Science.gov

Sample records for achilles tendon tissue

  1. Quantitative ultrasound (QUS) assessment of tissue properties for Achilles tendons

    NASA Astrophysics Data System (ADS)

    Du, Yi-Chun; Chen, Yung-Fu; Chen, Pei-Jarn; Lin, Yu-Ching; Chen, Tainsong; Lin, Chii-Jeng

    2007-09-01

    Quantitative ultrasound (QUS) techniques have recently been widely applied for the characterization of tissues. For example, they can be used for the quantification of Achilles tendon properties based on the broadband ultrasound attenuation (BUA) and the speed of sound (SOS) when the ultrasound wave passes through the tissues. This study is to develop an integrated system to investigate the properties of Achilles tendons using QUS images from UBIS 5000 (DMS, Montpellier, France) and B-mode ultrasound images from HDI 5000 (ATL, Ultramark, USA). Subjects including young (32 females and 17 males; mean age: 23.7 ± 2.0) and middle-aged groups (8 female and 8 males; mean age: 47.3 ± 8.5 s) were recruited and tested for this study. Only subjects who did not exercise regularly and had no record of tendon injury were studied. The results show that the BUA is significantly higher for the young group (45.2 ± 1.6 dB MHz-1) than the middle-age group (40.5 ± 1.9 dB MHz-1), while the SOS is significantly lower for the young (1601.9 ± 11.2 ms-1) compared to the middle-aged (1624.1 ± 8.7 m s-1). On the other hand, the thicknesses of Achilles tendons for both groups (young: 4.31 ± 0.23 mm; middle age: 4.24 ± 0.23 mm) are very similar. For one patient who had an Achilles tendon lengthening (ATL) surgery, the thickness of the Achilles tendon increased from 4 mm to 4.33 mm after the surgery. In addition, the BUA increased by about 7.2% while the SOS decreased by about 0.6%. In conclusion, noninvasive ultrasonic assessment of Achilles tendons is useful for assisting clinical diagnosis and for the evaluation of a therapeutic regimen.

  2. Achilles tendon repair

    MedlinePlus

    Achilles tendon rupture-surgery; Percutaneous Achilles tendon rupture repair ... To fix your torn Achilles tendon, the surgeon will: Make a cut down the back of your heel Make several small cuts rather than one large cut ...

  3. Achilles tendon suture deteriorates tendon capillary blood flow with sustained tissue oxygen saturation – an animal study

    PubMed Central

    Kraemer, Robert; Lorenzen, Johan; Rotter, Robert; Vogt, Peter M; Knobloch, Karsten

    2009-01-01

    Background Treatment of ruptured Achilles tendons currently constitutes of conservative early functional treatment or surgical treatment either by open or minimal invasive techniques. We hypothesize that an experimental Achilles tendon suture in an animal model significantly deteriorates Achilles tendon microcirculation immediately following suturing. Methods Fifteen Achilles tendons of eight male Wistar rats (275–325 g) were included. After preparation of the Achilles tendon with a medial paratendinous approach, Achilles tendon microcirculation was assessed using combined Laser-Doppler and spectrophotometry (Oxygen-to-see) regarding: - tendinous capillary blood flow [arbitrary units AU] - tendinous tissue oxygen saturation [%] - tendinous venous filling pressure [rAU] The main body of the Achilles tendon was measured in the center of the suture with 50 Hz. 10 minutes after Achilles tendon suture (6-0 Prolene), a second assessment of microcirculatory parameters was performed. Results Achilles tendon capillary blood flow decreased by 57% following the suture (70 ± 30 AU vs. 31 ± 16 AU; p < 0.001). Tendinous tissue oxygen saturation remained at the same level before and after suture (78 ± 17% vs. 77 ± 22%; p = 0.904). Tendinous venous filling pressure increased by 33% (54 ± 16 AU vs. 72 ± 20 AU; p = 0.019) after suture. Conclusion Achilles tendon suture in anaesthetised rats causes an acute loss of capillary perfusion and increases postcapillary venous filling pressures indicating venous stasis. The primary hypothesis of this study was confirmed. In contrast, tendinous tissue oxygen saturation remains unchanged excluding acute intratendinous hypoxia within the first 10 minutes after suture. Further changes of oxygen saturation remain unclear. Furthermore, it remains to be determined to what extent reduced capillary blood flow as well as increased postcapillary stasis might influence tendon healing from a microcirculatory point of view in this animal setting

  4. Achilles tendon rupture - aftercare

    MedlinePlus

    Heel cord tear; Calcaneal tendon rupture ... MRI scan to see what type of Achilles tendon tear you have. An MRI is a type ... partial tear means at least some of the tendon is still OK. A full tear means your ...

  5. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C

    PubMed Central

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-01-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. PMID:23401563

  6. Alterations in the Achilles tendon after inflammation in surrounding tissue

    PubMed Central

    Vieira, Cristiano Pedrozo; Guerra, Flávia da Ré; de Oliveira, Letícia Prado; de Almeida, Marcos dos Santos; Pimentel, Edson Rosa

    2012-01-01

    Objective To analyze the characteristics of the Achilles tendon of rats after induction of localized inflammation in the rat paw. Methods In our study three groups were used: inflamed group with carrageenan in rat paw (G1); saline group (G2) and control group (G3). After 4 hours the animals were euthanized and the Achilles tendon removed. Results No significant differences were observed in the analysis of non-collagenous proteins, glycosaminoglycans and hydroxyproline in the groups but a tendency of reduction was verified in G1. As regards the organization of collagen molecules, no differences were observed between groups. With respect to MMPs activity, a stronger presence of the active isoform of MMP-2 in G1 was observed, suggesting that the remodeling was occurring. Conclusion Thus, we conclude that the inflammatory process in rat paw may affect the remodeling of tendons located near the inflamed site. Level of Evidence I, Prognostic Studies - Investigating the Effect of a Patient Characteristic on the Outcome of Disease PMID:24453615

  7. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.

  8. Achilles tendon: US examination

    SciTech Connect

    Fornage, B.D.

    1986-06-01

    Real-time ultrasonography (US) using linear-array probes and a stand-off pad as a ''waterpath'' was performed to evaluate the Achilles tendon in 67 patients (including 24 athletes) believed to have acute or chronic traumatic or inflammatory pathologic conditions. Tendons in 23 patients appeared normal on US scans. The 44 abnormal tendons comprised five complete and four partial ruptures, seven instances of postoperative change, and 28 cases of tendonitis. US depiction of the inner structure of the tendon resulted in the diagnosis of focal abnormalities, including partial ruptures, nodules, and calcifications. Tendonitis was characterized by enlargement and decreased echogenicity of the tendon. The normal US appearance of the Achilles tendon is described.

  9. Comparison of structural anisotropic soft tissue models for simulating Achilles tendon tensile behaviour.

    PubMed

    Khayyeri, Hanifeh; Longo, Giacomo; Gustafsson, Anna; Isaksson, Hanna

    2016-08-01

    The incidence of tendon injury (tendinopathy) has increased over the past decades due to greater participation in sports and recreational activities. But little is known about the aetiology of tendon injuries because of our limited knowledge in the complex structure-function relationship in tendons. Computer models can capture the biomechanical behaviour of tendons and its structural components, which is essential for understanding the underlying mechanisms of tendon injuries. This study compares three structural constitutive material models for the Achilles tendon and discusses their application on different biomechanical simulations. The models have been previously used to describe cardiovascular tissue and articular cartilage, and one model is novel to this study. All three constitutive models captured the tensile behaviour of rat Achilles tendon (root mean square errors between models and experimental data are 0.50-0.64). They further showed that collagen fibres are the main load-bearing component and that the non-collagenous matrix plays a minor role in tension. By introducing anisotropic behaviour also in the non-fibrillar matrix, the new biphasic structural model was also able to capture fluid exudation during tension and high values of Poisson׳s ratio that is reported in tendon experiments. PMID:27108350

  10. Open Achilles tendon lacerations.

    PubMed

    Said, M Nader; Al Ateeq Al Dosari, Mohamed; Al Subaii, Nasser; Kawas, Alaa; Al Mas, Ali; Al Ser, Yaser; Abuodeh, Yousef; Shakil, Malik; Habash, Ali; Mukhter, Khalid

    2015-04-01

    In contrast to closed Achilles tendon ruptures, open injuries are rarely reported in the literature. This paper provides information about open Achilles tendon wounds that are eventually seen in the Middle East. The reporting unit, Hamad Medical Corporation, is one of the biggest trauma centers in the Gulf area and the major health provider in Qatar. This is a retrospective study including patients admitted and operated for open Achilles tendon injuries between January 2011 and December 2013. Two hundred and five cases of open Achilles tendon lacerations were operated in Hamad General Hospital in this period. Forty-eight cases showed partial injuries, and the remaining are complete tendons cut. In the same period, fifty-one closed ruptured Achilles tendons were operated in the same trauma unit. In the majority of cases, the open injury resulted from a slip in the floor-leveled traditional toilette seats. Local damage to the toilette seats resulted in sharp edges causing the laceration of the heel if the patient was slipping over the wet floor. This occurrence is the cause in the vast majority of the cases. Wounds were located 1-5 cm proximal to tendon insertion. Standard treatment principles were applied. This included thorough irrigation in the emergency room, intravenous antibiotics, surgical debridement and primary repair within 24 h. Patients were kept in the hospital 1-7 days for intravenous antibiotics and possible dressing changes. Postoperatively below knee slabs were applied in the majority of patients and were kept for about 4 weeks followed by gradual weight bearing and range of motion exercises. Outpatients follow up in 1-2 weeks. Further follow-up visits at around 2-, 4-, 8- and 12-week intervals until complete wound healing and satisfactory rehabilitation outcome. Sixteen cases needed a second procedure. A high incidence of Achilles tendon open injuries is reported. This seems to be related to partially damaged floor-level toilettes in the

  11. Plyometric training effects on Achilles tendon stiffness and dissipative properties.

    PubMed

    Fouré, Alexandre; Nordez, Antoine; Cornu, Christophe

    2010-09-01

    The aim of this study was to determine the effects of 14 wk of plyometric training on mechanical properties of the Achilles tendon. Nineteen subjects were randomly assigned to trained or control group. Cross-sectional area (CSA), stiffness, and dissipation coefficient of the Achilles tendon were measured before and after the training period. In the trained group, a decrease in dissipation coefficient (-35.0%; P<0.05) and an upward trend in stiffness (+24.1%) of the Achilles tendon was found, without any changes in Achilles tendon CSA (P>0.05). Plyometric training enhances the muscular tension transmission mainly through a reduction in energy dissipated by the tendon. The lack of changes in the Achilles tendon CSA indicates that changes in mechanical properties would mainly result from a qualitative change in tendinous tissues rather than from changes in the geometry of the Achilles tendon.

  12. Achilles Tendon Rupture

    PubMed Central

    Wertz, Jess; Galli, Melissa; Borchers, James R.

    2013-01-01

    Context: Achilles tendon (AT) rupture in athletes is increasing in incidence and accounts for one of the most devastating sports injuries because of the threat to alter or end a career. Despite the magnitude of this injury, reliable risk assessment has not been clearly defined, and prevention strategies have been limited. The purpose of this review is to identify potential intrinsic and extrinsic risk factors for AT rupture in aerial and ground athletes stated in the current literature. Evidence Acquisition: A MEDLINE search was conducted on AT rupture, or “injury” and “risk factors” and “athletes” from 1980 to 2011. Emphasis was placed on epidemiology, etiology, and review articles focusing on the risk for lower extremity injury in runners and gymnasts. Thirty articles were reviewed, and 22 were included in this assessment. Results: Aerial and ground athletes share many intrinsic risk factors for AT rupture, including overuse and degeneration of the tendon as well as anatomical variations that mechanically put an athlete at risk. Older athletes, athletes atypical in size for their sport, high tensile loads, leg dominance, and fatigue also may increase risk. Aerial athletes tend to have more extrinsic factors that play a role in this injury due to the varying landing surfaces from heights and technical maneuvers performed at various skill levels. Conclusion: Risk assessment for AT rupture in aerial and ground athletes is multivariable and difficult in terms of developing prevention strategies. Quantitative measures of individual risk factors may help identify major contributors to injury. PMID:24427410

  13. Lubricin in human achilles tendon: The evidence of intratendinous sliding motion and shear force in achilles tendon.

    PubMed

    Sun, Yu-Long; Wei, Zhuang; Zhao, Chunfeng; Jay, Gregory D; Schmid, Thomas M; Amadio, Peter C; An, Kai-Nan

    2015-06-01

    Achilles tendon is one of the most commonly injured tendons. Mechanical force is regarded as a major causative factor. However, the biomechanics of Achilles tendon and mechanical mechanism of the injuries are unclear. Lubricin expresses at regions exposed to sliding motion and shear force in a number of tissues. This study investigated the distribution and concentration of lubricin in human Achilles tendons for better understanding the biomechanics of Achilles tendon. Achilles tendons were harvested from nine cadavers. Lubricin was extracted from various locations proximal to the calcaneal insertion and quantified with ELISA. The distribution of lubricin was investigated with immunohistochemistry. Lubricin was mainly identified at the interfaces of tendon fascicles, especially in the mid-portion of the tendon. The concentration of lubricin in Achilles tendons varied by individual and the distance from its calcaneal insertion. The distal portion of the tendon had a higher concentration of lubricin than the proximal regions of the tendon. This study suggests the presence of intratendinous sliding motion of fascicles and shear force at interfaces of fascicles in human Achilles tendon. Shear force could be an important mechanical factor for the development of Achilles tendinopathy and rupture.

  14. Achilles tendon rupture rehabilitation

    PubMed Central

    Kearney, R. S.; Parsons, N.; Underwood, M.; Costa, M. L.

    2015-01-01

    Objectives The evidence base to inform the management of Achilles tendon rupture is sparse. The objectives of this research were to establish what current practice is in the United Kingdom and explore clinicians’ views on proposed further research in this area. This study was registered with the ISRCTN (ISRCTN68273773) as part of a larger programme of research. Methods We report an online survey of current practice in the United Kingdom, approved by the British Orthopaedic Foot and Ankle Society and completed by 181 of its members. A total of ten of these respondents were invited for a subsequent one-to-one interview to explore clinician views on proposed further research in this area. Results The survey showed wide variations in practice, with patients being managed in plaster cast alone (13%), plaster cast followed by orthoses management (68%), and orthoses alone (19%). Within these categories, further variation existed regarding the individual rehabilitation facets, such as the length of time worn, the foot position within them and weight-bearing status. The subsequent interviews reflected this clinical uncertainty and the pressing need for definitive research. Conclusions The gap in evidence in this area has resulted in practice in the United Kingdom becoming varied and based on individual opinion. Future high-quality randomised trials on this subject are supported by the clinical community. Cite this article: Bone Joint Res 2015;4:65–9 PMID:25868938

  15. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  16. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    PubMed Central

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  17. Spontaneous Achilles tendon rupture in alkaptonuria

    PubMed Central

    Alajoulin, Omar A.; Alsbou, Mohammed S.; Ja’afreh, Somayya O.; Kalbouneh, Heba M.

    2015-01-01

    Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992

  18. Common conditions of the achilles tendon.

    PubMed

    Mazzone, Michael F; McCue, Timothy

    2002-05-01

    The Achilles tendon, the largest tendon in the body, is vulnerable to injury because of its limited blood supply and the combination of forces to which it is subjected. Aging and increased activity (particularly velocity sports) increase the chance of injury to the Achilles tendon. Although conditions of the Achilles tendon are occurring with increasing frequency because the aging U.S. population is remaining active, the diagnosis is missed in about one fourth of cases. Injury onset can be gradual or sudden, and the course of healing is often lengthy. A thorough history and specific physical examination are essential to make the appropriate diagnosis and facilitate a specific treatment plan. The mainstay of treatment for tendonitis, peritendonitis, tendinosis, and retrocalcaneobursitis is ice, rest, and nonsteroidal anti-inflammatory drugs, but physical therapy, orthoties, and surgery may be necessary in recalcitrant cases. In patients with tendon rupture, casting or surgery is required. Appropriate treatment often leads to full recovery.

  19. Human Achilles tendon glycation and function in diabetes.

    PubMed

    Couppé, Christian; Svensson, Rene Brüggebusch; Kongsgaard, Mads; Kovanen, Vuokko; Grosset, Jean-Francois; Snorgaard, Ole; Bencke, Jesper; Larsen, Jytte Overgaard; Bandholm, Thomas; Christensen, Tomas Møller; Boesen, Anders; Helmark, Ida Carøe; Aagaard, Per; Kjaer, Michael; Magnusson, Stig Peter

    2016-01-15

    Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between collagen glycation, Achilles tendon stiffness parameters, and plantar pressure in poorly (n = 22) and well (n = 22) controlled diabetic patients, including healthy age-matched (45-70 yr) controls (n = 11). There were no differences in any of the outcome parameters (collagen cross-linking or tendon stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effect of diabetes was explored by collapsing the diabetes groups (DB) compared with the controls. Skin collagen cross-linking lysylpyridinoline, hydroxylysylpyridinoline (136%, 80%, P < 0.01) and pentosidine concentrations (55%, P < 0.05) were markedly greater in DB. Furthermore, Achilles tendon material stiffness was higher in DB (54%, P < 0.01). Notably, DB also demonstrated higher forefoot/rearfoot peak-plantar-pressure ratio (33%, P < 0.01). Overall, Achilles tendon material stiffness and skin connective tissue cross-linking were greater in diabetic patients compared with controls. The higher foot pressure indicates that material stiffness of tendon and other tissue (e.g., skin and joint capsule) may influence foot gait. The difference in foot pressure distribution may contribute to the development of foot ulcers in diabetic patients.

  20. [Damage to large tendons: Achilles, patellar and quadriceps tendons].

    PubMed

    Amlang, M H; Zwipp, H

    2006-07-01

    The etiology and mechanisms of Achilles, patellar and quadriceps tendon ruptures are very similar. Age dependent changes in tendon structure and disorders such gout, diabetes, rheumatic diseases and chronic renal failure are associated causes. The main mechanism of rupture is indirect trauma. Although clinical diagnosis is easy, ruptures are still frequently missed. Sonography is the main standard diagnostic tool. MRI is indicated only in special cases. Open operative repair is the most common treatment for quadriceps and patellar tendon ruptures. Treatment of Achilles tendon ruptures is moving towards an individualized choice of therapy. Percutaneous and other "minimally invasive" techniques will play an increasingly important role.

  1. Spatial variations in Achilles tendon shear wave speed

    PubMed Central

    DeWall, Ryan J.; Slane, Laura C.; Lee, Kenneth S.; Thelen, Darryl G.

    2014-01-01

    Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction. The purpose of this study was to investigate spatial variations in shear wave speed along medial and lateral paths of the Achilles tendon for three different ankle postures: resting ankle angle (R, i.e. neutral), plantarflexed (P; R − 15 deg), and dorsiflexed (D; R + 15 deg). We observed significant spatial and posture variations in tendon shear wave speed in ten healthy young adults. Shear wave speeds in the Achilles free tendon averaged 12 ± 1.2 m/s in a resting position, but decreased to 7.2 ± 1.8 m/s with passive plantarflexion. Distal tendon shear wave speeds often reached the maximum tracking limit (16.3 m/s) of the system when the ankle was in the passively dorsiflexed posture (+15 deg from R). At a fixed posture, shear wave speeds decreased significantly from the free tendon to the gastrocnemius musculotendon junction, with slightly higher speeds measured on the medial side than on the lateral side. Shear wave speeds were only weakly correlated with the thickness and depth of the tendon, suggesting that the distal-to-proximal variations may reflect greater compliance in the aponeurosis relative to the free tendon. The results highlight the importance of considering both limb posture and transducer positioning when using SSI for biomechanical and clinical assessments of the Achilles tendon. PMID:24933528

  2. Augmented repair of acute Achilles tendon ruptures.

    PubMed

    Zell, R A; Santoro, V M

    2000-06-01

    Twenty-five patients who had an acute Achilles tendon rupture were managed with an augmented repair using the gastrocnemius-soleus fascia. All patients healed their repair and there were no re-ruptures. There was one infection. Augmented repair allowed early functional recovery as evidenced by full ankle motion by four to eight weeks, full unassisted weight bearing by three weeks, cessation of braces by four weeks, and return to work by one to six weeks post-operatively. Augmentation adds a sufficient amount of collagen to allow early range of motion and weight bearing without re-rupture. Disadvantages included a long incision, soft tissue prominence, one infection, and sural nerve injury.

  3. [Tendinosis and ruptures of the Achilles tendon].

    PubMed

    Amlang, M H; Zwipp, H

    2012-02-01

    Tendinosis of the Achilles tendon is a degenerative-reparative structural change of the tendon with microdefects, increases in cross-section due to cicatricial tendon regeneration, neoangiogenesis and reduction of elasticity. The previously used term tendinitis is only rarely used for the chronic form since signs of inflammation such as redness and hyperthermia or elevated levels of inflammatory parameters on laboratory testing are generally absent. Duplex sonography with visualization of the neovascularization has become a valuable supplement not only for diagnostics but also for therapy planning. The classic, conservative therapy for painful tendinosis consists of oral anti-inflammatory drugs, pain-adapted load reduction, raising the heel, stretching the calf musculature, and various physiotherapeutic interventions. When conservative treatment over a period of 4 - 6 months fails to produce any or non-adequate pain relief, an indication for surgical treatment should be considered. In the therapy for fresh ruptures of the Achilles tendon further developments in minimally invasive techniques have led to a worldwide paradigm change over the past 10 years. The decisive advantage of minimally invasive surgical techniques is the lower risk of wound infection as compared to the sutures of the open technique. When compared with conservative functional therapy the minimally invasive repair has the advantage of being less dependent on the compliance of the patient since, in the early phase of tendon healing the suture prevents a separation of the tendon ends upon controlled movements. However, not every patient with a ruptured Achilles tendon should be treated with a minimally invasive repair. Open tendon reconstruction and functional conservative therapy are still justified when the correct indication is given. PMID:22344862

  4. Minimally Invasive Approach to Achilles Tendon Pathology.

    PubMed

    Hegewald, Kenneth W; Doyle, Matthew D; Todd, Nicholas W; Rush, Shannon M

    2016-01-01

    Many surgical procedures have been described for Achilles tendon pathology; however, no overwhelming consensus has been reached for surgical treatment. Open repair using a central or paramedian incision allows excellent visualization for end-to-end anastomosis in the case of a complete rupture and detachment and reattachment for insertional pathologies. Postoperative wound dehiscence and infection in the Achilles tendon have considerable deleterious effects on overall functional recovery and outcome and sometimes require plastic surgery techniques to achieve coverage. With the aim of avoiding such complications, foot and ankle surgeons have studied less invasive techniques for repair. We describe a percutaneous approach to Achilles tendinopathy using a modification of the Bunnell suture weave technique combined with the use of interference screws. No direct end-to-end repair of the tendon is performed, rather, the proximal stump is brought in direct proximity of the distal stump, preventing overlengthening and proximal stump retraction. This technique also reduces the suture creep often seen with end-to-end tendon repair by providing a direct, rigid suture to bone interface. We have used the new technique to minimize dissection and exposure while restoring function and accelerating recovery postoperatively. PMID:26385574

  5. Injury of the Achilles tendon: diagnosis with sonography.

    PubMed

    Kainberger, F M; Engel, A; Barton, P; Huebsch, P; Neuhold, A; Salomonowitz, E

    1990-11-01

    We determined the diagnostic accuracy of sonography for the assessment of injury to the Achilles tendon. After anatomic investigations in three human cadavers, we performed a clinical study in 24 healthy volunteers and 73 symptomatic patients referred for achillodynia or signs of heel thickening or both in whom a clinical diagnosis of acute total rupture was excluded. High-resolution real-time sonography was performed and the results were compared with final clinical diagnoses (55 patients) and surgical findings (18 patients). Fifty-two of the patients had been involved in various sporting activities (long-distance runners, jumpers, and basketball players), three patients had familial hypercholesterolemia, five patients had systemic inflammatory disease, and 13 patients had no known underlying cause. Anatomic investigation demonstrated accurate assessment of tendon structure and thickness. Sonograms were abnormal in 53 patients (sensitivity, 0.72; specificity, 0.83), and the extent of structural disorders of the tendon could be assessed properly. Abnormalities occurred in the form of tendon swelling (45%), abnormal tendon structure (42%), rupture (15%), and peritendinous lesions (47%). No changes were detected in low-grade disease of short duration, which suggests symptoms caused by functional disorders. Sonography is valuable in the diagnosis of various lesions of the Achilles tendon and its surrounding tissue. Furthermore, it can be used to estimate the degree of tendon abnormality and to differentiate between functional and morphologic conditions.

  6. An unusual cause of Achilles tendon xanthoma.

    PubMed

    Parente, Fabienne; Vesnaver, Matthew; Massie, Rami; Baass, Alexis

    2016-01-01

    Tendinous xanthomas are often thought to be pathognomonic for familial hypercholesterolemia. In this report, we present the case of a young man with a normal lipid profile and Achilles tendon xanthoma. Biochemical and genetic studies confirmed the diagnosis of cerebrotendinous xanthomatosis in this patient. Cerebrotendinous xanthomatosis is a rare autosomal recessive disease associated with xanthoma in tendons and the brain as well as progressive neurologic deficits. Unfortunately, this rare form of reversible dementia is thought to be underdiagnosed. Early diagnosis and treatment of this disease with chenodeoxycholic acid is essential and has been shown to greatly improve the patient's symptoms and prognosis. PMID:27578138

  7. Simultaneous reconstruction of quadriceps tendon rupture after TKA and neglected Achilles tendon rupture.

    PubMed

    Lee, Yong Seuk; Min, Byoung-Hyun; Han, Kyeong-Jin; Cho, Jae Ho; Han, Seung Hwan; Lee, Doo-Hyung; Oh, Kyung Soo

    2010-05-12

    We report a case of simultaneous reconstruction of a quadriceps tendon rupture after total knee arthroplasty (TKA) and neglected Achilles tendon rupture, which occurred before TKA with an ipsilateral hamstring autograft. A 64-year-old woman presented with persistent right knee pain. She also had right heel pain and had received multiple steroid injections at the knee joint and heel. On examination, she showed osteoarthritis in the medial and lateral compartments of the knee joint and an Achilles tendon rupture in the ipsilateral limb. There was skin dimpling and the proximal portion of tendon was migrated. We performed TKA, and the postoperative course was satisfactory. She returned 3 months postoperatively, however, with skin dimpling around the suprapatellar area and weakness of knee extension. Her ankle symptoms were also aggravated because she could not use the knee joint freely. We performed simultaneous reconstruction of the quadriceps tendon and the Achilles tendon using an ipsilateral hamstring autograft.Hamstring autograft offers a good alternative treatment option for rupture repair, particularly with concommitant ruptures of multiple sites when primary repair is not possible or the viability of repaired tissue is poor.

  8. Temporal healing in rat achilles tendon: ultrasound correlations.

    PubMed

    Chamberlain, Connie S; Duenwald-Kuehl, Sarah E; Okotie, Gregory; Brounts, Sabrina H; Baer, Geoffrey S; Vanderby, Ray

    2013-03-01

    The purpose of this study was to explore whether a new ultrasound-based technique correlates with mechanical and biological metrics that describe the tendon healing. Achilles tendons in 32 rats were unilaterally transected and allowed to heal without repair. At 7, 9, 14, or 29 days post-injury, tendons were collected and examined for healing via ultrasound image analysis, mechanical testing, and immunohistochemistry. Consistent with previous studies, we observe that the healing tendons are mechanically inferior (ultimate stress, ultimate load, and normalized stiffness) and biologically altered (cellular and ECM factors) compared to contralateral controls with an incomplete recovery over healing time. Unique to this study, we report: (1) Echo intensity (defined by gray-scale brightness in the ultrasound image) in the healing tissue is related to stress and normalized stiffness. (2) Elongation to failure is relatively constant so that tissue normalized stiffness is linearly correlated with ultimate stress. Together, 1 and 2 suggest a method to quantify mechanical compromise in healing tendons. (3) The amount and type of collagen in healing tendons associates with their strength and normalized stiffness as well as their ultrasound echo intensity. (4) A significant increase of periostin in the healing tissues suggests an important but unexplored role for this ECM protein in tendon healing.

  9. Ossification of the bilateral Achilles tendon: a rare entity.

    PubMed

    Arora, Abhishek J; Arora, Richa

    2015-09-01

    Ossification of the Achilles tendon is a rare clinical entity comprising of one or more segments of variable sized ossified masses in the fibrocartilaginous substance of the tendon. The etiology of ossification of the Achilles tendon is multifactorial with recurrent trauma and surgery comprising major predisposing factors, with others being metabolic, systemic, and infectious diseases. The possibility of a genetic predisposition towards this entity has also been raised, but has not yet been proven. We present a rare case of ossification of the bilateral Achilles tendons without any history of trauma or surgery in a 48-year-old female patient. PMID:26413314

  10. Histopathological and biomechanical evaluation of tenocyte seeded allografts on rat Achilles tendon regeneration.

    PubMed

    Güngörmüş, Cansın; Kolankaya, Dürdane; Aydin, Erkin

    2015-05-01

    Tendon injuries in humans as well as in animals' veterinary medicine are problematic because tendon has poor regenerative capacity and complete regeneration of the ruptured tendon is never achieved. In the last decade there has been an increasing need of treatment methods with different approaches. The aim of the current study was to improve the regeneration process of rat Achilles tendon with tenocyte seeded decellularized tendon matrices. For this purpose, Achilles tendons were harvested, decellularized and seeded as a mixture of three consecutive passages of tenocytes at a density of 1 × 10(6) cells/ml. Specifically, cells with different passage numbers were compared with respect to growth characteristics, cellular senescence and collagen/tenocyte marker production before seeding process. The viability of reseeded tendon constructs was followed postoperatively up to 6 months in rat Achilles tendon by histopathological and biomechanical analysis. Our results suggests that tenocyte seeded decellularized tendon matrix can significantly improve the histological and biomechanical properties of tendon repair tissue without causing adverse immune reactions. To the best of our knowledge, this is the first long-term study in the literature which was accomplished to prove the use of decellularized matrix in a clinically relevant model of rat Achilles tendon and the method suggested herein might have important implications for translation into the clinic.

  11. Nonoperative biological treatment approach for partial Achilles tendon lesion.

    PubMed

    Filardo, Giuseppe; Presti, Mirco Lo; Kon, Elizaveta; Marcacci, Maurilio

    2010-02-01

    Tendon injuries, especially those of the Achilles tendon, are major concerns in sports medicine. The clinical presentation can be acute or chronic and the pathologic findings can range from peritendonitis to full-thickness tendon rupture. Nonsurgical treatment is not always successful; in particular, significant partial ruptures seem to respond poorly to conservative measures and do not improve with time. Surgery is most often considered the favored treatment option for this kind of lesion to obtain pain relief and full functionality with long-standing effects.This article describes a case of a partial tear of the Achilles tendon in a 34-year-old competitive athlete where surgical treatment was avoided in favor of a new biological approach. We applied autologous platelet growth factors through multiple platelet-rich plasma injections; approximately 6.5 billion platelets were injected into the lesion 3 times, 7 days apart. The treatment with platelet-rich plasma and a progressive rehabilitation program allowed the patient to play for 20 minutes in a basketball game 64 days after the trauma and in a full game 75 days after the trauma. To date, 18 months later, he has participated regularly in all the season's games and received no further treatment for his tendon.The fast tissue repair, confirmed by magnetic resonance and ultrasound imaging, allowed a swift return to full functionality and competitive sports activity, suggesting a possible role of platelet growth factors in promoting rapid tendon healing with high-quality tissue. This biological approach may represent a less-invasive therapeutic option even in cases where severe tendon lesions are candidates for surgical treatment.

  12. Influence of neglecting the curved path of the Achilles tendon on Achilles tendon length change at various ranges of motion

    PubMed Central

    Fukutani, Atsuki; Hashizume, Satoru; Kusumoto, Kazuki; Kurihara, Toshiyuki

    2014-01-01

    Abstract Achilles tendon length has been measured using a straight‐line model. However, this model is associated with a greater measurement error compared with a curved‐line model. Therefore, we examined the influence of neglecting the curved path of the Achilles tendon on its length change at various ranges of motion. Ten male subjects participated in this study. First, the location of the Achilles tendon was confirmed by using ultrasonography, and markers were attached on the skin over the Achilles tendon path. Then, the three‐dimensional coordinates of each marker at dorsiflexion (DF) 15°, plantarflexion (PF) 0°, PF15°, and PF30° were obtained. Achilles tendon length in the curved‐line model was calculated as the sum of the distances among each marker. On the other hand, Achilles tendon length in the straight‐line model was calculated as the straight distance between the two most proximal and distal markers projected onto the sagittal plane. The difference of the Achilles tendon length change between curved‐line and straight‐line models was calculated by subtracting the Achilles tendon length change obtained in curved‐line model from that obtained in straight‐line model with three different ranges of motion (i.e., PF0°, PF15°, and PF30° from DF15°, respectively). As a result, the difference in Achilles tendon length change between the two models increased significantly as the range of motion increased. In conclusion, neglecting the curved path of the Achilles tendon induces substantial overestimation of its length change when the extent of ankle joint angle change is large. PMID:25303951

  13. Middle-aged adults exhibit altered spatial variations in Achilles tendon wave speed

    PubMed Central

    Slane, Laura Chernak; DeWall, Ryan; Martin, Jack; Lee, Kenneth; Thelen, Darryl G.

    2016-01-01

    The purpose of this study was to investigate spatial variations in measured wave speed in the relaxed and stretched Achilles tendons of young and middle-aged adults. Wave speed was measured from the distal Achilles tendon, soleus aponeurosis, medial gastrocnemius aponeurosis and medial gastrocnemius muscle in healthy young (n = 15, aged 25 ± 4 years) and middle-aged (n = 10, aged 49 ± 4 years) adults in resting, dorsiflexed and plantarflexed postures. In both age groups, Achilles tendon wave speed decreased proximally, with the lowest wave speed measured in the gastrocnemius aponeurosis. Measured wave speed increased with passive dorsiflexion, reflecting the strain-stiffening behavior of tendons. There were no significant aging effects on wave speed in the free tendon or soleus aponeurosis. However, a significant, inverse relationship between gastrocnemius aponeurosis wave speed and age was observed in the dorsiflexed posture. We also observed significantly lower wave speeds in the gastrocnemius muscles of middle-aged adults when compared with young adults. These results suggest that Achilles tendon compliance increases in a distal-to-proximal pattern, with middle-aged adults exhibiting greater compliance in the distal gastrocnemius muscle and tendinous structures. An age-related change in the spatial variation in Achilles tendon compliance could affect localised tissue deformation patterns and injury potential within the triceps surae muscle-tendon units. PMID:26020294

  14. ggstThe role of tendon microcirculation in Achilles and patellar tendinopathy

    PubMed Central

    Knobloch, Karsten

    2008-01-01

    Tendinopathy is of distinct interest as it describes a painful tendon disease with local tenderness, swelling and pain associated with sonographic features such as hypoechogenic texture and diameter enlargement. Recent research elucidated microcirculatory changes in tendinopathy using laser Doppler flowmetry and spectrophotometry such as at the Achilles tendon, the patellar tendon as well as at the elbow and the wrist level. Tendon capillary blood flow is increased at the point of pain. Tendon oxygen saturation as well as tendon postcapillary venous filling pressures, determined non-invasively using combined Laser Doppler flowmetry and spectrophotometry, can quantify, in real-time, how tendon microcirculation changes over with pathology or in response to a given therapy. Tendon oxygen saturation can be increased by repetitive, intermittent short-term ice applications in Achilles tendons; this corresponds to 'ischemic preconditioning', a method used to train tissue to sustain ischemic damage. On the other hand, decreasing tendon oxygenation may reflect local acidosis and deteriorating tendon metabolism. Painful eccentric training, a common therapy for Achilles, patellar, supraspinatus and wrist tendinopathy decreases abnormal capillary tendon flow without compromising local tendon oxygenation. Combining an Achilles pneumatic wrap with eccentric training changes tendon microcirculation in a different way than does eccentric training alone; both approaches reduce pain in Achilles tendinopathy. The microcirculatory effects of measures such as extracorporeal shock wave therapy as well as topical nitroglycerine application are to be studied in tendinopathy as well as the critical question of dosage and maintenance. Interestingly it seems that injection therapy using color Doppler for targeting the area of neovascularisation yields to good clinical results with polidocanol sclerosing therapy, but also with a combination of epinephrine and lidocaine. PMID:18447938

  15. Complications of the treatment of Achilles tendon ruptures.

    PubMed

    Molloy, Andy; Wood, Edward V

    2009-12-01

    Since the first reports in the medical literature of treatment of the Achilles tendon, complications have been recognized from both non-operative and operative techniques. These include tendon rerupture, sural nerve morbidity, wound healing problems, changes in tendon morphology, venous thromboembolism, elongation of the tendon, complex regional pain syndrome, and compartment syndrome. This article delineates the incidence for each of these complications, with differing techniques, methods of avoiding these complications and treatment methods if they occur. PMID:19857846

  16. Cross-Linking in Collagen by Nonenzymatic Glycation Increases the Matrix Stiffness in Rabbit Achilles Tendon

    PubMed Central

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young's modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young's modulus of elasticity, and toughness (r values ranging from .61 to .94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (r values ranging from .22 to .84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross

  17. Reconstruction of the Achilles tendon and overlying skin defect: 3 case reports.

    PubMed

    Wei, Zai-Rong; Sun, Guang-Feng; Wang, Da-Li; Tang, Xiu-Jun

    2014-09-01

    Although various reconstruction surgery techniques are available to repair posterior heel defects, the compound defects reconstruction is an ongoing surgical challenge. Complex, free tissue flaps are often clinically used in this repair operation but the techniques have some disadvantages, including intraoperative tedious dissections, vascular anastomosis, and postoperative thrombogenesis. Here, we present a single-stage procedure for Achilles tendon and its overlying skin defects repair with a complex posterior tibial artery perforator-based tissue flap on 3 patients. This method can repair the Achilles tendon and the soft tissue defects simultaneously in a relatively short operative time. The prognosis of the 3 operative patients described here was great for participating in exercise and daily work unassisted 18 to 26 months after operation. Clinical results indicate that our operative method can be effective in repair of Achilles tendon and its overlying skin defects without major complications.

  18. Effect of repeated freezing-thawing on the Achilles tendon of rabbits.

    PubMed

    Chen, Lianxu; Wu, Yanping; Yu, Jiakuo; Jiao, Zhaode; Ao, Yingfang; Yu, Changlong; Wang, Jianquan; Cui, Guoqing

    2011-06-01

    The increased use of allograft tissue in the reconstruction of anterior cruciate ligament has brought more focus to the effect of storage and treatment on allograft. The purpose of this study was to observe the effect of histology and biomechanics on Achilles tendon in rabbits through repeated freezing-thawing before allograft tendon transplantation. Rabbit Achilles tendons were harvested and processed according to the manufacture's protocol of tissue bank, and freezing-thawing was repeated three times (group 1) and ten times (group 2). Those received only one cycle were used as controls. Then, tendons in each group were selected randomly to make for histological observations and biomechanics test. Histological observation showed that the following changes happened as the number of freezing-thawing increased: the arrangement of tendon bundles and collagen fibrils became disordered until ruptured, cells disrupted and apparent gaps appeared between tendon bundle because the formation of ice crystals. There were significant differences between the experimental and control groups in the values of maximum load, energy of maximum load and maximum stress, whereas no significant differences existed in other values such as stiffness, maximum strain, elastic modulus, and energy density. Therefore, repeated freezing-thawing had histological and biomechanical effect on Achilles tendon in rabbits before allograft tendon transplantation. This indicates that cautions should be taken in the repeated freezing-thawing preparation of allograft tendons in clinical application.

  19. A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon

    PubMed Central

    Heuijerjans, Ashley; Matikainen, Marko K.; Julkunen, Petro; Eliasson, Pernilla; Aspenberg, Per; Isaksson, Hanna

    2015-01-01

    Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon

  20. Increased unilateral tendon stiffness and its effect on gait 2-6 years after Achilles tendon rupture.

    PubMed

    Agres, A N; Duda, G N; Gehlen, T J; Arampatzis, A; Taylor, W R; Manegold, S

    2015-12-01

    Achilles tendon rupture (ATR) alters tissue composition, which may affect long-term tendon mechanics and ankle function during movement. However, a relationship between Achilles tendon (AT) properties and ankle joint function during gait remains unclear. The primary hypotheses were that (a) post-ATR tendon stiffness and length differ from the noninjured contralateral side and that (b) intra-patient asymmetries in AT properties correlate to ankle function asymmetries during gait, determined by ankle angles and moments. Ultrasonography and dynamometry were used to assess AT tendon stiffness, strain, elongation, and rest length in both limbs of 20 ATR patients 2-6 years after repair. Three-dimensional ankle angles and moments were determined using gait analysis. Injured tendons exhibited increased stiffness, rest length, and altered kinematics, with higher dorsiflexion and eversion, and lower plantarflexion and inversion. Intra-patient tendon stiffness and tendon length ratios were negatively correlated to intra-patient ratios of the maximum plantarflexion moment and maximum dorsiflexion angle, respectively. These results suggest that after surgical ATR repair, higher AT stiffness, but not a longer AT, may contribute to deficits in plantarflexion moment generation. These data further support the claim that post-ATR tendon regeneration results in the production of a tissue that is functionally different than noninjured tendon.

  1. In-vitro tensile testing machine for vibration study of fresh rabbit Achilles tendon

    NASA Astrophysics Data System (ADS)

    Revel, Gian M.; Scalise, Alessandro; Scalise, Lorenzo; Pianosi, Antonella

    2001-10-01

    A lot of people, overall athletic one suffer from tendinitis or complete rupture of the Achilles tendon. This structure becomes inflamed and damaged mainly from a variety of mechanical forces and sometimes due to metabolic problems, such as diabetes or arthritis. Over the past three decades extensive studies have been performed on the structural and mechanical properties of Achilles tendon trying to explain the constitutive equations to describe and foresee tendon behavior. Among the various mechanical parameters, the vibrational behavior is also of interest. Several investigations are performed in order to study how the Achilles tendon vibrations influence the response of the muscle proprioception and human posture. The present article describes how in vitro tensile experiments can be performed, taking into account the need to simulate physiological condition of Achilles tendon and thus approaching some opened problems in the design of the experimental set-up. A new system for evaluating tendon vibrations by non contact techniques is proposed. Preliminary simple elongation tests are made extracting the main mechanical parameters: stress and strain at different fixed stretches, in order to characterize the tissue. Finally, a vibration study is made at each pretensioned tendon level evaluating the oscillating curves caused by a small hammer.

  2. An in-vivo experimental evaluation of He-Ne laser photostimulation in healing Achilles tendons.

    PubMed

    Elwakil, Tarek F

    2007-03-01

    There is no method of treatment that has been proven to accelerate the rate of tendon healing or to improve the quality of the regenerating tendon. Low level laser photostimulation has gained a considerable attention for enhancing tissue repair in a wide spectrum of applications. However, there is controversy regarding the effectiveness of laser photostimulation for improvement of the healing process of surgically repaired tendons. Accordingly, the present study was conducted to evaluate the role of helium-neon (He-Ne) laser photostimulation on the process of healing of surgically repaired Achilles tendons. Thirty unilateral Achilles tendons of 30 Raex rabbits were transected and immediately repaired. Operated Achilles tendons were randomly divided into two equal groups. Tendons at group A were subjected to He-Ne laser (632.8 nm) photostimulation, while tendons at group B served as a control group. Two weeks later, the repaired Achilles tendons were histopathologically and biomechanically evaluated. The histopathological findings suggest the favorable qualitative pattern of the newly synthesized collagen of the regenerating tendons after He-Ne laser photostimulation. The biomechanical results support the same favorable findings from the functional point of view as denoted by the better biomechanical properties of the regenerating tendons after He-Ne laser photostimulation with statistical significance (p tendons for a better functional outcome. It could be applied safely and effectively in humans, especially with respect to the proposed long-term clinical outcome. PMID:17160585

  3. An in-vivo experimental evaluation of He-Ne laser photostimulation in healing Achilles tendons.

    PubMed

    Elwakil, Tarek F

    2007-03-01

    There is no method of treatment that has been proven to accelerate the rate of tendon healing or to improve the quality of the regenerating tendon. Low level laser photostimulation has gained a considerable attention for enhancing tissue repair in a wide spectrum of applications. However, there is controversy regarding the effectiveness of laser photostimulation for improvement of the healing process of surgically repaired tendons. Accordingly, the present study was conducted to evaluate the role of helium-neon (He-Ne) laser photostimulation on the process of healing of surgically repaired Achilles tendons. Thirty unilateral Achilles tendons of 30 Raex rabbits were transected and immediately repaired. Operated Achilles tendons were randomly divided into two equal groups. Tendons at group A were subjected to He-Ne laser (632.8 nm) photostimulation, while tendons at group B served as a control group. Two weeks later, the repaired Achilles tendons were histopathologically and biomechanically evaluated. The histopathological findings suggest the favorable qualitative pattern of the newly synthesized collagen of the regenerating tendons after He-Ne laser photostimulation. The biomechanical results support the same favorable findings from the functional point of view as denoted by the better biomechanical properties of the regenerating tendons after He-Ne laser photostimulation with statistical significance (p tendons for a better functional outcome. It could be applied safely and effectively in humans, especially with respect to the proposed long-term clinical outcome.

  4. Achilles tendon biomechanics in response to acute intense exercise.

    PubMed

    Joseph, Michael F; Lillie, Kurtis R; Bergeron, Daniel J; Cota, Kevin C; Yoon, Joseph S; Kraemer, William J; Denegar, Craig R

    2014-05-01

    Achilles tendinopathy is a common disorder and is more prevalent in men. Although differences in tendon mechanics between men and women have been reported, understanding of tendon mechanics in young active people is limited. Moreover, there is limited understanding of changes in tendon mechanics in response to acute exercise. Our purpose was to compare Achilles tendon mechanics in active young adult men and women at rest and after light and strenuous activity in the form of repeated jumping with an added load. Participants consisted of 17 men and 14 women (18-30 years) who were classified as being at least moderately physically active as defined by the International Physical Activity Questionnaire. Tendon force/elongation measures were obtained during an isometric plantarflexion contraction on an isokinetic dynamometer with simultaneous ultrasound imaging of the Achilles tendon approximate to the soleus myotendinous junction. Data were collected at rest, after a 10-minute treadmill walk, and after a fatigue protocol of 100 toe jumps performed in a Smith machine, with a load equaling 20% of body mass. We found greater tendon elongation, decreased stiffness, and lower Young's modulus only in women after the jumping exercise. Force and stress were not different between groups but decreased subsequent to the jumping exercise bout. In general, women had greater elongation and strain, less stiffness, and a lower Young's modulus during plantarflexor contraction. These data demonstrate differences in tendon mechanics between men and women and suggest a potential protective mechanism explaining the lower incidence of Achilles tendinopathy in women.

  5. Reconstruction of Kuwada grade IV chronic achilles tendon rupture by minimally invasive technique

    PubMed Central

    Miao, Xudong; Wu, Yongping; Tao, Huimin; Yang, Disheng; Huang, Lu

    2016-01-01

    Background: Transfer of a flexor hallucis longus (FHL) tendon can not only reconstruct the Achilles tendon but also provide ischemic tendinous tissues with a rich blood supply to enhance wound healing. This retrospective study aims to investigate clinical outcomes in patients who underwent repair of Kuwada grade IV chronic Achilles tendon rupture with long hallucis longus tendons harvested using a minimally invasive technique. Materials and Methods: 35 patients who were treated for Kuwada grade IV Achilles tendon injuries from July 2006 to June 2011 were included in this retrospective study. The age ranged between 23 and 71 years. The duration from primary injury to surgery ranged from 29 days to 34 months (mean value, 137.6 days). All 35 patients had difficulties in lifting their calves. Thirty two were followed up for a mean 32.2 months (range 18–72 months), whereas three were lost to followup. Magnetic resonance imaging (MRI) showed that the tendon rupture gap ranged from 6.0 to 9.2 cm. During surgery, a 2.0 cm minor incision was made vertically in the medial plantar side of the midfoot, and a 1.5 cm minor transverse incision was made in the plantar side of the interphalangeal articulation of the great toe to harvest the FHL tendon, and the tendon was fixed to the calcaneus with suture anchors. Postoperative appearance and function were evaluated by physiotherapists based American Orthopedic Foot and Ankle Society-ankle and hindfoot score (AOFAS-AH), and Leppilahti Achilles tendon ratings. Results: Results were assessed in 32 patients. Except for one patient who suffered complications because of wound disruption 10 days after the operation, all other patients had primary wound healing, with 28 of 32 able to go up on their toes at last followup. The AOFAS-AH score was increased from preoperative (51.92 ± 7.08) points to (92.56 ± 6.71) points; Leppilahti Achilles tendon score was increased from preoperative (72.56 ± 7.43) to (92.58 ± 5.1). There were

  6. The anatomical footprint of the Achilles tendon: a cadaveric study.

    PubMed

    Ballal, M S; Walker, C R; Molloy, A P

    2014-10-01

    We dissected 12 fresh-frozen leg specimens to identify the insertional footprint of each fascicle of the Achilles tendon on the calcaneum in relation to their corresponding muscles. A further ten embalmed specimens were examined to confirm an observation on the retrocalcaneal bursa. The superficial part of the insertion of the Achilles tendon is represented by fascicles from the medial head of the gastrocnemius muscle, which is inserted over the entire width of the inferior facet of the calcaneal tuberosity. In three specimens this insertion was in continuity with the plantar fascia in the form of periosteum. The deep part of the insertion of the Achilles tendon is made of fascicles from the soleus tendon, which insert on the medial aspect of the middle facet of the calcaneal tuberosity, while the fascicles of the lateral head of the gastrocnemius tendon insert on the lateral aspect of the middle facet of the calcaneal tuberosity. A bicameral retrocalcaneal bursa was present in 15 of the 22 examined specimens. This new observation and description of the insertional footprint of the Achilles tendon and the retrocalcaneal bursa may allow a better understanding of the function of each muscular part of the gastrosoleus complex. This may have clinical relevance in the treatment of Achilles tendinopathies.

  7. Acute Bilateral Traumatic Achilles Tendon Rupture – A Rare Presentation

    PubMed Central

    Jhaveri, Maulik; Golwala, Paresh; Merh, Aditya; Patel, Amit

    2016-01-01

    The Achilles tendon is the strongest tendon in the body, which is commonly ruptured in male athletes. Bilateral rupture of the Achilles tendon is a rare condition with very few reported cases in the literature. It poses a challenge in management, and hence, we report a case with traumatic bilateral Achilles tendon rupture in a young male patient and its management. One side was treated conservatively as the rupture was partial and the other side, which had a complete tear, was operated. At nine months follow-up, the patient has had a satisfactory result and is now bearing full weight without any problems. We suggest this method of treatment to be worthwhile for this unusual entity. PMID:27588227

  8. Biomechanical Evaluation of Posterior Cruciate Ligament Reconstruction With Quadriceps Versus Achilles Tendon Bone Block Allograft

    PubMed Central

    Forsythe, Brian; Haro, Marc S.; Bogunovic, Ljiljana; Collins, Michael J.; Arns, Thomas A.; Trella, Katie J.; Shewman, Elizabeth F.; Verma, Nikhil N.; Bach, Bernard R.

    2016-01-01

    Background: Long-term studies of posterior cruciate ligament (PCL) reconstruction suggest that normal stability is not restored in the majority of patients. The Achilles tendon allograft is frequently utilized, although recently, the quadriceps tendon has been introduced as an alternative option due to its size and high patellar bone density. Purpose/Hypothesis: The purpose of this study was to compare the biomechanical strength of PCL reconstructions using a quadriceps versus an Achilles allograft. The hypothesis was that quadriceps bone block allograft has comparable mechanical properties to those of Achilles bone block allograft. Study Design: Controlled laboratory study. Methods: Twenty-nine fresh-frozen cadaveric knees were assigned to 1 of 3 groups: (1) intact PCL, (2) PCL reconstruction with Achilles tendon allograft, or (3) PCL reconstruction with quadriceps tendon allograft. After reconstruction, all supporting capsular and ligamentous tissues were removed. Posterior tibial translation was measured at neutral and 20° external rotation. Each specimen underwent a preload, 2 cyclic loading protocols of 500 cycles, then load to failure. Results: Construct creep deformation was significantly lower in the intact group compared with both Achilles and quadriceps allograft (P = .008). The intact specimens reached the greatest ultimate load compared with both reconstructions (1974 ± 752 N, P = .0001). The difference in ultimate load for quadriceps versus Achilles allograft was significant (P = .048), with the quadriceps group having greater maximum force during failure testing. No significant differences were noted between quadriceps versus Achilles allograft for differences in crosshead excursion during cyclic testing (peak-valley [P-V] extension stretch), creep deformation, or stiffness. Construct stiffness measured during the failure test was greatest in the intact group (117 ± 9 N/mm, P = .0001) compared with the Achilles (43 ± 11 N/mm) and quadriceps (43

  9. Human hamstring tenocytes survive when seeded into a decellularized porcine Achilles tendon extracellular matrix.

    PubMed

    Lohan, Anke; Stoll, Christiane; Albrecht, Marit; Denner, Andreas; John, Thilo; Krüger, Kay; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-01-01

    Tendon ruptures and defects remain major orthopaedic challenges. Tendon healing is a time-consuming process, which results in scar tissue with an altered biomechanical competence. Using a xenogeneic tendon extracellular matrix (ECM) as a natural scaffold, which can be reseeded with autologous human tenocytes, might be a promising approach to reconstruct damaged tendons. For this purpose, the porcine Achilles (AS) tendons serving as a scaffold were histologically characterized in comparison to human cell donor tendons. AS tendons were decellularized and then reseeded with primary human hamstring tenocytes using cell centrifuging, rotating culture and cell injection techniques. Vitality testing, histology and glycosaminoglycan/DNA quantifications were performed to document the success of tendon reseeding. Porcine AS tendons were characterized by a higher cell and sulfated glycosaminoglycan content than human cell donor tendons. Complete decellularization could be achieved, but led to a wash out of sulfated glycosaminoglycans. Nevertheless, porcine tendon could be recellularized with vital human tenocytes. The recellularization led to a slight increase in cell number compared to the native tendon and some glycosaminoglycan recovery. This study indicates that porcine tendon can be de- and recellularized using adult human tenocytes. Future work should optimize cell distribution within the recellularized tendon ECM and consider tendon- and donor species-dependent differences.

  10. Tensile properties of fresh human calcaneal (Achilles) tendons.

    PubMed

    Louis-Ugbo, John; Leeson, Benjamin; Hutton, William C

    2004-01-01

    The purpose of this study was to measure the tensile properties of fresh human calcaneal (Achilles) tendons. Twenty fresh cadaveric (age range = 57-93 years) bone-Achilles tendon complexes were harvested within 24 hr postmortem. The calcaneus together with 15 cm of the Achilles tendon extending proximally from the insertion on the calcaneus was clamped and biomechanically tested. Each tendon was firmly fixed in clamps in an MTS Systems Corporation MTS testing machine and tension was applied at a displacement rate of 8 cm per minute until the tendon failed. The tensile force and tensile strain (as measured using an extensometer) were recorded and plotted using onboard software. The narrow age range of our donors prevented any meaningful correlation between age and tensile properties; however, the results showed that: 1) the average ultimate tensile strength (UTS) of the human Achilles tendon was 1189 N (range = 360-1,965), 2) there was a correlation between left and right legs for UTS, 3) there was a correlation between left and right legs in regard to cross sectional area, and 4) there was no correlation between UTS and cross-sectional area.

  11. Achilles tendon rupture associated with injury of the calcaneofibular ligament.

    PubMed

    Sugimoto, Kazuya; Kasanami, Ryoji; Iwai, Makoto; Takakura, Yoshinori; Kawate, Kenji

    2003-08-01

    A 49-year-old man collided against an infielder when he slid into second base during a recreational baseball game. He was unable to continue in the game due to diffuse pain and swelling of his hindfoot. A rupture of the Achilles tendon was diagnosed incidentally on palpation and observation of a positive Thompson's squeeze test. Subcutaneous hemorrhage at the lateral aspect of the heel and a small bone fragment under the lateral malleolus on an anteroposterior plain radiograph indicated a fracture of the calcaneal wall. At surgery, a complete rupture of the Achilles tendon and an avulsion of the calcaneofibular ligament from the calcaneal wall were seen. Both injuries were surgically repaired, and the patient subsequently did well. The mechanism of injury was thought to be impact hyperdorsiflexion of the ankle with rupture of the Achilles tendon accompanied by an inversion injury. Using a literature search, it was found that this combination of injuries has not been previously reported.

  12. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model.

    PubMed

    Deng, Dan; Wang, Wenbo; Wang, Bin; Zhang, Peihua; Zhou, Guangdong; Zhang, Wen Jie; Cao, Yilin; Liu, Wei

    2014-10-01

    Adipose derived stem cells (ASCs) are an important cell source for tissue regeneration and have been demonstrated the potential of tenogenic differentiation in vitro. This study explored the feasibility of using ASCs for engineered tendon repair in vivo in a rabbit Achilles tendon model. Total 30 rabbits were involved in this study. A composite tendon scaffold composed of an inner part of polyglycolic acid (PGA) unwoven fibers and an outer part of a net knitted with PGA/PLA (polylactic acid) fibers was used to provide mechanical strength. Autologous ASCs were harvested from nuchal subcutaneous adipose tissues and in vitro expanded. The expanded ASCs were harvested and resuspended in culture medium and evenly seeded onto the scaffold in the experimental group, whereas cell-free scaffolds served as the control group. The constructs of both groups were cultured inside a bioreactor under dynamic stretch for 5 weeks. In each of 30 rabbits, a 2 cm defect was created on right side of Achilles tendon followed by the transplantation of a 3 cm cell-seeded scaffold in the experimental group of 15 rabbits, or by the transplantation of a 3 cm cell-free scaffold in the control group of 15 rabbits. Animals were sacrificed at 12, 21 and 45 weeks post-surgery for gross view, histology, and mechanical analysis. The results showed that short term in vitro culture enabled ASCs to produce matrix on the PGA fibers and the constructs showed tensile strength around 50 MPa in both groups (p > 0.05). With the increase of implantation time, cell-seeded constructs gradually form neo-tendon and became more mature at 45 weeks with histological structure similar to that of native tendon and with the presence of bipolar pattern and D-periodic structure of formed collagen fibrils. Additionally, both collagen fibril diameters and tensile strength increased continuously with significant difference among different time points (p < 0.05). In contrast, cell-free constructs failed to form good

  13. Changes in the Achilles tendon reflexes following Skylab missions

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Hordinsky, J. R.

    1977-01-01

    Postflight measurements of Achilles tendon reflex duration on Skylab crewmen indicate a state of disequilibrium between the flexor and extensor muscle groups with an initial decrease in reflex duration. As the muscles regain strength and mass there occurs an overcompensation reflected by increased reflex duration. Finally, when a normal neuromuscular state is reached the reflex duration returns to baseline value.

  14. Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries.

    PubMed

    Vieira, M H C; Oliveira, R J; Eça, L P M; Pereira, I S O; Hermeto, L C; Matuo, R; Fernandes, W S; Silva, R A; Antoniolli, A C M B

    2014-12-12

    Rupture of the Achilles tendon diminishes quality of life. The gold-standard therapy is a surgical suture, but this presents complications, including wound formation and inflammation. These complications spurred evaluation of the therapeutic potential of mesenchymal stem cells (MSCs) from adipose tissue. New Zealand rabbits were divided into 6 groups (three treatments with two time points each) evaluated at either 14 or 28 days after surgery: cross section of the Achilles tendon (CSAT); CSAT + Suture; and CSAT + MSC. A comparison between all groups at both time points showed a statistically significant increase in capillaries and in the structural organization of collagen in the healed tendon in the CSAT + Suture and CSAT + MSC groups at the 14-day assessment. Comparison between the two time points within the same group showed a statistically significant decrease in the inflammatory process and an increase in the structural organization of collagen in the CSAT and CSAT + MSC groups. A study of the genomic integrity of the cells suggested a linear correlation between an increase of injuries and culture time. Thus, MSC transplantation is a good alternative for treatment of Achilles tendon ruptures because it may be conducted without surgery and tendon suture and, therefore, has no risk of adverse effects resulting from the surgical wound or inflammation caused by nonabsorbable sutures. Furthermore, this alternative treatment exhibits a better capacity for wound healing and maintaining the original tendon architecture, depending on the arrangement of the collagen fibers, and has important therapeutic potential.

  15. Ultrasonic assessment of extracellular matrix content in healing Achilles tendon.

    PubMed

    Ghorayeb, Sleiman R; Shah, Neil V; Edobor-Osula, Folorunsho; Lane, Lewis B; Razzano, Pasquale; Chahine, Nadeen; Grande, Daniel A

    2012-04-01

    Although several imaging modalities have been utilized to observe tendons, assessing injured tendons by tracking the healing response over time with ultrasound is a desirable method which is yet to be realized. This study examines the use of ultrasound for non-invasive monitoring of the healing process of Achilles tendons after surgical transection. The overall extracellular matrix content of the transection site is monitored and quantified as a function of time. B-mode images (built from successive A-scan signatures) of the injury site were obtained and compared to biomechanical properties. A quantitative measure of tendon healing using the extracellular matrix (ECM) content of the injury site was analyzed using linear regression with all biomechanical measures. Contralateral tendons were used as controls. The trend in the degree of ECM regrowth in the 4 weeks following complete transection of excised tendons was found to be most closely paralleled with that of linear stiffness (R(2) = 0.987, p < .05) obtained with post-ultrasound biomechanical tests. Results suggest that ultrasound can be an effective imaging technique in assessing the degree of tendon healing, and can be used to correlate structural properties of Achilles tendons.

  16. Bilateral rupture of the Achilles tendon in patients on steroid therapy.

    PubMed Central

    Haines, J F

    1983-01-01

    Three patients are presented who sustained bilateral rupture of the Achilles tendon while on systemic steroid therapy for chest disease; a fourth patient with polymyalgia rheumatica on steroids is also presented. This is further evidence that tendon rupture can be a direct complication of steroid treatment. The English-language literature on bilateral Achilles tendon rupture is reviewed. PMID:6651370

  17. Transplantation of Achilles Tendon Treated With Bone Morphogenetic Protein 7 Promotes Meniscus Regeneration in a Rat Model of Massive Meniscal Defect

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Koga, Hideyuki; Katagiri, Hiroki; Otabe, Koji; Okuno, Makiko; Tsuji, Kunikazu; Kobayashi, Eiji; Matsumoto, Kenji; Saito, Hirohisa; Saito, Tomoyuki; Sekiya, Ichiro

    2013-01-01

    Objective This study was undertaken to examine whether bone morphogenetic protein 7 (BMP-7) induces ectopic cartilage formation in the rat tendon, and whether transplantation of tendon treated with BMP-7 promotes meniscal regeneration. Additionally, we analyzed the relative contributions of host and donor cells on the healing process after tendon transplantation in a rat model. Methods BMP-7 was injected in situ into the Achilles tendon of rats, and the histologic findings and gene profile were evaluated. Achilles tendon injected with 1 μg of BMP-7 was transplanted into a meniscal defect in rats. The regenerated meniscus and articular cartilage were evaluated at 4, 8, and 12 weeks. Achilles tendon from LacZ-transgenic rats was transplanted into the meniscal defect in wild-type rats, and vice versa. Results Injection of BMP-7 into the rat Achilles tendon induced the fibrochondrocyte differentiation of tendon cells and changed the collagen gene profile of tendon tissue to more closely approximate meniscal tissue. Transplantation of the rat Achilles tendon into a meniscal defect increased meniscal size. The rats that received the tendon treated with BMP-7 had a meniscus matrix that exhibited increased Safranin O and type II collagen staining, and showed a delay in articular cartilage degradation. Using LacZ-transgenic rats, we determined that the regeneration of the meniscus resulted from contribution from both donor and host cells. Conclusion Our findings indicate that BMP-7 induces ectopic cartilage formation in rat tendons. Transplantation of Achilles tendon treated with BMP-7 promotes meniscus regeneration and prevents cartilage degeneration in a rat model of massive meniscal defect. Native cells in the rat Achilles tendon contribute to meniscal regeneration. PMID:23897174

  18. Recurrent patellar tendon rupture in a patient after intramedullary nailing of the tibia: reconstruction using an Achilles tendon allograft.

    PubMed

    Jagow, Devin M; Garcia, Branden J; Yacoubian, Stephan V; Yacoubian, Shahan V

    2015-05-01

    Various complications after intramedullary (IM) nailing of the tibia have been reported, the most common of which are anterior knee pain and symptoms similar to patella tendonitis. Complete rupture of the patellar tendon after IM nailing of the tibia has been reported on 2 occasions, in conjunction with predisposing patient factors, such as systemic disease or a proud tibial nail. Patellar tendon ruptures are disabling injuries that can be technically difficult to repair because of the poor quality of remaining tendon tissue, quadriceps muscle atrophy and/or contracture, and scar-tissue formation. Many methods have described the surgical reconstruction of the knee extensor mechanism, which is most commonly performed after total knee arthroplasty. We report the successful surgical and clinical outcome of patellar tendon reconstruction using an Achilles tendon allograft in a patient subject to late and recurrent ruptures after IM nailing of the tibia through a mid-patellar tendon-splitting approach. Seven months after tendon reconstruction, the patient exhibited full knee flexion, an extension lag of 10º, 4/5 quadriceps strength, and return to her baseline ambulatory status.

  19. Modulation of soleus corticospinal excitability during Achilles tendon vibration.

    PubMed

    Lapole, Thomas; Temesi, John; Arnal, Pierrick J; Gimenez, Philippe; Petitjean, Michel; Millet, Guillaume Y

    2015-09-01

    Soleus (SOL) corticospinal excitability has been reported to increase during Achilles tendon vibration. The aim of the present study was to further investigate SOL corticospinal excitability and elucidate the changes to intracortical mechanisms during Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the SOL by transcranial magnetic stimulation (TMS) of the corresponding motor cortical area of the leg with and without 50-Hz Achilles tendon vibration. SOL input-output curves were determined. Paired-pulse protocols were also performed to investigate short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) by conditioning test TMS pulses with sub-threshold TMS pulses at inter-stimulus intervals of 3 and 13 ms, respectively. During Achilles tendon vibration, motor threshold was lower than in the control condition (43 ± 13 vs. 49 ± 11 % of maximal stimulator output; p = 0.008). Input-output curves were also influenced by vibration, i.e. there was increased maximal MEP amplitude (0.694 ± 0.347 vs. 0.268 ± 0.167 mV; p < 0.001), decreased TMS intensity to elicit a MEP of half the maximal MEP amplitude (100 ± 13 vs. 109 ± 9 % motor threshold; p = 0.009) and a strong tendency for decreased slope constant (0.076 ± 0.04 vs. 0.117 ± 0.04; p = 0.068). Vibration reduced ICF (98 ± 61 vs. 170 ± 105 % of test MEP amplitude; p = 0.05), but had no effect on SICI (53 ± 26 vs. 48 ± 22 % of test MEP amplitude; p = 0.68). The present results further document the increased vibration-induced corticospinal excitability in the soleus muscle and suggest that this increase is not mediated by changes in SICI or ICF.

  20. Heel pain and Achilles tendonitis - aftercare

    MedlinePlus

    ... the length of the tendon when walking or running. Your pain and stiffness might increase in the ... or decrease activities that cause pain, such as running or jumping. Do activities that do not strain ...

  1. The effect of dry needling and treadmill running on inducing pathological changes in rat Achilles tendon.

    PubMed

    Kim, Bom Soo; Joo, Young Chae; Choi, Byung Hyune; Kim, Kil Hwan; Kang, Joon Soon; Park, So Ra

    2015-11-01

    Achilles tendinopathy is a common degenerative condition without a definitive treatment. An adequate chronic animal model of Achilles tendinopathy has not yet been developed. The purpose of this study was to evaluate the individual and combined effects of dry needling and treadmill running on the Achilles tendon of rats. Percutaneous dry needling, designed to physically replicate microrupture of collagen fibers in overloaded tendons, was performed on the right Achilles tendon of 80 Sprague-Dawley rats. The rats were randomly divided into two groups: a treadmill group, which included rats that underwent daily uphill treadmill running (n = 40), and a cage group, which included rats that could move freely within their cages (n = 40). At the end of weeks 1 and 4, 20 rats from each group were sacrificed, and bilateral Achilles tendons were collected. The harvested tendons were subjected to mechanical testing and histological analysis. Dry needling induced histological and mechanical changes in the Achilles tendons at week 1, and the changes persisted at week 4. The needled Achilles tendons of the treadmill group tended to show more severe histological and mechanical changes than those of the cage group, although these differences were not statistically significant. Dry needling combined with free cage activity or treadmill running produced tendinopathy-like changes in rat Achilles tendons up to 4 weeks after injury. Dry needling is an easy procedure with a short induction period and a high success rate, suggesting it may have relevance in the design of an Achilles tendinopathy model.

  2. Adverse reactions of Achilles tendon xanthomas in three hypercholesterolemic patients after treatment intensification with niacin and bile acid sequestrants.

    PubMed

    Lakey, Wanda C; Greyshock, Nicole; Guyton, John R

    2013-01-01

    Multiple cholesterol-reducing therapies have been shown to induce the regression of tendon xanthoma in patients with familial hypercholesterolemia. We present 3 cases of adverse reactions in Achilles tendon xanthomas after the addition of niacin and bile acid sequestrants to ongoing statin therapy. Reduction in tendon dimensions and marked softening of xanthomas were interpreted as cholesterol removal from heavily infiltrated tissue sites. In 2 cases, changes in the xanthomas occurred despite only minor lipoprotein improvements, raising the possibility of direct drug effects in cholesterol-infiltrated tissue. Intriguingly, recent studies have described niacin receptor-mediated effects in macrophages. In summary, although adverse reactions in Achilles tendon xanthomas appear to be infrequent, clinicians should be aware of this phenomenon in their patients after intensifying lipid treatments, especially with the use of niacin in patients with familial hypercholesterolemia. Xanthoma responses may provide clues to new pharmacologic effects in cholesterol-infiltrated tissues.

  3. Sustained Release of Amnion-Derived Cellular Cytokine Solution Facilitates Achilles Tendon Healing in Rats

    PubMed Central

    Kueckelhaus, Maximilian; Philip, Justin; Kamel, Rami A.; Canseco, Jose A.; Hackl, Florian; Kiwanuka, Elizabeth; Kim, Mi J.; Wilkie, Ryan; Caterson, Edward J.; Junker, Johan P. E.

    2014-01-01

    Objective: In the United States, around 50% of all musculoskeletal injuries are soft tissue injuries including ligaments and tendons. The objective of this study is to assess the role of amnion-derived cellular cytokine solution (ACCS) in carboxy-methyl cellulose (CMC) gel in the healing of Achilles tendon in a rat model, and to examine its effects on mechanical properties and collagen content. Methods: Achilles tendons of Sprague-Dawley rats were exposed and transected. The distal and proximal ends were injected with either saline or ACCS in CMC, in a standardized fashion, and then sutured using a Kessler technique. Tendons from both groups were collected at 1, 2, 4, 6, and 8 weeks postoperatively and assessed for material properties. Collagen studies were performed, including collagen content, collagen cross-linking, tendon hydration, and immunohistochemistry. Tendons were also evaluated histologically for cross-sectional area. Results: Mechanical testing demonstrated that treatment with ACCS in CMC significantly enhances breaking strength, ultimate tensile strength, yield strength, and Young's modulus in the tendon repair at early time points. In context, collagen content, as well as collagen cross-linking, was also significantly affected by the treatment. Conclusion: The application of ACCS in CMC has a positive effect on healing tendons by improving mechanical properties at early time points. Previous studies on onetime application of ACCS (not in CMC) did not show significant improvement on tendon healing at any time point. Therefore, the delivery in a slow release media like CMC seems to be essential for the effects of ACCS demonstrated in this study. PMID:25210571

  4. Sonographic measurement of Achilles tendon thickness in seronegative spondyloarthropathies

    PubMed Central

    Aydın, Sibel Zehra; Filippucci, Emilio; Atagündüz, Pamir; Yavuz, Şule; Grassi, Walter; Direskeneli, Haner

    2014-01-01

    Objective To define the best cut-off value for identifying Achilles tendon thickening using ultrasound (US) in patients with spondyloarthropathies (SpA) and to assess its diagnostic utility in comparison with different cut-off values used in the literature. Material and Methods One-hundred and one subjects (55 SpA patients and 46 age and body mass index ((BMI)-matched healthy controls (HC)) were investigated. US was performed using a MyLab70 US system (Esaote Biomedica, Genoa, Italy) with a linear probe (6–18 MHz). Three images per Achilles enthesis were stored and the antero-posterior thickness of the enthesis was measured at the level of the Achilles tendon deeper margin insertion into the calcaneal bone on the longitudinal median scan. The best cut-off value for each gender was determined by ROC curve analysis and compared to the other cut-off values in the literature: 1) 5.29 mm for both genders, and 2) 5.5 mm for females and 6.2 mm for males. The number of measurements exceeding the cut-off values as well as sensitivity (SE), specificity (SP), positive (PPV) and negative (NPV) predictive values were calculated. Results A significant difference was observed for Achilles enthesis thickness between genders (mean±SD: 4.6±0.7 mm in males vs. 4.0±0.8 mm in females, p<0.00) and between SpA patients and HC (mean±SD: 4.4±0.8 mm in SpA patients vs. 4.0±0.8 mm in HC, p<0.001). The ROC curve analysis revealed the best cut-off value to be 3.7 mm for females and 4.8 mm for males (SE: 43–70%, SP: 59–85%, PPV: 66–79%, NPV: 54–63%). Previously reported cut-off values were found to have high SP (91–98%) but very low SE (2–11%). Conclusion Achilles tendon thickness differs between genders; thus, it is crucial to refer to normal values that are specific for gender. High cut-off values, as previously suggested, showed very low SE in the current study. When Achilles enthesis thickening is used for the purpose of screening enthesitis in SpA patients, a lower cut

  5. Muscle-tendon glucose uptake in Achilles tendon rupture and tendinopathy before and after eccentric rehabilitation: Comparative case reports.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens; Finni, Taija

    2016-09-01

    Achilles tendon rupture (ATR) is the most common tendon rupture injury. The consequences of ATR on metabolic activity of the Achilles tendon and ankle plantarflexors are unknown. Furthermore, the effects of eccentric rehabilitation on metabolic activity patterns of Achilles tendon and ankle plantarflexors in ATR patients have not been reported thus far. We present a case study demonstrating glucose uptake (GU) in the Achilles tendon, the triceps surae, and the flexor hallucis longus of a post-surgical ATR patient before and after a 5-month eccentric rehabilitation. At baseline, three months post-surgery, all muscles and Achilles tendon displayed much higher GU in the ATR patient compared to a healthy individual despite lower plantarflexion force. After the rehabilitation, plantarflexion force increased in the operated leg while muscle GU was considerably reduced. The triceps surae muscles showed similar values to the healthy control. When compared to the healthy or a matched patient with Achilles tendon pain after 12 weeks of rehabilitation, Achilles tendon GU levels of ATR patient remained greater after the rehabilitation. Past studies have shown a shift in the metabolic fuel utilization towards glycolysis due to immobilization. Further research, combined with immuno-histological investigation, is needed to fully understand the mechanism behind excessive glucose uptake in ATR cases. PMID:27428528

  6. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Brum, J.; Bernal, M.; Gennisson, J. L.; Tanter, M.

    2014-02-01

    Non-invasive evaluation of the Achilles tendon elastic properties may enhance diagnosis of tendon injury and the assessment of recovery treatments. Shear wave elastography has shown to be a powerful tool to estimate tissue mechanical properties. However, its applicability to quantitatively evaluate tendon stiffness is limited by the understanding of the physics on the shear wave propagation in such a complex medium. First, tendon tissue is transverse isotropic. Second, tendons are characterized by a marked stiffness in the 400 to 1300 kPa range (i.e. fast shear waves). Hence, the shear wavelengths are greater than the tendon thickness leading to guided wave propagation. Thus, to better understand shear wave propagation in tendons and consequently to properly estimate its mechanical properties, a dispersion analysis is required. In this study, shear wave velocity dispersion was measured in vivo in ten Achilles tendons parallel and perpendicular to the tendon fibre orientation. By modelling the tendon as a transverse isotropic viscoelastic plate immersed in fluid it was possible to fully describe the experimental data (deviation<1.4%). We show that parallel to fibres the shear wave velocity dispersion is not influenced by viscosity, while it is perpendicularly to fibres. Elasticity (found to be in the range from 473 to 1537 kPa) and viscosity (found to be in the range from 1.7 to 4 Pa.s) values were retrieved from the model in good agreement with reported results.

  7. [Repair of Achilles tendon rupture and early rehabilitation].

    PubMed

    Delgado-Brambila, H A; Cristiani, D G; Tinajero, E C; Burgos-Elías, V

    2012-01-01

    The frequency of Achilles tendon tear has increased worldwide. Several factors have been described that help explain the mechanism of injury. The treatment of choice continues to be surgery; conservative treatment is reserved for patients with a high morbidity and mortality. Surgical treatment consists of an open or percutaneous technique. In both modalities we try to achieve prompt mobilization of the operated tendon to obtain better and quicker healing. This prospective study describes our experience with 35 patients enrolled from February 2004 to August 2010. They were treated with open repair, physical rehabilitation and active ankle mobilization before the second postoperative week, and with colchicine. We obtained satisfactory results. Patients recovered complete mobility approximately at postoperative week 6, and from weeks 8 to 10 they could resume their daily work activities and participate in sports and recreational activities. Patients were assessed according to the ATRS classification to measure their clinical results. We had no infections or other major complications. We conclude that the open surgical repair of Achilles tendon tear, prompt mobility, and colchicine provide good results.

  8. Physical activity modulates nerve plasticity and stimulates repair after Achilles tendon rupture.

    PubMed

    Bring, Daniel K-I; Kreicbergs, Andris; Renstrom, Per A F H; Ackermann, Paul W

    2007-02-01

    In a rat model of tendon rupture using semiquantitative methodology, healing was assessed according to the diameter of newly organized collagen and the occurrence of the sensory neuropeptides (SP, CGRP) in relation to different levels of physical activity. Normally, innervation of the Achilles tendon is confined to the paratenon. After rupture new nerve fibers grow into the tendon proper, but disappear after healing. In a first experiment to establish peak tissue and nerve regeneration after rupture, tendon tissues from freely moving rats were collected consecutively over 16 weeks. A peak increase in organized collagen and nerve ingrowth was observed between week 2 to 4 post rupture. Therefore, in a second experiment week 4 was chosen to assess the effect of physical activity on tendon healing in three groups of rats, that is, wheel running, plaster treated, and freely moving (controls). In the wheel-running group, the diameter of newly organized collagen was 94% ( p = 0.001) greater than that in the plaster-treated group and 48% ( p = 0.02) greater than that in the controls. Inversely, the neuronal occurrence of CGRP in the tendon proper was 57% ( p = 0.02) lower in the wheel-running group than that in the plaster-treated group and 53% ( p = 0.02) lower than that in the controls, suggesting an earlier neuronal in-growth and disappearance in the more active group. Physical activity speeds up tendon healing, which may prove to be linked to accelerated neuronal plasticity.

  9. Synaptic failure: The achilles tendon of sphingolipidoses.

    PubMed

    Cantuti-Castelvetri, Ludovico; Bongarzone, Ernesto R

    2016-11-01

    The presence of life-threatening neurological symptoms in more than two-thirds of lysosomal storage diseases (LSDs) underscores how vulnerable the nervous system is to lysosomal failure. Neurological dysfunction in LSDs has historically been attributed to the disruption of neuronal and glial homeostasis resulting from the progressive jamming of the endosomal/lysosomal pathway. In neurons, a dysfunctional endosomal-lysosomal system can elicit dire consequences. Given that neurons are largely postmitotic after birth, one can clearly understand that the inability of these cells to proliferate obliterates any possibility of diluting stored lysosomal material by means of cellular division. At its most advanced stage, this situation constitutes a terminal factor in neuronal life, resulting in cell death. However, synaptic deficits in the absence of classical neuronal cell death appear to be common features during the early stages in many LSDs, particularly sphingolipidoses. In essence, failure of synapses to convey their messages, even without major structural damage to the neuronal bodies, is a form of physiological death. This concept of dying-back neuropathology is highly relevant not only for understanding the dynamics of the neurological decline in these diseases, but, more importantly; it might also constitute an important target for molecular therapies to protect perhaps the "Achilles" point in the entire physiological architecture of the brain, thus avoiding an irreversible journey to neuronal demise. © 2016 Wiley Periodicals, Inc. PMID:27638588

  10. Viscoelastic properties of healthy achilles tendon are independent of isometric plantar flexion strength and cross-sectional area.

    PubMed

    Suydam, Stephen M; Soulas, Elizabeth M; Elliott, Dawn M; Silbernagel, Karin Gravare; Buchanan, Thomas S; Cortes, Daniel H

    2015-06-01

    Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2 kPa and 141.0 Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p = 0.013, 0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies.

  11. Viscoelastic Properties of Healthy Achilles Tendon are Independent of Isometric Plantar Flexion Strength and Cross-Sectional Area

    PubMed Central

    Suydam, Stephen M.; Soulas, Elizabeth M.; Elliott, Dawn M.; Silbernagel, Karin Gravare; Buchanan, Thomas S.; Cortes, Daniel H.

    2015-01-01

    Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2kPa and 141.0Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p=0.013,0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. PMID:25882209

  12. Mediomalleolar fracture combined with Achilles tendon rupture--a rare simultaneous injury of the ankle.

    PubMed

    Pieper, H G; Radas, C B; Quack, G; Krahl, H

    1998-01-01

    Achilles tendon injuries are rarely associated with osseous lesions. The combination of mediomalleolar fracture with Achilles tendon rupture has been reported as a rare combination injury in alpine skiers, but never before in basketball. This report presents an Achilles tendon rupture in a senior basketball player in combination with a non-displaced fracture of the medial malleolus. The osseous lesion was initially missed, because the tendon injury with all typical clinical and sonographical signs predominated. The routine X-ray examination was only done in the lateral and axial plane, because the examiner did not even think of an ankle fracture, since the description of the sports accident and the clinical signs were so typical for a sole tendon injury. This case report should remind us not to exclude an osseous or ligamentous ankle injury in those cases of acute Achilles tendon rupture especially if postoperative swelling and pain persist for a prolonged period.

  13. Achilles detachment in rat and stable gastric pentadecapeptide BPC 157: Promoted tendon-to-bone healing and opposed corticosteroid aggravation.

    PubMed

    Krivic, Andrija; Anic, Tomislav; Seiwerth, Sven; Huljev, Dubravko; Sikiric, Predrag

    2006-05-01

    Stable gastric pentadecapeptide BPC 157 (BPC 157, as an antiulcer agent in clinical trials for inflammatory bowel disease; PLD-116, PL 14736, Pliva, no toxicity reported) alone (without carrier) ameliorates healing of tendon and bone, respectively, as well as other tissues. Thereby, we focus on Achilles tendon-to-bone healing: tendon to bone could not be healed spontaneously, but it was recovered by this peptide. After the rat's Achilles tendon was sharply transected from calcaneal bone, agents [BPC 157 (10 microg, 10 ng, 10 pg), 6alpha-methylprednisolone (1 mg), 0.9% NaCl (5 mL)] were given alone or in combination [/kg body weight (b.w.) intraperitoneally, once time daily, first 30-min after surgery, last 24 h before analysis]. Tested at days 1, 4, 7, 10, 14, and 21 after Achilles detachment, BPC 157 improves healing functionally [Achilles functional index (AFI) values substantially increased], biomechanically (load to failure, stiffness, and Young elasticity modulus significantly increased), macro/microscopically, immunohistochemistry (better organization of collagen fibers, and advanced vascular appearance, more collagen type I). 6alpha-Methylprednisolone consistently aggravates the healing, while BPC 157 substantially reduces 6alpha-methylprednisolone healing aggravation. Thus, direct tendon-to-bone healing using stabile nontoxic peptide BPC 157 without a carrier might successfully exchange the present reconstructive surgical methods.

  14. Achilles detachment in rat and stable gastric pentadecapeptide BPC 157: Promoted tendon-to-bone healing and opposed corticosteroid aggravation.

    PubMed

    Krivic, Andrija; Anic, Tomislav; Seiwerth, Sven; Huljev, Dubravko; Sikiric, Predrag

    2006-05-01

    Stable gastric pentadecapeptide BPC 157 (BPC 157, as an antiulcer agent in clinical trials for inflammatory bowel disease; PLD-116, PL 14736, Pliva, no toxicity reported) alone (without carrier) ameliorates healing of tendon and bone, respectively, as well as other tissues. Thereby, we focus on Achilles tendon-to-bone healing: tendon to bone could not be healed spontaneously, but it was recovered by this peptide. After the rat's Achilles tendon was sharply transected from calcaneal bone, agents [BPC 157 (10 microg, 10 ng, 10 pg), 6alpha-methylprednisolone (1 mg), 0.9% NaCl (5 mL)] were given alone or in combination [/kg body weight (b.w.) intraperitoneally, once time daily, first 30-min after surgery, last 24 h before analysis]. Tested at days 1, 4, 7, 10, 14, and 21 after Achilles detachment, BPC 157 improves healing functionally [Achilles functional index (AFI) values substantially increased], biomechanically (load to failure, stiffness, and Young elasticity modulus significantly increased), macro/microscopically, immunohistochemistry (better organization of collagen fibers, and advanced vascular appearance, more collagen type I). 6alpha-Methylprednisolone consistently aggravates the healing, while BPC 157 substantially reduces 6alpha-methylprednisolone healing aggravation. Thus, direct tendon-to-bone healing using stabile nontoxic peptide BPC 157 without a carrier might successfully exchange the present reconstructive surgical methods. PMID:16583442

  15. Diagnosing Achilles tendon injuries in the emergency department.

    PubMed

    Gibbons, Lynda

    2013-09-01

    Achilles tendon (AT) injury is an overuse injury often seen in professional and recreational athletes. It tends to affect men, particularly those in their thirties and forties, more than women, and is typically seen in people who are intermittently active. To ensure AT ruptures are identified and treated effectively, early intervention in emergency departments (EDs) is crucial. This article discusses how advanced nurse practitioners can use their comprehensive problem-solving, clinical decision-making and clinical judgement skills to manage patients who present with suspected AT injury. It also describes the anatomy of tendon rupture, the aetiology and mechanism of injuries, and the importance of assessment and diagnostic tools, therapeutic techniques and management strategies. Finally, it considers the psychological effect this injury can have on patients, while in the ED and after discharge. A case study is included as an example of ED management.

  16. Effect of Calendula officinalis cream on achilles tendon healing.

    PubMed

    Aro, A A; Perez, M O; Vieira, C P; Esquisatto, M A M; Rodrigues, R A F; Gomes, L; Pimentel, E R

    2015-02-01

    In recent years, the scientific community has undertaken research on plant extracts, searching for compounds with pharmacological activities that can be used in diverse fields of medicine. Calendula officinalis L. is known to have antioxidant, anti-inflammatory, antibacterial, and wound healing properties when used to treat skin burns. Therefore, the purpose of this study was to analyze the effects of C. officinalis on the initial phase of Achilles tendon healing. Wistar rats were separated in three groups: Calendula (Cal)-rats with a transected tendon were treated with topical applications of C. officinalis cream and then euthanized 7 days after injury; Control (C)-rats were treated with only vehicle after transection; and Normal (N)-rats without tenotomy. Higher concentrations of hydroxyproline (an indicator of total collagen) and non-collagenous proteins were observed in the Cal group in relation to the C group. Zymography showed no difference in the amount of the isoforms of metalloproteinase-2 and of metalloproteinase-9, between C and Cal groups. Polarization microscopy images analysis showed that the Cal group presented a slightly higher birefringence compared with the C group. In sections of tendons stained with toluidine blue, the transected groups presented higher metachromasy as compared with the N group. Immunocytochemistry analysis for chondroitin-6-sulfate showed no difference between the C and Cal groups. In conclusion, the topical application of C. officinalis after tendon transection increases the concentrations of collagen and non-collagenous proteins, as well as the collagen organization in the initial phase of healing.

  17. Early Ankle Mobilization Promotes Healing in a Rabbit Model of Achilles Tendon Rupture.

    PubMed

    Jielile, Jiasharete; Asilehan, Batiza; Wupuer, Aikeremu; Qianman, Bayixiati; Jialihasi, Ayidaer; Tangkejie, Wulanbai; Maimaitiaili, Abudouheilil; Shawutali, Nuerai; Badelhan, Aynaz; Niyazebieke, Hadelebieke; Aizezi, Adili; Aisaiding, Amuding; Bakyt, Yerzat; Aibek, Rakimbaiev; Wuerliebieke, Jianati

    2016-01-01

    The use of early mobilization of the ankle joint without orthosis in the treatment of Achilles tendon rupture has been advocated as the optimal management. The goal of this study was to compare outcomes in a postoperative rabbit model of Achilles tendon rupture between early mobilization and immobilized animals using a differential proteomics approach. In total, 135 rabbits were randomized into the control group (n=15), the postoperative cast immobilization (PCI) group (n=60), and the early mobilization (EM) group (n=60). A rupture of the Achilles tendon was created in each animal model and repaired microsurgically, and tendon samples were removed at 3, 7, 14, and 21 days postoperatively. Proteins were separated using 2-dimensional polyacrylamide gel electrophoresis and identified using peptide mass fingerprinting, tandem mass spectrometry, NCBI database searches, and bioinformatics analyses. A series of differentially expressed proteins were identified between groups, some of which may play an important role in Achilles tendon healing. Notable candidate proteins that were upregulated in the EM group were identified, such as CRMP-2, galactokinase 1, tropomyosin-4, and transthyretin. The healing of ruptured Achilles tendons appears to be affected at the level of protein expression with the use of early mobilization. The classic postoperative treatment of Achilles tendon rupture with an orthosis ignored the self-protecting instinct of humans. With a novel operative technique, the repaired tendon can persist the load that comes from traction in knee and ankle joint functional movement. In addition, kinesitherapy provided an excellent experimental outcome via a mechanobiological mechanism.

  18. Plantar fascia anatomy and its relationship with Achilles tendon and paratenon

    PubMed Central

    Stecco, Carla; Corradin, Marco; Macchi, Veronica; Morra, Aldo; Porzionato, Andrea; Biz, Carlo; De Caro, Raffaele

    2013-01-01

    Although the plantar fascia (PF) has been studied quite well from a biomechanical viewpoint, its microscopic properties have been overlooked: nothing is known about its content of elastic fibers, the features of the extracellular matrix or the extent of innervation. From a functional and clinical standpoint, the PF is often correlated with the triceps surae muscle, but the anatomical grounds for this link are not clear. The aim of this work was to focus on the PF macroscopic and microscopic properties and study how Achilles tendon diseases might affect it. Twelve feet from unembalmed human cadavers were dissected to isolate the PF. Specimens from each PF were tested with various histological and immunohistochemical stains. In a second stage, 52 magnetic resonance images (MRI) obtained from patients complaining of aspecific ankle or foot pain were analyzed, dividing the cases into two groups based on the presence or absence of signs of degeneration and/or inflammation of the Achilles tendon. The thickness of PF and paratenon was assessed in the two groups and statistical analyses were conducted. The PF is a tissue firmly joined to plantar muscles and skin. Analyzing its possible connections to the sural structures showed that this fascia is more closely connected to the paratenon of Achilles tendon than to the Achilles tendon, through the periosteum of the heel. The PF extended medially and laterally, continuing into the deep fasciae enveloping the abductor hallucis and abductor digiti minimi muscles, respectively. The PF was rich in hyaluronan, probably produced by fibroblastic-like cells described as ‘fasciacytes’. Nerve endings and Pacini and Ruffini corpuscles were present, particularly in the medial and lateral portions, and on the surface of the muscles, suggesting a role for the PF in the proprioception of foot. In the radiological study, 27 of the 52 MRI showed signs of Achilles tendon inflammation and/or degeneration, and the PF was 3.43 ± 0.48 mm

  19. Ultrasound diagnosis and percutaneous treatment of Achilles tendon tethering: a case series.

    PubMed

    He, Lulu; Genin, Jason; Delzell, Patricia

    2016-09-01

    The purpose of this article is to report 3 cases of Kager's fat pad scarring and tethering to the deep surface of the Achilles tendon in patients with Achilles tendinosis symptomatology. The 3 patients were diagnosed sonographically by the use of a dynamic maneuver we described and named the "Kager's squeeze" technique. The key finding for diagnosis is the deformation and bowing of the deep fibers of the Achilles tendon during dynamic squeezing of Kager's fat pad. After diagnosis, the patients were treated with ultrasound-guided hydrodissection and scar release to restore normal motion between Kager's fat pad and the Achilles tendon. All 3 patients experienced significant clinical improvement shortly after treatment. Therefore, we suspect that Kager's fat pad scarring with Achilles tendon tethering may mimic or exacerbate Achilles tendinosis symptomatology and should be considered a possible diagnosis when conservative treatments for Achilles tendinosis fail. We demonstrate that Kager's fat pad scarring with Achilles tendon tethering can be diagnosed and treated with a simple in-office hydrodissection technique, leading to improved patient outcomes.

  20. Impact of drying and thiel embalming on mechanical properties of achilles tendons.

    PubMed

    Verstraete, Matthias André; Van Der Straeten, Catherine; De Lepeleere, Bram; Opsomer, Gert-Jan; Van Hoof, Tom; Victor, Jan

    2015-11-01

    Biomechanical research and orthopedic training is regularly carried out on human cadavers. Given the post-mortem decay, these cadavers were usually frozen or embalmed. The embalming method according to Dr. Thiel was often praised for the preservation of natural texture. The main aim of this article was to quantitatively analyze the impact of this embalming technique on the biomechanical properties. To that extent, Achilles tendons (calcaneal tendons) of seven cadavers have been tested. For each cadaver, a first tendon was tested following a fresh-frozen conservation, the other following the Thiel embalming process. The results indicated a significant difference in Young's modulus between both groups (P values = 0.046). The secondary aim of this article was to analyze the impact of exposure to room conditions and associated dehydration on the biomechanical properties of cadaver tissue. Therefore, each tendon was tested before and after 2 hr of exposure to room conditions. The resulting dehydration caused a significant increase of the Young's modulus for the thawed fresh-frozen tendons. The properties of the Thiel embalmed tendons were not significantly altered. In conclusion, this research promoted the use of fresh-frozen specimens for biomechanical testing. Effort should, however, be made to minimize dehydration of the tested specimens. PMID:26378610

  1. Impact of drying and thiel embalming on mechanical properties of achilles tendons.

    PubMed

    Verstraete, Matthias André; Van Der Straeten, Catherine; De Lepeleere, Bram; Opsomer, Gert-Jan; Van Hoof, Tom; Victor, Jan

    2015-11-01

    Biomechanical research and orthopedic training is regularly carried out on human cadavers. Given the post-mortem decay, these cadavers were usually frozen or embalmed. The embalming method according to Dr. Thiel was often praised for the preservation of natural texture. The main aim of this article was to quantitatively analyze the impact of this embalming technique on the biomechanical properties. To that extent, Achilles tendons (calcaneal tendons) of seven cadavers have been tested. For each cadaver, a first tendon was tested following a fresh-frozen conservation, the other following the Thiel embalming process. The results indicated a significant difference in Young's modulus between both groups (P values = 0.046). The secondary aim of this article was to analyze the impact of exposure to room conditions and associated dehydration on the biomechanical properties of cadaver tissue. Therefore, each tendon was tested before and after 2 hr of exposure to room conditions. The resulting dehydration caused a significant increase of the Young's modulus for the thawed fresh-frozen tendons. The properties of the Thiel embalmed tendons were not significantly altered. In conclusion, this research promoted the use of fresh-frozen specimens for biomechanical testing. Effort should, however, be made to minimize dehydration of the tested specimens.

  2. Three-dimensional reconstructions of the Achilles tendon insertion in man

    PubMed Central

    Milz, S; Rufai, A; Buettner, A; Putz, R; Ralphs, JR; Benjamin, M

    2002-01-01

    The distribution of type II collagen in sagittal sections of the Achilles tendon has been used to reconstruct the three-dimensional (3D) shape and position of three fibrocartilages (sesamoid, periosteal and enthesis) associated with its insertion. The results showed that there is a close correspondence between the shape and position of the sesamoid and periosteal fibrocartilages – probably because of their functional interdependence. The former protects the tendon from compression during dorsiflexion of the foot, and the latter protects the superior tuberosity of the calcaneus. When the zone of calcified enthesis fibrocartilage and the subchondral bone are mapped in 3D, the reconstructions show that there is a complex pattern of interlocking between pieces of calcified fibrocartilage and bone at the insertion site. We suggest that this is of fundamental importance in anchoring the tendon to the bone, because the manner in which a tendon insertion develops makes it unlikely that many collagen fibres pass across the tissue boundary from tendon to bone. When force is transmitted to the bone from a loaded tendon, it is directed towards the plantar fascia by a series of highly orientated trabeculae that are clearly visible in 3D in thick resin sections. PMID:11895112

  3. The effect of dry needling and treadmill running on inducing pathological changes in rat Achilles tendon.

    PubMed

    Kim, Bom Soo; Joo, Young Chae; Choi, Byung Hyune; Kim, Kil Hwan; Kang, Joon Soon; Park, So Ra

    2015-11-01

    Achilles tendinopathy is a common degenerative condition without a definitive treatment. An adequate chronic animal model of Achilles tendinopathy has not yet been developed. The purpose of this study was to evaluate the individual and combined effects of dry needling and treadmill running on the Achilles tendon of rats. Percutaneous dry needling, designed to physically replicate microrupture of collagen fibers in overloaded tendons, was performed on the right Achilles tendon of 80 Sprague-Dawley rats. The rats were randomly divided into two groups: a treadmill group, which included rats that underwent daily uphill treadmill running (n = 40), and a cage group, which included rats that could move freely within their cages (n = 40). At the end of weeks 1 and 4, 20 rats from each group were sacrificed, and bilateral Achilles tendons were collected. The harvested tendons were subjected to mechanical testing and histological analysis. Dry needling induced histological and mechanical changes in the Achilles tendons at week 1, and the changes persisted at week 4. The needled Achilles tendons of the treadmill group tended to show more severe histological and mechanical changes than those of the cage group, although these differences were not statistically significant. Dry needling combined with free cage activity or treadmill running produced tendinopathy-like changes in rat Achilles tendons up to 4 weeks after injury. Dry needling is an easy procedure with a short induction period and a high success rate, suggesting it may have relevance in the design of an Achilles tendinopathy model. PMID:26076317

  4. Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance

    PubMed Central

    2013-01-01

    Background Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits. Results Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI. No sign of rejection was seen in the treated lesions. The collagen implant was invaded by the inflammatory cells at the inflammatory phase, followed by fibroplasia phase in which remnant of the collagen implant were still present while no inflammatory reaction could be seen in the lesions. However, the collagen implant was completely absorbed in the remodeling phase and the newly regenerated tendinous tissue filled the gap. Compared to the controls, the treated lesions showed improved tissue alignment and less peritendinous adhesion, muscle atrophy and fibrosis

  5. Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain.

    PubMed

    Arampatzis, Adamantios; Peper, Andreas; Bierbaum, Stefanie; Albracht, Kirsten

    2010-12-01

    The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9 ± 2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97 ± 0.47%), and the other leg at high tendon strain magnitude (4.72 ± 1.08%) of similar frequency (0.5 Hz, 1s loading, 1s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3s loading, 3s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon-aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P > 0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.

  6. Achilles tendon vibration-induced changes in plantar flexor corticospinal excitability.

    PubMed

    Lapole, Thomas; Temesi, John; Gimenez, Philippe; Arnal, Pierrick J; Millet, Guillaume Y; Petitjean, Michel

    2015-02-01

    Daily Achilles tendon vibration has been shown to increase muscle force, likely via corticospinal neural adaptations. The aim of the present study was to determine the extent by which corticospinal excitability is influenced during direct Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the soleus (SOL), gastrocnemius medialis (GM) and tibialis anterior (TA) by transcranial magnetic stimulation of the motor cortical area of the leg with and without Achilles tendon vibration at various frequencies (50, 80 and 110 Hz). Contralateral homologues were also investigated. SOL and GM MEP amplitude significantly increased by 226 ± 188 and 66 ± 39%, respectively, during Achilles tendon vibration, without any difference between the tested frequencies. No MEP changes were reported for TA or contralateral homologues. Increased SOL and GM MEP amplitude suggests increased vibration-induced corticospinal excitability independent of vibration frequency.

  7. Practice Patterns in the Care of Acute Achilles Tendon Ruptures

    PubMed Central

    Sheth, Ujash; Wasserstein, David; Moineddin, Rahim; Jenkinson, Richard; Kreder, Hans; Jaglal, Susan

    2016-01-01

    Objectives: Over the last decade, there has been a growing body of level I evidence supporting non-operative management (focused on early range of motion and weight bearing) of acute Achilles tendon ruptures. Despite this emerging evidence, there have been very few studies evaluating its uptake. Our primary objective was to determine whether the findings from a landmark trial assessing the optimal management strategy for acute Achilles tendon ruptures influenced the practice patterns of orthopaedic surgeons in Ontario, Canada over a 12-year time period. As a second objective we examined whether patient and provider predictors of surgical repair utilization differed before and after dissemination of the landmark trial results. Methods: Using provincial health administrative databases, we identified Ontario residents ≥ 18 years of age with an acute Achilles tendon rupture from April 2002 to March 2014. The proportion of surgically repaired ruptures was calculated for each calendar quarter and year. A time series analysis using an interventional autoregressive integrated moving average (ARIMA) model was used to determine whether changes in the proportion of surgically repaired ruptures were chronologically related to the dissemination of results from a landmark trial by Willits et al. (first quarter, 2009). Spline regression was then used to independently identify critical time-points of change in the surgical repair rate to confirm our findings. A multivariate logistic regression model was used to assess for differences in patient (baseline demographics) and provider (hospital type) predictors of surgical repair utilization before and after the landmark trial. Results: In 2002, ˜19% of acute Achilles tendon ruptures in Ontario were surgically repaired, however, by 2014 only 6.5% were treated operatively. A statistically significant decrease in the rate of surgical repair (p < 0.001) was observed after the results from a landmark trial were presented at a major

  8. Can Platelet-Rich Plasma Protect Rat Achilles Tendons From the Deleterious Effects of Triamcinolone Acetonide?

    PubMed Central

    Muto, Tomoyuki; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Harada, Yoshifumi; Takase, Fumiaki; Ueda, Yasuhiro; Kuroda, Ryosuke; Kurosaka, Masahiro

    2015-01-01

    Background Triamcinolone acetonide (TA) injections are widely used for tendinitis but have deleterious effects, including tendon degeneration or tendon rupture. Purpose To investigate whether adding platelet-rich plasma (PRP), a blood fraction that participates in tissue repair processes, to TA can prevent its deleterious effects. Study Design Controlled laboratory study. Methods Rat Achilles tendons were injected with TA, TA + PRP, PRP alone, or saline (control). Biomechanical testing and histological analyses were performed on Achilles tendons 1 week after injections. Results The maximum failure loads in the control, TA, TA + PRP, and PRP groups were 31.7 ± 2.3, 19.0 ± 3.6, 31.0 ± 7.1, and 30.2 ± 6.8 N, respectively. The tendon stiffness in the control, TA, TA + PRP, and PRP groups was 12.1 ± 1.8, 7.5 ± 1.8, 11.0 ± 2.8, and 11.3 ± 2.5 N/mm, respectively. The maximum failure load and stiffness were significantly lower in the TA group compared with the other 3 groups. There was no significant difference between the TA + PRP and control groups. Cell invasions, vacuolation, collagen attenuation, and increased type III collagen expression were histologically observed in the TA group; however, these changes were prevented by the simultaneous administration of PRP. Conclusion Administering PRP may prevent deleterious effects caused by TA; therefore, PRP may be used as a protective agent in clinical situations. Clinical Relevance PRP can be useful as a protective agent for sports injury patients receiving local corticosteroid injections. PMID:26673355

  9. Evaluation of Elastic Stiffness in Healing Achilles Tendon After Surgical Repair of a Tendon Rupture Using In Vivo Ultrasound Shear Wave Elastography

    PubMed Central

    Zhang, Li-ning; Wan, Wen-bo; Wang, Yue-xiang; Jiao, Zi-yu; Zhang, Li-hai; Luo, Yu-kun; Tang, Pei-fu

    2016-01-01

    Background There has been no published report assessing the mechanical properties of a repaired Achilles tendon after surgery using shear wave elastography (SWE). The aim of this study was to investigate the changes in mechanical properties of the healing Achilles tendon after surgical repair of a tendon rupture using ultrasound SWE and how these changes correlate with tendon function. Material/Methods Twenty-six patients who underwent surgical repair for Achilles tendon rupture were examined with ultrasound SWE coupled with a linear array transducer (4–15 MHz). The elasticity values of the repaired Achilles tendon in a longitudinal view were measured at 12, 24, and 48 weeks postoperatively. Functional outcomes were assessed with the American Orthopedic Foot and Ankle Society (AOFAS) rating system at 12, 24, and 48 weeks postoperatively. General linear regression analysis and correlation coefficients were used to analyze the relationship between elasticity and the AOFAS score. Results There were significant differences with respect to the mean elasticity values and functional scores of the repaired Achilles tendon at 12, 24, and 48 weeks postoperatively (all P<0.05). Tendon function was positively correlated with the elasticity of the repaired Achilles tendon (P=0.0003). Conclusions Our findings suggest that SWE can provide biomechanical information for evaluating the mechanical properties of healing Achilles tendon and predict Achilles tendon function. PMID:27072885

  10. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo.

    PubMed

    Stenroth, Lauri; Peltonen, Jussi; Cronin, Neil J; Sipilä, Sarianna; Finni, Taija

    2012-11-01

    This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower (P < 0.01) Achilles tendon stiffness and 32% lower (P < 0.001) Young's modulus than young participants. Tendon cross-sectional area was also 16% larger (P < 0.001) in older participants. Triceps surae muscle size was smaller (P < 0.05) and gastrocnemius medialis muscle fascicle length shorter (P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Young's modulus (r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.

  11. Imaging and simulation of Achilles tendon dynamics: Implications for walking performance in the elderly.

    PubMed

    Franz, Jason R; Thelen, Darryl G

    2016-06-14

    The Achilles tendon (AT) is a complex structure, consisting of distinct fascicle bundles arising from each triceps surae muscle that may act as mechanically independent structures. Advances in tissue imaging are rapidly accelerating our understanding of the complexities of functional Achilles tendon behavior, with potentially important implications for musculoskeletal injury and performance. In this overview of our recent contributions to these efforts, we present the results of complementary experimental and computational approaches to investigate AT behavior during walking and its potential relevance to reduced triceps surae mechanical performance due to aging. Our experimental evidence reveals that older tendons exhibit smaller differences in tissue deformations than young adults between regions of the AT presumed to arise from the gastrocnemius and soleus muscles. These observations are consistent with a reduced capacity for inter-fascicle sliding within the AT, which could have implications for the mechanical independence of the triceps surae muscles. More uniform AT deformations are also correlated with hallmark biomechanical features of elderly gait - namely, a loss of net ankle moment, power, and positive work during push-off. Simulating age-related reductions in the capacity for inter-fascicle sliding in the AT during walking predicts detriments in gastrocnemius muscle-tendon mechanical performance coupled with underlying shifts in fascicle kinematics during push-off. AT compliance, also suspected to vary due to age, systematically modulates those effects. By integrating in vivo imaging with computational modeling, we have gained theoretical insight into multi-scale biomechanical changes due to aging, hypotheses regarding their functional effects, and opportunities for experiments that validate or invalidate these assertions. PMID:27209552

  12. Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury

    PubMed Central

    Freedman, Benjamin R.; Sarver, Joseph J.; Buckley, Mark R.; Voleti, Pramod B.; Soslowsky, Louis J.

    2013-01-01

    Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R2=0.88–0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties. PMID:24280564

  13. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo.

    PubMed

    Hawkins, David; Lum, Corey; Gaydos, Diane; Dunning, Russell

    2009-12-11

    Warm-up exercises are often advocated prior to strenuous exercise, but the warm-up duration and effect on muscle-tendon behavior are not well defined. The gastrocnemius-Achilles tendon complexes of 18 subjects were studied to quantify the dynamic creep response of the Achilles tendon in-vivo and the warm-up dose required for the Achilles tendon to achieve steady-state behavior. A custom testing chamber was used to determine each subject's maximum voluntary contraction (MVC) during an isometric ankle plantar flexion effort. The subject's right knee and ankle were immobilized for one hour. Subjects then performed over seven minutes of cyclic isometric ankle plantar flexion efforts equal to 25-35% of their MVC at a frequency of 0.75 Hz. Ankle plantar flexion effort and images from dual ultrasound probes located over the gastrocnemius muscle-Achilles tendon and the calcaneus-Achilles tendon junction were acquired for eight seconds at the start of each sequential minute of the activity. Ultrasound images were analyzed to quantify the average relative Achilles tendon strain at 25% MVC force (epsilon(25%MVC)) for each minute. The epsilon(25%MVC) increased from 0.3% at the start of activity to 3.3% after seven minutes, giving a total dynamic creep of ~3.0%. The epsilon(25%MVC) increased by more than 0.56% per minute for the first five minutes and increased by less than 0.13% per minute thereafter. Therefore, following a period of inactivity, a low intensity warm-up lasting at least six minutes or producing 270 loading cycles is required for an Achilles tendon to reach a relatively steady-state behavior.

  14. Intraoperative ultrasound assistance for percutaneous repair of the acute Achilles tendon rupture.

    PubMed

    Giannetti, Silvio; Patricola, Alessandro Antonio; Stancati, Andrea; Santucci, Attillio

    2014-12-01

    Various methods have been used to treat the acute Achilles tendon rupture. Traditional open repair is associated with a higher rate of complications. Percutaneous methods avoid most of the disadvantages of open surgical treatment, but the degree of tendon regeneration cannot be ensured. The authors prospectively followed 40 patients with acute Achilles tendon rupture who underwent percutaneous repair with intraoperative ultrasound assistance an average of 13 months after the injury. No surgery-related complications, such as wounds or deep infections, sural nerve injury, or re-rupture, were detected at follow-up. This technique avoids injury to the sural nerve, minimizes wound complications, and provides a strong repair.

  15. Use of Platelet Rich Plasma and Hyaluronic Acid in the Treatment of Complications of Achilles Tendon Reconstruction

    PubMed Central

    Gentile, Pietro; De Angelis, Barbara; Agovino, Annarita; Orlandi, Fabrizio; Migner, Alessandra; Di Pasquali, Camilla; Cervelli, Valerio

    2016-01-01

    BACKGROUND The platelet-rich plasma (PRP) and hyaluronic acid (HA) constitute a system of tissue growth that can regenerate damaged tissue. This study was performed to evaluate the effect of PRP and HA in treatment of complications of Achilles tendon reconstruction. METHODS We selected ten patients affected by Achilles tendon injuries resulting from post-surgical complications subsequent to tenorrhaphy and have treated them with autologous PRP in combination with HA to evaluate the improvement of lesions with wound closure. RESULTS The treatment with PRP and HA for post-surgical complications of Achilles tendon was effective in healing and regeneration of soft and hard tissues. The healing time was shortened, and the treated area preserved a satisfying strength in plantar flexion and extension of the ankle, denoting to a decisive improvement in texture and a more rapid healing and a good cutaneous elasticity, with a significant reduction of the costs of hospitalization and the pain already the immediate postoperatively. The functional rehabilitation in terms of deambulation and joint mobility was complete. CONCLUSION The treatment we proposed allowed an easier and more rapid wound closure with excellent aesthetic improvement. Furthermore, the minimally invasive technique is well tolerated by patients. PMID:27579267

  16. Achilles tendon stiffness is unchanged one hour after a marathon.

    PubMed

    Peltonen, Jussi; Cronin, Neil J; Stenroth, Lauri; Finni, Taija; Avela, Janne

    2012-10-15

    Overuse-induced injuries have been proposed as a predisposing factor for Achilles tendon (AT) ruptures. If tendons can be overloaded, their mechanical properties should change during exercise. Because there data are lacking on the effects of a single bout of long-lasting exercise on AT mechanical properties, the present study measured AT stiffness before and after a marathon. AT stiffness was determined as the slope of the force-elongation curve between 10 and 80% of maximum voluntary force. AT force-elongation characteristics were measured in an ankle dynamometer using simultaneous motion-capture-assisted ultrasonography. Oxygen consumption and ankle kinematics were also measured on a treadmill at the marathon pace. All measurements were performed before and after the marathon. AT stiffness did not change significantly from the pre-race value of 197±62 N mm(-1) (mean ± s.d.) to the post-race value of 206±59 N mm(-1) (N=12, P=0.312). Oxygen consumption increased after the race by 7±10% (P<0.05) and ankle kinematic data revealed that in nine out of 12 subjects, the marathon induced a change in their foot strike technique. The AT of the physically active individuals seems to be able to resist mechanical changes under physiological stress. We therefore suggest that natural loading, like in running, may not overstress the AT or predispose it to injury. In addition, decreased running economy, as well as altered foot strike technique, was probably attributable to muscle fatigue.

  17. The twisted structure of the human Achilles tendon.

    PubMed

    Edama, M; Kubo, M; Onishi, H; Takabayashi, T; Inai, T; Yokoyama, E; Hiroshi, W; Satoshi, N; Kageyama, I

    2015-10-01

    The Achilles tendon (AT) consists of fascicles that originate from the medial head of the gastrocnemius (MG), lateral head of the gastrocnemius (LG), and soleus muscle (Sol). These fascicles are reported to have a twisted structure. However, there is no consensus as to the degree of torsion. The purpose of this study was to investigate the twisted structure of the AT at the level of fascicles that originate from the MG, LG, and Sol, and elucidate the morphological characteristics. Gross anatomical study of 60 Japanese cadavers (111 legs) was used. The AT fascicles originated from the MG, LG, and Sol were fused while twisting among themselves. There were three classification types depending on the degree of torsion. Further fine separation of each fascicle revealed MG ran fairly parallel in all types, whereas LG and Sol, particularly of the extreme type, were inserted onto the calcaneal tuberosity with strong torsion. In addition, the sites of Sol torsion were 3-5 cm proximal to the calcaneal insertion of the AT. These findings provide promising basic data to elucidate the functional role of the twisted structure and mechanisms for the occurrence of AT injury and other conditions.

  18. Preparation and characterization of decellularized tendon slices for tendon tissue engineering.

    PubMed

    Ning, Liang-Ju; Zhang, Yi; Chen, Xiao-He; Luo, Jing-Cong; Li, Xiu-Qun; Yang, Zhi-Ming; Qin, Ting-Wu

    2012-06-01

    To develop a naturally derived tendon tissue engineering scaffold with the preservation of the native ultrastructure, tensile strength, and biochemical composition of the tendon extracellular matrix (ECM), decellularized tendon slices (DTSs) were prepared using repetitive freeze/thaw of the intact Achilles tendons, frozen section, and nuclease treatment. The DTSs were characterized in the native ultrastructure, mechanical properties, biochemical composition, and cytocompatibility. Histological examination and DNA quantification analysis confirmed that cells were completely removed from tendon tissue by repetitive freeze/thaw in combination with nuclease treatment 12 h. The intrinsic ultrastructure of tendon tissue was well preserved based on scanning electron microscopy examination. The tensile strength of the DTSs was retained 85.62% of native tendon slice. More than 93% of proteoglycans (fibromodulin, biglycan) and growth factors (TGF-β1, IGF-1, VEGF, and CTGF) inherent in tendon ECM were preserved in the DTSs according to ELISA analysis. Furthermore, the DTSs facilitated attachment and repopulation of NIH-3T3 fibroblasts in vitro. Overall, the DTSs are sheet scaffolds with a combination of elemental mechanical strength and tendon ECM bioactive factors that may have many potential applications in tendon tissue engineering.

  19. Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles.

    PubMed

    Hug, François; Lacourpaille, Lilian; Maïsetti, Olivier; Nordez, Antoine

    2013-09-27

    Although muscle-tendon slack length is a crucial parameter used in muscle models, this is one of the most difficult measures to estimate in vivo. The aim of this study was to determine the onset of the rise in tension (i.e., slack length) during passive stretching in both Achilles tendon and gastrocnemius medialis. Muscle and tendon shear elastic modulus was measured by elastography (supersonic shear imaging) during passive plantarflexion (0° and 90° of knee angle, 0° representing knee fully extended, in a random order) in 9 participants. The within-session repeatability of the determined slack length was good at 90° of knee flexion (SEM=3.3° and 2.2° for Achilles tendon and gastrocnemius medialis, respectively) and very good at 0° of knee flexion (SEM=1.9° and 1.9° for Achilles tendon and gastrocnemius medialis, respectively). The slack length of gastrocnemius medialis was obtained at a significantly lower plantarflexed angle than for Achilles tendon at both 0° (P<0.0001; mean difference=19.4±3.8°) and 90° of knee flexion (P<0.0001; mean difference=25.5±7.6°). In conclusion, this study showed that the joint angle at which the tendon falls slack can be experimentally determined using supersonic shear imaging. The slack length of gastrocnemius medialis and Achilles tendon occurred at different joint angles. Although reporting this result is crucial to a better understanding of muscle-tendon interactions, further experimental investigations are required to explain this result.

  20. Regional molecular and cellular differences in the female rabbit Achilles tendon complex: potential implications for understanding responses to loading

    PubMed Central

    Huisman, Elise S; Andersson, Gustav; Scott, Alexander; Reno, Carol R; Hart, David A; Thornton, Gail M

    2014-01-01

    The aim of this study was: (i) to analyze the morphology and expression of extracellular matrix genes in six different regions of the Achilles tendon complex of intact normal rabbits; and (ii) to assess the effect of ovariohysterectomy (OVH) on the regional expression of these genes. Female New Zealand White rabbits were separated into two groups: (i) intact normal rabbits (n = 4); and (ii) OVH rabbits (n = 8). For each rabbit, the Achilles tendon complex was dissected into six regions: distal gastrocnemius (DG); distal flexor digitorum superficialis; proximal lateral gastrocnemius (PLG); proximal medial gastrocnemius; proximal flexor digitorum superficialis; and paratenon. For each of the regions, hematoxylin and eosin staining was performed for histological evaluation of intact normal rabbit tissues and mRNA levels for proteoglycans, collagens and genes associated with collagen regulation were assessed by real-time reverse transcription-quantitative polymerase chain reaction for both the intact normal and OVH rabbit tissues. The distal regions displayed a more fibrocartilaginous phenotype. For intact normal rabbits, aggrecan mRNA expression was higher in the distal regions of the Achilles tendon complex compared with the proximal regions. Collagen Type I and matrix metalloproteinase-2 expression levels were increased in the PLG compared to the DG in the intact normal rabbit tissues. The tendons from OVH rabbits had lower gene expressions for the proteoglycans aggrecan, biglycan, decorin and versican compared with the intact normal rabbits, although the regional differences of increased aggrecan expression in distal regions compared with proximal regions persisted. The tensile and compressive forces experienced in the examined regions may be related to the regional differences found in gene expression. The lower mRNA expression of the genes examined in the OVH group confirms a potential effect of systemic estrogen on tendon. PMID:24571598

  1. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis.

    PubMed

    Suzuki, Hidetsugu; Ito, Yoshiaki; Shinohara, Masahiro; Yamashita, Satoshi; Ichinose, Shizuko; Kishida, Akio; Oyaizu, Takuya; Kayama, Tomohiro; Nakamichi, Ryo; Koda, Naoki; Yagishita, Kazuyoshi; Lotz, Martin K; Okawa, Atsushi; Asahara, Hiroshi

    2016-07-12

    Cell-based or pharmacological approaches for promoting tendon repair are currently not available because the molecular mechanisms of tendon development and healing are not well understood. Although analysis of knockout mice provides many critical insights, small animals such as mice have some limitations. In particular, precise physiological examination for mechanical load and the ability to obtain a sufficient number of primary tendon cells for molecular biology studies are challenging using mice. Here, we generated Mohawk (Mkx)(-/-) rats by using CRISPR/Cas9, which showed not only systemic hypoplasia of tendons similar to Mkx(-/-) mice, but also earlier heterotopic ossification of the Achilles tendon compared with Mkx(-/-) mice. Analysis of tendon-derived cells (TDCs) revealed that Mkx deficiency accelerated chondrogenic and osteogenic differentiation, whereas Mkx overexpression suppressed chondrogenic, osteogenic, and adipogenic differentiation. Furthermore, mechanical stretch stimulation of Mkx(-/-) TDCs led to chondrogenic differentiation, whereas the same stimulation in Mkx(+/+) TDCs led to formation of tenocytes. ChIP-seq of Mkx overexpressing TDCs revealed significant peaks in tenogenic-related genes, such as collagen type (Col)1a1 and Col3a1, and chondrogenic differentiation-related genes, such as SRY-box (Sox)5, Sox6, and Sox9 Our results demonstrate that Mkx has a dual role, including accelerating tendon differentiation and preventing chondrogenic/osteogenic differentiation. This molecular network of Mkx provides a basis for tendon physiology and tissue engineering. PMID:27370800

  2. Acute Ultrasonography Investigation to Predict Reruptures and Outcomes in Patients With an Achilles Tendon Rupture

    PubMed Central

    Westin, Olof; Nilsson Helander, Katarina; Grävare Silbernagel, Karin; Möller, Michael; Kälebo, Peter; Karlsson, Jón

    2016-01-01

    Background: The optimal treatment for acute Achilles tendon ruptures is still an ongoing debate. Acute ultrasonography (US) investigation to measure the diastasis between the tendon ends has previously been used to classify acute Achilles tendon ruptures; however, no study has used US to predict reruptures and functional outcomes. Purpose: To investigate whether acute US can be used to predict the risk of reruptures and outcomes after treatment of an acute Achilles tendon rupture. Study Design: Cohort study; Level of evidence, 2. Methods: Forty-five patients (37 men, 8 women) with a mean age of 39 ± 9.2 years (range, 23-59 years) from a cohort of 97 patients participating in a randomized controlled study comparing surgical and nonsurgical treatment were included. US was performed within 72 hours from the index injury. Diastasis between the tendon ends was documented. Reruptures were documented, and the patients’ functional outcomes were measured 12 months after injury. Results: Patients with a diastasis of >10 mm treated nonsurgically had a higher degree of rerupture. In the nonsurgically treated group, 3 of 4 patients with a diastasis of >10 mm suffered from rerupture (P < .001). Moreover, in the nonsurgical group, there was significantly worse outcomes in patients with a diastasis of >5 mm in terms of patient-reported outcomes using the Achilles tendon Total Rupture Score (ATRS) (P = .004) and heel-rise height at 12 months (P = .048) compared with the group with a lesser degree of tendon separation. Conclusion: US may be a useful tool to predict the risk of rerupture and greater degree of functional deficit. It may be an important measure in a clinical treatment algorithm for deciding whether a patient will benefit from surgical intervention after an acute Achilles tendon rupture. PMID:27781212

  3. Running exercises improve the strength of a partially ruptured Achilles tendon

    PubMed Central

    See, E; Ng, G; Ng, C; Fung, D

    2004-01-01

    Objectives: To examine the effects of running and swimming exercises on the functional performance and mechanical strength of a recovering Achilles tendon. Methods: 30 Sprague-Dawley rats had surgical transection of their right medial Achilles tendon. The rats were divided into running (n = 11), swimming (n = 10), and control (n = 9) groups. The running and swimming groups were given daily exercise training, starting from the fifth day after the injury; the control group did not exercise throughout the period of the experiment. An Achilles functional index (AFI) was recorded before the operation and on the third, 10th, and 30th days after the operation. On the 30th day, the rats were killed and their Achilles tendons harvested for biomechanical testing of load relaxation properties, stiffness, and ultimate tensile strength (UTS). The AFI data were analysed by two way analysis of variance; load relaxation, stiffness, and UTS data were analysed by multivariate analysis, with α at 0.05. Results: The UTS of the running group was higher than in the control group (p = 0.015), while there was no significant difference between the swimming and control groups (p = 0.228). Differences in stiffness and load relaxation were non-significant (p = 0.823 and 0.633, respectively). The AFI results did not differ among the three groups (p = 0.242). Conclusions: Running exercises can improve the strength of partially ruptured Achilles tendons at 30 days after injury. PMID:15388547

  4. Achilles tendon injuries in elite athletes: lessons in pathophysiology from their equine counterparts.

    PubMed

    Patterson-Kane, Janet C; Rich, Tina

    2014-01-01

    Superficial digital flexor tendon (SDFT) injury in equine athletes is one of the most well-accepted, scientifically supported companion animal models of human disease (i.e., exercise-induced Achilles tendon [AT] injury). The SDFT and AT are functionally and clinically equivalent (and important) energy-storing structures for which no equally appropriate rodent, rabbit, or other analogues exist. Access to equine tissues has facilitated significant advances in knowledge of tendon maturation and aging, determination of specific exercise effects (including early life), and definition of some of the earliest stages of subclinical pathology. Access to human surgical biopsies has provided complementary information on more advanced phases of disease. Importantly, equine SDFT injuries are only a model for acute ruptures in athletes, not the entire spectrum of human tendonopathy (including chronic tendon pain). In both, pathology begins with a potentially prolonged phase of accumulation of (subclinical) microdamage. Recent work has revealed remarkably similar genetic risk factors, including further evidence that tenocyte dysfunction plays an active role. Mice are convenient but not necessarily accurate models for multiple diseases, particularly at the cellular level. Mechanistic studies, including tendon cell responses to combinations of exercise-associated stresses, require a more thorough investigation of cross-species conservation of key stress pathway auditors. Molecular evidence has provided some context for the poor performance of mouse models; equines may provide better systems at this level. The use of horses may be additionally justifiable based on comparable species longevity, lifestyle factors, and selection pressure by similar infectious agents (e.g., herpesviruses) on general cell stress pathway evolution.

  5. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  6. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review.

    PubMed

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  7. Adaptive Remodeling of Achilles Tendon: A Multi-scale Computational Model

    PubMed Central

    Rubenson, Jonas; Umberger, Brian

    2016-01-01

    While it is known that musculotendon units adapt to their load environments, there is only a limited understanding of tendon adaptation in vivo. Here we develop a computational model of tendon remodeling based on the premise that mechanical damage and tenocyte-mediated tendon damage and repair processes modify the distribution of its collagen fiber lengths. We explain how these processes enable the tendon to geometrically adapt to its load conditions. Based on known biological processes, mechanical and strain-dependent proteolytic fiber damage are incorporated into our tendon model. Using a stochastic model of fiber repair, it is assumed that mechanically damaged fibers are repaired longer, whereas proteolytically damaged fibers are repaired shorter, relative to their pre-damage length. To study adaptation of tendon properties to applied load, our model musculotendon unit is a simplified three-component Hill-type model of the human Achilles-soleus unit. Our model results demonstrate that the geometric equilibrium state of the Achilles tendon can coincide with minimization of the total metabolic cost of muscle activation. The proposed tendon model independently predicts rates of collagen fiber turnover that are in general agreement with in vivo experimental measurements. While the computational model here only represents a first step in a new approach to understanding the complex process of tendon remodeling in vivo, given these findings, it appears likely that the proposed framework may itself provide a useful theoretical foundation for developing valuable qualitative and quantitative insights into tendon physiology and pathology. PMID:27684554

  8. Outcome evaluation after Achilles tendon ruptures. A review of the literature

    PubMed Central

    SPENNACCHIO, PIETRO; VASCELLARI, ALBERTO; CUCCHI, DAVIDE; CANATA, GIAN LUIGI; RANDELLI, PIETRO

    2016-01-01

    The optimal treatment and the best rehabilitation protocol after an acute Achilles tendon rupture (ATR) remain a matter of controversy in orthopaedic and sports medicine. The use of validated injury-specific outcome instruments is the only way to clarify these issues, in order to ensure that patients receive the best possible treatment. This article describes the most commonly reported outcome measures used to assess patients treated for ATR. On the basis of the available evidence, the Achilles tendon Total Rupture Score (ATRS) is the most appropriate outcome measure for evaluating the management of acute ATR. PMID:27386448

  9. The Effects of Irreversible Electroporation on the Achilles Tendon: An Experimental Study in a Rabbit Model

    PubMed Central

    Yan, Mingwei; Ding, Weidong; Xu, Kui; Fan, Qingyu; Li, Zhao

    2015-01-01

    Background To evaluate the potential effects of irreversible electroporation ablation on the Achilles tendon in a rabbit model and to compare the histopathological and biomechanical changes between specimens following electroporation ablation and radiofrequency ablation. Methods A total of 140 six-month-old male New Zealand rabbits were used. The animals were randomly divided into two groups, 70 in the radiofrequency ablation group and 70 in the electroporation group. In situ ablations were applied directly to the Achilles tendons of rabbits using typical electroporation (1800 V/cm, 90 pulses) and radiofrequency ablation (power control mode) protocols. Histopathological and biomechanical evaluations were performed to examine the effects of electroporation ablation and radiofrequency ablation over time. Results Both electroporation and radiofrequency ablation produced complete cell ablation in the target region. Thermal damage resulted in tendon rupture 3 days post radiofrequency ablation. In contrast, electroporation-ablated Achilles tendons preserved their biomechanical properties and showed no detectable rupture at this time point. The electroporation-ablated tendons exhibited signs of recovery, including tenoblast regeneration and angiogenesis within 2 weeks, and the restoration of their integral structure was evident within 12 weeks. Conclusions When applying electroporation to ablate solid tumors, major advantage could be that collateral damage to adjacent tendons or ligaments is minimized due to the unique ability of electroporation ablation to target the cell membrane. This advantage could have a significant impact on the field of tumor ablation near vital tendons or ligaments. PMID:26114962

  10. Ultrasonographic Measurement of the Achilles and Supraspinatus Tendon Thicknesses in Patients with Chronic Lead Exposure

    PubMed Central

    Baki, AE; Yıldızgören, MT; Kara, M; Ekiz, T; Tutkun, E; Özçakar, L

    2015-01-01

    ABSTRACT Objective: The study aimed to assess tendon thickness in patients with chronic occupational lead exposure by using ultrasonography. Methods: Twenty-seven male workers (mean age 32.9 ± 6.2 years, range 25–44 years) with occupational lead exposure and 27 age- and body mass index (BMI)-matched healthy male subjects (mean age 33.1 ± 5.6 years, range 25–44 years) were enrolled. Ultrasonographic measurements were obtained from the supraspinatus and Achilles tendons by using a linear probe (5–10 MHz). Results: Mean Achilles tendon values at long axis (p = 0.034) and tendon cross-sectional area (p = 0.013) were significantly smaller in the lead-exposed group than the control group. On the other hand, no significant difference was found regarding the thickness of the supraspinatus tendon (p > 0.05). Conclusion: Our preliminary results imply that subjects with occupational lead exposure have smaller Achilles tendons than healthy subjects. Chronic lead exposure may affect the tendons due to reduction of collagen synthesis. Further studies are definitely needed to confirm our initial findings. PMID:26624578

  11. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  12. Complete Achilles tendon rupture after local infiltration of corticosteroids in the treatment of deep retrocalcaneal bursitis.

    PubMed

    Vallone, Ganfranco; Vittorio, Tarallo

    2014-06-01

    Complete rupture of the Achilles tendon is relatively rare, but it is an injury of considerable clinical relevance. A common cause of non-traumatic tendon rupture is local corticosteroid infiltration. Corticosteroid injections may start a degenerative process resulting in partial rupture and subsequent complete rupture of the tendon due to a direct toxic effect, because corticosteroids inhibit production of extracellular matrix collagen and also because of poor local vascularization. This paper describes the case of a patient who presented with complete rupture of the Achilles tendon shortly after administration of local corticosteroid injections in the treatment of deep retrocalcaneal bursitis. This confirms that corticosteroid treatment which is not correctly and accurately administered may be a factor contributing to major injury. It demonstrates that the physician must take all necessary precautions when administering corticosteroid infiltration. It is particularly important that corticosteroid injection is performed under ultrasound guidance which permits visualization of the needle tip and therefore exact identification of the injection site.

  13. Age-related changes in mechanical properties of the Achilles tendon.

    PubMed

    Waugh, C M; Blazevich, A J; Fath, F; Korff, T

    2012-02-01

    The stiffness of a tendon, which influences muscular force transfer to the skeleton and increases during childhood, is dependent on its material properties and dimensions, both of which are influenced by chronic loading. The aims of this study were to: (i) determine the independent contributions of body mass, force production capabilities and tendon dimensions to tendon stiffness during childhood; and (ii) descriptively document age-related changes in tendon mechanical properties and dimensions. Achilles tendon mechanical and material properties were determined in 52 children (5-12 years) and 19 adults. Tendon stiffness and Young's modulus (YM) were calculated as the slopes of the force-elongation and stress-strain curves, respectively. Relationships between stiffness vs. age, mass and force, and between YM vs. age, mass and stress were determined by means of polynomial fits and multiple regression analyses. Mass was found to be the best predictor of stiffness, whilst stress was best related to YM (< 75 and 51% explained variance, respectively). Combined, mass and force accounted for up to 78% of stiffness variation. Up to 61% of YM variability could be explained using a combination of mass, stress and age. These results demonstrate that age-related increases in tendon stiffness are largely attributable to increased tendon loading from weight-bearing tasks and increased plantarflexor force production, as well as tendon growth. Moreover, our results suggest that chronic increases in tendon loading during childhood result in microstructural changes which increase the tendon's YM. Regarding the second aim, peak stress increased from childhood to adulthood due to greater increases in strength than tendon cross-sectional area. Peak strain remained constant as a result of parallel increases in tendon length and peak elongation. The differences in Achilles tendon properties found between adults and children are likely to influence force production, and ultimately movement

  14. New technical procedure involving Achilles tendon rupture treatment through transcutaneous suture.

    PubMed

    TarniŢă, DănuŢ Nicolae; TarniŢă, Daniela; Grecu, Dan Cristian; Calafeteanu, Dan Marian; Căpitănescu, Bogdan

    2016-01-01

    The Achilles tendon is the widest tendon of the human body. Achilles tendon belongs to the extrasynovial tendons group and this allows it a faster recovery, thanks to local hematoma from the peritenon, necessary for the scarification. We concluded that in Achilles tendon rupture treatment it is essential to maintain the tendon covering skin integrity, the peritendinous integrity, to maintain the local hematoma formed during and after tendon rupture, reattaching the ruptured tendon heads and maintain them in this position by suturing them and by relaxing the sural triceps muscle. The percutaneous suture requires five pairs of mirror micro-incisions (5 mm) on one side and the other of the tendon. It is necessary for one of the pairs to be placed to the rupture level. With a surgical needle, we arm the proximal and distal heads of the tendon by different threads. By traction and muscular relaxation, we bring in contact the two ruptured heads and then we knot together the arming threads. The inferior member was cast immobilized in relaxing position for the sural triceps muscle for a 45 days period. Using this technique, we have operated 15 cases in our Clinic. In all the cases, we obtained a healing by first intention of the tegument micro-incisions. After the cast immobilization suppression, during 30 days the patients were in a recovery program. At the end of this program, they have recovered completely the dorsal and plantar flexion and the walking. In four months after the surgery, the esthetic of the area is completely restored, this technique being the only surgical technique that realizes this recovery.

  15. Development of cave foot deformity in failed repair of the Achilles tendon.

    PubMed

    Fortems, Y; Victor, J

    1993-01-01

    Two cases of failed primary repair of the Achilles tendon are reported. Cave foot deformity as an additional clinical sign of this condition is described. A possible biomechanical hypothesis is formulated, and a surgical procedure for correction of the symptoms is described. PMID:8323838

  16. Application of lariat lock catch knot suture in the achilles tendon rupture

    PubMed Central

    Wang, Baocang; Feng, Xiaona; Yan, Ming; Wang, Hui; Li, Yong

    2015-01-01

    The aim of this study was to summarize the clinical experience of repairing the Achilles tendon rupture by lariat lock catch knot suture. Between January 2011 and February, 2014, 32 cases of the Achilles tendon rupture were treated by lariat lock catch knot suture. There were 26 males and 6 females, with the average age of 39 years (range 17-53 years), including 13 left knees and 19 right knees. 29 wounds healed by first intention, and 3 cases who were performed local flap transfer due to necrosis of skin were healed by second intention. Thirty-two cases were followed up 10-25 months (13 months on average). No re-rupture of Achilles tendon or deep infection occurred during follow-up period. According to Arner-Lindholm assessment standard, the results were excellent in 19 cases and good in 13 cases, the excellent and good rate was 100%. Lariat lock catch knot suture is a safe and effective method for repairing Achilles tendon. PMID:26770612

  17. Age-related changes in biomechanical properties of the Achilles tendon in rabbits.

    PubMed

    Nakagawa, Y; Hayashi, K; Yamamoto, N; Nagashima, K

    1996-01-01

    We investigated age-related changes in the mechanical properties of rabbit Achilles tendon. The animals used were immature (age 3 weeks, body mass 380 g), young adult (age 8-10 months, body mass 4.1 kg) and old (age 4-5 years, body mass 5.1 kg) rabbits. The cross-sectional area of the tendon increased with growth and the tensile strength of the young adult [67.3 (SEM 4.2) MPa] and old [66.7 (SEM 3.8) MPa] tendon was significantly higher than that of the immature tendon [23.9 (SEM 3.8) MPa]. However, there was no statistically significant difference in tensile strength between mature and old tendons. These differences may be attributable to the change in body mass. The gradient of the stress-strain curves, that is, the tangent modulus of the mature tendon [618.0 (SEM 87.0) MPa], was higher than that of the immature [281.0 (SEM 104.6) MPa] and old [530.5 (SEM 91.0) MPa] tendon, although the difference was not significant. The elongation at failure was approximately 16 percent for all age groups. These results would suggest that rabbit Achilles tendon is highly compliant during growth.

  18. [Successive ruptures of patellar and Achilles tendons. Anabolic steroids in competitive sports].

    PubMed

    Isenberg, J; Prokop, A; Skouras, E

    2008-01-01

    Derivatives of testosterone or of 19-nor-testosterone are used as anabolics for the purpose of improving performance although the effect of anabolics is known still to be under discussion. The use of anabolic steroids continues among competitive athletes despite increased controls and increasingly frequent dramatic incidents connected with them. Whereas metabolic dysfunction during anabolic use is well documented, ruptures of the large tendons are rarely reported. Within 18 months, a 29-year-old professional footballer needed surgery for rupture of the patellar tendon and of both Achilles tendons. Carefully directed questioning elicited confirmation that he had taken different anabolic steroids regularly for 3 years with the intention of improving his strength. After each operation anabolic steroids were taken again at a high dosage during early convalescence and training. Minimally invasive surgery and open suturing techniques led to complete union of the Achilles tendons in good time. Training and anabolic use (metenolon 300 mg per week) started early after suturing of the patellar tendon including bone tunnels culminated in histologically confirmed rerupture after 8 weeks. After a ligament reconstruction with a semitendinosus tendon graft with subsequent infection, the tendon and reserve traction apparatus were lost. Repeated warnings of impaired healing if anabolic use was continued had been given without success. In view of the high number of unrecorded cases in competitive and athletic sports, we can assume that the use of anabolic steroids is also of quantitative relevance in the operative treatment of tendon ruptures.

  19. Anterior cruciate ligament reconstruction with Achilles tendon allografts in revisions and in patients older than 30.

    PubMed

    Grafe, Michael W; Kurzweil, Peter R

    2008-06-01

    We evaluated the results of anterior cruciate ligament (ACL) reconstruction using an Achilles tendon allograft in revisions and in patients older than 30. Results from 23 consecutive patients (mean age, 43 years) who underwent ACL reconstruction with fresh-frozen, irradiated (22/23) Achilles allografts were retrospectively reviewed. Seven cases were revisions. Patients were evaluated with physical examination, questionnaires, and x-rays. Twenty of the 23 patients were evaluated a mean of 28 months after surgery. There were 5 failures (21%); 3 acute failures were not evaluated at follow-up. One patient had an infection that required graft removal, 2 patients had mechanical failure of the grafts, and 2 had displacements of more than 5.5 mm as measured with a KT-1000 arthrometer. The 18 clinically successful cases had full motion, no thigh atrophy, and no effusion. Pivot shift scores were 55% A and 45% B on the International Knee Documentation Committee (IKDC) scale. Lachman scores were 40% A, 55% B, and 5% C on the IKDC scale. The KT-1000 difference was a mean of 2.9 mm at final follow-up. However, knees loosened a mean of 4.5 mm from the immediate postoperative measurements (P<.0001). Mean Lysholm and Tegner scores were 86.8 and 5.2, respectively. Tibial tunnel diameter increased by 3.1 mm on anteroposterior x-rays and 3.0 mm on lateral x-rays. Five patients developed mild medial compartment arthritis. Four of the 5 grafts with failures were from donors older than 40. Postoperative complications included deep vein thrombosis and inflammatory effusion (white blood cell count, 15,000). Twenty-one percent of ACL reconstructions with Achilles tendon allografts failed. Grafts deemed successful still had significant loosening at final follow-up. Allografts from donors older than 40 may have played a role in these failures. From the data in this study, it appears that surgeons should scrutinize the source of the allograft tissue and the age of the donor.

  20. Anterior cruciate ligament reconstruction with Achilles tendon allografts in revisions and in patients older than 30.

    PubMed

    Grafe, Michael W; Kurzweil, Peter R

    2008-06-01

    We evaluated the results of anterior cruciate ligament (ACL) reconstruction using an Achilles tendon allograft in revisions and in patients older than 30. Results from 23 consecutive patients (mean age, 43 years) who underwent ACL reconstruction with fresh-frozen, irradiated (22/23) Achilles allografts were retrospectively reviewed. Seven cases were revisions. Patients were evaluated with physical examination, questionnaires, and x-rays. Twenty of the 23 patients were evaluated a mean of 28 months after surgery. There were 5 failures (21%); 3 acute failures were not evaluated at follow-up. One patient had an infection that required graft removal, 2 patients had mechanical failure of the grafts, and 2 had displacements of more than 5.5 mm as measured with a KT-1000 arthrometer. The 18 clinically successful cases had full motion, no thigh atrophy, and no effusion. Pivot shift scores were 55% A and 45% B on the International Knee Documentation Committee (IKDC) scale. Lachman scores were 40% A, 55% B, and 5% C on the IKDC scale. The KT-1000 difference was a mean of 2.9 mm at final follow-up. However, knees loosened a mean of 4.5 mm from the immediate postoperative measurements (P<.0001). Mean Lysholm and Tegner scores were 86.8 and 5.2, respectively. Tibial tunnel diameter increased by 3.1 mm on anteroposterior x-rays and 3.0 mm on lateral x-rays. Five patients developed mild medial compartment arthritis. Four of the 5 grafts with failures were from donors older than 40. Postoperative complications included deep vein thrombosis and inflammatory effusion (white blood cell count, 15,000). Twenty-one percent of ACL reconstructions with Achilles tendon allografts failed. Grafts deemed successful still had significant loosening at final follow-up. Allografts from donors older than 40 may have played a role in these failures. From the data in this study, it appears that surgeons should scrutinize the source of the allograft tissue and the age of the donor. PMID:18716694

  1. Achilles Pain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Five ailments which can cause pain in the achilles tendon area are: (1) muscular strain, involving the stretching or tearing of muscle or tendon fibers; (2) a contusion, inflammation or infection called tenosynovitis; (3) tendonitis, the inflammation of the tendon; (4) calcaneal bursitis, the inflammation of the bursa between the achilles tendon…

  2. The morphology and symptom history of the Achilles tendons of figure skaters: an observational study

    PubMed Central

    Perry, Mark; Tillett, Eleanor; Mitchell, Sophie; Maffulli, Nicola; Morrissey, Dylan

    2012-01-01

    Summary This cross-sectional study assessed the prevalence of Achilles tendinopathy symptoms and ultrasound (US) abnormalities in male and female ice skaters, and compared this to age-matched controls. The 20 skaters of mean (sd) age 17.3 (7.9) were recruited from British figure skating clubs. The 17 non-skaters of mean age 18.0 (3.7) were recruited from a secondary school and university. Each group had 12 females. All participants completed a questionnaire, and Achilles tendons were ultrasound-scanned for thickening, hypoechoic areas, paratenon blurring and neovascularization. Skaters experienced significantly more lifetime symptoms (p=0.012) than the control group but there were no differences in present symptoms. Mid-tendon longitudinal thickness and the coefficient of variation (CoV) for longitudinal tendon thickness were significantly greater in the skaters (p=0.001 and p=0.017 respectively). No other ultrasound abnormalities were detected in either group. Figure skaters may be at a greater risk of Achilles tendon problems than the general population and have adaptive changes in their tendons. PMID:23738283

  3. Extended field of view ultrasound imaging to evaluate Achilles tendon length and thickness: a reliability and validity study

    PubMed Central

    Silbernagel, Karin Gravare; Shelley, Kristen; Powell, Stephen; Varrecchia, Shaun

    2016-01-01

    Summary Background Achilles tendon structural changes are common after injury and correlate with recovery of function. Having simple, inexpensive, yet valid and reliable measures of Achilles tendon structure are useful both in research and clinical. The purpose of this study was to perform reliability and validity measures of extended field of view (EFOV) ultrasound (US) imaging of the Achilles tendon. Methods eight cadavers (16 tendons) were used for the validation study to compare Achilles tendon length measurements from US images with actual measured length from dissected tendons. Nine healthy subjects (18 tendons) were included in the test-retest evaluation. Results the correlation between the US images and cadaveric measurements was excellent (ICC=0.895) for the length between calcaneus and the gastrocnemius and good (ICC=0.744) for the length between the calcaneus and the soleus. The between-limb reliability was excellent (ICC 0.886–0.940) for the tendon length measurements with standard error of measurements (SEM) of 0.64 cm for calcaneus to soleus and 0.67 cm for calcaneus to gastrocnemius. Between-day test-retest reliability was also excellent (ICC=0.898–0.944). Conclusion this study supports the use of EFOV US imaging as a reliable and valid method to determine Achilles tendon length and thickness, and using the uninjured limb for comparison. PMID:27331037

  4. Reconstruction of compound loss of lateral malleolus and lateral ankle ligaments with double-bundle Achilles tendon-bone allograft.

    PubMed

    Ko, Dukhwan; Jung, Hong-Geun; Kim, Hyeung-June; Cha, Seung-Han; Nam, Kyoung-Mo

    2014-01-01

    Open ankle fracture, including compound loss of the lateral malleolus, lateral ankle ligaments, and overlying skin, is a severe injury and can result in ankle instability and permanent disability. Treatment of this injury is challenging and requires bone grafting and soft tissue reconstruction. In the present report, we describe a unique reconstruction technique for compound loss of the lateral malleolus, lateral ankle ligaments, and the overlying skin using a double-bundle Achilles tendon-bone allograft combined with a reverse sural fasciocutaneous flap. The patient obtained a stable ankle with nearly full range of motion and displayed satisfactory function during the follow-up period.

  5. Acute tear of the fascia cruris at the attachment to the Achilles tendon: a new diagnosis

    PubMed Central

    Webborn, Nick; Morrissey, Dylan; Sarvananthan, Kasthuri; Chan, Otto

    2015-01-01

    Background The fascia cruris encloses the posterior structures of the calf and connects to the paratenon and the Achilles tendon. We describe the clinical presentation, ultrasound imaging characteristics and the time to the recovery of tears of the fascia cruris at the attachment to the Achilles tendon. Methods Retrospective review of 11 tears of the fascia cruris in the different legs as separate events in 9 patients (6 male and 3 female, mean age 35.52 years, range 11–48) identified using diagnostic ultrasound, after presenting with Achillodynia. Results 11 participants presented at a mean of 4.5 weeks (range 0.5–12) after onset of symptoms. The left Achilles was more commonly injured than the right (7 : 4) and the lateral side more than the medial (6 : 4) with one case with medial and lateral presentation. Clinically, there was swelling and tenderness over the medial or lateral border in the mid to upper portion of the Achilles. 7 of the 11 (63.6%) had functional overpronation. Ultrasound appearances of a tear were identified as hypoechoic area extending from the medial or lateral border of the Achilles extending along the anatomical plane of the fascia cruris. Average return to activity was 5.2 weeks (range 1–22). Participants presenting later had longer recovery but all participants returned to full activity (r=0.4). Conclusions This is the first description of the clinical details and sonographic findings of a tear to the fascia cruris at its attachment to the Achilles tendon. This needs to be considered as a cause of Achillodynia in athletes as recognition will affect the management. PMID:25202137

  6. High voltage pulsed current in collagen realignment, synthesis, and angiogenesis after Achilles tendon partial rupture

    PubMed Central

    Rampazo, Érika P.; Liebano, Richard E.; Pinfildi, Carlos Eduardo; Folha, Roberta A. C.; Ferreira, Lydia M.

    2016-01-01

    ABSTRACT Objective To verify the efficacy of high voltage pulsed current in collagen realignment and synthesis and in angiogenesis after the partial rupturing of the Achilles tendon in rats. Method Forty male Wistar rats were randomized into four groups of 10 animals each: sham, cathodic stimulation, anodic stimulation, and alternating stimulation. Their Achilles tendons were submitted to direct trauma by a free-falling metal bar. Then, the treatment was administered for six consecutive days after the injury. In the simulation group, the electrodes were positioned on the animal, but the device remained off for 30 minutes. The other groups used a frequency of 120 pps, sensory threshold, and the corresponding polarity. On the seventh day, the tendons were removed and sent for histological slide preparation for birefringence and Picrosirius Red analysis and for blood vessel quantification. Results No significant difference was observed among the groups regarding collagen realignment (types I or III collagen) or quantity of blood vessels. Conclusion High voltage pulsed current for six consecutive days was not effective in collagen realignment, synthesis, or angiogenesis after the partial rupturing of the Achilles tendon in rats. PMID:27556387

  7. Strenuous Treadmill Running Induces a Chondrocyte Phenotype in Rat Achilles Tendons

    PubMed Central

    Xu, Shao-Yong; Li, Shu-Fen; Ni, Guo-Xin

    2016-01-01

    Background Although tendinopathy is common, its underlying pathogenesis is poorly understood. This study aimed to investigate the possible pathogenesis of tendinopathy. Material/Methods In this study, a total of 24 rats were randomly and evenly divided into a control (CON) group and a strenuous treadmill running (STR) group. Animals in the STR group were subjected to a 12-week treadmill running protocol. Subsequently, all Achilles tendons were harvested to perform histological observation or biochemical analyses. Results Histologically, hypercellularity and round cells, as well as disorganized collagen fibrils, were presented in rat Achilles tendon sections from the STR group. Furthermore, our results showed that the expression of aggrecan, collagen type II (Col II), and Sex-Determining Region Y Box 9 (Sox 9) were markedly increased in the STR group compared with that in the CON group. Additionally, the mRNA expression of bone morphogenetic protein-2 (BMP-2) and biglycan was significantly up-regulated in the STR group in contrast to that in CON group. Conclusions These results suggest that a 12-week strenuous treadmill running regimen can induce chondrocyte phenotype in rat Achilles tendons through chondrogenic differentiation of tendon stem cells (TSCs) by BMP-2 signaling. PMID:27742920

  8. Influence of running shoes and cross-trainers on Achilles tendon forces during running compared with military boots.

    PubMed

    Sinclair, Jonathan; Taylor, P J; Atkins, S

    2015-06-01

    Military recruits are known to be susceptible to Achilles tendon pathology. The British Army have introduced footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), in an attempt to reduce the incidence of injuries. The aim of the current investigation was to examine the Achilles tendon forces of the cross-trainer and running shoe in relation to conventional army boots. Ten male participants ran at 4.0 m/s in each footwear condition. Achilles tendon forces were obtained throughout the stance phase of running and compared using repeated-measures ANOVAs. The results showed that the time to peak Achilles tendon force was significantly shorter when running in conventional army boots (0.12 s) in comparison with the cross-trainer (0.13 s) and running shoe (0.13 s). Achilles tendon loading rate was shown to be significantly greater in conventional army boots (38.73 BW/s) in comparison with the cross-trainer (35.14 BW/s) and running shoe (33.57 BW/s). The results of this study suggest that the running shoes and cross-trainer footwear are associated with reductions in Achilles tendon parameters that have been linked to the aetiology of injury, and thus it can be hypothesised that these footwear could be beneficial for military recruits undertaking running exercises.

  9. The treatment of a rupture of the Achilles tendon using a dedicated management programme.

    PubMed

    Hutchison, A M; Topliss, C; Beard, D; Evans, R M; Williams, P

    2015-04-01

    The Swansea Morriston Achilles Rupture Treatment (SMART) programme was introduced in 2008. This paper summarises the outcome of this programme. Patients with a rupture of the Achilles tendon treated in our unit follow a comprehensive management protocol that includes a dedicated Achilles clinic, ultrasound examination, the use of functional orthoses, early weight-bearing, an accelerated exercise regime and guidelines for return to work and sport. The choice of conservative or surgical treatment was based on ultrasound findings. The rate of re-rupture, the outcome using the Achilles Tendon Total Rupture Score (ATRS) and the Achilles Tendon Repair Score, (AS), and the complications were recorded. An elementary cost analysis was also performed. Between 2008 and 2014 a total of 273 patients presented with an acute rupture 211 of whom were managed conservatively and 62 had surgical repair. There were three re-ruptures (1.1%). There were 215 men and 58 women with a mean age of 46.5 years (20 to 86). Functional outcome was satisfactory. Mean ATRS and AS at four months was 53.0 (sd 14), 64.9 (sd 15) (n = 135), six months 67.8 (sd 16), 73.8 (sd 15) (n = 103) and nine months (72.4; sd 14) 72.3 (sd 13) (n = 43). The programme realised estimated cost savings exceeding £91,000 per annum. The SMART programme resulted in a low rate of re-rupture, a satisfactory outcome, a reduced rate of surgical intervention and a reduction in healthcare costs.

  10. Acute Achilles Tendon Ruptures: Does Surgery Offer Superior Results (and Other Confusing Issues)?

    PubMed

    Cooper, Minton Truitt

    2015-10-01

    Management of acute Achilles tendon rupture is controversial. Although in the past open surgery was considered the gold standard, recent studies have shown improved outcomes with nonoperative management, leading to an increase in popularity of this treatment option. Percutaneous techniques have gained attention and seem to offer excellent results. In addition, as with many other orthopedic conditions, significant concerns and questions exist as to whether or not chemoprophylaxis is indicated in these patients.

  11. Neglected Achilles Tendon Rupture Treated with Flexor Hallucis Longus transfer with two turndown gastrocnemius fascia flap and reinforced with plantaris tendon.

    PubMed

    Mao, Haijiao; Shi, Zengyuan; Xu, Dachuan; Liu, Zhenxin

    2015-09-01

    Neglected Achilles Tendon Ruptures are commonly seen by orthopaedic surgeons. In cases resistant to conservative treatment, a variety of surgical procedures have been utilized in the past. The senior -surgeon at our institution has utilized a technique -employing two turndown fascia flaps fashioned from the proximal Achilles tendon augmented by a tenomyodesis of the flexor hallucis longus and plantaris tendon. The purpose of this study was to assess the clinical outcome of all patients who underwent this procedure. The medical records of 10 cases that underwent this procedure were retrospectively reviewed. We completed data collection sets using the American Orthopaedic Foot and Ankle Society ankle-hind foot scores, isokinetic evaluation, and postoperative magnetic resonance imaging (MRI) at 1 year of follow-up. The mean American Orthopaedic Foot and Ankle Society ankle-hind foot scores improved from 64.4±3.54. Isokinetic testing at 30º/sec and 120º/sec revealed an mean deficits of 24.5%, respectively, in the plantar flexion peak torque of the involved ankle than non-involved ankle. The flexor hallucis longus tendon, gastrocnemius fascia flap and plantaris were well -integrated into the Achilles tendon forming a homogenous tendon, which was confirmed in MRI. Our subjective and objective data indicate that the reconstructive technique using flexor hallucis longus transfer with two turndown gastrocnemius fascia flaps and plantaris tendon is a good option for repairing large gap defect of Achilles tendon.

  12. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  13. Multiparametric MR Imaging Depicts Glycosaminoglycan Change in the Achilles Tendon during Ciprofloxacin Administration in Healthy Men

    PubMed Central

    Juras, Vladimir; Winhofer, Yvonne; Szomolanyi, Pavol; Vosshenrich, Jan; Hager, Benedikt; Wolf, Peter; Weber, Michael; Luger, Anton; Trattnig, Siegfried

    2015-01-01

    Purpose To determine if quantitative magnetic resonance (MR) imaging techniques (sodium MR imaging, glycosaminoglycan [GAG] chemical exchange saturation transfer [CEST], and T2* mapping) could be used as potential markers for biochemical changes in the Achilles tendon induced by ciprofloxacin intake. Materials and Methods The ethics committee of the Medical University of Vienna approved the protocol (number 1225/2012), and all patients gave written informed consent. Fourteen ankles from seven men (mean age, 32 years ± 12 [standard deviation]) were included in the study. All patients underwent 7-T MR imaging examinations of the Achilles tendon at baseline and 10 days and 5 months after ciprofloxacin intake. Sodium signal and T2* maps were acquired with the variable echo-time sequence and the GAG CEST values were acquired with a three-dimensional radiofrequency spoiled gradient-recalled-echo sequence. Results The mean sodium signal was significantly decreased by 25% in the whole tendon (from baseline to 10 days after ciprofloxacin intake, 130 arbitrary units [au] ± 8 to 98 au ± 5, respectively; P = .023) and returned to baseline after 5 months (116 au ± 10), as observed also at the tendon insertion (baseline, 10 days after ciprofloxacin intake, and 5 months after ciprofloxacin intake, 134 au ± 8, 105 au ± 5, and 119 au ± 9, respectively; P = .034). The mean GAG CEST value in the whole tendon was parallel to the sodium signal with a decrease from baseline to 10 days after ciprofloxacin intake, 4.74% ± 0.75 to 4.50% ± 0.23, respectively (P = .028) and an increase at 5 months after ciprofloxacin intake to 4.88% ± 1.02. Conclusion In conclusion, this study demonstrates a ciprofloxacin-induced reversible reduction of the normalized sodium MR imaging signal and the GAG CEST effect in the Achilles tendon of healthy volunteers. Changes in sodium MR imaging and GAG CEST in men may reflect a decrease of GAG content in the Achilles tendon after ciprofloxacin intake

  14. Platelet-Rich Fibrin Promotes an Accelerated Healing of Achilles Tendon When Compared to Platelet-Rich Plasma in Rat

    PubMed Central

    Dietrich, Franciele; L. Duré, Gustavo; P. Klein, Caroline; F. Bampi, Vinícius; V. Padoin, Alexandre; D. Silva, Vinícius; Braga-Silva, Jefferson

    2015-01-01

    BACKGROUND Autologous platelet concentrate has been used to improve the function and regeneration of injured tissues. Tendinopathies are common in clinical practice, although long-term treatment is required. On the basis of lead time, we compared the effect of using platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in repairing rat Achilles tendon. METHODS The effectiveness of using PRP and PRF was evaluated after 14 and 28 postoperative days by histological analysis. The quantification of collagen types I and III was performed by Sirius red staining. Qualitatively, the data were verified with hematoxylin-eosin (H&E) staining. RESULTS In Sirius red staining, no significant treatment differences were found between groups. Statistical difference was observed only between PRP (37.2% collagen) and the control group (16.2%) 14 days after treatment. Intra-groups compared twice showed a difference for collagen I (27.8% and 47.7%) and III (66.9% and 46.0%) in the PRF group. The control group showed differences only in collagen I (14.2% and 40.9%) and no other finding was observed in the PRP group. In H&E staining, PRF showed a better cellular organization when compared to the other groups at 28 days. CONCLUSION Our study suggests that PRF promotes accelerated regeneration of the Achilles tendon in rats, offering promising prospects for future clinical use. PMID:26284178

  15. Can transcutaneous electrical nerve stimulation improve achilles tendon healing in rats?

    PubMed Central

    Folha, Roberta A. C.; Pinfildi, Carlos E.; Liebano, Richard E.; Rampazo, Érika P.; Pereira, Raphael N.; Ferreira, Lydia M.

    2015-01-01

    BACKGROUND: Tendon injury is one of the most frequent injuries in sports activities. TENS is a physical agent used in the treatment of pain but its influence on the tendon's healing process is unclear. OBJECTIVE: To evaluate the influence of TENS on the healing of partial rupture of the Achilles tendon in rats. METHOD: Sixty Wistar rats were submitted to a partial rupture of the Achilles tendon by direct trauma and randomized into six groups (TENS or Sham stimulation) and the time of evaluation (7, 14, and 21 days post-injury). Burst TENS was applied for 30 minutes, 6 days, 100 Hz frequency, 2 Hz burst frequency, 200 µs pulse duration, and 300 ms pulse train duration. Microscopic analyses were performed to quantify the blood vessels and mast cells, birefringence to quantify collagen fiber alignment, and immunohistochemistry to quantify types I and III collagen fibers. RESULTS: A significant interaction was observed for collagen type I (p=0.020) where the TENS group presented lower percentage in 14 days after the lesion (p=0.33). The main group effect showed that the TENS group presented worse collagen fiber alignment (p=0.001) and lower percentage of collagen III (p=0.001) and the main time effect (p=0.001) showed decreased percentage of collagen III at 7 days (p=0.001) and 14 days (p=0.001) after lesion when compared to 21 days. CONCLUSIONS: Burst TENS inhibited collagen I and III production and impaired its alignment during healing of partial rupture of the Achilles tendon in rats. PMID:26647744

  16. Low recurrence rate after mini surgery outside the tendon combined with short rehabilitation in patients with midportion Achilles tendinopathy

    PubMed Central

    Alfredson, Håkan

    2016-01-01

    Background There is a general opinion that a structured and specific rehabilitation is needed after treatment of midportion Achilles tendinopathy to minimize recurrence of the condition. There is sparse knowledge about the recurrence rates in large patient materials after specific treatments for midportion Achilles tendinopathy. Aim This study aimed to investigate the recurrence rates in a large number of patients with chronic painful midportion Achilles tendinopathy that had been surgically treated with the ultrasound (US) and Doppler (DP)-guided mini-surgical scraping technique. Postoperatively, a relatively simple rehabilitation protocol, including a range of movement exercises and gradually increased walking and biking before allowing free activity, was used. Materials and methods From a database, information about the recurrence rates after US + DP-guided mini-surgical scraping, performed by a single surgeon on 519 tendons with US + DP-verified chronic painful midportion Achilles tendinopathy, was obtained. Results Recurrence of painful midportion Achilles tendinopathy was found in 26 of 519 (5%) operated tendons, 13 from women and 13 from men. In 13 tendons, a close by located plantaris tendon was extirpated during the reoperation. Conclusion In this large material on patients treated with US + DP-guided mini-surgical scraping for midportion Achilles tendinopathy, there were few recurrences, although only a simple and nonspecific rehabilitation protocol was used. PMID:27274323

  17. Smad8/BMP2–Engineered Mesenchymal Stem Cells Induce Accelerated Recovery of the Biomechanical Properties of the Achilles Tendon

    PubMed Central

    Pelled, Gadi; Snedeker, Jess G.; Ben-Arav, Ayelet; Rigozzi, Samuela; Zilberman, Yoram; Kimelman-Bleich, Nadav; Gazit, Zulma; Müller, Ralph; Gazit, Dan

    2012-01-01

    Summary Tendon tissue regeneration is an important goal for orthopedic medicine. We hypothesized that implantation of Smad8/BMP2–engineered MSCs in a full-thickness defect of the Achilles tendon (AT) would induce regeneration of tissue with improved biomechanical properties. A 2 mm defect was created in the distal region of murine ATs. The injured tendons were then sutured together or given implants of genetically engineered MSCs (GE group), nonengineered MSCs (CH3 group), or fibrin gel containing no cells (FG group). Three weeks later the mice were killed, and their healing tendons were excised and processed for histological or biomechanical analysis. A biomechanical analysis showed that tendons that received implants of genetically engineered MSCs had the highest effective stiffness (> 70% greater than natural healing, p < 0.001) and elastic modulus. There were no significant differences in either ultimate load or maximum stress among the treatment groups. Histological analysis revealed a tendon-like structure with elongated cells mainly in the GE group. ATs that had been implanted with Smad8/BMP2–engineered stem cells displayed a better material distribution and functional recovery than control groups. While additional study is required to determine long-term effects of GE MSCs on tendon healing, we conclude that genetically engineered MSCs may be a promising therapeutic tool for accelerating short-term functional recovery in the treatment of tendon injuries. PMID:22696396

  18. The Gift Box Open Achilles Tendon Repair Method: A Retrospective Clinical Series.

    PubMed

    Labib, Sameh A; Hoffler, C Edward; Shah, Jay N; Rolf, Robert H; Tingan, Alexis

    2016-01-01

    Previous biomechanical studies have shown that the gift box technique for open Achilles tendon repair is twice as strong as a Krackow repair. The technique incorporates a paramedian skin incision with a midline paratenon incision, and a modification of the Krackow stitch is used to reinforce the repair. The wound is closed in layers such that the paratenon repair is offset from paramedian skin incision, further protecting the repair. The present study retrospectively reviews the clinical results for a series of patients who underwent the gift box technique for treatment of acute Achilles tendon ruptures from March 2002 to April 2007. The patients completed the Foot Function Index and the American Orthopaedic Foot and Ankle Society ankle-hindfoot scale. The tendon width and calf circumference were measured bilaterally and compared using paired t tests with a 5% α level. A total of 44 subjects, mean age 37.5 ± 8.6 years, underwent surgery approximately 10.8 ± 6.5 days after injury. The response rate was 35 (79.54%) patients for the questionnaire and 20 (45.45%) for the examination. The mean follow-up period was 35.7 ± 20.1 months. The complications included one stitch abscess, persistent pain, and keloid formation. One (2.86%) respondent reported significant weakness. Five (14.29%) respondents indicated persistent peri-incisional numbness. The range of motion was full or adequate. The mean American Orthopaedic Foot and Ankle Society ankle-hindfoot scale score was 93.2 ± 6.8) and the mean Foot Function Index score was 7.0 ± 10.5. The calf girth and tendon width differences were statistically significantly between the limbs. The patients reported no repeat ruptures, sural nerve injuries, dehiscence, or infections. We present the outcomes data from patients who had undergone this alternative technique for Achilles tendon repair. The technique is reproducible, with good patient satisfaction and return to activity. The results compared well with the historical

  19. [Percutaneous repair of achilles tendon rupture--a technical note].

    PubMed

    Alexa, O; Veliceasa, B; Puha, C; Popia, I

    2008-01-01

    The treatment of the acute ruptures of the achillean tendon remains controversial. For the time being, there is no consent regarding the ideal therapeutic approach. The therapeutical procedure for the recent achilean tendon tears varies between two possible solutions, one conservative and the other surgical. The choice between these is made based on the type of rupture and the experience of the surgeon. The conservative techniques can have good results in selected cases, but they produce a degree of elongation of the tendon, which may lead to improper functional results. The classical surgical treatment (the open technique) has the handicap of a relatively large, longitudinal incision, which is made in an area with relatively poor skin vascular supply. Also, the vascular supply of the tendon itself is based mainly on perforant, subfascial vessels, which are intercepted during the approach. Taking these facts into consideration, some new, minimally invasive (percutaneous) techniques, were imagined. The principles of the standard percutaneous technique consist of: 1) union of the ruptured ends without using a large surgical approach, thus also avoiding the drainage of the local hematoma and rushing the repair; 2) avoiding damaging of the tendon's vascular supply. This techique leads to a rapid transformation of the collagen fibers into elastic fibers, which are mechanically effective. We present in this paper the method which uses the TENOLIG kit. This kit consists of two wires with anchors at one end and needles at the other end; two washers and two poliethylene disks for securing the distal end of the wire. We obtained good morphological (proven by MRI scan) and functional results with this technique. The postoperative protocol includes immobilization with the foot initially in equinous, then in normal position, with isometric muscle contractions and non-weight-bearing, then removal of the cast and wires at 45 days postoperatively and continuing the recovery by

  20. Different distributions of operative diagnoses for Achilles tendon overuse injuries in Italian and Finnish athletes

    PubMed Central

    Johansson, Kristian; Lempainen, Lasse; Sarimo, Janne; Laitala-Leinonen, Tiina; Orava, Sakari

    2016-01-01

    Summary Background the origin of chronic Achilles tendinopathy (AT) is currently unclear and epidemiological factors, such as ethnicity, may be associated. Methods intraoperative findings from the treatment of 865 Finnish and 156 Italian athletic patients with chronic Achilles tendon related pain were evaluated, retrospectively. The mean age was 34 years (range, 18 to 65 years) in the Finnish and 29 years (range, 17–63 years) in the Italian patients. In total, 786 patients were males and 226 females of which 84 and 87% Finnish, respectively. Data were collected, retrospectively from patient records. The differences in the frequencies of operative findings were assessed for statistical significance. Results retrocalcaneal bursitis, partial tear and chronic paratenonitis were the most prevalent findings in patients with chronic AT undergoing surgery. Tendinosis and chronic paratenonitis were significantly (p=0.011) more common in Finnish athletes. Italian patients exhibited significantly (p<0.001) more insertional calcific tendinopathy (heel spurs) and prominent posterosuperior calcaneal corners (Haglund’s heel). Conclusion ethnicity appears to be associated with specific characteristics of overuse-related Achilles tendon pathology. This is an issue that should be considered in the planning of genetic research on AT. PMID:27331038

  1. Achilles tendon mechanical properties after both prolonged continuous running and prolonged intermittent shuttle running in cricket batting.

    PubMed

    Houghton, Laurence; Dawson, Brian; Rubenson, Jonas

    2013-08-01

    Effects of prolonged running on Achilles tendon properties were assessed after a 60 min treadmill run and 140 min intermittent shuttle running (simulated cricket batting innings). Before and after exercise, 11 participants performed ramp-up plantar flexions to maximum-voluntary-contraction before gradual relaxation. Muscle-tendon-junction displacement was measured with ultrasonography. Tendon force was estimated using dynamometry and a musculoskeletal model. Gradients of the ramp-up force-displacement curves fitted between 0-40% and 50-90% of the preexercise maximal force determined stiffness in the low- and high-force-range, respectively. Hysteresis was determined using the ramp-up and relaxation force-displacement curves and elastic energy storage from the area under the ramp-up curve. In simulated batting, correlations between tendon properties and shuttle times were also assessed. After both protocols, Achilles tendon force decreased (4% to 5%, P < .050), but there were no changes in stiffness, hysteresis, or elastic energy. In simulated batting, Achilles tendon force and stiffness were both correlated to mean turn and mean sprint times (r = -0.719 to -0.830, P < .050). Neither protocol resulted in fatigue-related changes in tendon properties, but higher tendon stiffness and plantar flexion force were related to faster turn and sprint times, possibly by improving force transmission and control of movement when decelerating and accelerating.

  2. Nintendo Wii related Achilles tendon rupture: first reported case and literature review of motion sensing video game injuries.

    PubMed

    Singh, Rohit; Manoharan, Gopikanthan; Moores, Thomas Steven; Patel, Amit

    2014-01-01

    Achilles tendon ruptures tend to occur more commonly in healthy men between the ages of 30 and 50 years who have had no previous injury or problem reported in the affected leg. The injury is usually due to sudden forced plantar flexion of the foot, unexpected dorsiflexion of the foot and violent dorsiflexion of a plantar flexed foot, all of which occur during high impact activities. We present the first reported case of interactive activity with Nintendo Wii games that have resulted in Achilles tendon rupture in a 46-year-old man. There have been no previous reports of Achilles tendon rupture with Nintendo Wii usage; it is a relatively uncommon mode of injury and is rare in terms of epidemiology of motion sensing video game injuries. PMID:24827648

  3. Surgical versus conservative treatment following acute rupture of the Achilles tendon: is there a pedobarographic difference?

    PubMed Central

    Karaaslan, Fatih; Mermerkaya, Musa Uğur; Çıraklı, Alper; Karaoğlu, Sinan; Duygulu, Fuat

    2016-01-01

    Introduction Controversy remains regarding the optimal treatment method and postoperative rehabilitation of acute Achilles tendon ruptures. In this study, pedobarographic assessments of surgical and conservative treatments were compared. Material and methods A prospective assessment was made of 16 patients (eight surgical, eight conservative) and eight healthy controls using a plantar pressure measurement system. Biomechanical gait parameters were obtained using the Footscan dynamic gait analysis system. Kruskal–Wallis and Mann–Whitney U-tests were used for the evaluation of data. Results Nineteen males and five females were assessed, with an average age of 42.0±11.9 years. Follow-up was completed in 16 patients. No statistically significant difference was determined between the two treatment groups with regard to the gait analysis, but a difference was observed with the control group (P<0.001). All patients were able to resume their prior activities after 6 months and regained normal ranges of motion, with a high rate of satisfaction. Most of the patients (75%) were able to return to their pre-injury level of activities. Conclusion Satisfactory results were obtained through conservative treatment of acute ruptures of the Achilles tendon. No significant differences or complications were observed in the group managed conservatively versus the group treated surgically. Further studies including 3D gait analyses and tendon biomechanical research are required to further investigate this issue. PMID:27621640

  4. Surgical versus conservative treatment following acute rupture of the Achilles tendon: is there a pedobarographic difference?

    PubMed Central

    Karaaslan, Fatih; Mermerkaya, Musa Uğur; Çıraklı, Alper; Karaoğlu, Sinan; Duygulu, Fuat

    2016-01-01

    Introduction Controversy remains regarding the optimal treatment method and postoperative rehabilitation of acute Achilles tendon ruptures. In this study, pedobarographic assessments of surgical and conservative treatments were compared. Material and methods A prospective assessment was made of 16 patients (eight surgical, eight conservative) and eight healthy controls using a plantar pressure measurement system. Biomechanical gait parameters were obtained using the Footscan dynamic gait analysis system. Kruskal–Wallis and Mann–Whitney U-tests were used for the evaluation of data. Results Nineteen males and five females were assessed, with an average age of 42.0±11.9 years. Follow-up was completed in 16 patients. No statistically significant difference was determined between the two treatment groups with regard to the gait analysis, but a difference was observed with the control group (P<0.001). All patients were able to resume their prior activities after 6 months and regained normal ranges of motion, with a high rate of satisfaction. Most of the patients (75%) were able to return to their pre-injury level of activities. Conclusion Satisfactory results were obtained through conservative treatment of acute ruptures of the Achilles tendon. No significant differences or complications were observed in the group managed conservatively versus the group treated surgically. Further studies including 3D gait analyses and tendon biomechanical research are required to further investigate this issue.

  5. Analysis of the effect of phototherapy in model with traumatic Achilles tendon injury in rats.

    PubMed

    Casalechi, Heliodora Leão; de Farias Marques, Anna Cristina; da Silva, Evela Aparecida Pereira; Aimbire, Flávio; Marcos, Rodrigo Labat; Lopes-Martins, Rodrigo A B; de Carvalho, Paulo de Tarso Camilo; Albertini, Regiane

    2014-05-01

    The aim of this study was to investigate the effect of low-intensity laser (LILT) infrared (830 nm) therapy in tendon inflammation, tendinitis induced by mechanical trauma in rat Achilles tendon. For this, we used 65 young male Wistar rats, weighing ± 300 g divided into different groups: C = control (n = 5) and experimental (n = 10/group), with two different times of sacrifice such as treated with L = laser, D = treated with diclofenac, and T = untreated injured. The tendon inflammation was induced by controlled contusion in the medial region of the Achilles tendon of the animals. The treated groups received some kind of intervention every 24 h, all groups were sacrificed on the 7th or 14th day after the trauma. The tendons were dissected, extracted, and sent for analysis. Histological analysis of the L group showed a decrease in the number of inflammatory cells in relation to other groups in both periods studied. The comparative results between the number of inflammatory cells in the control and treated groups at 7 and 14 days showed statistically significant differences. Qualitative analysis findings obtained by the picrosirius red technique under polarized light showed that in 7 days, the T group presented collagen types I and III in the same proportion; group D presented a predominance of type III fibers, while in group L, type I collagen predominated. The 14-day group D showed collagen types I and III in the same proportion, while in group L, there was a predominance of type I fibers. Biomechanical analysis showed that 7-day groups L and C showed similar stiffness and increased breaking strength. The 14-day groups L and C showed greater rupturing strength as well as increased stiffness angle. Group D showed a decrease of maximum traction strength and degree of rigidity. It was concluded that treatment with LIL in the parameters used and the times studied reduces migration of inflammatory cells and improves the quality of repair while reducing the functional

  6. Anatomy of the sural nerve in a computer‐assisted model: implications for surgical minimal‐invasive Achilles tendon repair

    PubMed Central

    Citak, Musa; Knobloch, Karsten; Albrecht, Knut; Krettek, Christian; Hufner, Tobias

    2007-01-01

    Background Sural nerve injuries are an evident risk especially of minimal‐invasive surgical Achilles tendon repair. However, detailed anatomical studies focusing on the relationship of the sural nerve with the Achilles tendon at various levels are scarce, even pending in two planes. Aim To determine the position and course of the sural nerve in relation to the Achilles tendon in two planes after trans‐section and computer‐assisted determination. Methods The exact course of the sural nerve was determined in 10 cadavers (55.3 years, 19–89 years), using a computer‐assisted method in two planes (transversal/sagittal). Results The sural nerve crossed the Achilles tendon at 11 (8.7–12.4) cm proximal to the tuber calcanei. The distance between the lateral crossing and the proximal musculotendineus junction was 35 (20–58) mm. Starting from the tuber calcanei, the distance was 2/2 mm (transversal/sagittal plane) at 11 cm proximal to the tuber calcanei, 4/4 mm at 10 cm proximal, 5/6 mm at 9 cm, 8/10 mm at 5 cm and 11/18 mm at the tuber calcanei. Conclusion In the lateral crossing region of the sural nerve and the lateral proximal Achilles tendon 9–12 cm proximal to the tuber calcanei, a close relationship of both anatomical structures can be visualised using computer‐assisted measurements; caution is suggested to prevent sural nerve entrapment in either open or percutaneous Achilles tendon repair. PMID:17347315

  7. Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking.

    PubMed

    Franz, Jason R; Thelen, Darryl G

    2015-08-01

    The anatomical arrangement of the Achilles tendon (AT), with distinct fascicle bundles arising from the gastrocnemius and soleus muscles, may facilitate relatively independent behavior of the triceps surae muscles. A reduced capacity for sliding between adjacent tendon fascicles with age may couple gastrocnemius and soleus muscle behavior, thereby potentially contributing to diminished plantarflexor performance commonly observed in old adults. Nine healthy young (mean age, 23.9 yr) and eight healthy old (69.9 yr) adults walked at three speeds (0.75, 1.00, and 1.25 m/s) on a force-sensing treadmill. We coupled dynamic ultrasound imaging of the free AT with motion capture and inverse dynamic analyses to compute, in part: 1) depth-dependent variations in AT tissue displacements and elongations and 2) net ankle joint kinetics during push-off. The difference in displacements between superficial and deep AT regions, and in their corresponding elongations, did not differ between old and young adults at the slower two walking speeds (P > 0.61). However, old adults walked with 41% smaller depth-dependent variations in free AT displacements and elongations at 1.25 m/s (P = 0.02). These more uniform tendon deformations in old adults most strongly correlated with reduced peak ankle moment (R(2) = 0.40), but also significantly correlated with reduced peak power generation (R(2) = 0.15) and positive ankle work during push-off (R(2) = 0.19) (P > 0.01). Our findings: 1) demonstrate a potential role for nonuniform AT deformations in governing gastrocnemius and soleus muscle-tendon function and 2) allude to altered tendon behavior that may contribute to the age-related reduction in plantarflexor performance during walking.

  8. Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.

    PubMed

    Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R

    2016-01-01

    The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control.

  9. Is Operative Treatment of Achilles Tendon Ruptures Superior to Nonoperative Treatment?

    PubMed Central

    Erickson, Brandon J.; Mascarenhas, Randy; Saltzman, Bryan M.; Walton, David; Lee, Simon; Cole, Brian J.; Bach, Bernard R.

    2015-01-01

    Background: Multiple meta-analyses have been published in efforts to determine whether operative or nonoperative treatment of Achilles tendon ruptures affords superior outcomes. Purpose: To perform a systematic review of overlapping meta-analyses comparing operative and nonoperative treatment of Achilles tendon ruptures to determine which meta-analyses provide the highest level of evidence for treatment recommendations. Study Design: Systematic review; Level of evidence, 3. Methods: A systematic review of the literature was performed to identify meta-analyses that fit the study inclusion criteria. Data were extracted from these meta-analyses regarding patient outcomes and reruptures. Meta-analysis quality was assessed using the Oxman-Guyatt and QUOROM (Quality of Reporting of Meta-analyses) systems. The Jadad algorithm was applied to determine the meta-analyses with the highest level of evidence. Results: Nine meta-analyses met the eligibility criteria, with all but 1 study including level 1 evidence. A total of 5842 patients were included. Seven studies found a higher rate of rerupture in the nonoperative group but a higher rate of complications in the operative group. One study found no differences in rerupture or complication rates, and 1 study found surgery decreased rerupture rates only when compared with nonoperative treatment without a functional brace. Three studies also identified an earlier return to work in the operative group. Almost all (8 of 9) of the meta-analyses had Oxman-Guyatt scores >3, indicating no major flaws. Conclusion: Operative treatment of Achilles tendon ruptures decreases rerupture rates but increases the risk for minor complications when compared with nonoperative treatment. Additionally, surgical treatment may allow earlier return to work. PMID:26665055

  10. Chronic Achilles tendinopathy: a case study of treatment incorporating active and passive tissue warm-up, Graston Technique®, ART®, eccentric exercise, and cryotherapy

    PubMed Central

    Miners, Andrew L.; Bougie, Tracy L.

    2011-01-01

    Objective To describe the subjective pain and functional improvements of a patient with chronic Achilles tendinopathy following a treatment plan incorporating active and passive tissue warm-up, followed respectively by soft tissue mobilization utilizing both Graston Technique® and Active Release Techniques®, eccentric exercise, and static stretching in combination with cryotherapy. Background The primary characterization of chronic Achilles tendinopathy is gradual onset of pain and dysfunction focused in one or both Achilles tendons arising secondary to a history of repetitive use or excessive overload. Intervention and Outcome Conservative treatment is commonly the initial strategy for patient management. Tissue heating, soft tissue mobilization, eccentric training, and static stretching with cryotherapy were implemented to reduce pain and improve function. Summary A specific protocol of heat, soft tissue mobilization, eccentric exercise, stretching, and cryotherapy appeared to facilitate a rapid and complete recovery from chronic Achilles tendinopathy. PMID:22131563

  11. Medial malleolus fracture of the ankle combined with rupture of the Achilles tendon

    PubMed Central

    Lu, Jike; Maruo Holledge, Masumi

    2016-01-01

    A 59-year-old man fell off a 60-cm-high step, with his ankle in a twisted position, and sustained a closed fracture of the medial malleolus, with an ipsilateral complete Achilles tendon (TA) rupture. The TA rupture was initially missed but diagnosed by ultrasound examination, 2 weeks post-operatively. The ankle fracture was diagnosed from routine radiographs. Such a combination of injuries has been reported infrequently in the literature, but significant similarities have been described in the mechanism of injury and fracture patterns. Nevertheless, three of five reported cases with combined medial malleolus fractures were initially misdiagnosed. PMID:27141047

  12. Quantitative ultrasound method for assessing stress-strain properties and the cross-sectional area of Achilles tendon

    NASA Astrophysics Data System (ADS)

    Du, Yi-Chun; Chen, Yung-Fu; Li, Chien-Ming; Lin, Chia-Hung; Yang, Chia-En; Wu, Jian-Xing; Chen, Tainsong

    2013-12-01

    The Achilles tendon is one of the most commonly observed tendons injured with a variety of causes, such as trauma, overuse and degeneration, in the human body. Rupture and tendinosis are relatively common for this strong tendon. Stress-strain properties and shape change are important biomechanical properties of the tendon to assess surgical repair or healing progress. Currently, there are rather limited non-invasive methods available for precisely quantifying the in vivo biomechanical properties of the tendons. The aim of this study was to apply quantitative ultrasound (QUS) methods, including ultrasonic attenuation and speed of sound (SOS), to investigate porcine tendons in different stress-strain conditions. In order to find a reliable method to evaluate the change of tendon shape, ultrasound measurement was also utilized for measuring tendon thickness and compared with the change in tendon cross-sectional area under different stress. A total of 15 porcine tendons of hind trotters were examined. The test results show that the attenuation and broadband ultrasound attenuation decreased and the SOS increased by a smaller magnitude as the uniaxial loading of the stress-strain upon tendons increased. Furthermore, the tendon thickness measured with the ultrasound method was significantly correlated with tendon cross-sectional area (Pearson coefficient = 0.86). These results also indicate that attenuation of QUS and ultrasonic thickness measurement are reliable and potential parameters for assessing biomechanical properties of tendons. Further investigations are needed to warrant the application of the proposed method in a clinical setting.

  13. Gastric pentadecapeptide BPC 157 accelerates healing of transected rat Achilles tendon and in vitro stimulates tendocytes growth.

    PubMed

    Staresinic, M; Sebecic, B; Patrlj, L; Jadrijevic, S; Suknaic, S; Perovic, D; Aralica, G; Zarkovic, N; Borovic, S; Srdjak, M; Hajdarevic, K; Kopljar, M; Batelja, L; Boban-Blagaic, A; Turcic, I; Anic, T; Seiwerth, S; Sikiric, P

    2003-11-01

    In studies intended to improve healing of transected Achilles tendon, effective was a stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419). Currently in clinical trials for inflammatory bowel disease (PLD-116, PL 14736, Pliva), it ameliorates internal and external wound healing. In rats, the right Achilles tendon transected (5 mm proximal to its calcaneal insertion) presents with a large tendon defect between cut ends. Agents (/kg b.w., i.p., once time daily) (BPC 157 (dissolved in saline, with no carrier addition) (10 microg, 10 ng or 10 pg) or saline (5.0 ml)), were firstly applied at 30 min after surgery, the last application at 24 h before autopsy. Achilles functional index (AFI) was assessed once time daily. Biomechanical, microscopical and macroscopical assessment was on day 1, 4, 7, 10 and 14. Controls generally have severely compromised healing. In comparison, pentadecapeptide BPC 157 fully improves recovery: (i) biomechanically, increased load of failure, load of failure per area and Young's modulus of elasticity; (ii) functionally, significantly higher AFI-values; (iii) microscopically, more mononuclears and less granulocytes, superior formation of fibroblasts, reticulin and collagen; (iv) macroscopically, smaller size and depth of tendon defect, and subsequently the reestablishment of full tendon integrity. Likewise, unlike TGF-beta, pentadecapeptide BPC 157, presenting with no effect on the growth of cultured cell of its own, consistently opposed 4-hydroxynonenal (HNE), a negative modulator of the growth. HNE-effect is opposed in both combinations: BPC 157+HNE (HNE growth inhibiting effect reversed into growth stimulation of cultured tendocytes) and HNE+BPC 157(abolished inhibiting activity of the aldehyde), both in the presence of serum and serum deprived conditions. In conclusion, these findings, particularly, Achilles tendon transection fully recovered in rats, peptide stability suitable delivery, usefully favor gastric

  14. Comparison of Semi-Invasive "Internal Splinting" and Open Suturing Techniques in Achilles Tendon Rupture Surgery.

    PubMed

    Sarman, Hakan; Muezzinoglu, Umit Sefa; Memisoglu, Kaya; Aydin, Adem; Atmaca, Halil; Baran, Tuncay; Odabas Ozgur, Bahar; Ozgur, Turgay; Kantar, Cengizhan

    2016-01-01

    The goal of the present study was to evaluate the semi-invasive "internal splinting" (SIIS) method for repair of Achilles tendon rupture relative to open repair with Krakow sutures. Efficacy was evaluated based on the clinical and functional outcomes, postoperative magnetic resonance imaging measurements, isokinetic results, and surgical complication rates. Functional measurements included the Thermann and American Orthopaedic Foot and Ankle Society (AOFAS) ankle scores, bilateral ankle dorsiflexion, and plantar flexion measurements. Magnetic resonance imaging was used to compare the bilateral length and thickness of each Achilles tendon. The isokinetic outcomes were evaluated using a Biodex System 3 dynamometer. Of the 45 patients meeting the inclusion criteria, 24 were treated by SIIS and 21 by the open Krackow suture technique. The mean follow-up time for all patients was 43.7 (range 6 to 116) months. In the SIIS group, patients returned to normal daily activities after 7.2 (range 6 to 8) weeks compared with 14.3 (range 12 to 15) weeks in the open surgery group. The AOFAS ankle scores were 93.5 (range 82 to 100) points in the open repair group and 96.2 (range 86 to 100) points in the SIIS group. The Thermann scores were 80.4 (range 53 to 91) points for the open repair group and 87.9 (range 81 to 100) points for the SIIS method. The mean Achilles length on the operated side measured using magnetic resonance imaging was 175.06 (range 110 to 224) mm and 177.76 (range 149 to 214) mm for the open surgery and SIIS groups, respectively. Sensory impairment in the territory of the sural nerve was identified in 1 patient immediately after SIIS surgery, although this defect had completely resolved within 12 months. SIIS yielded better outcomes relative to the open surgery group according to the isokinetic measurements. Taken together, these data indicate the SIIS method for Achilles tendon ruptures performed better in terms of both functional and objective outcomes

  15. Early full weightbearing and functional treatment after surgical repair of acute achilles tendon rupture.

    PubMed

    Speck, M; Klaue, K

    1998-01-01

    We prospectively evaluated the clinical outcomes of 20 patients (mean age, 42.8 years) with early full weightbearing and functional treatment after surgical repair of acute Achilles tendon rupture according to a prospective intra- and postoperative protocol. All patients underwent open repair using a Kessler-type suture and simple apposition sutures. The postoperative regimen included a plantigrade splint for 24 hours and 6 weeks of early full weightbearing in a removable walker. All patients were evaluated with clinical and ultrasound examination and according to a new scoring system at 3, 6, and 12 months after repair. After 3 months, the score averaged 73 of 100 points; after 6 months, 86; and after 1 year, 94. All patients reached the same level of sports activities as preoperatively and demonstrated no significant difference in ankle mobility and isokinetic strength. There were no reruptures. One patient had a deep venous thrombosis 3 weeks after the operation after having prematurely stopped thromboprophylaxis. We believe that early careful ankle mobilization and full weightbearing in a removable walker after primary Achilles tendon repair does not increase the risk of rerupture. An accelerated rehabilitation program improves early foot function with excellent recovery of plantar flexion strength and amplitude.

  16. Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.

    PubMed

    Wang, Tao; Lin, Zhen; Ni, Ming; Thien, Christine; Day, Robert E; Gardiner, Bruce; Rubenson, Jonas; Kirk, Thomas B; Smith, David W; Wang, Allan; Lloyd, David G; Wang, Yan; Zheng, Qiujian; Zheng, Ming H

    2015-12-01

    Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology.

  17. The plantaris tendon and a potential role in mid-portion Achilles tendinopathy: an observational anatomical study

    PubMed Central

    van Sterkenburg, Maayke N; Kerkhoffs, Gino M M J; Kleipool, Roeland P; Niek van Dijk, C

    2011-01-01

    The source of pain and the background to the pain mechanisms associated with mid-portion Achilles tendinopathy have not yet been clarified. Intratendinous degenerative changes are most often addressed when present. However, it is questionable if degeneration of the tendon itself is the main cause of pain. Pain is often most prominent on the medial side, 2–7 cm from the insertion onto the calcaneus. The medial location of the pain has been explained to be caused by enhanced stress on the calcaneal tendon due to hyperpronation. However, on this medial side the plantaris tendon is also located. It has been postulated that the plantaris tendon might play a role in these medially located symptoms. To our knowledge, the exact anatomy and relationship between the plantaris- and calcaneal tendon at the level of complaints have not been anatomically assessed. This was the purpose of our study. One-hundred and seven lower extremities were dissected. After opening the superficial fascia and paratendon, the plantaris tendon was bluntly released from the calcaneal tendon moving distally. The incidence of the plantaris tendon, its course, site of insertion and possible connections were documented. When with manual force the plantaris tendon could not be released, it was defined as a ‘connection’ with the calcaneal tendon. In all specimens a plantaris tendon was identified. Nine different sites of insertion were found, mostly medial and fan-shaped onto the calcaneus. In 11 specimens (10%) firm connections were found at the level of the calcaneal tendon mid-portion. Clinical and histological studies are needed to confirm the role of the plantaris tendon in mid-portion Achilles tendinopathy. PMID:21323916

  18. Orthotic Heel Wedges Do Not Alter Hindfoot Kinematics and Achilles Tendon Force During Level and Inclined Walking in Healthy Individuals.

    PubMed

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2016-04-01

    Conservative treatments such as in-shoe orthotic heel wedges to treat musculoskeletal injuries are not new. However, weak evidence supporting their use in the management of Achilles tendonitis suggests the mechanism by which these heel wedges works remains poorly understood. It was the aim of this study to test the underlying hypothesis that heel wedges can reduce Achilles tendon load. A musculoskeletal modeling approach was used to quantify changes in lower limb mechanics when walking due to the introduction of 12-mm orthotic heel wedges. Nineteen healthy volunteers walked on an inclinable walkway while optical motion, force plate, and plantar pressure data were recorded. Walking with heel wedges increased ankle dorsiflexion moments and reduced plantar flexion moments; this resulted in increased peak ankle dorsiflexor muscle forces during early stance and reduced tibialis posterior and toe flexor muscle forces during late stance. Heel wedges did not reduce overall Achilles tendon force during any walking condition, but did redistribute load from the medial to lateral triceps surae during inclined walking. These results add to the body of clinical evidence confirming that heel wedges do not reduce Achilles tendon load and our findings provide an explanation as to why this may be the case.

  19. Orthotic Heel Wedges Do Not Alter Hindfoot Kinematics and Achilles Tendon Force During Level and Inclined Walking in Healthy Individuals.

    PubMed

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2016-04-01

    Conservative treatments such as in-shoe orthotic heel wedges to treat musculoskeletal injuries are not new. However, weak evidence supporting their use in the management of Achilles tendonitis suggests the mechanism by which these heel wedges works remains poorly understood. It was the aim of this study to test the underlying hypothesis that heel wedges can reduce Achilles tendon load. A musculoskeletal modeling approach was used to quantify changes in lower limb mechanics when walking due to the introduction of 12-mm orthotic heel wedges. Nineteen healthy volunteers walked on an inclinable walkway while optical motion, force plate, and plantar pressure data were recorded. Walking with heel wedges increased ankle dorsiflexion moments and reduced plantar flexion moments; this resulted in increased peak ankle dorsiflexor muscle forces during early stance and reduced tibialis posterior and toe flexor muscle forces during late stance. Heel wedges did not reduce overall Achilles tendon force during any walking condition, but did redistribute load from the medial to lateral triceps surae during inclined walking. These results add to the body of clinical evidence confirming that heel wedges do not reduce Achilles tendon load and our findings provide an explanation as to why this may be the case. PMID:26502456

  20. Ankle morbidity after autogenous Achilles tendon harvesting for anterior cruciate ligament reconstruction.

    PubMed

    Seo, Jai Gon; Yoo, Jae Chul; Moon, Young Wan; Chang, Moon Jong; Kwon, Jong Won; Kim, Jong Hyun; Kim, Mu Hyun

    2009-06-01

    Although several alternative autografts with reduced morbidity of harvest site have been introduced, no donor site is free of morbidity concerns. The authors report on ankle status after autogenous Achilles tendon harvesting with a minimum 10-year follow-up. From October 1994 to October 1996, a consecutive series of 47 ankles underwent harvesting of the medial third or half of the ipsilateral autogenous Achilles tendon for primary anterior cruciate ligament reconstruction. Donor site statuses were evaluated using a modified Thermann's scale. Postoperative isokinetic muscle strength testing was performed, and magnetic resonance images of donor sites were available for selected patients. Thirty-three ankles in the 32 patients were followed for more than 10 years. There were 27 men (84%) and 5 women (16%) with a mean age of 31 years (range 16-52 years) at the time of surgery. The mean duration of follow-up was 12 years and 1 month (range 10 years and 5 months to 13 years and 4 months). Mean postoperative modified Thermann's scale score was 87 (range 45-95; SD 14.3). Twenty-five (76%) ankles achieved very good or good results. A slight decrease in calf circumference <1 cm was seen in the ten ankles, 1-2 cm in the four ankles. Nine ankles were mildly hypersensitive to meteorological changes. Peak torque of ankle plantar flexion was slightly lower on the index limb at both velocities in nine selected patients who carried out performance tests. However, there were no significant differences (5.2% at 30 degrees /s and 2.7% at 120 degrees /s, P = n.s. and P = n.s.). Of the 12 available follow-up magnetic resonance images, the average cross-sectional area of the remaining tendon was 82.01 mm(2) (range 69.05-107.35; SD 10.3), and their average thickness was 7.4 mm (range 6-10.35; SD 1.1). After a minimum 10-year follow-up, the harvesting of autogenous Achilles tendons was not found to significantly jeopardize ankle status. However, it also could not be independent of donor

  1. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model.

    PubMed

    Majewski, M; Betz, O; Ochsner, P E; Liu, F; Porter, R M; Evans, C H

    2008-08-01

    The aim of our study was to evaluate the histological and biomechanical effects of BMP-12 gene transfer on the healing of rat Achilles tendons using a new approach employing a genetically modified muscle flap. Biopsies of autologous skeletal muscle were transduced with a type-five, first-generation adenovirus carrying the human BMP-12 cDNA (Ad.BMP-12) and surgically implanted around experimentally transected Achilles tendons in a rat model. The effect of gene transfer on healing was evaluated by mechanical and histological testing after 1, 2, 4 and 8 weeks. One week after surgery, the maximum failure load of the healing tendons was significantly increased in the BMP-12 group, compared with the controls, and the tendon stiffness was significantly higher at 1, 2 and 4 weeks. Moreover, the size of the rupture callus was increased in the presence of BMP-12 and there was evidence of accelerated remodeling of the lesion in response to BMP-12. Histological examination showed a much more organized and homogeneous pattern of collagen fibers at all time points in lesions treated with the BMP-12 cDNA muscle graft. Both single fibrils and the collagen fibers had a greater diameter, with a higher degree of collagen crimp than the collagen of the control groups. This was confirmed by sirius red staining in conjunction with polarized light microscopy, which showed a higher shift of small yellow-green fibers to strong yellow-orange fibers after 2, 4 and 8 weeks in the presence of BMP-12 cDNA. There was also an earlier shift from fibroblasts to fibrocytes within the healing tendon, with less fat cells present in the tendons of the BMP-12 group compared with the controls. Treatment with BMP-12 cDNA-transduced muscle grafts thus produced a promising acceleration and improvement of tendon healing, particularly influencing early tissue regeneration, leading to quicker recovery and improved biomechanical properties of the Achilles tendon. Further development of this approach could have

  2. The effects of a 30-min run on the mechanics of the human Achilles tendon.

    PubMed

    Farris, Dominic James; Trewartha, Grant; McGuigan, Miranda Polly

    2012-02-01

    Tendinous structures often exhibit reduced stiffness following repeated loading via static muscular contractions. The purpose of this study was to determine if human Achilles tendon (AT) stiffness is affected by the repeated loading experienced during running and if this affects normal muscle-tendon interaction. Twelve male participants (mean ± SD: age 27 ± 5 years, height 1.79 ± 0.06 m, mass 78.6 ± 8.4 kg) completed a 30 min run at 12 kmph on a treadmill. AT properties were determined before and after the run during a series of one-legged hops. During hopping and running, AT length data were acquired from a combination of ultrasound imaging (50 Hz) and kinematic data (200 Hz). AT force was estimated from inverse dynamics during hopping and AT stiffness was computed from plots of AT force and length. AT stiffness was not significantly different post run (pre 163 ± 41 N mm(-1), post 147 ± 52 N mm(-1), P > 0.05) and peak AT strain during the stance phase of running (calculated relative to AT length during standing) was similar at different time points during the run (3.5 ± 1.8% at 1 min, 3.2 ± 1.8% at 15 min and 3.8 ± 2% at 30 min). It was concluded that the loading experienced during a single bout of running does not affect the stiffness of the AT and that the properties of the AT are stable during locomotion. This may have implications for muscle fascicle behaviour and Achilles tendon injury mechanisms. PMID:21643918

  3. Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability.

    PubMed

    Lapole, Thomas; Deroussen, François; Pérot, Chantal; Petitjean, Michel

    2012-08-01

    Prolonged vibration is known to alter muscle performance. Attenuation of Ia afferent efficacy is the main mechanism suggested. However, changes in motor cortex excitability could also be hypothesized. The purpose of the present study was therefore to analyze the acute and outlasting effects of 1 h of Achilles tendon vibration (frequency, 50 Hz) on the soleus (SOL) and tibialis anterior (TA) neuromuscular excitability. Spinal excitability was investigated by means of H-reflexes and F-waves while cortical excitability was characterized by motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation. Twelve subjects performed the experimental procedures 3 times: at the beginning of the testing session (PRE), immediately after 1 h of Achilles tendon vibration (POST), and 1 h after the end of vibration (POST-1H). Prolonged vibration led to acute reduced H-reflex amplitudes for SOL only (46.9% ± 7.7% vs. 32.8% ± 7%; p = 0.006). Mainly presynaptic inhibition mechanisms were thought to be involved because of unchanged F-wave persistence and amplitude mean values, suggesting unaffected motoneuronal excitability. While no acute effects were reported for SOL and TA cortical excitability, both muscles were characterized by an outlasting increase in their MEP amplitude (0.64 ± 0.2 mV vs. 0.43 ± 0.18 mV and 2.17 ± 0.56 mV vs. 1.26 ± 0.36 mV, respectively; p < 0.05). The high modulation of Ia afferent input by vibration led to changes in motor cortex excitability that could contribute to the enhancement in muscular activation capacities reported after chronic use of tendon vibration.

  4. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    PubMed

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-01-01

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  5. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    PubMed Central

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  6. Asymmetry of Achilles tendon mechanical and morphological properties between both legs.

    PubMed

    Bohm, S; Mersmann, F; Marzilger, R; Schroll, A; Arampatzis, A

    2015-02-01

    Although symmetry of Achilles tendon (AT) properties between legs is commonly assumed in research and clinical settings, different loading profiles of both legs in daily life (i.e., foot dominance) may affect the tendon properties in a side-depended manner. Therefore, AT properties were examined with regard to symmetry between legs. Thirty-six male healthy adults (28 ± 4 years), who were physically active but not involved in sports featuring dissimilar leg load participated. Mechanical and morphological AT properties of the non-dominant and dominant leg were measured by means of ultrasound, magnetic resonance imaging and dynamometry. The AT of the dominant leg featured a significant higher Young's modulus and length (P < 0.05) but a tendency toward lower maximum strain (P = 0.068) compared with the non-dominant leg. The tendon cross-sectional area and stiffness were not significantly different between sides. The absolute asymmetry index of the investigated parameters ranged from 3% to 31% indicating poor AT side symmetry. These findings provide evidence of distinct differences of AT properties between both legs in a population without any sport-specific side-depended leg loading. The observed asymmetry may be a result of different loading profiles of both legs during daily activities (i.e., foot dominance) and challenges the general assumption of symmetrical AT properties between legs.

  7. Effects of acupuncture and heating on blood volume and oxygen saturation of human Achilles tendon in vivo.

    PubMed

    Kubo, Keitaro; Yajima, Hiroyoshi; Takayama, Miho; Ikebukuro, Toshihiro; Mizoguchi, Hideyuki; Takakura, Nobuari

    2010-06-01

    The purpose of this study was to investigate the effects of acupuncture (dry needling) and heating (application of hot pack) treatments on the blood volume and oxygen saturation of the human Achilles tendon in vivo. Nine healthy males participated in this study. During the treatments (acupuncture and heating; both 10 min) and recovery period (30 min), the blood volume and oxygen saturation of the Achilles tendon were measured using red laser lights. During needle insertion, the blood volume and oxygen saturation of the tendon increased significantly from the pre-treatment level and these values remained high throughout the 30-min recovery period. During heating treatment, the blood volume and oxygen saturation of the tendon also increased significantly. Although the increased blood volume was not maintained after removal of the hot pack, the oxygen saturation remained significantly elevated throughout the 30-min recovery period. These results suggested that acupuncture and heating treatments enhanced the blood flow in the tendon. The long-lasting increase, especially with acupuncture treatment, in the blood supply to the tendon implies that these treatments may have therapeutic effects on injured tendons.

  8. A DELPHI STUDY OF RISK FACTORS FOR ACHILLES TENDINOPATHY- OPINIONS OF WORLD TENDON EXPERTS

    PubMed Central

    Watson, Paul J.; Barry, Simon

    2016-01-01

    Background and Purpose Achilles tendinopathy can be a debilitating chronic condition for both active and inactive individuals. The identification of risk facors is important both in preventing but also treating tendinopathy, many factors have been proposed but there is a lack of primary epidemiological data. The purpose of this study was to develop a statement of expert consensus on risk factors for Achilles tendinopathy in active and sedentary patient populations to inform a primary epidemiological study. Study design Delphi study Methods and Measures An online Delphi study was completed inviting participation from world tendon experts. The consensus was developed using three rounds of the Delphi technique. The first round developed a complete list of potential risk factors, the second round refined this list but also separated the factors into two population groups – active/athletic and inactive/sedentary. The third round ranked this list in order of perceived importance. Results Forty-four experts were invited to participate, 16 participated in the first round (response rate 40%) and two dropped out in the second round (resulting in a response rate of 35%). A total of 27 intrinsic and eight extrinsic risk factors were identified during round one. During round two only 12 intrinsic and five extrinsic risk factors were identified as important in active/athletic tendinopathy while 14 intrinsic and three extrinsic factors were identified as important for inactive/sedentary tendinopathy. Conclusions Risk factors for Achilles tendinopathy were identified based on expert consensus, and these factors provide a basis for primary epidemiological studies. Plantarflexor strength was identified as the primary modifiable factor in the active/athletic group while systemic factors were identified as important in the inactive/sedentary group, many of the potential factors suggested for either group were non-modifiable. Non-modifiable factors include: previous tendinopathy

  9. Study of Bone Marrow Mesenchymal and Tendon-Derived Stem Cells Transplantation on the Regenerating Effect of Achilles Tendon Ruptures in Rats

    PubMed Central

    Al-ani, Mohanad Kh; Xu, Kang; Sun, Yanjun; Pan, Lianhong; Xu, ZhiLing; Yang, Li

    2015-01-01

    Comparative therapeutic significance of tendon-derived stem cells (TDSCs) and bone marrow mesenchymal stem cells (BMSCs) transplantation to treat ruptured Achilles tendon was studied. Three groups of SD rats comprising 24 rats each, designated as TDSCs and BMSCs, and nontreated were studied for regenerative effects through morpho-histological evaluations and ultimate failure load. For possible mechanism in tendon repair/regeneration through TDSCs and BMSCs, we measured Collagen-I (Col-I), Col-III gene expression level by RT-PCR, and Tenascin-C expression via immunofluorescent assay. TDSCs showed higher agility in tendon healing with better appearance density and well-organized longitudinal fibrous structure, though BMSCs also showed positive effects. Initially the ultimate failure load was considerably higher in TDSCs than other two study groups during the weeks 1 and 2, but at week 4 it attained an average or healthy tendon strength of 30.2 N. Similar higher tendency in Col-I/III gene expression level during weeks 1, 2, and 4 was observed in TDSCs treated group with an upregulation of 1.5-fold and 1.1-fold than the other two study groups. Immunofluorescent assay revealed higher expression of Tenascin-C in TDSCs at week 1, while both TDSCs and BMSCs treated groups showed detectable CM-Dil-labelled cells at week 4. Compared with BMSCs, TDSCs showed higher regenerative potential while treating ruptured Achilles tendons in rats. PMID:26339252

  10. Achilles Tendonitis

    MedlinePlus

    ... Fitness Diseases & Conditions Infections Q&A School & Jobs Drugs & Alcohol Staying Safe Recipes En Español Making a Change – Your Personal Plan Hot Topics Meningitis Choosing Your Mood Prescription Drug Abuse Healthy School Lunch Planner How Can I ...

  11. A comparative study of the effects of bromelain and fresh pineapple juice on the early phase of healing in acute crush achilles tendon injury.

    PubMed

    Aiyegbusi, Ayoola I; Olabiyi, Olaleye O; Duru, Francis I O; Noronha, Cressie C; Okanlawon, Abayomi O

    2011-04-01

    Bromelain, an enzyme extracted from the stem of the pineapple plant, has been reported to reduce pain and swelling in acute soft tissue injuries, but no study has been done to compare its effect with that of fresh pineapple juice on the healing of acute tendon injuries. This study compared the effects of commercial bromelain and fresh pineapple juice on tenocyte proliferation and the malondialdehyde (MDA) level in the early stage of healing in a crush injury to the Achilles tendon of Sprague-Dawley rats. Twenty-four male rats were divided randomly into three groups of eight rats each; all the rats had induced crush injury to the Achilles tendon: Group 1 (control), no treatment; Group 2, oral bromelain treatment at a dosage of 7 mg/kg of body weight daily; and Group 3, fresh diluted pineapple juice at a dosage of 30 mg/kg of body weight. Treatment was given over the first 14 days post-injury. On day 15 post-injury, the animals were sacrificed, and the tendons were excised and processed for histological study and MDA assay. Results show a significant difference in the tenocyte population between the bromelain group and the control (P < .05), whereas pineapple juice also increased the tenocyte population, although not significantly (P = .36). Pineapple juice, however, significantly lowered the MDA level compared with both the control and bromelain-treated groups. Based on this study, 600 GDU bromelain given at a dosage of 7 mg/kg had a better effect on tenocyte proliferation than fresh pineapple juice given once daily in acute tendon injury.

  12. Achilles tendon loading patterns during barefoot walking and slow running on a treadmill: An ultrasonic propagation study.

    PubMed

    Wulf, M; Wearing, S C; Hooper, S L; Smeathers, J E; Horstmann, T; Brauner, T

    2015-12-01

    Measurement of tendon loading patterns during gait is important for understanding the pathogenesis of tendon "overuse" injury. Given that the speed of propagation of ultrasound in tendon is proportional to the applied load, this study used a noninvasive ultrasonic transmission technique to measure axial ultrasonic velocity in the right Achilles tendon of 27 healthy adults (11 females and 16 males; age, 26 ± 9 years; height, 1.73 ± 0.07 m; weight, 70.6 ± 21.2 kg), walking at self-selected speed (1.1 ± 0.1 m/s), and running at fixed slow speed (2 m/s) on a treadmill. Synchronous measures of ankle kinematics, spatiotemporal gait parameters, and vertical ground reaction forces were simultaneously measured. Slow running was associated with significantly higher cadence, shorter step length, but greater range of ankle movement, higher magnitude and rate of vertical ground reaction force, and higher ultrasonic velocity in the tendon than walking (P < 0.05). Ultrasonic velocity in the Achilles tendon was highly reproducible during walking and slow running (mean within-subject coefficient of variation < 2%). Ultrasonic maxima (P1, P2) and minima (M1, M2) were significantly higher and occurred earlier in the gait cycle (P1, M1, and M2) during running than walking (P < 0.05). Slow running was associated with higher and earlier peaks in loading of the Achilles tendon than walking.

  13. Achilles tendon loading patterns during barefoot walking and slow running on a treadmill: An ultrasonic propagation study.

    PubMed

    Wulf, M; Wearing, S C; Hooper, S L; Smeathers, J E; Horstmann, T; Brauner, T

    2015-12-01

    Measurement of tendon loading patterns during gait is important for understanding the pathogenesis of tendon "overuse" injury. Given that the speed of propagation of ultrasound in tendon is proportional to the applied load, this study used a noninvasive ultrasonic transmission technique to measure axial ultrasonic velocity in the right Achilles tendon of 27 healthy adults (11 females and 16 males; age, 26 ± 9 years; height, 1.73 ± 0.07 m; weight, 70.6 ± 21.2 kg), walking at self-selected speed (1.1 ± 0.1 m/s), and running at fixed slow speed (2 m/s) on a treadmill. Synchronous measures of ankle kinematics, spatiotemporal gait parameters, and vertical ground reaction forces were simultaneously measured. Slow running was associated with significantly higher cadence, shorter step length, but greater range of ankle movement, higher magnitude and rate of vertical ground reaction force, and higher ultrasonic velocity in the tendon than walking (P < 0.05). Ultrasonic velocity in the Achilles tendon was highly reproducible during walking and slow running (mean within-subject coefficient of variation < 2%). Ultrasonic maxima (P1, P2) and minima (M1, M2) were significantly higher and occurred earlier in the gait cycle (P1, M1, and M2) during running than walking (P < 0.05). Slow running was associated with higher and earlier peaks in loading of the Achilles tendon than walking. PMID:25913324

  14. Effects of plyometric training on achilles tendon properties and shuttle running during a simulated cricket batting innings.

    PubMed

    Houghton, Laurence A; Dawson, Brian T; Rubenson, Jonas

    2013-04-01

    The aim of this study was to determine whether intermittent shuttle running times (during a prolonged, simulated cricket batting innings) and Achilles tendon properties were affected by 8 weeks of plyometric training (PLYO, n = 7) or normal preseason (control [CON], n = 8). Turn (5-0-5-m agility) and 5-m sprint times were assessed using timing gates. Achilles tendon properties were determined using dynamometry, ultrasonography, and musculoskeletal geometry. Countermovement and squat jump heights were also assessed before and after training. Mean 5-0-5-m turn time did not significantly change in PLYO or CON (pre vs. post: 2.25 ± 0.08 vs. 2.22 ± 0.07 and 2.26 ± 0.06 vs. 2.25 ± 0.08 seconds, respectively). Mean 5-m sprint time did not significantly change in PLYO or CON (pre vs. post: 0.85 ± 0.02 vs. 0.84 ± 0.02 and 0.85 ± 0.03 vs. 0.85 ± 0.02 seconds, respectively). However, inferences from the smallest worthwhile change suggested that PLYO had a 51-72% chance of positive effects but only 6-15% chance of detrimental effects on shuttle running times. Jump heights only increased in PLYO (9.1-11.0%, p < 0.050). Achilles tendon mechanical properties (force, stiffness, elastic energy, strain, modulus) did not change in PLYO or CON. However, Achilles tendon cross-sectional area increased in PLYO (pre vs. post: 70 ± 7 vs. 79 ± 8 mm, p < 0.01) but not CON (77 ± 4 vs. 77 ± 5 mm, p > 0.050). In conclusion, plyometric training had possible benefits on intermittent shuttle running times and improved jump performance. Also, plyometric training increased tendon cross-sectional area, but further investigation is required to determine whether this translates to decreased injury risk.

  15. Microcirculation in healing and healthy Achilles tendon assessed with invasive laser doppler flowmetry

    PubMed Central

    Arverud, Erica Domeij; Persson-Lindell, Olof; Sundquist, Fredrik; Labruto, Fausto; Edman, Gunnar; Ackermann, Paul W.

    2016-01-01

    Summary Introduction Achilles tendon (AT) rupture exhibits a prolonged healing process with varying clinical outcome. Reduced blood flow to the AT has been considered an underlying factor to AT rupture (ATR) and impaired healing. In vivo measurements using laser Doppler flowmetry (LDF) may be a viable method to assess blood flow in healthy and healing AT. Methods 29 persons were included in the study; 9 being ATR patients and 20 healthy subjects without any prior symptoms from the AT. Invasive LDF was used to determine the post-occlusive reactive hyperemia (PORH) in the paratenon after 15 minutes of occlusion of the lower extremities. ATR patients were examined two weeks post-operatively. Results LDF-assessments demonstrated a significantly different (p < 0.001) PORH response in the healing- versus intact- and control AT. In the healing AT, a slow, flattened PORH was observed compared to a fast, high peak PORH in intact, healthy AT. Conclusion in vivo LDF appears to be a feasible method to assess alterations in blood flow in healing and intact AT. The healing ATs capability to react to an ischemic period is clearly impaired, which may be due to the trauma at injury and/or surgery or degenerative changes in the tendon. PMID:27331035

  16. [Early functional after-care of surgically treated fresh ruptures of the Achilles tendon].

    PubMed

    Thonke, N; Klinger, H M; Nothofer, W; Neugebauer, R

    1994-01-01

    Functional treatment regimens in favour of the idea of keeping up regular limited use of the extremities instead of immobilisation have continuously gained influence in orthopedic surgery. The knowledge that inconsistently used biological systems degenerate has now widely become accepted. Immediate Achilles tendon tension reconstruction by means of minimal surgical incision and simple suture in addition with fibrin-glue was performed in 51 patients. Age, sex-distribution, etiology, preexisting pain, rate of degenerative histologic findings and side of rupture were similar to those reported in former studies with large numbers of patients [2, 6, 7, 8, 10, 12, 13]. Non weightbearing functional walking in a side supported "basketball" sports shoe (Adimed) with gradually reduced heel support (initially 3 cm; complete removal regaining neutral position of the ankle joint after 4 weeks) was advised for 6 weeks, after acute postop swelling has resolved. All tendons healed and up to now (follow up period: 14-48 months - average: 26) no rerupture occurred. One insufficiency resulted from non compliance due to alcoholism.

  17. An Investigation of the Immediate Effect of Static Stretching on the Morphology and Stiffness of Achilles Tendon in Dominant and Non-Dominant Legs

    PubMed Central

    Chiu, Tsz-chun Roxy; Ngo, Hiu-ching; Lau, Lai-wa; Leung, King-wah; Lo, Man-him; Yu, Ho-fai; Ying, Michael

    2016-01-01

    Aims This study was undertaken to investigate the immediate effect of static stretching on normal Achilles tendon morphology and stiffness, and the different effect on dominant and non-dominant legs; and to evaluate inter-operator and intra-operator reliability of using shear-wave elastography in measuring Achilles tendon stiffness. Methods 20 healthy subjects (13 males, 7 females) were included in the study. Thickness, cross-sectional area and stiffness of Achilles tendons in both legs were measured before and after 5-min static stretching using grey-scale ultrasound and shear-wave elastography. Inter-operator and intra-operator reliability of tendon stiffness measurements of six operators were evaluated. Results Result showed that there was no significant change in the thickness and cross-sectional area of Achilles tendon after static stretching in both dominant and non-dominant legs (p > 0.05). Tendon stiffness showed a significant increase in non-dominant leg (p < 0.05) but not in dominant leg (p > 0.05). The inter-operator reliability of shear-wave elastography measurements was 0.749 and the intra-operator reliability ranged from 0.751 to 0.941. Conclusion Shear-wave elastography is a useful and non-invasive imaging tool to assess the immediate stiffness change of Achilles tendon in response to static stretching with high intra-operator and inter-operator reliability. PMID:27120097

  18. Augmentation vs Nonaugmentation Techniques for Open Repairs of Achilles Tendon Ruptures with Early Functional Treatment: A Prospective Randomized Study.

    PubMed

    Tezeren, Gündüz; Kuru, Ilhami

    2006-01-01

    A prospective randomized study was conducted in order to compare augmentation technique versus nonaugmentation technique, followed by early functional postoperative treatment, for operative repair of Achilles tendon ruptures. Twenty-four consecutive patients were assigned to two groups. Group I included 12 patients treated with Lindholm augmentation technique, whereas group II included 12 patients treated with modified Kessler end-to-end repair. Thereafter, these patients had postoperative management with a below-knee-cast for three weeks. The physioteraphy was initiated immediately after the cast was removed. Full weight bearing was allowed after five weeks postoperatively in the both groups. Two patients had reruptures in group II, whereas group I had prolonged operative time significantly. The patients with reruptures underwent reoperations and at the most final follow-up, it was observed that they could not resume to sporting activities. The other objective and subjective results were similar between two groups. Because of quite high rerupture rate in the group of patients treated with nonaugmentation technique, we favor functional postoperative treatment with early ankle movement in the patients treated with augmentation technique for the management of acute rupture of the Achilles tendon. Key PointsA prospective randomized study was conducted in order to compare augmentation technique versus nonaugmentation technique, followed by early functional postoperative treatment, for operative repair of Achilles tendon ruptures.Group I included 12 patients treated with Lindholm augmentation technique, whereas group II included 12 patients treated with modified Kessler end-to-end repair.Functional postoperative treatment with early ankle movement in the patients treated with augmentation for the management of acute rupture of the Achilles tendon is recommended.

  19. Augmentation vs Nonaugmentation Techniques for Open Repairs of Achilles Tendon Ruptures with Early Functional Treatment: A Prospective Randomized Study

    PubMed Central

    Tezeren, Gündüz; Kuru, Ilhami

    2006-01-01

    A prospective randomized study was conducted in order to compare augmentation technique versus nonaugmentation technique, followed by early functional postoperative treatment, for operative repair of Achilles tendon ruptures. Twenty-four consecutive patients were assigned to two groups. Group I included 12 patients treated with Lindholm augmentation technique, whereas group II included 12 patients treated with modified Kessler end-to-end repair. Thereafter, these patients had postoperative management with a below-knee-cast for three weeks. The physioteraphy was initiated immediately after the cast was removed. Full weight bearing was allowed after five weeks postoperatively in the both groups. Two patients had reruptures in group II, whereas group I had prolonged operative time significantly. The patients with reruptures underwent reoperations and at the most final follow-up, it was observed that they could not resume to sporting activities. The other objective and subjective results were similar between two groups. Because of quite high rerupture rate in the group of patients treated with nonaugmentation technique, we favor functional postoperative treatment with early ankle movement in the patients treated with augmentation technique for the management of acute rupture of the Achilles tendon. Key Points A prospective randomized study was conducted in order to compare augmentation technique versus nonaugmentation technique, followed by early functional postoperative treatment, for operative repair of Achilles tendon ruptures. Group I included 12 patients treated with Lindholm augmentation technique, whereas group II included 12 patients treated with modified Kessler end-to-end repair. Functional postoperative treatment with early ankle movement in the patients treated with augmentation for the management of acute rupture of the Achilles tendon is recommended. PMID:24357956

  20. Achilles tendon ruptures stratified by age, race, and cause of injury among active duty U.S. Military members.

    PubMed

    Davis, J J; Mason, K T; Clark, D A

    1999-12-01

    A total of 865 members of the U.S. military underwent repair of Achilles tendon ruptures at U.S. military hospitals during calendar years 1994, 1995, and 1996. The discharge summaries of these patients were analyzed for patient demographic information, including age, race, and causative activity. Patients were then stratified by age, race, and cause of injury. Blacks were at increased risk for undergoing repair of the Achilles tendon compared with nonblacks (overall relative risk = 4.15, 95% confidence interval [CI] = 3.63, 4.74; summary odds ratio controlling for age = 3.69, CI = 3.25, 4.19). Participation in the game of basketball accounted for 64.9% of all injuries in black patients and 34.0% of all injuries in nonblack patients. Among those injured, blacks had a significantly increased risk for injury related to playing basketball than nonblacks (relative risk = 1.82, CI = 1.58, 2.10). This finding suggests that there may be other predisposing factor(s) that result in a higher risk of Achilles tendon ruptures in black individuals.

  1. The Healing Effects of Aquatic Activities and Allogenic Injection of Platelet-Rich Plasma (PRP) on Injuries of Achilles Tendon in Experimental Rat

    PubMed Central

    Rajabi, Hamid; Sheikhani Shahin, Homa; Norouzian, Manijeh; Mehrabani, Davood; Dehghani Nazhvani, Seifollah

    2015-01-01

    BACKGROUND Clinical tendon injuries represent serious and unresolved issues of the case on how the injured tendons could be improved based on natural structure and mechanical strength. The aim of this studies the effect of aquatic activities and alogenic platelet rich plasma (PRP) injection in healing Achilles tendons of rats. METHODS Forty rats were randomly divided into 5 equal groups. Seventy two hours after a crush lesion on Achilles tendon, group 1 underwent aquatic activity for 8 weeks (five sessions per week), group 2 received intra-articular PRP (1 ml), group 3 had aquatic activity together with injection PRP injection after an experimental tendon injury, group 4 did not receive any treatment after tendon injury and the control group with no tendon injuries. of 32 rats. After 8 weeks, the animals were sacrificed and the tendons were transferred in 10% formalin for histological evaluation. RESULTS There was a significant increase in number of fibroblast and cellular density, and collagen deposition in group 3 comparing to other groups denoting to an effective healing in injured tendons. However, there was no significant difference among the studied groups based on their tendons diameter. CONCLUSION Based on our findings on the number of fibroblast, cellular density, collagen deposition, and tendon diameter, it was shown that aquatic activity together with PRP injection was the therapeutic measure of choice enhance healing in tendon injuries that can open a window in treatment of damages to tendons. PMID:25606479

  2. [Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].

    PubMed

    Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei

    2016-03-01

    Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.

  3. Controlled release of curcumin from curcumin-loaded nanomicelles to prevent peritendinous adhesion during Achilles tendon healing in rats

    PubMed Central

    Zhang, Weizhong; Li, Xuanyi; Comes Franchini, Mauro; Xu, Ke; Locatelli, Erica; Martin, Robert C; Monaco, Ilaria; Li, Yan; Cui, Shusen

    2016-01-01

    We introduced curcumin-loaded nanomicelles into a tendon-healing model to evaluate their effects on tendon healing and adhesion. Three groups consisting of 36 rats underwent rupture and repair of the Achilles tendon. The treatment group received an injection of curcumin-loaded nanomicelles (gold nanorods [GNRs]-1/curcumin in polymeric nanomicelles [curc@PMs] at a dosage of 0.44 mg curcumin/kg in 0.1 mL saline) into the surgical site and exposed to laser postoperatively at weeks 1, 2, and 3, for three times 10 seconds each, on the surgical site in the rats that underwent tendon rupture and repair, while the other two groups received 0.44 mg curcumin/kg in 0.1 mL saline and 0.1 mL of saline, respectively. The specimens were harvested at 4 weeks and subjected to biomechanical and histological evaluation. The scoring results of tendon adhesion indicated that GNRs-1/curc@PMs group was in the lowest grade of peritendinous adhesions compared to the other groups. Histological assessment further confirmed the preventive effect of GNRs-1/curc@PMs on tendon adhesion. These findings indicated greater tendon strength with less adhesion in the group treated with GNRs-1/curc@PMs combined with laser exposure, and that nanoparticle-based therapy may be applied to prevent adhesion in clinical patients. PMID:27382278

  4. Effect of Footwear Modifications on Oscillations at the Achilles Tendon during Running on a Treadmill and Over Ground: A Cross-Sectional Study

    PubMed Central

    Meinert, Ilka; Brown, Niklas; Alt, Wilfried

    2016-01-01

    Background Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Methods Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Results Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Conclusion Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. PMID:27010929

  5. Negative pressure wound therapy in the management of late deep infections after open reconstruction of achilles tendon rupture.

    PubMed

    Mosser, Philipp; Kelm, Jens; Anagnostakos, Konstantinos

    2015-01-01

    Infection is a major complication after open reconstruction of Achilles tendon ruptures. We report on the use of vacuum-assisted closure (VAC) therapy in the treatment of late deep infections after open Achilles tendon reconstruction. Six patients (5 males [83.33%], 1 female [16.67%]; mean age, 52.8 [range 37 to 66] years) were been treated using an identical protocol. Surgical management consisted of debridement, lavage, and necrectomy of infected tendon parts. The VAC therapy was used for local wound preconditioning and infection management. A continuous negative pressure of 125 mm Hg was applied on each wound. For final wound closure, a split-thickness skin graft was performed. The skin graft healing process was also supported by VAC therapy during the first 5 days. The VAC dressings were changed a mean average of 3 (range 1 to 4) times until split-thickness skin grafting could be performed. The mean total duration of the VAC therapy was 13.6 ± 5.9 days. The mean hospital stay was 31.2 ± 15.9 days. No complications with regard to bleeding, seroma, or hematoma formation beneath the skin graft were observed. At a mean follow-up duration of 29.9 (range 4 to 65) months, no re-infection or infection persistence was observed. The VAC device seems to be a valuable tool in the treatment of infected tendons. The generalization of these conclusions should await the results of future studies with larger patient series.

  6. Achilles Tendon Reflex (ATR) in response to short exposures of microgravity and hypergravity

    NASA Technical Reports Server (NTRS)

    Fujii, M.; Jaweed, M.

    1992-01-01

    Previous studies indicate that latency and amplitude of the Achilles tendon reflex (ATR) are reduced after exposure to microgravity for 28 days. The objective of this study was to quantitatively measure the latency of ATR during brief (20 sec) exposure to microgravity in KC-135 parabolic flights. Methods: The ATR was elicited in ten men during parabolic flight with the ankle held neutrally, planarflexed, and dorsiflexed. During flight, the ATR was elicited during the zero G and 1.8 G phases. Postflight testing was performed flying back to the airfield. Latencies to onset of the ATR were calculated and analyses of variance were performed to determine the effect of gravity and ankle position on latency. Result: The mean latencies for zero-G, 1.8-G and postflight with the ankle in the neutral position were 32.7 plus or minus 0.5 ms, and 33.1 plus or minus 0.7 ms respectively, which were not significantly different. There was a trend toward prolongation of latencies postflight. The mean latency for those who were motion sick was 32.1 plus or minus 0.1 ms compared to 34.0 plus or minus 0.3 ms for those who were not sick. Conclusions: These studies indicate that neither the level of gravity nor ankle position significantly affected the latency of the ATR.

  7. Low-level laser therapy in IL-1β, COX-2, and PGE2 modulation in partially injured Achilles tendon.

    PubMed

    de Jesus, Julio Fernandes; Spadacci-Morena, Diva Denelle; dos Anjos Rabelo, Nayra Deise; Pinfildi, Carlos Eduardo; Fukuda, Thiago Yukio; Plapler, Helio

    2015-01-01

    This study evaluated IL-1β, COX-2, and PGE2 modulation in partially injured Achilles tendons treated with low-level laser therapy (LLLT). Sixty-five male Wistar rats were used. Sixty were submitted to a direct injury on Achilles tendon and then distributed into six groups: LASER 1 (a single LLLT application), LASER 3 (three LLLT applications), and LASER 7 (seven LLLT applications) and Sham 1, 3, and 7 (the same injury but LLLT applications were simulated). The five remaining animals were allocated at control group (no procedure performed). LLLT (780 nm) was applied with 70 mW of mean power and 17.5 J/cm(2) of fluency for 10 s, once a day. The tendons were surgically removed and assessed immunohistochemically for IL-1β, COX-2, and PGE2. In comparisons with control (IL-1β: 100.5 ± 92.5 / COX-2: 180.1 ± 97.1 / PGE2: 187.8 ± 128.8) IL-1β exhibited (mean ± SD) near-normal level (p > 0.05) at LASER 3 (142.0 ± 162.4). COX-2 and PGE2 exhibited near-normal levels (p > 0.05) at LASER 3 (COX-2: 176.9 ± 75.4 / PGE2: 297.2 ± 259.6) and LASER 7 (COX-2: 259.2 ± 190.4 / PGE2: 587.1 ± 409.7). LLLT decreased Achilles tendon's inflammatory process.

  8. In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.; Yang, Y.; Bonesi, M.; Maffulli, G.; Phelan, C.; Meglinski, I.; El Haj, A.; Maffulli, N.

    2010-07-01

    The objective of this study was to develop a method based on polarization-sensitive optical coherent tomography (PSOCT) for the imaging and quantification of degenerative changes associated with Achilles tendon rupture. Ex vivo PSOCT examinations were performed in 24 patients. The study involved samples from 14 ruptured Achilles tendons, 4 tendinopathic Achilles tendons and 6 patellar tendons (collected during total knee replacement) as non-ruptured controls. The samples were imaged in both intensity and phase retardation modes within 24 h after surgery, and birefringence was quantified. The samples were fixed and processed for histology immediately after imaging. Slides were assessed twice in a blind manner to provide a semi-quantitative histological score of degeneration. In-depth micro structural imaging was demonstrated. Collagen disorganization and high cellularity were observable by PSOCT as the main markers associated with pathological features. Quantitative assessment of birefringence and penetration depth found significant differences between non-ruptured and ruptured tendons. Microstructure abnormalities were observed in the microstructure of two out of four tendinopathic samples. PSOCT has the potential to explore in situ and in-depth pathological change associated with Achilles tendon rupture, and could help to delineate abnormalities in tendinopathic samples in vivo.

  9. Gait analysis before and after achilles tendon surgical suture in a single-subject study: a case report.

    PubMed

    Marcolin, Giuseppe; Buriani, Alessandro; Balasso, Alberto; Villaminar, Renato; Petrone, Nicola

    2015-01-01

    Achilles tendon rupture is a disabling injury that requires a long recovery time. We describe a unique case of a 46-year-old male who had undergone gait analysis as part of a personal physical examination and who, 16 months later, ruptured his left Achilles tendon while running. With gait kinematic and kinetic data available both before and after his injury, we determined the residual gait asymmetries on his uninjured side and compared the pre- and postinjury measurements. We analyzed his gait at 1, 4, and 7 weeks after his return to full weightbearing. Compared with the preinjury values, at 7 weeks he had almost complete range of motion in his left ankle (-2%) and a slight increase in gait velocity (+6%) and cadence (+3%). The peak power of his injured ankle was 90% of its preinjury value. In contrast, the unaffected ankle was at 118%. These observations suggest that measuring the asymmetries of the gait cycle, especially at the beginning of rehabilitation, can be used to improve treatment. We had the patient strengthen his ankle using a stationary bicycle before he returned to running. Kinetics also appears to be more powerful than kinematics in detecting functional asymmetries associated with reduced calf strength, even 15 weeks after surgery. Gait analysis could be used to predict the effectiveness of rehabilitation protocols and help calibrate and monitor the return to sports participation while preventing overloading muscle and tendon syndromes.

  10. Comparison of Achilles tendon repair techniques in a sheep model using a cross-linked acellular porcine dermal patch and platelet-rich plasma fibrin matrix for augmentation.

    PubMed

    Sarrafian, Tiffany L; Wang, Hali; Hackett, Eileen S; Yao, Jian Q; Shih, Mei-Shu; Ramsay, Heather L; Turner, A Simon

    2010-01-01

    The primary goal of this study was to evaluate a cross-linked acellular porcine dermal patch (APD), as well as platelet-rich plasma fibrin matrix (PRPFM), for repair of acute Achilles tendon rupture in a sheep model. The 2 surgically transected tendon ends were reapproximated in groups 1 and 2, whereas a gap was left between the tendon ends in group 3. APD was used to reinforce the repair in group 2, and autologous PRPFM was used to fill the gap, which was also reinforced with APD, in group 3. All sheep were humanely euthanized at 24 weeks after the repair, and biomechanical and histological testing were performed. Tensile strength testing showed a statistically significant difference in elongation between the operated limb and the unoperated contralateral limb in groups 1 and 3, but not in group 2. All operated tendons appeared healed with no apparent fibrosis under light and polarized microscopy. In group 1, all surgical separation sites were identifiable, and healing occurred via increasing tendon thickness. In group 2, healing occurred with new tendon fibers across the separation, without increasing tendon thickness in 2 out of 6 animals. Group 3 showed complete bridging of the gap, with no change in tendon thickness in 2 out of 6 animals. In groups 2 and 3, peripheral integration of the APD to tendon fibers was observed. These findings support the use of APD, alone or with PRPFM, to augment Achilles tendon repair in a sheep model.

  11. The Utility of Clinical Measures for the Diagnosis of Achilles Tendon Injuries: A Systematic Review With Meta-Analysis

    PubMed Central

    Reiman, Michael; Burgi, Ciara; Strube, Eileen; Prue, Kevin; Ray, Keaton; Elliott, Amanda; Goode, Adam

    2014-01-01

    Objective: To summarize and evaluate the current diagnostic accuracy of clinical measures used to diagnose Achilles tendon injuries. Data Sources: A literature search of MEDLINE, CINAHL, and EMBASE databases was conducted with key words related to diagnostic accuracy and Achilles tendon injuries. Study Selection: Original research articles investigating Achilles tendon injuries against an acceptable reference standard were included. Data Extraction: Three studies met the inclusion criteria. Quality assessment was conducted using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. DerSimonian-Laird random-effects models were used to pool sensitivity (SN), specificity (SP), and diagnostic odds ratios with their 95% confidence intervals (CIs). Data Synthesis: The SN and negative likelihood ratio (−LR) values for Achilles tendon rupture measures ranged from 0.73 (95% CI = 0.65, 0.81) and 0.30 (95% CI = 0.23, 0.40) to 0.96 (95% CI = 0.93, 0.99) and 0.04 (95% CI = 0.02, 0.10), respectively, whereas SP and positive likelihood ratio (+LR) values ranged from 0.85 (95% CI = 0.72, 0.98) and 6.29 (95% CI = 2.33, 19.96) to 0.93 (95% CI = 0.84, 1.00) and 13.71 (95% CI = 3.54, 51.24), respectively, with the highest SN and SP both reported in the calf-squeeze test. The SN and −LR values for Achilles tendinopathy measures ranged from 0.03 (95% CI = 0.00, 0.08) and 0.97 (95% CI = not reported) to 0.89 (95% CI = 0.75, 0.98) and 0.19 (95% CI = not reported), whereas SP and +LR values ranged from 0.58 (95% CI = 0.38, 0.77) and 2.12 (95% CI = not reported) to 1.00 (95% CI = 1.00, 1.00) and infinity, respectively, with the highest SN and SP reported for morning stiffness and palpation for crepitus. Pooled analyses demonstrated similar diagnostic properties in all 3 clinical measures (arc sign, palpation, and Royal London Hospital test), with SN and −LR ranging from 0.42 (95% CI = 0.23, 0.62) and 0.68 (95% CI = 0.50, 0.93), respectively, for the arc sign, to 0.64 (95% CI

  12. Tendon Tissue Engineering and Its Role on Healing of the Experimentally Induced Large Tendon Defect Model in Rabbits: A Comprehensive In Vivo Study

    PubMed Central

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali

    2013-01-01

    Healing of large tendon defects is challenging. We studied the role of collagen implant with or without polydioxanone (PDS) sheath on the healing of a large Achilles tendon defect model, in rabbits. Sixty rabbits were divided into three groups. A 2 cm gap was created in the left Achilles tendon of all rabbits. In the control lesions, no implant was used. The other two groups were reconstructed by collagen and collagen-PDS implants respectively. The animals were clinically examined at weekly intervals and their lesions were observed by ultrasonography. Blood samples were obtained from the animals and were assessed for hematological analysis and determination of serum PDGF level, at 60 days post injury (DPI). The animals were then euthanized and their lesions were assessed for gross and histopathology, scanning electron microscopy, biomechanical testing, dry matter and hydroxyproline content. Another 65 pilot animals were also studied grossly and histopathologically to define the host implant interaction and graft incorporation at serial time points. The treated animals gained significantly better clinical scoring compared to the controls. Treatment with collagen and collagen-PDS implants significantly increased the biomechanical properties of the lesions compared to the control tendons at 60DPI (P<0.05). The tissue engineered implants also reduced peritendinous adhesion, muscle fibrosis and atrophy, and increased ultrasonographical echogenicity and homogenicity, maturation and differentiation of the collagen fibrils and fibers, tissue alignment and volume of the regenerated tissue compared to those of the control lesions (P<0.05). The implants were gradually absorbed and substituted by the new tendon. Implantation of the bioimplants had a significant role in initiating tendon healing and the implants were biocompatible, biodegradable and safe for application in tendon reconstructive surgery. The results of the present study may be valuable in clinical practice. PMID

  13. Hamstring tendon harvesting--Effect of harvester on tendon characteristics and soft tissue disruption; cadaver study.

    PubMed

    Charalambous, C P; Alvi, F; Phaltankar, P; Gagey, O

    2009-06-01

    The purpose of this study was to determine whether the type of hamstring tendon harvester used can influence harvested tendon characteristics and soft tissue disruption. We compared two different types of tendon harvesters with regard to the length of tendon obtained and soft tissue disruption during hamstring tendon harvesting. Thirty six semitendinosus and gracilis tendons were harvested using either a closed stripper or a blade harvester in 18 paired knees from nine human fresh cadavers. Use of the blade harvester gave longer lengths of usable tendon whilst minimising the stripping of muscle and of any non-usable tendon. Our results suggest that the type of harvester per se can influence the length of tendon harvested as well as soft tissue disruption. Requesting such data from the industry prior to deciding which harvester to use seems desirable.

  14. Normal aging alters in vivo passive biomechanical response of the rat gastrocnemius-Achilles muscle-tendon unit.

    PubMed

    Plate, Johannes F; Wiggins, Walter F; Haubruck, Patrick; Scott, Aaron T; Smith, Thomas L; Saul, Katherine R; Mannava, Sandeep

    2013-02-01

    Predisposition to Achilles tendon (AT) ruptures in middle-aged individuals may be associated with age-related changes to inherent passive biomechanical properties of the gastrocnemius-Achilles (GC-AT) muscle-tendon unit, due to known muscle-tendon structural changes in normal aging. The goal of this study was to determine whether the passive biomechanical response of the GC-AT muscle-tendon unit was altered with age in 6 young (8 months) and 6 middle-aged (24 months) F344xBN hybrid rats from the National Institute on Aging colony. Fung's quasilinear viscoelastic (QLV) model was used to determine in vivo history and time-dependent load-relaxation response of the GC-AT. Effective stiffness and modulus were also estimated using linear regression analysis. Fung's QLV revealed a significantly decreased magnitude of the relaxation response (parameter C, p=0.026) in middle-aged animals compared to young animals (0.108±0.007 vs. 0.144±0.015), with similar time-dependent viscous GC-AT properties (τ(1), τ(2)). The product of elastic parameters (A*B), which represents the initial slope of the elastic response, was significantly increased by 50% in middle-aged rats (p=0.014). Estimated GC-AT stiffness increased 28% at peak tensions in middle-aged rats (2.7±0.2 N/mm) compared to young rats (1.9±0.2 N/mm; p=0.036). While the limitations of this animal model must be considered, the changes we describe could be associated with the observation that GC-AT pathology and injury is more common in middle-aged individuals. Further studies are necessary to characterize the load-to-failure behavior of AT in middle-aged compared to young animals.

  15. Italian translation of the VISA-A score for tendinopathy of the main body of the Achilles tendon.

    PubMed

    Maffulli, Nicola; Longo, Umile Giuseppe; Testa, Vittorino; Oliva, Francesco; Capasso, Giovanni; Denaro, Vincenzo

    2008-01-01

    Purpose. To translate and adapt the English VISA-A questionnaire to Italian, to perform reliability and validity evaluations of the Italian VISA-A version in patients with tendinopathy of the main body of the Achilles tendon. Methods. The VISA-A English version was translated into Italian by a bilingual orthopaedic surgeon. The back translation of the Italian version into English was performed by another bilingual orthopaedic surgeon. The original version was compared with the back translation. The VISA-A-I questionnaire was then administered to 50 male athletes (average age 26.4, range 18 - 49 years) with a diagnosis of tendinopathy of the main body of the AT. For test-retest evaluation, the 50 patients were asked to complete the questionnaire at first examination, and 30 minutes following the end of this examination. Results. The kappa statistics for 50 patients was 0.80 (range 0.7 - 0.86). There were no significant differences between the scores immediately after the consultation and 30 minutes later. Conclusions. Italian and the English versions of the VISA-A questionnaire evaluate the same aspects of clinical severity in patients with tendinopathy of the main body of the Achilles tendon.

  16. Early E-modulus of healing Achilles tendons correlates with late function: similar results with or without surgery.

    PubMed

    Schepull, T; Kvist, J; Aspenberg, P

    2012-02-01

    Non-operative treatment of Achilles tendon ruptures is associated with an increased risk of rerupture. We hypothesized that this is due to inferior mechanical properties during an early phase of healing, and performed a randomized trial, using a new method to measure the mechanical properties. Tantalum markers were inserted in the tendon stumps, and tendon strain at different loadings was measured by stereo-radiography (Roentgen stereophotogrammetric analysis) at 3, 7 and 19 weeks and 18 months after injury. Thirty patients were randomized to operative or non-operative treatment. The primary out-come variable was an estimate for the modulus of elasticity at 7 weeks. Strain per force, cross-sectional area and tendon elongation were also measured. The functional outcome variable was the heel-raise index after 18 months. There was no difference in the mean modulus of elasticity or other mechanical or functional variables between operative and non-operative treatments at any time-point, but strain per force at 7 and 19 weeks had a significantly larger variation in the non-operative group. This group, therefore, might contain more outliers with poor healing. The modulus of elasticity at 7 weeks correlated with the heel-raise index after 18 months in both treatment groups (r(2) =0.75; P=0.0001). This correlation is an intriguing finding.

  17. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.

    2016-03-01

    The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N  =  10, p  <  0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values  <10.7 kPa and all coefficient of variation (CV) values  ⩽0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R  =  0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.

  18. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits

    PubMed Central

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Koohi-Hosseinabadi, Omid

    2014-01-01

    Background and objective: Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. Methods: One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host–graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. Results: Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p < 0.05). Treatment also improved echogenicity and homogenicity of the tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the

  19. The neuromechanical adaptations to Achilles tendinosis

    PubMed Central

    Chang, Yu-Jen; Kulig, Kornelia

    2015-01-01

    Human movement is initiated, controlled and executed in a hierarchical system including the nervous system, muscle and tendon. If a component in the loop loses its integrity, the entire system has to adapt to that deficiency. Achilles tendon, when degenerated, exhibits lower stiffness. This local mechanical deficit may be compensated for by an alteration of motor commands from the CNS. These modulations in motor commands from the CNS may lead to altered activation of the agonist, synergist and antagonist muscles. The present study aimed to investigate the effect of tendon degeneration on its mechanical properties, the neuromechanical behaviour of the surrounding musculature and the existence of the CNS modulation accompanying tendinosis. We hypothesize that the degenerated tendon will lead to diminished tissue mechanical properties and protective muscle activation patterns, as well as an up-regulated descending drive from the CNS. Strong evidence, as reported in the present study, indicates that tendinotic tendons are more compliant compared to healthy tendons. This unilateral involvement affected the neuromuscular control on the involved side but not the non-involved side. The muscle–tendon unit on the tendinotic side exhibits a lowered temporal efficiency, which leads to altered CNS control. The altered CNS control is then expressed as an adapted muscle activation pattern in the lower leg. Taken together, the findings of the present study illustrate the co-ordinated multi-level adaptations to a mechanical lesion in a tendon caused by pathology. Key points Achilles tendinosis is a localized degenerative musculoskeletal disorder that develops over a long period of time and leads to a compliant human Achilles tendon. We demonstrate that the compliant Achilles tendon elicited a series of adaptations from different levels of the human movement control system, such as the muscle–tendon interaction, CNS control and other muscles in the lower leg. These results

  20. Regulatory role of collagen V in establishing mechanical properties of tendons and ligaments is tissue dependent.

    PubMed

    Connizzo, Brianne K; Freedman, Benjamin R; Fried, Joanna H; Sun, Mei; Birk, David E; Soslowsky, Louis J

    2015-06-01

    Patients with classic (type I) Ehlers-Danlos syndrome (EDS), characterized by heterozygous mutations in the Col5a1 and Col5a2 genes, exhibit connective tissue hyperelasticity and recurrent joint dislocations, indicating a potential regulatory role for collagen V in joint stabilizing soft tissues. This study asked whether the contribution of collagen V to the establishment of mechanical properties is tissue dependent. We mechanically tested four different tissues from wild type and targeted collagen V-null mice: the flexor digitorum longus (FDL) tendon, Achilles tendon (ACH), the anterior cruciate ligament (ACL), and the supraspinatus tendon (SST). Area was significantly reduced in the Col5a1(ΔTen/ΔTen) group in the FDL, ACH, and SST. Maximum load and stiffness were reduced in the Col5a1(ΔTen/ΔTen) group for all tissues. However, insertion site and midsubstance modulus were reduced only for the ACL and SST. This study provides evidence that the regulatory role of collagen V in extracellular matrix assembly is tissue dependent and that joint instability in classic EDS may be caused in part by insufficient mechanical properties of the tendons and ligaments surrounding each joint. PMID:25876927

  1. Implantation of a Novel Biologic and Hybridized Tissue Engineered Bioimplant in Large Tendon Defect: An In Vivo Investigation

    PubMed Central

    Oryan, Ahmad; Moshiri, Ali; Parizi, Abdolhamid Meimandi

    2014-01-01

    Surgical reconstruction of large Achilles tendon defects is technically demanding. There is no standard method, and tissue engineering may be a valuable option. We investigated the effects of 3D collagen and collagen-polydioxanone sheath (PDS) implants on a large tendon defect model in rabbits. Ninety rabbits were divided into three groups: control, collagen, and collagen-PDS. In all groups, 2 cm of the left Achilles tendon were excised and discarded. A modified Kessler suture was applied to all injured tendons to retain the gap length. The control group received no graft, the treated groups were repaired using the collagen only or the collagen-PDS prostheses. The bioelectrical characteristics of the injured areas were measured at weekly intervals. The animals were euthanized at 60 days after the procedure. Gross, histopathological and ultrastructural morphology and biophysical characteristics of the injured and intact tendons were investigated. Another 90 pilot animals were also used to investigate the inflammatory response and mechanism of graft incorporation during tendon healing. The control tendons showed severe hyperemia and peritendinous adhesion, and the gastrocnemius muscle of the control animals showed severe atrophy and fibrosis, with a loose areolar connective tissue filling the injured area. The tendons receiving either collagen or collagen-PDS implants showed lower amounts of peritendinous adhesion, hyperemia and muscle atrophy, and a dense tendon filled the defect area. Compared to the control tendons, application of collagen and collagen-PDS implants significantly improved water uptake, water delivery, direct transitional electrical current and tissue resistance to direct transitional electrical current. Compared to the control tendons, both prostheses showed significantly increased diameter, density and alignment of the collagen fibrils and maturity of the tenoblasts at ultrastructure level. Both prostheses influenced favorably tendon healing

  2. Implantation of a novel biologic and hybridized tissue engineered bioimplant in large tendon defect: an in vivo investigation.

    PubMed

    Oryan, Ahmad; Moshiri, Ali; Parizi, Abdolhamid Meimandi; Maffulli, Nicola

    2014-02-01

    Surgical reconstruction of large Achilles tendon defects is technically demanding. There is no standard method, and tissue engineering may be a valuable option. We investigated the effects of 3D collagen and collagen-polydioxanone sheath (PDS) implants on a large tendon defect model in rabbits. Ninety rabbits were divided into three groups: control, collagen, and collagen-PDS. In all groups, 2 cm of the left Achilles tendon were excised and discarded. A modified Kessler suture was applied to all injured tendons to retain the gap length. The control group received no graft, the treated groups were repaired using the collagen only or the collagen-PDS prostheses. The bioelectrical characteristics of the injured areas were measured at weekly intervals. The animals were euthanized at 60 days after the procedure. Gross, histopathological and ultrastructural morphology and biophysical characteristics of the injured and intact tendons were investigated. Another 90 pilot animals were also used to investigate the inflammatory response and mechanism of graft incorporation during tendon healing. The control tendons showed severe hyperemia and peritendinous adhesion, and the gastrocnemius muscle of the control animals showed severe atrophy and fibrosis, with a loose areolar connective tissue filling the injured area. The tendons receiving either collagen or collagen-PDS implants showed lower amounts of peritendinous adhesion, hyperemia and muscle atrophy, and a dense tendon filled the defect area. Compared to the control tendons, application of collagen and collagen-PDS implants significantly improved water uptake, water delivery, direct transitional electrical current and tissue resistance to direct transitional electrical current. Compared to the control tendons, both prostheses showed significantly increased diameter, density and alignment of the collagen fibrils and maturity of the tenoblasts at ultrastructure level. Both prostheses influenced favorably tendon healing

  3. Three-Dimensional Gait Analysis Following Achilles Tendon Rupture With Nonsurgical Treatment Reveals Long-Term Deficiencies in Muscle Strength and Function

    PubMed Central

    Tengman, Tine; Riad, Jacques

    2013-01-01

    Background: Precise long-term assessment of movement and physical function following Achilles tendon rupture is required for the development and evaluation of treatment, including different regimens of physical therapy. Purpose: To assess intermediate-term (<10 years by conventional thinking) objective measures of physical function following Achilles tendon rupture treated nonsurgically and to compare these with self-reported measures of physical function. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Two to 5 years after Achilles tendon rupture, 9 women and 43 men (mean age, 49.2 years; range, 26-68 years) were assessed by physical examination, performance of 1-legged jumps, and 3-dimensional gait analysis (including calculation of muscle work). Self-reported scores for foot function (Achilles tendon rupture score) and level of physical activity were collected. Twenty age- and sex-matched controls were assessed in the same manner. Results: Physical examination of patients with the knee extended revealed 11.1° of dorsiflexion on the injured side and 9.2° on the uninjured side (P = .020), indicating gastrocnemius muscle lengthening. The 1-legged jump distance was shorter on the injured side (89.5 vs 96.2 cm; P < .001). Gait analysis showed higher peak dorsiflexion (14.3° vs 13.3°; P = .016) and lower concentric (positive) plantar flexor work (16.6 vs 19.9 J/kg; P = .001) in the ankle on the uninjured side. At the same time, eccentric (negative) dorsiflexor work was higher on the injured side (13.2 vs 11.9 J/kg; P = .010). Self-perceived foot function and physical activity were lower in patients than in healthy controls (mean Achilles tendon rupture score, 78.6 and 99.8, respectively). Conclusion: Nonsurgically treated patients with Achilles tendon rupture showed signs of both anatomic and functional lengthening of the tendon. Attenuated muscle strength and function were present during walking as long as 2 to 5 years after rupture, as

  4. Green Tea and Glycine Modulate the Activity of Metalloproteinases and Collagen in the Tendinitis of the Myotendinous Junction of the Achilles Tendon.

    PubMed

    Vieira, Cristiano Pedrozo; De Oliveira, LetÍCia Prado; Da Ré Guerra, Flávia; Marcondes, Maria Cristina Cintra; Pimentel, Edson Rosa

    2016-07-01

    The myotendinous junction (MTJ) is the weakest element in the muscle-tendon unit of the heel, and thus the most susceptible to injuries. The scarcity of adequate treatments means that tendinitis is a major concern to athletes and other groups who depend on their physical fitness, although green tea and glycine have both been shown to have beneficial effects on the inflammation. The present study investigated the remodeling effects of green tea and glycine in the MTJ of rats with tendinitis. For this, male Wistar rats were divided into five groups: animals without tendinitis and animals with tendinitis; animals with tendinitis supplied with green tea; animals with tendinitis supplied with a glycine diet; animals with tendinitis supplied with a green tea and glycine diet. Tendinitis was induced and the treatment with green tea (700 mg/kg/day) and a 5% glycine diet lasted 7 days. The treatments regulated the activity of metalloproteinases (MMP)-2, -8, and -9, and induced the synthesis of type I collagen, glycosaminoglycans, and non-collagenous proteins. Changes were also noted in the compaction of the collagen molecules and the amount of tenocytes. When combined, green tea and glycine modulated the inflammatory process and induced the synthesis of the elements involved in the post-lesion recovery of the tissue. The data from the MTJ were different when compared with results already published using the whole Achilles tendon. These data indicate that each region of the inflamed tendon can exhibit different responses during the treatment and therefore, modify its extracellular matrix components to facilitate recovery and repair. Anat Rec, 299:918-928, 2016. © 2016 Wiley Periodicals, Inc. PMID:27121758

  5. Efficacy of Achilles Suture Bridge Technique for Insertional Achilles Tendinosis in an Obese and Athletic Patient.

    PubMed

    Mineta, Kazuaki; Suzue, Naoto; Matsuura, Tetsuya; Sairyo, Koichi

    2016-01-01

    Here, we report the efficacy of the suture bridge technique for treating insertional Achilles tendinosis in an obese and athletic patient. A 48-year-old man presented to our department with a 6-month history of left posterior heel pain. The patient was an athlete (triathlon) and appeared obese (height: 197 cm, body weight: 120 kg, body mass index: 30.9). A diagnosis of insertional Achilles tendinosis was made. Because 6 months of conservative treatments had failed, we performed open resection of the calcaneal exostosis and Haglund's deformity along with debridement of the degenerative tissue of the tendon. Wide detachment of the insertion of the Achilles tendon was necessary, and reattachment of the tendon was performed using the Arthrex SpeedBridge(TM) system (Arthrex, Inc., Naples, FL). Six weeks postoperatively, this patient was allowed to walk with full weight bearing. Twelve weeks after surgery, this patient started jogging with neither pain nor evidence of Achilles tendon rupture. The suture bridge technique was effective for the reconstruction of the Achilles tendon in an obese and athletic patient. J. Med. Invest. 63: 310-314, August, 2016.

  6. Using the Literature to Understand Achilles' Fate.

    PubMed

    Rakic, Vesna S

    2016-05-01

    According to Greek mythology, Achilles was fatally wounded in his heel, bled out, and died. Several unproven hypotheses mention poisoning, infection, allergy, hemophilia, thyrotoxic storm (ie, pain and stress), and suicide. The author, a plastic surgeon who often treats chronic wounds, proposes an additional scenario: Although not mortally wounded, Achilles was considered dead, because in his time a wounded hero was as good as a dead hero, so he lived out the remainder of his life as former hero with a chronic wound far away from everyone. To determine whether his injury was enough to cause fatal bleeding and quick death or if other factors might have been in play, a search of the literature was conducted to enhance what is known about Achilles, basically through the tale related in The Iliad and the clinical impact of an Achilles' injury. Search terms utilized included bleeding tibialis posterior artery (3 manuscripts were found) and chronic wound, Achilles tendon (631 manuscripts were located). Although science may not be able to explain how and why Achilles died, the literature supported the conjecture that Achilles probably had a chronic wound with skin and paratenon defect, de- vitalized tendon tissue, bleeding, granulation, and repeated infections. It is interesting to consider the state of his injury and his mind in the making of this legend.

  7. Using the Literature to Understand Achilles' Fate.

    PubMed

    Rakic, Vesna S

    2016-05-01

    According to Greek mythology, Achilles was fatally wounded in his heel, bled out, and died. Several unproven hypotheses mention poisoning, infection, allergy, hemophilia, thyrotoxic storm (ie, pain and stress), and suicide. The author, a plastic surgeon who often treats chronic wounds, proposes an additional scenario: Although not mortally wounded, Achilles was considered dead, because in his time a wounded hero was as good as a dead hero, so he lived out the remainder of his life as former hero with a chronic wound far away from everyone. To determine whether his injury was enough to cause fatal bleeding and quick death or if other factors might have been in play, a search of the literature was conducted to enhance what is known about Achilles, basically through the tale related in The Iliad and the clinical impact of an Achilles' injury. Search terms utilized included bleeding tibialis posterior artery (3 manuscripts were found) and chronic wound, Achilles tendon (631 manuscripts were located). Although science may not be able to explain how and why Achilles died, the literature supported the conjecture that Achilles probably had a chronic wound with skin and paratenon defect, de- vitalized tendon tissue, bleeding, granulation, and repeated infections. It is interesting to consider the state of his injury and his mind in the making of this legend. PMID:27192720

  8. Subject-specific measures of Achilles tendon moment arm using ultrasound and video-based motion capture

    PubMed Central

    Manal, Kurt; Cowder, Justin D; Buchanan, Thomas S

    2013-01-01

    The Achilles tendon (AT) moment arm is an important biomechanical parameter most commonly estimated using one of two methods: (A) center of rotation and (B) tendon excursion. Conflicting findings regarding magnitude and whether it changes with contraction intensity have been reported when using these methods. In this study, we present an alternate method of measuring the AT moment arm by combining ultrasound and video-based motion capture. Moment arms for 10 healthy male subjects were measured at five different joint angles in 10° increments ranging from 20° of dorsiflexion (DF) to 20° of plantar flexion (PF). Moment arms were measured at rest and also during maximum voluntary contraction (MVC). For both conditions, the AT moment arm increased in magnitude as the ankle moved from DF to PF. In 20° of DF, the moment arm at rest averaged 34.6 ± 1.8 mm and increased to a maximum value of 36.9 ± 1.9 mm when plantar flexed to 10°. Moment arms during MVC ranged from 35.7 ± 1.8 mm to 38.1 ± 2.6 mm. The moment arms we obtained were much more consistent with literature values derived using ultrasound and tendon excursion compared to center of rotation or in vitro methods. This is noteworthy as the hybrid method is easy to implement and as it is less costly and timing consuming than other methods, including tendon excursion, it is well suited for large-scale studies involving many subjects. PMID:24400141

  9. Effects of Achilles tendon vibration, surface and visual conditions on lower leg electromyography in young adults with and without recurrent ankle sprains.

    PubMed

    Lubetzky, Anat V; Price, Robert; McCoy, Sarah W

    2016-07-01

    Functional ankle instability is associated with decreased ankle muscle function. Compliant surfaces and eyes-closed training are commonly used for rehabilitation and prevention of ankle sprains. Brief Achilles tendon vibration is commonly used in the study of postural control. To test the level of activation of tibialis anterior (TIB) and fibularis longus (FIB), bilateral Achilles tendon vibration was applied for the middle 20 s in a series of 60-s trials, when 10 healthy young adults and 10 adults with history of repeated ankle sprains were standing bipedal: on floor, on memory foam, or on a Both Sides Up (BOSU) ball, with eyes open, and on floor and foam with eyes closed. Differences in Integrated surface electromyography (IEMG) of TIB and FIB were significant for both groups pre, during, and post vibration (Friedman Tests, p < 0.001 for all). In both groups, the highest IEMG for TIB was obtained during vibration when standing on foam with eyes closed, whereas the highest IEMG for FIB was obtained during vibration when standing on the BOSU. Bipedal stance on BOSU and brief Achilles tendon vibration may be a useful intervention when a session's goal is to facilitate lower leg muscles activation. Future research should explore training effects as well as the effect of FIB tendon vibration.

  10. Effects of Achilles tendon vibration, surface and visual conditions on lower leg electromyography in young adults with and without recurrent ankle sprains.

    PubMed

    Lubetzky, Anat V; Price, Robert; McCoy, Sarah W

    2016-07-01

    Functional ankle instability is associated with decreased ankle muscle function. Compliant surfaces and eyes-closed training are commonly used for rehabilitation and prevention of ankle sprains. Brief Achilles tendon vibration is commonly used in the study of postural control. To test the level of activation of tibialis anterior (TIB) and fibularis longus (FIB), bilateral Achilles tendon vibration was applied for the middle 20 s in a series of 60-s trials, when 10 healthy young adults and 10 adults with history of repeated ankle sprains were standing bipedal: on floor, on memory foam, or on a Both Sides Up (BOSU) ball, with eyes open, and on floor and foam with eyes closed. Differences in Integrated surface electromyography (IEMG) of TIB and FIB were significant for both groups pre, during, and post vibration (Friedman Tests, p < 0.001 for all). In both groups, the highest IEMG for TIB was obtained during vibration when standing on foam with eyes closed, whereas the highest IEMG for FIB was obtained during vibration when standing on the BOSU. Bipedal stance on BOSU and brief Achilles tendon vibration may be a useful intervention when a session's goal is to facilitate lower leg muscles activation. Future research should explore training effects as well as the effect of FIB tendon vibration. PMID:27634090

  11. Multilayered electrospun scaffolds for tendon tissue engineering.

    PubMed

    Chainani, Abby; Hippensteel, Kirk J; Kishan, Alysha; Garrigues, N William; Ruch, David S; Guilak, Farshid; Little, Dianne

    2013-12-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain

  12. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women.

    PubMed

    Csapo, R; Malis, V; Hodgson, J; Sinha, S

    2014-04-15

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4-5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11-12% vs. SW: 6-8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction.

  13. Bilateral Achilles Tendon Ruptures Associated With Ciprofloxacin Use in the Setting of Minimal Change Disease: Case Report and Review of the Literature.

    PubMed

    Kawtharani, Firas; Masrouha, Karim Z; Afeiche, Nadim

    2016-01-01

    Fluoroquinolones are widely used antibiotics; however, numerous side effects have been reported in published studies, including a spectrum of tendinopathies, affecting numerous anatomic sites. Several risk factors have been identified, including advanced age (>60 years), corticosteroid use, renal failure or dialysis, female sex, and nonobesity. We present the case of an elderly male with minimal change disease treated with glucocorticoids and acute kidney injury, who sustained spontaneous nontraumatic bilateral Achilles tendon tears 4 days after initiating ciprofloxacin.

  14. Engineered scaffold-free tendon tissue produced by tendon-derived stem cells.

    PubMed

    Ni, Ming; Rui, Yun Feng; Tan, Qi; Liu, Yang; Xu, Liang Liang; Chan, Kai Ming; Wang, Yan; Li, Gang

    2013-03-01

    Most of the exogenous biomaterials for tendon repair have limitations including lower capacity for inducing cell proliferation and differentiation, poorer biocompatibility and remodeling potentials. To avoid these shortcomings, we intend to construct an engineered tendon by stem cells and growth factors without exogenous scaffolds. In this study, we produced an engineered scaffold-free tendon tissue (ESFTT) in vitro and investigated its potentials for neo-tendon formation and promoting tendon healing in vivo. The ESFTT, produced via tendon-derived stem cells (TDSCs) by treatment of connective tissue growth factor (CTGF) and ascorbic acid in vitro, was characterized by histology, qRT-PCR and immunohistochemistry methods. After ESFTT implanted into the nude mouse, the in vivo fluorescence imaging, histology and immunohistochemistry examinations showed neo-tendon formation. In a rat patellar tendon window injury model, the histology, immunohistochemistry and biomechanical testing data indicated ESFTT could significantly promote tendon healing. In conclusion, this is a proof-of-concept study demonstrating that ESFTT could be a potentially new approach for tendon repair and regeneration.

  15. Structural and biomechanical changes in the Achilles tendon after chronic treatment with statins.

    PubMed

    de Oliveira, L P; Vieira, C P; Guerra, F D; Almeida, M S; Pimentel, E R

    2015-03-01

    Cases of tendinopathy and tendon ruptures have been reported as side effects associated with statin therapy. This work assessed possible changes in the structural and biomechanical properties of the tendons after chronic treatment with statins. Wistar rats were divided into the following groups: treated with atorvastatin (A-20 and A-80), simvastatin (S-20 and S-80) and the group that received no treatment (C). The doses of statins were calculated using allometric scaling, based on the doses of 80 mg/day and 20 mg/day recommended for humans. The morphological aspect of the tendons in A-20, S-20 and S-80 presented signals consistent with degeneration. Both the groups A-80 and S-80 showed a less pronounced metachromasia in the compression region of the tendons. Measurements of birefringence showed that A-20, A-80 and S-80 groups had a lower degree of organization of the collagen fibers. In all of the groups treated with statins, the thickness of the epitenon was thinner when compared to the C group. In the biomechanical tests the tendons of the groups A-20, A-80 and S-20 were less resistant to rupture. Therefore, statins affected the organization of the collagen fibers and decreased the biomechanical strength of the tendons, making them more predisposed to ruptures. PMID:25544391

  16. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.

    PubMed

    Okech, William; Kuo, Catherine K

    2016-01-01

    Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.

  17. A comparison of soft-tissue anchors in tendo achilles reattachment.

    PubMed

    Janis, L; Lam, A T; Espiritu, T; Ploot, E; Husain, Z S

    2001-01-01

    This prospective study evaluated four soft-tissue fixation modalities, used in seven different combinations, to reattach the tendo Achilles in 34 cadaveric specimens. Ultimate loads, elastic moduli, and modes of failure were evaluated by loading the specimen in a cantilevered fashion on an Instron. Mann-Whitney U tests were performed to compare the failure load data for statistical significance. Although the use of two Mitek SuperAnchors showed better load resistance than one anchor (p < .01), there was no significant improvement between using two or three anchors (one anchor 116 +/- 24 N, two anchors 234 +/- 21 N, three anchors 277 +/- 80 N). Two Bionx Bankart Tacks demonstrated no significant difference over using a single tack (one tack 178 +/- 57 N, two tacks 214 +/- 86 N). No statistical difference was observed between the screw and washer systems (screw with polyacetal resin washer 307 +/- 80 N, screw with metal washer 290 +/- 81 N). Both screw and washer systems did show greater stability when compared with a single Mitek SuperAnchor (p < .01) or a single Bionx Bankart Tack (p < .05). Similar analyses using the Mann-Whitney U tests were performed on the elastic modulus data. Analysis of the displacement data among all groups showed no statistical difference. Observations of the mode of failure exhibited 86% of Mitek SuperAnchor failed secondary to suture, and 70% of the Bionx Bankart Tack and 90% of the screw and washer systems failed because of the tendon shearing around the fixation. The comparisons of cost-effectiveness among the fixations showed the Synthes screw and polyacetal resin spiked washer to have the lowest cost to load ratio ($0.15/N).

  18. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications.

    PubMed

    Fauzi, M B; Lokanathan, Y; Aminuddin, B S; Ruszymah, B H I; Chowdhury, S R

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. PMID:27524008

  19. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications.

    PubMed

    Fauzi, M B; Lokanathan, Y; Aminuddin, B S; Ruszymah, B H I; Chowdhury, S R

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications.

  20. Staged tendon grafts and soft tissue coverage

    PubMed Central

    Elliot, David

    2011-01-01

    The objective of the two-staged flexor tendon method is to improve the predictability of final results in difficult problems dealing with tendon reconstruction. This article reviews the evolution and benefits of this procedure. It also considers the use of the technique to help deal with problems requiring pulley and skin reconstruction simultaneously with re-constituting the flexor tendon system. PMID:22022043

  1. Regular physical activity reduces the effects of Achilles tendon vibration on postural control for older women.

    PubMed

    Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T

    2015-02-01

    The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration.

  2. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: A histological and biomechanical study

    PubMed Central

    Cummings, Stephen H; Grande, Daniel A; Hee, Christopher K; Kestler, Hans K; Roden, Colleen M; Shah, Neil V; Razzano, Pasquale; Dines, David M; Chahine, Nadeen O

    2012-01-01

    Purpose: Repairing tendon injuries with recombinant human platelet-derived growth factor-BB has potential for improving surgical outcomes. Augmentation of sutures, a critical component of surgical tendon repair, by coating with growth factors may provide a clinically useful therapeutic device for improving tendon repair. Therefore, the purpose of this study was to (a) coat Vicryl sutures with a defined dose of recombinant human platelet-derived growth factor-BB without additional coating excipients (e.g. gelatin), (b) quantify the recombinant human platelet-derived growth factor-BB released from the suture, and (c) use the recombinant human platelet-derived growth factor-BB-coated sutures to enhance tendon repair in a rat Achilles tendon transection model. Methods: Vicryl sutures were coated with 0, 0.3, 1.0, and 10.0 mg/mL concentrations of recombinant human platelet-derived growth factor-BB using a dip-coating process. In vitro release was quantified by an enzyme-linked immunosorbent assay. Acutely transected rat Achilles tendons were repaired using one of the four suture groups (n = 12 per group). Four weeks following repair, the tensile biomechanical and histological (i.e. collagen organization and angiogenesis) properties were determined. Results: A dose-dependent bolus release of recombinant human platelet-derived growth factor-BB occurred within the first hour in vitro, followed by a gradual release over 48 h. There was a significant increase in ultimate tensile strength (p < 0.01) in the two highest recombinant human platelet-derived growth factor-BB dose groups (1.9 ± 0.5 and 2.1 ± 0.5 MPa) relative to controls (1.0 ± 0.2 MPa). The modulus significantly increased (p = 0.031) with the highest recombinant human platelet-derived growth factor-BB dose group (7.2 ± 3.8 MPa) relative to all other groups (control: 3.5 ± 0.9 MPa). No significant differences were identified for the maximum load or stiffness. The histological collagen and angiogenesis scores

  3. Evaluating the effect of low-level laser therapy on healing of tentomized Achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations.

    PubMed

    Aliodoust, Morteza; Bayat, Mohammad; Jalili, Mohammad Reza; Sharifian, Zainalabedin; Dadpay, Masoomeh; Akbari, Mohammad; Bayat, Mehrnoush; Khoshvaghti, Amir; Bayat, Homa

    2014-07-01

    Tendon healing is impaired in individuals diagnosed with diabetes mellitus (DM). According to research, there is considerable improvement in the healing of surgically tenotomized Achilles tendons following low-level laser therapy (LLLT) in non-diabetic, healthy animals. This study uses light microscopic (LM) and semi-quantitative reverse transcription PCR (RT-PCR) analyses to evaluate the ability of LLLT in healing Achilles tendons from streptozotocin-induced diabetic (STZ-D) rats. A total of 88 rats were randomly divided into two groups, non-diabetic and diabetic. DM was induced in the rats by injections of STZ. The right Achilles tendons of all rats were tenotomized 1 month after administration of STZ. Laser-treated rats were treated with a helium-neon (He-Ne) laser that had a 632.8-nm wavelength and 7.2-mW average power. Experimental group rats received a daily dose of 0.014 J (energy density, 2.9 J/cm(2)). Control rats did not receive LLLT. Animals were sacrificed on days 5, 10, and 15 post-operatively for semi-quantitative LM and semi-quantitative RT-PCR examinations of transforming growth factor-beta1 (TGF-β1) gene expression. The chi-square test showed that LLLT significantly reduced inflammation in non-diabetic rats compared with their non-diabetic controls (p = 0.02). LLLT significantly decreased inflammation in diabetic rats on days 5 (p = 0.03) and 10 (p = 0.02) compared to the corresponding control diabetic rats. According to the student's t test, LLLT significantly increased TGF-β1 gene expression in healthy (p = 0.000) and diabetic (p = 0.000) rats compared to their relevant controls. The He-Ne laser was effective in altering the inflammatory reaction and increasing TGF-β1 gene production. PMID:24622817

  4. Mechanical characteristics of native tendon slices for tissue engineering scaffold.

    PubMed

    Qin, Ting-Wu; Chen, Qingshan; Sun, Yu-Long; Steinmann, Scott P; Amadio, Peter C; An, Kai-Nan; Zhao, Chunfeng

    2012-04-01

    The purpose of this study was to characterize the mechanical behavior of tendon slices with different thicknesses. Tendon slices of 100, 200, 300, 400, and 500 μm thickness were mechanically tested. The 300 μm slices were further tested for strength and modulus after 21,000-cycle fatigue testing under different applied strain levels (0, 1, 3, 5, 8, 10, and 12%). The tendon slice structure, morphology, and viability of bone marrow stromal cells (BMSCs) seeded onto the slices were also examined with histology, scanning electron microscopy, and vital cell labeling, respectively. Tendon slices 300 μm or more in thickness had similar ultimate tensile strength and Young's modulus to the intact tendon bundle. A strain of 5% or less did not cause any structural damage, nor did it change the mechanical properties of a 300 μm-thick tendon slice after 21,000-cycle fatigue testing. BMSCs were viable between and on the tendon slices after 2 weeks in tissue culture. This study demonstrated that, if tendon slices are used as a scaffold for tendon tissue engineering, slices 300 μm or more in thickness would be preferable from a mechanical strength point of view. If mechanical stimulation is performed for seeded-cell preparations, 5% strain or less would be appropriate.

  5. Post-surgical care of a professional ballet dancer following calcaneal exostectomy and debridement with re-attachment of the left Achilles tendon

    PubMed Central

    Kobsar, Bradley; Alcantara, Joel

    2009-01-01

    The extraordinary physical demands placed upon ballet dancers are only now being appreciated as comparable to that of other highly competitive athletic pursuits. The professional ballet dancer presents with an array of injuries associated with their physically vigorous performance requirements. In keeping with evidence-based practice, we describe the chiropractic care of a professional ballet dancer following surgical calcaneal exostectomy and debridement with re-attachment of the left Achilles tendon. The care provided involves an array of modalities from exercise and rehabilitation to spinal manipulative therapy. PMID:19421349

  6. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    PubMed Central

    Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.

    2013-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053

  7. Tendon tissue engineering: progress, challenges, and translation to the clinic.

    PubMed

    Shearn, J T; Kinneberg, K R; Dyment, N A; Galloway, M T; Kenter, K; Wylie, C; Butler, D L

    2011-06-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products.

  8. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

    PubMed

    Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph

    2010-10-01

    The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  9. Bioreactor optimization of tissue engineered rabbit flexor tendons in vivo.

    PubMed

    Thorfinn, J; Angelidis, I K; Gigliello, L; Pham, H M; Lindsey, D; Chang, J

    2012-02-01

    Tissue-engineered rabbit flexor tendons reseeded with cells are stronger in vitro after culture in a bioreactor. It is not known whether this effect persists in vivo. Tenocytes from New Zealand white rabbits were seeded onto rabbit rear paw flexor tendons that were deprived of cells and exposed to cyclic strain in a bioreactor. Reseeded constructs that were kept unloaded in a medium for 5 days were used as controls. The tendons were implanted to bridge a zone II defect in the rabbit. After explantation 4 weeks later, the ultimate tensile strength (UTS) and elastic modulus (EM) were determined. Tendon constructs that were exposed to cyclic strain had significantly improved UTS and EM. Histology showed that cellularity was increased in the bioreactor tendons.

  10. Ultrasonographic Tendon Alteration in Relation to Parathyroid Dysfunction in Chronic Hemodialysis Patients

    PubMed Central

    Hussein, Dahlia A; El-Azizi, Noran O; Abdel Meged, Ali H; Al-Hoseiny, Sameh A; Hamada, Abdelhady M; Sabry, Moshira H

    2015-01-01

    OBJECTIVE To find the nature of tendon involvement in chronic kidney disease (CKD) patients on regular hemodialysis (RD), and its relationship to parathyroid hormone (PTH) level using ultrasonography (US). METHOD A total of 50 CKD patients on RD subjected to musculoskeletal examination of knee and ankle, laboratory evaluation, and US of quadriceps tendon and Achilles tendon were involved. RESULTS Ankle joint tenderness was the most frequent sign on examination. US of the Achilles tendons showed tenderness during probing in 44% patients, calcific deposition in 24% patients, abnormal peritendon tissue in 20% patients, and abnormal anteroposterior (A-P) middle and distal one-third thicknesses of the Achilles tendon in 20% and 18% patients, respectively. PTH positively correlated with the duration of dialysis, serum phosphorus level, presence of calcific deposit, and increased thickness of the Achilles tendon. CONCLUSION The most common ultrasonographic finding in CKD patients on RD was Achilles tendon tenderness during probing. PTH level positively correlated with the duration of dialysis, presence of calcific deposit, and increased thickness of Achilles tendon. PMID:25674023

  11. Endoscopic-Assisted Flexor Hallucis Longus Transfer: Harvest of the Tendon at Zone 2 or Zone 3.

    PubMed

    Lui, Tun Hing

    2015-12-01

    Flexor hallucis longus (FHL) tendon transfer is indicated for reconstruction of the Achilles tendon with a gap larger than 5 cm. The tendon can be harvested at zone 2 or zone 3 by minimally invasive techniques with the advantage of minimal soft-tissue dissection. The tendon can be harvested under the sustentaculum tali by zone 2 FHL tendoscopy. It is adequate for FHL transfer to the posterior calcaneal tubercle. If a double-thickness reconstruction of a huge gap of the Achilles tendon is indicated, the tendon can be harvested at the level of the hallux by means of a tendon stripper. However, the interconnection tendon of the master knot of Henry can be split together with the FHL or flexor digitorum longus tendon instead of being cut. Zone 2 FHL tendoscopy can be used to release the split tendon to complete the FHL harvest. PMID:27284516

  12. Faut-il préférer une technique chirurgicale dans le traitement des ruptures du tendon d'Achille?

    PubMed Central

    Hani, Redouane; Kharmaz, Mohammed; Berrada, Mohammed Saleh

    2015-01-01

    La rupture du tendon d'Achille est de plus en plus fréquente dans le monde et dans notre pays en raison du développement considérable des activités sportives, de l'accroissement de leur intensité et de l'absence de moyens de prévention. Notre travail porte sur une étude concernant 58 cas de rupture du tendon d'Achille, avec un recul moyen compris entre 5 mois et 80 mois. L’âge moyen était de 36 ans, tous les patients inclus ont tous bénéficier d'un traitement chirurgical. Le but de notre étude étant de souligner la supériorité d'une technique chirurgicale par rapport à une autre dans la prise en charge, ainsi qu'une mise au point sur les différents aspects épidémiologiques, cliniques, thérapeutiques et post-thérapeutiques de cette lésion. PMID:26161208

  13. Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons in Vivo.

    PubMed

    Cortes, Daniel H; Suydam, Stephen M; Silbernagel, Karin Grävare; Buchanan, Thomas S; Elliott, Dawn M

    2015-06-01

    Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study were to describe an elastography method for measuring localized viscoelastic properties of tendons and to discuss the initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction-specific wave speeds were calculated using local frequency estimation. Maps of viscoelastic properties were obtained using a pixel-wise curve fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels with those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as a function of frequency, which highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon indicated that it is feasible to quantify local viscoelastic properties. Similarly, measurement in the semitendinosus tendon revealed substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential to evaluate localized changes in tendon viscoelastic properties caused by injury and during recovery in a clinical setting.

  14. Examining the Relationship Between Pathologies of the Peroneal, Achilles, and Posterior Tibial Tendons: An MRI Review in an Asymptomatic Lateral Ankle Population.

    PubMed

    Galli, Melissa M; Protzman, Nicole M; Mandelker, Eiran M; Malhotra, Amit D; Wobst, Garrett M; Schwartz, Edward; Brigido, Stephen A

    2014-07-01

    The hindfoot and ankle are dynamic structures to which the interplay of tendinous pathologies is scarcely understood. Five hundred consecutive ankle magnetic resonance imaging examinations, obtained between December 27, 2011 and April 9, 2013, were reviewed. Patients without a history of hindfoot or ankle trauma or lateral ankle pain were included. The 108 MRIs that met the inclusion and exclusion criteria were then re-evaluated by 2 musculoskeletal radiologists. Of these, 55.56% demonstrated pathology of the Achilles tendon (AT), 44.44% demonstrated pathology of the posterior tibial tendon (PTT), 35.19% demonstrated pathology of the peroneus brevis (PB), and 37.96% demonstrated pathology of the peroneus longus (PL). In our asymptomatic patient population, 16 (14.81%) patients demonstrated concomitant pathology of the AT, PTT, and peroneal tendons. There were positive, moderate correlations between graded pathology of the AT and the PTT, rs(106) = 0.32, P = .001; the AT and PB, rs(106) = 0.38, P = 0.001; and the AT and PL, rs(106) = 0.46, P = .001. However, there were no statistically significant correlations between pathology of the PTT and PB, rs(106) = 0.17, P = .08, or the PTT and PL, rs(106) = 0.14, P = .15. These findings suggest an intimate relationship between the AT, PTT, and the peroneal tendons. These individual anatomic structures may have underappreciated functional relationships that could lead to future investigations.

  15. The influence of stretching and warm-up exercises on Achilles tendon reflex activity.

    PubMed

    Rosenbaum, D; Hennig, E M

    1995-12-01

    The aim of this study was to investigate the acute effects of prior exercise (warm-up and stretching) on the electromyographic and force output of mechanically elicited triceps surae reflexes. Fifty male subjects performed eight reflex experiments under each of three successive conditions in one session: (1) no prior exercise, (2) after static stretching of the passive triceps surae (3 min) and (3) after a 10-min warm-up run on a treadmill. Tendon tap reflex force was elicited in the triceps surae of the right leg by means of a standardized reflex hammer and measured in a custom-built fixture. Electromyographic (EMG) signals were recorded with surface electrodes over the medial head of the gastrocnemius (G) and the soleus (S). Low coefficients of variation within subjects contrasted with high between-subject variations, indicating highly individual reflex characteristics. After stretching, reductions in the peak force (-5%; P < 0.05), the force rise rate (-8%; P < 0.01), the half relaxation rate (-5%; N.S.), the EMG amplitudes (G, -16%; S, -17%; P < 0.01) and integrals (G, -15%; S, -18%; P < 0.01), and an increase in EMG latencies (G, +3%; S, +1%; P < 0.01), were found compared with the values obtained without prior exercise. After running, the peak force reached the values obtained without prior exercise (-2%; N.S.), the force rise rate and half relaxation rate increased by 8 and 12%, respectively (P < 0.01), and the impulse (force-time integral; -12%), EMG amplitudes (G, -20%; S, -23%; P < 0.01), integrals (G, -18%; S, -23%; P < 0.01) and latencies (G, -1%; S, -2%; P < 0.01) decreased significantly. The changes in the force characteristics observed after the stretching treatment indicate improved muscle compliance that might reduce the risk of injury. On the other hand, the changes after the additional warm-up run had a more pronounced influence with regard to improved force development and a decreased EMG activity, which can be viewed as a performance

  16. Tendon Reconstruction with Tissue Engineering Approach--A Review.

    PubMed

    Verdiyeva, Gunay; Koshy, Kiron; Glibbery, Natalia; Mann, Haroon; Seifalian, Alexander M

    2015-09-01

    Tendon injuries are a common and rising occurrence, associated with significant impairment to quality of life and financial burden to the healthcare system. Clinically, they represent an unresolved problem, due to poor natural tendon healing and the inability of current treatment strategies to restore the tendon to its native state. Tissue engineering offers a promising alternative, with the incorporation of scaffolds, cells and growth factors to support the complete regeneration of the tendon. The materials used in tendon engineering to date have provided significant advances in structural integrity and biological compatibility and in many cases the results obtained are superior to those observed in natural healing. However, grafts fail to reproduce the qualities of the pre-injured tendon and each has weaknesses subject to its constituent parts. Furthermore, many materials and cell types are being investigated concurrently, with seemingly little association or comparison between research results. In this review the properties of the most-investigated and effective components have been appraised in light of the surrounding literature, with research from early in-vitro experiments to clinical trials being discussed. Extensive comparisons have been made between scaffolds, cell types and growth factors used, listing strengths and weaknesses to provide a stable platform for future research. Promising future endeavours are also described in the field of nanocomposite material science, stem cell sources and growth factors, which may bypass weaknesses found in individual elements. The future of tendon engineering looks bright, with growing understanding in material technology, cell and growth factor application and encouraging recent advances bringing us ever closer to regenerating the native tendon. PMID:26485923

  17. Tendon Reconstruction with Tissue Engineering Approach--A Review.

    PubMed

    Verdiyeva, Gunay; Koshy, Kiron; Glibbery, Natalia; Mann, Haroon; Seifalian, Alexander M

    2015-09-01

    Tendon injuries are a common and rising occurrence, associated with significant impairment to quality of life and financial burden to the healthcare system. Clinically, they represent an unresolved problem, due to poor natural tendon healing and the inability of current treatment strategies to restore the tendon to its native state. Tissue engineering offers a promising alternative, with the incorporation of scaffolds, cells and growth factors to support the complete regeneration of the tendon. The materials used in tendon engineering to date have provided significant advances in structural integrity and biological compatibility and in many cases the results obtained are superior to those observed in natural healing. However, grafts fail to reproduce the qualities of the pre-injured tendon and each has weaknesses subject to its constituent parts. Furthermore, many materials and cell types are being investigated concurrently, with seemingly little association or comparison between research results. In this review the properties of the most-investigated and effective components have been appraised in light of the surrounding literature, with research from early in-vitro experiments to clinical trials being discussed. Extensive comparisons have been made between scaffolds, cell types and growth factors used, listing strengths and weaknesses to provide a stable platform for future research. Promising future endeavours are also described in the field of nanocomposite material science, stem cell sources and growth factors, which may bypass weaknesses found in individual elements. The future of tendon engineering looks bright, with growing understanding in material technology, cell and growth factor application and encouraging recent advances bringing us ever closer to regenerating the native tendon.

  18. Achilles Tendinosis: Treatment Options

    PubMed Central

    Lopez, Roberto Gabriel L.

    2015-01-01

    Athletes usually complain of an ongoing or chronic pain over the Achilles tendon, but recently even non-athletes are experiencing the same kind of pain which affects their daily activities. Achilles tendinosis refers to a degenerative process of the tendon without histologic or clinical signs of intratendinous inflammation. Treatment is based on whether to stimulate or prevent neovascularization. Thus, until now, there is no consensus as to the best treatment for this condition. This paper aims to review the common ways of treating this condition from the conservative to the surgical options. PMID:25729512

  19. Tendon Homeostasis in Hypercholesterolemia.

    PubMed

    Soslowsky, Louis J; Fryhofer, George W

    2016-01-01

    Hypercholesterolemia is a serious health problem that is associated not only with heart disease, but also tendon pathology. In high cholesterol environments (e.g. familial hyperlipidemia), lipids accumulate within the tendon extracellular matrix and form deposits called xanthomas. Lipid-related changes are known to affect several tendon mechanical properties, including stiffness and modulus, in uninjured and injured tendons, alike. Mechanisms to explain these cholesterol-related changes are multiple, including alterations in tenocyte gene and protein expression, matrix turnover, tissue vascularity, and cytokine production. Clinically, rotator cuff tear and Achilles tendon rupture are clearly associated with metabolic derangements, and elevated total cholesterol is often among the specific metabolic parameters implicated. Treatment of hypercholesterolemia using statin medications has also been shown to affect tendon properties, resulting in normalization of tendon thickness and improved tendon healing. Despite current work, the pathophysiology of lipid-related tendon pathology remains incompletely understood, and additional hypothesis-generating studies, including those incorporating whole-genome and whole-transcriptome technologies, will help to point the field in new directions. PMID:27535257

  20. Synthetic collagen fascicles for the regeneration of tendon tissue.

    PubMed

    Kew, S J; Gwynne, J H; Enea, D; Brookes, R; Rushton, N; Best, S M; Cameron, R E

    2012-10-01

    The structure of an ideal scaffold for tendon regeneration must be designed to provide a mechanical, structural and chemotactic microenvironment for native cellular activity to synthesize functional (i.e. load bearing) tissue. Collagen fibre scaffolds for this application have shown some promise to date, although the microstructural control required to mimic the native tendon environment has yet to be achieved allowing for minimal control of critical in vivo properties such as degradation rate and mass transport. In this report we describe the fabrication of a novel multi-fibre collagen fascicle structure, based on type-I collagen with failure stress of 25-49 MPa, approximating the strength and structure of native tendon tissue. We demonstrate a microscopic fabrication process based on the automated assembly of type-I collagen fibres with the ability to produce a controllable fascicle-like, structural motif allowing variable numbers of fibres per fascicle. We have confirmed that the resulting post-fabrication type-I collagen structure retains the essential phase behaviour, alignment and spectral characteristics of aligned native type-I collagen. We have also shown that both ovine tendon fibroblasts and human white blood cells in whole blood readily infiltrate the matrix on a macroscopic scale and that these cells adhere to the fibre surface after seven days in culture. The study has indicated that the synthetic collagen fascicle system may be a suitable biomaterial scaffold to provide a rationally designed implantable matrix material to mediate tendon repair and regeneration.

  1. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering.

    PubMed

    Vuornos, Kaisa; Björninen, Miina; Talvitie, Elina; Paakinaho, Kaarlo; Kellomäki, Minna; Huhtala, Heini; Miettinen, Susanna; Seppänen-Kaijansinkko, Riitta; Haimi, Suvi

    2016-03-01

    Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 μM l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-ɛ-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.

  2. Changes of Achilles tendon properties via 12-week PNF based robotic rehabilitation of ankle joints with spasticity and/or contracture.

    PubMed

    Zhou, Zhihao; Zhou, Yuan; Wang, Ninghua; Gao, Fan; Wang, Long; Wei, Kunlin; Wang, Qining

    2014-01-01

    Ankle joint with spasticity and/or contracture can severely affect mobility and independence of stroke survivors. Due to that, the Achilles tendon(AT) is affected. In this paper, we aim to study changes of AT properties via proprioceptive neuromuscular facilitation (PNF) treatment. A robotic ankle-foot rehabilitation system has been proposed, which consists of a robotic ankle-foot platform and a graphic user interface. In this pilot study, two post-stroke patients participated and carried out a 12-week PNF treatment with the robotic system. The treatment is evaluated quantitatively in AT properties. The evaluation shows that after the PNF treatment, the average decrease of AT length is 4.1 mm (6.5%) and the recovery ratio is 30.4%, while the thickness has no change. The results indicate that the PNF based robotic rehabilitation for ankle joints with spasticity and/or contracture is effective to improve the ankle spasticity/contracture.

  3. Intermittent pneumatic compression reduces the risk of deep vein thrombosis during post-operative lower limb immobilisation: a prospective randomised trial of acute ruptures of the Achilles tendon.

    PubMed

    Domeij-Arverud, E; Labruto, F; Latifi, A; Nilsson, G; Edman, G; Ackermann, P W

    2015-05-01

    Deep vein thrombosis is a common complication of immobilising the lower limb after surgery. We hypothesised that intermittent pneumatic compression (IPC) therapy in outpatients who had undergone surgical repair of acute ruptures of the Achilles tendon could reduce the incidence of this problem. A total of 150 patients who had undergone surgical repair of the Achilles tendon were randomised to either treatment with IPC for six hours per day (n = 74) under an orthosis or treatment as usual (n = 74) in a plaster cast without IPC. At two weeks post-operatively, the incidence of deep vein thrombosis was assessed using blinded, double-reported compression duplex ultrasound. At this point, IPC was discontinued and all patients were immobilised in an orthosis for a further four weeks. At six weeks post-operatively, a second compression duplex ultrasound scan was performed. At two weeks, the incidence of deep vein thrombosis was 21% in the treated group and 37% in the control group (p = 0.042). Age over 39 years was found to be a strong risk factor for deep vein thrombosis (odds ratio (OR) = 4.84, 95% confidence interval (CI) 2.14 to 10.96). Treatment with IPC, corrected for age differences between groups, reduced the risk of deep vein thrombosis at the two-week point (OR = 2.60; 95% CI 1.15 to 5.91; p =0.022). At six weeks, the incidence of deep vein thrombosis was 52% in the treated group and 48% in the control group (OR 0.94, 95% CI 0.49 to 1.83). IPC appears to be an effective method of reducing the risk of deep vein thrombosis in the early stages of post-operative immobilisation of outpatients. Further research is necessary to elucidate whether it can confer similar benefits over longer periods of immobilisation and in a more heterogeneous group of patients.

  4. Percutaneous Achilles Tendon Lengthening

    MedlinePlus

    ... educational service. The content of FootCareMD, including text, images and graphics, is for informational purposes only. The content is not intended to substitute for professional medical advice, diagnoses or treatments. If you need medical ...

  5. The long head of the biceps tendon is a suitable cell source for tendon tissue regeneration

    PubMed Central

    Pietschmann, Matthias F.; Gülecyüz, Mehmet F.; Ficklscherer, Andreas; Jansson, Volkmar; Müller, Peter E.

    2014-01-01

    Introduction Tendon tissue engineering (TTE) tries to produce tendinous tissue of high quality to replace dysfunctional tissue. One possible application of TTE might be the replacement of ruptured tissue of the rotator cuff. Autologous tenocytes seem to be most suitable as no differentiation in vitro is necessary. Today it is still uncertain if there is a difference between tendon-derived cells (TDC) of different native tissues. Moreover, the search for suitable scaffolds is another important issue in TTE. Material and methods This study compared TDC of the long head of the biceps tendon (LHB), the anterior cruciate ligament (ACL) and the tendon of the musculus semitendinosus (TMS). The TDC were isolated using the cell migration method. Cell morphology was assessed using light microscopy and gene expression was performed using polymerase chain reaction (PCR). Afterwards, cell seeding efficiency and proliferation were tested on a collagen I scaffold using the WST-1 assay. Results were confirmed using H + E staining. Results The TDC of the LHB showed higher expression levels of collagen type I and decorin (p < 0.01) compared to TDC of other origin. Results showed efficient cell seeding and proliferation within the scaffold. Proliferation within the scaffold was not as high as when cells were cultivated without a scaffold. Conclusions The TDC of the LHB seems to be the most suitable cell source. Further research is necessary to find out if the results can be transferred to an in vivo model. The new collagen I scaffold seems to offer an opportunity to combine good biocompatibility and mechanical strength. PMID:25097592

  6. Tissue engineering in flexor tendon surgery: current state and future advances.

    PubMed

    Galvez, M G; Crowe, C; Farnebo, S; Chang, J

    2014-01-01

    Tissue engineering of flexor tendons addresses a challenge often faced by hand surgeons: the restoration of function and improvement of healing with a limited supply of donor tendons. Creating an engineered tendon construct is dependent upon understanding the normal healing mechanisms of the tendon and tendon sheath. The production of a tendon construct includes: creating a three-dimensional scaffold; seeding cells within the scaffold; encouraging cellular growth within the scaffold while maintaining a gliding surface; and finally ensuring mechanical strength. An effective construct incorporates these factors in its design, with the ultimate goal of creating tendon substitutes that are readily available to the reconstructive hand surgeon.

  7. Low level laser therapy reduces inflammation in activated Achilles tendinitis

    NASA Astrophysics Data System (ADS)

    Bjordal, Jan M.; Iversen, Vegard; Lopes-Martins, Rodrigo Alvaro B.

    2006-02-01

    Objective: Low level laser therapy (LLLT) has been forwarded as therapy for osteoarthritis and tendinopathy. Results in animal and cell studies suggest that LLLT may act through a biological mechanism of inflammatory modulation. The current study was designed to investigate if LLLT has an anti-inflammatory effect on activated tendinitis of the Achilles tendon. Methods: Seven patients with bilateral Achilles tendonitis (14 tendons) who had aggravated symptoms by pain-inducing activity immediately prior to the study. LLLT (1.8 Joules for each of three points along the Achilles tendon with 904nm infrared laser) and placebo LLLT were administered to either Achilles tendons in a random order to which patients and therapist were blinded. Inflammation was examined by 1) mini-invasive microdialysis for measuring the concentration of inflammatory marker PGE II in the peritendinous tissue, 2) ultrasound with Doppler measurement of peri- and intratendinous blood flow, 3) pressure pain algometry and 4) single hop test. Results: PGE 2- levels were significantly reduced at 75, 90 and 105 minutes after active LLLT compared both to pre-treatment levels (p=0.026) and to placebo LLLT (p=0.009). Changes in pressure pain threshold (PPT) were significantly different (P=0.012) between groups. PPT increased by a mean value of 0.19 kg/cm2 [95%CI:0.04 to 0.34] after treatment in the active LLLT group, while pressure pain threshold was reduced by -0.20 kg/cm2 [95%CI:-0.45 to 0.05] after placebo LLLT. Conclusion: LLLT can be used to reduce inflammatory musculskeletal pain as it reduces inflammation and increases pressure pain threshold levels in activity-induced pain episodes of Achilles tendinopathy.

  8. Laser tissue welding and repair of digital flexor tendons

    NASA Astrophysics Data System (ADS)

    Drew, P. J.; Kiernan, Michael N.; MacGregor, A. D.; Clement, Marc

    1996-01-01

    Injuries involving division of the flexor tendons of the hand are a common surgical problem. Sutured repairs must be strong enough to withstand early active movement. Experiments were designed to assess the strength of bonds formed between tendon sections as a result of heating (1) under controlled conditions in a water bath and (2) using a carbon dioxide laser (laser tissue welding). The load (N) and stress (N/cm2) required to disrupt thermal bonds between bovine tendon sections heated for 4 minutes in water peaked at 62 degrees Celsius (13N, 11.3N/cm2). Further experiments revealed the optimal time period for heating to be 9 minutes (21.5N, 20.6N/cm2). A threshold effect was apparent at these parameters. The in vitro strength of sutured, laser welded and sutured and laser welded tendon repairs was compared in a rabbit model. Laser welding alone did not produce repairs as strong as sutured repairs. It did, however, augment the strength of sutured repair. This effect was maximal at a power of 0.1 W.

  9. Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading.

    PubMed

    Heinemeier, Katja M; Kjaer, Michael; Magnusson, S Peter

    2016-01-01

    In recent years a number of methodological developments have improved the opportunities to study human tendon. Microdialysis enables sampling of interstitial fluid in the peritendon tissue, while sampling of human tendon biopsies allows direct analysis of tendon tissue for gene- and protein expression as well as protein synthesis rate. Further the (14)C bomb-pulse method has provided data on long-term tissue turnover in human tendon. Non-invasive techniques allow measurement of tendon metabolism (positron emission tomography (PET)), tendon morphology (magnetic resonance imaging (MRI)), and tendon mechanical properties (ultrasonography combined with force measurement during movement). Finally, 3D cell cultures of human tendon cells provide the opportunity to investigate cell-matrix interactions in response to various interventions. PMID:27535251

  10. Radioprotection of Tendon Tissue via Crosslinking and Free Radical Scavenging

    PubMed Central

    Seto, Aaron; Gatt, Charles J.

    2008-01-01

    Ionizing radiation could supplement tissue bank screening to further reduce the probability of diseases transmitted by allografts if denaturation effects can be minimized. It is important, however, such sterilization procedures be nondetrimental to tissues. We compared crosslinking and free radical scavenging potential methods to accomplish this task in tendon tissue. In addition, two forms of ionizing irradiation, gamma and electron beam (e-beam), were also compared. Crosslinkers included 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glucose, which were used to add exogenous crosslinks to collagen. Free radical scavengers included mannitol, ascorbate, and riboflavin. Radioprotective effects were assessed through tensile testing and collagenase resistance testing after irradiation at 25 kGy and 50 kGy. Gamma and e-beam irradiation produced similar degenerative effects. Crosslinkers had the highest strength at 50 kGy, EDC treated tendons had 54% and 49% higher strength than untreated, for gamma and e-beam irradiation respectively. Free radical scavengers showed protective effects up to 25 kGy, especially for ascorbate and riboflavin. Crosslinked samples had higher resistance to collagenase and over a wider dose range than scavenger-treated. Of the options studied, the data suggest EDC precrosslinking or glucose treatment provides the best maintenance of native tendon properties after exposure to ionizing irradiation. PMID:18512113

  11. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels.

    PubMed

    Lehner, C; Gehwolf, R; Ek, J C; Korntner, S; Bauer, H; Bauer, H C; Traweger, A; Tempfer, H

    2016-01-01

    Tissue barriers function as "gate keepers" between different compartments (usually blood and tissue) and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF)-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB). By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies. PMID:27227787

  12. Crosslinkable Hydrogels Derived from Cartilage, Meniscus, and Tendon Tissue

    PubMed Central

    Visser, Jetze; Levett, Peter A.; te Moller, Nikae C.R.; Besems, Jeremy; Boere, Kristel W.M.; van Rijen, Mattie H.P.; de Grauw, Janny C.; Dhert, Wouter J.A.; van Weeren, P. René

    2015-01-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels. PMID:25557049

  13. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.

    PubMed

    Visser, Jetze; Levett, Peter A; te Moller, Nikae C R; Besems, Jeremy; Boere, Kristel W M; van Rijen, Mattie H P; de Grauw, Janny C; Dhert, Wouter J A; van Weeren, P René; Malda, Jos

    2015-04-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.

  14. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue.

    PubMed

    Notarnicola, Angela; Moretti, Biagio

    2012-01-01

    There is currently great interest in the use of Extracorporeal Shock Wave Therapy (ESWT) and in clarifying the mechanisms of action in tendon pathologies. The success rate ranges from 60% to 80% in epicondylitis, plantar fasciitis, cuff tendinitis, trocanteritis, Achilles tendinitis or jumper's knee. In contrast to urological treatments (lithotripsy), where shockwaves are used to disintegrate renal stones, in musculoskeletal treatments (orthotripsy), shockwaves are not being used to disintegrate tissues, but rather to microscopically cause interstitial and extracellular biological responses and tissue regeneration. The researchers are interesting to investigate the biological effects which support the clinical successes. Some authors speculated that shockwaves relieve pain in insertional tendinopathy by hyper-stimulation analgesia. Many recent studies demonstrated the modulations of shockwave treatment including neovascularization, differentiation of mesenchymal stem cells and local release of angiogenetic factors. The experimental findings confirm that ESWT decrease the expression of high levels of inflammatory mediators (matrix metalloproteinases and inter-leukins). Therefore, ESWT produces a regenerative and tissue-repairing effect in musculoskeletal tissues, not merely a mechanical disintegrative effect as generally before assumed. Based on the encouraging results of clinical and experimental studies, the potential of ESWT appears to be emerging. The promising outcome after this non-invasive treatment option in tendinitis care justifies the indication of shockwave therapy. Further studies have to be performed in order or determine optimum treatment parameters and will bring about an improvement in accordance with evidence-based medicine. Finally, meta-analysis studies are necessary to demonstrate the efficacy and safety of ESWT in treating tendinopathies.

  15. p38 MAPK Signaling in Postnatal Tendon Growth and Remodeling

    PubMed Central

    Schwartz, Andrew J.; Sarver, Dylan C.; Sugg, Kristoffer B.; Dzierzawski, Justin T.; Gumucio, Jonathan P.; Mendias, Christopher L.

    2015-01-01

    Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA) increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo. PMID:25768932

  16. Inflammatory and Metabolic Alterations of Kager's Fat Pad in Chronic Achilles Tendinopathy

    PubMed Central

    Fredberg, Ulrich; Kjær, Søren G.; Quistorff, Bjørn; Langberg, Henning; Hansen, Jacob B.

    2015-01-01

    Background Achilles tendinopathy is a painful inflammatory condition characterized by swelling, stiffness and reduced function of the Achilles tendon. Kager’s fat pad is an adipose tissue located in the area anterior to the Achilles tendon. Observations reveal a close physical interplay between Kager’s fat pad and its surrounding structures during movement of the ankle, suggesting that Kager’s fat pad may stabilize and protect the mechanical function of the ankle joint. Aim The aim of this study was to characterize whether Achilles tendinopathy was accompanied by changes in expression of inflammatory markers and metabolic enzymes in Kager’s fat pad. Methods A biopsy was taken from Kager’s fat pad from 31 patients with chronic Achilles tendinopathy and from 13 healthy individuals. Gene expression was measured by reverse transcription-quantitative PCR. Focus was on genes related to inflammation and lipid metabolism. Results Expression of the majority of analyzed inflammatory marker genes was increased in patients with Achilles tendinopathy compared to that in healthy controls. Expression patterns of the patient group were consistent with reduced lipolysis and increased fatty acid β-oxidation. In the fat pad, the pain-signaling neuropeptide substance P was found to be present in one third of the subjects in the Achilles tendinopathy group but in none of the healthy controls. Conclusion Gene expression changes in Achilles tendinopathy patient samples were consistent with Kager’s fat pad being more inflamed than in the healthy control group. Additionally, the results indicate an altered lipid metabolism in Kager’s fat pad of Achilles tendinopathy patients. PMID:25996876

  17. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10

  18. The influence of increased muscle spindle sensitivity on Achilles tendon jerk and H-reflex in relaxed human subjects.

    PubMed

    Rossi-Durand, Christiane

    2002-01-01

    Whether the fusimotor system contributes to reflex gain changes during reinforcement maneuvers is re-examined in the light of new data. Recently, from direct recordings of spindle afferent activity originating from ankle flexor muscles, we showed that mental computation increased the muscle spindle mechanical sensitivity in completely relaxed human subjects without concomitant alpha-motoneuron activation, providing evidence for selective fusimotor drive activation. In the present study, the effects of mental computation were investigated on monosynaptic reflexes elicited in non-contracting soleus muscle either by direct nerve stimulation (Hoffmann reflex, H) or by tendon tap (Tendinous reflex, T). The aim was to relate the time course of the changes in reflex size to the increase in spindle sensitivity during mental task in order to explore whether fusimotor activation can influence the size of the monosynaptic reflex. The results show changes in reflex amplitude that parallel the increase in muscle spindle sensitivity. When T-reflex is consistently facilitated during mental effort, the H-reflex is either depressed or facilitated, depending on the subjects. These findings suggest that the increased activity in muscle spindle primary endings may account for mental computation-induced changes in both tendon jerk and H-reflex. The facilitation of T-reflex is attributed to the enhanced spindle mechanical sensitivity and the inhibition of H-reflex is attributed to post-activation depression following the increased Ia ongoing discharge. This study supports the view that the fusimotor sensitization of muscle spindles is responsible for changes in both the mechanically and electrically elicited reflexes. It is concluded that the fusimotor drive contributed to adjustment of the size of tendon jerk and H-reflex during mental effort. The possibility that a mental computation task may also operate by reducing the level of presynaptic inhibition is discussed on the basis of H

  19. Braided nanofibrous scaffold for tendon and ligament tissue engineering.

    PubMed

    Barber, John G; Handorf, Andrew M; Allee, Tyler J; Li, Wan-Ju

    2013-06-01

    Tendon and ligament (T/L) injuries present an important clinical challenge due to their intrinsically poor healing capacity. Natural healing typically leads to the formation of scar-like tissue possessing inferior mechanical properties. Therefore, tissue engineering has gained considerable attention as a promising alternative for T/L repair. In this study, we fabricated braided nanofibrous scaffolds (BNFSs) as a potential construct for T/L tissue engineering. Scaffolds were fabricated by braiding 3, 4, or 5 aligned bundles of electrospun poly(L-lactic acid) nanofibers, thus introducing an additional degree of flexibility to alter the mechanical properties of individual scaffolds. We observed that the Young's modulus, yield stress, and ultimate stress were all increased in the 3-bundle compared to the 4- and 5-bundle BNFSs. Interestingly, acellular BNFSs mimicked the normal tri-phasic mechanical behavior of native tendon and ligament (T/L) during loading. When cultured on the BNFSs, human mesenchymal stem cells (hMSCs) adhered, aligned parallel to the length of the nanofibers, and displayed a concomitant realignment of the actin cytoskeleton. In addition, the BNFSs supported hMSC proliferation and induced an upregulation in the expression of key pluripotency genes. When cultured on BNFSs in the presence of tenogenic growth factors and stimulated with cyclic tensile strain, hMSCs differentiated into the tenogenic lineage, evidenced most notably by the significant upregulation of Scleraxis gene expression. These results demonstrate that BNFSs provide a versatile scaffold capable of supporting both stem cell expansion and differentiation for T/L tissue engineering applications.

  20. Ten weeks of treadmill running decreases stiffness and increases collagen turnover in tendons of old mice.

    PubMed

    Wood, Lauren K; Brooks, Susan V

    2016-02-01

    Increased tendon stiffness in response to mechanical loading is well established in young animals. Given that tendons stiffen with aging, we aimed to determine the effect of increased loading on tendons of old animals. We subjected 28-month-old mice to 10 weeks of uphill treadmill running; sedentary 8- and 28-month-old mice served as controls. Following training, plantaris tendon stiffness and modulus were reduced by approximately half, such that the values were not different from those of tendons from adult sedentary animals. The decrease in plantaris tendon stiffness was accompanied by a similar reduction in the levels of advanced glycation end-product protein adducts in tibialis anterior tendons of trained compared with sedentary old mice. In Achilles tendons, elevated mRNA levels for collagen type 1, matrix-metalloproteinase-8, and lysyl oxidase following training suggest that collagen turnover was likely also increased. The dramatic mechanical and structural changes induced by training occurred independent of changes in cell density or tendon morphology. Finally, Achilles tendon calcification was significantly reduced following exercise. These results demonstrate that, in response to exercise, tendons from old animals are capable of replacing damaged and dysfunctional components of extracellular matrix with tissue that is mechanically and structurally comparable to adult tissue.

  1. In vitro investigation of a tissue-engineered cell-tendon complex mimicking the transitional architecture at the ligament-bone interface.

    PubMed

    Wang, Zhibing; Zhang, Yuan; Zhu, Jie; Dong, Shiwu; Jiang, Tao; Zhou, Yue; Zhang, Xia

    2015-03-01

    Restoration of the transitional ligament-bone interface is critical for graft-bone integration. We postulated that an allogenic scaffold mimicking the fibrogenic, chondrogenic, and osteogenic transition gradients could physiologically promote ligament-bone incorporation. The aim of this study was to construct and characterize a composite tendon scaffold with a continuous and heterogeneous transition region mimicking a native ligament insertion site. Genetically modified heterogeneous cell populations were seeded within specific regions of decellularized rabbit Achilles tendons to fabricate a stratified scaffold containing three biofunctional regions supporting fibrogenesis, chondrogenesis, and osteogenesis. The observed morphology, architecture, cytocompatibility, and biomechanics of the scaffolds demonstrated their improved bio-physico-chemical properties. The formation of the transitional regions was augmented via enhanced delivery of two transcription factors, sex determining region Y-box 9 and runt-related transcription factor 2, which also triggered early up-regulated expression of cartilage- and bone-relevant markers, according to quantitative PCR and immunoblot analyses. Gradient tissue-specific matrix formation was also confirmed within the predesignated regions via histological staining and immunofluorescence assays. These results suggest that a transitional interface could be replicated on an engineered tendon through stratified tissue integration. The scaffold offers the advantages of a multitissue transition involving controlled cellular interactions and matrix heterogeneity, which can be applied for the regeneration of the ligament-bone interface.

  2. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain.

    PubMed

    Deng, Dan; Liu, Wei; Xu, Feng; Yang, Yang; Zhou, Guangdong; Zhang, Wen Jie; Cui, Lei; Cao, Yilin

    2009-12-01

    Proper cell source is one of the key issues for tendon engineering. Our previous study showed that dermal fibroblasts could be used to successfully engineer tendon in vivo and tenocytes could engineer neo-tendon in vitro with static strain. This study further investigated the possibility of engineering human neo-tendon tissue in vitro using dermal fibroblasts. Human dermal fibroblasts were seeded on polyglycolic acid (PGA) fibers pre-fixed on a U-shape as a mechanical loading group, or simply cultured in a dish as a tension-free group. In addition, human tenocytes were also seeded on PGA fibers with tension as a comparison to human dermal fibroblasts. The results showed that human neo-tendon tissue could be generated using dermal fibroblasts during in vitro culture under static strain and the tissue structure became more mature with the increase of culture time. Longitudinally aligned collagen fibers and spindle shape cells were observed histologically and collagen fibril diameter and tensile strength increased with time and reached a peak at 14 weeks. In contrast, the dermal fibroblast-PGA constructs failed to form neo-tendon, but formed disorganized fibrous tissue in tension-free condition with significantly weaker strength and poor collagen fiber formation. Interestingly, neo-tendon tissues generated with human dermal fibroblasts were indistinguishable from the counterpart engineered with human tenocytes, which supports the viewpoint that human dermal fibroblasts is likely to replace tenocytes for future tendon graft development in vitro with dynamic mechanical loading in a bioreactor system.

  3. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen.

    PubMed

    Banerjee, Pradipta; Mehta, Alka; Shanthi, C

    2014-03-25

    Many proteins have concealed regions in their amino acid sequences that when liberated or exposed by conformational changes can exhibit bioactivity. Two such cryptic bioactive peptides, C2 (with cell adhesive properties) and E1 (with cell adhesive and antioxidant properties) have been isolated from bovine tendon collagen. This investigation deals with the efficacy of these peptides in countering externally generated stress and imparting cyto-protection in mammalian cell systems. The cell survival activity was studied with two cell lines, viz., HeLa and Vero, with varying concentrations of five oxidative stress-generating agents. The activities of the peptides in supporting cell adhesion and countering stress were determined in their coated and dissolved forms. C2 and E1 coated dishes registered 8 times (p<0.01) higher rate of cell survival against oxidative stress than collagen coated dishes. E1 increased stress tolerance levels by >100 times in dissolved form and C2, by 8 times in coated form. The peptides supported faster wound closure than collagen under normal as well as stressed condition. Maximum stress tolerance was observed on C2 coated dishes in the presence of E1 in the medium suggesting that both enhanced cell adhesion and antioxidative activities significantly contribute to the cell survival during stress. The present study emphasizes that collagen peptides, apart from providing a suitable surface for cell adhesion, also confer protection to cells against oxidative stress. PMID:24434246

  4. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration.

    PubMed

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J; Zhang, Kairui; Wapner, Keith L; Soslowsky, Louis J; Horwitz, Edwin M; Enomoto-Iwamoto, Motomi

    2014-12-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers, and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous bone morphogenetic proteins or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a coreceptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair.

  5. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals.

    PubMed

    Domingues, Rui M A; Chiera, Silvia; Gershovich, Pavel; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2016-06-01

    Anisotropically aligned electrospun nanofibrous scaffolds based on natural/synthetic polymer blends have been established as a reasonable compromise between biological and biomechanical performance for tendon tissue engineering (TE) strategies. However, the limited tensile properties of these biomaterials restrict their application in this field due to the load-bearing nature of tendon/ligament tissues. Herein, the use of cellulose nanocrystals (CNCs) as reinforcing nanofillers in aligned electrospun scaffolds based on a natural/synthetic polymer blend matrix, poly-ε-caprolactone/chitosan (PCL/CHT) is reported. The incorporation of small amounts of CNCs (up to 3 wt%) into tendon mimetic nanofiber bundles has a remarkable biomaterial-toughing effect (85% ± 5%, p < 0.0002) and raises the scaffolds mechanical properties to tendon/ligament relevant range (σ = 39.3 ± 1.9 MPa and E = 540.5 ± 83.7 MPa, p < 0.0001). Aligned PCL/CHT/CNC nanocomposite fibrous scaffolds meet not only the mechanical requirements for tendon TE applications but also provide tendon mimetic extracellular matrix (ECM) topographic cues, a key feature for maintaining tendon cell's morphology and behavior. The strategy proposed here may be extended to other anisotropic aligned nanofibrous scaffolds based on natural/synthetic polymer blends and enable the full exploitation of the advantages provided by their tendon mimetic fibrous structures in tendon TE.

  6. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals.

    PubMed

    Domingues, Rui M A; Chiera, Silvia; Gershovich, Pavel; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2016-06-01

    Anisotropically aligned electrospun nanofibrous scaffolds based on natural/synthetic polymer blends have been established as a reasonable compromise between biological and biomechanical performance for tendon tissue engineering (TE) strategies. However, the limited tensile properties of these biomaterials restrict their application in this field due to the load-bearing nature of tendon/ligament tissues. Herein, the use of cellulose nanocrystals (CNCs) as reinforcing nanofillers in aligned electrospun scaffolds based on a natural/synthetic polymer blend matrix, poly-ε-caprolactone/chitosan (PCL/CHT) is reported. The incorporation of small amounts of CNCs (up to 3 wt%) into tendon mimetic nanofiber bundles has a remarkable biomaterial-toughing effect (85% ± 5%, p < 0.0002) and raises the scaffolds mechanical properties to tendon/ligament relevant range (σ = 39.3 ± 1.9 MPa and E = 540.5 ± 83.7 MPa, p < 0.0001). Aligned PCL/CHT/CNC nanocomposite fibrous scaffolds meet not only the mechanical requirements for tendon TE applications but also provide tendon mimetic extracellular matrix (ECM) topographic cues, a key feature for maintaining tendon cell's morphology and behavior. The strategy proposed here may be extended to other anisotropic aligned nanofibrous scaffolds based on natural/synthetic polymer blends and enable the full exploitation of the advantages provided by their tendon mimetic fibrous structures in tendon TE. PMID:27059281

  7. Management of chronic Achilles tendinopathy.

    PubMed

    2012-08-01

    Tendons transmit force between muscles and bones and, when stretched, store elastic energy that contributes to movement.(1) The tendinous portion of the gastrocnemius and soleus muscles merge to form the Achilles tendon, which is the largest and strongest in the body, but one of the most frequently injured.(2,3) Conservative management options for chronic Achilles tendinopathy include eccentric (lengthening) exercises, extracorporeal shockwave therapy (ESWT), topical nitroglycerin, low level laser therapy, orthoses, splints or injections (e.g. corticosteroids, hyperosmolar dextrose, polidocanol, platelet-rich plasma), while a minority of patients require surgery (using open, percutaneous or endoscopic methods).(4-8) Here we assess the management options for patients with chronic Achilles tendinopathy (lasting over 6 weeks).

  8. Tissue-engineering strategies for the tendon/ligament-to-bone insertion.

    PubMed

    Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros

    2012-01-01

    Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.

  9. Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering

    PubMed Central

    Song, Xing Hui; Zou, Xiao Hui; Wang, Lin Lin; Ouyang, Hong Wei

    2011-01-01

    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases. PMID:21713001

  10. Local biochemical and morphological differences in human Achilles tendinopathy: a case control study

    PubMed Central

    2012-01-01

    Background The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy. The expressions of growth factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and healthy tendon parts. Methods Thirty Achilles tendinopathy patients were randomized to an expression-study (n = 16) or a structural-study (n = 14). Biopsies from two areas in the Achilles tendon were taken and structural parameters: fibril density, fibril size, volume fraction of cells and the nucleus/cytoplasm ratio of cells were determined. Further gene expressions of various genes were analyzed. Results Significantly smaller collagen fibrils and a higher volume fraction of cells were observed in the tendinopathic region of the tendon. Markers for collagen and its synthesis collagen 1, collagen 3, fibronectin, tenascin-c, transforming growth factor-β fibromodulin, and markers of collagen breakdown matrix metalloproteinase-2, matrix metalloproteinase-9 and metallopeptidase inhibitor-2 were significantly increased in the tendinopathic region. No altered expressions of markers for fibrillogenesis, inflammation or wound healing were observed. Conclusion The present study indicates that an increased expression of factors stimulating the turnover of connective tissue is present in the diseased part of tendinopathic tendons, associated with an increased number of cells in the injured area as well as an increased number of smaller and thinner fibrils in the diseased tendon region. As no fibrillogenesis, inflammation or wound healing could be detected, the present data supports the notion that tendinopathy is an ongoing degenerative process. Trial registration Current Controlled Trials ISRCTN20896880 PMID:22480275

  11. Identifying factors related to Achilles tendon stress, strain, and stiffness before and after 6 months of growth in youth 10-14 years of age.

    PubMed

    Neugebauer, Jennifer M; Hawkins, David A

    2012-09-21

    The purposes of this study were (1) determine if youth peak Achilles tendon (AT) strain, peak AT stress, and AT stiffness, measured during an isometric plantar flexion, differed after six months (mos) of growth, and (2) determine if sex, physical activity level (Physical Activity Questionnaire (PAQ-C)), and/or growth rate (GR) were related to these properties. AT stress, strain, and stiffness were quantified in 20 boys (13.47±0.81 years) and 22 girls (11.18±0.82 years) at 2 times (0 and 6 mos). GR (change in height in 6 mos) was not significantly different between boys and girls (3.5±1.4 and 3.4±1.1cm/6 mos respectively). Peak AT strain and stiffness (mean 3.8±0.4% and 128.9±153.6N/mm, respectively) did not differ between testing sessions or sex. Peak AT stress (22.1±2.4 and 24.0±2.1MPa at 0 and 6 mos, respectively) did not differ between sex and increased significantly at 6 mos due to a significant decrease in AT cross-sectional area (40.6±1.3 and 38.1±1.6mm(2) at 0 and 6 mos, respectively) with no significant difference in peak AT force (882.3±93.9 and 900.3± 65.5N at 0 and 6 mos, respectively). Peak AT stress was significantly greater in subjects with greater PAQ-C scores (9.1% increase with 1 unit increase in PAQ-C score) and smaller in subjects with faster GRs (13.8% decrease with 1cm/6 mos increase in GR). These results indicate that of the AT mechanical properties quantified, none differed between sex, and only peak AT stress significantly differed after 6 months and was related to GR and physical activity.

  12. [Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand].

    PubMed

    Bíró, Vilmos

    2015-02-01

    In his literary analysis, the author describes a novel method applied in the reconstruction of flexor tendon injuries of the hand. This procedure is named tissue engineering, and it is examined mainly under experimental circumstances. After definition of the method and descriptions of literary preliminaries the author discusses the healing process of the normal tendon tissue, then development of the scaffold, an important step of tissue engineering is described. After these topics the introduction of the pluripotent mesenchymal stem cells into the scaffold, and proliferation of these cells and development of the sliding systems are presented. The mechanical resisting ability of the formed tendon tissue is also discussed. Finally, the author concludes that as long as results of experimental research cannot be successfully applied into clinical practice, well-tried tendon reconstruction operations and high quality postoperative rehabilitation are needed.

  13. Tenocyte contraction induces crimp formation in tendon-like tissue

    PubMed Central

    Holmes, David F.; Hill, Patrick; Kadler, Karl E.; Margetts, Lee

    2013-01-01

    Tendons are composed of longitudinally aligned collagen fibrils arranged in bundles with an undulating pattern, called crimp. The crimp structure is established during embryonic development and plays a vital role in the mechanical behaviour of tendon, acting as a shock absorber during loading. However, the mechanism of crimp formation is unknown, partly because of the difficulties of studying tendon development in vivo. Here we used a 3D cell culture system in which embryonic tendon fibroblasts synthesize a tendon-like construct comprised of collagen fibrils arranged in parallel bundles. Investigations using polarized light microscopy, scanning electron microscopy and fluorescence microscopy showed that tendon-constructs contained a regular pattern of wavy collagen fibrils. Tensile testing indicated that this superstructure was a form of embryonic crimp producing a characteristic toe region in the stress-strain curves. Furthermore, contraction of tendon fibroblasts was the critical factor in the buckling of collagen fibrils during the formation of the crimp structure. Using these biological data, a finite element model was built that mimics the contraction of the tendon fibroblasts and monitors the response of the ECM. The results show that the contraction of the fibroblasts is a sufficient mechanical impulse to build a planar wavy pattern. Furthermore, the value of crimp wavelength was determined by the mechanical properties of the collagen fibrils and inter-fibrillar matrix. Increasing fibril stiffness combined with constant matrix stiffness led to an increase in crimp wavelength. The data suggest a novel mechanism of crimp formation, and the finite element model indicates the minimum requirements to generate a crimp structure in embryonic tendon. PMID:21735243

  14. What We Should Know Before Using Tissue Engineering Techniques to Repair Injured Tendons: A Developmental Biology Perspective

    PubMed Central

    Liu, Chia-Feng; Aschbacher-Smith, Lindsey; Barthelery, Nicolas J.; Dyment, Nathaniel; Butler, David

    2011-01-01

    Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries. PMID:21314435

  15. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair.

    PubMed

    Yin, Zi; Chen, Xiao; Zhu, Ting; Hu, Jia-jie; Song, Hai-xin; Shen, Wei-liang; Jiang, Liu-yun; Heng, Boon Chin; Ji, Jun-feng; Ouyang, Hong-Wei

    2013-12-01

    It is reported that decellularized collagen matrices derived from dermal skin and bone have been clinically used for tendon repair. However, the varying biological and physical properties of matrices originating from different tissues may influence the differentiation of tendon stem cells, which has not been systematically evaluated. In this study, the effects of collagenous matrices derived from different tissues (tendon, bone and dermis) on the cell differentiation of human tendon stem/progenitor cells (hTSPCs) were investigated, in the context of tendon repair. It was found that all three matrices supported the adhesion and proliferation of hTSPCs despite differences in topography. Interestingly, tendon-derived decellularized matrix promoted the tendinous phenotype in hTSPCs and inhibited their osteogenesis, even under osteogenic induction conditions, through modulation of the teno- and osteolineage-specific transcription factors Scleraxis and Runx2. Bone-derived decellularized matrix robustly induced osteogenic differentiation of hTSPCs, whereas dermal skin-derived collagen matrix had no apparent effect on hTSPC differentiation. Based on the specific biological function of the tendon-derived decellularized matrix, a tissue-engineered tendon comprising TSPCs and tendon-derived matrix was successfully fabricated for Achilles tendon reconstruction. Implantation of this cell-scaffold construct led to a more mature structure (histology score: 4.08 ± 0.61 vs. 8.51 ± 1.66), larger collagen fibrils (52.2 ± 1.6 nm vs. 47.5 ± 2.8 nm) and stronger mechanical properties (stiffness: 21.68 ± 7.1 Nm m(-1) vs.13.2 ± 5.9 Nm m(-1)) of repaired tendons compared to the control group. The results suggest that stem cells promote the rate of repair of Achilles tendon in the presence of a tendinous matrix. This study thus highlights the potential of decellularized matrix for future tissue engineering applications, as well as developing a practical strategy for functional tendon

  16. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H; Snead, Malcolm L; Shi, Songtao

    2014-03-01

    Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue's very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P < 0.05). Altogether, these findings indicate that periodontal ligament and gingival tissues can be considered as suitable stem cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration.

  17. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models

    PubMed Central

    2014-01-01

    Tendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity tendon-resident cells has directed substantial research efforts towards the exploration of the therapeutic potential of various stem cells in tendon injuries and pathophysiologies. Severe injuries require the use of a stem cell carrier to enable cell localisation at the defect site. The present study describes advancements that injectable carriers, tissue grafts, anisotropically orientated biomaterials, and cell-sheets have achieved in preclinical models as stem cell carriers for tendon repair. PMID:25157898

  18. Achilles Tendinitis

    MedlinePlus

    ... the calf should be felt during the stretch. Physical Therapy. Physical therapy is very helpful in treating Achilles tendinitis. It ... will be able to return to sports activity. Physical therapy is an important part of recovery. Many patients ...

  19. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration

    PubMed Central

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-01-01

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries. PMID:24992450

  20. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration.

    PubMed

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-07-03

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries.

  1. Drug-Induced Tendon Disorders.

    PubMed

    Knobloch, Karsten

    2016-01-01

    Drug-induced tendon disorders are an often underestimated risk factor. The range from detrimental effects on the tendon include tendinopathy as well as potentially tendon rupture. As for today, four main drug classes have been reported to be associated with potentially deteriorated tendon properties: 1. Corticosteroids, 2. Chinolon antibiotics, 3. Aromatase inhbitors, 4. Statins as HMG-CoA-reductase inhibitors. Most often, the Achilles tendon is affected in terms of tendinopathy and/or subsequent tendon rupture. However, nearly every tendon of the entire body might be affected in a detrimental way by one or a combination of the aformentioned agents. PMID:27535265

  2. Salvage Flexor Hallucis Longus Transfer for a Failed Achilles Repair: Endoscopic Technique

    PubMed Central

    Gonçalves, Sérgio; Caetano, Rubén; Corte-Real, Nuno

    2015-01-01

    Flexor hallucis longus (FHL) transfer is a well-established treatment option in failed Achilles tendon (AT) repair and has been routinely performed as an open procedure. We detail the surgical steps needed to perform an arthroscopic transfer of the FHL for a chronic AT rupture. The FHL tendon is harvested as it enters in its tunnel beneath the sustentaculum tali; a tunnel is then drilled in the calcaneus as near to the AT footprint as possible. By use of a suture-passing device, the free end of the FHL is advanced to the plantar aspect of the foot. After adequate tension is applied to the construct, the tendon is fixed in place with an interference screw in an inside-out fashion. This minimally invasive approach is a safe and valid alternative to classic open procedures with the obvious advantages of preserving the soft-tissue envelope and using a biologically intact tendon. PMID:26697296

  3. Nanostructured substrate fabricated by sectioning tendon using a microtome for tissue engineering

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoshu; Xu, Qiaobing

    2011-12-01

    This paper describes an efficient and versatile method for the fabrication of nanostructured substrates from a piece of tendon which comprises aligned collagen nanofibers. We used a microtome to generate the tendon slices (10-50 µm thick), which were used as a scaffold for guiding directional cell growth. Highly aligned and uniform monolayer cells sheets were obtained. The tendon slices were used as a master, and the nanostructures outlined by the bundles of collagen nanofibers were successfully transferred onto a polystyrene film using standard soft lithography. The cell growing on the nanostructured polystyrene substrate showed good adhesion and alignment. The technique developed here enables one to fabricate nanostructured substrates without using any traditional micro/nanofabrication tools. The nanostructured substrate, e.g. a slice of tendon, has excellent biocompatibility and relatively good mechanical stability, which makes this technique useful in constructing complicated 3D tissues.

  4. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications.

    PubMed

    Youngstrom, Daniel W; Barrett, Jennifer G; Jose, Rod R; Kaplan, David L

    2013-01-01

    Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC) culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS), trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS) are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.

  5. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis.

    PubMed

    Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M

    2007-02-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, P<0.05). The collagen synthesis was unchanged in healthy tendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P<0.05), and all subjects were back playing soccer following the eccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a

  6. Tendon Innervation.

    PubMed

    Ackermann, Paul W; Salo, Paul; Hart, David A

    2016-01-01

    The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1 ).Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:27535247

  7. Gastrocnemius myotendinous flap for patellar or quadriceps tendon repair, or both.

    PubMed

    Rhomberg, M; Schwabegger, A H; Ninkovic, M; Bauer, T; Ninkovic, M

    2000-08-01

    The authors' experience with simultaneous reconstruction of the quadriceps femoris or patellar tendon or both and soft tissue defect using a musculotendinous unit of the gastrocnemius muscle is presented. Five patients with a partial or complete defect of the quadriceps or patellar tendon or both and additional large soft tissue defects underwent reconstruction applying this technique as a one-stage surgical procedure in different variations. In cases with a partial defect of the tendon or loss of tendon thickness, the thick aponeurosis from the deeper aspect of the gastrocnemius was dissected and transferred as a pedicled tendon flap to reconstruct the tendon defect. In cases with a complete defect of the tendon, the superficial layer of the Achilles tendon together with the deep aponeurotic layer of the gastrocnemius muscle served to reconstruct the tendon. In both procedures the gastrocnemius muscle belly provided soft tissue coverage and was covered with a split thickness skin graft. One patient had a marginal deep necrosis develop that had to be covered with the other gastrocnemius muscle in a second operation. One patient with chronic polyarthritis and infection of his knee prosthesis declined additional reconstruction surgery and had the leg amputated. The average followup was 3.5 years. All patients achieved good results in active extension of the knee with an extension deficit of only 5 degrees to 15 degrees. The range of flexion was at least 90 degrees. The surgical technique described in this report provides functional tendon reconstruction and adequate soft tissue repair simultaneously.

  8. Release of Tensile Strain on Engineered Human Tendon Tissue Disturbs Cell Adhesions, Changes Matrix Architecture, and Induces an Inflammatory Phenotype

    PubMed Central

    Bayer, Monika L.; Schjerling, Peter; Herchenhan, Andreas; Zeltz, Cedric; Heinemeier, Katja M.; Christensen, Lise; Krogsgaard, Michael; Gullberg, Donald; Kjaer, Michael

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors showed a contrasting response with a clear drop in integrin subunit α11 mRNA and protein expression, and an increase in α2 integrin mRNA and protein levels. Further, specific markers for tendon cell differentiation declined and normal tendon architecture was disturbed, whereas pro-inflammatory molecules were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads to a decrease in phenotypical markers for tendon, while expression of pro-inflammatory mediators is induced. PMID:24465881

  9. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    PubMed

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y

    2013-07-01

    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft.

  10. HGF mediates the anti-inflammatory effects of PRP on injured tendons.

    PubMed

    Zhang, Jianying; Middleton, Kellie K; Fu, Freddie H; Im, Hee-Jeong; Wang, James H-C

    2013-01-01

    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2.

  11. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model.

    PubMed

    Webb, William R; Dale, Tina P; Lomas, Alex J; Zeng, Guodong; Wimpenny, Ian; El Haj, Alicia J; Forsyth, Nicholas R; Chen, Guo-Qiang

    2013-09-01

    Tendon injuries and defects present a substantial burden to global healthcare economies. There are no synthetic/biosynthesised implants available which can restore full function or match the mechanical properties of native tendon. Therefore, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) was investigated for its utility as a scaffold in a rat Achilles tendon repair model. Porous PHBHHx tubes and fibres were prepared with particle leaching and extrusion methods, respectively. Collagen gels reinforced by polymer fibres were inserted into the lumen of scaffold tubes to create the operational scaffold unit. Mechanical testing demonstrated that PHBHHx scaffolds had comparable mechanical properties to rat tendon, with maximal loads of 23.73 ± 1.08 N, compared to 17.35 ± 1.76 N in undamaged rat Achilles tendon. Sprague-Dawley (SD) rats were split into four experimental groups: control, PHBHHx scaffold only, PHBHHx scaffold and collagen, PHBHHx scaffold, collagen and tenocyte compositions for implantation to repair an induced Achilles tendon defect. No secondary immune response to PHBHHx was observed over a 40 days period of implantation. Movement was restored in PHBHHx scaffold-collagen-tenocyte recipient rats at an earlier time point than in other experimental groups, with complete load-bearing and function returning 20 days post-surgery as determined by the Achilles Functional Index. In vitro testing of tendon constructs after 40 days demonstrated reductions in PHBHHx molecular weight and polydispersity index accompanied by an increase in mean chain length indicating degradation of smaller polymer chain subunits. Similarly a reduction in PHBHHx tube ultimate tensile strength and elastic modulus was observed. Histological analysis provided evidence of tissue remodelling and cell alignment. In summary, PHBHHx scaffolds have been successfully applied in an in vivo tendon repair model raising promise for future utility in tissue engineering applications.

  12. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering.

    PubMed

    Kim, Beob Soo; Kim, Eun Ji; Choi, Ji Suk; Jeong, Ji Hoon; Jo, Chris Hyunchul; Cho, Yong Woo

    2014-11-01

    The natural tendon-to-bone region has a gradient in structure and composition, which is translated into a spatial variation of chemical, physical, and biological properties. This unique transitional tissue between bone and tendon is not normally recreated during natural bone-to-tendon healing. In this study, we have developed a human collagen-based multilayer scaffold mimicking the tendon-to-bone region. The scaffold consists of four different layers with the following composition gradient: (a) a tendon layer composed of collagen; (b) an uncalcified fibrocartilage layer composed of collagen and chondroitin sulfate; (c) a calcified fibrocartilage layer composed of collagen and less apatite; (d) a bone layer composed of collagen and apatite. The chemical, physical, and mechanical properties of the scaffold were characterized by a scanning electron microscope, porosimeter, universal tensile machine, Fourier transform infrared spectrometer, energy dispersive X-ray analysis apparatus, and thermogravimetric analysis apparatus. The multilayer scaffold provided a gradual transition of the physical, chemical, and mechanical environment and supported the adhesion and proliferation of human fibroblasts, chondrocytes, and osteoblasts toward each corresponding matrix. Overall, our results suggest the feasibility of a human collagen-based multilayer scaffold for regeneration of hard-to-soft interface tissues.

  13. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    SciTech Connect

    Zhang, Kairui; Zhang, Sheng; Li, Qianqian; Yang, Jun; Dong, Weiqiang; Wang, Shengnan; Cheng, Yirong; Al-Qwbani, Mohammed; Wang, Qiang; Yu, Bin

    2014-07-18

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.

  14. Human flexor tendon tissue engineering: revitalization of biostatic allograft scaffolds.

    PubMed

    Woon, Colin Y L; Farnebo, Simon; Schmitt, Taliah; Kraus, Armin; Megerle, Kai; Pham, Hung; Yan, Xinrui; Gambhir, Sanjiv S; Chang, James

    2012-12-01

    Cadaveric tendon allografts form a readily available and underutilized source of graft material. Because of their material properties, allografts are biomechanically and biologically superior to synthetic scaffolds. However, before clinical use, allografts must undergo decellularization to reduce immunogenicity and oxidation to increase porosity, leaving a nonvital biostatic scaffold. Ex vivo seeding, or revitalization, is thought to hasten graft incorporation and stimulate intrinsic tendon healing, permitting early mobilization and return to function. In this study, we examined physical and biochemical augmentation methods, including scaffold surface scoring (physical) and rehydration of lyophilized scaffolds in serum (biochemical). Scaffolds were divided into four groups: (1) scored scaffolds, (2) lyophilized scaffolds rehydrated in fetal calf serum (FCS), (3) scaffolds both scored and rehydrated in FCS, and (4) control scaffolds. Scaffolds were reseeded with adipose-derived stem cells (ADSCs). Reseeding efficacy was quantified by a live cell and total cell assays and qualified histologically with hematoxylin and eosin, live/dead and SYTO green nucleic acid stains, TUNEL apoptosis stains, procollagen stains, and transmission electron microscopy. Scaffold-seeded cell viability at up to 2 weeks in vitro and up to 4 weeks in vivo was demonstrated with bioluminescent imaging of scaffolds seeded with luciferase-positive ADSCs. The effect of seeding on scaffold biomechanical properties was demonstrated with evaluation of ultimate tensile stress (UTS) and an elastic modulus (EM). We found that scaffold surface scoring led to an increase in live and total cell attachment and penetration (MTS assay, p<0.001 and DNA assay, p=0.003, respectively). Histology confirmed greater total cell number in both construct core and surface in scored compared with unscored constructs. Cells reseeded on scored constructs displayed reduced apoptosis, persistent procollagen production, and

  15. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    PubMed

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  16. Is tendon stiffness correlated to the dissipation coefficient?

    PubMed

    Fouré, A; Cornu, C; Nordez, A

    2012-01-01

    The assessment of Achilles tendon mechanical properties in vivo has received much attention in the literature. Many studies investigated mechanical properties by assessing tendon stiffness. Despite tendon dissipative properties being representative of a storage-recoil process, its determination has received minimal attention in the literature. The aim of this study was to determine if Achilles tendon stiffness is associated with dissipative properties. The cross-sectional area, stiffness and dissipation coefficient of the Achilles tendon were measured in 35 subjects. No significant correlation was found between stiffness and the dissipation coefficient, irrespective of stiffness normalization with cross-sectional area (P > 0.05). Thus, it appears that both stiffness and dissipative properties must be assessed to determine the storage-recoil process capacities of the Achilles tendon in order to precisely characterize changes in the tendon mechanical properties after chronic interventions or rehabilitation programs.

  17. Elastographic characteristics of the metacarpal tendons in horses without clinical evidence of tendon injury.

    PubMed

    Lustgarten, Meghann; Redding, W Rich; Labens, Raphael; Morgan, Michel; Davis, Weston; Seiler, Gabriela S

    2014-01-01

    Tendon and ligament injuries are common causes of impaired performance in equine athletes. Gray-scale ultrasonography is the current standard method for diagnosing and monitoring these injuries, however this modality only provides morphologic information. Elastography is an ultrasound technique that allows detection and measurement of tissue strain, and may provide valuable mechanical information about equine tendon and ligament injuries. The purpose of this study was to determine the feasibility, reproducibility, and repeatability of elastography; and to describe elastographic characteristics of metacarpal tendons in sound horses. Nineteen legs for 17 clinically sound horses without evidence of musculoskeletal pathology were included. Elastographic images of the superficial and deep digital flexor tendons and the branches of the suspensory ligament (tendon of the interosseous muscle) were described quantitatively and qualitatively. There was no statistically significant difference between operators (P = 0.86) nor within operators (P = 0.93). For qualitative assessments, reproducibility (0.46) was moderate and repeatability (0.78) was good. Similar to human Achilles tendons, equine tendons were classified as predominantly hard using elastography. There was no statistically significant difference in stiffness of the flexor tendons (P = 0.96). No significant difference in stiffness was found with altered leg position during standing (P = 0.84) and while nonweight bearing (P = 0.61). The flexor tendons were softer when imaged in longitudinal versus transverse planes (P < 0.01) however, the suspensory branches were not (P = 0.67). Findings supported future clinical application of elastography as a noninvasive "stall-side" imaging modality for evaluation of the tendons and ligaments of the distal forelimb in horses.

  18. Parameter maps of 1H residual dipolar couplings in tendon under mechanical load

    NASA Astrophysics Data System (ADS)

    Fechete, R.; Demco, D. E.; Blümich, B.

    2003-11-01

    Proton multipolar spin states associated with dipolar encoded longitudinal magnetization (DELM) and double-quantum (DQ) coherences of bound water are investigated for bovine and sheep Achilles tendon under mechanical load. DELM decay curves and DQ buildup and decay curves reveal changes of the 1H residual dipolar couplings for tendon at rest and under local compression forces. The multipolar spin states are used to design dipolar contrast filters for NMR 1H images of heterogeneous tendon. Heterogeneities in tendon samples were artificially generated by local compression parallel and perpendicular to the tendon plug axis. Quotient images obtained from DQ-filtered images by matched and mismatched excitation/reconversion periods are encoded only by the residual dipolar couplings. Semi-quantitative parameter maps of the residual dipolar couplings of bound water were obtained from these quotient images using a reference elastomer sample. This method can be used to quantify NMR imaging of injured ordered tissues.

  19. Reduction in tendon elasticity from unloading is unrelated to its hypertrophy.

    PubMed

    Kinugasa, Ryuta; Hodgson, John A; Edgerton, V Reggie; Shin, David D; Sinha, Shantanu

    2010-09-01

    Tendinous tissues respond to chronic unloading with adaptive changes in mechanical, elastic, and morphological properties. However, little is known about the changes in the detailed structures of the entire tendinous tissue and whether the change in tendon stiffness is related to morphology. We investigated changes in dimensional (volume, cross-sectional area, segmented lengths) and elastic (Young's modulus) properties of the Achilles tendon and distal aponeurosis in response to chronic unilateral lower limb suspension (ULLS) using velocity encoded phase contrast (VE-PC) and three-dimensional morphometric magnetic resonance imaging (MRI). Five healthy subjects underwent ULLS for 4 wk. Axial morphometric MRI was acquired along the entire length from the calcaneous to the medial gastrocnemius insertion. An oblique sagittal VE-PC MRI was also acquired. The Young's modulus could be calculated from this cine dynamic sequence of velocity encoded images from the slope of the stress-strain curve during the submaximal isometric plantar flexion. After 4 wk of ULLS, we found significant (46.7%) decrease in maximum plantar flexion torque. The total volumes of entire tendinous tissue (determined as the sum of the Achilles tendon and distal aponeurosis) increased significantly by 6.4% (11.9 vs. 12.7 ml) after ULLS. In contrast, Young's modulus decreased significantly by 10.4% (211.7 vs. 189.6 MPa) for the Achilles tendon and 29.0% for the distal aponeurosis (158.8 vs. 113.0 MPa) following ULLS. There was no significant correlation between relative change in volume and Young's modulus with 4 wk of ULLS. It is suggested that, although tendon hypertrophy can be expected to adversely affect tendon stiffness, the absence of any significant correlation between the magnitude of tendon hypertrophy and reduced Young's modulus indicates that dimensional factors were not critical to the elastic properties.

  20. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering

    PubMed Central

    Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast–deposited extracellular matrix and MC 3T3 osteoblast–deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold. PMID:25383167

  1. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering.

    PubMed

    Cooper, Jared O; Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast-deposited extracellular matrix and MC 3T3 osteoblast-deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold.

  2. Development of a reinforced electrochemically aligned collagen bioscaffold for tendon tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Uquillas Paredes, Jorge Alfredo

    Type-I collagen is a promising biomaterial that can be used to synthesize bioscaffolds as a strategy to regenerate and repair damaged tendons. The existing in vitro prepared collagen bioscaffolds are in the form of gels, foams, or extruded fibers. These bioscaffolds readily present sites for attachment of biological factors and cells; however, they have extremely poor biomechanical properties in comparison to the properties of native tendons. The biomechanical function of type-I collagen bioscaffolds needs to be elevated to the level of natural tissues for this biomaterial to replace mechanically challenged tendons in a functionally meaningful way. The overall goal of this dissertation is to develop a reinforced electrochemically aligned collagenous bioscaffold for applications in tendon tissue engineering. The bioscaffold is synthesized by a unique electrochemical process via isoelectric focusing (IEF) to attain a very high degree of molecular alignment and packing density. This dissertation presents progress made on four aims: A) development of simple and descriptive electrochemical theory via the mathematical model of IEF and the forces acting on collagen alignment under an electric field; B) optimization of the post-alignment PBS treatment step to achieve d- banding pattern in uncrosslinked electrochemically aligned collagen (ELAC) bioscaffolds; C) optimization of the best crosslinking protocol to produce the strongest possible ELAC biomaterial with excellent cellular compatibility; and D) in vivo evaluation of the biocompatibility and biodegradability properties of electronically aligned collagen bioscaffolds. The results of this dissertation provide strong evidence showing that reinforced ELAC bioscaffolds could be used clinically in the future to repair damaged tendons.

  3. Repetitive differential finger motion increases shear strain between the flexor tendon and subsynovial connective tissue.

    PubMed

    Tat, Jimmy; Kociolek, Aaron M; Keir, Peter J

    2013-10-01

    Non-inflammatory fibrosis and thickening of the subsynovial connective tissue (SSCT) are characteristic in carpal tunnel syndrome (CTS) patients. These pathological changes have been linked to repetitive hand tasks that create shear forces between the flexor tendons and SSCT. We measured the relative motion of the flexor digitorum superficialis tendon and SSCT during two repetitive finger tasks using color Doppler ultrasound. Twelve participants performed flexion-extension cycles for 30 min with the long finger alone (differential movement) and with all four fingers together (concurrent movement). Shear strain index (SSI, a relative measure of excursion in flexion and extension) and maximum velocity ratio (MVR, the ratio of SSCT versus tendon during flexion and extension) were used to represent shear. A linear effect of exertion time was significant and corresponded with larger tendon shear in differential motion. The flexion SSI increased 20.4% from the first to the 30th minute, while MVR decreased 8.9% in flexion and 8.7% in extension. No significant changes were found during concurrent motion. These results suggest that exposure to repetitive differential finger tasks may increase the risk of shear injury in the carpal tunnel.

  4. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering

    PubMed Central

    Caliari, Steven R.; Ramirez, Manuel A.; Harley, Brendan A.C.

    2014-01-01

    Current tissue engineering approaches for tendon defects require improved biomaterials to balance microstructural and mechanical design criteria. Collagen-glycosaminoglycan (CG) scaffolds have shown considerable success as in vivo regenerative templates and in vitro constructs to study cell behavior. While these scaffolds possess many advantageous qualities, their mechanical properties are typically orders of magnitude lower than orthopedic tissues such as tendon. Taking inspiration from mechanically efficient core–shell composites in nature such as plant stems and porcupine quills, we have created core–shell CG composites that display high bioactivity and improved mechanical integrity. These composites feature integration of a low density, anisotropic CG scaffold core with a high density, CG membrane shell. CG membranes were fabricated via an evaporative process that allowed separate tuning of membrane thickness and elastic moduli and were found to be isotropic in-plane. The membranes were then integrated with an anisotropic CG scaffold core via freeze-drying and subsequent crosslinking. Increasing the relative thickness of the CG membrane shell was shown to increase composite tensile elastic modulus by as much as a factor of 36 in a manner consistent with predictions from layered composites theory. CG scaffold-membrane composites were found to support tendon cell viability, proliferation, and metabolic activity in vitro, suggesting they maintain sufficient permeability while demonstrating improved mechanical strength. This work suggests an effective, biomimetic approach for balancing strength and bioactivity requirements of porous scaffolds for tissue engineering. PMID:21880362

  5. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering.

    PubMed

    Caliari, Steven R; Ramirez, Manuel A; Harley, Brendan A C

    2011-12-01

    Current tissue engineering approaches for tendon defects require improved biomaterials to balance microstructural and mechanical design criteria. Collagen-glycosaminoglycan (CG) scaffolds have shown considerable success as in vivo regenerative templates and in vitro constructs to study cell behavior. While these scaffolds possess many advantageous qualities, their mechanical properties are typically orders of magnitude lower than orthopedic tissues such as tendon. Taking inspiration from mechanically efficient core-shell composites in nature such as plant stems and porcupine quills, we have created core-shell CG composites that display high bioactivity and improved mechanical integrity. These composites feature integration of a low density, anisotropic CG scaffold core with a high density, CG membrane shell. CG membranes were fabricated via an evaporative process that allowed separate tuning of membrane thickness and elastic moduli and were found to be isotropic in-plane. The membranes were then integrated with an anisotropic CG scaffold core via freeze-drying and subsequent crosslinking. Increasing the relative thickness of the CG membrane shell was shown to increase composite tensile elastic modulus by as much as a factor of 36 in a manner consistent with predictions from layered composites theory. CG scaffold-membrane composites were found to support tendon cell viability, proliferation, and metabolic activity in vitro, suggesting they maintain sufficient permeability while demonstrating improved mechanical strength. This work suggests an effective, biomimetic approach for balancing strength and bioactivity requirements of porous scaffolds for tissue engineering.

  6. IMPROVEMENT OF TENDON REPAIR USING MUSCLE GRAFTS TRANSDUCED WITH TGF-β1 cDNA

    PubMed Central

    Majewski, Martin; Porter, Ryan M.; Betz, Oliver B.; Betz, Volker M.; Clahsen, Harald; Flückiger, Rudolf; Evans, Christopher H.

    2015-01-01

    Tendon rupture is a common injury. Inadequate endogenous repair often leaves patients symptomatic, with tendons susceptible to re-rupture. Administration of certain growth factors improves tendon healing in animal models, but their delivery remains a challenge. Here we evaluated the delivery of TGF-β1 to tendon defects by the implantation of genetically modified muscle grafts. Rat muscle biopsies were transduced with recombinant adenovirus encoding TGF-β1 and grafted onto surgically transected Achilles tendons in recipient animals. Tissue regenerates were compared to those of controls by biomechanical testing as well as histochemical and immunohistochemical analyses. Healing was greatly accelerated when genetically modified grafts were implanted into tendon defects, with the resulting repair tissue gaining nearly normal histological appearance as early as 2 weeks postoperatively. This was associated with decreased deposition of type III collagen in favour of large fibre bundles indicative of type I collagen. These differences in tendon composition coincided with accelerated restoration of mechanical strength. Tendon thickness increased in gene-treated animals at weeks 1 and 2, but by week 8 became significantly lower than that of controls suggesting accelerated remodelling. Thus localised TGF-β1 delivery via adenovirus-modified muscle grafts improved tendon healing in this rat model and holds promise for clinical application. PMID:22354460

  7. IL-1β Irreversibly Inhibits Tenogenic Differentiation and Alters Metabolism In Injured Tendon-Derived Progenitor Cells In Vitro

    PubMed Central

    Zhang, Kairui; Asai, Shuji; Yu, Bin; Enomoto-Iwamoto, Motomi

    2015-01-01

    Tendon injuries are common, and the damaged tendon often turns into scar tissue and never completely regains the original biomechanical properties. Previous studies have reported that the mRNA levels of inflammatory cytokines such as IL-1β are remarkably up-regulated in injured tendons. To examine how IL-1β impacts tendon repair process, we isolated the injured tendon-derived progenitor cells (inTPCs) from mouse injured Achilles tendons and studied the effects of IL-1β on the inTPCs in vitro. IL-1β treatment strongly reduced expression of tendon cell markers such as scleraxis and tenomodulin, and also down-regulated gene expression of collagen 1, collagen 3, biglycan and fibromodulin in inTPCs. Interestingly, IL-1β stimulated lactate production with increases in hexokinase II and lactate dehydrogenase expression and a decrease in pyruvate dehydrogenase. Inhibition of lactate production restored IL-1β-induced down-regulation of collagen1 and scleraxis expression. Furthermore, IL-1β significantly inhibited adipogenic, chondrogenic and osteogenic differentiation of inTPCs. Interestingly, inhibition of tenogenic and adipogenic differentiation was not recovered after removal of IL-1β while chondrogenic and osteogenic differentiation abilities were not affected. These findings indicate that IL-1β strongly and irreversibly impairs tenogenic potential and alters glucose metabolism in tendon progenitors appearing in injured tendons. Inhibition of IL-1β may be beneficial for maintaining function of tendon progenitor cells during the tendon repair process. PMID:26051275

  8. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering.

    PubMed

    Yang, Chengwei; Deng, Guoying; Chen, Weiming; Ye, Xiaojian; Mo, Xiumei

    2014-10-01

    An electrospun-aligned nanoyarn-reinforced nanofibrous scaffold (NRS) was developed for tendon tissue engineering to improve mechanical strength and cell infiltration. The novel scaffold composed of aligned nanoyarns and random nanofibers was fabricated via electrospinning using a two-collector system. The aim of the present study was to investigate three different types of electrospun scaffolds (random nanofibrous scaffold, aligned nanofibrous scaffold and NRS) based on silk fibroin (SF) and poly(l-lactide-co-caprolactone) blends. Morphological analysis demonstrated that the NRS composed of aligned nanoyarns and randomly distributed nanofibers formed a 3D microstructure with relatively large pore sizes and high porosity. Biocompatibility analysis revealed that bone marrow-derived mesenchymal stem cells exhibited a higher proliferation rate when cultured on the NRS compared with the other scaffolds. The mechanical testing results indicated that the tensile properties of the NRS were reinforced in the direction parallel to the nanoyarns and satisfied the mechanical requirements for tendon repair. In addition, cell infiltration was significantly enhanced on the NRS. In conclusion, with its improved porosity and appropriate mechanical properties, the developed NRS shows promise for tendon tissue engineering applications.

  9. A tale of 2 tissues: the overlapping role of scleraxis in tendons and the heart.

    PubMed

    Czubryt, Michael P

    2014-09-01

    Tissue integrity in the face of external physical forces requires the production of a strong extracellular matrix (ECM) composed primarily of the protein collagen. Tendons and the heart both withstand large and changing physical forces, and emerging evidence suggests that the transcription factor scleraxis plays a central role in responding to these forces by directly regulating the production of ECM components and (or) by determining the fate of matrix-producing cell types. Thus, despite the highly disparate inherent nature of these tissues, a common response mechanism may exist to govern the development, growth, and remodeling of the ECM in response to external force. PMID:25083735

  10. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    PubMed

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells.

  11. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    PubMed

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  12. Monitoring the effect of magnetically aligned collagen scaffolds on tendon tissue engineering by PSOCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Ahearne, Mark; Wimpenny, Ian; Torbet, Jim

    2009-02-01

    As the repair of injured or degenerated tendon is often compromised by the shortage of suitable donor tissue, other procedures need to be developed. The application of a functional tissue engineered tendon could prove to be a promising alternative therapy. Due to their good biocompatibility, collagen hydrogel based scaffolds have been considered to be potentially suitable for engineering tendon tissue in vitro. One of the major limitations of collagen hydrogels for engineering tissues is the difficulty in controlling their architecture and collagen concentration which results in poor mechanical strength. This study aims to overcome these limitations by creating a highly biocompatible scaffold that is both mechanically robust and aligned. Collagen fibers were pre-aligned under a high magnetic field then concentrated using plastic compression. Primary tenocytes cultured from rats were seeded on the aligned scaffolds. Following a protocol in public domain, thick cultured collagen constructs were rolled up into a spiral after undergoing plastic compressed. Both a light microscopy and a polarization sensitive optical coherence tomography (PSOCT) with central beam at 1300 nm were used to monitor the birefringence in the constructs. Conventional light microscopy showed that the tenocytes aligned along the pre-organized collagen bundles in contrast to the random distributed observed on unaligned scaffolds. PSOCT only revealed weak birefringence from aligned but uncompressed constructs. However, PSOCT images showed contrast band structures in the spiral constructs which suggests that the birefringence signal depends on the density of aligned collagen fibers. The effect of aligned cells, neo-formed matrix and the plastic compression on the birefringence signals are discussed in this paper briefly.

  13. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease

    PubMed Central

    Millar, Neal L.; Gilchrist, Derek S.; Akbar, Moeed; Reilly, James H.; Kerr, Shauna C.; Campbell, Abigail L.; Murrell, George A. C.; Liew, Foo Y.; Kurowska-Stolarska, Mariola; McInnes, Iain B.

    2015-01-01

    MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury. PMID:25857925

  14. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-01-01

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon. PMID:25415472

  15. In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering.

    PubMed

    Qiu, Yiwei; Wang, Xiao; Zhang, Yaonan; Carr, Andrew J; Zhu, Liwei; Xia, Zhidao; Sabokbar, Afsie

    2016-03-01

    In order to examine the differentiation potential of the tenocytes expanded in our defined culture medium (reported previously) and the effect of sequential combination of the two culture conditions on human tenocytes, a two-dimensional and three-dimensional experimental approach was used. Human tenocytes were sequentially exposed to 1% fetal bovine serum (FBS) + 50 ng/ml platelet-derived growth factor-BB (PDGFBB ) + 50 ng/ml basic fibroblast growth factor (bFGF) for the first 14 days (expansion phase) followed by a further 14-day culture in the presence of 10 ng/ml transforming growth factor β-3 plus 50 ng/ml insulin-like growth factor 1, but in the absence of serum (differentiation phase). The results showed that by sequential treatment of human tenocytes maintaining a long-term two-dimensional tenocyte culture in vitro for up to 28 days was possible. These findings were further verified using a three-dimensional scaffold (Bombyx silk) whereby the tendon-like constructs formed resembled macroscopically and microscopically the constructs formed in 10% FBS supplemented culture media and the human hamstring tendon. These findings were further substantiated using haematoxylin and eosin staining, scanning electron microscopy and by immunohistochemical detection of type I collagen. In addition, the mechanical properties of the three-dimensional constructs were determined to be significantly superior to that of the natural human hamstring tendon. This is the first report to demonstrate a possible approach in expanding and differentiating human tenocytes for tendon tissue engineering.

  16. Muscle and tendon connective tissue adaptation to unloading, exercise and NSAID.

    PubMed

    Dideriksen, Kasper

    2014-04-01

    The extracellular matrix network of skeletal muscle and tendon connective tissue is primarily composed of collagen and connects the muscle contractile protein to the bones in the human body. The mechanical properties of the connective tissue are important for the effectiveness of which the muscle force is transformed into movement. Periods of unloading and exercise affect the synthesis rate of connective tissue collagen protein, whereas only sparse information exits regarding collagen protein degradation. It is likely, though, that changes in both collagen protein synthesis and degradation are required for remodeling of the connective tissue internal structure that ultimately results in altered mechanical properties of the connective tissue. Both unloading and exercise lead to increased production of growth factors and inflammatory mediators that are involved in connective tissue remodeling. Despite the fact that non-steroidal anti-inflammatory drugs seem to inhibit the healing process of connective tissue and the stimulating effect of exercise on connective tissue protein synthesis, these drugs are often consumed in relation to connective tissue injury and soreness. However, the potential effect of non-steroidal anti-inflammatory drugs on connective tissue needs further investigation.

  17. Towards an ideal polymer scaffold for tendon/ligament tissue engineering

    NASA Astrophysics Data System (ADS)

    Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok

    2005-04-01

    Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.

  18. Failure modes and fracture toughness in partially torn ligaments and tendons.

    PubMed

    Von Forell, Gregory A; Hyoung, Peter S; Bowden, Anton E

    2014-07-01

    Ligaments and tendons are commonly torn during injury, yet the likelihood that untreated initial tears could lead to further tearing or even full rupture has proven challenging to predict. In this work, porcine Achilles tendon and human anterior longitudinal ligament samples were tested using both standard fracture toughness methods and complex loading conditions. Failure modes for each of 14 distinct testing cases were evaluated using a total of 131 soft tissue tests. Results showed that these soft tissues were able to completely resist any further crack propagation of an initial tear, regardless of fiber orientation or applied loading condition. Consequently, the major concern for patients with tendon or ligament tears is likely not reduction in ultimate tissue strength due to stress risers at the tip of the tear, but rather a question of whether or not the remaining cross-section is large enough to support the anticipated loading.

  19. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    PubMed

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation.

  20. On muscle, tendon and high heels.

    PubMed

    Csapo, R; Maganaris, C N; Seynnes, O R; Narici, M V

    2010-08-01

    Wearing high heels (HH) places the calf muscle-tendon unit (MTU) in a shortened position. As muscles and tendons are highly malleable tissues, chronic use of HH might induce structural and functional changes in the calf MTU. To test this hypothesis, 11 women regularly wearing HH and a control group of 9 women were recruited. Gastrocnemius medialis (GM) fascicle length, pennation angle and physiological cross-sectional area (PCSA), the Achilles' tendon (AT) length, cross-sectional area (CSA) and mechanical properties, and the plantarflexion torque-angle and torque-velocity relationships were assessed in both groups. Shorter GM fascicle lengths were observed in the HH group (49.6+/-5.7 mm vs 56.0+/-7.7 mm), resulting in greater tendon-to-fascicle length ratios. Also, because of greater AT CSA, AT stiffness was higher in the HH group (136.2+/-26.5 N mm(-1) vs 111.3+/-20.2 N mm(-1)). However, no differences in the GM PCSA to AT CSA ratio, torque-angle and torque-velocity relationships were found. We conclude that long-term use of high-heeled shoes induces shortening of the GM muscle fascicles and increases AT stiffness, reducing the ankle's active range of motion. Functionally, these two phenomena seem to counteract each other since no significant differences in static or dynamic torques were observed. PMID:20639419

  1. Tendon transfers for the drop foot.

    PubMed

    Schweitzer, Karl M; Jones, Carroll P

    2014-03-01

    The paralytic drop foot represents a challenging problem for even the most experienced orthopedic surgeon. Careful patient selection, thorough preoperative examination and planning, and application of tendon transfer biomechanical and physiologic principles outlined in this article can lead to successful results, either through a posterior tibialis tendon transfer, Bridle transfer, or variations on these procedures. Achilles lengthening or gastrocnemius recession may also be needed at the time of tendon transfer. PMID:24548510

  2. Treatment of Tendon Injuries of the Lower Limb with Growth Factors Associated with Autologous Fibrin Scaffold or Collagenous Scaffold.

    PubMed

    Giannotti, Stefano; Dell'Osso, Giacomo; Bottai, Vanna; Ghilardi, Marco; Bugelli, Giulia; Lazzerini, Ilaria; Guido, Giulio

    2015-05-01

    Tendon injuries are an increasing problem in orthopedics as we are faced with a growing demand in sports and recreation and an aging population. Tendons have poor spontaneous regenerative capacity, and often, complete recovery after injury is not achieved. Once injured, tendons do not completely re-acquire the biological and biomechanical properties of normal tendons due to the formation of adhesions and scarring, and often these abnormalities in the arrangement and structure are risk factors for re-injury. These problems associated with the healing of tendon injuries are a challenge for clinicians and surgeons. This study examined 9 cases of subcutaneous injuries including quadriceps tendon (2 cases), patellar tendon (1 case), and Achilles tendon (6 cases), incomplete and complete, treated consecutively. The surgical technique has provided, as appropriate, the termino-terminal tenorraphy, techniques of plastics of rotation flap, reinsertion with suture anchors, and in one case tendon augmentation with cadaver tissue. In cases where we needed mechanical support to the suture, we used preloaded growth factors on porcine collagen scaffold; in cases where we needed only one biological support, we used fibrin scaffold. PMID:26055027

  3. Contribution of glycosaminoglycans to the microstructural integrity of fibrillar and fiber crimps in tendons and ligaments.

    PubMed

    Franchi, Marco; De Pasquale, Viviana; Martini, Désirée; Quaranta, Marilisa; Macciocca, Maria; Dionisi, Alessio; Ottani, Vittoria

    2010-10-01

    The biomechanical roles of both tendons and ligaments are fulfilled by the extracellular matrix of these tissues. In particular, tension is mainly transmitted and resisted by protein (collagen, elastin) fibers, whereas compression is opposed by water-soluble glycosaminoglycans (GAGs). GAGs spanning the interfibrillar spaces and interacting with fibrils through the interfibrillar proteoglycans also seem to play a part in transmitting and resisting tensile stresses. Both tendons and ligaments showing similar composition, but different functional roles and collagen array, exhibit periodic undulations of collagen fibers or crimps. Each crimp is composed of many knots of each single fibril or fibrillar crimps. Fibrillar and fiber crimps play a mechanical role in absorbing the initial loading during elongation of both tendons and ligaments, and in recoiling fibrils and fibers when tissues have to return to their original length. This study investigated whether GAGs covalently attached to proteoglycan core proteins directly affect the 3D microstructural integrity of fibrillar crimp regions and fiber crimps in both tendons and ligaments. Achilles tendons and medial collateral ligaments of the knee from eight female Sprague-Dawley rats (90 days old) incubated in a chondroitinase ABC solution to remove GAGs were observed under a scanning electron microscope (SEM). In addition, isolated fibrils of these tissues obtained by mechanical disruption were analyzed by a transmission electron microscope (TEM). Both Achilles tendons and medial collateral ligaments of the rats after chemical or mechanical removal of GAGs still showed crimps and fibrillar crimps comparable to tissues with a normal GAG content. All fibrils in the fibrillar crimp region always twisted leftwards, thus changing their running plane, and then sharply bent, changing their course on a new plane. These data suggest that GAGs do not affect structural integrity or fibrillar crimp functions that seem mainly related

  4. Clinical commentary of the evolution of the treatment for chronic painful mid-portion Achilles tendinopathy

    PubMed Central

    Alfredson, Håkan

    2015-01-01

    The chronic painful Achilles tendon mid-portion was for many years, and still is in many countries, treated with intratendinous revision surgery. However, by coincidence, painful eccentric calf muscle training was tried, and it showed very good clinical results. This finding was unexpected and led to research into the pain mechanisms involved in this condition. Today we know that there are very few nerves inside, but multiple nerves outside, the ventral side of the chronic painful Achilles tendon mid-portion. These research findings have resulted in new treatment methods targeting the regions with nerves outside the tendon, methods that allow for a rapid rehabilitation and fast return to sports. PMID:26537813

  5. Speckle-Tracking Sonographic Assessment of Longitudinal Motion of the Flexor Tendon and Subsynovial Tissue in Carpal Tunnel Syndrome

    PubMed Central

    van Doesburg, Margriet H. M.; Yoshii, Yuichi; Henderson, Jacqueline; Villarraga, Hector R.; Moran, Steven L.; Amadio, Peter C.

    2014-01-01

    Objectives The aim of this study was to image both tendon and subsynovial connective tissue movement in patients with carpal tunnel syndrome and healthy control volunteers, using sonography with speckle tracking. To estimate accuracy of this tracking method, we used in vivo measurements during surgery to validate the motion estimated with sonography. Methods We recruited 22 healthy volunteers and 18 patients with carpal tunnel syndrome. Longitudinal sonograms of the middle finger flexor digitorum superficialis tendon and subsynovial connective tissue were obtained during finger flexion and extension. The images were analyzed with a speckle-tracking algorithm. The ratio of the sub-synovial connective tissue velocity to tendon velocity was calculated as the maximum velocity ratio, and the shear index, the ratio of tendon to subsynovial connective tissue motion, was calculated. For validation, we recorded flexor digitorum superficialis tendon motion during open carpal tunnel release. Results The shear index was higher in patients than controls (P < .05), whereas the maximum velocity ratio in extension was lower in patients than controls (P < .05). We found good intraclass correlation coefficients (>0.08) for shear index and maximum velocity ratio measurements between speckle-tracking and in vivo measurements. Bland-Altman analyses showed that all measurements remained within the limits of agreement. Conclusions Speckle tracking is a potentially useful method to assess the biomechanics within the carpal tunnel and to distinguish between healthy individuals and patients with carpal tunnel syndrome. This method, however, needs to be further developed for clinical use, with the shear index and maximum velocity ratio as possible differentiating parameters between patients with carpal tunnel syndrome and healthy individuals. PMID:22733858

  6. The role of graft materials in suture augmentation for tendon repairs and reattachment.

    PubMed

    Kummer, Frederick J; Iesaka, Kazuho

    2005-08-01

    Various biomaterials have been used to augment sutures for the repair and reattachment of tendons. This study examined four different graft materials in a simple and reproducible model using chicken Achilles tendons to determine the strength and mechanism of suture reinforcement of tendon repairs. The graft materials tested were Gore-Tex(R) Soft Tissue Patch, Graftjacket, bovine pericardium, and an experimental graft material from Xylos Corporation. Testing was performed in shear to simulate forces on a torn tendon repair and pull-off to simulate those on a tendon reattachment to bone. Compared to unaugmented suture, grafts increased suture fixation strength from 10% to 60% in shear and from 0% to 36% in pull-off with the bovine pericardium graft, providing significant improvement in both tests. In no cases (even unaugmented) did the suture pull directly through the tendon, but instead sliced along it, demonstrating that the interface between the suture and the tendon determines fixation strength. Grafts function by increasing the area, friction, and nature of this interface, not by acting as a barrier for suture pull-through. PMID:15981174

  7. IN VIVO MEASURES OF SHEAR WAVE SPEED AS A PREDICTOR OF TENDON ELASTICITY AND STRENGTH

    PubMed Central

    Martin, Jack A.; Biedrzycki, Adam H.; Lee, Kenneth S.; DeWall, Ryan J.; Brounts, Sabrina H.; Murphy, William L.; Markel, Mark D.; Thelen, Darryl G.

    2015-01-01

    The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to assess tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 weeks post-surgery. Rabbits were euthanized at 4 weeks, and both medial and lateral tendons underwent mechanical testing to failure. SWS significantly (p<0.001) decreased an average of 17% between the intact and post-surgical state across all tendons. SWS was significantly (p<0.001) correlated with both the tendon elastic modulus (r = 0.52) and ultimate stress (r = 0.58). Thus, ultrasound SWE is a potentially promising noninvasive technology for quantitatively assessing the mechanical integrity of pre-operative and post-operative tendons. PMID:26215492

  8. Musculoskeletal diseases—tendon

    PubMed Central

    Sakabe, Tomoya; Sakai, Takao

    2011-01-01

    Introduction Tendons establish specific connections between muscles and the skeleton by transferring contraction forces from skeletal muscle to bone thereby allowing body movement. Tendon physiology and pathology are heavily dependent on mechanical stimuli. Tendon injuries clinically represent a serious and still unresolved problem since damaged tendon tissues heal very slowly and no surgical treatment can restore a damaged tendon to its normal structural integrity and mechanical strength. Understanding how mechanical stimuli regulate tendon tissue homeostasis and regeneration will improve the treatment of adult tendon injuries that still pose a great challenge in today's medicine. Source of data This review summarizes the current status of tendon treatment and discusses new directions from the point of view of cell-based therapy and regenerative medicine approach. We searched the available literature using PubMed for relevant original articles and reviews. Growing points Identification of tendon cell markers has enabled us to study precisely tendon healing and homeostasis. Clinically, tissue engineering for tendon injuries is an emerging technology comprising elements from the fields of cellular source, scaffold materials, growth factors/cytokines and gene delivering systems. Areas timely for developing research The clinical settings to establish appropriate microenvironment for injured tendons with the combination of these novel cellular- and molecular-based scaffolds will be critical for the treatment. PMID:21729872

  9. Are Sport-Specific Profiles of Tendon Stiffness and Cross-Sectional Area Determined by Structural or Functional Integrity?

    PubMed Central

    Rieder, Florian; Kösters, Alexander; Müller, Erich; Seynnes, Olivier R.

    2016-01-01

    The present study aimed to determine whether distinct sets of tendon properties are seen in athletes engaged in sports with contrasting requirements for tendon function and structural integrity. Patellar and Achilles tendon morphology and force-deformation relation were measured by combining ultrasonography, electromyography and dynamometry in elite ski jumpers, distance runners, water polo players and sedentary individuals. Tendon cross-sectional area normalized to body mass2/3 was smaller in water polo players than in other athletes (patellar and Achilles tendon; -28 to -24%) or controls (patellar tendon only; -9%). In contrast, the normalized cross-sectional area was larger in runners (patellar tendon only; +26%) and ski jumpers (patellar and Achilles tendon; +21% and +13%, respectively) than in controls. Tendon stiffness normalized to body mass2/3 only differed in ski jumpers, compared to controls (patellar and Achilles tendon; +11% and +27%, respectively) and to water polo players (Achilles tendon only; +23%). Tendon size appears as an adjusting variable to changes in loading volume and/or intensity, possibly to preserve ultimate strength or fatigue resistance. However, uncoupled morphological and mechanical properties indicate that functional requirements may also influence tendon adaptations. PMID:27362657

  10. Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation.

    PubMed

    Nagarkatti, D G; McKeon, B P; Donahue, B S; Fulkerson, J P

    2001-01-01

    In this study of bioabsorbable screw fixation of free tendon grafts used in anterior cruciate ligament reconstruction, we performed load-to-failure and cyclic loading of tendon fixation in porcine bone. Bone density measurements from dual photon absorptometry scans were obtained to correlate bone density with fixation failure. The average density of porcine bone (1.42 g/cm2) was similar to that of young human bone (1.30 g/cm2) and significantly higher than that of elderly human cadaveric bone specimens (0.30 g/cm2). Cyclic loading was performed on free tendon grafts fixed with a bioabsorbable screw alone and on grafts fixed with a bioabsorbable screw and an anchor (polylactic acid ball or cortical bone disk). Stiffness of fixation increased substantially with the addition of a cortical bone disk anchor or polylactic acid ball compared with the interference screw alone. Tensile fixation strength of central quadriceps free tendon and hamstring tendon grafts were significantly superior in porcine bone of density similar to young human bone than in elderly human cadaveric bone. The bioabsorbable interference screw yielded loads at failure comparable with traditional bone-tendon-bone and hamstring tendon fixation when controlled for bone density. The addition of a cortical bone disk anchor provided the most optimal fixation of free tendon with the bioabsorbable screw and reduced slippage with cyclic loading to a very low level.

  11. Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.

    PubMed

    Xu, Yuan; Wu, Jinglei; Wang, Haoming; Li, Hanqin; Di, Ning; Song, Lei; Li, Sontao; Li, Dianwei; Xiang, Yang; Liu, Wei; Mo, Xiumei; Zhou, Qiang

    2013-12-01

    Tissue engineering techniques using novel scaffolding materials offer potential alternatives for managing tendon disorders. An ideal tendon tissue engineered scaffold should mimic the three-dimensional (3D) structure of the natural extracellular matrix (ECM) of the native tendon. Here, we propose a novel electrospun nanoyarn network that is morphologically and structurally similar to the ECM of native tendon tissues. The nanoyarn, random nanofiber, and aligned nanofiber scaffolds of a synthetic biodegradable polymer, poly(L-lactide-co-ε-caprolactone) [P(LLA-CL)], and natural collagen I complex were fabricated using electrospinning. These scaffolds were characterized in terms of fiber morphology, pore size, porosity, and chemical and mechanical properties for the purpose of culturing tendon cells (TCs) for tendon tissue engineering. The results indicated a fiber diameter of 632 ± 81 nm for the random nanofiber scaffold, 643 ± 97 nm for the aligned nanofiber scaffold, and 641 ± 68 nm for the nanoyarn scaffold. The yarn in the nanoyarn scaffold was twisted by many nanofibers similar to the structure and inherent nanoscale organization of tendons, indicating an increase in the diameter of 9.51 ± 3.62 μm. The nanoyarn scaffold also contained 3D aligned microstructures with large interconnected pores and high porosity. Fourier transform infrared analyses revealed the presence of collagen in the three scaffolds. The mechanical properties of the sample scaffolds indicated that the scaffolds had desirable mechanical properties for tissue regeneration. Further, the results revealed that TC proliferation and infiltration, and the expression of tendon-related ECM genes, were significantly enhanced on the nanoyarn scaffold compared with that on the random nanofiber and aligned nanofiber scaffolds. This study demonstrates that electrospun P(LLA-CL)/collagen nanoyarn is a novel, 3D, macroporous, aligned scaffold that has potential application in tendon tissue engineering.

  12. Fabrication of Electrospun Poly(L-Lactide-co-ɛ-Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering

    PubMed Central

    Xu, Yuan; Wu, Jinglei; Wang, Haoming; Li, Hanqin; Di, Ning; Song, Lei; Li, Sontao; Li, Dianwei; Xiang, Yang; Liu, Wei

    2013-01-01

    Tissue engineering techniques using novel scaffolding materials offer potential alternatives for managing tendon disorders. An ideal tendon tissue engineered scaffold should mimic the three-dimensional (3D) structure of the natural extracellular matrix (ECM) of the native tendon. Here, we propose a novel electrospun nanoyarn network that is morphologically and structurally similar to the ECM of native tendon tissues. The nanoyarn, random nanofiber, and aligned nanofiber scaffolds of a synthetic biodegradable polymer, poly(l-lactide-co-ɛ-caprolactone) [P(LLA-CL)], and natural collagen I complex were fabricated using electrospinning. These scaffolds were characterized in terms of fiber morphology, pore size, porosity, and chemical and mechanical properties for the purpose of culturing tendon cells (TCs) for tendon tissue engineering. The results indicated a fiber diameter of 632±81 nm for the random nanofiber scaffold, 643±97 nm for the aligned nanofiber scaffold, and 641±68 nm for the nanoyarn scaffold. The yarn in the nanoyarn scaffold was twisted by many nanofibers similar to the structure and inherent nanoscale organization of tendons, indicating an increase in the diameter of 9.51±3.62 μm. The nanoyarn scaffold also contained 3D aligned microstructures with large interconnected pores and high porosity. Fourier transform infrared analyses revealed the presence of collagen in the three scaffolds. The mechanical properties of the sample scaffolds indicated that the scaffolds had desirable mechanical properties for tissue regeneration. Further, the results revealed that TC proliferation and infiltration, and the expression of tendon-related ECM genes, were significantly enhanced on the nanoyarn scaffold compared with that on the random nanofiber and aligned nanofiber scaffolds. This study demonstrates that electrospun P(LLA-CL)/collagen nanoyarn is a novel, 3D, macroporous, aligned scaffold that has potential application in tendon tissue engineering

  13. Photoacoustic microscopy of collagenase-induced Achilles tendinitis in a mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Chen, Wen-Shiang; Li, Meng-Lin

    2010-02-01

    Assessments of vascularity are important when assessing inflammation changes in tendon injuries since Achilles tendinitis is often accompanied with neovascularization or hypervascularity. In this study, we have investigated the feasibility of photoacoustic imaging in noninvasive monitoring of morphological and vascular changes in Achilles tendon injuries. Collagenase-induced Achilles tendinitis model of mice was adopted here. During collagenase-induced tendinitis, a 25-MHz photoacoustic microscopy (PAM) was used to image micro-vascular changes in Achilles tendons longitudinally up to 23 days. The positions of vessels imaged by PAM were identified by co-registration of PAM Bmode images with 25-MHz ultrasound (USM) ones. Morphological changes in Achilles tendons due to inflammation and edema were revealed by the PAM and USM images. Proliferation of new blood vessels within the tendons was also observed. Observed micro-vascular changes during tendinitis were similar to the findings in the literatures. This study demonstrates that photoacoustic imaging, owning required sensitivity and penetration, has the potential for high sensitive diagnosis and assessment of treatment performance in tendinopathy.

  14. Mechanical Actuation Systems for the Phenotype Commitment of Stem Cell-Based Tendon and Ligament Tissue Substitutes.

    PubMed

    Govoni, Marco; Muscari, Claudio; Lovecchio, Joseph; Guarnieri, Carlo; Giordano, Emanuele

    2016-04-01

    High tensile forces transmitted by tendons and ligaments make them susceptible to tearing or complete rupture. The present standard reparative technique is the surgical implantation of auto- or allografts, which often undergo failure.Currently, different cell types and biomaterials are used to design tissue engineered substitutes. Mechanical stimulation driven by dedicated devices can precondition these constructs to a remarkable degree, mimicking the local in vivo environment. A large number of dynamic culture instruments have been developed and many appealing results collected. Of the cells that have been used, tendon stem cells are the most promising for a reliable stretch-induced tenogenesis, but their reduced availability represents a serious limitation to upscaled production. Biomaterials used for scaffold fabrication include both biological molecules and synthetic polymers, the latter being improved by nanotechnologies which reproduce the architecture of native tendons. In addition to cell type and scaffold material, other variables which must be defined in mechanostimulation protocols are the amplitude, frequency, duration and direction of the applied strain. The ideal conditions seem to be those producing intermittent tension rather than continuous loading. In any case, all physical parameters must be adapted to the specific response of the cells used and the tensile properties of the scaffold. Tendon/ligament grafts in animals usually have the advantage of mechanical preconditioning, especially when uniaxial cyclic forces are applied to cells engineered into natural or decellularized scaffolds. However, due to the scarcity of in vivo research, standard protocols still need to be defined for clinical applications.

  15. A treatment algorithm for managing Achilles tendinopathy: new treatment options

    PubMed Central

    Alfredson, Håkan; Cook, J

    2007-01-01

    Achilles tendinopathy affects athletes, recreational exercisers and even inactive people. The pathology is not inflammatory; it is a failed healing response. The source of pain in tendinopathy could be related to the neurovascular ingrowth seen in the tendon's response to injury. The treatment of Achilles tendinopathy is primarily conservative with an array of effective treatment options now available to the primary care practitioner. If conservative treatment is not successful, then surgery relieves pain in the majority of cases. Directing a patient through the algorithm presented here will maximise positive treatment outcomes. PMID:17311806

  16. Biologics for tendon repair☆

    PubMed Central

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  17. Low intensity pulsed ultrasound increases the mechanical properties of the healing tissues at bone-tendon junction.

    PubMed

    Lu, Min-Hua; Zheng, Yong-Ping; Huang, Qing-Hua; Lu, Hong-Bin; Qin, Ling

    2009-01-01

    The re-establishment of bone-tendon junction (BTJ) tissues is involved in many trauma and reconstructive surgeries. A direct BTJ repair requires a long period of immobilization which may be associated with a postoperative weak knee. In this study, we investigated if low-intensity pulsed ultrasound treatment increases the material properties of healing tissues at bone-tendon junction (BTJ) after partial patellectomy using rabbit models. Standard partial patellectomy was conducted on one knee of twenty four rabbits which were randomly divided into an ultrasound group and a control group. The bony changes of BTJ complexes around the BTJ healing interface were measured by anteroposterior x-ray radiographs; then the volumetric bone-mineral density (BMD) of the new bone was assessed using a peripheral computed tomography scanner (pQCT). The stiffness of patellar cartilage, fibrocartilage at the healing interface and the tendon were measured in situ using a novel noncontact ultrasound water jet indentation system. Not only significantly more newly formed bone at the BTJ healing interface but also increased stiffness of the junction tissues were found in the ultrasound group compared with the controls at week 18. In addition, the ultrasound group also showed significantly 44% higher BMD at week 6 than controls.

  18. Investigating backward scattered second harmonic generation from various mouse collagen tissues

    NASA Astrophysics Data System (ADS)

    Shen, Mengzhe; Tian, Yunxian; Chong, Shau Poh; Zhao, Jianhua; Zeng, Haishan; Tang, Shuo

    2014-02-01

    A confocal multiphoton microscopy system with various detection pinholes was used to differentiate backward scattered second harmonic generation (BS-SHG) from backward generated SHG (BG-SHG) based on the fact that BS-SHG is more scattered and therefore has a much bigger spot size than BG-SHG. BS-SHG is quantified from two types of mouse tissues, such as Achilles tendon, and skin, and at various focal depths. It is found that the BS-SHG contributes less to the total backward SHG for the skin than Achilles tendon with thicknesses of around three hundred micrometers. For tissue with larger F/B intensity ratio such as Achilles tendon, increasing the tissue thickness reduces it tremendously. However, for tissue with smaller F/B intensity ratio, tissue thickness increment does not alter it significantly. In addition, larger F/B intensity ratio might be related with a greater scattering coefficient from our Achilles tendon and skin comparison. When the focal point is moved deeper into tissue, the contribution of BS-SHG is found to decrease due to a reduced pass length of the forward propagated photons. On the contrary, when the tissue thickness increases, the contribution of the BS-SHG is increased. These observations for thicker skin tissues are related with our F/B intensity ratio measurement for thin mouse skin sample in terms of that the magnitude of backward generated SHG are dominant among the total backward SHG in mouse skin tissue. Considering the phase mismatching condition in the forward and backward directions, these results may indicate that quasi-phase matching originating from the regular structure of collagen could help with reducing the phase mismatch especially in the backward direction.

  19. Design and characterization of an injectable tendon hydrogel: a novel scaffold for guided tissue regeneration in the musculoskeletal system.

    PubMed

    Farnebo, Simon; Woon, Colin Y L; Schmitt, Taliah; Joubert, Lydia-Marie; Kim, Maxwell; Pham, Hung; Chang, James

    2014-05-01

    A biocompatible hydrogel consisting of extracellular matrix (ECM) from human tendons is described as a potential scaffold for guided tissue regeneration and tissue engineering purposes. Lyophilized decellularized tendons were milled and enzymatically digested to form an ECM solution. The ECM solution properties are assessed by proteome analysis with mass spectrometry, and the material's rheological properties are determined as a function of frequency, temperature, and time. In vivo application of the gel in a rat model is assessed for remodeling and host cell repopulation. Histology for macrophage invasion, fibroblast repopulation, and nanoscale properties of the gel is assessed. Gel interaction with multipotent adipoderived stem cells (ASCs) is also addressed in vitro to assess possible cytotoxicity and its ability to act as a delivery vehicle for cells. Proteome analysis of the ECM-solution and gel mass spectroscopy identified the most abundant 150 proteins, of which two isoforms of collagen I represented more than 55% of the sample. Rheology showed that storage (G') and loss (G″) of the ECM solution were stable at room temperature but displayed sigmoidal increases after ∼15 min at 37°C, matching macroscopic observations of its thermo responsiveness. G' and G″ of the gel at 1 rad/s were 213.1±19.9 and 27.1±2.4 Pa, respectively. Electron microscopy revealed fiber alignment and good structural porosity in the gel, as well as invasion of cells in vivo. Histology also showed early CD68(+) macrophage invasion throughout the gel, followed by increasing numbers of fibroblast cells. ASCs mixed with the gel in vitro proliferated, indicating good biocompatibility. This ECM solution can be delivered percutaneously into a zone of tendon injury. After injection, the thermoresponsive behavior of the ECM solution allows it to polymerize and form a porous gel at body temperature. A supportive nanostructure of collagen fibers is established that conforms to the three

  20. Comparison of Potentials of Stem Cells Isolated from Tendon and Bone Marrow for Musculoskeletal Tissue Engineering

    PubMed Central

    Tan, Qi; Rui, Yun Feng; Wong, Yin Mei

    2012-01-01

    The use of tendon-derived stem cells (TDSCs) as a cell source for musculoskeletal tissue engineering has not been compared with that of bone marrow stromal cells (BMSC). This study compared the mesenchymal stem cell (MSC) and embryonic stem cells (ESC) markers, clonogenicity, proliferative capacity, and multilineage differentiation potential of rat TDSC and BMSC in vitro. The MSC and ESC marker profiles of paired TDSC and BMSC were compared using flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Their clonogenicity and proliferative capacity were compared using colony-forming and 5-bromo-2′-deoxyuridine assays, respectively. The expression of tenogenic, osteogenic, and chondrogenic markers at basal state were examined using qRT-PCR. Their osteogenic, chondrogenic, and adipogenic differentiation potentials were compared using standard assays. TDSC and BMSC showed similar expression of CD90 and CD73. TDSC expressed higher levels of Oct4 than BMSC. TDSC exhibited higher clonogenicity, proliferated faster, and expressed higher tenomodulin, scleraxis, collagen 1 α 1 (Col1A1), decorin, alkaline phosphatase, Col2A1, and biglycan messenger RNA levels than BMSC. There was higher calcium nodule formation and osteogenic marker expression in TDSC than BMSC upon osteogenic induction. More chondrocyte-like cells and higher glycosaminoglycan deposition and chondrogenic marker expression were observed in TDSC than BMSC upon chondrogenic induction. There were more oil droplets and expression of an adipogenic marker in TDSC than BMSC upon adipogenic induction. TDSC expressed higher Oct4 levels, which was reported to positively regulate mesendodermal lineage differentiation, showed higher clonogenicity and proliferative capacity, and had greater tenogenic, osteogenic, chondrogenic, and adipogenic markers and differentiation potential than BMSC. TDSC might be a better cell source than BMSC for musculoskeletal tissue regeneration. PMID

  1. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  2. Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion.

    PubMed

    Li, Laifeng; Zheng, Xianyou; Fan, Dapeng; Yu, Shiyang; Wu, Di; Fan, Cunyi; Cui, Wenguo; Ruan, Hongjiang

    2016-04-01

    Posttraumatic tendon adhesion limits the motion of the limbs greatly. Biomimetic tendon sheaths have been developed to promote tendon healing and gliding. However, after introduction of these biomaterials, the associated inflammatory responses can decrease the anti-adhesion effect. Celecoxib is a non-steroidal anti-inflammatory drug (NSAID) that can decrease inflammation responses. We blended hyaluronic acid and poly(l-lactic acid)-polyethylene glycol (PELA) with microgel electrospinning technology to form an inner layer of a bi-layer biomimetic sheath using sequential electrospinning of an outer celecoxib-PELA layer. Electrospun bi-layer fibrous membranes were mechanically tested and characterized by morphology, surface wettability, and drug release. The tensile strength showed a decreased trend and water contact angles were 114.7 ± 3.9°, 103.6 ± 4.4°, 116.3 ± 5.1°, 122.8 ± 4.7°, and 126.5 ± 4.2° for the surface of PELA, hyaluronic acid-PELA, 2, 6, and 10% celecoxib-PELA electrospun fibrous membranes, respectively. In vitro drug release studies confirmed burst release and then sustained release from the fibrous membranes containing celecoxib for 20 days. In a chicken model of flexor digitorum profundus tendon surgery, the outer celecoxib/PELA layer offered advanced anti-adhesion roles compared to the outer PELA layer and the inner hyaluronic acid-loaded PELA layer still offered tendon healing and gliding. Thus, celecoxib-loaded anti-adhesive tendon sheaths can continuously offer bi-layer biomimetic tendon sheath effects with celecoxib release from the outer layer to prevent tendon adhesion. PMID:26838844

  3. Developmental Stage-dependent Regulation of Prolyl 3-Hydroxylation in Tendon Type I Collagen.

    PubMed

    Taga, Yuki; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2016-01-01

    3-Hydroxyproline (3-Hyp), which is unique to collagen, is a fairly rare post-translational modification. Recent studies have suggested a function of prolyl 3-hydroxylation in fibril assembly and its relationships with certain disorders, including recessive osteogenesis imperfecta and high myopia. However, no direct evidence for the physiological and pathological roles of 3-Hyp has been presented. In this study, we first estimated the overall alterations in prolyl hydroxylation in collagens purified from skin, bone, and tail tendon of 0.5-18-month-old rats by LC-MS analysis with stable isotope-labeled collagen, which was recently developed as an internal standard for highly accurate collagen analyses. 3-Hyp was found to significantly increase in tendon collagen until 3 months after birth and then remain constant, whereas increased prolyl 3-hydroxylation was not observed in skin and bone collagen. Site-specific analysis further revealed that 3-Hyp was increased in tendon type I collagen in a specific sequence region, including a previously known modification site at Pro(707) and newly identified sites at Pro(716) and Pro(719), at the early ages. The site-specific alterations in prolyl 3-hydroxylation with aging were also observed in bovine Achilles tendon. We postulate that significant increases in 3-Hyp at the consecutive modification sites are correlated with tissue development in tendon. The present findings suggest that prolyl 3-hydroxylation incrementally regulates collagen fibril diameter in tendon.

  4. Thompson calf squeezing test: clinical and ultrasound correlations in the follow up of Achille's tenorraphy.

    PubMed

    Leigheb, M; Conte, P; Neri, P; Zorzolo, I; Martinelli, D; Martino, F; Carriero, A; Grassi, F

    2014-09-24

    In the follow up of Achille's tenorraphy, negativization of Thompson calf queezing test is not always omogeneous and absolute. Aim of the paper is to correlate Thompson test to different anatomical-ultrasound and functional parameters. We investigated clinically and by ultrasound 61 patients operated on of Achille's tenorraphy at Novara Hospital with follow-up of 10 to 46 months. Negative controls were contralateral tendons. We excluded patients with previous and/or contralateral Achille's tendon ruptures, those operated after 7 days, diabetics or with autoimmune diseases, if used topic steroids, < 18 years, those rejecting the study. Measured parameters were: age, gender, height, weight, side, open vs percutaneous approach, time from operation, neutral angle and range of motion of the ankle, maximal circumference of the leg, Single Heel Rise Test, Visual-Analogue-Scale Foot and Ankle (VAS FA) score; with ultrasound: length of tendons, mio-tendinous U.S.-structure, dynamic diastasis of tendon scar, tendon sliding. Thompson test is positive if no plantar-flexion of the foot occurs at calf squeezing, negative if plantar-flexion is normal (75% patients) and intermediate if reduced or slight reactive (25%).We found correlation of Thompson test with age (p<0,05) and with tendon length (p>0,05), being intermediate tests more represented in older patients and in those with longer healed tendons. In conclusion post-operative negativization of Thompson test can be incomplete as observed in older patients and in those healed with elongated tendon.

  5. Tendon development and diseases.

    PubMed

    Gaut, Ludovic; Duprez, Delphine

    2016-01-01

    Tendon is a uniaxial connective tissue component of the musculoskeletal system. Tendon is involved in force transmission between muscle and bone. Tendon injury is very common and debilitating but tendon repair remains a clinical challenge for orthopedic medicine. In vertebrates, tendon is mainly composed of type I collagen fibrils, displaying a parallel organization along the tendon axis. The tendon-specific spatial organization of type I collagen provides the mechanical properties for tendon function. In contrast to other components of the musculoskeletal system, tendon biology is poorly understood. An important goal in tendon biology is to understand the mechanisms involved in the production and assembly of type I collagen fibrils during development, postnatal formation, and healing processes in order to design new therapies for tendon repair. In this review we highlight the current understanding of the molecular and mechanical signals known to be involved in tenogenesis during development, and how development provides insights into tendon healing processes. WIREs Dev Biol 2016, 5:5-23. doi: 10.1002/wdev.201 For further resources related to this article, please visit the WIREs website.

  6. Tendon repair

    MedlinePlus

    Repair of tendon ... Tendon repair can be performed using: Local anesthesia (the immediate area of the surgery is pain-free) ... a cut on the skin over the injured tendon. The damaged or torn ends of the tendon ...

  7. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging.

    PubMed

    Ooi, Chin Chin; Schneider, Michal Elisabeth; Malliaras, Peter; Chadwick, Martine; Connell, David Alister

    2015-01-01

    This primary aim of this study was to evaluate the diagnostic performance of axial-strain sonoelastography (ASE), B-mode ultrasound (US) and color Doppler US in confirming clinically symptomatic Achilles tendinopathy. The secondary aim was to establish the relationship between the strain ratio during sonoelastography and Victorian Institute of Sport Assessment-Achilles (VISA-A) scores. The VISA-A questionnaire is a validated clinical rating scale that evaluates the symptoms and dysfunction of the Achilles tendon. One hundred twenty Achilles tendons of 120 consecutively registered patients with clinical symptoms of Achilles tendinopathy and another 120 gender- and age-matched, asymptomatic Achilles tendons of 120 healthy volunteers were assessed with B-mode US, ASE and color Doppler US. Symptomatic patients had significantly higher strain ratio scores and softer Achilles tendon properties compared with controls (p < 0.001). The strain ratio was moderately correlated with VISA-A scores (r = -0.62, p < 0.001). The diagnostic accuracy of B-mode US, ASE and color Doppler US in confirming clinically symptomatic Achilles tendinopathy was 94.7%, 97.8% and 82.5% respectively. There was excellent correlation between the clinical reference standard and the grade of tendon quality on ASE (κ = 0.91, p < 0.05), compared with B-mode US (κ = 0.74, p < 0.05) and color Doppler imaging (κ = 0.49, p < 0.05). ASE is an accurate clinical tool in the evaluation of Achilles tendinopathy, with results comparable to those of B-mode US and excellent correlation with clinical findings. The strain ratio may offer promise as a supplementary tool for the objective evaluation of Achilles tendon properties.

  8. Achilles tendinopathy: A review of the current concepts of treatment.

    PubMed

    Roche, A J; Calder, J D F

    2013-10-01

    The two main categories of Achilles tendon disorder are broadly classified by anatomical location to include non-insertional and insertional conditions. Non-insertional Achilles tendinopathy is often managed conservatively, and many rehabilitation protocols have been adapted and modified, with excellent clinical results. Emerging and popular alternative therapies, including a variety of injections and extracorporeal shockwave therapy, are often combined with rehabilitation protocols. Surgical approaches have developed, with minimally invasive procedures proving popular. The management of insertional Achilles tendinopathy is improved by recognising coexisting pathologies around the insertion. Conservative rehabilitation protocols as used in non-insertional disorders are thought to prove less successful, but such methods are being modified, with improving results. Treatment such as shockwave therapy is also proving successful. Surgical approaches specific to the diagnosis are constantly evolving, and good results have been achieved.

  9. Fibrillins in Tendon

    PubMed Central

    Giusti, Betti; Pepe, Guglielmina

    2016-01-01

    Tendons among connective tissue, mainly collagen, contain also elastic fibers (EF) made of fibrillin 1, fibrillin 2 and elastin that are broadly distributed in tendons and represent 1–2% of the dried mass of the tendon. Only in the last years, studies on structure and function of EF in tendons have been performed. Aim of this review is to revise data on the organization of EF in tendons, in particular fibrillin structure and function, and on the clinical manifestations associated to alterations of EF in tendons. Indeed, microfibrils may contribute to tendon mechanics; therefore, their alterations may cause joint hypermobility and contractures which have been found to be clinical features in patients with Marfan syndrome (MFS) and Beals syndrome. The two diseases are caused by mutations in genes FBN1 and FBN2 encoding fibrillin 1 and fibrillin 2, respectively. PMID:27812333

  10. Tendon Structure and Composition.

    PubMed

    Thorpe, Chavaunne T; Screen, Hazel R C

    2016-01-01

    Tendons are soft, fibrous tissues that connect muscle to bone. Their main function is to transfer muscle generated force to the bony skeleton, facilitating movement around a joint, and as such they are relatively passive, inelastic structures, able to resist high forces. Tendons are predominantly composed of collagen, which is arranged in a hierarchical manner parallel to the long axis of the tendon, resulting in high tensile strength. Tendon also contains a range of non-collagenous proteins, present in low amounts, which nevertheless have important functional roles. In this chapter, we describe general tendon composition and structure, and discuss how variations in composition and structure at different levels of the tendon hierarchy confer specific mechanical properties, which are related to tendon function. PMID:27535244

  11. A biomechanical assessment of tendon repair after radiofrequency treatment.

    PubMed

    Tibor, Lisa M; Leek, Bryan T; Chase, Derek C; Healey, Robert M; Linn, Michael S; Tasto, James P; Amiel, David

    2012-09-01

    After acute tendon injury, rapid mobilization prevents adhesions and improves the ultimate strength of the repair. Radiofrequency (RF) ablation is proposed to enhance angiogenesis in the early stages of healing. The mechanism and effect of RF have not yet been described in an animal model of tendon injury. To investigate the biomechanical effect of bipolar RF on acute injury in a rabbit model of partial Achilles tendon transection and suture repair, RF-treated tendon repairs were compared to untreated tendons. Cross-sectional area, Young's modulus, and ultimate tensile strength were determined. At 6 and 12 weeks after repair, RF-treated tendons had significant increases in cross-sectional area (P<.001; P< .0001) and ultimate tensile strength (P<.0001; P<.01). Young modulus of RF-treated tendons was increased at 6 weeks but not at 12 weeks (P<.01) Compared with untreated tendons, RF-treated tendons showed faster return to mechanical integrity. This may allow earlier rehabilitation.

  12. Cyclic pull-out strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length.

    PubMed

    Stadelmaier, D M; Lowe, W R; Ilahi, O A; Noble, P C; Kohl, H W

    1999-01-01

    Blunt-threaded interference screws used for fixation of hamstring tendons in anterior cruciate ligament reconstructions provide aperture fixation and may provide a biomechanically more stable graft than a graft fixed further from the articular surface. It is unknown if soft tissue fixation strength using interference screws is affected by screw length. We compared the cyclic and time-zero pull-out forces of 7 x 25 mm and 7 x 40 mm blunt-threaded metal interference screws for hamstring graft tibial fixation in eight paired human cadaveric specimens. A four-stranded autologous hamstring tendon graft was secured by a blunt-threaded interference screw into a proximal tibial tunnel with a diameter corresponding to the graft width. Eight grafts were secured with a 25-mm length screw while the other eight paired grafts were secured with a 40-mm length screw. During cyclic testing, slippage of the graft occurred as the force of pull became greater with each cycle until the graft-screw complex ultimately failed. All grafts failed at the fixation site, with the tendon being pulled past the screw. There were no measurable differences in the mean cyclic failure strength, pull-out strength, or stiffness between the two sizes of screws. Although use of the longer screw would make removal technically easier should revision surgery be necessary, it did not provide stronger fixation strength than the shorter, standard screw as had been postulated. PMID:10569365

  13. The effect of low- and high-velocity tendon excursion on the mechanical properties of human cadaver subsynovial connective tissue.

    PubMed

    Filius, Anika; Thoreson, Andrew R; Yang, Tai-Hua; Vanhees, Matthias; An, Kai-Nan; Zhao, Chunfeng; Amadio, Peter C

    2014-01-01

    Fibrosis of the subsynovial connective tissue (SSCT) in the carpal tunnel is the most common histological finding in carpal tunnel syndrome (CTS). Fibrosis may result from damaged SSCT. Previous studies found that with low-velocity (2 mm/s), tendon excursions can irreversibly damage the SSCT. We investigated the effect of tendon excursion velocity in the generation of SSCT damage. Nine human cadaver wrists were used. Three repeated cycles of ramp-stretch testing were performed simulating 40%, 60%, 90%, and 120% of the middle finger flexor tendon superficialis physiological excursion with an excursion velocity of 60 mm/s. Energy and force were calculated and normalized by values obtained in the first cycle for each excursion level. Data were compared with low-velocity excursion data. For high-velocity excursions, a significant drop in the excursion energy ratio was first observed at an excursion level of 60% physiological excursion (p < 0.024) and that for low-velocity excursions was first observed at 90% physiological excursion (p < 0.038). Furthermore, the energy ratio was lower at 60% for high velocities (p ≤ 0.039). Increasing velocity lowers the SSCT damage threshold. This finding may be relevant for understanding the pathogenesis of SSCT fibrosis, such as that accompanying CTS, and a relationship with occupational factors.

  14. Conservative management of Achilles Tendinopathy: a case report

    PubMed Central

    Papa, John A.

    2012-01-01

    Objective: To chronicle the conservative treatment and management of a 77-year old female patient presenting with chronic pain of 8 months duration in the midportion of the achilles tendon diagnosed as achilles tendinopathy. Clinical features: The main clinical feature was pain in the midportion of the achilles tendon, 2 to 6 cm proximal to the calcaneal insertion. Symptom onset was gradual and unrelated to any acute trauma or overt injury mechanism. Intervention and outcome: The conservative treatment approach consisted of medical acupuncture with electrical stimulation, Graston Technique®, eccentric calf training, and rehabilitative exercise prescription. Outcome measures included verbal pain rating scale, lower extremity functional scale (LEFS), and a return to activities of daily living (ADLs). The patient attained long-term resolution of her complaint and at 12 month follow-up reported no recurrence of symptoms. Conclusion: A combination of conservative rehabilitation strategies may be used by chiropractors to treat midportion achilles tendinopathy and allow an individual to return to pain free ADLs in a timely manner. PMID:22997472

  15. Acute Achilles tendinopathy: effect of pain control on leg stiffness.

    PubMed

    Maquirriain, J; Kokalj, A

    2014-03-01

    Tendinopathies are a major cause of disability in the athletic population; the main purpose of the treatment of these injuries is to reduce pain and improve function. The aim of this study was to evaluate the effect of NSAIDs on leg stiffness of patients suffering acute unilateral Achilles tendinopathy. Twenty-eight eligible male athletes (aged 39.1 ± 10.3 y) suffering acute Achilles tendinopathy were treated with etoricoxib (120 mg oral once daily) during 7 days. Pain (100-mm visual analogue scale-VAS), analgesic effect (percentage of 100-mm VAS reduction), and leg stiffness were evaluated pre- and post- anti-inflammatory treatment. Results of this study showed that over the 7-day treatment period, etoricoxib provided significant relief of Achilles tendon pain (VAS) compared to that experienced at baseline: 54.5 ± 21.6 and 24.5 ± 24.8, respectively (p<0.001). Leg stiffness showed a significant improvement after one-week NSAID therapy: LSR 0.89 ± 0.1 vs. 0.97 ± 0.1; (p=0.02). In conclusion, findings of this study demonstrated that patients suffering acute unilateral Achilles tendinopathy increased their leg stiffness of the affected side after oral anti-inflammatory therapy. Effective control of tendon pain in the acute phase of such sports-related injuries may contribute to improve capabilities associated with high performance like leg stiffness. PMID:24583548

  16. Tendons Involvement in Congenital Metabolic Disorders.

    PubMed

    Abate, Michele; Salini, Vincenzo; Andia, Isabel

    2016-01-01

    Congenital metabolic disorders are consequence of defects involving single genes that code for enzymes. Blocking metabolic pathways, the defect leads to the shortage of essential compounds, and/or to the accumulation of huge quantities of precursors, which interfere with normal functions. Only few of these diseases are characterized by a clinically significant tendon involvement.Heterozygous Familial Hypercholesterolaemia results from the inheritance of a mutant low-density lipoprotein receptor gene; patients show high cholesterol levels, precocious coronary artery disease, and may develop tendon xanthomata (mainly in Achilles tendon). The detection of xanthomata is important, because it allows an early diagnosis and treatment of the disorder. Cerebrotendinous Xanthomatosis is a rare genetic metabolic disorder of cholesterol and bile acid metabolism, characterized by accumulation of cholestanol in brain and tendons. Tendon abnormalities are similar to those reported in Heterozygous Familial Hypercholesterolaemia. Alkaptonuria is caused by a deficiency of the enzyme homogentisic acid oxidase. Due to the accumulation of the homogentisic acid, tendons and ligaments are characterized by a typical ochre/yellow pigmentation (ochronosis), with ensuing inflammation, calcification and rupture. In Congenital Hypergalactosemia an increased tendon collagen cross-linking by non-enzymatic galactosylation can be observed. Finally, Congenital Hypophosphatasia may be associated to deposition of hydroxyapatite crystals in rotator cuff, elbow, and Achilles tendons. PMID:27535253

  17. Platelet-rich plasma: evidence for the treatment of patellar and Achilles tendinopathy--a systematic review.

    PubMed

    Di Matteo, B; Filardo, G; Kon, E; Marcacci, M

    2015-04-01

    Platelet-rich plasma (PRP) has been introduced in the clinical practice to treat a growing number of different musculoskeletal pathologies. It is currently applied in the treatment of Achilles and patellar tendinopathies, which are common sport-related injuries very challenging to manage. Aim of the present paper was to review systematically the available clinical evidence concerning the application of PRP in the treatment of patellar and Achilles tendinopathy. A systematic review of the literature was performed according to the following inclusion criteria for relevant articles: (1) clinical reports of any level of evidence, (2) written in the English language, (3) with no time limitation and (4) on the use of PRP to treat conservatively Achilles and patellar tendinopathy. Twenty-two studies were included and analyzed. Two studies on patellar tendinopathy were randomized controlled trials (RCTs), whereas just one RCT was published on Achilles tendon. All the papers concerning patellar tendon reported positive outcome for PRP, which proved to be superior to other traditional approaches such as shock-wave therapy and dry needling. In the case of Achilles tendon, despite the encouraging findings reported by case series, the only RCT available showed no significant clinical difference between PRP and saline solution. The main finding of this study was the paucity of high-level literature regarding the application of PRP in the management of patellar and Achilles tendinopathy. However, the clinical data currently available, although not univocal, suggest considering PRP as a therapeutic option for recalcitrant patellar and Achilles tendinopathies. PMID:25323041

  18. Platelet-rich plasma: evidence for the treatment of patellar and Achilles tendinopathy--a systematic review.

    PubMed

    Di Matteo, B; Filardo, G; Kon, E; Marcacci, M

    2015-04-01

    Platelet-rich plasma (PRP) has been introduced in the clinical practice to treat a growing number of different musculoskeletal pathologies. It is currently applied in the treatment of Achilles and patellar tendinopathies, which are common sport-related injuries very challenging to manage. Aim of the present paper was to review systematically the available clinical evidence concerning the application of PRP in the treatment of patellar and Achilles tendinopathy. A systematic review of the literature was performed according to the following inclusion criteria for relevant articles: (1) clinical reports of any level of evidence, (2) written in the English language, (3) with no time limitation and (4) on the use of PRP to treat conservatively Achilles and patellar tendinopathy. Twenty-two studies were included and analyzed. Two studies on patellar tendinopathy were randomized controlled trials (RCTs), whereas just one RCT was published on Achilles tendon. All the papers concerning patellar tendon reported positive outcome for PRP, which proved to be superior to other traditional approaches such as shock-wave therapy and dry needling. In the case of Achilles tendon, despite the encouraging findings reported by case series, the only RCT available showed no significant clinical difference between PRP and saline solution. The main finding of this study was the paucity of high-level literature regarding the application of PRP in the management of patellar and Achilles tendinopathy. However, the clinical data currently available, although not univocal, suggest considering PRP as a therapeutic option for recalcitrant patellar and Achilles tendinopathies.

  19. The role of hind limb tendons in gibbon locomotion: springs or strings?

    PubMed

    Vereecke, Evie E; Channon, Anthony J

    2013-11-01

    Tendon properties have an important effect on the mechanical behaviour of muscles, with compliant tendons allowing near-isometric muscle contraction and facilitating elastic energy storage and recoil. Stiff tendons, in contrast, facilitate rapid force transfer and precise positional control. In humans, the long Achilles tendon contributes to the mechanical efficiency of running via elastic energy storage and recovery, and its presence has been linked to the evolution of habitual bipedalism. Gibbons also possess relatively long hind limb tendons; however, their role is as yet unknown. Based on their large dimensions, and inferring from the situation in humans, we hypothesize that the tendons in the gibbon hind limb will facilitate elastic energy storage and recoil during hind-limb-powered locomotion. To investigate this, we determined the material properties of the gibbon Achilles and patellar tendon in vitro and linked this with available kinematic and kinetic data to evaluate their role in leaping and bipedalism. Tensile tests were conducted on tendon samples using a material testing machine and the load-displacement data were used to calculate stiffness, Young's modulus and hysteresis. In addition, the average stress-in-life and energy absorption capacity of both tendons were estimated. We found a functional difference between the gibbon Achilles and patellar tendon, with the Achilles tendon being more suitable for elastic energy storage and release. The patellar tendon, in contrast, has a relatively high hysteresis, making it less suitable to act as elastic spring. This suggests that the gibbon Achilles tendon might fulfil a similar function as in humans, contributing to reducing the locomotor cost of bipedalism by acting as elastic spring, while the high stiffness of the patellar tendon might favour fast force transfer upon recoil and, possibly, enhance leaping performance.

  20. Canine tendon studies. II. Biomechanical evaluation of normal and regrown canine tendons.

    PubMed

    Walker, P; Amstutz, H C; Rubinfeld, M

    1976-01-01

    Some of the mechanical properties of regrown canine tendons are compared to those of normal tendons of young and mature animals. Patellar and Achilles tendons from 12 beagle dogs were removed and studied with their bone origin and insertions. Mechanical tests were performed within 24 hr and test conditions simulated the physiological function of the tendon in vivo at room temperature. Specimens were soaked in Ringers solution and mounted in an Instron testing machine with load deflection curves plotted automatically. The parameters used for analysis were load extension, stress relaxation, elastic limit, and strain rate dependence. The regrown tendons in young animals appeared to quickly adjust in dimension and structure so that their properties were not significantly different from those of normal tendons on a load extension basis. The normal tendons were stiffer than regrown ones but the modulus of elasticity increased with age. The Achilles were stiffer than patellar tendons. Cyclic loading with 25 kg did not affect reconstructed tendon models, although some increase in stiffness was noted. The elastic modulus decreased with an increase in ambient temperature and increasing strain rate.

  1. Gliding characteristics between flexor tendons and surrounding tissues in the carpal tunnel: a biomechanical cadaver study.

    PubMed

    Zhao, Chunfeng; Ettema, Anke M; Osamura, Naoki; Berglund, Lawrence J; An, Kai-Nan; Amadio, Peter C

    2007-02-01

    The purpose of this study was to investigate the gliding characteristics of flexor tendons within the carpal tunnel with varied wrist positions and tendon motion styles, which may help us to understand the relationship between carpal tunnel syndrome (CTS) and repetitive hand motion. Eight fresh human cadaveric wrists and hands were used. The peak (PGR) and mean (MGR) gliding resistance of the middle finger flexor digitorum superficialis tendon were measured with the wrist in 0, 30, and 60 degrees of flexion and extension. While moving all three fingers together, the PGR at 60 degrees flexion was significantly higher than that at 0, 30, or 60 degrees extension. While moving the middle finger alone, the PGR at 60 and 30 degrees flexion was significantly higher than the PGR at 60 degrees extension. The PGR moving the middle finger FDS alone was significantly greater than that for all three digits moving together in 0, 30, and 60 degrees flexion. Differential finger motion with wrist flexion elevated the tendon gliding resistance in the carpal tunnel, which may be relevant in considering the possible role of wrist position and activity in the etiology of CTS.

  2. Achilles' death: anatomical considerations regarding the most famous trauma of the Trojan War.

    PubMed

    Anagnostopoulou, Sophia; Mavridis, Ioannis

    2013-03-01

    In Greek mythology, Achilles was a hero of the Trojan War, the central character and greatest warrior of Homer's Iliad. As Achilles died because of a small wound on his heel, the term "Achilles' heel" has come to mean a person's principal weakness. But is the human heel a really vulnerable part of our body? Could a non-poisonous arrow have caused Achilles' death? Should an arrow be necessarily poisonous in order to cause a lethal heel would? The purpose of this effort is to explain, from an anatomic point of view, how Achilles heel wounding could have led to his death. The Achilles tendon is the strongest, largest and thickest tendon in the human body and plays an important role in the biomechanics of the lower extremity. The blood supply of the tendon is from the peroneal and posterior tibial arteries. It is quite likely that the arrow which killed Achilles was poisoned. This supposition could be of course enough to cause his death. In case the arrow was not poisoned a rupture of the posterior tibial artery by the arrow could have caused a bleeding, but it seems unlikely for such a bleeding to be lethal. Moreover, a combination of these two theories could have also taken place, i.e. a poisoned arrow traumatizing the posterior tibial artery and hence causing rapid diffusion of the poison as well as bleeding. Furthermore, infectious and/or immunologic bases regarding Achilles' death could be considered. In our opinion, a poisoned arrow was probably the crucial factor leading to the famous inglorious death of this famous glorious Homeric hero. PMID:23425764

  3. Prostaglandin synthetase and prostacyclin synthetase in mature rat skeletal muscles: immunohistochemical localisation to arterioles, tendons and connective tissues.

    PubMed Central

    McLennan, I S; Macdonald, R E

    1991-01-01

    Mature skeletal muscles produce appreciable quantities of prostacyclin (PGI2) and smaller amounts of PGF2 alpha and PGE2, but the sources of these prostaglandins within skeletal muscle are unknown. Monoclonal antibodies to prostaglandin synthetase and prostacyclin synthetase were used to determine which muscle cells produce prostaglandins. The antibody to prostacyclin synthetase stained the tendon, fascia, epimysium and the arteries leading to the muscles. The endothelia of arterioles were also stained in the tibialis anterior and cremaster but not in the soleus muscles. Only trace levels of immunoreactivity were observed with the antibody to prostaglandin synthetase in normal muscles. However, immunoreactivity was observed in the muscles of rats that had been pretreated with aspirin, a drug that inhibits and stabilises prostaglandin synthetase. In muscles of the aspirin-treated rats, all cell types that were stained by the antiprostacyclin synthetase also reacted weakly with the antibody to prostaglandin synthetase. In addition, some cells in the endomysium were strongly stained with the antiprostaglandin synthetase but not with the antiprostacyclin synthetase. We conclude that (1) at least one aspect of the regulation of blood flow in the microcirculation of slow muscles is different from that of fast muscles, (2) that the tendon and connective tissue is the major source of PGI2 in mature skeletal muscles, and (3) that the prostaglandin-dependent effects of insulin and some other stimuli on skeletal muscle may be mediated by the muscle's arterioles or connective tissue. Images Fig. 1 Fig. 2 Fig. 3 PMID:1810931

  4. Ultrasound-guided injection of platelet-rich plasma in chronic Achilles and patellar tendinopathy☆

    PubMed Central

    Ferrero, G.; Fabbro, E.; Orlandi, D.; Martini, C.; Lacelli, F.; Serafini, G.; Silvestri, E.; Sconfienza, L.M.

    2012-01-01

    Purpose The efficacy of platelet-rich plasma (PRP) in the treatment and healing of chronic tendinopathy through stimulation of cell proliferation and total collagen production has been demonstrated by both in vitro and in vivo studies. The aim of this study is to evaluate the effectiveness of ultrasound (US)-guided autologous PRP injections in patellar and Achilles tendinopathy. Materials and methods Autologous PRP was injected under US-guidance into the Achilles and patellar tendons (30 Achilles tendons, 28 patellar tendons) in 48 prospectively selected patients (30 males, 18 females, mean age 38 ± 16 years, range 20–61 years). All patients were previously evaluated according to the Victoria Institute of Sport Assessment (VISA) scale, which assessed pain and activity level, and they all underwent US of the tendon before treatment and at follow-up after 20 days and 6 months. Statistical analysis was performed with Chi-square and Wilcoxon tests. Results 20 days after PRP injection the patients presented a non-significant improvement of clinical symptoms. At the 6-month follow-up VISA score increased from a mean value of 57–75.5 (p < .01). US evaluation revealed a reduction of hypoechoic areas in 26 tendons (p < .01) associated with a widespread improvement of fibrillar echotexture of the tendon and reduced hypervascularity at power Doppler. Conclusion PRP injection in patellar and Achilles tendinopathy results in a significant and lasting improvement of clinical symptoms and leads to recovery of the tendon matrix potentially helping to prevent degenerative lesions. US-guidance allows PRP injection into the tendon with great accuracy. PMID:23730392

  5. Current concepts in the management of tendon disorders.

    PubMed

    Rees, J D; Wilson, A M; Wolman, R L

    2006-05-01

    Primary disorders of tendons are common and constitute a high proportion of referrals to rheumatologists. Certain tendons are particularly vulnerable to degenerative pathology; these include the Achilles, patella, elements of the rotator cuff, forearm extensors, biceps brachi and tibialis posterior tendons. Disorders of these tendons are often chronic and can be difficult to manage successfully in the long term. Significant advances have been made in understanding the pathophysiology of these conditions. Histopathological evidence, together with advances in imaging techniques, has made us more appreciative of the degenerative (rather that inflammatory) nature of these conditions. Additionally the presence of neovascularization is now well-recognized in long-standing tendinopathy. We review the mechanical, vascular and developing neural theories that attempt to explain the aetiology of degenerative tendinopathy. We also explore theories of why specific tendons (such as the Achilles and supraspinatus tendons) are particularly prone to degenerative pathology. Traditionally, treatments have placed a heavy emphasis on anti-inflammatory strategies, which are often inappropriate. Recently, however, significant advances in the practical management of tendon disorders have been made. In particular the advent of 'eccentric loading' training programmes has revolutionized the treatment of Achilles tendinopathy in some patients. This concept is currently being extended to include other commonly injured tendons. Other current treatments are reviewed, as are potential future treatments.

  6. Tendonitis (image)

    MedlinePlus

    ... tendon. It can occur as a result of injury, overuse, or with aging as the tendon loses elasticity. Any action that places prolonged repetitive strain on the forearm muscles can cause tendonitis. The ...

  7. Role of xenogenous bovine platelet gel embedded within collagen implant on tendon healing: an in vitro and in vivo study

    PubMed Central

    Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Maffulli, Nicola

    2015-01-01

    Surgical reconstruction of large Achilles tendon defects is demanding. Platelet concentrates may be useful to favor healing in such conditions. The characteristics of bovine platelet-gel embedded within a collagen-implant were determined in vitro, and its healing efficacy was examined in a large Achilles tendon defect in rabbits. Two cm of the left Achilles tendon of 60 rabbits were excised, and the animals were randomly assigned to control (no implant), collagen-implant, or bovine-platelet-gel-collagen-implant groups. The tendon edges were maintained aligned using a Kessler suture. No implant was inserted in the control group. In the two other groups, a collagen-implant or bovine-platelet-gel-collagen-implant was inserted in the defect. The bioelectricity and serum platelet-derived growth factor levels were measured weekly and at 60 days post injury, respectively. After euthanasia at 60 days post injury, the tendons were tested at macroscopic, microscopic, and ultrastructural levels, and their dry matter and biomechanical performances were also assessed. Another 60 rabbits were assigned to receive no implant, a collagen-implant, or a bovine-platelet-gel-collagen-implant, euthanized at 10, 20, 30, and 40 days post injury, and their tendons were evaluated grossly and histologically to determine host-graft interactions. Compared to the control and collagen-implant, treatment with bovine-platelet-gel-collagen-implant improved tissue bioelectricity and serum platelet-derived growth factor levels, and increased cell proliferation, differentiation, and maturation. It also increased number, diameter, and density of the collagen fibrils, alignment and maturation of the collagen fibrils and fibers, biomechanical properties and dry matter content of the injured tendons at 60 days post injury. The bovine-platelet-gel-collagen-implant also increased biodegradability, biocompatibility, and tissue incorporation behavior of the implant compared to the collagen-implant alone

  8. Longitudinal Cell Tracking and Simultaneous Monitoring of Tissue Regeneration after Cell Treatment of Natural Tendon Disease by Low-Field Magnetic Resonance Imaging

    PubMed Central

    Berner, Dagmar; Brehm, Walter; Gerlach, Kerstin; Gittel, Claudia; Offhaus, Julia; Paebst, Felicitas; Scharner, Doreen; Burk, Janina

    2016-01-01

    Treatment of tendon disease with multipotent mesenchymal stromal cells (MSC) is a promising option to improve tissue regeneration. To elucidate the mechanisms by which MSC support regeneration, longitudinal tracking of MSC labelled with superparamagnetic iron oxide (SPIO) by magnetic resonance imaging (MRI) could provide important insight. Nine equine patients suffering from tendon disease were treated with SPIO-labelled or nonlabelled allogeneic umbilical cord-derived MSC by local injection. Labelling of MSC was confirmed by microscopy and MRI. All animals were subjected to clinical, ultrasonographical, and low-field MRI examinations before and directly after MSC application as well as 2, 4, and 8 weeks after MSC application. Hypointense artefacts with characteristically low signal intensity were identified at the site of injection of SPIO-MSC in T1- and T2∗-weighted gradient echo MRI sequences. They were visible in all 7 cases treated with SPIO-MSC directly after injection, but not in the control cases treated with nonlabelled MSC. Furthermore, hypointense artefacts remained traceable within the damaged tendon tissue during the whole follow-up period in 5 out of 7 cases. Tendon healing could be monitored at the same time. Clinical and ultrasonographical findings as well as T2-weighted MRI series indicated a gradual improvement of tendon function and structure. PMID:26880932

  9. Posterior tibial tendon tears in young competitive athletes: two case reports.

    PubMed

    Porter, D A; Baxter, D E; Clanton, T O; Klootwyk, T E

    1998-09-01

    Unlike the Achilles tendon, the posterior tibial tendon does not typically undergo acute rupture. We report two cases of posterior tibial tendon tears occurring in young, athletic individuals (<30 years old) that required operative intervention before the patients could return to competitive sports. We believe that these are the first two reports of posterior tibial tendon tears occurring in this population without the patient having a prior history of steroid injections in the tendon. The tears we observed and described at surgical exploration were chronic and degenerative in nature. We also comment on our approach to treatment of posterior tibial tendon injuries in the athletic population.

  10. Biomechanical and tissue handling property comparison of decellularized and cryopreserved tibialis anterior tendons following extreme incubation and rehydration.

    PubMed

    Nyland, J; Larsen, N; Burden, R; Chang, H; Caborn, D N M

    2009-01-01

    Little is known regarding the biomechanical profiles and tissue handling properties of decellularized and cryopreserved human tibialis anterior tendons prepared as allografts for ACL reconstruction. This study compared allografts prepared using two extremes of the same cryoprotectant incubation and rehydration technique with a standardly prepared control group. Porcine tibiae with similar apparent BMD were randomly divided into three groups of ten specimens. Paired tendons were randomly divided into two experimental groups: Group 1 = 8 h incubation/15 min rehydration; Group 2 = 2 h incubation/1 h rehydration. Group 3 (control) consisted of ten standardly prepared tendons with 20 min rehydration. Tissue handling properties were graded during allograft preparation using a modified visual analog scale. Similar diameter allografts were fixed in matched diameter extraction drilled tibial tunnels with 35 mm long, 1 mm > tunnel diameter bioabsorbable interference screws. Potted constructs were mounted in a servo hydraulic device, pretensioned between 10-50 N at 0.1 Hz (10 cycles), and isometric pretensioned at 50 N for 1 min, prior to 500 submaximal loading cycles (50-250 N) at 0.5 Hz, and load to failure testing (20 mm/min). Constructs prepared under extreme conditions generally displayed comparable biomechanical properties to the control condition. Group 1 (8 h incubation/15 min rehydration)(-34 +/- 35 ms) and Group 2 (2 h incubation/1 h rehydration) (-22 +/- 38 ms) displayed smaller mean displacement-load peak phase timing differences over the initial ten cycles compared to Group 3 (control)(-42 +/- 49 ms), P = 0.004, suggesting greater relative construct stiffness. Group 1 (8 h incubation/15 min rehydration) (234.9 +/- 34 N/mm) and Group 2 (2 h incubation/1 h rehydration)(231.3 +/- 43 N/mm) displayed lower construct stiffness during load to failure testing than Group 3 (control)(284.5 +/- 25.2 N/mm), P = 0.003. Group 1 (8 h incubation/15 min rehydration) differed from

  11. Fatigue loading of tendon

    PubMed Central

    Shepherd, Jennifer H; Screen, Hazel R C

    2013-01-01

    Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory. PMID:23837793

  12. Neuronal regulation of tendon homoeostasis.

    PubMed

    Ackermann, Paul W

    2013-08-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders.

  13. Neuronal regulation of tendon homoeostasis

    PubMed Central

    Ackermann, Paul W

    2013-01-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:23718724

  14. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon.

    PubMed Central

    Freund, I; Deutsch, M; Sprecher, A

    1986-01-01

    Connective tissue polarity has remained an intractable enigma for over two decades. We present new data on optical second harmonic generation in native, wet, rat-tail tendon. Scanning second-harmonic microscopy has revealed, for the first time, the existence of a discrete network of fine, polar, filamentous or columnar, structures, and, also, the presence of strongly polar surface, or near-surface patches. The thickness of these features was probed via crossed-beam optical frequency summation and the polar material is estimated to occupy a few percent of the tendon volume. The three-dimensional spatial distribution of filaments was studied with the aid of small-angle second-harmonic scattering, and the filaments were found to permeate the tendon cross-section in an apparently random fashion. These latter measurements also revealed that essentially all polar filaments had the same directionality. Concomitant studies of the polar collagen fibrils that comprise the bulk of tendon were in full accord with prior electron microscope results that had demonstrated that the directionality of these fibrils varies up/down in a purely random fashion, and thus cannot yield a net macroscopic polarity. Quantitative analysis of the second-harmonic data yields the conclusion that the observed polar structures cannot be simply local regions containing some accidental net excess of similarly oriented fibrils. The analytical expressions used in the analysis of the data obtained for this complex tissue were supported by extensive, realistic computer simulations. The discovery that the polarity of rat-tail tendon, and possibly other forms of connective tissue, resides in discrete structures, some of which are located near the tendon surface, should permit the ready isolation of polar-rich material for further study by a variety of techniques. Images FIGURE 2 PMID:3779007

  15. Tendon and Ligament Regeneration and Repair: Clinical Relevance and Developmental Paradigm

    PubMed Central

    Tuan, Rocky S.

    2014-01-01

    Tendon and ligament (T/L) are dense connective tissues connecting bone to muscle and bone to bone, respectively. Similar to other musculoskeletal tissues, T/L arise from the somitic mesoderm, but they are derived from a recently discovered somitic compartment, the syndetome. The adjacent sclerotome and myotome provide inductive signals to the interposing syndetome, thereby upregulating the expression of the transcription factor Scleraxis, which in turn leads to further tenogenic and ligamentogenic differentiation. These advances in the understanding of T/L development have been sought to provide a knowledge base for improving the healing of T/L injuries, a common clinical challenge due to the intrinsically poor natural healing response. Specifically, the three most common tendon injuries involve tearing of the rotator cuff of the shoulder, the flexor tendon of the hand, and the Achilles tendon. At present, injuries to these tissues are treated by surgical repair and/or conservative approaches, including biophysical modalities such as physical rehabilitation and cryotherapy. Unfortunately, the healing tissue forms fibrovascular scar and possesses inferior mechanical and biochemical properties as compared to native T/L. Therefore, tissue engineers have sought to improve upon the natural healing response by augmenting the injured tissue with cells, scaffolds, bioactive agents, and mechanical stimulation. These strategies show promise, both in vitro and in vivo, for improving T/L healing. However, several challenges remain in restoring full T/L function following injury, including uncertainties over the optimal combination of these biological agents as well how to best deliver tissue engineered elements to the injury site. A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple growth factors with high spatiotemporal resolution and specificity

  16. Achilles tendinopathy management

    PubMed Central

    Kearney, R. S.; Parsons, N.; Costa, M. L.

    2013-01-01

    Objectives To conduct a pilot randomised controlled trial to evaluate the feasibility of conducting a larger trial to evaluate the difference in Victorian Institute of Sports Assessment-Achilles (VISA-A) scores at six months between patients with Achilles tendinopathy treated with a platelet-rich plasma (PRP) injection compared with an eccentric loading programme. Methods Two groups of patients with mid-substance Achilles tendinopathy were randomised to receive a PRP injection or an eccentric loading programme. A total of 20 patients were randomised, with a mean age of 49 years (35 to 66). All outcome measures were recorded at baseline, six weeks, three months and six months. Results The mean VISA-A score for the injection group at the primary endpoint of six months was 76.0 (95% confidence interval (CI) 58.3 to 93.7) and for the exercise group was 57.4 (95% CI 38.1 to 76.7). There was no statistically significant difference between these scores (p = 0.171), which was expected from such a pilot study. Conclusions This pilot study has been key to providing data to inform a larger study and shows that the methodology is feasible. Cite this article: Bone Joint Res 2013;2:227–32. PMID:24135556

  17. Autologous hamstring tendon used for revision of quadiceps tendon tears.

    PubMed

    McCormick, Frank; Nwachukwu, Benedict U; Kim, Jaehon; Martin, Scott D

    2013-04-01

    A paucity of literature exists on quadriceps tendon reruptures. Failed quadriceps tendon repair can cause significant morbidity and disability. Surgical management of quadriceps tendon rerupture can be challenging due to tissue degeneration, tendon retraction, muscle atrophy, and poor bone fixation. A lack of guidance in the literature exists on the appropriate surgical techniques for managing quadriceps tendon reruptures.This article describes the case of a male recreational athlete with a failed primary quadriceps tendon repair who presented 10 months after rerupture. Examination was significant for morbid obesity, assisted ambulation, and a significant defect at the superior pole of the patella on the affected side. Intraoperative findings were consistent with a 2.0- to 4.5-cm tendon defect across the extensor mechanism with complete retinaculi tears. The authors performed a novel surgical approach for revision of quadriceps tears using a bilateral hamstring autograft through a quadriceps tendon weave and a transosseous patellar repair. Tendon length was restored, and extensor mechanism tension was reapproximated. Postoperatively, the patient achieved a good outcome and had returned to full, painless, sport participation at 2-year follow-up.This surgical technique is suitable for revision quadriceps tendon repairs of large tendon gap defects, repairs desiring tendon-to-bone in-growth, and repairs requiring large-force transmission across the repair.

  18. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. PMID:24080228

  19. Stimulation of tendon repair: mechanical loading, GDFs and platelets. A mini-review

    PubMed Central

    2007-01-01

    The repair of subcutaneous tendon ruptures can be stimulated by a single application of one of several growth factors [e.g. platelet-derived growth factor (PDGF), transforming growth factor (TGF)-beta, insulin-like growth factor (IGF)-1, vascular endothelial growth factor (VEGF), bone morphogenetic proteins (BMPs) like growth differentiation factor (GDF)-5, -6, -7] or by a thrombocyte concentrate (PRP). The response to these measures is dependent on the mechanical microenvironment, which is crucial for repair. So far, almost all research has been limited to rodent models, mostly using the rat Achilles tendon. Ruptured human Achilles tendons appear to be mechanically loaded in spite of immobilisation. This suggests that the mechanical microenvironment might be favourable for the clinical use of growth factors or platelets for this indication. New methods to quantitate human Achilles tendon repair have been developed. PMID:17583812

  20. Effects of mechanical vibration of the foot sole and ankle tendons on cutaneomuscular responses in man.

    PubMed

    Smith, Andrew C; Mummidisetty, Chaithanya K; Rymer, William Zev; Knikou, Maria

    2013-06-17

    The modulation of cutaneomuscular responses in response to mechanical vibration applied to the foot sole and to the ankle tendons was established in ten healthy subjects. The effects of mechanical vibration applied to the skin adjacent to the tibialis anterior (TA) and Achilles tendons were examined in two subjects. With the subjects seated, mechanical vibration applied to the TA and/or Achilles tendons significantly depressed the cutaneomuscular responses in all subjects, regardless of the frequency (50, 150, 250 Hz) of vibration. Mechanical vibration applied either to the foot sole or to the skin adjacent to the tendons induced no significant effects. The demonstration that mechanical vibration applied to muscle tendons exerts an inhibitory effect on cutaneomuscular responses supports the hypothesis that receptors that mediate body kinesthesia can be used as a vehicle to alter the spinal excitability state. The data suggests that tendon vibration could be utilized in neurological disorders to induce exogenous-mediated potentiation of presynaptic inhibition.

  1. Ultrasound guided sclerosis of neovessels in painful chronic Achilles tendinosis: pilot study of a new treatment

    PubMed Central

    Ohberg, L; Alfredson, H; Khan, K

    2002-01-01

    Background: The mechanism that causes pain in chronic Achilles tendinosis is not known. However, high resolution colour Doppler ultrasound has shown that neovascularisation may be involved. Objective: To investigate if sclerosing the neovessels would affect the level of tendon pain. Methods: The effect of colour Doppler ultrasound guided injection of a sclerosing agent, polidocanol, against neovessels was studied in 10 patients (seven men and three women, mean age 55 years) with painful chronic mid-portion Achilles tendinosis. Results: Eight patients were satisfied with the results of treatment. There was significantly reduced pain during activity (reported on a visual analogue scale (VAS)) and no remaining neovascularisation after an average of two injections. Two patients were not satisfied, and neovascularisation remained. At the six month follow up, the same eight patients remained satisfied and could perform Achilles tendon loading activities as desired. Their VAS score had decreased from 74 before treatment to 8 (p<0.01). Conclusions: Sclerosing neovessels appears to be an effective treatment for painful chronic Achilles tendinosis, suggesting that neovessels play a key part in causing chronic tendon pain. PMID:12055110

  2. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    PubMed Central

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  3. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.

    PubMed

    Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L

    2015-02-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.

  4. Human Genetic Variation, Sport and Exercise Medicine, and Achilles Tendinopathy: Role for Angiogenesis-Associated Genes.

    PubMed

    Rahim, Masouda; El Khoury, Louis Y; Raleigh, Stuart M; Ribbans, William J; Posthumus, Michael; Collins, Malcolm; September, Alison V

    2016-09-01

    Sport and Exercise Medicine is one of the important subspecialties of 21st century healthcare contributing to improving the physical function, health, and vitality of populations while reducing the prevalence of lifestyle-related diseases. Moreover, sport and exercise are associated with injuries such as Achilles tendinopathy, which is a common tendon injury. The angiogenesis-associated signaling pathway plays a key role in extracellular matrix remodeling, with increased levels of angiogenic cytokines reported after cyclic stretching of tendon fibroblasts. We investigated the variants in angiogenesis genes in relation to the risk of Achilles tendinopathy in two population samples drawn independently from South Africa (SA) and the United Kingdom (UK). The study sample comprised 120 SA and 130 UK healthy controls, and 108 SA and 87 UK participants with Achilles tendinopathy. All participants were genotyped for five functional polymorphisms in the vascular endothelial growth factor, A isoform (VEGFA) (rs699947, rs1570360, rs2010963) and kinase insert-domain receptor (KDR) genes (rs1870377, rs2071559). The VEGFA A-G-G inferred haplotype was associated with an increased risk of Achilles tendinopathy in the SA group (15% in controls vs. 20% in cases, p = 0.048) and the combined SA+UK group (14% in controls vs. 20% in cases, p = 0.009). These new findings implicate the VEGFA gene with Achilles tendinopathy risk, while highlighting the potential biological significance of the angiogenesis signaling pathway in the etiology of Achilles tendinopathy. The evidence suggesting a genetic contribution to the susceptibility of sustaining a tendon injury is growing. We anticipate that high-throughput and multi-omics approaches, building on genomics, proteomics, and metabolomics, may soon uncover the pathophysiology of many diseases in the field of Sports and Exercise Medicine, as a new frontier of global precision medicine. PMID:27631191

  5. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. PMID:27485766

  6. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies.

  7. Effect of growth hormone on aging connective tissue in muscle and tendon: gene expression, morphology, and function following immobilization and rehabilitation.

    PubMed

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Aagaard, P; Kjaer, M; Langberg, H

    2014-01-15

    It is unknown whether loss in musculotendinous tissue during inactivity can be counteracted by growth hormone (GH), and whether GH accelerate rehabilitation in aging individuals. Elderly men (65-75 yr; n = 12) had one leg immobilized 2 wk followed by 6 wk of retraining and were randomly assigned to daily injections of recombinant GH (rhGH; n = 6) or placebo (Plc; n = 6). Cross-sectional area (CSA), muscle strength (MVC), and biomechanical properties of m. quadriceps and patellar tendon were determined. Muscle and tendon biopsies were analyzed for gene expressions (mRNA) of collagen (COL1A1/3A1) and insulin-like growth factors (IGF-1Ea/Ec). Fibril morphology was analyzed by transmission electron microscope (TEM). In tendon, CSA and biomechanical properties did not change following immobilization, but an increase in CSA was found after 6 wk of rehabilitation in both groups. The changes were more pronounced when GH was injected. Furthermore, tendon stiffness increased in the GH group. Muscle CSA declined after immobilization in the Plc but not in the GH group. Muscle CSA increased during retraining, with a significantly larger increase in the GH group compared with the Plc group. Both a time and a group effect were seen for IGF-1Ea/Ec and COL1A1/3A1 mRNA expression in muscle, with a difference between GH and Plc. IGF-1Ea/Ec and COL-1A1/3A1 mRNA expression increased in muscle following immobilization and retraining in subjects receiving GH, whereas an increase in IGF-1Ec mRNA expression was seen in the Plc group only after retraining. In conclusion, in elderly humans, GH seems to have a matrix stabilizing effect during inactivity and rehabilitation by stimulating collagen expression in the musculotendinous tissue and increasing tendon CSA and stiffness. PMID:24235105

  8. A possible link between loading, inflammation and healing: Immune cell populations during tendon healing in the rat

    PubMed Central

    Blomgran, Parmis; Blomgran, Robert; Ernerudh, Jan; Aspenberg, Per

    2016-01-01

    Loading influences tendon healing, and so does inflammation. We hypothesized that the two are connected. 48 rats underwent Achilles tendon transection. Half of the rats received Botox injections into calf muscles to reduce mechanical loading. Cells from the regenerating tissue were analyzed by flow cytometry. In the loaded group, the regenerating tissue contained 83% leukocytes (CD45+) day 1, and 23% day 10. The M1/M2 macrophage ratio (CCR7/CD206) peaked at day 3, while T helper (CD3+CD4+) and Treg cells (CD25+ Foxp3+) increased over time. With Botox, markers associated with down-regulation of inflammation were more common day 5 (CD163, CD206, CD25, Foxp3), and M1 or M2 macrophages and Treg cells were virtually absent day 10, while still present with full loading. The primary variable, CCR7/CD206 ratio day 5, was higher with full loading (p = 0.001) and the Treg cell fraction was lower (p < 0.001). Free cage activity loading is known to increase size and strength of the tendon in this model compared to Botox. Loading now appeared to delay the switch to an M2 type of inflammation with more Treg cells. It seems a prolonged M1 phase due to loading might make the tendon regenerate bigger. PMID:27405922

  9. Famotidine suppresses osteogenic differentiation of tendon cells in vitro and pathological calcification of tendon in vivo.

    PubMed

    Yamamoto, Kenichi; Hojo, Hironori; Koshima, Isao; Chung, Ung-il; Ohba, Shinsuke

    2012-12-01

    Heterotopic ossification or calcification follows any type of musculoskeletal trauma and is known to occur after arthroplasties of hip, knee, shoulder, or elbow; fractures; joint dislocations; or tendon ruptures. Histamine receptor H2 (Hrh2) has been shown to be effective for reducing pain and decreasing calcification in patients with calcifying tendinitis, which suggested that H2 blockers were effective for the treatment of tendon ossification or calcification. However, the detailed mechanisms of its action on tendon remain to be clarified. We investigated the mechanisms underlying H2 blocker-mediated suppression of tendon calcification, with a focus on the direct action of the drug on tendon cells. Famotidine treatment suppressed the mRNA expressions of Col10a1 and osteocalcin, ossification markers, in a tendon-derived cell line TT-D6, as well as a preosteoblastic one MC3T3-E1. Both of the cell lines expressed Hrh2; histamine treatment induced osteocalcin expression in these cells. Famotidine administration suppressed calcification in the Achilles tendon of ttw mice, a mouse model of ectopic ossification. These data suggest that famotidine inhibits osteogenic differentiation of tendon cells in vitro, and this inhibition may underlie the anti-calcification effects of the drug in vivo. This study points to the use of H2 blockers as a promising strategy for treating heterotopic ossification or calcification in tendon, and provides evidence in support of the clinical use of famotidine.

  10. Sex Hormones and Tendon.

    PubMed

    Hansen, Mette; Kjaer, Michael

    2016-01-01

    The risk of overuse and traumatic tendon and ligament injuries differ between women and men. Part of this gender difference in injury risk is probably explained by sex hormonal differences which are specifically distinct during the sexual maturation in the teenage years and during young adulthood. The effects of the separate sex hormones are not fully elucidated. However, in women, the presence of estrogen in contrast to very low estrogen levels may be beneficial during regular loading of the tissue or during recovering after an injury, as estrogen can enhance tendon collagen synthesis rate. Yet, in active young female athletes, physiological high concentration of estrogen may enhance the risk of injuries due to reduced fibrillar crosslinking and enhanced joint laxity. In men, testosterone can enhance tendon stiffness due to an enhanced tendon collagen turnover and collagen content, but testosterone has also been linked to a reduced responsiveness to relaxin. The present chapter will focus on sex difference in tendon injury risk, tendon morphology and tendon collagen turnover, but also on the specific effects of estrogen and androgens. PMID:27535256

  11. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway. PMID:21030672

  12. Evolutionary Origins of C-Terminal (GPP)n 3-Hydroxyproline Formation in Vertebrate Tendon Collagen

    PubMed Central

    Hudson, David M.; Werther, Rachel; Weis, MaryAnn; Wu, Jiann-Jiu; Eyre, David R.

    2014-01-01

    Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPP)n) in addition to the fully occupied A1 site at Pro986. The C-terminal (GPP)n motif has five consecutive GPP triplets in α1(I), four in α2(I) and three in α1(II), all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin) and type II collagen (cartilage and notochord) were examined by mass spectrometry. The (GPP)n domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human), up to five 3-hydroxyproline residues per (GPP)n motif were found in α1(I) and four in α2(I), with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPP)n site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species. PMID:24695516

  13. Tendon Transfers for Combined Peripheral Nerve Injuries.

    PubMed

    Makarewich, Christopher A; Hutchinson, Douglas T

    2016-08-01

    Combined peripheral nerve injuries present a unique set of challenges to the hand surgeon when considering tendon transfers. They are often associated with severe soft tissue trauma, including lacerations to remaining innervated muscles and tendons, significant scar formation, and substantial sensory loss. In the case of combined nerve injuries, there are typically fewer options for tendon transfers due to fewer tendons of shared function that are expendable as well as associated injuries to tendon or muscle bellies. As such, careful preoperative planning must be performed to make the most of remaining muscle tendon units. PMID:27387081

  14. Achilles tendinosis – a morphometrical study in a rat model

    PubMed Central

    Silva, Rafael Duarte; Glazebrook, Mark Anthony; Campos, Vinicius Castro; Vasconcelos, Anilton Cesar

    2011-01-01

    This study addresses the morphopathogenesis of Achilles tendinosis, using a rat model and presenting quantitative analysis of time-dependent histological changes. Thirty Wistar rats were used, randomly split in experimental and control groups. Animals of the experimental group were submitted to a treadmill running scheme. Five animals of each group were euthanized at four, eight and sixteen weeks. Achilles tendons were collected and processed routinely for histopath sections. Slides were stained by Hematoxylin-Eosin, Picrosirius Red, Alcian Blue, AgNOR, TUNEL and evaluated morphometrically. Cellular density decreased slightly along the time and was higher in the experimental group than in controls at fourth, eighth and sixteenth weeks. Fiber microtearing, percentual of reticular fibers and glycosaminoglycans content increased along the time and were higher in experimental group than in controls at all-time intervals. AgNOR labeling here interpreted as a marker of transcription activity was higher in the experimental groups than in controls at all-time intervals. Apoptotic cells were more frequent and diffusely distributed in tendinosis samples than in control groups. These results suggest that as mechanical overload is becoming chronic, cellular turnover and matrix deposition increases leading to tendinosis. The combination of staining techniques and morphometry used here to describe the evolution of lesions occurring in a rat model system has proved to be suited for the study of induced Achilles tendinosis. PMID:22076169

  15. Treatment of Achilles Tendinopathy with Autologous Adipose-derived Stromal Vascular Fraction

    PubMed Central

    de Girolamo, Laura; Grassi, Miriam; Viganò, Marco; Orfei, Carlotta Perucca; Montrasio, Umberto Alfieri; Usuelli, Federico

    2016-01-01

    Objectives: Achilles tendinopathy commonly occurs in both active and inactive persons. It consists in the development of pain and inflammation in the early phases, with progression to the development of fibrotic tissue and degeneration of tendon matrix. Current conservative treatment approaches do not provide sustained satisfactory results, particularly in active patients, although platelet rich plasma (PRP) injection have shown to be effective in many cases. The therapeutic effect of adipose-derived mesenchymal stem cells (ASCs), either expanded or used directly within the stromal vascular fraction (SVF), have demonstrated to possess significant anti-inflammatory and immunomodulatory effects, mediated by the release of active factors, and thus potentially useful in the treatment of tendinopathy. Methods: Patients affected by non-insertional Achilles tendinopathy (range 18-55 y/o) were prospectively enrolled in this controlled study, and randomly assigned either to single PRP injection group (GPSIII kit, Biomet, USA) (n=28 tendons) or single adipose tissue SVF (FastKit, Corios, Italy) (n=28 tendons) injection group. All patients were assessed clinically pre-operatively and at 15, 30, 60, 120 and 180 days from treatment, using VAS Pain, VISA-A, AOFAS and SF-36 forms. Patients also underwent to US and MRI before treatment and then at 4 and 6 month-follow-ups. An aliquot of SVF of each patient was analyzed in vitro for mesenchymal stem cells (MSC) content, viability, proliferation rate, differentiation potential and immunomodulatory ability. Sample size of the study was calculated with a power analysis based on VISA-A score. All the results are expressed as mean ± standard deviation. A Wilcoxon test for paired data was performed to compare variables before and after surgery. Results: Population background data and pre-operative scores were similar in the two groups (p>0.05). At final follow up both patients group showed significantly improvements in all the scores in

  16. Sclerosing injections to treat midportion Achilles tendinosis: a randomised controlled study evaluating two different concentrations of Polidocanol.

    PubMed

    Willberg, Lotta; Sunding, Kerstin; Ohberg, Lars; Forssblad, Magnus; Fahlström, Martin; Alfredson, Håkan

    2008-09-01

    Two to three ultrasound (US) and colour Doppler (CD)-guided injections of the sclerosing substance Polidocanol (5 mg/ml) have been demonstrated to give good clinical results in patients with chronic midportion Achilles tendinopathy. This study aimed to investigate if a higher concentration of Polidocanol (10 mg/ml) would lead to a less number of treatments, and lower volumes, needed for good clinical results. Fifty-two consecutive Achilles tendons (48 patients, mean age 49.6 years) with chronic painful midportion Achilles tendinopathy, were randomised to treatment with Polidocanol 5 mg/ml (group A) or 10 mg/ml (group B). The patients and treating physician were blinded to the concentration of Polidocanol injected. All patients had structural tendon changes and neovascularisation in the Achilles midportion. Treatment was US + CD-guided injections targeting the region with neovascularisation (outside ventral tendon). A maximum of three treatments (6-8 weeks in between) were given before evaluation. Patients not satisfied after three treatments were given additional treatment with Polidocanol 10 mg/ml, up to five treatments. For evaluation, the patients recorded the severity of Achilles tendon pain during activity on a visual analogue scale (VAS), before and after treatment. Patient satisfaction with treatment was also assessed. At follow-up (mean 14 months) after three treatments, 18/26 patients in group A and 19/26 patients in group B were satisfied with the treatment and had a significantly reduced level of tendon pain (P < 0.05). After completion of the study, additional treatments with Polidocanol 10 mg/ml in the not satisfied patients resulted in 26/26 satisfied patients in both groups A and B. In summary, we found no significant differences in the number of satisfied patients, number of injections or volumes given, between patients treated with 5 or 10 mg/ml Polidocanol.

  17. Updates in biological therapies for knee injuries: tendons.

    PubMed

    Demange, Marco Kawamura; de Almeida, Adriano Marques; Rodeo, Scott A

    2014-09-01

    Tendons are subjected to tendinopathies caused by inflammation, degeneration, and weakening of the tendon, due to overuse and trauma, which may eventually lead to tendon rupture. Recently, there has been increasing interest in biological approaches to augment tissue healing. Tendon healing occurs through a dynamic process with inflammation, cellular proliferation, and tissue remodeling. In this review article, we discuss the more frequently proposed biological therapies for tendon injuries as platelet-rich plasma, mesenchymal stem cells, extracorporeal shockwave, and scaffolds.

  18. Decellularized and Engineered Tendons as Biological Substitutes: A Critical Review

    PubMed Central

    Lovati, Arianna B.; Bottagisio, Marta; Moretti, Matteo

    2016-01-01

    Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly represents an interesting approach to treat tendon ruptures. We analyzed in vitro and in vivo studies focused on the development of efficient protocols for the decellularization and for the cell reseeding of the tendon matrix to obtain medical devices for tendon substitution. Our review considered also the proper tendon source and preclinical animal models with the aim of entering into clinical trials. The results highlight a wide panorama in terms of allogenic or xenogeneic tendon sources, specimen dimensions, physical or chemical decellularization techniques, and the cell type variety for reseeding from terminally differentiated to undifferentiated mesenchymal stem cells and their static or dynamic culture employed to generate implantable constructs tested in different animal models. We try to identify the most efficient approach to achieve an optimal biological scaffold for biomechanics and intrinsic properties, resembling the native tendon and being applicable in clinics in the near future, with particular attention to the Achilles tendon substitution. PMID:26880985

  19. Extensive Loss of Tibialis Anterior Tendon: Surgical Repair With Split Tendon Transfer of Tibialis Posterior Tendon: A Case Report.

    PubMed

    Miyazaki, Tsuyoshi; Uchida, Kenzo; Kokubo, Yasuo; Inukai, Tomoo; Sakamoto, Takumi; Yamagishi, Atsushi; Kitade, Makoto; Baba, Hisatoshi

    2016-01-01

    Extensive damage of the tibialis anterior tendon is rare and mainly caused by trauma. Surgical treatment of these injuries can become challenging owing to the limited availability of autogenous graft resources for reconstruction of the defect. In the present case report, we describe a large defect in the midfoot soft tissue after a traffic injury, which included complete loss of the tibialis anterior tendon. The tendon was reconstructed by split tendon transfer of the tibialis posterior tendon without sacrificing function, which was confirmed by the follow-up examination at 6 years after injury. We believe split tendon transfer of the tibialis posterior tendon can be one of the treatment options for patients with extensive disruption of the tibialis anterior tendon. PMID:26213163

  20. Tribological characteristics of healthy tendon.

    PubMed

    Theobald, Peter S; Dowson, Duncan; Khan, Ilyas M; Jones, Michael D

    2012-07-26

    Tendons transfer muscular forces efficiently and painlessly, facilitating joint motion. Whilst the tribology of articular cartilage is constantly explored, a poorer understanding remains of tendon lubrication and friction. This study reports experimental data describing the tribological characteristics of tendon and its surrounding tissue, before presenting an arithmetic solution to facilitate numerical modelling. The experimental characteristics of the tensile (i.e. mid-substance) and compressive (i.e. fibrocartilaginous) regions of bovine flexor tendon were investigated using a pin-on-plate tribometer, with immunofluroscence analysis describing the relative intensity and distribution of surface-bound lubricin. Arithmetic analysis considering the digital extensor tendon determined that, in physiological conditions, the tensile tendon region was able to generate elastohydrodynamic lubrication (EHL). The equivalent region of compressive tendon exhibited a higher intensity of surface-bound lubricin which, it is hypothesised, serves to minimise the increased frictional resistance due to generating only mixed or boundary lubrication regimes. Arithmetic analysis indicates that, given a more favourable biomechanical environment, this region can also generate EHL. Whilst acknowledging the limitations of transferring data from an animal model to a clinical environment, by providing the first data and equations detailing the film thicknesses and lubrication regime for these two tendon regions it is hoped that clinicians, engineers and scientists can consider improved clinical strategies to tackle both tendinopathy and tendon rupture.

  1. Ultrasound-guided retro-calcaneal bursa corticosteroid injection for refractory Achilles tendinitis in patients with seronegative spondyloarthropathy: efficacy and follow-up study.

    PubMed

    Srivastava, Puja; Aggarwal, Amita

    2016-06-01

    Ultrasound (US)-guided corticosteroid injection has been shown to be safe and effective for varied causes of plantar fasciitis; however, its use for Achilles tendinitis is controversial. We studied the efficacy and changes in US findings at Achilles enthesitis after corticosteroid injection in patients with spondyloarthropathy (SpA). Patients with SpA with symptomatic Achilles enthesitis, refractory to 6 weeks of full-dose NSAIDs, were offered US-guided local corticosteroid injection. Injected entheses were examined by US (both B mode and power Doppler) at baseline and 6 weeks after injection. Standard OMERACT definitions were used to define enthesitis. Achilles tendon thickness >5.29 mm, 2 cm proximal to insertion in long axis, was considered thickened. Twenty-seven symptomatic Achilles tendons (in 18 patients) were injected with 20 mg methylprednisolone under US guidance baseline, and 6-week follow-up US features were compared. All patients reported improvement in pain (VAS) in the affected tendon after injection (p < 0.0001). Simultaneously, improvement in local inflammatory changes were noted, in the form of significant reduction in tendon thickness (p < 0.0001), vascularity (p < 0.0001), peritendinous oedema (p = 0.001), bursitis and bursal vascularity (p < 0.001 and < 0.0001, respectively). There was no change in bone erosions and enthesophyte. None of the patients had tendon rupture or other injection-related complications at 6 weeks of follow-up. US-guided local corticosteroid injection is an effective and safe modality for refractory Achilles enthesitis in patients with SpA and leads to reversion of acute changes at entheseal site. PMID:26894910

  2. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps.

    PubMed

    Franchi, Marco; Ottani, Vittoria; Stagni, Rita; Ruggeri, Alessandro

    2010-03-01

    Collagen fibres in tendons and ligaments run straight but in some regions they show crimps which disappear or appear more flattened during the initial elongation of tissues. Each crimp is formed of collagen fibrils showing knots or fibrillar crimps at the crimp top angle. The present study analyzes by polarized light microscopy, scanning electron microscopy, transmission electron microscopy the 3D morphology of fibrillar crimp in tendons and ligaments of rat demonstrating that each fibril in the fibrillar region always twists leftwards changing the plane of running and sharply bends modifying the course on a new plane. The morphology of fibrillar crimp in stretched tendons fulfills the mechanical role of the fibrillar crimp acting as a particular knot/biological hinge in absorbing tension forces during fibril strengthening and recoiling collagen fibres when stretching is removed. The left-handed path of fibrils in the fibrillar crimp region gives rise to left-handed fibril helices observed both in isolated fibrils and sections of different tendons and ligaments (flexor digitorum profundus muscle tendon, Achilles tendon, tail tendon, patellar ligament and medial collateral ligament of the knee). The left-handed path of fibrils represents a new final suprafibrillar level of the alternating handedness which was previously described only from the molecular to the microfibrillar level. When the width of the twisting angle in the fibrillar crimp is nearly 180 degrees the fibrils appear as left-handed flattened helices forming crimped collagen fibres previously described as planar crimps. When fibrils twist with different subsequent rotational angles (< 180 degrees ) they always assume a left-helical course but, running in many different nonplanar planes, they form wider helical crimped fibres.

  3. Tibialis Anterior Tendon Transfer.

    PubMed

    Mulhern, Jennifer L; Protzman, Nicole M; Brigido, Stephen A

    2016-01-01

    Tendon transfer procedures are used commonly for the correction of soft tissue imbalances and instabilities. The complete transfer and the split transfer of the tibialis anterior tendon are well-accepted methods for the treatment of idiopathic equinovarus deformity in children and adults. Throughout the literature, complete and split transfer have been shown to yield significant improvements in ankle and foot range of motion and muscle function. At present, there is insufficient evidence to recommend one procedure over the other, although the split procedure has been advocated for consistently achieving inversion to eversion muscle balance without overcorrection.

  4. Bioreactor Design for Tendon/Ligament Engineering

    PubMed Central

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  5. Birefringence and second harmonic generation on tendon collagen following red linearly polarized laser irradiation.

    PubMed

    Silva, Daniela Fátima Teixeira; Gomes, Anderson Stevens Leonidas; de Campos Vidal, Benedicto; Ribeiro, Martha Simões

    2013-04-01

    Regarding the importance of type I collagen in understanding the mechanical properties of a range of tissues, there is still a gap in our knowledge of how proteins perform such work. There is consensus in literature that the mechanical characteristics of a tissue are primarily determined by the organization of its molecules. The purpose of this study was to characterize the organization of non-irradiated and irradiated type I collagen. Irradiation was performed with a linearly polarized HeNe laser (λ = 632.8 nm) and characterization was undertaken using polarized light microscopy to investigate the birefringence and second harmonic generation to analyze nonlinear susceptibility. Rats received laser irradiation (P = 6.0 mW, I = 21.2 mW/cm(2), E ≈ 0.3 J, ED = 1.0 J/cm(2)) on their healthy Achilles tendons, which after were extracted to prepare the specimens. Our results show that irradiated samples present higher birefringence and greater non-linear susceptibility than non-irradiated samples. Under studied conditions, we propose that a red laser with polarization direction aligned in parallel to the tendon long axis promotes further alignment on the ordered healthy collagen fibrils towards the electric field incident. Thus, prospects for biomedical applications for laser polarized radiation on type I collagen are encouraging since it supports greater tissue organization. PMID:23247985

  6. Etiology and pathophysiology of tendon ruptures in sports.

    PubMed

    Kannus, P; Natri, A

    1997-04-01

    Of all spontaneous tendon ruptures, complete Achilles tendon tears are most closely associated with sports activities (1-3). Schönbauer (3) reported that 75% of all ruptures of the Achilles tendon are related to sports. In Plecko & Passl (2) the number was 60%. In our material of 430 cases, the number of sports-related Achilles ruptures was very similar (62%), while only 2% of ruptures of other tendons were sports-related (P < 0.001) (1). Also, the majority of Achilles reruptures occurred in sports. The ruptures occurred most often in soccer (34%), track and field (16%) and basketball (14%). The distribution of Achilles ruptures according to different sports varies considerably from country to country, according to the national sport traditions. For example, in northern and middle Europe, soccer, tennis, track and field, indoor ball games, downhill skiing, and gymnastics are the most common; and in North America, football, basketball, baseball, tennis and downhill skiing dominate the statistics (1, 2, 4). In sports, some Achilles ruptures are not spontaneous or degeneration-induced but may occur as a consequence of the remarkably high forces that are involved in the performance (2). Ruptures in the high jump or triple jump are good examples. In such cases, failure in the neuromuscular protective mechanisms due to fatigue or disturbed co-ordination can frequently be found. The spontaneous complete rupture of the supraspinatus tendon of the rotator cuff does not occur very frequently in sports. Those sports that include high-energy throwing movements, such as American and Finnish baseball, American football, rugby and discuss and javelin throwing, may, however, produce this injury. Partial tears and inflammations of the rotator cuff complex are much more frequent in throwing sports. The complete rupture of the proximal long head of the biceps brachii tendon is rare among competitive and recreational athletes. In our material, under 2% of these ruptures were

  7. Accumulation of Oxidized LDL in the Tendon Tissues of C57BL/6 or Apolipoprotein E Knock-Out Mice That Consume a High Fat Diet: Potential Impact on Tendon Health

    PubMed Central

    Grewal, Navdeep; Thornton, Gail M.; Behzad, Hayedeh; Sharma, Aishwariya; Lu, Alex; Zhang, Peng; Reid, W. Darlene; Granville, David J.; Scott, Alex

    2014-01-01

    Objective Clinical studies have suggested an association between dyslipidemia and tendon injuries or chronic tendon pain; the mechanisms underlying this association are not yet known. The objectives of this study were (1) to evaluate the impact of a high fat diet on the function of load-bearing tendons and on the distribution in tendons of oxidized low density lipoprotein (oxLDL), and (2) to examine the effect of oxLDL on tendon fibroblast proliferation and gene expression. Methods Gene expression (Mmp2, Tgfb1, Col1a1, Col3a1), fat content (Oil Red O staining), oxLDL levels (immunohistochemistry) and tendon biomechanical properties were examined in mice (C57Bl/6 or ApoE -/-) receiving a standard or a high fat diet. Human tendon fibroblast proliferation and gene expression (COL1A1, COL3A1, MMP2) were examined following oxLDL exposure. Results In both types of mice (C57Bl/6 or ApoE -/-), consumption of a high fat diet led to a marked increase in oxLDL deposition in the load-bearing extracellular matrix of the tendon. The consumption of a high fat diet also reduced the failure stress and load of the patellar tendon in both mouse types, and increased Mmp2 expression. ApoE -/- mice exhibited more pronounced reductions in tendon function than wild-type mice, and decreased expression of Col1a1 compared to wild type mice. Human tendon fibroblasts responded to oxLDL by increasing their proliferation and their mRNA levels of MMP2, while decreasing their mRNA levels for COL1A1 and COL3A1. Conclusion The consumption of a high fat diet resulted in deleterious changes in tendon function, and these changes may be explained in part by the effects of oxLDL, which induced a proliferative, matrix-degrading phenotype in human tenocytes. PMID:25502628

  8. Mesenchymal stem cell applications to tendon healing

    PubMed Central

    Chaudhury, Salma

    2012-01-01

    Summary Tendons are often subject to age related degenerative changes that coincide with a diminished regenerative capacity. Torn tendons often heal by forming scar tissue that is structurally weaker than healthy native tendon tissue, predisposing to mechanical failure. There is increasing interest in providing biological stimuli to increase the tendon reparative response. Stem cells in particular are an exciting and promising prospect as they have the potential to provide appropriate cellular signals to encourage neotendon formation during repair rather than scar tissue. Currently, a number of issues need to be investigated further before it can be determined whether stem cells are an effective and safe therapeutic option for encouraging tendon repair. This review explores the in-vitro and invivo evidence assessing the effect of stem cells on tendon healing, as well as the potential clinical applications. PMID:23738300

  9. Tendon Stem Cells: Mechanobiology and Development of Tendinopathy.

    PubMed

    Wang, James H-C; Komatsu, Issei

    2016-01-01

    Millions of people suffer from tendon injuries in both occupational and athletic settings. However, the restoration of normal structure and function to injured tendons still remains as one of the greatest challenges in orthopaedics and sports medicine. In recent years, a remarkable advancement in tendon research field has been the discovery of tendon stem/progenitor cells (TSCs). Unlike tenocytes, the predominant resident cell in tendons, TSCs have the ability to self-renew and multi-differentiate. Because of these distinct properties, TSCs may play a critical role in tendon physiology as well as pathology such as tendinopathy, which is a prevalent chronic tendon injury. Additionally, because TSCs are tendon-specific stem cells, they could potentially be used in tendon tissue engineering in vitro, and serve as a promising cell source for cell-based therapy to effectively repair or even regenerate injured tendons in clinical settings. PMID:27535248

  10. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    SciTech Connect

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  11. Multiple Fibromas of Tendon Sheath: Unusual Presentation

    PubMed Central

    Park, Se Young; Jin, Seon Pil; Yeom, Bora; Kim, Shin Woo; Cho, So Yun

    2011-01-01

    Fibroma of the tendon sheath is an uncommon soft tissue tumor presenting as a solitary, slow-growing, firm, painless, small nodule, which shows strong attachment to the tendon or tendon sheath. It is usually localized on fingers and hand tendons in adults between the age of 20 and 40 years old. This case concerns a 61-year-old man presenting with a 5-year history of multiple cutaneous nodules on both palms and soles. Skin biopsy confirmed fibroma of the tendon sheath. Blood tests showed a high titer of rheumatoid factor and positivity to anti-nuclear antibody. No case of fibroma of the tendon sheath occurring multifocally on both palms and soles has been previously reported. Herein, we report on a very rare case of multiple fibromas of the tendon sheath arising from palms and soles, which supports the pathogenetic hypothesis that this tumor may be a reactive process rather than a true neoplasm. PMID:22028571

  12. Histologic analysis of ruptured quadriceps tendons.

    PubMed

    Trobisch, Per David; Bauman, Matthias; Weise, Kuno; Stuby, Fabian; Hak, David J

    2010-01-01

    Quadriceps tendon ruptures are uncommon injuries. Degenerative changes in the tendon are felt to be an important precondition for rupture. We retrospectively reviewed 45 quadriceps tendon ruptures in 42 patients. Quadriceps tendon ruptures occurred most often in the sixth and seventh decade of life. Men were affected six times as often as women. A tissue sample from the rupture-zone was obtained in 22 cases and histologic analysis was performed. Degenerative changes were present in only 14 (64%) of the 22 samples. We observed an increasing ratio of degenerative to nondegenerative tendons with increasing patient age. Our data suggests that quadriceps tendon rupture, especially in younger patients, can occur in the absence of pathologic tendon degeneration.

  13. Association of Achilles tendinopathy and plantar spurs.

    PubMed

    Vulcano, Ettore; Mani, Sriniwasan B; Mani, Sriniwasan; Do, Huong; Bohne, Walter H; Ellis, Scott J

    2014-10-01

    Plantar spurs and Achilles tendinopathy are common causes of heel pain. In the authors' practice, it was anecdotally noted that patients with Achilles tendinopathy often presented with plantar spurs. Nonetheless, there is a shortage of studies investigating whether Achilles tendinopathy and plantar spurs exist concomitantly. A better understanding of the association between the 2 pathologies might help physicians recognize and treat both conditions, educate patients about Achilles tendinopathy and plantar spurs, and ultimately investigate possible underlying causes of both pathologies that could be addressed together. The authors examined the prevalence of plantar spurs in patients diagnosed with Achilles tendinopathy as well as demographic differences within the unilateral and bilateral Achilles tendinopathy populations. A total of 785 patient records were retrospectively reviewed. Mean patient age was 56.2±15.5 years (46.9% men and 53.1% women). Seventy-two (9.2%) patients were affected bilaterally by Achilles tendinopathy. Lateral radiographs were reviewed by an orthopedic surgeon to identify the presence of plantar spurs. A total of 329 (41.9%) patients with Achilles tendinopathy were found to have a concomitant plantar spur. Patients with unilateral Achilles tendinopathy and a plantar spur were more likely to be women (58.7% vs 49.8%, P=.020) and older (62.7 vs 51.7 years, P<.001). In the bilateral Achilles tendinopathy group, there were 46 (63.9%) patients with at least one foot presenting with a plantar spur. The study's findings suggest a significant association between Achilles tendinopathy and plantar spurs. Older women with Achilles tendinopathy are at greater risk of being affected by plantar spurs. PMID:25275977

  14. Tendon Vasculature in Health and Disease

    PubMed Central

    Tempfer, Herbert; Traweger, Andreas

    2015-01-01

    Tendons represent a bradytrophic tissue which is poorly vascularized and, compared to bone or skin, heal poorly. Usually, a vascularized connective scar tissue with inferior functional properties forms at the injury site. Whether the increased vascularization is the root cause of tissue impairments such as loss of collagen fiber orientation, ectopic formation of bone, fat or cartilage, or is a consequence of these pathological changes remains unclear. This review provides an overview of the role of tendon vasculature in healthy and chronically diseased tendon tissue as well as its relevance for tendon repair. Further, the nature and the role of perivascular tendon stem/progenitor cells residing in the vascular niche will be discussed and compared to multipotent stromal cells in other tissues. PMID:26635616

  15. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts.

    PubMed

    Mendias, Christopher L; Gumucio, Jonathan P; Bakhurin, Konstantin I; Lynch, Evan B; Brooks, Susan V

    2012-04-01

    Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.

  16. Posterior tibial tendon entrapment within an intact ankle mortise: a case report.

    PubMed

    Hunter, Allison M; Bowlin, Christopher

    2015-01-01

    The present case report demonstrates a rare finding associated with irreducible ankle fracture dislocations. To our knowledge, posterior tibial tendon entrapment with an intact ankle mortise has not yet been documented in published studies. In the case of our patient, a high-energy, 12-ft fall resulted in a comminuted intra-articular fracture of the medial malleolus, confirmed by the initial radiographs. Preoperative magnetic resonance imaging showed the Achilles tendon to be ruptured and the posterior tibial tendon to be both displaced and entrapped between the medial malleolar fracture fragments, preventing initial closed reduction. At operative repair for the ruptured Achilles tendon and the medial malleolus fracture, the posterior tibial tendon was removed from the fracture site and was found to be intact with no evidence of laceration or rupture. The tendon was returned back to its anatomic position, and the tendon sheath was reapproximated. Although uncommon, it is important that entrapment of the posterior tibial tendon be considered in cases of irreducible ankle fracture. This injury type can be addressed during open reduction internal fixation to achieve reduction. PMID:25441277

  17. Ulnar Nerve Injury after Flexor Tendon Grafting.

    PubMed

    McCleave, Michael John

    2016-10-01

    A 43-year-old female is presented who underwent a two-stage tendon reconstruction and developed a low ulnar nerve palsy postoperatively. Exploration found that the tendon graft was passing through Guyon's canal and that the ulnar nerve was divided. This is a previously unreported complication. The reconstruction is discussed, the literature reviewed and a guide is given on how to identify the correct tissue plane when passing a tendon rod. PMID:27595967

  18. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering.

    PubMed

    Naghashzargar, Elham; Farè, Silvia; Catto, Valentina; Bertoldi, Serena; Semnani, Dariush; Karbasi, Saeed; Tanzi, Maria Cristina

    2015-07-04

    A novel biodegradable nano/micro hybrid structure was obtained by electrospinning P3HB or PCL nanofibers onto a twisted silk fibroin (SF) structure, with the aim of fabricating a suitable scaffold for tendon and ligament tissue engineering. The electrospinning (ES) processing parameters for P3HB and PCL were optimized on 2D samples, and applied to produce two different nano/micro hybrid constructs (SF/ES-PCL and SF/ES-P3HB).Morphological, chemico-physical and mechanical properties of the novel hybrid scaffolds were evaluated by SEM, ATR FT-IR, DSC, tensile and thermodynamic mechanical tests. The results demonstrated that the nanofibers were tightly wrapped around the silk filaments, and the crystallinity of the SF twisted yarns was not influenced by the presence of the electrospun polymers. The slightly higher mechanical properties of the hybrid constructs confirmed an increase of internal forces due to the interaction between nano and micro components. Cell culture tests with L929 fibroblasts, in the presence of the sample eluates or in direct contact with the hybrid structures, showed no cytotoxic effects and a good level of cytocompatibility of the nano/micro hybrid structures in term of cell viability, particularly at day 1. Cell viability onto the nano/micro hybrid structures decreased from the first to the third day of culture when compared with the control culture plastic, but appeared to be higher when compared with the uncoated SF yarns. Although additional in vitro and in vivo tests are needed, the original fabrication method here described appears promising for scaffolds suitable for tendon and ligament tissue engineering.

  19. Triceps surae muscle-tendon properties in older endurance- and sprint-trained athletes.

    PubMed

    Stenroth, Lauri; Cronin, Neil J; Peltonen, Jussi; Korhonen, Marko T; Sipilä, Sarianna; Finni, Taija

    2016-01-01

    Previous studies have shown that aging is associated with alterations in muscle architecture and tendon properties (Morse CI, Thom JM, Birch KM, Narici MV. Acta Physiol Scand 183: 291-298, 2005; Narici MV, Maganaris CN, Reeves ND, Capodaglio P. J Appl Physiol 95: 2229-2234, 2003; Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. J Appl Physiol 113: 1537-1544, 2012). However, the possible influence of different types of regular exercise loading on muscle architecture and tendon properties in older adults is poorly understood. To address this, triceps surae muscle-tendon properties were examined in older male endurance (OE, n = 10, age = 74.0 ± 2.8 yr) and sprint runners (OS, n = 10, age = 74.4 ± 2.8 yr), with an average of 42 yr of regular training experience, and compared with age-matched [older control (OC), n = 33, age = 74.8 ± 3.6 yr] and young untrained controls (YC, n = 18, age = 23.7 ± 2.0 yr). Compared with YC, Achilles tendon cross-sectional area (CSA) was 22% (P = 0.022), 45% (P = 0.001), and 71% (P < 0.001) larger in OC, OE, and OS, respectively. Among older groups, OS had significantly larger tendon CSA compared with OC (P = 0.033). No significant between-group differences were observed in Achilles tendon stiffness. In older groups, Young's modulus was 31-44%, and maximal tendon stress 44-55% lower, than in YC (P ≤ 0.001). OE showed shorter soleus fascicle length than both OC (P < 0.05) and YC (P < 0.05). These data suggest that long-term running does not counteract the previously reported age-related increase in tendon CSA, but, instead, may have an additive effect. The greatest Achilles tendon CSA was observed in OS followed by OE and OC, suggesting that adaptation to running exercise is loading intensity dependent. Achilles tendon stiffness was maintained in older groups, even though all older groups displayed larger tendon CSA and lower tendon Young's modulus. Shorter soleus muscle fascicles in OE runners may be an adaptation to life

  20. Extra-corporeal pulsed-activated therapy ("EPAT" sound wave) for Achilles tendinopathy: a prospective study.

    PubMed

    Saxena, Amol; Ramdath, Sona; O'Halloran, Patrick; Gerdesmeyer, Ludger; Gollwitzer, Hans

    2011-01-01

    Achilles tendinopathy is common and extracorporeal shockwaves have become a popular treatment for this condition, even though previous research has not provided conclusive results regarding its efficacy in cases of Achilles tendinopathy. Our aim was to evaluate 3 weekly shockwave treatments in patients with Achilles tendinopathy, as quantified by the Roles and Maudsley score. A total of 74 tendons in 60 patients were assessed at baseline and at least 1 year posttreatment, including 32 (43.24%) paratendinoses, 23 (31.08%) proximal tendinoses, and 19 (25.68%) insertional tendinoses. The mean age of the participants was 48.6 ± 12.94 years, and patients with paratendinosis (41.44 ± 14.01 years) were statistically significantly younger than those with proximal (53 ± 8.9 years) and insertional (54.26 ± 9.74 years) tendinopathy, and these differences were statistically significant (P = .0012 and P = .0063, respectively). Overall, 58 (78.38%) tendons improved by at least 1 year posttreatment, including 75% in the paratendinosis, 78.26% in the proximal tendinosis, and 84.21% in the insertional tendinosis groups, and no adverse effects were observed. The Roles and Maudsley score improved from 3.22 ± 0.55 to 1.84 ± 1.05 (P < .0001) in the paratendinosis group, 3.39 ± 0.5 to 1.57 ± 0.66 (P < .0001) in the proximal tendinopathy group, and 3.32 ± 0.58 to 1.47 ± 0.7 (P = .0001) in the insertional tendinopathy group. Based on these results, we believe that shockwave therapy serves as a safe, viable, and effective option for the treatment of Achilles tendinopathy.

  1. On the mechanical function of tendon.

    PubMed

    Kafka, V; Jírová, J; Smetana, V

    1995-01-01

    A mesoscopic approach is followed for mathematical modelling of the specific deformation properties of tendon. The approach starts from our general concept of modelling mechanical behaviour of heterogeneous media and assumes that the structure of tendon is optimized in such a way that it enables its adjacent muscle to work with a constant performance in the course of increasing loading (acting like a gearbox in a car). The model based on this assumption gives results that are in a very good accordance with observed properties of tendons. Clinical experience reveals that if this function of tendon is violated pathological changes appear in the respective muscle. RELEVANCE: Clarification and mathematical modelling of the mechanical function of tendon is of intellectual interest in its own right, but it is important also for cautioning surgeons against unnecessary violation of this function, and for tissue engineering aspects if tendon must be replaced.

  2. Posterior Tibial Tendon Dysfunction

    MedlinePlus

    ... when the posterior tibial tendon becomes inflamed or torn. As a result, the tendon may not be ... repetitive use. Once the tendon becomes inflamed or torn, the arch will slowly fall (collapse) over time. ...

  3. Tendon latch

    SciTech Connect

    Watkins, B. J.

    1985-01-01

    A latch connects tendons run from a floating platform to a socket in a foundation on the sea floor. The latch includes a latch body having a plurality of dogs disposed within and urgible outward from the latch body. A piston is releasably disposed within the latch body above the dogs and moves downwardly when released to urge the dogs outwardly from the body into latching engagement with the socket. A trigger mechanism in the latch releases the piston when the latch body lands in the socket and contacts a trigger pin projecting upwardly from the bottom of the socket. A series of wedges are disposed exteriorally on the body and inhibit lateral movement of the body relative to the socket when the tendon is subjected to a cycle bending loads.

  4. Microstructural stress relaxation mechanics in functionally different tendons.

    PubMed

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs.

  5. Hyaluronic acid and tendon lesions

    PubMed Central

    Kaux, Jean-François; Samson, Antoine; Crielaard, Jean-Michel

    2015-01-01

    Summary Introduction recently, the viscoelastic properties of hyaluronic acid (HA) on liquid connective tissue have been proposed for the treatment of tendinopathies. Some fundamental studies show encouraging results on hyaluronic acid’s ability to promote tendon gliding and reduce adhesion as well as to improve tendon architectural organisation. Some observations also support its use in a clinical setting to improve pain and function. This literature review analyses studies relating to the use of hyaluronic acid in the treatment of tendinopathies. Methods this review was constructed using the Medline database via Pubmed, Scopus and Google Scholar. The key words hyaluronic acid, tendon and tendinopathy were used for the research. Results in total, 28 articles (in English and French) on the application of hyaluronic acid to tendons were selected for their relevance and scientific quality, including 13 for the in vitro part, 7 for the in vivo animal part and 8 for the human section. Conclusions preclinical studies demonstrate encouraging results: HA permits tendon gliding, reduces adhesions, creates better tendon architectural organisation and limits inflammation. These laboratory observations appear to be supported by limited but encouraging short-term clinical results on pain and function. However, controlled randomised studies are still needed. PMID:26958533

  6. The effect of tendon surface treatment on cell attachment for potential enhancement of tendon graft healing: an ex vivo model.

    PubMed

    Hashimoto, Takahiro; Sun, Yu-Long; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2012-12-01

    For both tendon allografts and autografts, the surface, initially optimized for gliding, may not be ideal to facilitate tissue integration for graft healing to host tendon or bone. As a prelude to studying tendon-bone integration, we investigated the effect of surface treatments with trypsin or mechanical abrasion on cell attachment to the tendon surface in a canine ex vivo intrasynovial tendon tissue culture model. Intrasynovial tendon allograft surfaces were seeded with cells after the following treatments: (1) no treatment, (2) mechanical abrasion, (3) trypsin, and (4) abrasion and trypsin. The area covered by cells was determined using confocal laser microscopy at one and two weeks. Results were compared to untreated extrasynovial tendon. Additional tendons were characterized with scanning electron microscopy. Tendons with trypsin treatment had significantly more surface coverage with cells than the other groups, after both one and two weeks of culture. In terms of the cellular shape and size, cells on tendons with trypsin treatment spread more and were more polygonal in shape, whereas tendons with mechanical abrasion with/without trypsin treatment contained smaller, more spindle-like cells. Surface roughening can affect cell behavior with topographical stimulation. Trypsin surface digestion exposes a mesh-like structure on the tendon surface, which could enhance cell adherence and, possibly, tendon/bone healing.

  7. Structure-mechanics relationships in mineralized tendons.

    PubMed

    Spiesz, Ewa M; Zysset, Philippe K

    2015-12-01

    In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons.

  8. Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing

    PubMed Central

    Gehwolf, Renate; Wagner, Andrea; Lehner, Christine; Bradshaw, Amy D.; Scharler, Cornelia; Niestrawska, Justyna A.; Holzapfel, Gerhard A.; Bauer, Hans-Christian; Tempfer, Herbert; Traweger, Andreas

    2016-01-01

    Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc−/− tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc−/− tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons. PMID:27586416

  9. Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing.

    PubMed

    Gehwolf, Renate; Wagner, Andrea; Lehner, Christine; Bradshaw, Amy D; Scharler, Cornelia; Niestrawska, Justyna A; Holzapfel, Gerhard A; Bauer, Hans-Christian; Tempfer, Herbert; Traweger, Andreas

    2016-01-01

    Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc-/- tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc-/- tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons. PMID:27586416

  10. Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing.

    PubMed

    Gehwolf, Renate; Wagner, Andrea; Lehner, Christine; Bradshaw, Amy D; Scharler, Cornelia; Niestrawska, Justyna A; Holzapfel, Gerhard A; Bauer, Hans-Christian; Tempfer, Herbert; Traweger, Andreas

    2016-09-02

    Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc-/- tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc-/- tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons.

  11. Acute rupture of the tibialis posterior tendon without fracture: a case report.

    PubMed

    Martinelli, Nicolò; Bonifacini, Carlo; Bianchi, Alberto; Moneghini, Laura; Scotto, Gennaro; Sartorelli, Elena

    2014-05-01

    The acute rupture of the tibialis posterior (TP) tendon, compared to an acute rupture of the Achilles tendon, is a quite uncommon disease to be diagnosed in the emergency department setting. In most cases symptoms related to a TP dysfunction, like weakness, pain along the course of the tendon, swelling in the region of the medial malleolus, and the partial or complete loss of the medial arch with a flatfoot deformity precede the complete rupture of the tendon. In this case report, we describe an acute rupture of the TP tendon following a pronation-external rotation injury of the ankle with no association of a medial malleolus fracture and with no history of a prior flatfoot deformity or symptoms. PMID:24901592

  12. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension.

    PubMed

    Funk, James R; Crandall, Jeff R; Tourret, Lisa J; MacMahon, Conor B; Bass, Cameron R; Patrie, James T; Khaewpong, Nopporn; Eppinger, Rolf H

    2002-12-01

    Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibial pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. The objectives of this study were to investigate the effect of Achilles tension on fracture mode and to empirically model the axial loading tolerance of the foot/ankle complex. Blunt axial impact tests were performed on forty-three (43) isolated lower extremities with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups. However, fracture initiated at the distal tibia more frequently with the addition of Achilles tension (p < 0.05). Acoustic sensors mounted to the bone demonstrated that fracture initiated at the time of peak local axial force. A survival analysis was performed on the injury data set using a Weibull regression model with specimen age, gender, body mass, and peak Achilles tension as predictor variables (R2 = 0.90). A closed-form survivor function was developed to predict the risk of fracture to the foot/ankle complex in terms of axial tibial force. The axial tibial force associated with a 50% risk of injury ranged from 3.7 kN for a 65 year-old 5th percentile female to 8.3 kN for a 45 year-old 50th percentile male, assuming no Achilles tension. The survivor function presented here may be used to estimate the risk of foot/ankle fracture that a blunt axial impact would pose to a human based on the peak tibial axial force measured by an anthropomorphic test device. PMID:12596644

  13. Current evidence of extracorporeal shock wave therapy in chronic Achilles tendinopathy.

    PubMed

    Gerdesmeyer, Ludger; Mittermayr, Rainer; Fuerst, Martin; Al Muderis, Munjed; Thiele, Richard; Saxena, Amol; Gollwitzer, Hans

    2015-12-01

    Chronic Achilles tendinopathy has been described as the most common overuse injury in sports medicine. Several treatment modalities such as activity modification, heel lifts, arch supports, stretching exercises, nonsteroidal anti-inflammatories, and eccentric loading are known as standard treatment mostly without proven evidence. After failed conservative therapy, invasive treatment may be considered. Extracorporeal shock wave therapy (ESWT) has been successfully used in soft-tissue pathologies like lateral epicondylitis, plantar fasciitis, tendinopathy of the shoulder and also in bone and skin disorders. Conclusive evidence recommending ESWT as a treatment for Achilles tendinopathy is still lacking. In plantar fasciitis as well as in calcific shoulder tendinopathy shock wave therapy is recently the best evaluated treatment option. This article analysis the evidence based literature of ESWT in chronic Achilles tendinopathy. Recently published data have shown the efficacy of focused and radial extracorporeal shock wave therapy. PMID:26327530

  14. Platelet Rich Plasma Therapy in Non-insertional Achilles Tendinopathy: The Efficacy is Reduced in 60-years Old People Compared to Young and Middle-Age Individuals

    PubMed Central

    Salini, Vincenzo; Vanni, Daniele; Pantalone, Andrea; Abate, Michele

    2015-01-01

    Background: Platelet Rich Plasma (PRP) has shown positive and long-lasting effects in patients with tendinopathies. However, information about age-related differences in the clinical outcome is limited. Aim of this retrospective study was to compare the efficacy of PRP therapy in young and elderly subjects suffering for Achilles tendinopathy. Materials and method: Patients with recalcitrant non-insertional Achilles tendinopathy were enrolled. Clinical (VISA-A) and instrumental (ultrasonography) data were collected at baseline and after 1, 3, 6, and 12 months. PRP injections (once a week for 3 weeks) were performed in sterile conditions and under ultrasound (US) control. Results: Forty-four subjects (29 young: mean age 39.5 ± 6.9; 15 elderly: mean age 61.5 ± 5.3) were retrospectively evaluated. At baseline, no significant differences were observed in the clinical and US parameters. Throughout the whole length of the study, a significant increase of VISA-A score was seen in both groups (from 50.3 ± 8.8 to 76.1 ± 6.6 in the young group, and from 48.7 ± 7.6 to 61.1 ± 9.4 in the elderly group); however, the infra-groups comparison showed better results in young patients, compared to the aged counterpart. Conclusion: Our results show that PRP is less effective in aged people. This finding can be ascribed to several biochemical and biomechanical differences documented in tendons of young and elderly subjects (reduced number and functionality of tenocytes and tenoblasts), which becomes more evident in the long-term tissue healing. However, prospective trials, using different PRP preparations and enrolling a larger number of subjects, are needed to draw more sound and definitive conclusions. PMID:26696880

  15. Effects of isotretinoin treatment on cartilage and tendon thicknesses: an ultrasonographic study.

    PubMed

    Yıldızgören, Mustafa Turgut; Karataş Toğral, Arzu; Baki, Ali Erdem; Ekiz, Timur

    2015-07-01

    Effects of retinoic acid on collagen synthesis and cartilage have previously been shown. However, its effects on cartilage and tendons in humans have not been studied yet. Therefore, in order to provide a morphologic insight, the aim of this study was to measure femoral cartilage, Achilles and supraspinatus tendon thicknesses in patients under systemic isotretinoin treatment by using ultrasound. Fifteen patients (nine F, six M) who used isotretinoin for their acnes were included. All patients were treated with isotretinoin 0.5 mg/kg/day for the first month, and the dosage was escalated up to 1 mg/kg/day thereafter. Distal femoral cartilage, supraspinatus, and Achilles tendons thicknesses have been evaluated both before the treatment and at the end of the third month. Femoral cartilage thicknesses were assessed from three midpoints bilaterally; medial condyle, lateral condyle, and intercondylar area. Short/long-axis diameters and cross-sectional area of the Achilles tendons and axial tendon thicknesses of supraspinatus tendon were evaluated from the nondominant side. The mean age of the patients was 20.1 ± 4.9 years, and body mass index was 21.7 ± 2.5 kg/m(2). Although posttreatment cartilage measurements of 30 knees were lower for the three midpoints, it reached significance only for lateral condyle (p = 0.05). In addition, posttreatment tendon measurements were not statistically significant compared with pretreatment values (all p > 0.05). Systemic isotretinoin treatment seems to make cartilage thinner. Further studies considering histological and molecular evaluations with more sample sizes are awaited. PMID:24985041

  16. Effects of isotretinoin treatment on cartilage and tendon thicknesses: an ultrasonographic study.

    PubMed

    Yıldızgören, Mustafa Turgut; Karataş Toğral, Arzu; Baki, Ali Erdem; Ekiz, Timur

    2015-07-01

    Effects of retinoic acid on collagen synthesis and cartilage have previously been shown. However, its effects on cartilage and tendons in humans have not been studied yet. Therefore, in order to provide a morphologic insight, the aim of this study was to measure femoral cartilage, Achilles and supraspinatus tendon thicknesses in patients under systemic isotretinoin treatment by using ultrasound. Fifteen patients (nine F, six M) who used isotretinoin for their acnes were included. All patients were treated with isotretinoin 0.5 mg/kg/day for the first month, and the dosage was escalated up to 1 mg/kg/day thereafter. Distal femoral cartilage, supraspinatus, and Achilles tendons thicknesses have been evaluated both before the treatment and at the end of the third month. Femoral cartilage thicknesses were assessed from three midpoints bilaterally; medial condyle, lateral condyle, and intercondylar area. Short/long-axis diameters and cross-sectional area of the Achilles tendons and axial tendon thicknesses of supraspinatus tendon were evaluated from the nondominant side. The mean age of the patients was 20.1 ± 4.9 years, and body mass index was 21.7 ± 2.5 kg/m(2). Although posttreatment cartilage measurements of 30 knees were lower for the three midpoints, it reached significance only for lateral condyle (p = 0.05). In addition, posttreatment tendon measurements were not statistically significant compared with pretreatment values (all p > 0.05). Systemic isotretinoin treatment seems to make cartilage thinner. Further studies considering histological and molecular evaluations with more sample sizes are awaited.

  17. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury

    PubMed Central

    Liu, Donghui; Andrade, Silvia Passos; Castro, Pollyana Ribeiro; Treacy, John; Ashworth, Jason; Slevin, Mark

    2016-01-01

    Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised. PMID:27694930

  18. Pitfalls during biomechanical testing - Evaluation of different fixation methods for measuring tendons endurance properties.

    PubMed

    Hangody, Gy; Pánics, G; Szebényi, G; Kiss, R; Hangody, L; Pap, K

    2016-03-01

    The goal of the study was to find a proper technique to fix tendon grafts into an INSTRON loading machine. From 8 human cadavers, 40 grafts were collected. We removed the bone-patella tendon-bone grafts, the semitendinosus and gracilis tendons, the quadriceps tendon-bone grafts, the Achilles tendons, and the peroneus longus tendons from each low