Sample records for achieving uniform surface

  1. Layer uniformity in glucose oxidase immobilization on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Libertino, Sebania; Scandurra, Antonino; Aiello, Venera; Giannazzo, Filippo; Sinatra, Fulvia; Renis, Marcella; Fichera, Manuela

    2007-09-01

    The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO 2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.

  2. The Relationship of School Uniforms to Student Attendance, Achievement, and Discipline

    ERIC Educational Resources Information Center

    Sowell, Russell Edward

    2012-01-01

    This causal-comparative study examined the relationship of school uniforms to attendance, academic achievement, and discipline referral rates, using data collected from two high schools in rural southwest Georgia county school systems, one with a uniforms program and one without a uniforms program. After accounting for race and students with…

  3. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  4. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  5. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.

    PubMed

    Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo

    2017-04-10

    We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

  6. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures.

    PubMed

    Feng, Pin; Jiang, Lan; Li, Xin; Rong, Wenlong; Zhang, Kaihu; Cao, Qiang

    2015-02-20

    A simple, repeatable approach is proposed to fabricate large-area, uniform periodic surface structures by a femtosecond laser. 20 nm gold films are coated on semiconductor surfaces on which large-area, uniform structures are fabricated. In the case study of silicon, cross-links and broken structures of laser induced periodic surface structures (LIPSSs) are significantly reduced on Au-coated silicon. The good consistency between the scanning lines facilitates the formation of large-area, uniform LIPSSs. The diffusion of hot electrons in the Au films increases the interfacial carrier densities, which significantly enhances interfacial electron-phonon coupling. High and uniform electron density suppresses the influence of defects on the silicon and further makes the coupling field more uniform and thus reduces the impact of laser energy fluctuations, which homogenizes and stabilizes large-area LIPSSs.

  7. AN AUTOMATED SYSTEM FOR PRODUCING UNIFORM SURFACE DEPOSITS OF DRY PARTICLES

    EPA Science Inventory

    A laboratory system has been constructed that uniformly deposits dry particles onto any type of test surface. Devised as a quality assurance tool for the purpose of evaluating surface sampling methods for lead, it also may be used to generate test surfaces for any contaminant ...

  8. Achieving pattern uniformity in plasmonic lithography by spatial frequency selection

    NASA Astrophysics Data System (ADS)

    Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay

    2018-01-01

    The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.

  9. How Congruent Is a Strict Uniform Policy with Enhanced Academic Achievement and Self-Beliefs in Early Adolescence?

    ERIC Educational Resources Information Center

    Hoskins, Jo A.

    2014-01-01

    This study focuses on the analysis of the impact of school uniforms on student self-esteem and self-efficacy. In the past, schools have implemented school uniform policies in order to help improve student achievement as well as strengthen discipline. However, previous research has indicated an association, which is tenuous at best, with regard to…

  10. Effect of surface deposits on electromagnetic propagation in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1991-01-01

    A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  11. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  12. Dressed for Success? The Effect of School Uniforms on Student Achievement and Behavior. NBER Working Paper No. 17337

    ERIC Educational Resources Information Center

    Gentile, Elisabetta; Imberman, Scott A.

    2011-01-01

    Uniform use in public schools is rising, but we know little about how they affect students. Using a unique dataset from a large urban school district in the southwest United States, we assess how uniforms affect behavior, achievement and other outcomes. Each school in the district determines adoption independently, providing variation over schools…

  13. Investigation the Amplitude Uniformity on the Surface of the Wide-Blade Ultrasonic Plastic Welding Horn

    NASA Astrophysics Data System (ADS)

    Hai Nguyen, Thanh; Thanh Quang, Quang; Luat Tran, Cong; Loc Nguyen, Huu

    2017-10-01

    Ultrasonic welding has been applied for joining thermoplastic components due to their advantages such as clean, fast and reliable. The basic principle is to use the mechanical energy of ultrasonic frequency vibration to produce the molten pool at the interface of the joined components under high pressure to create solid-state welding joints. Depending on the specific application, the ultrasonic horn is designed to generate suitable amplitudes on the surface of the welding zone. Uniformity of the amplitudes can be a challenge as the welding area increases. Therefore, design a welding horn in order to obtain the uniform amplitudes at the large area is significant difficult. This work presents a method for obtaining the uniform amplitudes at the working surface of the stepped wide-blade horn. Finite element method is used to analyze the amplitude distribution at the horn surface of 250 × 34 mm2 with working frequency of 15 kHz and aluminum alloy 7075. The uniformity of amplitude is obtained by changing the shape of the horn.

  14. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  15. Integrating uniform design and response surface methodology to optimize thiacloprid suspension

    PubMed Central

    Li, Bei-xing; Wang, Wei-chang; Zhang, Xian-peng; Zhang, Da-xia; Mu, Wei; Liu, Feng

    2017-01-01

    A model 25% suspension concentrate (SC) of thiacloprid was adopted to evaluate an integrative approach of uniform design and response surface methodology. Tersperse2700, PE1601, xanthan gum and veegum were the four experimental factors, and the aqueous separation ratio and viscosity were the two dependent variables. Linear and quadratic polynomial models of stepwise regression and partial least squares were adopted to test the fit of the experimental data. Verification tests revealed satisfactory agreement between the experimental and predicted data. The measured values for the aqueous separation ratio and viscosity were 3.45% and 278.8 mPa·s, respectively, and the relative errors of the predicted values were 9.57% and 2.65%, respectively (prepared under the proposed conditions). Comprehensive benefits could also be obtained by appropriately adjusting the amount of certain adjuvants based on practical requirements. Integrating uniform design and response surface methodology is an effective strategy for optimizing SC formulas. PMID:28383036

  16. Uniform hexagonal graphene flakes and films grown on liquid copper surface.

    PubMed

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-05-22

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.

  17. Uniform hexagonal graphene flakes and films grown on liquid copper surface

    PubMed Central

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-01-01

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density. PMID:22509001

  18. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  19. Sealable stagnation flow geometries for the uniform deposition of materials and heat

    DOEpatents

    McCarty, Kevin F.; Kee, Robert J.; Lutz, Andrew E.; Meeks, Ellen

    2001-01-01

    The present invention employs a constrained stagnation flow geometry apparatus to achieve the uniform deposition of materials or heat. The present invention maximizes uniform fluxes of reactant gases to flat surfaces while minimizing the use of reagents and finite dimension edge effects. This results, among other things, in large area continuous films that are uniform in thickness, composition and structure which is important in chemical vapor deposition processes such as would be used for the fabrication of semiconductors.

  20. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    PubMed

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  1. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  2. Determination of mean camber surfaces for wings having uniform chordwise loading and arbitrary spanwise loading in subsonic flow

    NASA Technical Reports Server (NTRS)

    Katzoff, S; Faison, M Frances; Dubose, Hugh C

    1954-01-01

    The field of a uniformly loaded wing in subsonic flow is discussed in terms of the acceleration potential. It is shown that, for the design of such wings, the slope of the mean camber surface at any point can be determined by a line integration around the wing boundary. By an additional line integration around the wing boundary, this method is extended to include the case where the local section lift coefficient varies with spanwise location (the chordwise loading at every section still remaining uniform). For the uniformly loaded wing of polygonal plan form, the integrations necessary to determine the local slope of the surface and the further integration of the slopes to determine the ordinate can be done analytically. An outline of these integrations and the resulting formulas are included. Calculated results are given for a sweptback wing with uniform chordwise loading and a highly tapered spanwise loading, a uniformly loaded delta wing, a uniformly loaded sweptback wing, and the same sweptback wing with uniform chordwise loading but elliptical span load distribution.

  3. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

  4. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong

    2018-06-01

    A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.

  5. Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu

    2015-08-15

    A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less

  6. School Uniforms. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2007-01-01

    Does clothing make the person or does the person make the clothing? How does what attire a student wears to school affect their academic achievement? In 1996, President Clinton cited examples of school violence and discipline issues that might have been avoided had the students been wearing uniforms ("School uniforms: Prevention or suppression?").…

  7. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  8. Formation process of graphite film on Ni substrate with improved thickness uniformity through precipitation control

    NASA Astrophysics Data System (ADS)

    Kim, Seul-Gi; Hu, Qicheng; Nam, Ki-Bong; Kim, Mun Ja; Yoo, Ji-Beom

    2018-04-01

    Large-scale graphitic thin film with high thickness uniformity needs to be developed for industrial applications. Graphitic films with thicknesses ranging from 3 to 20 nm have rarely been reported, and achieving the thickness uniformity in that range is a challenging task. In this study, a process for growing 20 nm-thick graphite films on Ni with improved thickness uniformity is demonstrated and compared with the conventional growth process. In the film grown by the process, the surface roughness and coverage were improved and no wrinkles were observed. Observations of the film structure reveal the reasons for the improvements and growth mechanisms.

  9. Experimental Validation of Normalized Uniform Load Surface Curvature Method for Damage Localization

    PubMed Central

    Jung, Ho-Yeon; Sung, Seung-Hoon; Jung, Hyung-Jo

    2015-01-01

    In this study, we experimentally validated the normalized uniform load surface (NULS) curvature method, which has been developed recently to assess damage localization in beam-type structures. The normalization technique allows for the accurate assessment of damage localization with greater sensitivity irrespective of the damage location. In this study, damage to a simply supported beam was numerically and experimentally investigated on the basis of the changes in the NULS curvatures, which were estimated from the modal flexibility matrices obtained from the acceleration responses under an ambient excitation. Two damage scenarios were considered for the single damage case as well as the multiple damages case by reducing the bending stiffness (EI) of the affected element(s). Numerical simulations were performed using MATLAB as a preliminary step. During the validation experiments, a series of tests were performed. It was found that the damage locations could be identified successfully without any false-positive or false-negative detections using the proposed method. For comparison, the damage detection performances were compared with those of two other well-known methods based on the modal flexibility matrix, namely, the uniform load surface (ULS) method and the ULS curvature method. It was confirmed that the proposed method is more effective for investigating the damage locations of simply supported beams than the two conventional methods in terms of sensitivity to damage under measurement noise. PMID:26501286

  10. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.

  11. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  12. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  13. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Kashin, Peter

    1993-11-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while insuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric Compound Parabolic Luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illumination offer significant improvements in flux homogeneity relative to alternative designs to date.

  14. New reversing design method for LED uniform illumination.

    PubMed

    Wang, Kai; Wu, Dan; Qin, Zong; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2011-07-04

    In light-emitting diode (LED) applications, it is becoming a big issue that how to optimize light intensity distribution curve (LIDC) and design corresponding optical component to achieve uniform illumination when distance-height ratio (DHR) is given. A new reversing design method is proposed to solve this problem, including design and optimization of LIDC to achieve high uniform illumination and a new algorithm of freeform lens to generate the required LIDC by LED light source. According to this method, two new LED modules integrated with freeform lenses are successfully designed for slim direct-lit LED backlighting with thickness of 10mm, and uniformities of illuminance increase from 0.446 to 0.915 and from 0.155 to 0.887 when DHRs are 2 and 3 respectively. Moreover, the number of new LED modules dramatically decreases to 1/9 of the traditional LED modules while achieving similar uniform illumination in backlighting. Therefore, this new method provides a practical and simple way for optical design of LED uniform illumination when DHR is much larger than 1.

  15. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform

  16. An improved non-uniformity correction algorithm and its GPU parallel implementation

    NASA Astrophysics Data System (ADS)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui

    2018-05-01

    The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.

  17. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and

  18. School Uniform Policies in Public Schools

    ERIC Educational Resources Information Center

    Brunsma, David L.

    2006-01-01

    The movement for school uniforms in public schools continues to grow despite the author's research indicating little if any impact on student behavior, achievement, and self-esteem. The author examines the distribution of uniform policies by region and demographics, the impact of these policies on perceptions of school climate and safety, and…

  19. Uniform irradiation of irregularly shaped cavities for photodynamic therapy.

    PubMed

    Rem, A I; van Gemert, M J; van der Meulen, F W; Gijsbers, G H; Beek, J F

    1997-03-01

    It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a cubical box, a sphere, a cylinder and a 'bottle-neck' geometry have been investigated experimentally and the results have been compared with computed light distributions obtained using the 'radiosity method'. A high reflection coefficient of the mould and the best uniform direct irradiance possible on the inside of the mould were found to be important determinants for achieving a uniform light distribution.

  20. Uniform-burning matrix burner

    DOEpatents

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  1. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  2. Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin

    2018-01-01

    A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D  +  t B

  3. Uniform distribution of ZnO nanoparticles on the surface of grpahene and its enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xue, Bing; Zou, Yingquan

    2018-05-01

    Herein, a ZnO-graphene nanocomposite photocatalyst was obtained by a facile one-step photochemical method. Both the reduction of graphene oxide (GO) and uniform loading of ZnO nanoparticles (NPs) on the surface of graphene were achieved during the photochemical reaction process using GO as the precursor of graphene and zinc chloride (ZnCl2) as the single source of ZnO. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of ZnO/rGO composites was studied by the photodegradation of methylene blue (MB) dye. The as-prepared ZnO/rGO photocatalyst possesses great adsorptivity of dyes (e.g., MB) and high charge separation properties. After receiving the photoelectrons from ZnO, graphene plane can effectively transfer the photoelectrons, thereby showing highly efficient photocatalytic degradation towards pollutants. The effective introduction of rGO significantly improved the photocatalysis and sensing properties of ZnO, and we believe that the as-prepared ZnO/rGO nanocomposite would be promising for practical applications in future nanotechnology.

  4. Uniform insulation applied-B ion diode

    DOEpatents

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  5. Stuttgart, Germany. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1988-07-01

    4rREVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS STUTTGART GERMANY MSC # 107380 N 48 41 K 009 13 ELEV 1300 FT EDOC PARTS A - F HOURS SUMMARIZED 0000...1 .. L. b I.E 725O0 14.2 24.A 26.4 32.3 32.1 33.6 34.2 36.7 37.7 9.2 39.c 39.5 39.7 𔄃.e 40. 1 I. . GE 6’ UC 1 14.4 25.3 27.0 30.6 32.8 34. 2 34*. 37.4...28.9 30.1 33.8 35.8 36.7 37.3 39.1 39.6 40.0 40.2 60.5 60.6 60.7 41.1 1.9 6E 8- uC l7.9 3L. b 31 .9 35.838 V.. 39. 139 . 7- 6’.6 - 42. 1-62. 7 42.9 4

  6. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  7. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  8. Peano-like paths for subaperture polishing of optical aspherical surfaces.

    PubMed

    Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao

    2013-05-20

    Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement.

  9. Nucleation of uniform mono- and bilayer epitaxial graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong; Zhang, Rui; Dong, Yunliang; Guo, Shuai; Kong, Wenjie; Liao, Zhimin; Yu, Dapeng

    2012-02-01

    Early stage of epitaxial graphene growth on SiC(0001) has been investigated. Using the confinement controlled sublimation (CCS) method, we has achieved well controlled growth and been able to see the formation of mono- and bilayer graphene islands. The growth features reveal the intriguing growth mechanism. In particular, a new ``stepdown'' growth mode has been identified. Graphene can propagate tens of micrometers across many SiC steps, while, most importantly, step bunching is avoided and the initial regular stepped SiC surface morphology is preserved. The stepdown growth demonstrates a route towards uniform epitaxial graphene in wafer size without sacrificing the initial substrate surface morphology.

  10. On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces

    ERIC Educational Resources Information Center

    Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.

    2011-01-01

    Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…

  11. Toward Uniformity in Exchange Communication

    ERIC Educational Resources Information Center

    Shinn, Isabella

    1972-01-01

    Instant communication, characterized by brevity, should be the practice of exchange librarians trading titles on the international level. Guidelines for a multilingual, many-purpose form letter, which could achieve uniformity, are presented. (14 references) (Author/SJ)

  12. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates.

    PubMed

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-11-21

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) "hot spots" created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10(-7) M and 10(-5) M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.

  13. Nanofinishing of freeform/sculptured surfaces: state-of-the-art

    NASA Astrophysics Data System (ADS)

    Nagdeve, Leeladhar; Jain, V. K.; Ramkumar, J.

    2018-06-01

    Freeform surfaces are being used in a multiplicity of applications in different kinds of industries related to Bio-medical (Bio-implants), micro channels in micro fluidics, automotives, turbine blades, impellers of artificial heart pumps, automobiles etc. Different parts in these industries need nano-level surface finish as their functional inevitability. It is very difficult and challenging to achieve high level of surface finish, especially on the components having freeform (or sculptured) surfaces, complex shapes, and 3-D features. Surface finish is a significant factor, which affects life and functionality of a product. Many traditional and advanced finishing processes have been developed for finishing of freeform/sculptured surfaces but still it has not been possible to achieve uniform nano level surface finish specially in case of freeform surfaces. To overcome the limitations of the existing nanofinishing processes, researchers are developing new processes for uniform nanofinishing of freeform surfaces. In this article, an attempt has been made to review different nanofinishing processes employed for freeform surfaces useful in different types of applications. In addition, experimental work, theoretical analysis and existing challenges of the finishing processes have been identified to fill the research gap.

  14. Dual-Electrode CMUT With Non-Uniform Membranes for High Electromechanical Coupling Coefficient and High Bandwidth Operation

    PubMed Central

    Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.

    2010-01-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135

  15. Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.

    1974-01-01

    The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.

  16. Conformal Nanocoatings with Uniform and Controllable Thickness on Microstructured Surfaces: A General Assembly Route.

    PubMed

    Hou, Yi; Wang, Zhen; Cai, Chao; Hao, Xi; Li, Dongdong; Zhao, Ning; Zhao, Yiping; Chen, Li; Ma, Hongwei; Xu, Jian

    2018-02-01

    Assembling nanoparticles (NPs) on various surfaces are intensively investigated for the construction of functional nanocoatings; however, it is still a challenge to fabricate conformal nanocoatings uniformly on surfaces having micro- or nanostructures. Herein, it is demonstrated that the negatively charged SiO 2 NPs and the positively charged silicon coupling agent can be assembled layer-by-layer on the microstructures based on the combination of electrostatic interaction and condensation reaction. Conformal nanocoatings with controllable thickness are formed on the microstructured surfaces with different compositions and morphologies. The formation mechanism is confirmed by using quartz crystal microbalance with dissipation (QCM-D) to study the assembly process in real time. The universality of this method is illustrated by using other reactive building blocks with opposite charge to build up the conformal nanocoatings. Application in the preparation of antireflective nanocoatings on nonplanar optical materials is demonstrated. This simple, versatile, and scalable strategy for the preparation of conformal nanocoatings is promising for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CD uniformity control for thick resist process

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2017-03-01

    In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.

  18. Tolerancing a lens for LED uniform illumination

    NASA Astrophysics Data System (ADS)

    Ryu, Jieun; Sasian, Jose

    2017-08-01

    A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.

  19. Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface

    NASA Astrophysics Data System (ADS)

    Sommers, Andrew D.; Jacobi, Anthony M.

    2006-08-01

    A technique for fabricating micropatterned aluminum surfaces with parallel grooves 30 µm wide and tens of microns in depth is described. Standard photolithographic techniques are used to obtain this precise surface-feature patterning. Positive photoresists, S1813 and AZ4620, are selected to mask the surface, and a mixture of BCl3 and Cl2 gases is used to perform the etching. Experimental data show that a droplet placed on the micro-grooved aluminum surface using a micro-syringe exhibits an increased apparent contact angle, and for droplets condensed on these etched surfaces, more than a 50% reduction in the volume needed for the onset of droplet sliding is manifest. No chemical surface treatment is necessary to achieve this water repellency; it is accomplished solely by an anisotropic surface morphology that manipulates droplet geometry and creates and exploits discontinuities in the three-phase contact line. These micro-structured surfaces are proposed for use in a broad range of air-cooling applications, where the management of condensate and defrost liquid on the heat transfer surface is essential to the energy-efficient operation of the machine.

  20. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    NASA Astrophysics Data System (ADS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  1. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  2. Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces

    DOEpatents

    Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.

    1997-12-02

    Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.

  3. Design of highly uniform spool and bar horns for ultrasonic bonding.

    PubMed

    Kim, Sun-Rak; Lee, Jae Hak; Yoo, Choong D; Song, Jun-Yeob; Lee, Seung S

    2011-10-01

    Although the groove and slot have been widely utilized for horn design to achieve high uniformity, their effects on uniformity have not been analyzed thoroughly. In this work, spool and bar horns for ultrasonic bonding are designed in a systematic way using the design of experiments (DOE) to achieve high amplitude uniformity of the horn. Three-dimensional modal analysis is conducted to predict the natural frequency, amplitude, and stress of the horns, and the DOE is employed to analyze the effects of the groove and slot on the amplitude uniformity. The design equations are formulated to determine the optimum dimensions of the groove and slot, and the uniformity is found to be influenced most significantly by the groove depth and slot width. Displacements of the spool and bar horns were measured using a laser Doppler vibrometer (LDV), and the predicted results are in good agreement with the experimental data.

  4. Temperature uniformity in hyperthermal tumor therapy

    NASA Technical Reports Server (NTRS)

    Harrison, G. H.; Robinson, J. E.; Samaras, G. M.

    1978-01-01

    Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.

  5. Bicubic uniform B-spline wavefront fitting technology applied in computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Sun, Jun-qiang; Chen, Guo-jie

    2006-02-01

    This paper presented a bicubic uniform B-spline wavefront fitting technology to figure out the analytical expression for object wavefront used in Computer-Generated Holograms (CGHs). In many cases, to decrease the difficulty of optical processing, off-axis CGHs rather than complex aspherical surface elements are used in modern advanced military optical systems. In order to design and fabricate off-axis CGH, we have to fit out the analytical expression for object wavefront. Zernike Polynomial is competent for fitting wavefront of centrosymmetric optical systems, but not for axisymmetrical optical systems. Although adopting high-degree polynomials fitting method would achieve higher fitting precision in all fitting nodes, the greatest shortcoming of this method is that any departure from the fitting nodes would result in great fitting error, which is so-called pulsation phenomenon. Furthermore, high-degree polynomials fitting method would increase the calculation time in coding computer-generated hologram and solving basic equation. Basing on the basis function of cubic uniform B-spline and the character mesh of bicubic uniform B-spline wavefront, bicubic uniform B-spline wavefront are described as the product of a series of matrices. Employing standard MATLAB routines, four kinds of different analytical expressions for object wavefront are fitted out by bicubic uniform B-spline as well as high-degree polynomials. Calculation results indicate that, compared with high-degree polynomials, bicubic uniform B-spline is a more competitive method to fit out the analytical expression for object wavefront used in off-axis CGH, for its higher fitting precision and C2 continuity.

  6. Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS.

    PubMed

    Vu, Lien T; Chen, Chao-Chang A; Yu, Chia-Wei

    2018-02-05

    This study aims to develop a new optical design method of soft multifocal contact lens (CLs) to obtain uniform optical power in large center-distance zone with optimized Non-Uniform Rational B-spline (NURBS). For the anterior surface profiles of CLs, the NURBS design curves are optimized to match given optical power distributions. Then, the NURBS in the center-distance zones are fitted in the corresponding spherical/aspheric curves for both data points and their centers of curvature to achieve the uniform power. Four cases of soft CLs have been manufactured by casting in shell molds by injection molding and then measured to verify the design specifications. Results of power profiles of these CLs are concord with the given clinical requirements of uniform powers in larger center-distance zone. The developed optical design method has been verified for multifocal CLs design and can be further applied for production of soft multifocal CLs.

  7. A quantitative experimental phantom study on MRI image uniformity.

    PubMed

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-23

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  8. Vertical uniformity of cells and nuclei in epithelial monolayers.

    PubMed

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  9. Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks.

    PubMed

    Kaskela, Antti; Mustonen, Kimmo; Laiho, Patrik; Ohno, Yutaka; Kauppinen, Esko I

    2015-12-30

    We report the fabrication of thin film transistors (TFTs) from networks of nonbundled single-walled carbon nanotubes with controlled surface densities. Individual nanotubes were synthesized by using a spark generator-based floating catalyst CVD process. High uniformity and the control of SWCNT surface density were realized by mixing of the SWCNT aerosol in a turbulent flow mixer and monitoring the online number concentration with a condensation particle counter at the reactor outlet in real time. The networks consist of predominantly nonbundled SWCNTs with diameters of 1.0-1.3 nm, mean length of 3.97 μm, and metallic to semiconducting tube ratio of 1:2. The ON/OFF ratio and charge carrier mobility of SWCNT TFTs were simultaneously optimized through fabrication of devices with SWCNT surface densities ranging from 0.36 to 1.8 μm(-2) and channel lengths and widths from 5 to 100 μm and from 100 to 500 μm, respectively. The density optimized TFTs exhibited excellent performance figures with charge carrier mobilities up to 100 cm(2) V(-1) s(-1) and ON/OFF current ratios exceeding 1 × 10(6), combined with high uniformity and more than 99% of devices working as theoretically expected.

  10. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  11. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  12. Effects of Lambertian sources design on uniformity and measurements

    NASA Astrophysics Data System (ADS)

    Cariou, Nadine; Durell, Chris; McKee, Greg; Wilks, Dylan; Glastre, Wilfried

    2014-10-01

    Integrating sphere (IS) based uniform sources are a primary tool for ground based calibration, characterization and testing of flight radiometric equipment. The idea of a Lambertian field of energy is a very useful tool in radiometric testing, but this concept is being checked in many ways by newly lowered uncertainty goals. At an uncertainty goal of 2% one needs to assess carefully uniformity in addition to calibration uncertainties, as even sources with a 0.5% uniformity are now substantial proportions of uncertainty budgets. The paper explores integrating sphere design options for achieving 99.5% and better uniformity of exit port radiance and spectral irradiance created by an integrating sphere. Uniformity in broad spectrum and spectral bands are explored. We discuss mapping techniques and results as a function of observed uniformity as well as laboratory testing results customized to match with customer's instrumentation field of view. We will also discuss recommendations with basic commercial instrumentation, we have used to validate, inspect, and improve correlation of uniformity measurements with the intended application.

  13. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection.

    PubMed

    Yin, Kai; Du, Haifeng; Dong, Xinran; Wang, Cong; Duan, Ji-An; He, Jun

    2017-10-05

    Fog collection is receiving increasing attention for providing water in semi-arid deserts and inland areas. Inspired by the fog harvesting ability of the hydrophobic-hydrophilic surface of Namib desert beetles, we present a simple, low-cost method to prepare a hybrid superhydrophobic-hydrophilic surface. The surface contains micro/nanopatterns, and is prepared by incorporating femtosecond-laser fabricated polytetrafluoroethylene nanoparticles deposited on superhydrophobic copper mesh with a pristine hydrophilic copper sheet. The as-prepared surface exhibits enhanced fog collection efficiency compared with uniform (super)hydrophobic or (super)hydrophilic surfaces. This enhancement can be tuned by controlling the mesh number, inclination angle, and fabrication structure. Moreover, the surface shows excellent anti-corrosion ability after immersing in 1 M HCl, 1 M NaOH, and 10 wt% NaCl solutions for 2 hours. This work may provide insight into fabricating hybrid superhydrophobic-hydrophilic surfaces for efficient atmospheric water collection.

  14. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    PubMed

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  15. A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.

    PubMed

    O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan

    2018-06-16

    Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.

  16. Air Bag Applies Uniform Bonding Pressure

    NASA Technical Reports Server (NTRS)

    Gillespie, C. A.

    1982-01-01

    Air-bag box applies constant uniform pressure to tiles and other objects undergoing adhesive bonding. Box is basically a compliant clamp with adjustable force and position. Can be used on irregular surfaces as well as on flat ones. Pressurized air is fed to bag through a tube so that it expands, filling the box and pressing against work. Bag adopts a contour that accommodates surface under open side of box.

  17. Minot AFB, North Dakota. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-12-01

    MAC) REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS MINOT AFB ND MSC 727675 N 48 25 W 101 21 ELEV 1668 FT KMIB PARTS A - F HOURS SUMMARIZED...o . ... . . . . .. . * , . .*** . *.,, ,,.* .. OrALt NtUME3P OP OE sERvI TO js: uC 6 LOYlAL CLIMPIATIOLO0G Y BAp AN(CH Pt QLI 1.T1A(.E It L...OF P1- COPD : 7 7-P6 MONTH: OCT IHOUPS(LSTI: ALL I wIND SPCFJ3 IN KN015 DIPECTIIN 1-3 4-6 7-10 11-16 17-21 227 28-33 34-40 41-47 4F-1S GE S6 TCI&L MEAt

  18. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  19. Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders

    NASA Astrophysics Data System (ADS)

    Kiu, K. Y.; Stappenbelt, B.; Thiagarajan, K. P.

    2011-09-01

    The present study was motivated by a desire to understand the vortex-induced vibration (VIV) of cylindrical offshore structures such as spars in strong currents. In particular, the consequences of marine growth on the surface as well as natural surface roughness that occurs with years in service are studied. Of special interest is the effect of surface roughness on the response amplitudes and the forces experienced by these structures while undergoing VIV. The experimental apparatus employed for the present study consisted of an elastically mounted rigid vertical cylinder with no end plates, towed along the length of a water tank. The cylinder was attached to a parallel linkage mechanism allowing motion in the transverse direction only. The cylinder surface was covered by sandpapers with known mean particle diameters, thus providing controlled values of roughness coefficient from 0.28×10 -3 to 1.38×10 -2. The tests covered the subcritical range of Reynolds number from 1.7×10 4 to 8.3×10 4, and a reduced velocity range from 4 to 16. It was found that as the roughness of the cylinder was increased the maximum response amplitude and the maximum mean drag coefficient decreased, levelling off to constant values. The onset of lock-in was progressively delayed for rougher cylinders, and the width of the lock-in region showed remarkable reduction at higher roughness values. The Strouhal number was found to display a modest increase with roughness. The dynamic mean drag of the rough cylinders was also found to be lower than that for a smooth cylinder. It is felt that uniform roughness such as caused in marine environments may act favorably to lower VIV incidence and effects in the range of Reynolds number tested.

  20. Blytheville AFB, Arkansas, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-10-01

    A USAFETAC Air Weather Service (MAC) 3SSTAe’ REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS BLYTHEVILLE AFB AR MSC 1723408 IC N 35 58 W...I IE C It I 1-3 4-b I-Il It 1 7-2 1 2 - 4- UC 4 1-4 7 4F - U S5 1(IA " SAN I9 I 1. . 217 2.0 .i D I .lF I .2 1.? .7 1 .1 1 .2 .2- 0.1I 7 I AIR4 3tf...o o o , . . .. . . .o ..oo.o.. 17-, -7 5C.-. 1-7 ’-, F t tt 71*1. Li I I L C1.2 4 t 7 1L 1 4 uC I* I. A .o o.....oo. oo ~ oo o ooo ...... ...... .o. o

  1. Buckley ANGB, Colorado. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1988-01-01

    Weather Service (MAC) 3SAFETAr’ REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS BUCKLEY ANGB CO MSC # 724695 N 39 43 W 104 45 ELEV 5663 FT KBKF...chg- R uc kI y A N T;B , A u ro ra , C o lo rad o A NG J an 71 No v 8 0 N o cliq e N o ( iq (o 1i , 4 I )r 7() [1 Ii1 " 7 No change AN(; Nec NO sep R3...6,U3 Lr: 7,-49 1 STATICN NAME: fTUC LE Y AN6F CO |I’(-j11 (IF I[ COPD : 62.07 4 IOUR AMOUNTS IN N6-S -8-0- N-I -i-s - ALL 9711 z JAN FEC9 "AR CpF, JL N

  2. Sample-Based Surface Coloring

    PubMed Central

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2011-01-01

    In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392

  3. Marcus-Hush-Chidsey theory of electron transfer to and from species bound at a non-uniform electrode surface: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.

    2011-11-01

    Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.

  4. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  5. Uniform refraction in negative refractive index materials.

    PubMed

    Gutiérrez, Cristian E; Stachura, Eric

    2015-11-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.

  6. Non-Uniform Thickness Electroactive Device

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)

    2006-01-01

    An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.

  7. Open-air direct current plasma jet: Scaling up, uniformity, and cellular control

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.

    2012-10-01

    Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

  8. Are School Uniforms a Good Fit? Results from the ECLS-K and the NELS

    ERIC Educational Resources Information Center

    Yeung, Ryan

    2009-01-01

    One of the most common proposals put forth for reform of the American system of education is to require school uniforms. Proponents argue that uniforms can make schools safer and also improve school attendance and increase student achievement. Opponents contend that uniforms have not been proven to work and may be an infringement on the freedom of…

  9. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

    NASA Astrophysics Data System (ADS)

    Lim, Dong-Kwon; Jeon, Ki-Seok; Hwang, Jae-Ho; Kim, Hyoki; Kwon, Sunghoon; Suh, Yung Doug; Nam, Jwa-Min

    2011-07-01

    An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R2 > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 108, which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 108 and 5.0 × 109.

  10. Green Design and Sustainable Development of School Uniforms

    NASA Astrophysics Data System (ADS)

    Cui, Yumei; Fang, Xuemeng; Zhou, Honglei

    2018-01-01

    Since the 1990s, the school uniform has gradually become an integral part of campus culture construction. A school uniform is not only an iconic symbol of students and a school, but also the carrier of campus culture, with special education function and cultural connotation. However in the same time, many problems exist in the design, making and material selection of school uniforms, in which, substandard fabric quality is the most serious problem. To ensure the quality, health and safety of school uniforms, in my opinion, priority should be given to green design and sustainable development in the design process of school uniforms, which will be more conducive to promoting the sound development of school uniforms. In today’s economic development, the globalization of mass production is no longer just a symbol of challenging the limits of human beings, but to explore the unlimited potential of human spiritual collaboration. If we want to have a better future on this planet, we need to completely redefine the key issue we need to address, that is, green design. The rise of green products is a great progress of human understanding and solving environmental problems. It is the inevitable development trend of commodity production, and will have a profound impact on human survival and development in the future. School uniform is an important part of campus culture construction. In order to not damage the health of primary and secondary school students, in the school uniform design and production process should follow the concept of “green design” to achieve the school uniform style, color, material design, a comprehensive “green” positioning.

  11. Toward microscale flow control using non-uniform electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran

    2018-02-01

    We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.

  12. Uniform discotic wax particles via electrospray emulsification.

    PubMed

    Mejia, Andres F; He, Peng; Luo, Dawei; Marquez, Manuel; Cheng, Zhengdong

    2009-06-01

    We present a novel colloidal discotic system: the formation and self-assembling of wax microdisks with a narrow size distribution. Uniform wax emulsions are first fabricated by electrospraying of melt alpha-eicosene. The size of the emulsions can be flexibly tailored by varying the flow rate of the discontinuous phase, its electric conductivity, and the applied voltage. The process of entrainment of wax droplets, vital for obtaining uniform emulsions, is facilitated by the reduction of air-water surface tension and the density of the continuous phase. Then uniform wax discotic particles are produced via phase transition, during which the formation of a layered structure of the rotator phase of wax converts the droplets, one by one, into oblate particles. The time span for the conversion from spherical emulsions to disk particles is linearly dependent on the size of droplets in the emulsion, indicating the growth of a rotator phase from surface to the center is the limiting step in the shape transition. Using polarized light microscopy, the self-assembling of wax disks is observed by increasing disk concentration and inducing depletion attraction among disks, where several phases, such as isotropic, condensed, columnar stacking, and self-assembly of columnar rods are present sequentially during solvent evaporation of a suspension drop.

  13. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy.

    PubMed

    Deng, Xuegong; Braun, Gary B; Liu, Sheng; Sciortino, Paul F; Koefer, Bob; Tombler, Thomas; Moskovits, Martin

    2010-05-12

    The surface-enhanced Raman spectroscopy (SERS) activity and the optical reflectance of a subwavelength gold nanograting fabricated entirely using top down technologies on silicon wafers are presented. The grating consists of 120 nm gold cladding on top of parallel silica nanowires constituting the grating's lines, with gaps between nanowires <10 nm wide at their narrowest point. The grating produces inordinately intense SERS and shows very strong polarization dependence. Reflectance measurements for the optimized grating indicate that (when p-polarization is used and at least one of the incident electric field components lies across the grating lines) the reflectance drops to <1% at resonance, indicating that essentially all of the radiant energy falling on the surface is coupled into the grating. The SERS intensity and the reflectance at resonance anticorrelate predicatively, suggesting that reflectance measurements can provide a nondestructive, wafer-level test of SERS efficacy. The SERS performance of the gratings is very uniform and reproducible. Extensive measurements on samples cut from both the same wafer and from different wafers, produce a SERS intensity distribution function that is similar to that obtained for ordinary Raman measurements carried out at multiple locations on a polished (100) silicon wafer.

  14. Effect of design factors on surface temperature and wear in disk brakes

    NASA Technical Reports Server (NTRS)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  15. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    NASA Astrophysics Data System (ADS)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  16. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  17. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  18. Uniform sunlight concentration reflectors for photovoltaic cells.

    PubMed

    Rabady, Rabi Ibrahim

    2014-03-20

    Sunlight concentration is essential to reach high temperatures of a working fluid in solar-thermal applications and to reduce the cost of photovoltaic (PV) electricity generation systems. Commonly, sunlight concentration is realized by parabolic or cylindrical reflectors, which do not provide uniform concentration on the receiver finite surface. Uniform concentration of sunlight is favored especially for the PV conversion applications since it not only enhances the conversion efficiency of sunlight but also reduces the thermal variations along the receiving PV cell, which can be a performance and life-span limiting factor. In this paper a reflector profile that uniformly infiltrates the concentrated sunlight into the receiving unit is attempted. The new design accounts for all factors that contribute to the nonuniform concentration, like the reflector curvature, which spatially reflects the sunlight nonuniformly, and the angular dependency of both the reflector reflectivity and the sunlight transmission through the PV cell.

  19. Piezoelectric effect in non-uniform strained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ilina, M. V.; Blinov, Yu F.; Ilin, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-10-01

    The piezoelectric effect in non-uniform strained carbon nanotubes (CNTs) has been studied. It is shown that the magnitude of strained CNTs surface potential depends on a strain value. It is established that the resistance of CNT also depends on the strain and internal electric field, which leads to the hysteresis in the current-voltage characteristics. Analysis of experimental studies of the non-uniform strained CNT with a diameter of 92 nm and a height of 2.1 μm allowed us to estimate the piezoelectric coefficient 0.107 ± 0.032 C/m2.

  20. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts.

    PubMed

    Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou

    2018-05-01

    Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides

  1. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGES

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; ...

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  2. Design Techniques for Uniform-DFT, Linear Phase Filter Banks

    NASA Technical Reports Server (NTRS)

    Sun, Honglin; DeLeon, Phillip

    1999-01-01

    Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.

  3. Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle

    NASA Astrophysics Data System (ADS)

    Fleischer, D.; Park, S.-K.

    2004-06-01

    The hydroelastic vibrations of a beam with rectangular cross-section is analyzed under the effect of an uniformly moving single axle vehicle using modal analysis and two-dimensional potential flow theory of the fluid neglecting the effect of surface waves aside the beam. For the special case of homogeneous beam resting on the surface of a water filled prismatic basin, the normal modes are determined considering surface waves in beam direction under the condition of compensating the volume of the enclosed fluid. The way to determine the vertical acceleration of the single axle vehicle is shown, which governs the response of the system. As analysis results the course of wheel load, the surface waves along the beam and the flow velocity distribution of the fluid is demonstrated for a continuous floating bridge under the passage of a rolling mass moving with uniform speed.

  4. Modeling and simulation of protein-surface interactions: achievements and challenges.

    PubMed

    Ozboyaci, Musa; Kokh, Daria B; Corni, Stefano; Wade, Rebecca C

    2016-01-01

    Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse

  5. Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.

    PubMed

    Shen, S C; Chang, S J; Yeh, C Y; Teng, P C

    2013-11-04

    In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.

  6. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  7. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S., E-mail: shailesh.sharma6@mail.dcu.ie; National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9; Gahan, D., E-mail: david.gahan@impedans.com

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placedmore » directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.« less

  8. McGuire AFB, New Jersey. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-12-01

    Air Weather Service (MAC) IS e REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS MCGUIRE AFB NJ MSC 724096 N 40 01 W 074 36 ELEV 133 FT KWRI...OCCUCRECVCL OF ’,UP F CE 4 1NU L DI ACT ICN v[ISSi *14U SFEEU ,,&FEICAC $AQM WOUkEY OhSFPVAIOS’ A Ti! L.ATIEP 5 3441ICE/ MSC $TA IC’. NUMFPP: 7,4𔄃t STATION...AI AELF I TOTALS I IT~ I2. .. 1 1 100.0 6.7 I19 I ’,ALNuI ~MP OF 0O"SEKhOA T I NS: ’K LLQL tL 4(L IMAI OO G’ 6Rf,H rLrCLNIIfCGE F iL CuENC9 Of uC (u

  9. Optimal geometry toward uniform current density electrodes

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Lee, Eunjung; Woo, Eung Je; Seo, Jin Keun

    2011-07-01

    Electrodes are commonly used to inject current into the human body in various biomedical applications such as functional electrical stimulation, defibrillation, electrosurgery, RF ablation, impedance imaging, and so on. When a highly conducting electrode makes direct contact with biological tissues, the induced current density has strong singularity along the periphery of the electrode, which may cause painful sensation or burn. Especially in impedance imaging methods such as the magnetic resonance electrical impedance tomography, we should avoid such singularity since more uniform current density underneath a current-injection electrode is desirable. In this paper, we study an optimal geometry of a recessed electrode to produce a well-distributed current density on the contact area under the electrode. We investigate the geometry of the electrode surface to minimize the edge singularity and produce nearly uniform current density on the contact area. We propose a mathematical framework for the uniform current density electrode and its optimal geometry. The theoretical results are supported by numerical simulations.

  10. Isospectrals of non-uniform Rayleigh beams with respect to their uniform counterparts

    PubMed Central

    Ganguli, Ranjan

    2018-01-01

    In this paper, we look for non-uniform Rayleigh beams isospectral to a given uniform Rayleigh beam. Isospectral systems are those that have the same spectral properties, i.e. the same free vibration natural frequencies for a given boundary condition. A transformation is proposed that converts the fourth-order governing differential equation of non-uniform Rayleigh beam into a uniform Rayleigh beam. If the coefficients of the transformed equation match with those of the uniform beam equation, then the non-uniform beam is isospectral to the given uniform beam. The boundary-condition configuration should be preserved under this transformation. We present the constraints under which the boundary configurations will remain unchanged. Frequency equivalence of the non-uniform beams and the uniform beam is confirmed by the finite-element method. For the considered cases, examples of beams having a rectangular cross section are presented to show the application of our analysis. PMID:29515879

  11. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug

    PubMed Central

    Alyami, Hamad; Dahmash, Eman; Bowen, James

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation. PMID:28609454

  12. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.

    PubMed

    Alyami, Hamad; Dahmash, Eman; Bowen, James; Mohammed, Afzal R

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation.

  13. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  14. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  15. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  16. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    PubMed

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive

  17. Nurses’ uniforms: How many bacteria do they carry after one shift?

    PubMed Central

    Sanon, Marie-Anne; Watkins, Sally

    2013-01-01

    This pilot study investigated the pathogens that nurses are potentially bringing into the public and their home when they wear work uniforms outside of the work environment. To achieve this, sterilized uniforms were distributed to 10 nurses at a local hospital in Washington State at the beginning of their shift. Worn uniforms were collected at the end of the shifts and sent to a laboratory for analysis. Four tests were conducted: 1) a heterotrophic growth plate count, 2) methicillin-resistant Staphylococcus aureus (MRSA) growth, 3) vancomycin-resistant Enterococci (VRE), and 4) identification of the heterotrophic plate counts. Each participant completed a questionnaire and a survey. The results showed that the average bacteria colony growth per square inch was 1,246 and 5,795 for day and night shift, respectively. After 48 h, MRSA positives were present on 4 of the day shift and 3 of the night shift uniforms. Additional bacteria identified include: Bacillus sp., Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus roseus. The significant presence of bacteria on the uniforms 48 h after the shift ended necessitates further study, discussions and policy consideration regarding wearing health care uniforms outside of the work environment. PMID:25285235

  18. Nurses' uniforms: How many bacteria do they carry after one shift?

    PubMed

    Sanon, Marie-Anne; Watkins, Sally

    2012-12-01

    This pilot study investigated the pathogens that nurses are potentially bringing into the public and their home when they wear work uniforms outside of the work environment. To achieve this, sterilized uniforms were distributed to 10 nurses at a local hospital in Washington State at the beginning of their shift. Worn uniforms were collected at the end of the shifts and sent to a laboratory for analysis. Four tests were conducted: 1) a heterotrophic growth plate count, 2) methicillin-resistant Staphylococcus aureus (MRSA) growth, 3) vancomycin-resistant Enterococci (VRE), and 4) identification of the heterotrophic plate counts. Each participant completed a questionnaire and a survey. The results showed that the average bacteria colony growth per square inch was 1,246 and 5,795 for day and night shift, respectively. After 48 h, MRSA positives were present on 4 of the day shift and 3 of the night shift uniforms. Additional bacteria identified include: Bacillus sp., Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus roseus. The significant presence of bacteria on the uniforms 48 h after the shift ended necessitates further study, discussions and policy consideration regarding wearing health care uniforms outside of the work environment.

  19. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    NASA Astrophysics Data System (ADS)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  20. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  1. Uniformity testing: assessment of a centralized web-based uniformity analysis system.

    PubMed

    Klempa, Meaghan C

    2011-06-01

    Uniformity testing is performed daily to ensure adequate camera performance before clinical use. The aim of this study is to assess the reliability of Beth Israel Deaconess Medical Center's locally built, centralized, Web-based uniformity analysis system by examining the differences between manufacturer and Web-based National Electrical Manufacturers Association integral uniformity calculations measured in the useful field of view (FOV) and the central FOV. Manufacturer and Web-based integral uniformity calculations measured in the useful FOV and the central FOV were recorded over a 30-d period for 4 cameras from 3 different manufacturers. These data were then statistically analyzed. The differences between the uniformity calculations were computed, in addition to the means and the SDs of these differences for each head of each camera. There was a correlation between the manufacturer and Web-based integral uniformity calculations in the useful FOV and the central FOV over the 30-d period. The average differences between the manufacturer and Web-based useful FOV calculations ranged from -0.30 to 0.099, with SD ranging from 0.092 to 0.32. For the central FOV calculations, the average differences ranged from -0.163 to 0.055, with SD ranging from 0.074 to 0.24. Most of the uniformity calculations computed by this centralized Web-based uniformity analysis system are comparable to the manufacturers' calculations, suggesting that this system is reasonably reliable and effective. This finding is important because centralized Web-based uniformity analysis systems are advantageous in that they test camera performance in the same manner regardless of the manufacturer.

  2. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    PubMed

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  3. Mandatory School Uniforms.

    ERIC Educational Resources Information Center

    Cohn, Carl A.

    1996-01-01

    Shortly after implementing a mandatory school uniform policy, the Long Beach (California) Public Schools can boast 99% compliance and a substantial reduction in school crime. The uniforms can't be confused with gang colors, save parents money, and help identify outsiders. A sidebar lists ingredients for a mandatory uniform policy. (MLH)

  4. On numerical heat transfer characteristic study of flat surface subjected to variation in geometric thickness

    NASA Astrophysics Data System (ADS)

    Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram

    Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.

  5. Apparatus and method for controlling plating uniformity

    DOEpatents

    Hachman Jr., John T.; Kelly, James J.; West, Alan C.

    2004-10-12

    The use of an insulating shield for improving the current distribution in an electrochemical plating bath is disclosed. Numerical analysis is used to evaluate the influence of shield shape and position on plating uniformity. Simulation results are compared to experimental data for nickel deposition from a nickel--sulfamate bath. The shield is shown to improve the average current density at a plating surface.

  6. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices

    NASA Astrophysics Data System (ADS)

    Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav

    2017-03-01

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.

  7. Magnetostatic Field System for Uniform Cell Cultures Exposure

    PubMed Central

    Vergallo, Cristian; Piccoli, Claudia; Romano, Alberto; Panzarini, Elisa; Serra, Antonio; Manno, Daniela; Dini, Luciana

    2013-01-01

    The aim of the present work has been the design and the realization of a Magnetostatic Field System for Exposure of Cell cultures (MaFiSEC) for the uniform and the reproducible exposure of cell cultures to static magnetic fields (SMFs) of moderate magnetic induction. Experimental and computer-simulated physical measurements show that MaFiSEC: i) generates a SMF with magnetic induction that can be chosen in the range of 3 to 20 mT; ii) allows the uniform SMF exposure of cells growing in adhesion and in suspension; iii) is cheap and easy to use. The efficacy and reproducibility of MaFiSEC has been tested by comparing the biological effects exerted on isolated human lymphocytes by 72 h of exposure to a magnet (i.e. Neodymium Magnetic Disk, NMD) placed under the culture Petri dish. Lymphocytes morphology, viability, cell death, oxidative stress and lysosomes activity were the parameters chosen to evaluate the SMF biological effects. The continuous exposure of cells to a uniform SMF, achieved with MaFiSEC, allows highly reproducible biochemical and morphological data. PMID:23977284

  8. School Uniforms Redux.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    2002-01-01

    Reviews a recent decision in "Littlefield" by the 5th Circuit upholding a school uniform policy. Advises board member who wish to adopt a school uniform policy to solicit input from parents and students, research the experiences of other school districts with uniform policies, and articulate the interests they wish to promote through uniform…

  9. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  10. Impact of deformed extreme-ultraviolet pellicle in terms of CD uniformity

    NASA Astrophysics Data System (ADS)

    Kim, In-Seon; Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun

    2015-07-01

    The usage of the extreme ultraviolet (EUV) pellicle is regarded as the solution for defect control since it can protect the mask from airborne debris. However some obstacles disrupt real-application of the pellicle such as structural weakness, thermal damage and so on. For these reasons, flawless fabrication of the pellicle is impossible. In this paper, we discuss the influence of deformed pellicle in terms of non-uniform intensity distribution and critical dimension (CD) uniformity. It was found that non-uniform intensity distribution is proportional to local tilt angle of pellicle and CD variation was linearly proportional to transmission difference. When we consider the 16 nm line and space pattern with dipole illumination (σc=0.8, σr=0.1, NA=0.33), the transmission difference (max-min) of 0.7 % causes 0.1 nm CD uniformity. Influence of gravity caused deflection to the aerial image is small enough to ignore. CD uniformity is less than 0.1 nm even for the current gap of 2 mm between mask and pellicle. However, heat caused EUV pellicle wrinkle might cause serious image distortion because a wrinkle of EUV pellicle causes a transmission loss variation as well as CD non-uniformity. In conclusion, local angle of a wrinkle, not a period or an amplitude of a wrinkle is a main factor to CD uniformity, and local angle of less than ~270 mrad is needed to achieve 0.1 nm CD uniformity with 16 nm L/S pattern.

  11. Cylindrically distributing optical fiber tip for uniform laser illumination of hollow organs

    NASA Astrophysics Data System (ADS)

    Buonaccorsi, Giovanni A.; Burke, T.; MacRobert, Alexander J.; Hill, P. D.; Essenpreis, Matthias; Mills, Timothy N.

    1993-05-01

    To predict the outcome of laser therapy it is important to possess, among other things, an accurate knowledge of the intensity and distribution of the laser light incident on the tissue. For irradiation of the internal surfaces of hollow organs, modified fiber tips can be used to shape the light distribution to best suit the treatment geometry. There exist bulb-tipped optical fibers emitting a uniform isotropic distribution of light suitable for the treatment of organs which approximate a spherical geometry--the bladder, for example. For the treatment of organs approximating a cylindrical geometry--e.g. the oesophagus--an optical fiber tip which emits a uniform cylindrical distribution of light is required. We report on the design, development and testing of such a device, the CLD fiber tip. The device was made from a solid polymethylmethacrylate (PMMA) rod, 27 mm in length and 4 mm in diameter. One end was shaped and 'silvered' to form a mirror which reflected the light emitted from the delivery fiber positioned at the other end of the rod. The shape of the mirror was such that the light fell with uniform intensity on the circumferential surface of the rod. This surface was coated with BaSO4 reflectance paint to couple the light out of the rod and onto the surface of the tissue.

  12. Unique surface adsorption behaviors of serum proteins on chemically uniform and alternating surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sheng

    With increasing interests of studying proteins adsorption on the surfaces with nanoscale features in biomedical field, it is crucial to have fundamental understandings on how the proteins are adsorbed on such a surface and what factors contribute to the driving forces of adsorption. Besides, exploring more available nanoscale templates would greatly offer more possibilities one could design surface bio-detection methods with favorable protein-surface interactions. Thus, to fulfill the purpose, the work in this dissertation has been made into three major sections. First, to probe the intermediate states which possibly exist between stable and unstable phases described in mean-field theory diagram, a solvent vapor annealing method is chosen to slowly induce the copolymer polystyrene-block-polyvinylpyridine (PS-b-PVP)'s both blocks undergoing micro-phase separations from initial spherical nanodomains into terminal cylindrical nanodomains. During this process, real time atomic force microscopy (AFM) has been conducted to capture other six intermediate states with different morphologies on the polymeric film surfaces. Secondly, upon recognizing each intermediate state, the solution of immunoglobulin gamma (IgG) proteins has been deposited on the surface and been rinsed off with buffer solution before the protein-bounded surface is imaged by AFM. It has been found IgG showing a strong adsorption preference on PS over P4VP block. Among all the six intermediate states, the proteins are almost exclusively adsorbed on PS nanodomains regardless the concentration and deposition time. Thirdly, a trinodular shape protein fibrinogen (Fg) is selected for investigating how geometry and surface charge of proteins would interplay with cylindrical nanodomains on a surface developed from Polystyrene -block-Poly-(methyl methacrylate) PS-b-PMMA. Also, Fg adsorptions on chemically homogeneous surfaces are included here to have a better contrast of showing how much difference it can make

  13. Dielectrophoresis device and method having non-uniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B [Livermore, CA; Fintschenko, Yolanda [Livermore, CA; Simmons, Blake [San Francisco, CA

    2008-09-02

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  14. Analysis of the spatial non-uniformity of negative ion production in surface-produced negative ion sources

    NASA Astrophysics Data System (ADS)

    Fujita, S.; Yamamoto, T.; Yoshida, M.; Onai, M.; Kojima, A.; Hatayama, A.; Kashiwagi, M.

    2017-08-01

    In order to improve the uniformity of the negative ion production, the KEIO-MARC code has been applied to the QST's JT60SA negative ion source in three different magnetic configurations (i) MC-PGMF (Multi-Cusp and PG Magnetic Filter), (ii) TNT-MF (TeNT Magnetic Filter) and (iii) MTNT-MF (Modified TeNT Magnetic Filter). From the results, we have confirmed that the electron rotation inside the negative ion source is an essential element in order to obtain a uniform production of the negative ions. By adding extra tent magnets on the longitudinal sides, the electron rotation has been enhanced, and a uniform production of negative ions has been realized.

  15. Optimizing the LSST Dither Pattern for Survey Uniformity

    NASA Astrophysics Data System (ADS)

    Awan, Humna; Gawiser, Eric J.; Kurczynski, Peter; Carroll, Christopher M.; LSST Dark Energy Science Collaboration

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) will gather detailed data of the southern sky, enabling unprecedented study of Baryonic Acoustic Oscillations, which are an important probe of dark energy. These studies require a survey with highly uniform depth, and we aim to find an observation strategy that optimizes this uniformity. We have shown that in the absence of dithering (large telescope-pointing offsets), the LSST survey will vary significantly in depth. Hence, we implemented various dithering strategies, including random and repulsive random pointing offsets and spiral patterns with the spiral reaching completion in either a few months or the entire ten-year run. We employed three different implementations of dithering strategies: a single offset assigned to all fields observed on each night, offsets assigned to each field independently whenever the field is observed, and offsets assigned to each field only when the field is observed on a new night. Our analysis reveals that large dithers are crucial to guarantee survey uniformity and that assigning dithers to each field independently whenever the field is observed significantly increases this uniformity. These results suggest paths towards an optimal observation strategy that will enable LSST to achieve its science goals.We gratefully acknowledge support from the National Science Foundation REU program at Rutgers, PHY-1263280, and the Department of Energy, DE-SC0011636.

  16. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    PubMed Central

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  17. Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng

    2016-04-15

    In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less

  18. Impact of Uniform Methods on Interlaboratory Antibody Titration Variability: Antibody Titration and Uniform Methods.

    PubMed

    Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H

    2017-01-01

    -Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistently decrease interlaboratory variation in proficiency testing. -Proficiency testing data for antibody titration between 2009 and 2013 were obtained from the College of American Pathologists. Each laboratory was supplied plasma and red cells to determine anti-A and anti-D antibody titers by their standard method: gel or tube by uniform or other methods at different testing phases (immediate spin and/or room temperature [anti-A], and/or anti-human globulin [AHG: anti-A and anti-D]) with different additives. Interlaboratory variations were compared by analyzing the distribution of titer results by method and phase. -A median of 574 and 1100 responses were reported for anti-A and anti-D antibody titers, respectively, during a 5-year period. The 3 most frequent (median) methods performed for anti-A antibody were uniform tube room temperature (147.5; range, 119-159), uniform tube AHG (143.5; range, 134-150), and other tube AHG (97; range, 82-116); for anti-D antibody, the methods were other tube (451; range, 431-465), uniform tube (404; range, 382-462), and uniform gel (137; range, 121-153). Of the larger reported methods, uniform gel AHG phase for anti-A and anti-D antibodies had the most participants with the same result (mode). For anti-A antibody, 0 of 8 (uniform versus other tube room temperature) and 1 of 8 (uniform versus other tube AHG), and for anti-D antibody, 0 of 8 (uniform versus other tube) and 0 of 8 (uniform versus other gel) proficiency tests showed significant titer variability reduction. -Uniform methods harmonize laboratory techniques but rarely reduce interlaboratory titer variance in comparison with other methods.

  19. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    PubMed

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  20. Coulomb energy of uniformly charged spheroidal shell systems.

    PubMed

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  1. Studies of uniformity of 50 μm low-gain avalanche detectors at the Fermilab test beam

    NASA Astrophysics Data System (ADS)

    Apresyan, A.; Xie, S.; Pena, C.; Arcidiacono, R.; Cartiglia, N.; Carulla, M.; Derylo, G.; Ferrero, M.; Flores, D.; Freeman, P.; Galloway, Z.; Ghassemi, A.; Al Ghoul, H.; Gray, L.; Hidalgo, S.; Kamada, S.; Los, S.; Mandurrino, M.; Merlos, A.; Minafra, N.; Pellegrini, G.; Quirion, D.; Ronzhin, A.; Royon, C.; Sadrozinski, H.; Seiden, A.; Sola, V.; Spiropulu, M.; Staiano, A.; Uplegger, L.; Yamamoto, K.; Yamamura, K.

    2018-07-01

    In this paper we report measurements of the uniformity of time resolution, signal amplitude, and charged particle detection efficiency across the sensor surface of low-gain avalanche detectors (LGAD). Comparisons of the performance of sensors with different doping concentrations and different active thicknesses are presented, as well as their temperature dependence and radiation tolerance up to 6 × 1014 n/cm2. Results were obtained at the Fermilab test beam facility using 120 GeV proton beams, and a high precision pixel tracking detector. LGAD sensors manufactured by the Centro Nacional de Microelectrónica (CNM) and Hamamatsu Photonics (HPK) were studied. The uniformity of the sensor response in pulse height before irradiation was found to have a 2% spread. The signal detection efficiency and timing resolution in the sensitive areas before irradiation were found to be 100% and 30-40 ps, respectively. A "no-response" area between pads was measured to be about 130 μm for CNM and 170 μm for HPK sensors. After a neutron fluence of 6 × 1014 n/cm2 the CNM sensor exhibits a large gain variation of up to a factor of 2.5 when comparing metalized and non-metalized sensor areas. An irradiated CNM sensor achieved a time resolution of 30 ps for the metalized area and 40 ps for the non-metalized area, while a HPK sensor irradiated to the same fluence achieved a 30 ps time resolution.

  2. Path planning and parameter optimization of uniform removal in active feed polishing

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Shaozhi; Zhang, Chunlei; Zhang, Linghua; Chen, Huanan

    2015-06-01

    A high-quality ultrasmooth surface is demanded in short-wave optical systems. However, the existing polishing methods have difficulties meeting the requirement on spherical or aspheric surfaces. As a new kind of small tool polishing method, active feed polishing (AFP) could attain a surface roughness of less than 0.3 nm (RMS) on spherical elements, although AFP may magnify the residual figure error or mid-frequency error. The purpose of this work is to propose an effective algorithm to realize uniform removal of the surface in the processing. At first, the principle of the AFP and the mechanism of the polishing machine are introduced. In order to maintain the processed figure error, a variable pitch spiral path planning algorithm and the dwell time-solving model are proposed. For suppressing the possible mid-frequency error, the uniformity of the synthesis tool path, which is generated by an arbitrary point at the polishing tool bottom, is analyzed and evaluated, and the angular velocity ratio of the tool spinning motion to the revolution motion is optimized. Finally, an experiment is conducted on a convex spherical surface and an ultrasmooth surface is finally acquired. In conclusion, a high-quality ultrasmooth surface can be successfully obtained with little degradation of the figure and mid-frequency errors by the algorithm.

  3. Laser surface treatment of pre-prepared Rene 41 surface

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S.; Karatas, C.

    2012-11-01

    Laser controlled melting of pre-prepared Rene 41 surface is carried out. A carbon film composing of uniformly distributed 5% TiC carbide particles is formed at the surface prior to laser treatment process. The carbon film provides increased absorption of the incident radiation and facilitates embedding of TiC particles at the surface region of the workpiece during the treatment process. Nitrogen at high pressure is used as assisting gas during the controlled melting. It is found that laser treated layer extents 40 μm below the surface with almost uniform thickness. Fine grains and ultra-short dendrites are formed at the surface region of the laser treated layer. Partially dissolved TiC particles and γ, γ' and γ'N phases are observed in the treated layer.

  4. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  5. Towards uniformly dispersed battery electrode composite materials: Characteristics and performance

    DOE PAGES

    Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; ...

    2016-01-14

    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less

  6. Towards uniformly dispersed battery electrode composite materials: Characteristics and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.

    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less

  7. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    NASA Astrophysics Data System (ADS)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  8. Computerized Design and Analysis of Face-Milled, Uniform Tooth Height, Low-Noise Spiral Bevel Gear Drives

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhao, X.

    1996-01-01

    A new method for design and generation of spiral bevel gears of uniform tooth depth with localized bearing contact and low level of transmission errors is considered. The main features of the proposed approach are as follows: (1) The localization of the bearing contact is achieved by the mismatch of the generating surfaces. The bearing contact may be provided in the longitudinal direction, or in the direction across the surface; and (2) The low level of transmission errors is achieved due to application of nonlinear relations between the motions of the gear and the gear head-cutter. Such relations may be provided by application of a CNC machine. The generation of the pinion is based on application of linear relations between the motions of the tool and the pinion being generated. The relations described above permit a parabolic function of transmission errors to be obtained that is able to absorb almost linear functions caused by errors of gear alignment. A computer code has been written for the meshing and contact of the spiral bevel gears with the proposed geometry. The effect of misalignment on the proposed geometry has also been determined. Numerical examples for illustration of the proposed theory have been provided.

  9. Computerized Design and Analysis of Face-Milled, Uniform Tooth Height, Low-Noise Spiral Bevel Gear Drives

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhao, X.

    1996-01-01

    A new method for design and generation of spiral bevel gears of uniform tooth depth with localized bearing contact and low level of transmission errors is considered. The main features of the proposed approach are as follows: (1) the localization of the bearing contact is achieved by the mismatch of the generating surfaces. The bearing contact may be provided in the longitudinal direction, or in the direction across the surface; and (2) the low level of transmission errors is achieved due to application of nonlinear relations between the motions of the gear and the gear head-cutter. Such relations may be provided by application of a CNC machine. The generation of the pinion is based on application of linear relations between the motions of the tool and the pinion being generated. The relations described above permit a parabolic function of transmission errors to be obtained that is able to absorb almost linear functions caused by errors of gear alignment. A computer code has been written for the meshing and contact of the spiral bevel gears with the proposed geometry. The effect of misalignment on the proposed geometry has also been determined. Numerical examples for illustration of the proposed theory have been provided.

  10. Characterization and Processing of Non-Uniformities in Back-Illuminated CCDs

    NASA Astrophysics Data System (ADS)

    Lemm, Alia D.; Della-Rose, Devin J.; Maddocks, Sally

    2018-01-01

    In astronomical photometry, Charged Coupled Device (CCD) detectors are used to achieve high precision photometry and must be properly calibrated to correct for noise and pixel non-uniformities. Uncalibrated images may contain bias offset, dark current, bias structure and uneven illumination. In addition, standard data reduction is often not sufficient to “normalize” imagery to single-digit millimagnitude (mmag) precision. We are investigating an apparent non-uniformity, or interference pattern, in a back-illuminated sensor, the Alta U-47, attached to a DFM Engineering 41-cm Ritchey-Chrétien f/8 telescope. Based on the amplitude of this effect, we estimate that instrument magnitude peak-to-valley deviations of 50 mmag or more may result. Our initial testing strongly suggests that reflected skylight from high pressure sodium city lights may be the cause of this interference pattern. Our research goals are twofold: to fully characterize this non-uniformity and to determine the best method to remove this interference pattern from our reduced CCD images.

  11. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Ren, Ping; Zhang, Kan; Du, Suxuan; Meng, Qingnan; He, Xin; Wang, Shuo; Wen, Mao; Zheng, Weitao

    2017-06-01

    Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag2O groups on the films surfaces through self-oxidation, because Ag cations (Ag+) in Ag2O are the filled-shell (4d105S0) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag2O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  12. Effects of non-uniform temperature gradients on surface tension driven two component magneto convection in a porous- fluid system

    NASA Astrophysics Data System (ADS)

    Manjunatha, N.; Sumithra, R.

    2018-04-01

    The problem of surface tension driven two component magnetoconvection is investigated in a Porous-Fluid system, consisting of anincompressible two component electrically conducting fluid saturatedporous layer above which lies a layer of the same fluid in the presence of a uniform vertical magnetic field. The lower boundary of the porous layeris rigid and the upper boundary of the fluid layer is free with surfacetension effects depending on both temperature and concentration, boththese boundaries are insulating to heat and mass. At the interface thevelocity, shear and normal stress, heat and heat flux, mass and mass fluxare assumed to be continuous suitable for Darcy-Brinkman model. Theeigenvalue problem is solved in linear, parabolic and inverted parabolictemperature profiles and the corresponding Thermal Marangoni Numberis obtained for different important physical parameters.

  13. Electroosmotic flow in a microcavity with nonuniform surface charges.

    PubMed

    Halpern, David; Wei, Hsien-Hung

    2007-08-28

    In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.

  14. A comparison of foveated acquisition and tracking performance relative to uniform resolution approaches

    NASA Astrophysics Data System (ADS)

    Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William

    2009-05-01

    Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.

  15. Nonimaging reflectors for efficient uniform illumination.

    PubMed

    Gordon, J M; Kashin, P; Rabl, A

    1992-10-01

    Nonimaging reflectors that are an extension of the design principle that was developed for compound parabolic concentrator type devices are proposed for illumination applications. The optical designs presented offer maximal lighting efficiency while they retain sharp angular control of the radiation and highly uniform flux densities on distant target planes. Our results are presented for symmetrical configurations in two dimensions (troughlike reflectors) for flat and for tubular sources. For fields of view of practical interest (half-angle in the 30-60 degrees range), these devices can achieve minimum-tomaximum intensity ratios of 0.7, while they remain compact and incur low reflective losses.

  16. Do School Uniforms Fit?

    ERIC Educational Resources Information Center

    White, Kerry A.

    2000-01-01

    In 1994, Long Beach (California) Unified School District began requiring uniforms in all elementary and middle schools. Now, half of all urban school systems and many suburban schools have uniform policies. Research on uniforms' effectiveness is mixed. Tightened dress codes may be just as effective and less litigious. (MLH)

  17. Uniform amplification of phage display libraries in monodisperse emulsions.

    PubMed

    Matochko, Wadim L; Ng, Simon; Jafari, Mohammad R; Romaniuk, Joseph; Tang, Sindy K Y; Derda, Ratmir

    2012-09-01

    In this paper, we describe a complete experimental setup for the uniform amplification of libraries of phage. Uniform amplification, which multiplies every phage clone by the same amount irrespective of the growth rate of the clone is essential for phage-display screening. Amplification of phage libraries in a common solution is often non-uniform: it favors fast-growing clones and eliminates those that grow slower. This competition leads to elimination of many useful binding clones, and it is a major barrier to identification of ligands for targets with multiple binding sites such as cells, tissues, or mixtures of proteins. Uniform amplification is achieved by encapsulating individual phage clones into isolated compartments (droplets) of identical volume. Each droplet contains culture medium and an excess of host (Escherichia coli). Here, we describe microfluidics devices that generate mono-disperse droplet-based compartments, and optimal conditions for amplification of libraries of different size. We also describe the detailed synthesis of a perfluoro surfactant, which gives droplets exceptional stability. Droplets stabilized by this compound do not coalesce after many hours in shaking culture. We identified a commercially available compound (Krytox), which destabilizes these droplets to recover the amplified libraries. Overall, uniform amplification is a sequence of three simple steps: (1) encapsulation of mixture of phage and bacteria in droplets using microfluidics; (2) incubation of droplets in a shaking culture; (3) destabilization of droplets to harvest the amplified phage. We anticipate that this procedure can be easily adapted in any academic or industrial laboratory that uses phage display. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms

    PubMed Central

    Miller, Kevin C.; Swartz, Erik E.; Long, Blaine C.

    2015-01-01

    Context Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. Objective To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Design Crossover study. Setting Laboratory. Patients or Other Participants A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m2). Intervention(s) Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Main Outcome Measure(s) Time to cool from 39.5°C to 38.0°C and Trec. Results The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = −2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min−1 ± 0.12°C·min−1 in full uniform and 0.23°C·min−1 ± 0.11°C·min−1 in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). Conclusions We

  19. Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms.

    PubMed

    Miller, Kevin C; Swartz, Erik E; Long, Blaine C

    2015-08-01

    Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Crossover study. Laboratory. A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m(2)). Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Time to cool from 39.5°C to 38.0°C and Trec. The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = -2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min(-1) ± 0.12°C·min(-1) in full uniform and 0.23°C·min(-1) ± 0.11°C·min(-1) in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling

  20. Sum rules for the uniform-background model of an atomic-sharp metal corner

    NASA Astrophysics Data System (ADS)

    Streitenberger, P.

    1994-04-01

    Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.

  1. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  2. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  3. Spatial model of the gecko foot hair: functional significance of highly specialized non-uniform geometry.

    PubMed

    Filippov, Alexander E; Gorb, Stanislav N

    2015-02-06

    One of the important problems appearing in experimental realizations of artificial adhesives inspired by gecko foot hair is so-called clusterization. If an artificially produced structure is flexible enough to allow efficient contact with natural rough surfaces, after a few attachment-detachment cycles, the fibres of the structure tend to adhere one to another and form clusters. Normally, such clusters are much larger than original fibres and, because they are less flexible, form much worse adhesive contacts especially with the rough surfaces. Main problem here is that the forces responsible for the clusterization are the same intermolecular forces which attract fibres to fractal surface of the substrate. However, arrays of real gecko setae are much less susceptible to this problem. One of the possible reasons for this is that ends of the seta have more sophisticated non-uniformly distributed three-dimensional structure than that of existing artificial systems. In this paper, we simulated three-dimensional spatial geometry of non-uniformly distributed branches of nanofibres of the setal tip numerically, studied its attachment-detachment dynamics and discussed its advantages versus uniformly distributed geometry.

  4. Development of extended release dosage forms using non-uniform drug distribution techniques.

    PubMed

    Huang, Kuo-Kuang; Wang, Da-Peng; Meng, Chung-Ling

    2002-05-01

    Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37 degrees C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.

  5. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    NASA Astrophysics Data System (ADS)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  6. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  7. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode.

    PubMed

    Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun

    2017-06-10

    In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.

  8. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOEpatents

    Wrenn, Jr., George E.; Lewis, Jr., John

    1984-01-01

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  9. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOEpatents

    Wrenn, G.E. Jr.; Lewis, J. Jr.

    1982-09-29

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  10. Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Bian, L. G.; Chen, Z. G.; Sparrow, M.; Zhang, J. H.

    2006-05-01

    This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (C-T) and water vapor (C-q) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.

  11. Single Layer Surface-Grafted PMMA as a Negative-Tone e-Beam Resist.

    PubMed

    Yamada, Hirotaka; Aydinoglu, Ferhat; Liu, Yaoze; Dey, Ripon K; Cui, Bo

    2017-12-05

    One of the important challenges in electron beam lithography is nanofabrication on nonflat or irregular surfaces. Although spin coating is the most popular technique for resist coating, it is not suitable for nonflat, irregular substrates because a uniform film cannot be achieved on those surfaces. Here, it is demonstrated that single layer surface-grafted PMMA can be used as a negative-tone e-beam resist, and it can be applied to nonflat, irregular surfaces as well as flat, conventional surfaces. Although it is well known that heavily exposed PMMA undergoes cross-linking and works as a negative-tone e-beam resist when developed by solvent, solvent does not work as a developer for negative-tone single-layer surface-grafted PMMA. Instead, thermal treatment at 360 °C for 1 min is used to develop PMMA.

  12. A novel polyimide based micro heater with high temperature uniformity

    DOE PAGES

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...

    2017-02-06

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  13. A novel polyimide based micro heater with high temperature uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  14. Uniform Sampling Table Method and its Applications II--Evaluating the Uniform Sampling by Experiment.

    PubMed

    Chen, Yibin; Chen, Jiaxi; Chen, Xuan; Wang, Min; Wang, Wei

    2015-01-01

    A new method of uniform sampling is evaluated in this paper. The items and indexes were adopted to evaluate the rationality of the uniform sampling. The evaluation items included convenience of operation, uniformity of sampling site distribution, and accuracy and precision of measured results. The evaluation indexes included operational complexity, occupation rate of sampling site in a row and column, relative accuracy of pill weight, and relative deviation of pill weight. They were obtained from three kinds of drugs with different shape and size by four kinds of sampling methods. Gray correlation analysis was adopted to make the comprehensive evaluation by comparing it with the standard method. The experimental results showed that the convenience of uniform sampling method was 1 (100%), odds ratio of occupation rate in a row and column was infinity, relative accuracy was 99.50-99.89%, reproducibility RSD was 0.45-0.89%, and weighted incidence degree exceeded the standard method. Hence, the uniform sampling method was easy to operate, and the selected samples were distributed uniformly. The experimental results demonstrated that the uniform sampling method has good accuracy and reproducibility, which can be put into use in drugs analysis.

  15. Chemical Sintering Generates Uniform Porous Hyaluronic Acid Hydrogels

    PubMed Central

    Cam, Cynthia; Segura, Tatiana

    2014-01-01

    Implantation of scaffolds for tissue repair has been met with limited success primarily due to the inability to achieve vascularization within the construct. Many strategies have shifted to incorporate pores into these scaffolds to encourage rapid cellular infiltration and subsequent vascular ingrowth. We utilized an efficient chemical sintering technique to create a uniform network of polymethyl methacrylate (PMMA) microspheres for porous hyaluronic acid hydrogel formation. The porous hydrogels generated from chemical sintering possessed comparable pore uniformity and interconnectivity as the commonly used non- and heat sintering techniques. Moreover, similar cell response to the porous hydrogels generated from each sintering approach was observed in cell viability, spreading, proliferation in vitro, as well as, cellular invasion in vivo. We propose chemical sintering of PMMA microspheres using a dilute acetone solution as an alternative method to generating porous hyaluronic acid hydrogels since it requires equal or ten-fold less processing time as the currently used non-sintering or heat sintering technique, respectively. PMID:24120847

  16. Uniform bulk material processing using multimode microwave radiation

    DOEpatents

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  17. A uniform geometrical optics and an extended uniform geometrical theory of diffraction for evaluating high frequency EM fields near smooth caustics and composite shadow boundaries

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1994-01-01

    A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) are developed for evaluating high frequency electromagnetic (EM) fields within transition regions associated with a two and three dimensional smooth caustic of reflected rays and a composite shadow boundary formed by the caustic termination or the confluence of the caustic with the reflection shadow boundary (RSB). The UGO is a uniform version of the classic geometrical optics (GO). It retains the simple ray optical expressions of classic GO and employs a new set of uniform reflection coefficients. The UGO also includes a uniform version of the complex GO ray field that exists on the dark side of the smooth caustic. The EUTD is an extension of the classic uniform geometrical theory of diffraction (UTD) and accounts for the non-ray optical behavior of the UGO reflected field near caustics by using a two-variable transition function in the expressions for the edge diffraction coefficients. It also uniformly recovers the classic UTD behavior of the edge diffracted field outside the composite shadow boundary transition region. The approach employed for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the fields which is then reduced using uniform asymptotic procedures. The UGO/EUTD analysis is also employed to investigate the far-zone RCS problem of plane wave scattering from two and three dimensional polynomial defined surfaces, and uniform reflection, zero-curvature, and edge diffraction coefficients are derived. Numerical results for the scattering and diffraction from cubic and fourth order polynomial strips are also shown and the UGO/EUTD solution is validated by comparison to an independent moment method (MM) solution. The UGO/EUTD solution is also compared with the classic GO/UTD solution. The failure of the classic techniques near caustics and composite shadow boundaries is clearly

  18. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  19. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition.

    PubMed

    Shin, Sangwoo; Kong, Bo Hyun; Kim, Beom Seok; Kim, Kyung Min; Cho, Hyung Koun; Cho, Hyung Hee

    2011-07-23

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled.

  20. UNIFORMLY MOST POWERFUL BAYESIAN TESTS

    PubMed Central

    Johnson, Valen E.

    2014-01-01

    Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between p-values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and p-values on sample size are discussed. PMID:24659829

  1. The segmented non-uniform dielectric module design for uniformity control of plasma profile in a capacitively coupled plasma chamber

    NASA Astrophysics Data System (ADS)

    Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng

    2014-12-01

    Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.

  2. NASA Uniform Files Index

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This handbook is a guide for the use of all personnel engaged in handling NASA files. It is issued in accordance with the regulations of the National Archives and Records Administration, in the Code of Federal Regulations Title 36, Part 1224, Files Management; and the Federal Information Resources Management Regulation, Subpart 201-45.108, Files Management. It is intended to provide a standardized classification and filing scheme to achieve maximum uniformity and ease in maintaining and using agency records. It is a framework for consistent organization of information in an arrangement that will be useful to current and future researchers. The NASA Uniform Files Index coding structure is composed of the subject classification table used for NASA management directives and the subject groups in the NASA scientific and technical information system. It is designed to correlate files throughout NASA and it is anticipated that it may be useful with automated filing systems. It is expected that in the conversion of current files to this arrangement it will be necessary to add tertiary subjects and make further subdivisions under the existing categories. Established primary and secondary subject categories may not be changed arbitrarily. Proposals for additional subject categories of NASA-wide applicability, and suggestions for improvement in this handbook, should be addressed to the Records Program Manager at the pertinent installation who will forward it to the NASA Records Management Office, Code NTR, for approval. This handbook is issued in loose-leaf form and will be revised by page changes.

  3. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma.

    PubMed

    Kelly-Wintenberg, K; Montie, T C; Brickman, C; Roth, J R; Carr, A K; Sorge, K; Wadsworth, L C; Tsai, P P

    1998-01-01

    We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 x 10(2) cells were seeded on filter paper. Results showed > or = 3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 x 10(4)) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect > or = 6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated > or = 5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 x 10(5)); 7 min OAUGDP exposures were required to generate a > or = 3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed.

  4. Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jiang, Jian; Li, Linpo; Liu, Yani; Liu, Siyuan; Xu, Maowen; Zhu, Jianhui

    2017-04-01

    The main obstacles to building better supercapacitors are still trade-offs between energy and power parameters. To promote commercial supercapacitor behaviors, proper optimization toward electrode configurations/architectures may be a feasible and effective way. We herein propose a smart and reliable electrode engineering protocol, by in situ implantation of carbon nanotubes (CNTs) on total activated carbon (AC) surfaces via a mild chemical vapor deposition process at ˜550 °C, using nickel nitrate hydroxide (NNH) thin films and waste ethanol solvents as the catalyst and carbon sources, respectively. The direct and conformal growth of NNH layers onto carbonaceous scaffold guarantees the later uniform implantation of long and high-quality CNTs on total AC outer surfaces. Such fluffy and entangled CNTs preserve ionic diffusion channels, well connect neighboring ACs and function as superhighways for electrons transfer, endowing electrodes with outstanding capacitive behaviors including large output capacitances of ˜230 F g-1 in 1 M Na2SO4 neutral solution and ˜502.5 F g-1 in 6 M KOH using Ni valence state variation, and very negligible capacity decay in long-term cycles. Furthermore, a full symmetric supercapacitor device of CNTs@ACs//CNTs@ACs has been constructed, capable of delivering both high specific energy and power densities (maximum values reaching up to ˜97.2 Wh kg-1 and ˜10.84 kW kg-1), which holds great potential in competing with current mainstream supercapacitors.

  5. Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications.

    PubMed

    Jiang, Jian; Li, Linpo; Liu, Yani; Liu, Siyuan; Xu, Maowen; Zhu, Jianhui

    2017-04-07

    The main obstacles to building better supercapacitors are still trade-offs between energy and power parameters. To promote commercial supercapacitor behaviors, proper optimization toward electrode configurations/architectures may be a feasible and effective way. We herein propose a smart and reliable electrode engineering protocol, by in situ implantation of carbon nanotubes (CNTs) on total activated carbon (AC) surfaces via a mild chemical vapor deposition process at ∼550 °C, using nickel nitrate hydroxide (NNH) thin films and waste ethanol solvents as the catalyst and carbon sources, respectively. The direct and conformal growth of NNH layers onto carbonaceous scaffold guarantees the later uniform implantation of long and high-quality CNTs on total AC outer surfaces. Such fluffy and entangled CNTs preserve ionic diffusion channels, well connect neighboring ACs and function as superhighways for electrons transfer, endowing electrodes with outstanding capacitive behaviors including large output capacitances of ∼230 F g -1 in 1 M Na 2 SO 4 neutral solution and ∼502.5 F g -1 in 6 M KOH using Ni valence state variation, and very negligible capacity decay in long-term cycles. Furthermore, a full symmetric supercapacitor device of CNTs@ACs//CNTs@ACs has been constructed, capable of delivering both high specific energy and power densities (maximum values reaching up to ∼97.2 Wh kg -1 and ∼10.84 kW kg -1 ), which holds great potential in competing with current mainstream supercapacitors.

  6. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    NASA Astrophysics Data System (ADS)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  7. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition

    PubMed Central

    2011-01-01

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled. PMID:21781335

  8. Using high-speed texture measurements to improve the uniformity of hot-mix asphalt.

    DOT National Transportation Integrated Search

    2003-01-01

    This study introduces Virginia's efforts to apply high-speed texture measurement as a tool to improve the uniformity of hot-mix asphalt (HMA) pavements. Three approaches for detecting and quantifying HMA segregation through measuring pavement surface...

  9. Improving global CD uniformity by optimizing post-exposure bake and develop sequences

    NASA Astrophysics Data System (ADS)

    Osborne, Stephen P.; Mueller, Mark; Lem, Homer; Reyland, David; Baik, KiHo

    2003-12-01

    Improvements in the final uniformity of masks can be shrouded by error contributions from many sources. The final Global CD Uniformity (GCDU) of a mask is degraded by individual contributions of the writing tool, the Post Applied Bake (PAB), the Post Exposure Bake (PEB), the Develop sequence and the Etch step. Final global uniformity will improve by isolating and minimizing the variability of the PEB and Develop. We achieved this de-coupling of the PEB and Develop process from the whole process stream by using "dark loss" which is the loss of unexposed resist during the develop process. We confirmed a correspondence between Angstroms of dark loss and nanometer sized deviations in the chrome CD. A plate with a distinctive dark loss pattern was related to a nearly identical pattern in the chrome CD. This pattern was verified to have originated during the PEB process and displayed a [Δ(Final CD)/Δ(Dark Loss)] ratio of 6 for TOK REAP200 resist. Previous papers have reported a sensitive linkage between Angstroms of dark loss and nanometers in the final uniformity of the written plate. These initial studies reported using this method to improve the PAB of resists for greater uniformity of sensitivity and contrast. Similarly, this paper demonstrates an outstanding optimization of PEB and Develop processes.

  10. Method and apparatus for uniformly concentrating solar flux for photovoltaic applications

    DOEpatents

    Jorgensen, Gary J.; Carasso, Meir; Wendelin, Timothy J.; Lewandowski, Allan A.

    1992-01-01

    A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

  11. Highly Efficient and Uniform 1 cm 2 Perovskite Solar Cells with an Electrochemically Deposited NiO x Hole-Extraction Layer

    DOE PAGES

    Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...

    2017-05-10

    Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less

  12. Test plane uniformity analysis for the MSFC solar simulator lamp array

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1976-01-01

    A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.

  13. 46 CFR 310.11 - Cadet uniforms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2010-10-01 2010-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping MARITIME...

  14. 46 CFR 310.11 - Cadet uniforms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2011-10-01 2011-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping MARITIME...

  15. 46 CFR 310.11 - Cadet uniforms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2013-10-01 2013-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping MARITIME...

  16. 46 CFR 310.11 - Cadet uniforms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2012-10-01 2012-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping MARITIME...

  17. 46 CFR 310.11 - Cadet uniforms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2014-10-01 2014-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping MARITIME...

  18. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    PubMed

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  19. Comparison of two leading uniform theories of edge diffraction with the exact uniform asymptotic solution

    NASA Technical Reports Server (NTRS)

    Boersma, J.; Rahmat-Samii, Y.

    1980-01-01

    The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.

  20. Uniformity of cylindrical imploding underwater shockwaves at very small radii

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.

    2017-11-01

    We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.

  1. Should School Nurses Wear Uniforms?

    ERIC Educational Resources Information Center

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  2. An integral formulation for wave propagation on weakly non-uniform potential flows

    NASA Astrophysics Data System (ADS)

    Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel

    2016-12-01

    An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.

  3. Applying a uniform layer of disinfectant by wiping.

    PubMed

    Cooper, D W

    2000-01-01

    Disinfection or sterilization often requires applying a film of liquid to a surface, frequently done by using a wiper as the applicator. The wiper must not only hold a convenient amount of liquid, it must deposit it readily and uniformly. Contact time is critical to disinfection efficacy. Evaporation can limit the contact time. To lengthen the contact time, thickly applied layers are generally preferred. The thickness of such layers can be determined by using dyes or other tracers, as long as the tracers do not significantly affect the liquid's surface tension and viscosity and thus do not affect the thickness of the applied layer. Alternatively, as done here, the thickness of the layer can be inferred from the weight loss of the wiper. Results are reported of experiments on thickness of the layers applied under various conditions. Near saturation, hydrophilic polyurethane foam wipers gave layers roughly 10 microns thick, somewhat less than expected from hydrodynamic theory, but more than knitted polyester or woven cotton. Wipers with large liquid holding capacity, refilled often, should produce more nearly uniform layers. Higher pressures increase saturation in the wiper, tending to thicken the layer, but higher pressures also force liquid from the interface, tending to thin the layer, so the net result could be thicker or thinner layers, and there is likely to be an optimal pressure.

  4. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    DOE PAGES

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; ...

    2015-09-01

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.

  5. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.

  6. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    PubMed

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  7. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-09-01

    An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder. The thickness of the API layer on the surface of the MCC particles increased near linearly as the number of coating cycles increased, allowing a precise control of the drug content. The tablets (n = 950) prepared from the coated powder showed significantly improved weight and content uniformity in comparison with the reference tablets compressed from a physical binary powder mixture. This was due to the coated formulation remaining uniform during the entire tabletting process, whereas the physical mixture of the powders was subject to segregation. In conclusion, the ultrasound-assisted technique presented here is an effective tool for homogeneous drug coating of powders of irregular particle shape and broad particle size distribution, improving content uniformity of low-dose API in tablets, and consequently, ensuring the safe delivery of a potent active substance to patients.

  8. Continuous-variable quantum key distribution in uniform fast-fading channels

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Panagiotis; Weedbrook, Christian; Pirandola, Stefano

    2018-03-01

    We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of uniform fading channels. These are lossy channels whose transmissivity changes according to a uniform probability distribution. We assume the worst-case scenario where an eavesdropper induces a fast-fading process, where she chooses the instantaneous transmissivity while the remote parties may only detect the mean statistical effect. We analyze coherent-state protocols in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration, and its extension to a three-party network. We show that, regardless of the advantage given to the eavesdropper (control of the fading), these protocols can still achieve high rates under realistic attacks, within reasonable values for the variance of the probability distribution associated with the fading process.

  9. Review of Techniques to Achieve Optical Surface Cleanliness and Their Potential Application to Surgical Endoscopes

    PubMed Central

    Kreeft, Davey; Arkenbout, Ewout Aart; Henselmans, Paulus Wilhelmus Johannes; van Furth, Wouter R.; Breedveld, Paul

    2017-01-01

    A clear visualization of the operative field is of critical importance in endoscopic surgery. During surgery the endoscope lens can get fouled by body fluids (eg, blood), ground substance, rinsing fluid, bone dust, or smoke plumes, resulting in visual impairment. As a result, surgeons spend part of the procedure on intermittent cleaning of the endoscope lens. Current cleaning methods that rely on manual wiping or a lens irrigation system are still far from ideal, leading to longer procedure times, dirtying of the surgical site, and reduced visual acuity, potentially reducing patient safety. With the goal of finding a solution to these issues, a literature review was conducted to identify and categorize existing techniques capable of achieving optically clean surfaces, and to show which techniques can potentially be implemented in surgical practice. The review found that the most promising method for achieving surface cleanliness consists of a hybrid solution, namely, that of a hydrophilic or hydrophobic coating on the endoscope lens and the use of the existing lens irrigation system. PMID:28511635

  10. Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1999-01-01

    Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.

  11. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    PubMed

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  12. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  13. An intelligent system for real time automatic defect inspection on specular coated surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Parker, Johné M.; Hou, Zhen

    2005-07-01

    Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.

  14. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE PAGES

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...

    2017-03-27

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  15. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  16. Multiple wavelength tunable surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei

    1991-06-01

    Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.

  17. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  18. Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit

    NASA Astrophysics Data System (ADS)

    Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid

    2018-01-01

    Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest

  19. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu

    2018-03-01

    Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.

  20. Multipole and field uniformity tailoring of a 750 MHz rf dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependencymore » is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.« less

  1. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, T.R.

    1983-07-05

    A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

  2. Uniform Media Effects and Uniform Audience Responses.

    ERIC Educational Resources Information Center

    Perry, David K.

    The idea that mass communication effects may decrease diversity among people or societies exposed to it arises constantly. However, discussions of mass media effects do not highlight differences between mass communications that "affect" people uniformly and messages that members of audiences "respond to" in similar ways. A…

  3. Applying the Inverse Maximum Ratio- Λ to 3-Dimensional Surfaces

    NASA Astrophysics Data System (ADS)

    Chandran, Avinash; Brown, Derek; DiPietro, Loretta; Danoff, Jerome

    2016-06-01

    The question of contour uniformity on a three-dimensional surface arises in various fields of study. Although many questions related to surface uniformity exist, there is a lack of standard methodology to quantify uniformity of a three-dimensional surface. Therefore, a sound mathematical approach to this question could prove to be useful in various areas of study. The purpose of this paper is to expand the previously validated mathematical concept of the inverse maximum ratio over a three-dimensional surface and assess its robustness. We will describe the mathematical approach used to accomplish this and use several simulated examples to validate the metric.

  4. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  5. A mediation analysis of achievement motives, goals, learning strategies, and academic achievement.

    PubMed

    Diseth, Age; Kobbeltvedt, Therese

    2010-12-01

    Previous research is inconclusive regarding antecedents and consequences of achievement goals, and there is a need for more research in order to examine the joint effects of different types of motives and learning strategies as predictors of academic achievement. To investigate the relationship between achievement motives, achievement goals, learning strategies (deep, surface, and strategic), and academic achievement in a hierarchical model. Participants were 229 undergraduate students (mean age: 21.2 years) of psychology and economics at the University of Bergen, Norway. Variables were measured by means of items from the Achievement Motives Scale (AMS), the Approaches and Study Skills Inventory for Students, and an achievement goal scale. Correlation analysis showed that academic achievement (examination grade) was positively correlated with performance-approach goal, mastery goal, and strategic learning strategies, and negatively correlated with performance-avoidance goal and surface learning strategy. A path analysis (structural equation model) showed that achievement goals were mediators between achievement motives and learning strategies, and that strategic learning strategies mediated the relationship between achievement goals and academic achievement. This study integrated previous findings from several studies and provided new evidence on the direct and indirect effects of different types of motives and learning strategies as predictors of academic achievement.

  6. 3D reconstruction from non-uniform point clouds via local hierarchical clustering

    NASA Astrophysics Data System (ADS)

    Yang, Jiaqi; Li, Ruibo; Xiao, Yang; Cao, Zhiguo

    2017-07-01

    Raw scanned 3D point clouds are usually irregularly distributed due to the essential shortcomings of laser sensors, which therefore poses a great challenge for high-quality 3D surface reconstruction. This paper tackles this problem by proposing a local hierarchical clustering (LHC) method to improve the consistency of point distribution. Specifically, LHC consists of two steps: 1) adaptive octree-based decomposition of 3D space, and 2) hierarchical clustering. The former aims at reducing the computational complexity and the latter transforms the non-uniform point set into uniform one. Experimental results on real-world scanned point clouds validate the effectiveness of our method from both qualitative and quantitative aspects.

  7. Uniformity studies of inductively coupled plasma etching in fabrication of HgCdTe detector arrays

    NASA Astrophysics Data System (ADS)

    Bommena, R.; Velicu, S.; Boieriu, P.; Lee, T. S.; Grein, C. H.; Tedjojuwono, K. K.

    2007-04-01

    Inductively coupled plasma (ICP) chemistry based on a mixture of CH 4, Ar, and H II was investigated for the purpose of delineating HgCdTe mesa structures and vias typically used in the fabrication of second and third generation infrared photo detector arrays. We report on ICP etching uniformity results and correlate them with plasma controlling parameters (gas flow rates, total chamber pressure, ICP power and RF power). The etching rate and surface morphology of In-doped MWIR and LWIR HgCdTe showed distinct dependences on the plasma chemistry, total pressure and RF power. Contact stylus profilometry and cross-section scanning electron microscopy (SEM) were used to characterize the anisotropy of the etched profiles obtained after various processes and a standard deviation of 0.06 μm was obtained for etch depth on 128 x 128 format array vias. The surface morphology and the uniformity of the etched surfaces were studied by plan view SEM. Atomic force microscopy was used to make precise assessments of surface roughness.

  8. High-wafer-yield, high-performance vertical cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Li, Gabriel S.; Yuen, Wupen; Lim, Sui F.; Chang-Hasnain, Constance J.

    1996-04-01

    Vertical cavity surface emitting lasers (VCSELs) with very low threshold current and voltage of 340 (mu) A and 1.5 V is achieved. The molecular beam epitaxially grown wafers are grown with a highly accurate, low cost and versatile pre-growth calibration technique. One- hundred percent VCSEL wafer yield is obtained. Low threshold current is achieved with a native oxide confined structure with excellent current confinement. Single transverse mode with stable, predetermined polarization direction up to 18 times threshold is also achieved, due to stable index guiding provided by the structure. This is the highest value reported to data for VCSELs. We have established that p-contact annealing in these devices is crucial for low voltage operation, contrary to the general belief. Uniform doping in the mirrors also appears not to be inferior to complicated doping engineering. With these design rules, very low threshold voltage VCSELs are achieved with very simple growth and fabrication steps.

  9. Umbral moonshine and K3 surfaces

    DOE PAGES

    Cheng, Miranda C. N.; Harrison, Sarah

    2015-06-25

    Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups, have been discovered in the context of the 23 even unimodular Niemeier lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of K3 non-linear sigma models. In this paper we establish a uniform relation between all 23 cases of umbral moonshine and K3 sigma models, and thereby take a first step in placing umbral moonshine into a geometric and physical context. In addition, this is achieved by relating the ADE root systems of the Niemeier lattices to themore » ADE du Val singularities that a K3 surface can develop, and the configuration of smooth rational curves in their resolutions. A geometric interpretation of our results is given in terms of the marking of K3 surfaces by Niemeier lattices.« less

  10. Improving the uniformity of luminous system in radial imaging capsule endoscope system

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De

    2013-02-01

    This study concerns the illumination system in a radial imaging capsule endoscope (RICE). Uniformly illuminating the object is difficult because the intensity of the light from the light emitting diodes (LEDs) varies with angular displacement. When light is emitted from the surface of the LED, it first encounters the cone mirror, from which it is reflected, before directly passing through the lenses and complementary metal oxide semiconductor (CMOS) sensor. The light that is strongly reflected from the transparent view window (TVW) propagates again to the cone mirror, to be reflected and to pass through the lenses and CMOS sensor. The above two phenomena cause overblooming on the image plane. Overblooming causes nonuniform illumination on the image plane and consequently reduced image quality. In this work, optical design software was utilized to construct a photometric model for the optimal design of the LED illumination system. Based on the original RICE model, this paper proposes an optimal design to improve the uniformity of the illumination. The illumination uniformity in the RICE is increased from its original value of 0.128 to 0.69, greatly improving light uniformity.

  11. Compositions of Spherules and Rock Surfaces at Meridiani

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Jolliff, B. L.; Clark, B. C.; Gellert, R.

    2007-01-01

    The Alpha Particle X-ray Spectrometers (APXS) on the Mars Exploration Rovers (MER) have proven extremely valuable for analyzing rocks and soils on the surface of Mars. The precision of their compositional measurements has been shown to be phenomenal through analyses of the compositionally very uniform Meridiani soils. Through combined use of the rock abrasion tool (RAT) and the analytical instruments on the in-situ deployment device (IDD), analyses of the interiors of fine-grained and texturally uniform rocks with surfaces ground flat have been made under conditions that are nearly ideal for this mode of analysis. The APXS has also been used frequently to analyze materials whose characteristics, surface morphologies, and sample-detector geometries are less than ideal, but the analyses of which are nonetheless very useful for understanding the makeup of the target materials. Such targets include undisturbed rocks with irregular and sometimes coated surfaces and mixed targets such as soils that include fine-grained components as well as coarse grains and pieces of rocks. Such target materials include the well known hematite-rich concretions, referred to as blueberries because of their multispectral color, size, and mode of occurrence. In addition to non-ideal target geometry, such mixed materials also present a heterogeneous target in terms of density. These irregularities violate the assumptions commonly associated with analyses done in the laboratory to achieve the highest possible accuracy. Here we acknowledge the irregularities and we examine the inferences drawn from specific chemical trends obtained on imperfect targets in light of one of the potential pitfalls of natural materials on the surface of Mars, namely thin dust coatings.

  12. Dress Codes and Uniforms.

    ERIC Educational Resources Information Center

    Lumsden, Linda; Miller, Gabriel

    2002-01-01

    Students do not always make choices that adults agree with in their choice of school dress. Dress-code issues are explored in this Research Roundup, and guidance is offered to principals seeking to maintain a positive school climate. In "Do School Uniforms Fit?" Kerry White discusses arguments for and against school uniforms and summarizes the…

  13. Copper Electrodeposition on a Magnesium Alloy (AZ80) with a U-Shaped Surface

    PubMed Central

    Huang, Ching An; Yeh, Yu Hu; Lin, Che Kuan; Hsieh, Chen Yun

    2014-01-01

    Cu electrodeposition was performed on a cylindrical AZ80 substrate with a U-shaped surface. A uniform deposition of Cu was achieved on an AZ80 electrode via galvanostatic etching, followed by Cu electrodeposition in an eco-friendly alkaline Cu plating bath. Improper wetting and lower rotational speeds of the AZ80 electrode resulted in an uneven Cu deposition at the inner upper site of the U-shaped surface during the Cu electroplating process. This wetting effect could be deduced from the variation in the anodic potential during the galvanostatic etching. The corrosion resistance of the Cu-deposited AZ80 electrode can be considerably improved after Ni electroplating. PMID:28788252

  14. Gliding Motility of Mycoplasma mobile on Uniform Oligosaccharides.

    PubMed

    Kasai, Taishi; Hamaguchi, Tasuku; Miyata, Makoto

    2015-09-01

    The binding and gliding of Mycoplasma mobile on a plastic plate covered by 53 uniform oligosaccharides were analyzed. Mycoplasmas bound to and glided on only 21 of the fixed sialylated oligosaccharides (SOs), showing that sialic acid is essential as the binding target. The affinities were mostly consistent with our previous results on the inhibitory effects of free SOs and suggested that M. mobile recognizes SOs from the nonreducing end with four continuous sites as follows. (i and ii) A sialic acid at the nonreducing end is tightly recognized by tandemly connected two sites. (iii) The third site is recognized by a loose groove that may be affected by branches. (iv) The fourth site is recognized by a large groove that may be enhanced by branches, especially those with a negative charge. The cells glided on uniform SOs in manners apparently similar to those of the gliding on mixed SOs. The gliding speed was related inversely to the mycoplasma's affinity for SO, suggesting that the detaching step may be one of the speed determinants. The cells glided faster and with smaller fluctuations on the uniform SOs than on the mixtures, suggesting that the drag caused by the variation in SOs influences gliding behaviors. Mycoplasma is a group of bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide in the direction of the protrusion. These procedures are essential for parasitism. Usually, mycoplasmas glide on mixed sialylated oligosaccharides (SOs) derived from glycoprotein and glycolipid. Since gliding motility on uniform oligosaccharides has never been observed, this study gives critical information about recognition and interaction between receptors and SOs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Methods of obtaining a uniform volume concentration of implanted ions

    NASA Astrophysics Data System (ADS)

    Reutov, V. F.

    1998-05-01

    Three simple practical methods of irradiation with high energy particles (>5 MeV/n), providing the conditions of obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to the movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method of obtaining a uniform volume concentration of the implanted ions in a massive sample consists of sample irradiation through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for mechanical tests, for example, the second one - for irradiation in different gaseous media, the third one - for obtaining high concentration of the implanted ions under controlled (regulated) thermal and deformation conditions.

  16. Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch.

    PubMed

    Pei, Ning; Cai, Lanlan; Yang, Kai; Ma, Jiaqi; Gong, Yongyong; Wang, Qixin; Huang, Zheyong

    2018-02-01

    A new non-toxic ferromagnetic biological patch (MBP) was designed in this paper. The MBP consisted of two external layers that were made of transparent silicone, and an internal layer that was made of a mixture of pure iron powder and silicon rubber. Finite-element analysis showed that the local inhomogeneous magnetic field (MF) around the MBP was generated when MBP was placed in a uniform MF. The local MF near the MBP varied with the uniform MF and shape of the MBP. Therefore, not only could the accumulation of paramagnetic particles be adjusted by controlling the strength of the uniform MF, but also the distribution of the paramagnetic particles could be improved with the different shape of the MBP. The relationship of the accumulation of paramagnetic particles or cells, magnetic flux density, and fluid velocity were studied through in vitro experiments and theoretical considerations. The accumulation of paramagnetic particles first increased with increment in the magnetic flux density of the uniform MF. But when the magnetic flux density of the uniform MF exceeded a specific value, the magnetic flux density of the MBP reached saturation, causing the accumulation of paramagnetic particles to fall. In addition, the adsorption morphology of magnetic particles or cells could be improved and the uniform distribution of magnetic particles could be achieved by changing the shape of the MBP. Also, MBP may be used as a new implant to attract magnetic drug carrier particles in magnetic drug targeting. Bioelectromagnetics. 39:98-107, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Energy efficient LED layout optimization for near-uniform illumination

    NASA Astrophysics Data System (ADS)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  18. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and

  19. Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer.

    PubMed

    Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young

    2017-06-22

    Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multiresolution texture analysis applied to road surface inspection

    NASA Astrophysics Data System (ADS)

    Paquis, Stephane; Legeay, Vincent; Konik, Hubert; Charrier, Jean

    1999-03-01

    Technological advances provide now the opportunity to automate the pavement distress assessment. This paper deals with an approach for achieving an automatic vision system for road surface classification. Road surfaces are composed of aggregates, which have a particular grain size distribution and a mortar matrix. From various physical properties and visual aspects, four road families are generated. We present here a tool using a pyramidal process with the assumption that regions or objects in an image rise up because of their uniform texture. Note that the aim is not to compute another statistical parameter but to include usual criteria in our method. In fact, the road surface classification uses a multiresolution cooccurrence matrix and a hierarchical process through an original intensity pyramid, where a father pixel takes the minimum gray level value of its directly linked children pixels. More precisely, only matrix diagonal is taken into account and analyzed along the pyramidal structure, which allows the classification to be made.

  1. Automated optimization of an aspheric light-emitting diode lens for uniform illumination.

    PubMed

    Luo, Xiaoxia; Liu, Hua; Lu, Zhenwu; Wang, Yao

    2011-07-10

    In this paper, an automated optimization method in the sequential mode of ZEMAX is proposed in the design of an aspheric lens with uniform illuminance for an LED source. A feedback modification is introduced in the design for the LED extended source. The user-defined merit function is written out by using ZEMAX programming language macros language and, as an example, optimum parameters of an aspheric lens are obtained via running an optimization. The optical simulation results show that the illumination efficiency and uniformity can reach 83% and 90%, respectively, on a target surface of 40 mm diameter and at 60 mm away for a 1×1 mm LED source. © 2011 Optical Society of America

  2. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2011-04-01 2011-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  3. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2012-04-01 2011-04-01 true If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  4. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2013-04-01 2013-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  5. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2010-04-01 2010-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  6. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2014-04-01 2014-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  7. Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function.

    PubMed

    Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M

    2017-12-19

    The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.

  8. Multifunctional Textured Surfaces with Enhanced Friction and Hydrophobic Behaviors Produced by Fiber Debonding and Pullout.

    PubMed

    Rizvi, Reza; Anwer, Ali; Fernie, Geoff; Dutta, Tilak; Naguib, Hani

    2016-11-02

    Fiber debonding and pullout are well-understood processes that occur during damage and failure events in composite materials. In this study, we show how these mechanisms, under controlled conditions, can be used to produce multifunctional textured surfaces. A two-step process consisting of (1) achieving longitudinal fiber alignment followed by (2) cutting, rearranging, and joining is used to produce the textured surfaces. This process employs common composite manufacturing techniques and uses no reactive chemicals or wet handling, making it suitable for scalability. This uniform textured surface is due to the fiber debonding and pullout occurring during the cutting process. Using well-established fracture mechanics principles for composite materials, we demonstrate how different material parameters such as fiber geometry, fiber and matrix stiffness and strength, and interface behavior can be used to achieve multifunctional textured surfaces. The resulting textured surfaces show very high friction coefficients on wet ice (9× improvement), indicating their promising potential as materials for ice traction/tribology. Furthermore, the texturing enhances the surface's hydrophobicity as indicated by an increase in the contact angle of water by 30%. The substantial improvements to surface tribology and hydrophobicity make fiber debonding and pullout an effective, simple, and scalable method of producing multifunctional textured surfaces.

  9. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, Terry R.

    1983-01-01

    A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

  10. Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons.

    PubMed

    Yang, Liu; Wang, Yue; Xu, Haiyang; Liu, Weizhen; Zhang, Cen; Wang, Chunliang; Wang, Zhongqiang; Ma, Jiangang; Liu, Yichun

    2018-05-09

    Color-tunable light-emitting devices (LEDs) have a great impact on our daily life. Herein, LEDs with tunable electroluminescence (EL) color were achieved via introducing Ag nanowires surface plasmons into p-GaN/n-ZnO film heterostructures. By optimizing the surface coverage density of coated Ag nanowires, the EL color was changed continuously from yellow-green to blue-violet. Transient-state and temperature-variable fluorescence emission characterizations uncovered that the spontaneous emission rate and the internal quantum efficiency of the near-UV emission were increased as a consequence of the resonance coupling interaction between Ag nanowires surface plasmons and ZnO excitons. This effect induces the selective enhancement of the blue-violet EL component but suppresses the defect-related yellow-green emission, leading to the observed tunable EL color. The proposed strategy of introducing surface plasmons can be further applied to many other kinds of LEDs for their selective enhancement of EL intensity and effective adjustment of the emission color.

  11. Uniform electric field generation in circular multi-well culture plates using polymeric inserts

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Fu; Cheng, Ji-Yen; Chang, Hui-Fang; Yamamoto, Tadashi; Shen, Amy Q.

    2016-05-01

    Applying uniform electric field (EF) in vitro in the physiological range has been achieved in rectangular shaped microchannels. However, in a circular-shaped device, it is difficult to create uniform EF from two electric potentials due to different electrical resistances originated from the length difference between the diameter of the circle and the length of any parallel chord of the bottom circular chamber where cells are cultured. To address this challenge, we develop a three-dimensional (3D) computer-aided designed (CAD) polymeric insert to create uniform EF in circular shaped multi-well culture plates. A uniform EF with a coefficient of variation (CV) of 1.2% in the 6-well plate can be generated with an effective stimulation area percentage of 69.5%. In particular, NIH/3T3 mouse embryonic fibroblast cells are used to validate the performance of the 3D designed Poly(methyl methacrylate) (PMMA) inserts in a circular-shaped 6-well plate. The CAD based inserts can be easily scaled up (i.e., 100 mm dishes) to further increase effective stimulation area percentages, and also be implemented in commercially available cultureware for a wide variety of EF-related research such as EF-cell interaction and tissue regeneration studies.

  12. Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography

    NASA Astrophysics Data System (ADS)

    Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek

    2018-01-01

    The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.

  13. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    PubMed Central

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD. PMID:28405059

  14. The rotating heat pipe - Implementation as a uniform-temperature heat source

    NASA Astrophysics Data System (ADS)

    Limoges, R. F.

    1981-11-01

    A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.

  15. Comparison of Turbulent Heat-Transfer Results for Uniform Wall Heat Flux and Uniform Wall Temperature

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Sparrow, E. M.

    1960-01-01

    The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.

  16. 7 CFR 1006.61 - Computation of uniform prices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., the market administrator shall compute a uniform butterfat price, a uniform skim milk price, and a... section. (b) Uniform skim milk price. The uniform skim milk price per hundredweight, rounded to the... paragraph (a) of this section times 3.5 pounds of butterfat; and (2) Multiply the uniform skim milk price...

  17. 7 CFR 1007.61 - Computation of uniform prices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., the market administrator shall compute a uniform butterfat price, a uniform skim milk price, and a... section. (b) Uniform skim milk price. The uniform skim milk price per hundredweight, rounded to the... paragraph (a) of this section times 3.5 pounds of butterfat; and (2) Multiply the uniform skim milk price...

  18. 7 CFR 1131.61 - Computation of uniform prices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., the market administrator shall compute a uniform butterfat price, a uniform skim milk price, and a... section. (b) Uniform skim milk price. The uniform skim milk price per hundredweight, rounded to the... paragraph (a) of this section times 3.5 pounds of butterfat; and (2) Multiply the uniform skim milk price...

  19. Wide steering angle microscanner based on curved surface

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik

    2013-03-01

    Intensive industrial and academic research is oriented towards the design and fabrication of optical beam steering systems based on MEMS technology. In most of these systems, the scanning is achieved by rotating a flat micromirror around a central axis in which the main challenge is achieving a wide mirror rotation angle. In this work, a novel method of optical beam scanning based on reflection from a curved surface is presented. The scanning occurs when the optical axis of the curved surface is displaced with respect to the optical axis of the incident beam. To overcome the possible deformation of the spot with the scanning angle, the curved surface is designed with a specific aspherical profile. Moreover, the scanning exhibits a more linearized scanning angle-displacement relation than the conventional spherical profile. The presented scanner is fabricated using DRIE technology on an SOI wafer. The curved surface (reflector) is metalized and attached to a comb-drive actuator fabricated in the same lithography step. A single-mode fiber, behaving as a Gaussian beam source, is positioned on the substrate facing the mirror. The reflected optical beam angle and spotsize in the far field is recorded versus the relative shift between the fiber and the curved mirror. The spot size is plotted versus the scanning angle and a scanning spot size uniformity of about +/-10% is obtained for optical deflection angles up to 100 degrees. As the optical beam is propagating parallel to the wafer substrate, a completely integrated laser scanner can be achieved with filters and actuators self-aligned on the same chip that allows low cost and mass production of this important product.

  20. 7 CFR 1005.61 - Computation of uniform prices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... month, the market administrator shall compute a uniform butterfat price, a uniform skim milk price, and...) and (a)(2) of this section. (b) Uniform skim milk price. The uniform skim milk price per hundredweight... paragraph (a) of this section times 3.5 pounds of butterfat; and (2) Multiply the uniform skim milk price...

  1. Particle-bearing currents in uniform density and two-layer fluids

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  2. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  3. Scraped surface heat exchangers.

    PubMed

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  4. Energy-absorption spectroscopy of unitary Fermi gases in a uniform potential

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2018-04-01

    We propose to use the energy absorption spectroscopy to measure the kinetic coefficients of unitary Fermi gases in a uniform potential. We show that, in our scheme, the energy absorption spectrum is proportional to the dynamic structure factor of the system. The profile of the spectrum depends on the shear viscosity η , the thermal conductivity κ , and the superfluid bulk viscosity ξ3. We show that extraction of these coefficients from the spectrum is achievable in present experiments.

  5. Process For Patterning Dispenser-Cathode Surfaces

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  6. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  7. Local self-uniformity in photonic networks.

    PubMed

    Sellers, Steven R; Man, Weining; Sahba, Shervin; Florescu, Marian

    2017-02-17

    The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.

  8. Local self-uniformity in photonic networks

    NASA Astrophysics Data System (ADS)

    Sellers, Steven R.; Man, Weining; Sahba, Shervin; Florescu, Marian

    2017-02-01

    The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.

  9. Logical optimization for database uniformization

    NASA Technical Reports Server (NTRS)

    Grant, J.

    1984-01-01

    Data base uniformization refers to the building of a common user interface facility to support uniform access to any or all of a collection of distributed heterogeneous data bases. Such a system should enable a user, situated anywhere along a set of distributed data bases, to access all of the information in the data bases without having to learn the various data manipulation languages. Furthermore, such a system should leave intact the component data bases, and in particular, their already existing software. A survey of various aspects of the data bases uniformization problem and a proposed solution are presented.

  10. Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

    PubMed Central

    Venugopal, Adith; Muthuchamy, Nallal; Tejani, Harsh; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill; Lee, Heon-Jin

    2017-01-01

    Objective Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial. PMID:28127534

  11. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.

    PubMed

    Jeong, Heon-Ho; Yadavali, Sagar; Issadore, David; Lee, Daeyeon

    2017-07-25

    Microscale gas bubbles have demonstrated enormous utility as versatile templates for the synthesis of functional materials in medicine, ultra-lightweight materials and acoustic metamaterials. In many of these applications, high uniformity of the size of the gas bubbles is critical to achieve the desired properties and functionality. While microfluidics have been used with success to create gas bubbles that have a uniformity not achievable using conventional methods, the inherently low volumetric flow rate of microfluidics has limited its use in most applications. Parallelization of liquid droplet generators, in which many droplet generators are incorporated onto a single chip, has shown great promise for the large scale production of monodisperse liquid emulsion droplets. However, the scale-up of monodisperse gas bubbles using such an approach has remained a challenge because of possible coupling between parallel bubbles generators and feedback effects from the downstream channels. In this report, we systematically investigate the effect of factors such as viscosity of the continuous phase, capillary number, and gas pressure as well as the channel uniformity on the size distribution of gas bubbles in a parallelized microfluidic device. We show that, by optimizing the flow conditions, a device with 400 parallel flow focusing generators on a footprint of 5 × 5 cm 2 can be used to generate gas bubbles with a coefficient of variation of less than 5% at a production rate of approximately 1 L h -1 . Our results suggest that the optimization of flow conditions using a device with a small number (e.g., 8) of parallel FFGs can facilitate large-scale bubble production.

  12. Large mirror surface control by corrective coating

    NASA Astrophysics Data System (ADS)

    Bonnand, Romain; Degallaix, Jerome; Flaminio, Raffaele; Giacobone, Laurent; Lagrange, Bernard; Marion, Fréderique; Michel, Christophe; Mours, Benoit; Mugnier, Pierre; Pacaud, Emmanuel; Pinard, Laurent

    2013-08-01

    The Advanced Virgo gravitational wave detector aims at a sensitivity ten times better than the initial LIGO and Virgo detectors. This implies very stringent requirement on the optical losses in the interferometer arm cavities. In this paper we focus on the mirrors which form the interferometer arm cavities and that require a surface figure error to be well below one nanometre on a diameter of 150 mm. This ‘sub-nanometric flatness’ is not achievable by classical polishing on such a large diameter. Therefore we present the corrective coating technique which has been developed to reach this requirement. Its principle is to add a non-uniform thin film on top of the substrate in order to flatten its surface. In this paper we will introduce the Advanced Virgo requirements and present the basic principle of the corrective coating technique. Then we show the results obtained experimentally on an initial Virgo substrate. Finally we provide an evaluation of the round-trip losses in the Fabry-Perot arm cavities once the corrected surface is used.

  13. Different atmospheric effects in remote sensing of uniform and nonuniform surfaces

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1982-01-01

    The atmospheric effect on the radiance of sunlight scattered from the earth-atmosphere system is greatly dependent on the surface reflectance pattern, the contrast between adjacent fields, and the optical properties of the atmosphere. In addition, the atmospheric effect is described by the range and magnitude of the adjacency effects, the atmospheric modulation transfer function, and the apparent spatial resolution of remotely sensed imagery. This paper discusses the atmospheric effect on classification of surface features and shows that surface nonuniformity can be used for developing procedures to remove the atmospheric effect from the satellite imagery.

  14. Method for forming a uniformly dense polymer foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2002-01-01

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 .sup.g /.sub.cm.sup..sub.3 to about 0.5 .sup.g /.sub.cm.sup..sub.3 is disclosed. The method utilizes a thermally expandable polymer microballoon material wherein some of the microballoons are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  15. A uniform geostationary visible calibration approach to achieve a climate quality dataset

    NASA Astrophysics Data System (ADS)

    Haney, C.; Doelling, D.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2013-12-01

    The geostationary (GEO) weather satellite visible and IR image record has surpassed 30 years. They have been preserved in the ISCCP-B1U 3-hourly dataset and other archives such as McIDAS, EUMETSAT, and NOAA CLASS. Since they were designed to aid in weather forecasting, long-term calibration stability was not a high priority. All GEO imagers lack onboard visible calibration and suffer from optical degradation after they are launched. In order to piece together the 35+ GEO satellite record both in time and space, a uniform calibration approach is desired to remove individual GEO temporal trends, as well as GEO spectral band differences. Otherwise, any artificial discontinuities caused by sequential GEO satellite records or spurious temporal trends caused by optical degradation may be interpreted as a change in climate. The approach relies on multiple independent methods to reduce the overall uncertainty of the GEO calibration coefficients. Consistency among methods validates the approach. During the MODIS record (2000 to the present) the GEO satellites are inter-calibrated against MODIS using ray-matched or bore-sighted radiance pairs. The MODIS and the VIIRS follow on instruments are equipped with onboard calibration thereby providing a stable calibration reference. The GEO spectral band differences are accounted for using a Spectral Band Adjustment Factor (SBAF) based on hyper-spectral SCIAMACHY data. During the pre-MODIS era, invariant earth targets of deserts and deep convective clouds (DCC) are used. Since GEO imagers have maintained their imaging scan schedules, GEO desert and DCC bidirectional reflectance distribution functions (BRDF) can be constructed and validated during the MODIS era. The BRDF models can then be applied to historical GEO imagers. Consistency among desert and DCC GEO calibration gains validates the approach. This approach has been applied to the GEO record beginning in 1985 and the results will be presented at the meeting.

  16. A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao; Xiao, Long; Wang, Yalin; Yang, Chunhua; Gui, Weihua

    2018-02-01

    High quality control method is essential for the implementation of aircraft autopilot system. An optimal control problem model considering the safe aerodynamic envelop is therefore established to improve the control quality of aircraft flight level tracking. A novel non-uniform control vector parameterization (CVP) method with time grid refinement is then proposed for solving the optimal control problem. By introducing the Hilbert-Huang transform (HHT) analysis, an efficient time grid refinement approach is presented and an adaptive time grid is automatically obtained. With this refinement, the proposed method needs fewer optimization parameters to achieve better control quality when compared with uniform refinement CVP method, whereas the computational cost is lower. Two well-known flight level altitude tracking problems and one minimum time cost problem are tested as illustrations and the uniform refinement control vector parameterization method is adopted as the comparative base. Numerical results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost; meanwhile, the control quality is efficiently improved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces

    NASA Astrophysics Data System (ADS)

    Deng, R.; Hu, Y. M.; Wang, L.; Li, Zh. H.; Shen, T.; Zhu, Y.; Xiang, J. Zh.

    2017-04-01

    Superamphiphobic Al surfaces were achieved via an easy and environmentally-friendly approach. Aqueous mixed solution of 0.7 M CuSO4 and 1 M NaCl was used to etch polished Al surfaces to fabricate a rough morphology distributed with microscale step-like pits. The uniformly distributed nanoscale petals covered on the microscale pits were obtained by subsequent 96 °C hot deionized water bathing for 13 min. Thus, the hierarchical micro/nanometer scale roughness was formed which provided the structural basic of superamphiphobic Al surfaces. By 1H, 1H, 2H, 2H-Perfluorodecyl-triethoxysilane (PFDTS) derivatization, desirable superamphiphobic Al surfaces were achieved with the highest static contact angles of 162° for water, 156° for peanut oil, respectively. Meanwhile, the sliding angles were lower than 10° for both water and peanut oil droplets. The as-prepared Al surfaces were investigated by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and optical contact angle measurements. The FE-SEM images of as-prepared Al surfaces showed a hierarchical micro/nanometer scale morphology. XPS analyses demonstrated the PFDTS derivitization on Al surfaces. The superamphiphobic Al surfaces presented good mechanical durability and chemical stability which have a wide range of applications in fields such as self-cleaning, anti-icing, anti-corrosion, oil transportation, energy harvesting, microfluidics, and so forth. The approach reported in this paper may easily realize the industrial production of superamphiphobic Al surfaces owing to the advantage of facile, low cost and environmentally-friendly.

  18. A facile method for the preparation of monodisperse beads with uniform pore sizes for cell culture.

    PubMed

    Moon, Seung-Kwan; Oh, Myeong-Jin; Paik, Dong-Hyun; Ryu, Tae-Kyung; Park, Kyeongsoon; Kim, Sung-Eun; Park, Jong-Hoon; Kim, Jung-Hyun; Choi, Sung-Wook

    2013-03-12

    This paper describes a facile method for the preparation of porous gelatin beads with uniform pore sizes using a simple fluidic device and their application as supporting materials for cell culture. An aqueous gelatin droplet containing many uniform toluene droplets, produced in the fluidic device, is dropped into liquid nitrogen for instant freezing and the small toluene droplets evolve into pores in the gelatin beads after removal of toluene and then freeze-drying. The porous gelatin beads exhibit a uniform pore size and monodisperse diameter as well as large open pores at the surface. Fluorescence microscopy images of fibroblast-loaded gelatin beads confirm the attachment and proliferation of the cells throughout the porous gelatin beads. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    NASA Astrophysics Data System (ADS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  20. Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring

    NASA Astrophysics Data System (ADS)

    Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub

    2017-06-01

    A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.

  1. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  2. 24 CFR 5.801 - Uniform financial reporting standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Uniform financial reporting... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Uniform Financial Reporting Standards § 5.801 Uniform financial reporting standards. (a) Applicability. This subpart H implements uniform...

  3. 24 CFR 5.801 - Uniform financial reporting standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Uniform financial reporting... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Uniform Financial Reporting Standards § 5.801 Uniform financial reporting standards. (a) Applicability. This subpart H implements uniform...

  4. Wurtsmith AFB, Michigan. Revised Uniform Summary of Surface Weather Observations. Parts A-F.

    DTIC Science & Technology

    1987-06-12

    UNIFORM SUMMARY OF ASURFACE WEATHER OBSERVATIONS WURTSMITH AFB MI MSC 726395 N 44 27 W 0 8 3 24 ELEV 634 FT KOSC PARTS A - F HOURS SUMMARIZED 0000...SNOaFA[ USAFETAC FWCM SJPMAPY Of DAY [ATA AIR AFATHtr 5!RVICE/MAC STATION NUMSLR: 726395 STAT1O N NAmE : wURTSMITH Arb MI PI 0 IOU Or Pt COPD : ,j-7...1 1 1 F U),,%! WVAI limb, : r UC ’,1iL (L7’AI7,LOGY PRANC*tH Pt.FP NIA’ - FPR(’U,7NCY OF OCCURr-NCL OF SUPFACE WINO UIRECrIPN V(R.SUS gIE . 7 Ajj L1

  5. 7 CFR 51.2085 - Fairly uniform color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly uniform color. 51.2085 Section 51.2085... Definitions § 51.2085 Fairly uniform color. Fairly uniform color means that the shells do not show excessive variation in color, whether bleached or natural. ...

  6. 7 CFR 51.2085 - Fairly uniform color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly uniform color. 51.2085 Section 51.2085... Definitions § 51.2085 Fairly uniform color. Fairly uniform color means that the shells do not show excessive variation in color, whether bleached or natural. ...

  7. Uniformly high-order accurate non-oscillatory schemes, 1

    NASA Technical Reports Server (NTRS)

    Harten, A.; Osher, S.

    1985-01-01

    The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.

  8. Uniform-related infection control practices of dental students

    PubMed Central

    Aljohani, Yazan; Almutadares, Mohammed; Alfaifi, Khalid; El Madhoun, Mona; Albahiti, Maysoon H; Al-Hazmi, Nadia

    2017-01-01

    Background Uniform-related infection control practices are sometimes overlooked and underemphasized. In Saudi Arabia, personal protective equipment must meet global standards for infection control, but the country’s Islamic legislature also needs to be taken into account. Aim To assess uniform-related infection control practices of a group of dental students in a dental school in Saudi Arabia and compare the results with existing literature related to cross-contamination through uniforms in the dental field. Method A questionnaire was formulated and distributed to dental students at King Abdulaziz University Faculty of Dentistry in Jeddah, Saudi Arabia, which queried the students about their uniform-related infection control practices and their methods and frequency of laundering and sanitizing their uniforms, footwear, and name tags. Results There is a significant difference between genders with regard to daily uniform habits. The frequency of uniform washing was below the standard and almost 30% of students were not aware of how their uniforms are washed. Added to this, there is no consensus on a unified uniform for male and female students. Conclusion Information on preventing cross-contamination through wearing uniforms must be supplied, reinforced, and emphasized while taking into consideration the cultural needs of the Saudi society. PMID:28490894

  9. Surface nematic order in iron pnictides

    DOE PAGES

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-09

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less

  10. Surface nematic order in iron pnictides

    NASA Astrophysics Data System (ADS)

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-01

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2 -xPx .

  11. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.

    PubMed

    Liu, Xiaolong; Xia, Yiran; Liu, Lulu; Zhang, Dongmei; Hou, Zhaosheng

    2018-05-01

    The purpose of this study is to offer a novel kind of polyurethane with improved surface blood compatibility for long-term implant biomaterials. In this work, the aliphatic poly(ester-urethane) (PEU) with uniform-size hard segments was prepared and the PEU surface was grafted with hydrophilic poly(ethylene glycol) (PEG). The PEU was obtained by chain-extension of poly(ɛ-caprolactone) (PCL) with isocyanate-terminated urethane triblock. Free amino groups were introduced onto the surface of PEU film via aminolysis with hexamethylenediamine, and then the NH 2 -grafted PEU surfaces (PEU-NH 2 ) were reacted with isocyanate-terminated monomethoxyl PEG (MPEG-NCO) to obtain the PEG-grafted PEU surfaces (PEU-PEG). Analysis by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography were performed to confirm the chemical structures of the chain extender, PCL, PEU, and PEU-PEG. Additionally, the influence of aminolysis on the physical-mechanical properties of PEU films was investigated. Two glass transition temperatures and a broad endothermic peak were observed in the differential scanning calorimetry curves of PEU, which demonstrated a microphase-separated and semicrystalline structure, respectively. The PEU-PEG film exhibited excellent mechanical properties with an ultimate stress of ∼39 MPa and an elongation at break of ∼1190%, which was slightly lower than that of PEU, indicating that the aminolysis has little influence on the tensile properties. Evaluation of the blood compatibility of the films by bovine serum albumin adsorption and the platelet adhesion test revealed that the PEG-grafted surface had improved resistance to protein adsorption and excellent resistance to platelet adhesion. In vitro degradation tests showed that the PEU-PEG film could maintain its mechanical properties for more than six months and only lost ∼25% weight after 18 months. Due to the excellent mechanical properties, good blood

  12. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  13. Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces.

    PubMed

    Neves-Petersen, Maria Teresa; Snabe, Torben; Klitgaard, Søren; Duroux, Meg; Petersen, Steffen B

    2006-02-01

    Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.

  14. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method.

    PubMed

    Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui

    2016-04-20

    The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.

  15. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-07

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.

  16. Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces.

    PubMed

    Agudo-Canalejo, Jaime; Lipowsky, Reinhard

    2017-03-15

    Biological membranes and lipid vesicles often display complex shapes with non-uniform membrane curvature. When adhesive nanoparticles with chemically uniform surfaces come into contact with such membranes, they exhibit four different engulfment regimes as recently shown by a systematic stability analysis. Depending on the local curvature of the membrane, the particles either remain free, become partially or completely engulfed by the membrane, or display bistability between free and completely engulfed states. Here, we go beyond stability analysis and develop an analytical theory to leading order in the ratio of particle-to-vesicle size. This theory allows us to determine the local and global energy landscapes of uniform nanoparticles that are attracted towards membranes and vesicles. While the local energy landscape depends only on the local curvature of the vesicle membrane and not on the overall membrane shape, the global energy landscape describes the variation of the equilibrium state of the particle as it probes different points along the membrane surface. In particular, we find that the binding energy of a partially engulfed particle depends on the 'unperturbed' local curvature of the membrane in the absence of the particle. This curvature dependence leads to local forces that pull the partially engulfed particles towards membrane segments with lower and higher mean curvature if the particles originate from the exterior and interior solution, respectively, corresponding to endo- and exocytosis. Thus, for partial engulfment, endocytic particles undergo biased diffusion towards the membrane segments with the lowest membrane curvature, whereas exocytic particles move towards segments with the highest curvature. The curvature-induced forces are also effective for Janus particles with one adhesive and one non-adhesive surface domain. In fact, Janus particles with a strongly adhesive surface domain are always partially engulfed which implies that they provide

  17. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  18. School Uniforms: Esprit de Corps.

    ERIC Educational Resources Information Center

    Ryan, Rosemary P.; Ryan, Thomas E.

    1998-01-01

    The benefits of school uniforms far outweigh their short-term costs. School uniforms not only keep students safe, but they increase their self-esteem, promote a more positive attitude toward school, lead to improved student behavior, and help blur social-class distinctions. Students are allowed to wear their own political or religious messages,…

  19. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.

    PubMed

    Lu, Jennifer Q; Yi, Sung Soo

    2006-04-25

    A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

  20. Pellicle transmission uniformity requirements

    NASA Astrophysics Data System (ADS)

    Brown, Thomas L.; Ito, Kunihiro

    1998-12-01

    Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.

  1. Effects of broiler breeder management on pullet body weight and carcass uniformity.

    PubMed

    Zuidhof, M J; Holm, D E; Renema, R A; Jalal, M A; Robinson, F E

    2015-06-01

    An experiment was conducted to study the effect of broiler breeder feeding management practices on pullet performance, BW uniformity, and carcass traits during rearing (to 22 wk of age). At 3 wk of age, 1,200 Ross 308 breeder pullets were assigned to one of 5 treatments: 1) control: standard mash diet, fed daily; 2) high fiber: mash diet containing 25% lower nutrient density, fed daily; 3) scatter: standard diet in pellet form scattered on litter, fed daily; 4) skip-a-day: standard mash diet, fed on alternate days; or 5) grading: standard mash diet, fed daily (birds sorted into low, average, and high BW groups every 4 wk). Birds on the high fiber treatment consumed more feed (P<0.0001) and had the highest feed conversion ratio (FCR; P<0.004) but the lowest ME to gain and CP to gain ratios (P≤0.002). Skip-a-day treatment pullets consumed more ME and CP than birds in any other treatment (P<0.001). Grading yielded the highest BW uniformity at 22 wk of age (CV=6.2%), while control and high fiber treatment groups were least uniform (CV>15%; P<0.0001). Skip-a-day feed restriction produced birds with the significantly lowest breast muscle and highest liver weight compared to all other treatments (P<0.05). Variation in shank length, chest width, and breast muscle was lowest in the grading treatment, whereas the CV for fat pad and liver was lowest in the skip-a-day treatment. In this trial, broiler breeder target BW profiles were achieved using combinations of quantitative and qualitative feed restriction, or preemptive management practices. Qualitative diet dilution and skip-a-day management did little to increase flock uniformity relative to the control during the most intense period of feed restriction (7 to 19 wk). Scatter feeding increased flock uniformity to a small degree, whereas grading yielded the highest increase in BW and carcass trait uniformity. © 2015 Poultry Science Association Inc.

  2. Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy.

    PubMed

    Wang, Sicong; Cao, Yaoyu; Li, Xiangping

    2017-12-01

    In this Letter, we numerically demonstrate the all-optical generation of uniformly oriented in-plane magnetization with near-unity purity (more than 99%) under a 4π microscopic configuration. This is achieved through focusing two counter-propagating vector beams consisting of coherently configured linear and radial components. Based on the Debye diffraction theory, constructive and destructive interferences of the focal field components can be tailored under the 4π configuration to generate high-purity uniformly polarized transverse and longitudinal electric-field components in the center of the focal region. Consequently, near-unity purity in-plane magnetization with a uniform orientation within the focal volume defined by the full width at half-maximum can be created through the inverse Faraday effect. In addition, it reveals that the purity of the in-plane magnetization is robust against the numerical aperture of the focal lens. This result expands the flexibility of magnetization manipulations through light and holds great potential in all-optical magnetic recording and spintronics.

  3. Pulsed Electrodeposition of Ni with Uniform Co-Deposition of Micron Sized Diamond Particles on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Mahato, Neelima

    Nanocrystalline nickel was deposited on annealed copper substrate of unit surface area (1 cm2) via pulsed electrodeposition technique using potentiostat (model 263A, Princeton Applied Research, USA) from Watts bath containing nickel sulfate, nickel chloride ,boric acid and sodium citrate. Diamond particles of three different dimensions, viz., 1, 3, and 6 micron were added separately (5 g/L) to the watts bath and co-deposited along with nanocrystalline nickel. The temperature was kept constant at 55 °C. The solution was ultrasonicated for 45-60 minutes prior to deposition to disperse the diamond particles uniformly in the bath. Depositions were carried out at different current densities, viz., 50, 100,150 and 200 mA/ cm2 for different durations, i.e.7, 14 and 21 minutes and best results are optimized for 200mA/cm2 so it is used for all process here .Scanning electron micrographs (SEM) show uniform deposition of microstructure of micron diamond on the surface of copper embedded in the nickel matrix. Elemental mapping confirmed uniform deposition of nickel and diamond with almost no cracks or pits. Mechanical properties of the sample such as, Vicker's hardness increased abruptly after the electrodeposition. Improved microstructural and mechanical properties were found in the case of electrodeposited surfaces containing followed by 3 and 6 micron diamond. The properties were also found better than those processed via stirring the solution during deposition.

  4. 7 CFR 1425.13 - Uniform marketing agreement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Uniform marketing agreement. 1425.13 Section 1425.13... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.13 Uniform marketing agreement. (a) A CMA must enter into a uniform marketing agreement with each member who...

  5. 7 CFR 1425.13 - Uniform marketing agreement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Uniform marketing agreement. 1425.13 Section 1425.13... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.13 Uniform marketing agreement. (a) A CMA must enter into a uniform marketing agreement with each member who...

  6. 7 CFR 1425.13 - Uniform marketing agreement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Uniform marketing agreement. 1425.13 Section 1425.13... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.13 Uniform marketing agreement. (a) A CMA must enter into a uniform marketing agreement with each member who...

  7. Measurement of Magnetic Field Uniformity For a Neutron Electric Dipole Moment Detector with New Lead Endcaps

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel

    2016-09-01

    Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.

  8. Fabrication of highly uniform and porous MgF2 anti-reflective coatings by polymer-based sol-gel processing on large-area glass substrates.

    PubMed

    Raut, Hemant Kumar; Dinachali, Saman Safari; Ansah-Antwi, Kwadwo Konadu; Ganesh, V Anand; Ramakrishna, Seeram

    2013-12-20

    Despite recent progress in the fabrication of magnesium fluoride (MgF2) anti-reflective coatings (ARCs), simple, effective and scalable sol-gel fabrication of MgF2 ARCs for large-area glass substrates has prospective application in various optoelectronic devices. In this paper, a polymer-based sol-gel route was devised to fabricate highly uniform and porous MgF2 ARCs on large-area glass substrates. A sol-gel precursor made of polyvinyl acetate and magnesium trifluoroacetate assisted in the formation of uniformly mesoporous MgF2 ARCs on glass substrates, leading to the attainment of a refractive index of ~1.23. Systematic optimization of the thickness of the ARC in the sub-wavelength regime led to achieving ~99.4% transmittance in the case of the porous MgF2 ARC glass. Precise control of the thickness of porous MgF2 ARC glass also resulted in a mere ~0.1% reflection, virtually eliminating reflection off the glass surface at the target wavelength. Further manipulation of the thickness of the ARC on either side of the glass substrate led to the fabrication of relatively broadband, porous MgF2 ARC glass.

  9. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  10. 32 CFR 199.18 - Uniform HMO Benefit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Uniform HMO Benefit. 199.18 Section 199.18... Benefit. (a) In general. There is established a Uniform HMO Benefit. The purpose of the Uniform HMO benefit is to establish a health benefit option modeled on health maintenance organization plans. This...

  11. 78 FR 48366 - Civilian Health and Medical Program of the Uniformed Services (CHAMPUS); TRICARE Uniform Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Organization (HMO) Benefit--Prime Enrollment Fee Exemption for Survivors of Active Duty Deceased Sponsors and... Survivors of Active Duty Deceased Sponsors and Medically Retired Uniformed Services Members and their... uniform within the following groups: dependents of active duty members in [[Page 48367

  12. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-01

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  13. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates.

    PubMed

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-06

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  14. 46 CFR 310.63 - Uniforms and textbooks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Uniforms and textbooks. 310.63 Section 310.63 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRAINING MERCHANT MARINE TRAINING Admission and Training of Midshipmen at the United States Merchant Marine Academy § 310.63 Uniforms and textbooks. The Academy shall supply midshipmen uniforms an...

  15. Surface Layer Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (SL-MALDI-ToF-MS) Analysis of Polymer Blend Surface Composition

    NASA Astrophysics Data System (ADS)

    Hill, Jacob A.

    was extended to the surfaces of blends of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxyethyl ends. Blends of all compositions less than 90 wt. % functionalized chains showed depletion. Finally, the challenge of determining lateral variations in the surface composition has been addressed with the development of SL-MALDI-ToF-MS imaging (SL-MALDI-ToF-MSI). Key to developing imaging capability was improving the lateral uniformity of the matrix deposition. This uniformity was achieved using solvent free sublimation of matrix and salt onto the sample's surface. The capabilities of SL-MALDI-ToF-MSI were demonstrated by imaging the absence of material due to masking during material deposition, mechanical scribing or solvent perturbation at the surface of low molecular weight poly(methyl methacrylate) and polystyrene thin films. SL-MALDI-ToF MSI was made possible through the first uniform, solvent free simultaneous sublimation of matrix and salt onto the material's surface.

  16. Pressure fluctuations on the surface of a cylinder in uniform flow

    NASA Technical Reports Server (NTRS)

    Ayoub, A.; Karamcheti, K.

    1976-01-01

    The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.

  17. Facile fabrication of uniform hierarchical structured (UHS) nanocomposite surface with high water repellency and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Aliofkhazraei, M.; Forooshani, H. Mojiri; Rouhaghdam, A. Sabour

    2018-04-01

    In the present study, two-stage process for the fabrication of superhydrophobic Ni-Cu-TiO2 nanocomposite coatings on the copper substrate has been introduced. Surface modification was performed on the electrodeposited coatings by myristic acid-ethanol solution to achieve superhydrophobicity. Additionally, in order to further study the roughness effect, instead of addition of copper ions in electrodeposition bath, three substrates were roughened by electrochemical etching method. Water repellency properties were studied through measurement of static and dynamic contact angles, and performing bouncing test, self-cleaning and water-jet evaluation. The samples were electrodeposited in various current densities, and the highest corrosion resistance and water repellency properties were obtained for the sample which was electrodeposited in two consecutive steps and modified by a fatty acid called myristic acid (which significantly reduces surface energy of the coating). The highest water contact angle (161°) and the lowest contact angle hysteresis (3°) were obtained for the sample which was coated by 10 mA/cm2 (144 min) and 20 mA/cm2 (18 min), respectively. Since this approach does not require any sophisticated equipment and materials, it shows promising future in the fabrication of superhydrophobic coatings.

  18. Sun protection provided by regulation school uniforms in Australian schools: an opportunity to improve personal sun protection during childhood.

    PubMed

    Turner, Denise; Harrison, Simone L

    2014-01-01

    Childhood sun exposure is linked to excessive pigmented mole development and melanoma risk. Clothing provides a physical barrier, protecting skin from ultraviolet radiation (UVR). Extending sleeves to elbow length and shorts to knee length has been shown to significantly reduce mole acquisition in preschoolers from tropical Queensland. We used publicly available uniform images and guidelines from primary schools in Townsville (latitude 19.25°S, n = 43 schools), Cairns (16.87°S, n = 46) and the Atherton Tablelands (17.26°S, n = 23) in tropical Australia to objectively determine the body surface proportion covered by regulation school uniforms. Uniforms of nongovernment, large (≥800 students), urban, educationally advantaged schools with comprehensive sun protection policies covered more skin than those of government schools (63.2% vs 62.0%; P < 0.001), smaller schools (63.4% vs 62.3%; P = 0.009), rural (62.7% vs 61.9%; P = 0.002) and educationally disadvantaged schools (62.8% vs 62.3%; P < 0.001) with underdeveloped sun protection policies (62.8% vs 62.2%; P = 0.002). Overall, SunSmart and non-SunSmart school uniforms covered identical body surface proportions (62.4%, P = 0.084). Although wearing regulation school uniforms is mandatory at most Australian primary schools, this opportunity to improve children's sun protection is largely overlooked. Recent evidence suggests that even encouraging minor alterations to school uniforms (e.g. slightly longer sleeves/dresses/skirts/shorts) to increase skin coverage may reduce mole acquisition and melanoma risk, especially in high-risk populations. © 2014 The American Society of Photobiology.

  19. 78 FR 34292 - Civilian Health and Medical Program of the Uniformed Services (CHAMPUS); TRICARE Uniform Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Organization (HMO) Benefit--Prime Enrollment Fee Exemption for Survivors of Active Duty Deceased Sponsors and... Survivors of Active Duty Deceased Sponsors and Medically Retired Uniformed Services Members and their... uniform within the following groups: dependents of active duty members in pay grades of E-4 and below...

  20. 7 CFR 52.1007 - Uniformity of size.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Uniformity of size. 52.1007 Section 52.1007... PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Dates Factors of Quality § 52.1007... uniform in size may be given a score of 9 or 10 points. “Practically uniform in size” means that not more...

  1. Continuity of pullback and uniform attractors

    NASA Astrophysics Data System (ADS)

    Hoang, Luan T.; Olson, Eric J.; Robinson, James C.

    2018-03-01

    We study the continuity of pullback and uniform attractors for non-autonomous dynamical systems with respect to perturbations of a parameter. Consider a family of dynamical systems parameterized by λ ∈ Λ, where Λ is a complete metric space, such that for each λ ∈ Λ there exists a unique pullback attractor Aλ (t). Using the theory of Baire category we show under natural conditions that there exists a residual set Λ* ⊆ Λ such that for every t ∈ R the function λ ↦Aλ (t) is continuous at each λ ∈Λ* with respect to the Hausdorff metric. Similarly, given a family of uniform attractors Aλ, there is a residual set at which the map λ ↦Aλ is continuous. We also introduce notions of equi-attraction suitable for pullback and uniform attractors and then show when Λ is compact that the continuity of pullback attractors and uniform attractors with respect to λ is equivalent to pullback equi-attraction and, respectively, uniform equi-attraction. These abstract results are then illustrated in the context of the Lorenz equations and the two-dimensional Navier-Stokes equations.

  2. Uniform circular array for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Engholm, Marcus

    2008-03-01

    Phased array with all-azimuth angle coverage would be extremely useful in structural health monitoring (SHM) of planar structures. One method to achieve the 360° coverage is to use uniform circular arrays (UCAs). In this paper we present the concept of UCA adapted for SHM applications. We start from a brief presentation of UCA beamformers based on the principle of phase mode excitation. UCA performance is illustrated by the results of beamformer simulations performed for the narrowband and wideband ultrasonic signals. Preliminary experimental results obtained with UCA used for the reception of ultrasonic signals propagating in an aluminum plate are also presented.

  3. Advances in iterative non-uniformity correction techniques for infrared scene projection

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; LaVeigne, Joe; Prewarski, Marcus; Nehring, Brian

    2015-05-01

    Santa Barbara Infrared (SBIR) is continually developing improved methods for non-uniformity correction (NUC) of its Infrared Scene Projectors (IRSPs) as part of its comprehensive efforts to achieve the best possible projector performance. The most recent step forward, Advanced Iterative NUC (AI-NUC), improves upon previous NUC approaches in several ways. The key to NUC performance is achieving the most accurate possible input drive-to-radiance output mapping for each emitter pixel. This requires many highly-accurate radiance measurements of emitter output, as well as sophisticated manipulation of the resulting data set. AI-NUC expands the available radiance data set to include all measurements made of emitter output at any point. In addition, it allows the user to efficiently manage that data for use in the construction of a new NUC table that is generated from an improved fit of the emitter response curve. Not only does this improve the overall NUC by offering more statistics for interpolation than previous approaches, it also simplifies the removal of erroneous data from the set so that it does not propagate into the correction tables. AI-NUC is implemented by SBIR's IRWindows4 automated test software as part its advanced turnkey IRSP product (the Calibration Radiometry System or CRS), which incorporates all necessary measurement, calibration and NUC table generation capabilities. By employing AI-NUC on the CRS, SBIR has demonstrated the best uniformity results on resistive emitter arrays to date.

  4. Impact of School Uniforms on Student Discipline and the Learning Climate: A Comparative Case Study of Two Middle Schools with Uniform Dress Codes and Two Middle Schools without Uniform Dress Codes

    ERIC Educational Resources Information Center

    Dulin, Charles Dewitt

    2016-01-01

    The purpose of this research is to evaluate the impact of uniform dress codes on a school's climate for student behavior and learning in four middle schools in North Carolina. The research will compare the perceptions of parents, teachers, and administrators in schools with uniform dress codes against schools without uniform dress codes. This…

  5. Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation

    NASA Technical Reports Server (NTRS)

    Patterson, Byron W.; Glaab, Louis J.

    2012-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.

  6. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  7. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  8. Mathematical model of the metal mould surface temperature optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz; Srb, Radek, E-mail: radek.srb@tul.cz

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensitymore » is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.« less

  9. Measurement of non-uniform residual stresses by combined Moiré interferometry and hole-drilling method: Theory, experimental method and applications

    NASA Astrophysics Data System (ADS)

    Ya, Min; Dai, Fulong; Xie, Huimin; Lü, Jian

    2003-12-01

    Hole-drilling method is one of the most convenient methods for engineering residual stress measurement. Combined with moiré interferometry to obtain the relaxed whole-field displacement data, hole-drilling technique can be used to solve non-uniform residual stress problems, both in-depth and in-plane. In this paper, the theory of moiré interferometry and incremental hole-drilling (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation. An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented. Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.

  10. A method for real time detecting of non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2015-04-01

    The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple

  11. Uniform-droplet spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less

  12. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  13. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  14. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    PubMed

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  15. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    PubMed Central

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  16. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells.

    PubMed

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

  17. Loss of pace capture after radiofrequency application predicts the formation of uniform transmural lesions.

    PubMed

    Kosmidou, Ioanna; Houde-Walter, Haley; Foley, Lori; Michaud, Gregory

    2013-04-01

    Lesion transmurality is critical to procedural success in radiofrequency catheter ablation. We sought to determine whether loss of pace capture (PC) with high-output unipolar and/or bipolar pacing predicts the formation of uniform transmural lesions. Ten juvenile swine were anaesthetized and prepped under sterile conditions. Seventy-seven isolated radiofrequency applications (RFAs) using a 3.5 mm tip-irrigated catheter were available for analysis. Pace capture was assessed before and after RFA at 10 mA/2 ms and catheter stability verified with a three-dimensional mapping system. Pace capture was defined as 1 : 1 or intermittent local capture per paced beat. Myocardial contact and catheter orientation were assessed using intracardiac echo. Endocardial and epicardial lesion areas were measured after sacrifice using 2,3,5-triphenyltetrazolium chloride staining. A uniform transmural lesion was defined as an epicardial-to-endocardial surface ratio (epi/endo) ≥ 76%. Seventy-four per cent of lesions were transmural and 55.8% of lesions had an epi/endo ratio ≥ 76%. In all, 79.2% of lesions associated with loss of bipolar PC were uniform whereas 20.8% of lesions with loss of bipolar PC were non-uniform (P = 0.006). Loss of bipolar PC was associated with higher mean epicardial/endocardial ratio compared with lesions with persistent PC (P = 0.019). Echocardiographic evidence of optimal catheter contact during RFA improved the predictive accuracy of uniform lesion formation when loss of bipolar PC was noted after RFA. Loss of bipolar PC after RFA is associated with the formation of uniform lesions in atrial tissue. Optimal catheter contact further improves the predictive accuracy associated with loss of PC.

  18. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    NASA Astrophysics Data System (ADS)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  19. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays.

    PubMed

    Liu, Jianpeng; Li, Xin; Chen, Shuo; Zhang, Sichao; Xie, Shanshan; Xu, Chen; Chen, Yifang; Deng, Biao; Mao, Chenwen

    2017-05-01

    In the development of full-field transmission X-ray microscopy for basic study in science and technology, a condenser capable of providing intense illumination with high uniformity and stability on tested specimens in order to achieve high-quality images is essential. The latest design of a square-shaped condenser based on diffractive gratings has demonstrated promising uniformity in illumination. This paper describes in more detail the development of such a beam shaper for hard X-rays at 10 keV with regard to its design, manufacture and optical characterization. The effect of the grating profile on the diffracted intensity has been theoretically predicted by numerical simulation using the finite-difference time-domain method. Based on this, the limitations of the grating-based condenser are discussed.

  20. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  1. Study of a magnetorheological fluid submitted to a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Fonseca, H. A.; Gonzalez, E.; Restrepo, J.

    2017-12-01

    In this work, the rheological and hyperfine properties of a magnetorheological fluid (MRF) under the action of a uniform external magnetic field are analysed. Powders of native mineral magnetite of micrometric particle size, after a pulverization process, form the solute of these fluids. The sizes of these samples are selected by sieving in order to obtain sizes of around 20µm and 45µm. The powders are characterized by means of Mössbauer spectroscopy to analyse their stoichiometry giving rise to a non-stoichiometric magnetite Fe2.96O4 in addition to a hematite component. Result of viscosity and shear stress in the low-speed regime were analysed using the Hershel Buckley method. In particular, the case of surface tension it decreases with the application of a uniform magnetic flux density, which is understood in terms of a phase separation due to the formation of mesoscopic structures, thus decreasing the cohesion force and increasing the adhesion force.

  2. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    NASA Astrophysics Data System (ADS)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2014-02-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  3. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    PubMed

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  4. Computerized Design and Analysis of Face-Milled, Uniform Tooth Height Spiral Bevel Gear Drives

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Wang, Anngwo; Handschuh, R. F.

    1996-01-01

    Face-milled spiral bevel gears with uniform tooth height are considered. An approach is proposed for the design of low noise and localized bearing contact of such gears. The approach is based on the mismatch of contacting surfaces and permits two types of bearing contact either directed longitudinally or across the surface to be obtained. A Tooth Contact Analysis (TCA) computer program was developed. This analysis was used to determine the influence of misalignment on meshing and contact of the spiral bevel gears. A numerical example that illustrates the developed theory is provided.

  5. A School Uniform Program That Works.

    ERIC Educational Resources Information Center

    Loesch, Paul C.

    1995-01-01

    According to advocates, school uniforms reduce gang influence, decrease families' clothing expenditures, and help mitigate potentially divisive cultural and economic differences. Aiming to improve school climate, a California elementary school adopted uniforms as a source of pride and affiliation. This article describes the development of the…

  6. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also

  7. The Moon Mineralogy (M3) Imaging Spectrometer: Early Assessment of the Spectral, Radiometric, Spatial and Uniformity Properties

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.; hide

    2009-01-01

    The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.

  8. Impact of electrode geometry on an atmospheric pressure surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Hasan, M. I.; Morabit, Y.; Dickenson, A.; Walsh, J. L.

    2017-06-01

    Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.

  9. School Uniforms and Discourses on Childhood.

    ERIC Educational Resources Information Center

    Bodine, Ann

    2003-01-01

    This ethnographic study examined the introduction of school uniforms in the public schools of one California city. Findings indicated that the uniform issue intersected with issues such as student safety and violence, family stress, egalitarianism, competitive dressing, and a power struggle over shaping the childhood environment. It was concluded…

  10. MBE growth of vertical-cavity surface-emitting laser structure without real-time monitoring

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Tsou, Y.; Tsai, C. M.

    1999-05-01

    Evaluation of producing a vertical-cavity surface-emitting laser (VCSEL) epitaxial structure by molecular beam epitaxy (MBE) without resorting to any real-time monitoring technique is reported. Continuous grading of Al xGa 1- xAs between x=0.12 to x=0.92 was simply achieved by changing the Al and Ga cell temperatures in no more than three steps per DBR period. Highly uniform DBR and VCSEL structures were demonstrated with a multi-wafer MBE system. Run-to-run standard deviation of reflectance spectrum center wavelength was 0.5% and 1.4% for VCSEL etalon wavelength.

  11. Multilayer self-organization of InGaAs quantum wires on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zhiming M.; Kunets, Vasyl P.; Xie, Yanze Z.; Schmidbauer, Martin; Dorogan, Vitaliy G.; Mazur, Yuriy I.; Salamo, Gregory J.

    2010-12-01

    Molecular-Beam Epitaxy growth of multiple In 0.4Ga 0.6As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In 0.4Ga 0.6As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In 0.4Ga 0.6As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.

  12. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    PubMed

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  13. Research on effect of emission uniformity on X-band relativistic backward oscillator using conformal PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zaigao

    2016-07-15

    Explosive emission cathodes (EECs) are adopted in relativistic backward wave oscillators (RBWOs) to generate intense relativistic electron beam. The emission uniformity of the EEC can render saturation of the power generation unstable and the output mode impure. However, the direct measurement of the plasma parameters on the cathode surface is quite difficult and there are very few related numerical study reports about this issue. In this paper, a self-developed three-dimensional conformal fully electromagnetic particle in cell code is used to study the effect of emission uniformity on the X-band RBWO; the electron explosive emission model and the field emission modelmore » are both implemented in the same cathode surface, and the local field enhancement factor is also considered in the field emission model. The RBWO with a random nonuniform EEC is thoroughly studied using this code; the simulation results reveal that when the area ratio of cathode surface for electron explosive emission is 80%, the output power is unstable and the output mode is impure. When the annular EEC does not emit electron in the angle range of 30°, the RBWO can also operate normally.« less

  14. Symptoms related to new flight attendant uniforms.

    PubMed

    McNeely, Eileen; Staffa, Steven J; Mordukhovich, Irina; Coull, Brent

    2018-01-03

    Flight attendants at Alaska Airlines reported health symptoms after the introduction of new uniforms in 2011. The airline replaced the uniforms in 2014 without acknowledging harm. To understand possible uniform-related health effects, we analyzed self-reported health symptoms in crew who participated in the Harvard Flight Attendant Health Study between 2007 and 2015, the period before, during, and after the introduction of new uniforms. We calculated a standardized prevalence of respiratory, dermatological and allergic symptoms at baseline, as well as during and after uniform changes in 684 flight attendants with a varying number of surveys completed across each time point. We used Generalized Estimating Equations (GEE) to model the association between symptoms at baseline versus the exposure period after adjusting for age, gender and smoking status and weighting respondents for the likelihood of attrition over the course of the study period. We found the following symptom prevalence (per 100) increased after the introduction of new uniforms: multiple chemical sensitivity (10 vs 5), itchy/irritated skin (25 vs 13), rash/hives (23 vs 13), itchy eyes (24 vs 14), blurred vision (14 vs 6), sinus congestion (28 vs 24), ear pain (15 vs 12), sore throat (9 vs 5), cough (17 vs 7), hoarseness/loss of voice (12 vs 3), and shortness of breath (8 vs 3). The odds of several symptoms significantly increased compared to baseline after adjusting for potential confounders. This study found a relationship between health complaints and the introduction of new uniforms in this longitudinal occupational cohort.

  15. Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space

    PubMed Central

    Lai, Rongjie; Wang, Danny J.J.; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W.

    2014-01-01

    In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a cross-validation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects. PMID:24686245

  16. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the

  17. Determining irrigation distribution uniformity and efficiency for nurseries

    Treesearch

    R. Thomas Fernandez

    2010-01-01

    A simple method for testing the distribution uniformity of overhead irrigation systems is described. The procedure is described step-by-step along with an example. Other uses of distribution uniformity testing are presented, as well as common situations that affect distribution uniformity and how to alleviate them.

  18. Luminal surface fabrication for cardiovascular prostheses

    NASA Technical Reports Server (NTRS)

    Deininger, William D. (Inventor); Gabriel, Stephen B. (Inventor)

    1988-01-01

    A method is provided for forming a mold surface with microscopic upstanding pillars for molding the inside surface of a vascular prostheses (synthetic blood vessel). The mold article is formed from a quantity of Teflon (polytetrafluoroethylene) which has a polished, flat surface on which a gold film has been sputter deposited. A photoresist layer, which cannot adhere directly to Teflon, adheres to the gold. The photoresist is exposed and developed leaving a sputter resistant mask defining the desired pillar locations, and the resulting workpiece is ion etched to form the pillars in the Teflon. A synthetic blood vessel material is cast against the Teflon mold to form blind recesses on the inside of the synthetic blood vessel, with the recesses being of predetermined uniform cross section and present in a predetermined uniform pattern.

  19. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi

    2018-04-01

    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  20. HEAT TRANSFER FROM SURFACES OF NON-UNIFORM TEMPERATURE DISTRIBUTION. PART II. TURBULENT TRANSFER FROM ISOTHERMAL SPANWISE STRIPS ON A FLAT PLATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sogin, H.H.; Goldstein, R.J.

    1960-02-01

    Experiments were performed on mass transfer by forced convection from naphthalene strips on a flat plate to an air stream at ordinary temperature and pressure. Turbulence was induced in the boundary layer by means of a wire strip. In all cases there was a hydrodynamic starting length upstream of the strips. The ratio of this inert length to the total length was varied from about 0.80 to 0.96. The flow was practically incompressible with Reynolds number, based on the total length, varying from 175,000 to 486,000. The Schmidt number was 2.5. The experimental results fell in proximity to the Sebanmore » step function factor when they were reduced after the massmomentum analysis of Deissler and Loeffler for a surface of uniform vapor pressure. When Karman's formulation of the mass- momentum analogy was assumed, the data fell between the values predicted by the Seban and by the Rubesin expression for the step function factor. The results were well correlated by the Colburn analogy in conjunction with the Rubesin step function factor. (auth)« less

  1. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers.

    PubMed

    Le, Nguyen Hoai An; Van Phan, Hoang; Yu, Jiaqi; Chan, Hak-Kim; Neild, Adrian; Alan, Tuncay

    2018-01-01

    This article presents an acoustically enhanced microfluidic mixer to generate highly uniform and ultra-fine nanoparticles, offering significant advantages over conventional liquid antisolvent techniques. The method employed a 3D microfluidic geometry whereby two different phases - solvent and antisolvent - were introduced at either side of a 1 μm thick resonating membrane, which contained a through-hole. The vibration of the membrane rapidly and efficiently mixed the two phases, at the location of the hole, leading to the formation of nanoparticles. The versatility of the device was demonstrated by synthesizing budesonide (a common asthma drug) with a mean diameter of 135.7 nm and a polydispersity index of 0.044. The method offers a 40-fold reduction in the size of synthesized particles combined with a substantial improvement in uniformity, achieved without the need of stabilizers.

  2. Surface modification to waveguides

    DOEpatents

    Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  3. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.

    2013-09-01

    Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.

  4. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector

    NASA Astrophysics Data System (ADS)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration

    2017-06-01

    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  5. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    PubMed

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    Nanocrystals exhibit interesting electrical, optical, magnetic, and chemical properties not achieved by their bulk counterparts. Consequently, to fully exploit the potential of nanocrystals, the synthesis of nanocrystals must focus on producing materials with uniform size and shape. Top-down physical processes can produce large quantities of nanocrystals, but controlling the size is difficult with these methods. On the other hand, colloidal chemical synthetic methods can produce uniform nanocrystals with a controlled particle size. In this Account, we present our synthesis of uniform nanocrystals of various shapes and materials, and we discuss the kinetics of nanocrystal formation. We employed four different synthetic approaches including thermal decomposition, nonhydrolytic sol-gel reactions, thermal reduction, and use of reactive chalcogen reagents. We synthesized uniform oxide nanocrystals via heat-up methods. This method involved slowly heat-up reaction mixtures composed of metal precursors, surfactants, and solvents from room temperature to high temperature. We then held reaction mixtures at an aging temperature for a few minutes to a few hours. Kinetics studies revealed a three-step mechanism for the synthesis of nanocrystals through the heat-up method with size distribution control. First, as metal precursors thermally decompose, monomers accumulate. At the aging temperature, burst nucleation occurs rapidly; at the end of this second phase, nucleation stops, but continued diffusion-controlled growth leads to size focusing to produce uniform nanocrystals. We used nonhydrolytic sol-gel reactions to synthesize various transition metal oxide nanocrystals. We employed ester elimination reactions for the synthesis of ZnO and TiO(2) nanocrystals. Uniform Pd nanoparticles were synthesized via a thermal reduction reaction induced by heating up a mixture of Pd(acac)(2), tri-n-octylphosphine, and oleylamine to the aging temperature. Similarly, we synthesized

  6. Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition.

    PubMed

    Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng

    2012-10-08

    In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.

  7. 7 CFR 51.1407 - Fairly uniform in color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly uniform in color. 51.1407 Section 51.1407... Definitions § 51.1407 Fairly uniform in color. Fairly uniform in color means that the shells do not show sufficient variation in color to materially detract from the general appearance of the lot. ...

  8. 7 CFR 51.1407 - Fairly uniform in color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly uniform in color. 51.1407 Section 51.1407... Definitions § 51.1407 Fairly uniform in color. Fairly uniform in color means that the shells do not show sufficient variation in color to materially detract from the general appearance of the lot. ...

  9. Semiconductor laser insert with uniform illumination for use in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Charamisinau, Ivan; Happawana, Gemunu; Evans, Gary; Rosen, Arye; Hsi, Richard A.; Bour, David

    2005-08-01

    A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient's body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.

  10. Porous silicon film formation from silicon-nanoparticle inks: The possibility of effects of van der Waals interactions on uniform film formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki; Nagoya, Wataru; Moriki, Kazuya; Sato, Seiichi

    2018-02-01

    Porous Si films were formed on electrically insulative, semiconductive, and conductive substrates by depositing aqueous and nonaqueous Si nanoparticle inks. In this study, we focused on whether the Si ink deposition resulted in the formation of uniform porous Si films on various substrates. As a result of the experiments, we found that the inks showing better substrate wettabilities did not necessarily result in more uniform film formation on the substrates. This implies that the ink-solvent wettability and the nanoparticle-substrate interactions play important roles in the uniform film formation. As one of the interactions, we discussed the influence of van der Waals interactions by calculating the Hamaker constants. The calculation results indicated that the uniform film formation was hampered when the nanoparticle surface had a repulsive van der Waals interaction with the substrate.

  11. Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica.

    PubMed

    He, Shengguan; Chen, Feng; Liu, Keyin; Yang, Qing; Liu, Hewei; Bian, Hao; Meng, Xiangwei; Shan, Chao; Si, Jinhai; Zhao, Yulong; Hou, Xun

    2012-09-15

    We demonstrate an improved femtosecond laser irradiation followed by chemical etching process to create complex three-dimensional (3D) microchannels with arbitrary length and uniform diameter inside fused silica. A segmented chemical etching method of introducing extra access ports and a secondary power compensation is presented, which enables the fabrication of uniform 3D helical microchannels with length of 1.140 cm and aspect-ratio of 522. Based on this method, a micromixer which consists of a long helical microchannel and a y-tape microchannel was created inside the fused silica. We measured the mixing properties of the micromixer by injecting the phenolphthalein and NaOH solution through the two inlets of the y-tape microchannel. A rapid and efficient mixing was achieved in the 3D micromixer at a low Reynolds number.

  12. Effects of beam irregularity on uniform scanning

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun

    2016-09-01

    An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.

  13. Development of a large-area planar surface-wave plasma source with a cavity launcher driven by a 915 MHz UHF wave

    NASA Astrophysics Data System (ADS)

    Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki

    2013-04-01

    A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.

  14. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 51.1447 Fairly uniform in color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications. ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly uniform in color. 51.1447 Section 51.1447...

  15. 7 CFR 51.1447 - Fairly uniform in color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 51.1447 Fairly uniform in color. Fairly uniform in color means that 90 percent or more of the kernels in the lot have skin color within the range of one or two color classifications. ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly uniform in color. 51.1447 Section 51.1447...

  16. 7 CFR 51.891 - Uniform in appearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Vinifera Type) 1 Definitions § 51.891 Uniform in appearance. Uniform in appearance means that not more than... materially detract from the appearance of the contents of the individual container, and that the stems are...

  17. 7 CFR 51.891 - Uniform in appearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Vinifera Type) 1 Definitions § 51.891 Uniform in appearance. Uniform in appearance means that not more than... materially detract from the appearance of the contents of the individual container, and that the stems are...

  18. Driving Cell Seeding Using Vibration Induced Surface Waves

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Friend, James; Yeo, Leslie

    2007-11-01

    The ability to load cells into scaffold matrices is an important step in in-vitro cell culturing. Efficient and rapid cell seeding is however difficult and has traditionally been carried out using a static method by allowing gravity to drive the perfusion of the cell suspension into the porous scaffold. Nevertheless, due to the large capillary pressures associated with the small scaffold pore dimensions, the static cell seeding method is both slow and inefficient; the majority of cells are distributed close to the surface of the scaffold due to the inability of the fluid to penetrate deep into the scaffold. By driving the liquid into the scaffold using small amplitude surface vibrations on a piezoelectric substrate, we demonstrate that the cells can be infused much quicker (approximately 10 seconds) than if allowed to perfuse by gravity alone, which requires seeding times in excess of 30 minutes. Greater penetration of the fluid and hence the cells into the scaffold is also achieved with the vibration forcing, thus giving rise to a more uniform cell distribution within the scaffold. Moreover, we have verified that 80% of the yeast cells seeded by the surface waves remained viable.

  19. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  20. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  1. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  2. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    ERIC Educational Resources Information Center

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  3. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    NASA Astrophysics Data System (ADS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-02-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.

  4. Active Control of Vortex Induced Vibrations of a Tethered Sphere in a Uniform Air Flow

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Greenblatt, David; Zvi Katz, Amit

    2011-11-01

    VIV of two heavy tethered spheres (D = 40 mm, m* = msphere/ ρfVsphere = 21 and 67, L* = L / D = 2.50) were studied in a wind tunnel under uniform free stream velocities up to U* = U /fn D = 15.9, with and without acoustic control. Control was achieved using two speakers mounted on either side of the spheres and driven in-phase at f= 35Hz (f* = 22.3). In the non-controlled case, the bifurcation map of transverse sphere oscillation amplitude, Ay, showed stationary motion as well as periodic and non-stationary oscillations with increasing U*. For m* = 21, Aymax was about twice as large as for m* = 67. Acoustic control dampened Aymax in the periodic region (m* = 67) and increased Aymax in the non-stationary region for both spheres. Sphere boundary layer dynamics in the three different bifurcation regions were studied using time resolved PIV with a horizontal laser sheet positioned at the center of the sphere. The field of view was 55 × 55 mm2 containing one quarter of the sphere. Results will be presented on the vortex dynamics near the sphere's surface with and without acoustic control.

  5. Surface modification to waveguides

    DOEpatents

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  6. School Dress Codes and Uniform Policies.

    ERIC Educational Resources Information Center

    Anderson, Wendell

    2002-01-01

    Opinions abound on what students should wear to class. Some see student dress as a safety issue; others see it as a student-rights issue. The issue of dress codes and uniform policies has been tackled in the classroom, the boardroom, and the courtroom. This Policy Report examines the whole fabric of the debate on dress codes and uniform policies…

  7. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  8. Uniforms, status and professional boundaries in hospital.

    PubMed

    Timmons, Stephen; East, Linda

    2011-11-01

    Despite their comparative neglect analytically, uniforms play a key role in the delineation of occupational boundaries and the formation of professional identity in healthcare. This paper analyses a change to the system of uniforms in one UK hospital, where management have required all professions (with the exception of doctors) to wear the same 'corporate' uniform. Focus groups were conducted with the professionals and patients. We analyse this initiative as a kind of McDonaldisation, seeking to create a new 'corporate' worker whose allegiance is principally to the organisation, rather than a profession. Our findings show how important uniforms are to their wearers, both in terms of the defence of professional boundaries and status, as well as the construction of professional identity. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  9. Drug release from slabs and the effects of surface roughness.

    PubMed

    Kalosakas, George; Martini, Dimitra

    2015-12-30

    We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The Uniform Reporting Program

    ERIC Educational Resources Information Center

    Mansfield, Stephen J.

    1976-01-01

    The Uniform Reporting Program of the American College Health Association generalizes on the problems of health service management and then identifies specific measures and programs to relieve those problems. (MM)

  11. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  12. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  13. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

    PubMed Central

    Gao, Yang; Liu, Zhibo; Sun, Dong-Ming; Huang, Le; Ma, Lai-Peng; Yin, Li-Chang; Ma, Teng; Zhang, Zhiyong; Ma, Xiu-Liang; Peng, Lian-Mao; Cheng, Hui-Ming; Ren, Wencai

    2015-01-01

    Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the self-limited catalytic surface growth of uniform monolayer WS2 single crystals of millimetre size and large-area films by ambient-pressure CVD on Au. The weak interaction between the WS2 and Au enables the intact transfer of the monolayers to arbitrary substrates using the electrochemical bubbling method without sacrificing Au. The WS2 shows high crystal quality and optical and electrical properties comparable or superior to mechanically exfoliated samples. We also demonstrate the roll-to-roll/bubbling production of large-area flexible films of uniform monolayer, double-layer WS2 and WS2/graphene heterostructures, and batch fabrication of large-area flexible monolayer WS2 film transistor arrays. PMID:26450174

  14. Tracking control of a marine surface vessel with full-state constraints

    NASA Astrophysics Data System (ADS)

    Yin, Zhao; He, Wei; Yang, Chenguang

    2017-02-01

    In this paper, a trajectory tracking control law is proposed for a class of marine surface vessels in the presence of full-state constraints and dynamics uncertainties. A barrier Lyapunov function (BLF) based control is employed to prevent states from violating the constraints. Neural networks are used to approximate the system uncertainties in the control design, and the control law is designed by using the Moore-Penrose inverse. The proposed control is able to compensate for the effects of full-state constraints. Meanwhile, the signals in the closed-loop system are guaranteed to be semiglobally uniformly bounded, with the asymptotic tracking being achieved. Finally, the performance of the proposed control has been tested and verified by simulation studies.

  15. The electric field of a uniformly charged cubic shell

    NASA Astrophysics Data System (ADS)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  16. Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Min, Jie; Wang, Kangyan; Liu, Jun; Yao, Yang; Wang, Wenjun; Yang, Linyu; Zhang, Ruizhi; Lei, Ming

    2017-09-01

    Uniform nano/micro-spherical MoO2/Mo2CTx (T = O) heterostructures have been synthesized through a heterocatalytic reaction with subsequent facile calcinations. Given the high activity of HxMoO3/C precursors, this strategy opens a low-temperature route to realize the fabrication of nanocrystalline MoO2/Mo2CTx heterostructures, leading to achieve rapidly activated conversion reaction and extrinsic pseudocapacitive behaviour. Rather than carbon, highly conductive Mo2CTx decreases the charge transfer resistance in MoO2 and maintains its structural stability upon lithiation/delithiation, ensuring the heterostructures with excellent cyclability (e.g., up to 833 mA h g-1 at 100 mA g-1 for 160 cycles with 95% capacity retention) and high rate capability (e.g., 665 mA h g-1 at 1 A g-1). Additionally, owing to the carbon-free characteristic, the secondary nano/microstructure feature and the suppressed surface oxidation trait, MoO2/Mo2CTx heterostructures, therefore, can deliver an improved initial Coulombic efficiency (e.g., up to 78% at 100 mA g-1). The present oxycarbide transformation and hybridization strategies are facile but effective, and they are very promising to be applied to converting other oxides-carbon composites into oxides/carbides heterostructures towards achieving higher electrochemical performance.

  17. 7 CFR 51.2085 - Fairly uniform color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly uniform color. 51.2085 Section 51.2085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... color. Fairly uniform color means that the shells do not show excessive variation in color, whether...

  18. 7 CFR 51.2085 - Fairly uniform color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly uniform color. 51.2085 Section 51.2085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... color. Fairly uniform color means that the shells do not show excessive variation in color, whether...

  19. 7 CFR 51.2085 - Fairly uniform color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly uniform color. 51.2085 Section 51.2085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... color. Fairly uniform color means that the shells do not show excessive variation in color, whether...

  20. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters.

    PubMed

    Handsfield, G G; Knaus, K R; Fiorentino, N M; Meyer, C H; Hart, J M; Blemker, S S

    2017-10-01

    Sprint runners achieve much higher gait velocities and accelerations than average humans, due in part to large forces generated by their lower limb muscles. Various factors have been explored in the past to understand sprint biomechanics, but the distribution of muscle volumes in the lower limb has not been investigated in elite sprinters. In this study, we used non-Cartesian MRI to determine muscle sizes in vivo in a group of 15 NCAA Division I sprinters. Normalizing muscle sizes by body size, we compared sprinter muscles to non-sprinter muscles, calculated Z-scores to determine non-uniformly large muscles in sprinters, assessed bilateral symmetry, and assessed gender differences in sprinters' muscles. While limb musculature per height-mass was 22% greater in sprinters than in non-sprinters, individual muscles were not all uniformly larger. Hip- and knee-crossing muscles were significantly larger among sprinters (mean difference: 30%, range: 19-54%) but only one ankle-crossing muscle was significantly larger (tibialis posterior, 28%). Population-wide asymmetry was not significant in the sprint population but individual muscle asymmetries exceeded 15%. Gender differences in normalized muscle sizes were not significant. The results of this study suggest that non-uniform hypertrophy patterns, particularly large hip and knee flexors and extensors, are advantageous for fast sprinting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  2. Seismic noise on Rarotonga: Surface versus downhole

    USGS Publications Warehouse

    Butler, Rhett; Hutt, C.R.

    1992-01-01

    Seismic noise data are presented from the new Global Seismographic Network station, RAR, on the Island of Rarotonga in the South Pacific. Data from the first new borehole site in the GSN are compared with a surface vault installation. Initial indications from the data show that borehole siting on a small island significantly reduces long-period (>20 s) horizontal seismic noise levels during the daytime, but little or no improvement is evident at periods shorter than 20 s or on the vertical component.The goal of the Incorporated Research Institutions for Seismology (IRIS) GSN program is broad, uniform coverage of the Earth with a 128-station network. To achieve this goal and provide coverage in oceanic areas, many stations will be sited on islands. A major siting consideration for these new stations is whether to build a surface vault or drill a borehole. Neither option is inexpensive. The costs for drilling a cased hole and a borehole sensor are large, but the benefit of a borehole site is that seismic noise is reduced during certain periods when a surface installation may be subject to wind, weather, and thermal effects. This benefit translates into recording greater numbers of smaller earthquakes and higher signal-to-noise ratio.

  3. LED light design method for high contrast and uniform illumination imaging in machine vision.

    PubMed

    Wu, Xiaojun; Gao, Guangming

    2018-03-01

    In machine vision, illumination is very critical to determine the complexity of the inspection algorithms. Proper lights can obtain clear and sharp images with the highest contrast and low noise between the interested object and the background, which is conducive to the target being located, measured, or inspected. Contrary to the empirically based trial-and-error convention to select the off-the-shelf LED light in machine vision, an optimization algorithm for LED light design is proposed in this paper. It is composed of the contrast optimization modeling and the uniform illumination technology for non-normal incidence (UINI). The contrast optimization model is built based on the surface reflection characteristics, e.g., the roughness, the reflective index, and light direction, etc., to maximize the contrast between the features of interest and the background. The UINI can keep the uniformity of the optimized lighting by the contrast optimization model. The simulation and experimental results demonstrate that the optimization algorithm is effective and suitable to produce images with the highest contrast and uniformity, which is very inspirational to the design of LED illumination systems in machine vision.

  4. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  5. Development and Implementation of Methods and Means for Achieving a Uniform Functional Coating Thickness

    NASA Astrophysics Data System (ADS)

    Shishlov, A. V.; Sagatelyan, G. R.; Shashurin, V. D.

    2017-12-01

    A mathematical model is proposed to calculate the growth rate of the thin-film coating thickness at various points in a flat substrate surface during planetary motion of the substrate, which makes it possible to calculate an expected coating thickness distribution. Proper software package is developed. The coefficients used for computer simulation are experimentally determined.

  6. Randolph AFB, San Antonio, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1976-03-19

    FoRM ARE oUsoIII ’, " ’ . . . " " -,, ’:,,,:t."," *4 -- ".°" "- . . . " ’ * "- : ; Ir , ( DATA PROCESSING BRANCH EtAC/USAF SURFACE WINDS AIR" WATHER ...FORM ARI OS$Oitlt_ ___ _zT z __ __ ___......- ___ _ _ _ .4. .. . II DATA PROCESSIN G BRASFCH FTAC/USAF SURFACE WINDS AiR WATHER SERVICE/MAC PERCENTAGE...SURFACE WINDS 1 A/R WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ( 12911- RANDOLPH AFBJTEXAS/SAN

  7. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.

    PubMed

    Toprakcioglu, Zenon; Levin, Aviad; Knowles, Tuomas P J

    2017-11-13

    Microfluidic devices can be used to produce single, double and higher order emulsions, where droplet sizes can be precisely controlled and modulated. Such emulsions have great potential for the storage and study of biomolecules, including peptides and proteins. However, advancement of this technique has remained challenging due to the tendency of various biomolecules to adhere to the surface of the formed channels, resulting in changes in surface wetting and fouling on the micrometer scale. Thus, precise control of surface wettability plays a crucial role in the processes that govern droplet formation. Here, we report an approach for producing both water-oil-water (w/o/w) and oil-water-oil (o/w/o) double emulsions without any need for surface modification, an enabling feature for biomolecular encapsulation. Using this strategy, we show that the number of monodisperse encapsulated internal droplets can be controlled systematically and reproducibly by suitable adjustment of the relevant flow rates, and ranges from 1 to 40 in the case of w/o/w emulsions. We further demonstrate that the number of internal droplets scales linearly with the reciprocal flow rate of the outer continuous phase, when the inner and middle phase flow rates are kept constant. We demonstrate that this approach is suitable for forming double emulsions where the inner phase consists of reconstituted silk protein solution whereby incubation of the internal droplets can be induced to form a gel resulting in silk fibroin microgels surrounded by an external oil shell. Finally, for o/w/o emulsions, we show that single or multiple monodisperse internal droplets can be encapsulated with a size that ranges over 1 order of magnitude, from ca. 10 μm to >100 μm. Moreover, o/w/o emulsions where the middle phase consists of silk fibroin solution were prepared and by allowing the protein to aggregate, a core-shell structure was formed. This microfluidic strategy allows for multiple emulsions to be generated

  8. Achieving human and machine accessibility of cited data in scholarly publications

    PubMed Central

    Starr, Joan; Castro, Eleni; Crosas, Mercè; Dumontier, Michel; Downs, Robert R.; Duerr, Ruth; Haak, Laurel L.; Haendel, Melissa; Herman, Ivan; Hodson, Simon; Hourclé, Joe; Kratz, John Ernest; Lin, Jennifer; Nielsen, Lars Holm; Nurnberger, Amy; Proell, Stefan; Rauber, Andreas; Sacchi, Simone; Smith, Arthur; Taylor, Mike; Clark, Tim

    2015-01-01

    Reproducibility and reusability of research results is an important concern in scientific communication and science policy. A foundational element of reproducibility and reusability is the open and persistently available presentation of research data. However, many common approaches for primary data publication in use today do not achieve sufficient long-term robustness, openness, accessibility or uniformity. Nor do they permit comprehensive exploitation by modern Web technologies. This has led to several authoritative studies recommending uniform direct citation of data archived in persistent repositories. Data are to be considered as first-class scholarly objects, and treated similarly in many ways to cited and archived scientific and scholarly literature. Here we briefly review the most current and widely agreed set of principle-based recommendations for scholarly data citation, the Joint Declaration of Data Citation Principles (JDDCP). We then present a framework for operationalizing the JDDCP; and a set of initial recommendations on identifier schemes, identifier resolution behavior, required metadata elements, and best practices for realizing programmatic machine actionability of cited data. The main target audience for the common implementation guidelines in this article consists of publishers, scholarly organizations, and persistent data repositories, including technical staff members in these organizations. But ordinary researchers can also benefit from these recommendations. The guidance provided here is intended to help achieve widespread, uniform human and machine accessibility of deposited data, in support of significantly improved verification, validation, reproducibility and re-use of scholarly/scientific data. PMID:26167542

  9. Achieving human and machine accessibility of cited data in scholarly publications.

    PubMed

    Starr, Joan; Castro, Eleni; Crosas, Mercè; Dumontier, Michel; Downs, Robert R; Duerr, Ruth; Haak, Laurel L; Haendel, Melissa; Herman, Ivan; Hodson, Simon; Hourclé, Joe; Kratz, John Ernest; Lin, Jennifer; Nielsen, Lars Holm; Nurnberger, Amy; Proell, Stefan; Rauber, Andreas; Sacchi, Simone; Smith, Arthur; Taylor, Mike; Clark, Tim

    Reproducibility and reusability of research results is an important concern in scientific communication and science policy. A foundational element of reproducibility and reusability is the open and persistently available presentation of research data. However, many common approaches for primary data publication in use today do not achieve sufficient long-term robustness, openness, accessibility or uniformity. Nor do they permit comprehensive exploitation by modern Web technologies. This has led to several authoritative studies recommending uniform direct citation of data archived in persistent repositories. Data are to be considered as first-class scholarly objects, and treated similarly in many ways to cited and archived scientific and scholarly literature. Here we briefly review the most current and widely agreed set of principle-based recommendations for scholarly data citation, the Joint Declaration of Data Citation Principles (JDDCP). We then present a framework for operationalizing the JDDCP; and a set of initial recommendations on identifier schemes, identifier resolution behavior, required metadata elements, and best practices for realizing programmatic machine actionability of cited data. The main target audience for the common implementation guidelines in this article consists of publishers, scholarly organizations, and persistent data repositories, including technical staff members in these organizations. But ordinary researchers can also benefit from these recommendations. The guidance provided here is intended to help achieve widespread, uniform human and machine accessibility of deposited data, in support of significantly improved verification, validation, reproducibility and re-use of scholarly/scientific data.

  10. Washing uniforms at home: adherence to hospital policy.

    PubMed

    Riley, Kate; Laird, Katie; Williams, John

    2015-02-20

    Infection control is a priority for all hospitals to reduce the spread of healthcare-associated infections (HCAIs). Textiles especially uniforms, are a possible route of HCAI transmission. There are protocols to ensure hospital laundry services meet accepted standards, however healthcare uniforms are laundered by staff at home and variations in practice occur. A questionnaire was used to conduct a service evaluation at four hospitals in different NHS trusts to determine how closely healthcare staff followed hospital guidelines on laundering and aftercare of uniforms at home. Responses showed that not all staff followed these guidelines; 44% of staff washed their uniforms below the recommended temperature of 60°C, which presents a potential route for cross-contamination and infection.

  11. Mather AFB, California. Revised Uniform Summary of Surface Weather Observations. Parts A-F.

    DTIC Science & Technology

    1987-06-15

    8217:A 3 513 MATHER 4FB :ALIFOPNIA REIurED UNIFORM IIMMARY ’,F TECN: AL APPLI:AT I 3KN CENTiiR CC A 15 UN37 N: :F ED U:AFC:.A: D:-37 042 F -,4/2 MI. L3A...cr : 2 a IA 4 0. 3 2 0 m W X 0 3r at 24- 4A or0 z 49 o- K6 aL 4 .l vi U, t 4 62 K KA =, -J4 eK 0.0 9k 0 0 ,4 K U, U, -r cc Li La a.. 2 64. 0 x 4 cc " A...N*. 0 0 0 0 0 a, 0 * 00 * N. * 00 * z 11 cr al z -a 0P 03 . 0 . n f-0 M * 0 via f- OM ~ -4 A . mf LA 0 1 0 6A0 *0 li "Z .0 0 0 0 L. 4L 0 .~ 0 -j U

  12. School Uniform Policies: Students' Views of Effectiveness.

    ERIC Educational Resources Information Center

    McCarthy, Teresa M.; Moreno, Josephine

    2001-01-01

    Focus-group interviews of New York City middle-school students about their perceptions of the effectiveness of the school-uniform policy. Finds that students' perceptions of the effects of school-uniform policy on school culture varied considerably with those intended by the principal. (Contains 40 references.) (PKP)

  13. Single and Double ITCZ in Aqua-Planet Models with Globally Uniform Sea Surface Temperature and Solar Insolation: An Interpretation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  14. Surface Wave Metrology for Copper/Low-k Interconnects

    NASA Astrophysics Data System (ADS)

    Gostein, M.; Maznev, A. A.; Mazurenko, A.; Tower, J.

    2005-09-01

    We review recent advances in the application of laser-induced surface acoustic wave metrology to issues in copper/low-k interconnect development and manufacturing. We illustrate how the metrology technique can be used to measure copper thickness uniformity on a range of features from solid pads to arrays of lines, focusing on specific processing issues in copper electrochemical deposition (ECD) and chemical-mechanical polishing (CMP). In addition, we review recent developments in surface wave metrology for the characterization of low-k dielectric elastic modulus, including the ability to measure within-wafer uniformity of elastic modulus and to characterize porous, anisotropic films.

  15. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    PubMed

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  16. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Demanes, J; Kamrava, M

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour themore » target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose

  17. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  18. Impact of uniform electrode current distribution on ETF

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1982-01-01

    The design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution are examined and the alternate consolidation design which occur are presented compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is given for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  19. Biological Efficacy of Permethrin Treatment on New U.S. Military Uniforms

    USDA-ARS?s Scientific Manuscript database

    The United States Army and United States Marine Corps (USMC) are fielding uniforms that incorporate fire resistant fibers into the uniform material. For the U.S. Army, the change in uniform composition to produce the Fire-Resistant Army Combat Uniform (FRACU) results in a uniform that does not reta...

  20. Revisiting the Issues: The Uniform Adoption Act.

    ERIC Educational Resources Information Center

    Hollinger, Joan Heifetz

    1995-01-01

    Discusses how a complex regulatory system, along with a lack of consensus about the functions served by adoption, produces uncertainty on many basic issues, including distinguishing lawful adoption versus illegal "baby-selling." The author recommends passage of more uniform state adoption laws, describes the 1994 Uniform Adoption Act,…

  1. SRF Cavity Surface Topography Characterization Using Replica Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less

  2. The effect of a uniform magnetic field on the onset of steady Benard-Marangoni convection in a layer of conducting fluid

    NASA Astrophysics Data System (ADS)

    Wilson, S. K.

    1993-05-01

    Analytical and numerical techniques are used to analyze the effect of a uniform vertical magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of quiescent, electrically conducting fluid subject to a uniform vertical temperature gradient. Marangoni numbers for the onset of steady convection are found to be critically dependent on the nondimensional Crispation and Bond numbers. Two different asymptotic limits of strong surface tension and strong magnetic field are analyzed. Data obtained indicate that the presence of the magnetic field always has a stabilizing effect on the layer. Assuming that the Marangoni number is a critical parameter, it is shown that, if the free surface is nondeformable, then any particular disturbance can be stabilized with a sufficiently strong magnetic field. If the free surface is deformable and gravity waves are excluded, then the layer is always unstable to infinitely long wavelength disturbances with or without a magnetic field.

  3. FANNING OUT OF THE SOLAR f-MODE IN THE PRESENCE OF NON-UNIFORM MAGNETIC FIELDS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nishant K.; Brandenburg, Axel; Rheinhardt, Matthias, E-mail: nishant@nordita.org

    2014-11-01

    We show that in the presence of a magnetic field that is varying harmonically in space, the fundamental mode, or f-mode, in a stratified layer is altered in such a way that it fans out in the diagnostic kω diagram, with mode power also within the fan. In our simulations, the surface is defined by a temperature and density jump in a piecewise isothermal layer. Unlike our previous work (Singh et al. 2014), where a uniform magnetic field was considered, here we employ a non-uniform magnetic field together with hydromagnetic turbulence at length scales much smaller than those of themore » magnetic field. The expansion of the f-mode is stronger for fields confined to the layer below the surface. In some of those cases, the kω diagram also reveals a new class of low-frequency vertical stripes at multiples of twice the horizontal wavenumber of the background magnetic field. We argue that the study of the f-mode expansion might be a new and sensitive tool to determine subsurface magnetic fields with azimuthal or other horizontal periodicity.« less

  4. 50 CFR 510.9 - Uniform pay guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Uniform pay guidelines. 510.9 Section 510.9 Wildlife and Fisheries MARINE MAMMAL COMMISSION IMPLEMENTATION OF THE FEDERAL ADVISORY COMMITTEE ACT § 510.9 Uniform pay guidelines. (a) Compensation of members and staff of, and consultants to the...

  5. 50 CFR 510.9 - Uniform pay guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Uniform pay guidelines. 510.9 Section 510.9 Wildlife and Fisheries MARINE MAMMAL COMMISSION IMPLEMENTATION OF THE FEDERAL ADVISORY COMMITTEE ACT § 510.9 Uniform pay guidelines. (a) Compensation of members and staff of, and consultants to the...

  6. 50 CFR 510.9 - Uniform pay guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Uniform pay guidelines. 510.9 Section 510.9 Wildlife and Fisheries MARINE MAMMAL COMMISSION IMPLEMENTATION OF THE FEDERAL ADVISORY COMMITTEE ACT § 510.9 Uniform pay guidelines. (a) Compensation of members and staff of, and consultants to the...

  7. 50 CFR 510.9 - Uniform pay guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Uniform pay guidelines. 510.9 Section 510.9 Wildlife and Fisheries MARINE MAMMAL COMMISSION IMPLEMENTATION OF THE FEDERAL ADVISORY COMMITTEE ACT § 510.9 Uniform pay guidelines. (a) Compensation of members and staff of, and consultants to the...

  8. 50 CFR 510.9 - Uniform pay guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Uniform pay guidelines. 510.9 Section 510.9 Wildlife and Fisheries MARINE MAMMAL COMMISSION IMPLEMENTATION OF THE FEDERAL ADVISORY COMMITTEE ACT § 510.9 Uniform pay guidelines. (a) Compensation of members and staff of, and consultants to the...

  9. High-Luminance Road Surfaces,

    DTIC Science & Technology

    1980-12-01

    condition was changed with the decreased use of snow chains and increasing use of studded tires. The studded tires wear down the road surface in a...region, white anorthosite of a uniform and unweathered type is usable as an additive to asphalt con- crete and wear surfacing for asphalt gravel...CLASSIFICATION Of THIS PAGE(W/em Daateoo 20. Abstract (cont’d) resistance to weathering, and the degree of luminosity. Quartzites have the best wear

  10. Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure.

    PubMed

    Long, Wu-Jian; Li, Hao-Dao; Fang, Chang-Le; Xing, Feng

    2018-01-09

    The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate-ether (PCE) mixed with GO-cement or cement mixed with GO-PCE. The experimental results showed that the yield stress and plastic viscosity increased with the uniformly dispersed GO when compared to those of re-agglomerated GO cement paste. Moreover, the 3-day compressive and flexural strengths of uniformly dispersed GO paste were 8% and 27%, respectively, higher than those of re-agglomerated GO pastes. The results of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses demonstrated that uniformly dispersed GO more effectively promotes the formation of hydration products in hardened cement paste. Furthermore, a porosity analysis using mercury intrusion porosimetry revealed that the homogeneous dispersion of GO can better inhibit the formation of large-size pores and optimize the pore size distribution at 3 and 7 days than the re-agglomerated GO.

  11. Student Dress Codes and Uniforms. Research Brief

    ERIC Educational Resources Information Center

    Johnston, Howard

    2009-01-01

    According to an Education Commission of the States "Policy Report", research on the effects of dress code and school uniform policies is inconclusive and mixed. Some researchers find positive effects; others claim no effects or only perceived effects. While no state has legislatively mandated the wearing of school uniforms, 28 states and…

  12. 44 CFR 12.18 - Uniform pay guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Uniform pay guidelines. 12.18... HOMELAND SECURITY GENERAL ADVISORY COMMITTEES § 12.18 Uniform pay guidelines. (a) Members. Subject to the provisions of this section, the pay of any member of an advisory committee shall be fixed at the daily...

  13. Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study.

    PubMed

    Lyapustin, Alexei

    2002-09-20

    Results of an extensive validation study of the new radiative transfer code SHARM-3D are described. The code is designed for modeling of unpolarized monochromatic radiative transfer in the visible and near-IR spectra in the laterally uniform atmosphere over an arbitrarily inhomogeneous anisotropic surface. The surface boundary condition is periodic. The algorithm is based on an exact solution derived with the Green's function method. Several parameterizations were introduced into the algorithm to achieve superior performance. As a result, SHARM-3D is 2-3 orders of magnitude faster than the rigorous code SHDOM. It can model radiances over large surface scenes for a number of incidence-view geometries simultaneously. Extensive comparisons against SHDOM indicate that SHARM-3D has an average accuracy of better than 1%, which along with the high speed of calculations makes it a unique tool for remote-sensing applications in land surface and related atmospheric radiation studies.

  14. Radiative Transfer Code SHARM-3D for Radiance Simulations over a non-Lambertian Nonhomogeneous Surface: Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Lyapustin, Alexei

    2002-09-01

    Results of an extensive validation study of the new radiative transfer code SHARM-3D are described. The code is designed for modeling of unpolarized monochromatic radiative transfer in the visible and near-IR spectra in the laterally uniform atmosphere over an arbitrarily inhomogeneous anisotropic surface. The surface boundary condition is periodic. The algorithm is based on an exact solution derived with the Green ’s function method. Several parameterizations were introduced into the algorithm to achieve superior performance. As a result, SHARM-3D is 2 -3 orders of magnitude faster than the rigorous code SHDOM. It can model radiances over large surface scenes for a number of incidence-view geometries simultaneously. Extensive comparisons against SHDOM indicate that SHARM-3D has an average accuracy of better than 1%, which along with the high speed of calculations makes it a unique tool for remote-sensing applications in land surface and related atmospheric radiation studies.

  15. ODMedit: uniform semantic annotation for data integration in medicine based on a public metadata repository.

    PubMed

    Dugas, Martin; Meidt, Alexandra; Neuhaus, Philipp; Storck, Michael; Varghese, Julian

    2016-06-01

    The volume and complexity of patient data - especially in personalised medicine - is steadily increasing, both regarding clinical data and genomic profiles: Typically more than 1,000 items (e.g., laboratory values, vital signs, diagnostic tests etc.) are collected per patient in clinical trials. In oncology hundreds of mutations can potentially be detected for each patient by genomic profiling. Therefore data integration from multiple sources constitutes a key challenge for medical research and healthcare. Semantic annotation of data elements can facilitate to identify matching data elements in different sources and thereby supports data integration. Millions of different annotations are required due to the semantic richness of patient data. These annotations should be uniform, i.e., two matching data elements shall contain the same annotations. However, large terminologies like SNOMED CT or UMLS don't provide uniform coding. It is proposed to develop semantic annotations of medical data elements based on a large-scale public metadata repository. To achieve uniform codes, semantic annotations shall be re-used if a matching data element is available in the metadata repository. A web-based tool called ODMedit ( https://odmeditor.uni-muenster.de/ ) was developed to create data models with uniform semantic annotations. It contains ~800,000 terms with semantic annotations which were derived from ~5,800 models from the portal of medical data models (MDM). The tool was successfully applied to manually annotate 22 forms with 292 data items from CDISC and to update 1,495 data models of the MDM portal. Uniform manual semantic annotation of data models is feasible in principle, but requires a large-scale collaborative effort due to the semantic richness of patient data. A web-based tool for these annotations is available, which is linked to a public metadata repository.

  16. Static Scene Statistical Non-Uniformity Correction

    DTIC Science & Technology

    2015-03-01

    Error NUC Non-Uniformity Correction RMSE Root Mean Squared Error RSD Relative Standard Deviation S3NUC Static Scene Statistical Non-Uniformity...Deviation ( RSD ) which normalizes the standard deviation, σ, to the mean estimated value, µ using the equation RS D = σ µ × 100. The RSD plot of the gain...estimates is shown in Figure 4.1(b). The RSD plot shows that after a sample size of approximately 10, the different photocount values and the inclusion

  17. Elastic relaxation of a truncated circular cylinder with uniform dilatational eigenstrain in a half space

    NASA Astrophysics Data System (ADS)

    Glas, Frank

    2003-06-01

    We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.

  18. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    PubMed Central

    Nivas, Jijil JJ; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-01-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams. PMID:28169342

  19. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate.

    PubMed

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-07

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  20. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  1. Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Sim, Eun Seob; Chung, Yong-Chae

    2018-03-01

    In this study, the influence of the non-uniform surface of F- and O-functionalized Ti2C on the anchoring behavior of lithium polysulfide (LiPS) is investigated using density functional theory. In order to consider the non-uniform surface, the substitutional, vacancy, and S-trapped sites of F- and O-functionalized Ti2C are designed. The anchoring behavior is investigated considering the adsorption energy of LiPS, reactivity between Li atoms and the substrate, and the reduction state of the S atoms. On the F-substitutional site of the O-functionalized surface, it is confirmed that the suppressing mechanism changes from the neutralization of S atoms to the anchoring of LiPS. However, too strong of an interaction between Ti atoms exposed at the vacancy site and S atoms induces trapping of the S atom at the vacancies of both F- and O-functionalized surfaces. As a result of the trapping of the S atom, the use of active material decreases. In addition, the S-trapped site originated from the vacancy site does not affect the suppressing mechanism. In conclusion, to optimize the Ti2C-based MXene as an anchoring material for Li-S batteries, the preparation process should be focused on eliminating the vacancy of functional groups.

  2. Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less

  3. Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs

    DOE PAGES

    Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.

    2015-08-21

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less

  4. Improved sensitivity via layered-double-hydroxide-uniformity-dependent chemiluminescence.

    PubMed

    Li, Zenghe; Wang, Dan; Yuan, Zhiqin; Lu, Chao

    2016-12-01

    In the last two decades nanoparticles have been widely applied to enhance chemiluminescence (CL). The morphology of nanoparticles has an important influence on nanoparticle-amplified CL. However, studies of nanoparticle-amplified CL focus mainly on the size and shape effects, and no attempt has been made to explore the influence of uniformity in nanoparticle-amplified CL processes. In this study we have investigated nanoparticle uniformity in the luminol-H 2 O 2 CL system using layered double hydroxides (LDHs) as a model material. The results demonstrated that the uniformity of LDHs played a key role in CL amplification. A possible mechanism is that LDHs with high uniformity possess abundant catalytic active sites, which results in high CL intensity. Meanwhile, the sensitivity for H 2 O 2 detection was increased by one order of magnitude (1.0 nM). Moreover, the uniform-LDH-amplified luminol CL could be applied to selective detection of glucose in human plasma samples. Furthermore, such a uniformity-dependent CL enhancement effect could adapted to other redox CL systems-for example, the peroxynitrous acid (ONOOH) CL system.

  5. 22 CFR 214.42 - Uniform pay guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Uniform pay guidelines. 214.42 Section 214.42... Advisory Committees § 214.42 Uniform pay guidelines. (a) A.I.D. follows OMB/CSC guidelines in section 11 of OMB Circular A-63 in establishing rates of pay for advisory committee members, staffs, and consultants...

  6. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach

    PubMed Central

    Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.

    2015-01-01

    We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574

  7. Linking of uniform random polygons in confined spaces

    NASA Astrophysics Data System (ADS)

    Arsuaga, J.; Blackstone, T.; Diao, Y.; Karadayi, E.; Saito, M.

    2007-03-01

    In this paper, we study the topological entanglement of uniform random polygons in a confined space. We derive the formula for the mean squared linking number of such polygons. For a fixed simple closed curve in the confined space, we rigorously show that the linking probability between this curve and a uniform random polygon of n vertices is at least 1-O\\big(\\frac{1}{\\sqrt{n}}\\big) . Our numerical study also indicates that the linking probability between two uniform random polygons (in a confined space), of m and n vertices respectively, is bounded below by 1-O\\big(\\frac{1}{\\sqrt{mn}}\\big) . In particular, the linking probability between two uniform random polygons, both of n vertices, is bounded below by 1-O\\big(\\frac{1}{n}\\big) .

  8. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  9. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  10. A New Formulation of Time Domain Boundary Integral Equation for Acoustic Wave Scattering in the Presence of a Uniform Mean Flow

    NASA Technical Reports Server (NTRS)

    Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.

    2017-01-01

    It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.

  11. Coded aperture imaging with uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.

  12. Coded aperture imaging with uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1982-01-01

    A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.

  13. Measurement of basic characteristics and gain uniformity of a triple GEM detector

    NASA Astrophysics Data System (ADS)

    Patra, Rajendra Nath; Singaraju, Rama N.; Biswas, Saikat; Ahammed, Zubayer; Nayak, Tapan K.; Viyogi, Yogendra P.

    2017-08-01

    Large area Gas Electron Multiplier (GEM) detectors have been the preferred choice for tracking devices in major nuclear and particle physics experiments. Uniformity over surface of the detector in terms of gain, energy resolution and efficiency is crucial for the optimum performance of these detectors. In the present work, detailed performance study of a 10×10 cm2 triple GEM detector operated using Ar and CO2 gas mixtures in proportions of 70:30 and 90:10, has been made by making a voltage scan of the efficiency with 106Ru-Rh β-source and cosmic rays. The gain and energy resolution of the detector were studied using the X-ray spectrum of 55Fe source. The uniformity of the detector has been investigated by dividing the detector in 7×7 zones and measuring the gain and energy resolution at the centre of each zone. The variations of the gain and energy resolution have been found to be 8.8% and 6.7%, respectively. These studies are essential to characterise GEM detectors before their final use in the experiments.

  14. Grid generation on trimmed Bezier and NURBS quilted surfaces

    NASA Technical Reports Server (NTRS)

    Woan, Chung-Jin; Clever, Willard C.; Tam, Clement K.

    1995-01-01

    This paper presents some recently added capabilities to RAGGS, Rockwell Automated Grid Generation System. Included are the trimmed surface handling and display capability and structures and unstructured grid generation on trimmed Bezier and NURBS (non-uniform rational B-spline surfaces) quilted surfaces. Samples are given to demonstrate the new capabilities.

  15. High quality uniform YBCO film growth by the metalorganic deposition using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Wang, S. S.; Zhang, Z. L.; Wang, L.; Gao, L. K.; Liu, J.

    2017-03-01

    A need exists for the large-area superconducting YBa2Cu3O7-x (YBCO) films with high critical current density for microwave communication and/or electric power applications. Trifluoroacetic metalorganic (TFA-MOD) method is a promising low cost technique for large-scale production of YBCO films, because it does not need high vacuum device and is easily applicable to substrates of various shape and size. In this paper, double-sided YBCO films with maximum 2 in diameter were prepared on LaAlO3 substrates by TFA-MOD method. Inductive critical current densitiy Jc, microwave surface resistance Rs, as well as the microstructure were characterized. A newly homemade furnace system was used to epitaxially grown YBCO films, which can improve the uniformity of YBCO film significantly by gas supply and temperature distribution proper design. Results showed that the large area YBCO films were very uniform in microstructure and thickness distribution, an average inductive Jc in excess of 6 MA/cm2 with uniform distribution, and low Rs (10 GHz) below 0.3 mΩ at 77 K were obtained. Andthe film filter may be prepared to work at temperatures lower than 74 K. These results are very close to the highest value of YBCO films made by conventional vacuum method, so we show a very promising route for large-scale production of high quality large-area YBCO superconducting films at a lower cost.

  16. Characterization of Dispersive Ultrasonic Rayleigh Surface Waves in Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    In, Chi-Won; Kim, Jin-Yeon; Jacobs, Laurence J.; Kurtis, Kimberly E.

    2008-02-01

    This research focuses on the application of ultrasonic Rayleigh surface waves to nondestructively characterize the mechanical properties and structural defects (non-uniformly distributed aggregate) in asphalt concrete. An efficient wedge technique is developed in this study to generate Rayleigh surface waves that is shown to be effective in characterizing Rayleigh waves in this highly viscoelastic (attenuating) and heterogeneous medium. Experiments are performed on an asphalt-concrete beam produced with uniformly distributed aggregate. Ultrasonic techniques using both contact and non-contact sensors are examined and their results are compared. Experimental results show that the wedge technique along with an air-coupled sensor appears to be effective in characterizing Rayleigh waves in asphalt concrete. Hence, measurement of theses material properties needs to be investigated in non-uniformly distributed aggregate material using these techniques.

  17. Size and shape of uniform particles precipitated in homogeneous solutions

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.

    The assembly of nanosize crystals into larger uniform colloids is a fundamental process that plays a critical role in the formation of a very broad range of fine-particles used in numerous applications in technology, medicine, and national security. It is widely accepted that, along with size, in most of these applications the shape of the particles represents a critical factor. In the current research, we investigate the size and shape control of uniform particles prepared by precipitation in homogeneous solutions. In the first---theoretical---part a combinational mechanism of the shape control during particle growth was proposed and analyzed numerically. The main finding of our simulation is that a proper balance of two processes, preferential attachment of transported monomers at the protruding features of the growing cluster and monomer rearrangement at the cluster surface, can yield a well-defined particle shape that persist for sizes much larger than the original seed over a large interval of time. In the experimental part, three chemically simple systems were selected MgF2, NaMgF3, and PbS for defining and evaluating the key parameters of the shape and size control of the precipitates. Thus, uniform dispersions of particles of different morphologies (spherical, cubic, platelet, and prismatic) were prepared by precipitation in aqueous solutions. The mechanisms of the formation of the resulting particles of different shapes are explained by the role of the pH, temperature, solubility, and ionic strength. Stages of particles growth were evaluated on short and long time scales, winch allowed to propose multistage mechanisms of NaMgF3 growth and estimate induction time and critical nuclei size for MgF2. In addition, for prospective numerical modeling the surface tensions of spherical and platelet particles of MgF2 were evaluated from the X-ray data by a lattice parameter change method. Also, a new method for the evaluation of the variation in the density

  18. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  19. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  20. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  1. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Zhihui; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049; Zhang, Feng

    2015-04-15

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface areamore » up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.« less

  2. Thermally Dried Ink-Jet Process for 6,13-Bis(triisopropylsilylethynyl)-Pentacene for High Mobility and High Uniformity on a Large Area Substrate

    NASA Astrophysics Data System (ADS)

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-05-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 °C without any “coffee stain”. The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192×150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44±0.08 cm2·V-1·s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 °C in this case) during drying of the droplets.

  3. Thermally dried ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene for high mobility and high uniformity on a large area substrate

    USGS Publications Warehouse

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-01-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 degrees C without any "coffee stain". The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192 x 150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44 +/- 0.08 cm2.V-1.s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 degrees C in this case) during drying of the droplets.

  4. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  5. Uniformed Services Former Spouses’ Protection Act

    DTIC Science & Technology

    2005-11-01

    Uniformed Services Former Spouses’ Protection Act Legal Assistance Branch Administrative and Civil Law ...1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty...ADMINISTRATIVE & CIVIL LAW DEP’T, THE JUDGE ADVOCATE GENERAL’S LEGAL CENTER AND SCHOOL, U.S. ARMY, JA 274, Uniformed Services Former Spouses’ Protection

  6. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the

  7. 24 CFR 5.705 - Uniform physical inspection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Uniform physical inspection... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Physical Condition Standards and Inspection Requirements § 5.705 Uniform physical inspection requirements. Any entity responsible for...

  8. 24 CFR 5.705 - Uniform physical inspection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Uniform physical inspection... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Physical Condition Standards and Inspection Requirements § 5.705 Uniform physical inspection requirements. Any entity responsible for...

  9. 24 CFR 5.705 - Uniform physical inspection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Uniform physical inspection... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Physical Condition Standards and Inspection Requirements § 5.705 Uniform physical inspection requirements. Any entity responsible for...

  10. 24 CFR 5.705 - Uniform physical inspection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Uniform physical inspection... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Physical Condition Standards and Inspection Requirements § 5.705 Uniform physical inspection requirements. Any entity responsible for...

  11. 24 CFR 5.705 - Uniform physical inspection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Uniform physical inspection... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Physical Condition Standards and Inspection Requirements § 5.705 Uniform physical inspection requirements. Any entity responsible for...

  12. A coated rigid elliptical inclusion loaded by a couple in the presence of uniform interfacial and hoop stresses

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2018-06-01

    We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.

  13. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process

  14. Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance.

    PubMed

    Piao, Jun-Yu; Liu, Xiao-Chan; Wu, Jinpeng; Yang, Wanli; Wei, Zengxi; Ma, Jianmin; Duan, Shu-Yi; Lin, Xi-Jie; Xu, Yan-Song; Cao, An-Min; Wan, Li-Jun

    2018-06-28

    Surface cobalt doping is an effective and economic way to improve the electrochemical performance of cathode materials. Herein, by tuning the precipitation kinetics of Co 2+ , we demonstrate an aqueous-based protocol to grow uniform basic cobaltous carbonate coating layer onto different substrates, and the thickness of the coating layer can be adjusted precisely in nanometer accuracy. Accordingly, by sintering the cobalt-coated LiNi 0.5 Mn 1.5 O 4 cathode materials, an epitaxial cobalt-doped surface layer will be formed, which will act as a protective layer without hindering charge transfer. Consequently, improved battery performance is obtained because of the suppression of interfacial degradation.

  15. Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration

    NASA Astrophysics Data System (ADS)

    Lovejoy, McKenna Roberts

    Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order

  16. [Study of the electrical properties of retinal horizontal cell syncytia by the technic of uniform polarization].

    PubMed

    Shura-Bura, T M; Trifonov, Iu A

    1980-01-01

    For uniform polarization of syncytial or cable structures at a large area with current passed via extracellular electrodes the extracellular longitudinal gradient of potential must be proportional to distance from the edge of preparation. In this paper the profile of conducting plate was found analytically which allows to obtain such a distribution of potentials. The profile is formed by hyperbola and its orthogonal asymptotes. Two polarizing electrodes are applied to places where the hyperbola is near to asymptotes. On the surfaces formed by asymptotes the gradient of potential is proportional to distance from intersection of these surfaces. Such a conducting plate was made as cavity in plexiglas filled by Ringer solution in agar. The plate was used for obtaining the voltage-current curves of horizontal cell membrane in gold fish retina. The area of uniform polarization was 4-5 mm long. Measurements inside this area allowed to determine the space constant of horizontal cell layer. The space constant measured in bright light (when resistance of subsynaptic membrane is high) depends on the membrane potential, being high (approximately 1,5 mm) during depolarization and low (0,2-0,4 mm) during hyperpolarization.

  17. Fertigation uniformity under sprinkler irrigation: evaluation and analysis

    USDA-ARS?s Scientific Manuscript database

    n modern farming systems, fertigation is widely practiced as a cost effective and convenient method for applying soluble fertilizers to crops. Along with efficiency and adequacy, uniformity is an important fertigation performance evaluation criterion. Fertigation uniformity is defined here as a comp...

  18. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection

    PubMed Central

    Li, Xiaoming; Zhang, Shengli; Kulinich, Sergei A.; Liu, Yanli; Zeng, Haibo

    2014-01-01

    Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as 23 μM.

  19. Uniform color space is not homogeneous

    NASA Astrophysics Data System (ADS)

    Kuehni, Rolf G.

    2002-06-01

    Historical data of chroma scaling and hue scaling are compared and evidence is shown that we do not have a reliable basis in either case. Several data sets indicate explicitly or implicitly that the number of constant sized hue differences between unique hues as well as in the quadrants of the a*, b* diagram differs making what is commonly regarded as uniform color space inhomogeneous. This problem is also shown to affect the OSA-UCS space. A Euclidean uniform psychological or psychophysical color space appears to be impossible.

  20. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  1. Improving MRI surface coil decoupling to reduce B1 distortion

    NASA Astrophysics Data System (ADS)

    Larson, Christian

    As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.

  2. 7 CFR 1776.2 - Uniform Federal Assistance Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Uniform Federal Assistance Provisions. 1776.2 Section 1776.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM General § 1776.2 Uniform...

  3. 7 CFR 1776.2 - Uniform Federal Assistance Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Uniform Federal Assistance Provisions. 1776.2 Section 1776.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM General § 1776.2 Uniform...

  4. 7 CFR 1776.2 - Uniform Federal Assistance Provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Uniform Federal Assistance Provisions. 1776.2 Section 1776.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM General § 1776.2 Uniform...

  5. 7 CFR 1776.2 - Uniform Federal Assistance Provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Uniform Federal Assistance Provisions. 1776.2 Section 1776.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM General § 1776.2 Uniform...

  6. 7 CFR 1776.2 - Uniform Federal Assistance Provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Uniform Federal Assistance Provisions. 1776.2 Section 1776.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM General § 1776.2 Uniform...

  7. Uniform Federal Accessibility Standards.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    The document presents uniform standards for facility accessibility by physically handicapped persons for Federal and federally funded facilities. The standards are to be applied during the design, construction, and alteration of buildings and facilities to the extent required by the Architectural Barriers Act of 1968, as amended. Technical…

  8. Uniform Si nano-dot fabrication using reconstructed structure of Si(110)

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Uozumi, Yuki; Yasuda, Satoshi; Asaoka, Hidehito

    2018-06-01

    Si nano-dot (ND) formation on Si(110) is observed by means of a scanning tunneling microscope (STM). The initial Si-NDs are Si crystals that are continuous from the substrate and grow during the oxide layer desorption. The NDs fabricated on the flat surface of Si(110)-1 × 1 are surrounded by four types of facets with almost identical appearance probabilities. An increase in the size of the NDs increases the variety of its morphology. In contrast, most Si-NDs fabricated on straight-stepped surface of Si(110)-16 × 2 reconstructed structure are surrounded by only a single type of facet, namely the \\text{Si}(17,15,1)-2 × 1 plane. An appearance probability of the facet in which the base line is along the step of Si(110)-16 × 2 exceeds 75%. This finding provides a fabrication technique of uniformed structural Si-NDs by using the reconstructed structure of Si(110).

  9. Beam uniformity of flat top lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  10. Surface modification of SU8 photoresist for shrinkage improvement in a monolithic MEMS microstructure

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Hong, Y. Z.

    2007-02-01

    The effect of O2 plasma treatment on the surface property of exposed and unexposed SU8 photoresist has been investigated for the fabrication of a monolithic MEMS microstructure. It can solve the non-uniformity problem of second resist coating on the SU8 with high intrinsic shrinkage after exposure and post-exposure baking (PEB) in the fabrication of the stacked polymer-metal or polymer-polymer structure, which was used in the application of microfluid, bio and chemistry. The thickness difference of untreated SU8 before PEB between the exposed and unexposed SU8 was about 0.3% while that after PEB increased to about 6%. It could result in large non-uniformity of about 18 µm thickness difference for the following second resist coating on the hydrophobic surface without plasma treatment. The surface property of SU8 in terms of the contact angle and surface energy can be adjusted by O2 plasma treatment for enhancing the coating uniformity of the following resist. The measured contact angles of the exposed and unexposed SU8 decrease with O2 plasma time, corresponding to the increased surface energy determined by the Lifshitz-van der Waals/Lewis acid-base approach. It displayed that the similar hydrophilic surface property can minimize the thickness difference of second resist coating on the first shrunken SU8. A monolithic nozzle plate with a physical resolution of 600 dpi in a single column was demonstrated for an inkjet application based on the improved uniformity.

  11. Uniform Deposition of Protein Incorporated Mineral Layer on Three-Dimensional Porous Polymer Scaffolds

    PubMed Central

    Segvich, Sharon; Smith, Hayes C.; Luong, Linh N.; Kohn, David H.

    2009-01-01

    Inorganic–organic hybrid materials designed to facilitate bone tissue regeneration use a calcium phosphate mineral layer to encourage cell adhesion, proliferation, and osteogenic differentiation. Mineral formed on porous materials is often discontinuous through the thickness of the scaffold. This study aimed to uniformly coat the pores of three-dimensional (3D) porous, polymer scaffolds with a bone-like mineral layer in addition to uniformly incorporating a model protein within this mineral layer. A filtration system designed to induce simulated body fluid flow through the interstices of 3D polylactic-co-glycolic acid scaffolds (10-mm diameter × 2-mm thickness) illustrated that a uniform, continuous mineral layer can be precipitated on the pore surfaces of a 3D porous structure within 5 days. MicroCT analysis showed increased mineral volume percent (MV%) (7.86 ± 3.25 MV%, p = 0.029) and continuous mineralization of filtered scaffolds compared with two static control groups (floating, 0.16 ± 0.26 MV% and submerged, 0.20 ± 0.01 MV%). Furthermore, the system was effective in coprecipitating a model protein, bone sialoprotein (BSA), within the mineral layer. A 10-fold increase in BSA incorporation was seen when coprecipitated filtered scaffolds (1308 ± 464 μg) were compared to a submerged static control group (139 ± 45 μg), p < 0.001. Confocal microscopy visually confirmed uniform coprecipitation of BSA throughout the thickness of the filtration scaffolds. The designed system enables 3D mineralization through the thickness of porous materials, and provides the option of including coprecipitated biomolecular cues within the mineral layer. This approach of providing a 3D conductive and osteoinductive environment could be conducive to bone tissue regeneration. PMID:17618505

  12. Uniform emergency codes: will they improve safety?

    PubMed

    2005-01-01

    There are pros and cons to uniform code systems, according to emergency medicine experts. Uniformity can be a benefit when ED nurses and other staff work at several facilities. It's critical that your staff understand not only what the codes stand for, but what they must do when codes are called. If your state institutes a new system, be sure to hold regular drills to familiarize your ED staff.

  13. Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ulutas, Ergin

    2013-01-01

    The numerical simulations of recent tsunami caused by 11 March 2011 off-shore Pacific coast of Tohoku-Oki earthquake (Mw 9.0) using diverse co-seismic source models have been performed. Co-seismic source models proposed by various observational agencies and scholars are further used to elucidate the effects of uniform and non-uniform slip models on tsunami generation and propagation stages. Non-linear shallow water equations are solved with a finite difference scheme, using a computational grid with different cell sizes over GEBCO30 bathymetry data. Overall results obtained and reported by various tsunami simulation models are compared together with the available real-time kinematic global positioning system (RTK-GPS) buoys, cabled deep ocean-bottom pressure gauges (OBPG), and Deep-ocean Assessment and Reporting of Tsunami (DART) buoys. The purpose of this study is to provide a brief overview of major differences between point-source and finite-fault methodologies on generation and simulation of tsunamis. Tests of the assumptions of uniform and non-uniform slip models designate that the average uniform slip models may be used for the tsunami simulations off-shore, and far from the source region. Nevertheless, the heterogeneities of the slip distribution within the fault plane are substantial for the wave amplitude in the near field which should be investigated further.

  14. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  15. Conductorlike behavior of a photoemitting dielectric surface

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    It has been suggested in the past that a uniformly illuminated photoemitting dielectric surface of finite extent acquires in the steady state a surface charge distribution as if the surface were conducting (i.e., the surface becomes equipotential). In this paper an analytical proof of this conductorlike behavior is given. The only restrictions are that the photoelectron emission from the surface has azimuthal symmetry and that the photosheath may be assumed to be collisionless. It is tacitly assumed that a steady state is attainable, which means that the photoelectron spectrum has a high-energy cutoff.

  16. Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization.

    PubMed

    Luck, Kyle A; Shastry, Tejas A; Loser, Stephen; Ogien, Gabriel; Marks, Tobin J; Hersam, Mark C

    2013-12-28

    Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.

  17. Combined Heat and Power Protocol for Uniform Methods Project | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Combined Heat and Power Protocol for Uniform Methods Project Combined Heat and Power Protocol for Uniform Methods Project NREL developed a protocol that provides a ; is consistent with the scope and other protocols developed for the Uniform Methods Project (UMP

  18. 25 CFR 23.49 - Fair and uniform provision of services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Fair and uniform provision of services. 23.49 Section 23.49 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.49 Fair and uniform...

  19. Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity

    NASA Astrophysics Data System (ADS)

    Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji

    2018-01-01

    Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.

  20. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.