT & P53100 COVERED Earth Limb Radiance Transformation. ( Interim ./ / /TR-OJ081(697j7-g4)-l-- i7.Step hen J. Young

  10. Genetic Transformation of Switchgrass

    NASA Astrophysics Data System (ADS)

    Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu

    Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.

  11. Metacognition, Achievement Goals, Study Strategies and Academic Achievement: Pathways to Achievement

    ERIC Educational Resources Information Center

    Vrugt, Anneke; Oort, Frans J.

    2008-01-01

    The purpose of this research was to develop and test a model of effective self-regulated learning. Based on effort expenditure we discerned effective self-regulators and less effective self-regulators. The model comprised achievement goals (mastery, performance-approach and -avoidance goals), metacognition (metacognitive knowledge, regulation and…

  12. The incongruous achiever in adolescence.

    PubMed

    Kline, S A; Golombek, H

    1974-06-01

    The authors wished to study some of the internal psychological dynamics of achievement in a nonpatient identified high school population. Questionnaires were administered to the Grade 13 students and their parents in a large high school. A number of students whose achievement and educational plans were not congruous with their general background were selected for interview. The findings suggest that a wide variety of ages and developmental stages can be discerned as critical points in the development of a student's attitude toward higher education. These students have many values in common, and their values appear related to a positive or negative identification with parental values. The students themselves show a wide range of personality integration. They relate in a special way to a wide variety of teachers' personalities.

  13. Transformation invariant on-line target recognition.

    PubMed

    Iftekharuddin, Khan M

    2011-06-01

    Transformation invariant automatic target recognition (ATR) has been an active research area due to its widespread applications in defense, robotics, medical imaging and geographic scene analysis. The primary goal for this paper is to obtain an on-line ATR system for targets in presence of image transformations, such as rotation, translation, scale and occlusion as well as resolution changes. We investigate biologically inspired adaptive critic design (ACD) neural network (NN) models for on-line learning of such transformations. We further exploit reinforcement learning (RL) in ACD framework to obtain transformation invariant ATR. We exploit two ACD designs, such as heuristic dynamic programming (HDP) and dual heuristic dynamic programming (DHP) to obtain transformation invariant ATR. We obtain extensive statistical evaluations of proposed on-line ATR networks using both simulated image transformations and real benchmark facial image database, UMIST, with pose variations. Our simulations show promising results for learning transformations in simulated images and authenticating out-of plane rotated face images. Comparing the two on-line ATR designs, HDP outperforms DHP in learning capability and robustness and is more tolerant to noise. The computational time involved in HDP is also less than that of DHP. On the other hand, DHP achieves a 100% success rate more frequently than HDP for individual targets, and the residual critic error in DHP is generally smaller than that of HDP. Mathematical analyses of both our RL-based on-line ATR designs are also obtained to provide a sufficient condition for asymptotic convergence in a statistical average sense.

  14. Beam cooling: Principles and achievements

    SciTech Connect

    Mohl, Dieter; Sessler, Andrew M.

    2003-05-18

    After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

  15. Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in wastewater treatment and land application of biosolids.

    PubMed

    Barton, Lauren E; Auffan, Melanie; Durenkamp, Mark; McGrath, Steve; Bottero, Jean-Yves; Wiesner, Mark R

    2015-04-01

    The use of nano-enabled materials in industry and consumer products is increasing rapidly and with it, the more imperative it becomes to understand the consequences of such materials entering the environment during production, use or disposal. The novel properties of engineered nanomaterials (ENMs) that make them desirable for commercial applications also present the possibility of impacting aquatic and terrestrial environments in ways that may differ from materials in bulk format. Modeling techniques are needed to proactively predict the environmental fate and transport of nanomaterials. A model for nanoparticle (NP) separation and transformation in water treatment was parameterized for three metal and metal-oxide NPs. Functional assays to determine NP specific distribution and transformation were used to parameterize the model and obtain environmentally relevant concentrations of NPs and transformation byproducts leaving WWTPs in effluent and biosolids. All three NPs were predicted to associate >90% with the solid phase indicating significant accumulation in the biosolids. High rates of transformation for ZnO and Ag NPs resulted in ~97% transformation of the NPs that enter the plant despite differences in transformation rate in aerobic versus anaerobic environments. Due to high insolubility and negligible redox transformation, the only process predicted to impact TiO2 NP fate and transport in WWTPs was distribution between the solid and liquid phases. Subsequent investigation of ZnO NP species fate and transport when land applied in biosolids indicated that steady state concentrations of ZnO phases would likely be achieved after approximately 150days under loading conditions of biosolids typical in current practice.

  16. Applications of ferro-nanofluid on a micro-transformer.

    PubMed

    Tsai, Tsung-Han; Kuo, Long-Sheng; Chen, Ping-Hei; Lee, Da-Sheng; Yang, Chin-Ting

    2010-01-01

    An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material.

  17. Spiral-like multi-beam emission via transformation electromagnetics

    SciTech Connect

    Tichit, Paul-Henri; Burokur, Shah Nawaz Lustrac, André de

    2014-01-14

    Transformation electromagnetics offers an unconventional approach for the design of novel radiating devices. Here, we propose an electromagnetic metamaterial able to split an isotropic radiation into multiple directive beams. By applying transformations that modify distance and angles, we show how the multiple directive beams can be steered at will. We describe transformation of the metric space and the calculation of the material parameters. Different transformations are proposed for a possible physical realization through the use of engineered artificial metamaterials. Full wave simulations are performed to validate the proposed approach. The idea paves the way to interesting applications in various domains in microwave and optical regimes.

  18. Spiral-like multi-beam emission via transformation electromagnetics

    NASA Astrophysics Data System (ADS)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2014-01-01

    Transformation electromagnetics offers an unconventional approach for the design of novel radiating devices. Here, we propose an electromagnetic metamaterial able to split an isotropic radiation into multiple directive beams. By applying transformations that modify distance and angles, we show how the multiple directive beams can be steered at will. We describe transformation of the metric space and the calculation of the material parameters. Different transformations are proposed for a possible physical realization through the use of engineered artificial metamaterials. Full wave simulations are performed to validate the proposed approach. The idea paves the way to interesting applications in various domains in microwave and optical regimes.

  19. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  20. Exemplar pediatric collaborative improvement networks: achieving results.

    PubMed

    Billett, Amy L; Colletti, Richard B; Mandel, Keith E; Miller, Marlene; Muething, Stephen E; Sharek, Paul J; Lannon, Carole M

    2013-06-01

    A number of pediatric collaborative improvement networks have demonstrated improved care and outcomes for children. Regionally, Cincinnati Children's Hospital Medical Center Physician Hospital Organization has sustained key asthma processes, substantially increased the percentage of their asthma population receiving "perfect care," and implemented an innovative pay-for-performance program with a large commercial payor based on asthma performance measures. The California Perinatal Quality Care Collaborative uses its outcomes database to improve care for infants in California NICUs. It has achieved reductions in central line-associated blood stream infections (CLABSI), increased breast-milk feeding rates at hospital discharge, and is now working to improve delivery room management. Solutions for Patient Safety (SPS) has achieved significant improvements in adverse drug events and surgical site infections across all 8 Ohio children's hospitals, with 7700 fewer children harmed and >$11.8 million in avoided costs. SPS is now expanding nationally, aiming to eliminate all events of serious harm at children's hospitals. National collaborative networks include ImproveCareNow, which aims to improve care and outcomes for children with inflammatory bowel disease. Reliable adherence to Model Care Guidelines has produced improved remission rates without using new medications and a significant increase in the proportion of Crohn disease patients not taking prednisone. Data-driven collaboratives of the Children's Hospital Association Quality Transformation Network initially focused on CLABSI in PICUs. By September 2011, they had prevented an estimated 2964 CLABSI, saving 355 lives and $103,722,423. Subsequent improvement efforts include CLABSI reductions in additional settings and populations.