Science.gov

Sample records for achromatic color gamut

  1. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception.

  2. Gamuts and globes: the cartography of color

    NASA Astrophysics Data System (ADS)

    Moroney, Nathan

    2000-12-01

    A device gamut can be visualized as a 3D object in a given color space. The globe is approximately a 3D ellipsoid and has been the motivation for centuries of research in the area of geometric projections. Neither the globe nor a typical device gamut is flat but there are often times when it is useful to examine the globe and device gamuts in 2D. Cartography provides a multitude of geometric projections and terminology that can be used for gamut visualization and mapping. This paper provides examples of how the concepts and principles of cartography can be used for gamut visualization and gamut mapping. The Mercator, Cassini, Bonne, Mollweide, and Sinusoidal projections are used to visualize the sRGB gamut. Finally, a simple example using spherical coordinates is used to demonstrate how gamut projection can be used to implement a specific type of gamut mapping.

  3. Color spaces for color-gamut mapping

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    1999-10-01

    Before doing extensive color gamut experiments, we wanted to test the uniformity of CIE L*a*b*. This paper shows surprisingly large discrepancies between CIE L*a*b* and isotropic observation-based color spaces, such as Munsell: (1) L*a*b* chroma exaggerate yellows and underestimate blues. (2) The average discrepancy between L*a*b* and ideal is 27%. (3) Chips with identical L*a*b* hue angles are not the same color. L*a*b* introduces errors larger than many gamut mapping corrections. We have isotropic data in the Munsell Book. Computers allow 3D lookup tables to convert instantly any measured L*a*b* to interpolated Munsell Book values. We call this space ML, Ma, and Mb in honor of Munsell. LUTs have been developed for both LabtoMLab and MLabtoLab. With this zero-error, isotropic space we can return our attention to the original problem of color-gamut image processing.

  4. Wide color gamut LCD module using white light LED

    NASA Astrophysics Data System (ADS)

    He, Chang-Feng; Qian, Ke-Yuan; Wang, Han-Feng

    2016-01-01

    LED is a kind of reliable source of LCD backlight. The characteristics of LED determine the color gamut and brightness of LCD TV. At present, the mainstream of white LED mainly uses blue chip coated with YAG phosphor to get white light, which can only guarantee the color gamut to 72%NTSC. Based on the color characteristics of backlight module, the method of calculating the color gamut of backlight module are introduced in detail. Coating blue chip by different kind of phosphors, a new LED backlight for LCD TV is developed. The color gamut is improved to more than 80%NTSC or more. At the same time, through the optimization of combination of blue chip with selected green phosphor and red phosphor excitation peak, this white LED solution can get the different color gamut and the highest color gamut, which will be 88%NTSC at most. This technique has been applied to a LCD TV.

  5. Color encoding for gamut extension and bit-depth extension

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2005-02-01

    Monitor oriented RGB color spaces (e.g. sRGB) are widely applied for digital image representation for the simplicity in displaying images on monitor displays. However, the physical gamut limits its ability to encode colors accurately for color images that are not limited to the display RGB gamut. To extend the encoding gamut, non-physical RGB primaries may be used to define the color space, or the RGB tone ranges may be extended beyond the physical range. An out-of-gamut color has at least one of the R, G, and B channels that are smaller than 0 or higher than 100%. Instead of using wide-gamut RGB primaries for gamut expansion, we may extend the tone ranges to expand the encoding gamut. Negative tone values and tone values over 100% are allowed. Methods to efficiently and accurately encode out-of-gamut colors are discussed in this paper. Interpretation bits are added to interpret the range of color values or to encode color values with a higher bit-depth. The interpretation bits of R, G, and B primaries can be packed and stored in an alpha channel in some image formats (e.g. TIFF) or stored in a data tag (e.g. in JEPG format). If a color image does not have colors that are out of a regular RGB gamut, a regular program (e.g. Photoshop) is able to manipulate the data correctly.

  6. Paper roughness and the color gamut of color laser images

    NASA Astrophysics Data System (ADS)

    Arney, J. S.; Spampata, Michelle; Farnand, Susan; Oswald, Tom; Chauvin, Jim

    2007-01-01

    Common experience indicates the quality of a printed image depends on the choice of the paper used in the printing process. In the current report, we have used a recently developed device called a micro-goniophotometer to examine toner on a variety of substrates fused to varying degrees. The results indicate that the relationship between the printed color gamut and the topography of the substrate paper is a simple one for a color electrophotographic process. If the toner is fused completely to an equilibrium state with the substrate paper, then the toner conforms to the overall topographic features of the substrate. For rougher papers, the steeper topographic features are smoothed out by the toner. The maximum achievable color gamut is limited by the topographic smoothness of the resulting fused surface. Of course, achieving a fully fused surface at a competitive printing rate with a minimum of power consumption is not always feasible. However, the only significant factor found to limit the maximum state of fusing and the ultimate achievable color gamut is the smoothness of the paper.

  7. Color Gamut of Blackness in a Liquid Crystal Display

    NASA Astrophysics Data System (ADS)

    Shimomura, Teruo; Kobayashi, Shunsuke

    1985-02-01

    A guest-host mode liquid crystal display of a transmission type is investigated. Color gamut of blackness is established from an estimation experiment of color matching and is shown by the CIE 1931 chromaticity diagram and color solid. Color gamut of blackness under the influence of a light source and ambient illumination is discussed. A Munsell color ship, N-1 is used as a matching black color sample and fifty hues of liquid crystal cells are used as test sample colors. Six observers participate in the estimation experiment and measurement is done from ascending- and descending-series in the method of adjustment.

  8. Wide color gamut LCD with a quantum dot backlight.

    PubMed

    Luo, Zhenyue; Chen, Yuan; Wu, Shin-Tson

    2013-11-04

    We analyze the color performance and system efficiency of three commonly employed liquid crystal display modes with a blue LED-pumped red and green quantum dots (QDs) backlight. Based on the measured QD emission spectra, we can achieve 115% color gamut in CIE 1931 and 140% in CIE 1976 color space, while keeping the same energy efficiency as conventional backlights. Next, we apply multi-objective optimization method to refine the QD emission spectra and find a fundamental tradeoff between display system efficiency and color gamut. This systematic photometric analysis also provides useful guidelines for further optimizing QD backlight design and display system efficiency.

  9. A subjective evaluation of high-chroma color with wide color-gamut display

    NASA Astrophysics Data System (ADS)

    Kishimoto, Junko; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2009-01-01

    Displays tends to expand its color gamut, such as multi-primary color display, Adobe RGB and so on. Therefore displays got possible to display high chroma colors. However sometimes, we feel unnatural some for the image which only expanded chroma. Appropriate gamut mapping method to expand color gamut is not proposed very much. We are attempting preferred expanded color reproduction on wide color gamut display utilizing high chroma colors effectively. As a first step, we have conducted an experiment to investigate the psychological effect of color schemes including highly saturated colors. We used the six-primary-color projector that we have developed for the presentation of test colors. The six-primary-color projector's gamut volume in CIELAB space is about 1.8 times larger than the normal RGB projector. We conducted a subjective evaluation experiment using the SD (Semantic Differential) technique to find the quantitative psychological effect of high chroma colors.

  10. Gamut expansion of consumer camera to the CIE XYZ color gamut using a specifically designed fourth sensor channel.

    PubMed

    Prasad, Dilip K

    2015-07-10

    This paper discusses the design of an additional spectral filter (i.e., a fourth channel) to be used with existing camera sensors such that the camera's modified color gamut overlaps almost the full CIE XYZ color gamut. The proposed approach leverages on the matrix-R theory that states that the space of metamerism of a sensor, known as the metameric black space, can be determined directly from the camera's spectral sensitivities. Using this metameric black space, a novel fourth channel has been designed on the sensor that can expand the camera's gamut. The effectiveness of this idea has been demonstrated for five commercial cameras, Munsell color chips, and images taken under various illuminations. It is shown that the designed fourth channel is very effective in fitting the camera's color gamuts to CIE XYZ color gamut, reducing CIE LAB colorimetric distances, as well as the color differences between the camera's XYZ images and the true CIE XYZ images.

  11. Realizing Rec. 2020 color gamut with quantum dot displays.

    PubMed

    Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson

    2015-09-07

    We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.

  12. Gamut boundary description for one dependent primary color.

    PubMed

    Huang, Ting-Wei; Ou-Yang, Mang

    2009-10-01

    The gamut boundary description (GBD) of multiprimary color displays (MPD) is important for color gamut mapping. Dependent primary color (DPC) is the color stimulus of a controllable color channel represented by an additive mixture of positive amounts of other primary colors. We propose a method to obtain the GBD of a MPD with one DPC. Further, the ideal color volume in CIE xyY and CIE L*a*b* color space with complete-controlling white channel is about 218.8% and 144% compared with the one of digital light processing with incomplete-controlling white channel. The white channel with complete control will not only increase brightness, but also expand color volume.

  13. Color Reproduction System Based on Color Appearance Model and Gamut Mapping

    DTIC Science & Technology

    2000-07-01

    and Gamut Mapping DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Input/Output...report: ADP011333 thru ADP011362 UNCLASSIFIED Color reproduction system based on color appearance model and gamut mapping Fang-Hsuan Cheng, Chih-Yuan...perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human

  14. Wide-color gamut multi-twist retarders

    NASA Astrophysics Data System (ADS)

    Hornburg, Kathryn J.; Brickson, Leandra L.; Escuti, Michael J.

    2015-03-01

    We show how highly chromatic Multi-Twist Retarder (MTR) films can be used to create a single-film color filter wherein the color may be selected only by the MTR orientation angle. By this approach, we can create multi- color images with just an MTR between polarizers. We study the design method and limits of the available color gamut possibilities in this approach, and experimentally demonstrate several designs of continuous and discrete patterns. This technique may be useful in art, displays, microscopy, and remote sensing.

  15. Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence

    NASA Astrophysics Data System (ADS)

    Kang, Yongyin; Song, Zhicheng; Jiang, Xiaofang; Yin, Xia; Fang, Long; Gao, Jing; Su, Yehua; Zhao, Fei

    2017-02-01

    Monodisperse quantum dots (QDs) were prepared by low-temperature process. The remarkable narrow emission peak of the QDs helps the liquid crystal displays (LCD) and electroluminescence displays (QD light-emitting diode, QLED) to generate wide color gamut performance. The range of the color gamut for QD light-converting device (QLCD) is controlled by both the QDs and color filters (CFs) in LCD, and for QLED, the optimized color gamut is dominated by QD materials.

  16. Are the Color Gamuts of CRT and LCD Triangular? An Experimental Study

    DTIC Science & Technology

    2000-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO113 31 TITLE: Are the Color Gamuts of CRT and LCD Triangular? An...ADP011297 thru ADP011332 UNCLASSIFIED Are the Color Gamuts of CRT and LCD Triangular? An Experimental Study Guan-wei Leea and Chao-hua Wenb aDepartment of...Tube) display. This study describes the difference of color gamuts in different luminance level and the accuracy of color between CRT and LCD. In the

  17. Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence.

    PubMed

    Kang, Yongyin; Song, Zhicheng; Jiang, Xiaofang; Yin, Xia; Fang, Long; Gao, Jing; Su, Yehua; Zhao, Fei

    2017-12-01

    Monodisperse quantum dots (QDs) were prepared by low-temperature process. The remarkable narrow emission peak of the QDs helps the liquid crystal displays (LCD) and electroluminescence displays (QD light-emitting diode, QLED) to generate wide color gamut performance. The range of the color gamut for QD light-converting device (QLCD) is controlled by both the QDs and color filters (CFs) in LCD, and for QLED, the optimized color gamut is dominated by QD materials.

  18. Determination of Gamut Boundary Description for multi-primary color displays.

    PubMed

    Ou-Yang, Mang; Huang, Shih-Wei

    2007-10-01

    Displays with a larger color gamut to represent the images of the small color gamut are emphasized in the display development trend recently. Resulting from the vigorous development of Light Emitting Diodes (LEDs), the solutions to enlarge the color gamut which is formed a polygon area by adding multiple primary colors are possible, easier and inexpensive considerably. Therefore, how to determine the Gamut Boundary Description (GBD) plays a significant role for the applications of the multiple primary color displays, where the primaries form a convex polygon in CIE xy space. The paper proposed a method to construct the three-dimension color volume of GBD from the two-dimension polygon gamut area precisely regardless of that how many multiple primary colors the displays have. The method is examined in detail by the simulations and experiments, and proved it to fulfill from tri-primary color device to Nprimary color device.

  19. A color gamut description algorithm for liquid crystal displays in CIELAB space.

    PubMed

    Sun, Bangyong; Liu, Han; Li, Wenli; Zhou, Shisheng

    2014-01-01

    Because the accuracy of gamut boundary description is significant for gamut mapping process, a gamut boundary calculating method for LCD monitors is proposed in this paper. Within most of the previous gamut boundary calculation algorithms, the gamut boundary is calculated in CIELAB space directly, and part of inside-gamut points are mistaken for the boundary points. While, in the new proposed algorithm, the points on the surface of RGB cube are selected as the boundary points, and then converted and described in CIELAB color space. Thus, in our algorithm, the true gamut boundary points are found and a more accurate gamut boundary is described. In experiment, a Toshiba LCD monitor's 3D CIELAB gamut for evaluation is firstly described which has regular-shaped outer surface, and then two 2D gamut boundaries ( CIE-a*b* boundary and CIE-C*L* boundary) are calculated which are often used in gamut mapping process. When our algorithm is compared with several famous gamut calculating algorithms, the gamut volumes are very close, which indicates that our algorithm's accuracy is precise and acceptable.

  20. Brilliance, contrast, colorfulness, and the perceived volume of device color gamut

    NASA Astrophysics Data System (ADS)

    Heckaman, Rodney L.

    With the advent of digital video and cinema media technologies, much more is possible in achieving brighter and more vibrant colors, colors that transcend our experience. The challenge is in the realization of these possibilities in an industry rooted in 1950s technology where color gamut is represented with little or no insight into the way an observer perceives color as a complex mixture of the observer's intentions, desires, and interests. By today's standards, five perceptual attributes---brightness, lightness, colorfulness, chroma, and hue---are believed to be required for a complete specification. As a compelling case for such a representation, a display system is demonstrated that is capable of displaying color beyond the realm of object color, perceptually even beyond the spectrum locus of pure color. All this begs the question: Just what is meant by perceptual gamut? To this end, the attributes of perceptual gamut are identified through psychometric testing and the color appearance models CIELAB and CIECAM02. Then, by way of demonstration, these attributes were manipulated to test their application in wide gamut displays. In concert with these perceptual attributes and their manipulation, Ralph M. Evans' concept of brilliance as an attribute of perception that extends beyond the realm of everyday experience, and the theoretical studies of brilliance by Y. Nayatani, a method was developed for producing brighter, more colorful colors and deeper, darker colors with the aim of preserving object color perception---flesh tones in particular. The method was successfully demonstrated and tested in real images using psychophysical methods in the very real, practical application of expanding the gamut of sRGB into an emulation of the wide gamut, xvYCC encoding.

  1. Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities

    DTIC Science & Technology

    1999-09-20

    c o i b f t c c c c w n c s p t s Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities Javier...temperature ~CCT!, yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy...00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Calculating correlated color temperatures across the entire gamut of daylight and skylight

  2. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-24

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.

  3. Lightness dependence of achromatic loci in color-appearance coordinates

    PubMed Central

    Kuriki, Ichiro

    2015-01-01

    Shifts in the appearance of color under different illuminant chromaticity are known to be incomplete, and fit nicely with a simple linear transformation of cone responses that aligns the achromatic points under two illuminants. Most chromaticity-transfer functions with von-Kries-like transformations use only one set of values to fit the color shifts from one illuminant to another. However, an achromatic point shifts its chromaticity depending on the lightness of the test stimulus. This lightness dependence of the achromatic-point locus is qualitatively similar to a phenomenon known as the Helson-Judd effect. The present study suggests that the lightness dependency of achromatic points appears to be a general trend, which is supported by the results from deriving the optimal von-Kries coefficients for different lightness levels that best fit the color shifts under a different illuminant chromaticity. Further, we report that such a lightness dependence of the achromatic-point loci can be represented simply as a straight line in coordinates defined using color-appearance models such as CIECAM when normalized for daylight. PMID:25713543

  4. Color signal encoding for high dynamic range and wide color gamut based on human perception

    NASA Astrophysics Data System (ADS)

    Nezamabadi, Mahdi; Miller, Scott; Daly, Scott; Atkins, Robin

    2014-01-01

    A new EOTF based on human perception, called PQ (Perceptual Quantizer), was proposed in a previous work (SMPTE Mot. Imag. J 2013, 122:52-59) and its performance was evaluated for a wide range of luminance levels and encoding bitdepth values. This paper is an extension of that previous work to include the color aspects of the PQ signal encoding. The efficiency of the PQ encoding and bit-depth requirements were evaluated and compared for standard color gamuts of Rec 709 (SRGB), and the wide color gamuts of Rec 2020, P3, and ACES for a variety of signal representations as RGB, YCbCr, and XYZ. In a selected color space for any potential local gray level 26 color samples were simulated by deviating one quantization step from the original color in each signal dimension. The quantization step sizes were simulated based on the PQ and gamma curves for different bit-depth values and luminance ranges for each of the color gamut spaces and signal representations. Color differences between the gray field and the simulated color samples were computed using CIE DE2000 color difference equation. The maximum color difference values (quantization error) were used as a metric to evaluate the performance of the corresponding EOTF curve. Extended color gamuts were found to require more bits to maintain low quantization error. Extended dynamic range required fewer additional bits in to maintain quantization error. Regarding the visual detection thresholds, the minimum bit-depth required by the PQ and gamma encodings are evaluated and compared through visual experiments.

  5. Color gamut assessment standard: construction, characterization and interlaboratory measurement comparison

    NASA Astrophysics Data System (ADS)

    Libert, John M.; Kelley, Edward F.; Boynton, Paul A.; Brown, Steven W.; Wall, Christine F.; Campbell, Colin

    2003-07-01

    In earlier papers, NIST proposed a standard illumination source and optical filter targets with which to assess the state-of-the-art of display measurement. The Display Measurement Assessment Transfer Standard (DMATS) was designed to present the display metrologist with a rectangular array of targets such as color filters, polarizers, and grilles, back-lighted by uniform illumination, to be measured using methods and instruments typically used in display performance measurement. A "round robin" interlaboratory measurement exercise using the "standard" artifact suite would enable a first order assessment of display measurement reproducibility, i.e., measurement variability within the electronic display community. The rectangular array design of the DMATS was anticipated to present stray light and color contamination challenges to facilitate identification of error sources deriving from measurement protocols, laboratory environment, and equipment. However, complications in dealing with heating problems threatened to delay the planned laboratory intercomparison. The Gamut Assessment Standard (GAS) was thus designed as an interim solution to enable the NIST scientists and participating measurement laboratories to begin collecting data. The GAS consists of a 150 mm diameter integrating sphere standard illumination source with a stray light elimination tube (SLET) mounted at the exit port. A dual six-position filter wheel is mounted at the SLET exit port. One wheel holds a series of neutral density filters and a second interchangeable wheel holds various color filters. This paper describes the design and construction of the GAS, its initial performance characterization by NIST, and comparison measurements made at NPL. Possible design changes suggested by the results of the preliminary intercomparison are discussed, as are plans for future interlaboratory comparisons and potential use of the GAS as a transfer standard for laboratory self-certification.

  6. Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer.

    PubMed

    Chen, Haiwei; Zhu, Ruidong; Tan, Guanjun; Li, Ming-Chun; Lee, Seok-Lyul; Wu, Shin-Tson

    2017-01-09

    We propose to add a functional reflective polarizer (FRP) in the backlight unit to suppress the crosstalk between red, green and blue color filters of a liquid crystal display (LCD) panel. When incorporated with a commercial two-phosphor-converted white light-emitting diode (2pc-WLED), the color gamut of the LCD can be improved from 92% to 115% NTSC standard, which is comparable to the cadmium-based quantum dot (QD) backlight. If a narrow-band color filter is employed, the color gamut can be further enhanced to 135% NTSC. Our design offers an alternative approach to QDs, while keeping low cost and long lifetime. Such a simple yet efficient approach would find widespread applications for enlarging the color gamut of LCDs.

  7. Expanding color gamut of reflective liquid crystal displays from filtering undesirable wavelengths of a light source by an embedded etalon.

    PubMed

    Liu, Cheng-Kai; Yang, Tsung-Hsun; Cheng, Ko-Ting

    2017-03-01

    This work demonstrates a method to reduce the intensity of the undesirable wavelengths of blue (B-) and green (G-) ambient lights to expand the color gamut of reflective liquid crystal displays (LCDs) by an embedded etalon. The built-in reflector of the reflective LCDs is replaced by the blue-green overlapping wavelengths filtering etalon, which is used to reduce the intensity of undesirable B- and G-primaries, thereby decreasing the color cross talk of B- and G-color filters. After etalon adoption, the color gamut can be expanded from 105.96% to 121.81% of National Television System Committee (NTSC) in International Commission on Illumination (CIE) 1976 color space. Compared with the color gamut of the display without the blue-green overlapping wavelength etalon, the maximum expansion of color gamut is ∼15.85%. Moreover, the balance between light loss and color gamut expansion should be taken into consideration.

  8. A reinterpretation of transparency perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-03-01

    Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics.

  9. Pattern Dependence of Color Gamut of Blackness in a Liquid Crystal Display

    NASA Astrophysics Data System (ADS)

    Shimomura, Teruo

    1986-01-01

    A guest-host mode liquid crystal display of a transmission type is investigated. Color gamut of blackness is established from the estimation experiment of color matching and is shown by the CIE 1931 chromaticity diagram and color solid. Blackness of the circle-, square-, triangle-, and H-patterns as influenced by their shape and magnitude is discussed. A Munsell color chip N-1 is used as the matching sample black color and fifty hues of liquid crystal cells are used as test sample colors. Measurement of estimation is done from ascending- and descending-series in the method of adjustment.

  10. The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures.

    PubMed

    James, Timothy D; Mulvaney, Paul; Roberts, Ann

    2016-06-08

    We demonstrate a new plasmonic pixel (PP) design that produces a full-color optical response over macroscopic dimensions. The pixel design employs arrays of aluminum nanorods "floating" above their Babinet complementary screen, Concepts from conventional cyan magenta yellow key (CMYK) printing techniques and red green blue (RGB) digital displays are integrated with nanophotonic design principles and adapted to the production of PP elements. The fundamental PP color blocks of CMYK are implemented via a composite plasmonic nanoantenna/slot design and then mixed in a digital display analog 3 × 3 array to produce a broad-gamut PP. The PP goes beyond current investigations into plasmonic color production by enabling a broad color gamut and physically large plasmonic color features/devices/images. The use of nanorods also leads to a color response that is polarization tunable. Furthermore, devices are fabricated using aluminum and the fabrication strategy is compatible with inexpensive, rapid-throughput, nanoimprint approaches. Here we quantify, both computationally and experimentally, the performance of the PP. Spectral data from a test palette is obtained and a large area (>1.5 cm lateral dimensions) reproduction of a photograph is generated exemplifying the technqiue.

  11. Linear programming method for computing the gamut of object color solid.

    PubMed

    Li, Changjun; Luo, M Ronnier; Cho, Maeng-Sub; Kim, Jin-Seo

    2010-05-01

    Recently there has been great interest in establishing the color gamut of solid colors or the optimum colors. The optimum colors are widely used for quantifying the quality of light sources and evaluating reproduction devices. An enumeration method was developed by Martinez-Verdu et al. [J. Opt. Soc. Am. A 24, 1501 (2007)] for finding optimum colors. However, it was found that the method is too time-costly. In this paper, a linear programming approach is proposed. The proposed method is simple and faster and has the advantage of keeping the characteristics of the true boundary. Comparison of the present method with the method of Martinez-Verdu et al. is also given.

  12. New approach to color calibration of high fidelity color digital camera by using unique wide gamut color generator based on LED diodes

    NASA Astrophysics Data System (ADS)

    Kretkowski, M.; Shimodaira, Y.; Jabłoński, R.

    2008-11-01

    Development of a high accuracy color reproduction system requires certain instrumentation and reference for color calibration. Our research led to development of a high fidelity color digital camera with implemented filters that realize the color matching functions. The output signal returns XYZ values which provide absolute description of color. In order to produce XYZ output a mathematical conversion must be applied to CCD output values introducing a conversion matrix. The conversion matrix coefficients are calculated by using a color reference with known XYZ values and corresponding output signals from the CCD sensor under each filter acquisition from a certain amount of color samples. The most important feature of the camera is its ability to acquire colors from the complete theoretically visible color gamut due to implemented filters. However market available color references such as various color checkers are enclosed within HDTV gamut, which is insufficient for calibration in the whole operating color range. This led to development of a unique color reference based on LED diodes called the LED Color Generator (LED CG). It is capable of displaying colors in a wide color gamut estimated by chromaticity coordinates of 12 primary colors. The total amount of colors possible to produce is 25512. The biggest advantage is a possibility of displaying colors with desired spectral distribution (with certain approximations) due to multiple primary colors it consists. The average color difference obtained for test colors was found to be ▵E~0.78 for calibration with LED CG. The result is much better and repetitive in comparison with the Macbeth ColorCheckerTM which typically gives ▵E~1.2 and in the best case ▵E~0.83 with specially developed techniques.

  13. Wide-gamut plasmonic color filters using a complementary design method.

    PubMed

    Lee, Seon Uk; Ju, Byeong-Kwon

    2017-01-13

    Plasmonic color filters (PCFs) can acquire primary colors from non-polarized incident light through a two-dimensional arrangement of subwavelength holes. However, owing to the geometry of the 2D array, unintended secondary transmitted peaks derived from the higher-order modes of the surface plasmon resonance (SPR) lead to color cross-talk with the primary peaks. Herein, we propose a complementary design method for generating high-purity red, green, and blue (R/G/B) by combining the G/B filters of hole-arrays with the R filters of dot-arrays. Metallic dot-array filters, wherein the wavelength band under 575 nm was effectively blocked by the induction of peak broadening, operated as optical high-pass filters exhibiting pure red, and consequently widen the color gamut of PCFs by 30% without loss of luminance and color tunability. This harmonious combination promises to yield competitiveness for a next-generation color filter by enhancing the color reproducibility of plasmonic nanostructures.

  14. Wide-gamut plasmonic color filters using a complementary design method

    NASA Astrophysics Data System (ADS)

    Lee, Seon Uk; Ju, Byeong-Kwon

    2017-01-01

    Plasmonic color filters (PCFs) can acquire primary colors from non-polarized incident light through a two-dimensional arrangement of subwavelength holes. However, owing to the geometry of the 2D array, unintended secondary transmitted peaks derived from the higher-order modes of the surface plasmon resonance (SPR) lead to color cross-talk with the primary peaks. Herein, we propose a complementary design method for generating high-purity red, green, and blue (R/G/B) by combining the G/B filters of hole-arrays with the R filters of dot-arrays. Metallic dot-array filters, wherein the wavelength band under 575 nm was effectively blocked by the induction of peak broadening, operated as optical high-pass filters exhibiting pure red, and consequently widen the color gamut of PCFs by 30% without loss of luminance and color tunability. This harmonious combination promises to yield competitiveness for a next-generation color filter by enhancing the color reproducibility of plasmonic nanostructures.

  15. Wide-gamut plasmonic color filters using a complementary design method

    PubMed Central

    Lee, Seon Uk; Ju, Byeong-Kwon

    2017-01-01

    Plasmonic color filters (PCFs) can acquire primary colors from non-polarized incident light through a two-dimensional arrangement of subwavelength holes. However, owing to the geometry of the 2D array, unintended secondary transmitted peaks derived from the higher-order modes of the surface plasmon resonance (SPR) lead to color cross-talk with the primary peaks. Herein, we propose a complementary design method for generating high-purity red, green, and blue (R/G/B) by combining the G/B filters of hole-arrays with the R filters of dot-arrays. Metallic dot-array filters, wherein the wavelength band under 575 nm was effectively blocked by the induction of peak broadening, operated as optical high-pass filters exhibiting pure red, and consequently widen the color gamut of PCFs by 30% without loss of luminance and color tunability. This harmonious combination promises to yield competitiveness for a next-generation color filter by enhancing the color reproducibility of plasmonic nanostructures. PMID:28084453

  16. Implication of high dynamic range and wide color gamut content distribution

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt

    2015-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.

  17. Gamut Extension for Cinema.

    PubMed

    Zamir, Syed Waqas; Vazquez-Corral, Javier; Bertalmio, Marcelo

    2017-04-01

    Emerging display technologies are able to produce images with a much wider color gamut than those of conventional distribution gamuts for cinema and TV, creating an opportunity for the development of gamut extension algorithms (GEAs) that exploit the full color potential of these new systems. In this paper, we present a novel GEA, implemented as a PDE-based optimization procedure related to visual perception models, that performs gamut extension (GE) by taking into account the analysis of distortions in hue, chroma, and saturation. User studies performed using a digital cinema projector under cinematic (low ambient light, large screen) conditions show that the proposed algorithm outperforms the state of the art, producing gamut extended images that are perceptually more faithful to the wide-gamut ground truth, as well as free of color artifacts and hue shifts. We also show how currently available image quality metrics, when applied to the GE problem, provide results that do not correlate with users' choices.

  18. Adaptive reshaper for high dynamic range and wide color gamut video compression

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Pytlarz, Jaclyn; Chen, Tao; Husak, Walt

    2016-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The characteristics of HDR/WCG content are very different from the SDR content. It poses a challenge to the compression system which is originally designed for SDR content. Recently in MPEG/VCEG, two directions have been taken to improve compression performances for HDR/WCG video using HEVC Main10 codec. The first direction is to improve HDR-10 using encoder optimization. The second direction is to modify the video signal in pre/post processing to better fit compression system. The process therefore is out of coding loop and does not involve changes to the HEVC specification. Among many proposals in the second direction, reshaper is identified to be the key component. In this paper, a novel luma reshaper is presented which re-allocates the codewords to help codec improve subjective quality. In addition, encoder optimization can be performed jointly with reshaping. Experiments are conducted with ICtCp color difference signal. Simulation results show that if both joint optimization of reshaper and encoder are carried out, there is evidence that improvement over the HDR-10 anchor can be achieved.

  19. Signals for color and achromatic contrast in the goldfish inner retina.

    PubMed

    Burkhardt, Dwight A

    2014-11-01

    A moving stimulus paradigm was designed to investigate color contrast encoding in the retina. Recently, this paradigm yielded suggestive evidence for color contrast encoding in zebrafish but the significance and generality remain uncertain since the properties of color coding in the zebrafish inner retina are largely unknown. Here, the question of color contrast is pursued in the goldfish retina where there is much accumulated evidence for retinal mechanisms of color vision and opponent color-coding, in particular. Recordings of a sensitive local field potential of the inner retina, the proximal negative response, were made in the intact, superfused retina in the light-adapted state. Responses to color contrast and achromatic contrast were analyzed by comparing responses to a green moving bar on green versus red backgrounds. The quantitative form of the irradiance/response curves was distinctly different under a range of conditions in 32 retinas, thereby providing robust evidence for red-green color contrast. The color contrast is based on successive contrast, occurs in the absence of overt color opponency, and clearly differs from previous findings in the goldfish retina for simultaneous color contrast mediated by color-opponent neurons. The form of the irradiance/response curves suggests that successive color contrast is particularly important when achromatic contrast is low, as often occurs in natural environments. The present results provide a parallel with the well-known principle of human color vision, first proposed by Kirschmann as the third law of color contrast, and may also have implications for the evolution of vertebrate color vision.

  20. Revisitation of the luminance conditions for the occurrence of the achromatic neon color spreading illusion.

    PubMed

    Bressan, P

    1993-07-01

    This paper develops the idea (Bressan, 1993) that neon spreading derives from the perceptual scissioning of ordinary assimilation color, a process identical to that occurring with nonillusory colors in phenomenal transparency. It is commonly held that the critical elements in achromatic neon spreading patterns must be of luminance intermediate between that of the embedding lines and of the background. The interpretation of neon spreading on the basis of color scissioning, however, predicts that neon spreading should also be observed for different luminance hierarchies, provided that these are compatible with transparency. This prediction found experimental support in the present work. The results suggest that (1) the widespread notion that chromatic and achromatic neon spreading must be mediated by separate mechanisms is unwarranted; (2) the widespread notion that color spreading in ordinary assimilation patterns and color spreading in neon patterns must be mediated by separate mechanisms is unwarranted; and (3) other than pointing to the way in which the overall organization of a scene affects the mode of color appearance, the neon spreading effect may not convey any extra theoretical relevance.

  1. Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight.

    PubMed

    Oh, Ji Hye; Kang, Heejoon; Ko, Minji; Do, Young Rag

    2015-07-27

    In this study, we propose green/red bilayered freestanding phosphor film-capped white light-emitting diodes (W-LEDs) using InGaN blue LEDs and narrowband red and green phosphors to realize a wide color gamut in a liquid crystal display (LCD) backlight system. The narrowband K2SiF6:Mn4+ (KSF) red and SrGa2S4:Eu2+ (SGS) green phosphors are synthesized using a facile etching synthetic process and flux-aided solid state reaction under a H2S atmosphere, respectively, and the freestanding phosphor films are fabricated using a delamination method with water-soluble polymer, polystyrene sulfonic acid, PEDOT/PSS, and interlayered phosphor film. Various phosphor concentrations of green/red bilayered freestanding phosphor film-capped W-LEDs exhibit a correlated color temperature (CCT) and luminous efficacy range of 11,390 K ~6,540 K and 99 lm/W ~124 lm/W, respectively, with an applied current of 60 mA. The W-LED with green (12.5 wt%)/red (40 wt%) bilayered phosphor film, which exhibited luminous efficacy of 105 lm/W at the CCT of 8,330 K, is selected and the color gamut of the bare LED and phosphor RG and the filtered RGB triangle is calculated to be more than ~95% and ~86.4%, respectively, relative to the NTSC in the 1931 CIE color coordinates space.

  2. A significant enhancement of color transition from an on-off type achromatic colorimetric nanosensor for highly sensitive multi-analyte detection with the naked eye.

    PubMed

    Heo, Jun Hyuk; Yi, Gyu Sung; Lee, Byoung Sang; Cho, Hui Hun; Lee, Jin Woong; Lee, Jung Heon

    2016-11-03

    Here, we report the development of an achromatic nanoparticle-based colorimetric sensor (achromatic nanosensor) with an on-off type color change that significantly enhances the color transition and increases the sensitivity of the sensor for naked-eye inspection. The achromatic nanosensor was prepared via a modified CMYK (CRYK) subtractive color model by combining DNA-functionalized gold nanoparticles (AuNPs-DNA), silver nanoparticles (AgNPs-DNA), and gold nanorods (AuNRs-DNA). The initially black-colored achromatic nanosensor not only allowed multiplexed detection by generating target-specific diverse color changes, but also improved the recognition of color changes by the naked eye. Thus, this on-off type color change enabled analysis near the limit of detection (LOD) with the naked eye. In addition, we developed a new image processing method adapted for this achromatic sensor. By quantifying the saturation value of the color images of the achromatic sensor, we could significantly amplify the color signal of the samples, which is difficult to achieve with general colorimetric sensors. The practical application of this achromatic nanosensor for biomarker detection was demonstrated with thrombin and platelet-derived growth factor (PDGF) in human blood plasma. These results provide a new sensing platform that is applicable to most NP-based colorimetric sensing systems for a wide range of applications, including biomolecular diagnosis, chemical pollutant sensing, environmental monitoring, etc.

  3. Plasmonic Color-Graded Nanosystems with Achromatic Subwavelength Architectures for Light Filtering and Advanced SERS Detection.

    PubMed

    Proietti Zaccaria, Remo; Bisio, Francesco; Das, Gobind; Maidecchi, Giulia; Caminale, Michael; Vu, Chinh Duc; De Angelis, Francesco; Di Fabrizio, Enzo; Toma, Andrea; Canepa, Maurizio

    2016-03-01

    Plasmonic color-graded systems are devices featuring a spatially variable plasmonic response over their surface. They are widely used as nanoscale color filters; their typical size is small enough to allow integration with miniaturized electronic circuits, paving the way to realize novel nanophotonic devices. Currently, most plasmonic color-graded systems are intrinsically discrete because their chromatic response exploits the tailored plasmon resonance of microarchitectures characterized by different size or geometry for each target color. Here, we report the realization of multifunctional plasmon-graded devices where continuously graded chromatic response is achieved by smoothly tuning the composition of the resonator material while simultaneously maintaining an achromatic nanoscale geometry. The result is a new class of versatile materials: we show their application as plasmonic filters with a potential pixel size smaller than half of the exciting wavelength but also as multiplexed surface-enhanced Raman spectroscopy (SERS) substrates. Many more implementations, such as photovoltaic efficiency boosters or color routers, await and will benefit from the low fabrication cost and intrinsic plasmonic flexibility of the presented systems.

  4. Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays.

    PubMed

    Wang, Le; Wang, Xiaojun; Kohsei, Takahashi; Yoshimura, Ken-ichi; Izumi, Makoto; Hirosaki, Naoto; Xie, Rong-Jun

    2015-11-02

    In this contribution, we propose to combine both narrow-band green (β-sialon:Eu(2+)) and red (K(2)SiF(6):Mn(4+)) phosphors with a blue InGaN chip to achieve white light-emitting diodes (wLEDs) with a large color gamut and a high efficiency for use as the liquid crystal display (LCD) backlighting. β-sialon:Eu(2+), prepared by a gas-pressure sinteing technique, has a peak emission at 535 nm, a full width at half maximum (FWHM) of 54 nm, and an external quantum efficiency of 54.0% under the 450 nm excitation. K(2)SiF(6):Mn(4+) was synthesized by a twe-step co-precipitation methods, and exhibits a sharp line emission spectrum with the most intensified peak at 631 nm, a FWHM of ~3 nm, and an external quantum efficiency of 54.5%. The prepared three-band wLEDs have a high color temperature of 11,184 - 13,769 K (i.e., 7,828 - 8,611 K for LCD displays), and a luminous efficacy of 91 - 96 lm/W, measured under an applied current of 120 mA. The color gamut defined in the CIE 1931 and CIE 1976 color spaces are 85.5 - 85.9% and 94.3 - 96.2% of the NTSC stanadard, respectively. These optical properties are better than those phosphor-cpnverted wLED backlights using wide-band green or red phosphoprs, suggesting that the two narrow-band phosphors investigated are the most suitable luminescent materials for achieving more bright and vivid displays.

  5. Achieving superwide-color-gamut display by using narrow-band green-emitting γ-AlON:Mn,Mg phosphor

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenichi; Fukunaga, Hiroshi; Izumi, Makoto; Takahashi, Kohsei; Xie, Rong-Jun; Hirosaki, Naoto

    2017-04-01

    The display backlight generated using sharp β-sialon:Eu (green) and K2SiF6:Mn (red) phosphors shows a very wide color gamut that mostly covers the whole National Television System Committee (NTSC) triangle. In this work, an alternative green phosphor is investigated to further improve the display color gamut. γ-AlON:Mn,Mg is a green phosphor that shows a shorter and narrower emission spectrum than sharp β-silaon:Eu. The display color gamut in the blue-green region is thus widened greatly by substituting γ-AlON:Mn,Mg for sharp β-sialon:Eu. The color gamut of displays with γ-AlON:Mn,Mg and K2SiF6:Mn exceeds 100% of the NTSC standard both in the CIE 1931 and the CIE 1976 color spaces. Furthermore, the white LEDs with γ-AlON:Mn,Mg have excellent stability that is comparable to those of LEDs with sharp β-sialon:Eu.

  6. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Ting; Huang, Wen-Yao

    2012-10-01

    This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.

  7. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Wei-ting; Huang, Wen-Yao

    2012-06-01

    This study used novel fluorescence based deep-blue-emitting molecules, namely BPVPDA, an organic fluorescence color thin film using BPVPDA exhibit deep blue fluorine with CIE coordinates of (0.13,0.16). The developed original Organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness, in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a thin-film-transistor (TFT) LCD with organic color thin films. The organic color thin films structure uses organic dye dopent in limpid photo resist. With this technology , the following characteristics can be obtained: (1) high color reproduction of gamut ratio, and (2) improved luminous efficiency with organic color fluorescence thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD and OLED.

  8. Gamut mapping method for ICC saturated intent

    NASA Astrophysics Data System (ADS)

    Cho, Min-Ki; Choh, Heui-Keun; Kim, Se-Eun; Kim, Yun-Tae; Bang, Yousun

    2007-01-01

    The same image on the display and color printer isn't the same. Firstly, this is due to the bit depth difference for representing the color of a pixel. The display uses the color data of the eight or more bits, but the color printer uses just 1bit for representing color of a pixel. So, the display can reproduce smoother image than the color printer. Secondly, the display gamut is larger than the printer gamut, so the display color is brighter and more saturate than the printer color. For minimizing the problems due to these differences, many halftoning and gamut mapping techniques have been developed. For the gamut mapping, color management standard organization, ICC, recommended 2 gamut mapping methods, HPMINDE and SGCK. But the recommended methods by ICC have some weak points; contouring (HPMINDE), paled pure color reproduction (SGCK) and too reddish hair color reproduction (HPMINDE, SGCK). This paper introduces a gamut mapping method that can reproduce smooth gradation, pure colors with high saturation and natural hair color. The proposed method is developed for optimal reproduction of graphic image, and it also gives good results for pictorial image.

  9. Physical Interpretation of Neugebauer Equations and Applications for Achromatic Synthesis

    NASA Astrophysics Data System (ADS)

    Kita, Shinji

    1990-06-01

    As Lambert-Beer's Law in density modulation images, Neugebauer Equations are the basic equation for color reproduction of dot modulation images. Its significance increases with the advance of digital color printing technology. Its' applications have been diversely enlarging to identify the relationship between dot allocation and color gamut', to forecast reproduced color2, and to discuss the achromatic synthesis in principle3, 4. As well known, its principle is that "color is reproduced by averaging additive color mixture of basic 8 colors' area and stimulus determined statistically by the Demichel's law" . The significant assumption here is "the independency of each color area", that is, the coverage and color stimulus of each color area are not influenced by those of neighbor. However, in an actual dot modulation image, optical diffusion and mixture occur within image as known as Yule-Nielsen's effect (Y-N effect). Therefore, the former assumption cannot be adapted on actual images. Since various marking technologies have their own optical diffusion and mixture respectively due to their marking principle and image structure, it seems that an overall comprehension for color reproduction of these images is required from these technologies. And besides, reconstruction of color reproduction theory including density modulation images will be more necessary in future. For this purpose, new theoretical approach adding Y-N effect to Neugebauer equations might be indispensable . From the viewpoint, this paper introduces the full-color image structure models which quantifies optical diffusion and mixture within recorded image and mentions the physical interpretation of Y-N effect in full-color image. Next, by using Neugebauer equations with Y-N effect6, we analyze the achromatic synthesis and propose the theoretical method for black determination applicable to all image formation, through density modulation to completely binary image.

  10. Gamut relativity: a new computational approach to brightness and lightness perception.

    PubMed

    Vladusich, Tony

    2013-01-09

    This article deconstructs the conventional theory that "brightness" and "lightness" constitute perceptual dimensions corresponding to the physical dimensions of luminance and reflectance, and builds in its place the theory that brightness and lightness correspond to computationally defined "modes," rather than dimensions, of perception. According to the theory, called gamut relativity, "blackness" and "whiteness" constitute the perceptual dimensions (forming a two-dimensional "blackness-whiteness" space) underlying achromatic color perception (black, white, and gray shades). These perceptual dimensions are postulated to be related to the neural activity levels in the ON and OFF channels of vision. The theory unifies and generalizes a number of extant concepts in the brightness and lightness literature, such as simultaneous contrast, anchoring, and scission, and quantitatively simulates several challenging perceptual phenomena, including the staircase Gelb effect and the effects of task instructions on achromatic color-matching behavior, all with a single free parameter. The theory also provides a new conception of achromatic color constancy in terms of the relative distances between points in blackness-whiteness space. The theory suggests a host of striking conclusions, the most important of which is that the perceptual dimensions of vision should be generically specified according to the computational properties of the brain, rather than in terms of "reified" physical dimensions. This new approach replaces the computational goal of estimating absolute physical quantities ("inverse optics") with the goal of computing object properties relatively.

  11. Selection of achromatic and non-neutral colors to fill lacunae in frescoes guided by a variational model of perceived contrast

    NASA Astrophysics Data System (ADS)

    Grementieri, Luca; Provenzi, Edoardo

    2017-02-01

    Many ancient paintings, in particular frescoes, have some parts ruined by time and events. Sometimes one or more non-negligible regions are completely lost, leaving a blank that is called by restaurateurs a `lacuna'. The general restoration philosophy adopted in these cases is to paint the interior part of the lacuna with an achromatic or non-neutral uniform color carefully selected in order to minimize its overall perception. In this paper, we present a computational model, based on a well-established variational theory of color perception, that may facilitate the job of a restaurateur by providing both achromatic and non-neutral colors which minimize the local contrast with the surrounding parts of the fresco.

  12. Flexible color perception depending on the shape and positioning of achromatic contours

    PubMed Central

    Vergeer, Mark; Anstis, Stuart; van Lier, Rob

    2015-01-01

    In this study, we present several demonstrations of color averaging between luminance boundaries. In each of the demonstrations, different black outlines are superimposed on one and the same colored surface. Whereas perception without these outlines comprises a blurry colored gradient, superimposing the outlines leads to a much clearer binary color percept, with different colors perceived on each side of the boundary. These demonstrations show that the color of the perceived surfaces is flexible, depending on the exact shape of the outlines that define the surface, and that different positioning of the outlines can lead to different, distinct color percepts. We argue that the principle of color averaging described here is crucial for the brain in building a useful model of the distal world, in which differences within object surfaces are perceptually minimized, while differences between surfaces are perceptually enhanced. PMID:26042060

  13. The Achromatic ‘Philosophical Zombie’, a Syndrome of Cerebral Achromatopsia with Color Anopsognosia

    PubMed Central

    Carota, Antonio; Calabrese, Pasquale

    2013-01-01

    We describe a patient with persistent cerebral achromatopsia occurring after bilateral occipital strokes. Blinded color recognition was assessed with a computerized experimental paradigm and the patient reported the degree of confidence in the response exactness on a visual percent scale. Color recognition was accurate and above chance (Fisher's exact test, p < 0.002). The degree of confidence in the answers showed a significant correlation with recognition scores (Spearman rank order correlation, p < 0.0001). These findings constitute the exceptional condition of what we called color anopsognosia (not knowing of seeing colors) and recall the theoretic figure of the ‘philosophical zombie’. However, the cognitive mechanisms of the dissociation between a subjective colorless vision and good performance for color naming still remain poorly understood. PMID:23687498

  14. The achromatic 'philosophical zombie', a syndrome of cerebral achromatopsia with color anopsognosia.

    PubMed

    Carota, Antonio; Calabrese, Pasquale

    2013-01-01

    We describe a patient with persistent cerebral achromatopsia occurring after bilateral occipital strokes. Blinded color recognition was assessed with a computerized experimental paradigm and the patient reported the degree of confidence in the response exactness on a visual percent scale. Color recognition was accurate and above chance (Fisher's exact test, p < 0.002). The degree of confidence in the answers showed a significant correlation with recognition scores (Spearman rank order correlation, p < 0.0001). These findings constitute the exceptional condition of what we called color anopsognosia (not knowing of seeing colors) and recall the theoretic figure of the 'philosophical zombie'. However, the cognitive mechanisms of the dissociation between a subjective colorless vision and good performance for color naming still remain poorly understood.

  15. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

    PubMed Central

    2015-01-01

    Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation. PMID:25633588

  16. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    PubMed

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  17. Multispectral gamut mapping and visualization: a first attempt

    NASA Astrophysics Data System (ADS)

    Bakke, Arne M.; Farup, Ivar; Hardeberg, Jon Y.

    2005-01-01

    A method is proposed for performing spectral gamut mapping, whereby spectral images can be altered to fit within an approximation of the spectral gamut of an output device. Principal component analysis (PCA) is performed on the spectral data, in order to reduce the dimensionality of the space in which the method is applied. The convex hull of the spectral device measurements in this space is computed, and the intersection between the gamut surface and a line from the center of the gamut towards the position of a given spectral reflectance curve is found. By moving the spectra that are outside the spectral gamut towards the center until the gamut is encountered, a spectral gamut mapping algorithm is defined. The spectral gamut is visualized by approximating the intersection of the gamut and a 2-dimensional plane. The resulting outline is shown along with the center of the gamut and the position of a spectral reflectance curve. The spectral gamut mapping algorithm is applied to spectral data from the Macbeth Color Checker and test images, and initial results show that the amount of clipping increases with the number of dimensions used.

  18. Multispectral gamut mapping and visualization: a first attempt

    NASA Astrophysics Data System (ADS)

    Bakke, Arne M.; Farup, Ivar; Hardeberg, Jon Y.

    2004-12-01

    A method is proposed for performing spectral gamut mapping, whereby spectral images can be altered to fit within an approximation of the spectral gamut of an output device. Principal component analysis (PCA) is performed on the spectral data, in order to reduce the dimensionality of the space in which the method is applied. The convex hull of the spectral device measurements in this space is computed, and the intersection between the gamut surface and a line from the center of the gamut towards the position of a given spectral reflectance curve is found. By moving the spectra that are outside the spectral gamut towards the center until the gamut is encountered, a spectral gamut mapping algorithm is defined. The spectral gamut is visualized by approximating the intersection of the gamut and a 2-dimensional plane. The resulting outline is shown along with the center of the gamut and the position of a spectral reflectance curve. The spectral gamut mapping algorithm is applied to spectral data from the Macbeth Color Checker and test images, and initial results show that the amount of clipping increases with the number of dimensions used.

  19. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon.

  20. Miniature Color Display Phase 4

    DTIC Science & Technology

    1993-05-01

    is used to generate full color. By spectral tuning of the xenon arc-lamp backlight and the color polarizers, a color gamut comparable to that of a...5 1.2 Phase IV Accom plishments ................................... 5 1.2.1 Subtractive Color Gamut ...Technical Achievem ents .............................................. 8 2.1 Subtractive Color Gamut 2.1.1 Sub Color LC Technology

  1. The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin.

    PubMed

    Bruno, Nicola; Martani, Margherita; Corsini, Claudia; Oleari, Claudio

    2013-12-01

    Recent literature suggests that individuals may consume less food when this is served on red plates. We explored this intriguing effect in three experiments. Independent groups of participants were presented with constant amounts of popcorns, chocolate chips, or moisturizing cream, on red, blue, or white plates. They were asked to sample the foods (by tasting them) or the cream (by rubbing it on the hand and forearm) as they wished and to complete mock "sensory analysis" questionnaires. Results confirmed that red plates reduce taste-related consumption and extended this effect to the touch-related consumption of moisturizing cream. Suggesting that the effect was not due to a decrease in the consciously experienced appeal of products on red plates, overall appreciation of the foods or cream did not differ according to plate color. After careful photometric measures of the materials used for each food-plate pairing, we determined that food and cream consumption was not predicted by Michelson (achromatic) contrast. Although the origin of the intriguing effect of the color red on consumption remains unclear, our results may prove useful to future potential explanations.

  2. Constrained low-rank gamut completion for robust illumination estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Jianshen; Yuan, Jiazheng; Liu, Hongzhe

    2017-02-01

    Illumination estimation is an important component of color constancy and automatic white balancing. According to recent survey and evaluation work, the supervised methods with a learning phase are competitive for illumination estimation. However, the robustness and performance of any supervised algorithm suffer from an incomplete gamut in training image sets because of limited reflectance surfaces in a scene. In order to address this problem, we present a constrained low-rank gamut completion algorithm, which can replenish gamut from limited surfaces in an image, for robust illumination estimation. In the proposed algorithm, we first discuss why the gamut completion is actually a low-rank matrix completion problem. Then a constrained low-rank matrix completion framework is proposed by adding illumination similarities among the training images as an additional constraint. An optimization algorithm is also given out by extending the augmented Lagrange multipliers. Finally, the completed gamut based on the proposed algorithm is fed into the support vector regression (SVR)-based illumination estimation method to evaluate the effect of gamut completion. The experimental results on both synthetic and real-world image sets show that the proposed gamut completion model not only can effectively improve the performance of the original SVR method but is also robust to the surface insufficiency in training samples.

  3. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  4. Reducing observer metamerism in wide-gamut multiprimary displays

    NASA Astrophysics Data System (ADS)

    Long, David; Fairchild, Mark D.

    2015-03-01

    Emerging electronic display technologies for cinema and television such as LED, OLED, laser and quantum dot are permitting greatly enhanced color gamuts via increasingly narrow-band primary emission spectra. A recent standard adopted for Ultra High Definition television, ITU-R Rec. 2020, promotes RGB primary chromaticities coincident with the spectral locus. As displays trend towards larger gamuts in the traditional 3-primary design, variability in human color sensing is exacerbated. Metameric matches to aim stimuli for one particular observer may yield a notable color mismatch for others, even if all observers are members of a color-normal population. Multiprimary design paradigms may hold value for simultaneously enhancing color gamut and reducing observer metamerism. By carefully selecting primary spectra in systems employing more than 3 emission channels, intentional metameric performance can be controlled. At Rochester Institute of Technology, a prototype multiprimary display has been simulated to minimize observer metamerism and observer variability according to custom indices derived from emerging models for human color vision. The constructed display is further being implemented in observer experiments to validate practical performance and confirm these vision and metamerism models.

  5. Evaluation of color mapping algorithms in different color spaces

    NASA Astrophysics Data System (ADS)

    Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj

    2016-09-01

    The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.

  6. The Achromatic Interfero Coronagraph

    NASA Astrophysics Data System (ADS)

    Rabbia, Yves; Gay, Jean; Rivet, Jean-Pierre

    2007-04-01

    We report on the Achromatic Interfero Coronagraph, a focal imaging device which aims at rejecting the energy contribution of a point-like source set on-axis, so as to make detectable its angularly-close environment (applicable to stellar environment: circumstellar matter, faint companions, planetary systems, but also conceivably to Active Galactic Nucleii and multiple asteroïds). With AIC, starlight rejection is based on destructive interference, which allows exploration of the star's neighbourhood at an angular resolution better than the diffraction limit of the hosting telescope. Thanks to the focus crossing property of light, rejection is achromatic thus yielding a large spectral bandwidth of work. Descriptions and comments are given regarding the principle, the device itself, the constraints and limitations, and the theoretical performance. Results are presented which demonstrate the close-sensing capability and which show images of a companion obtained in laboratory and ‘on the sky’ as well. A short pictorial description of the alternative AIC concepts, CIAXE and Open-Air CIAXE, currently under study, is given. To cite this article: Y. Rabbia et al., C. R. Physique 8 (2007).

  7. Twilight and Daytime Colors of the Clear Sky

    DTIC Science & Technology

    1994-07-20

    greatly, with some surprising consequences for their calorimetric gamuts . Key words: Atmospheric optics, clear-sky chromaticities, blue sky, twilight...First we calculate a chromaticity curve’s unnormal- ized clorimetric gamut g by finding the curve’s average chromaticity [here, its mean CIE (Commis...calorimetric gamut , g. Taking the spectrum locus as an upper limit on color gamut , we use its gamut to normalize any other chromaticity 20 July 1994 / Vol

  8. Achromatic Interaction Point Design

    SciTech Connect

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  9. Perceived duration of chromatic and achromatic light.

    PubMed

    Kojima, Haruyuki; Kawabata, Yasuhiro

    2012-01-15

    Luminance and color information are considered to be processed in parallel systems. The integration of information from these two separate systems is crucial for the visual system to produce a coherent percept. To investigate how luminance and color lights are perceived in time, we measured the perceived duration of light stimuli with and without colors in a paradigm involving simultaneous perception with presentation of two successive stimulus frames. Luminance contrast and color contrast of the stimuli were set with a chromatic substitution technique. In Experiment 1, the perceived duration of both chromatic stimuli and achromatic stimuli increased as the luminance contrast decreased. Experiment 2 tested if the duration of the percept was influenced by color contrast which was defined by colorimetric purity of the stimuli, when luminance contrast was set as low as practically possible. The result showed that the duration of the percept decreased with increasing color contrast of the stimuli. Moreover, Experiment 3 demonstrated that the trend of perceived duration was consistent with the four primary colors, provided that the effective color contrast of stimulus was corrected based on the contrast sensitivity to the color. These experiments indicate that, with a high luminance contrast level, perceived duration of a stimulus is predominantly defined by luminance contrast, whereas in low luminance contrast conditions, the duration depends on the color contrast. The perceived duration of color stimuli showed an "inverse color contrast effect", similar to the well-known "inverse intensity effect" for luminance stimuli. The similarities and the differences between the two systems, as well as their priorities in processing temporal information of visual stimuli are further discussed.

  10. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  11. Adjustable hybrid diffractive/refractive achromatic lens

    PubMed Central

    Valley, Pouria; Savidis, Nickolaos; Schwiegerling, Jim; Dodge, Mohammad Reza; Peyman, Gholam; Peyghambarian, N.

    2011-01-01

    We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens’ focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats. PMID:21503055

  12. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos; Kayran, Dmitry; Litvinenko, Vladimir; MacKay, William W.

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  13. Gamut extension for cinema: psychophysical evaluation of the state of the art and a new algorithm

    NASA Astrophysics Data System (ADS)

    Zamir, Syed Waqas; Vazquez-Corral, Javier; Bertalmío, Marcelo

    2015-03-01

    Wide gamut digital display technology, in order to show its full potential in terms of colors, is creating an opportunity to develop gamut extension algorithms (GEAs). To this end, in this work we present two contributions. First we report a psychophysical evaluation of GEAs specifically for cinema using a digital cinema projector under cinematic (low ambient light) conditions; to the best of our knowledge this is the first evaluation of this kind reported in the literature. Second, we propose a new GEA by introducing simple but key modifications to the algorithm of Zamir et al. This new algorithm performs well in terms of skin tones and memory colors, with results that look natural and which are free from artifacts.

  14. Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display.

    PubMed

    Wang, Hung-Chia; Lin, Shin-Ying; Tang, An-Cih; Singh, Bheeshma Pratap; Tong, Hung-Chun; Chen, Ching-Yi; Lee, Yu-Chun; Tsai, Tzong-Liang; Liu, Ru-Shi

    2016-07-04

    All-inorganic CsPbX3 (X=I, Br, Cl) perovskite quantum dots (PQDs) have been investigated because of their optical properties, such as tunable wavelength, narrow band, and high quantum efficiency. These features have been used in light emitting diode (LED) devices. LED on-chip fabrication uses mixed green and red quantum dots with silicone gel. However, the ion-exchange effect widens the narrow emission spectrum. Quantum dots cannot be mixed because of anion exchange. We address this issue with a mesoporous PQD nanocomposite that can prevent ion exchange and increase stability. We mixed green quantum-dot-containing mesoporous silica nanocomposites with red PQDs, which can prevent the anion-exchange effect and increase thermal and photo stability. We applied the new PQD-based LEDs for backlight displays. We also used PQDs in an on-chip LED device. Our white LED device for backlight display passed through a color filter with an NTSC value of 113 % and Rec. 2020 of 85 %.

  15. Colors of the Daytime Overcast Sky

    DTIC Science & Technology

    2005-09-20

    sunlight) spectra beneath overcast skies reveal an unexpectedly wide gamut of pastel colors. Analyses of these spectra indicate that at visible wavelengths...care, however, we also were able to acquire some data in drizzle, light rain, and snow. What kinds of chromaticity gamuts do such overcasts produce...noteworthy in Fig. 1. First, its chromaticity gamut for clear daylight is much less than for its two stratus and stratocumu- lus overcasts. Using the

  16. Achromatic doublets using group indices of refraction

    NASA Astrophysics Data System (ADS)

    Rosete-Aguilar, M.; Estrada-Silva, F. C.; Román-Moreno, C. J.; Ortega-Martínez, R.

    2008-03-01

    One main function of short pulses is to concentrate energy in time and space [1]. The use of refractive lenses allows us to concentrate energy in a small volume of focusing around the focal point of the lens. When using refractive lenses, there are three effects that affect the concentration of energy around the focal point of the lens. These are the group velocity dispersion (GVD), the propagation time difference (PTD), and the aberrations of the lens. In this paper, we study lenses which are diffraction limited so that the monochromatic aberrations are negligible; the group velocity dispersion and the propagation time difference are the main effects affecting the spreading of the pulse at the focus. We will show that for 100-fs pulses the spatial spreading is larger than the temporal spreading of the pulse. It is already known that the effect of spatial spreading of the pulse due to PTD can be reduced by using achromatic optics. We use the theory proposed by A. Vaughan to analyze simple lenses and normal achromatic doublets, where normal means doublets that we can buy from catalogs. We then use the Vaughan theory to design achromatic doublets in phase and group, which produce no spatial spreading of the pulse, i.e., PTD = 0, when the doublet is designed for the carrier of the pulse. We compare these phase and group achromatic doublets with normal achromatic doublets. Finally, we show that apochromatic optics can give a much better correction of PTD than using normal achromatic doublets.

  17. Do focal colors look particularly "colorful"?

    PubMed

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  18. The male blue crab, Callinectes sapidus, uses both chromatic and achromatic cues during mate choice.

    PubMed

    Baldwin, Jamie; Johnsen, Sönke

    2012-04-01

    In the blue crab, Callinectes sapidus, claw color varies by sex, sexual maturity and individual. Males rely in part on color cues to select appropriate mates, and these chromatic cues may be perceived through an opponent interaction between two photoreceptors with maximum wavelength sensitivities at 440 and 508 nm. The range of color discrimination of this dichromatic visual system may be limited, however, and it is unclear whether male blue crabs are capable of discriminating the natural variations in claw color that may be important in mate choice. By testing males' innate color preferences in binary choice tests between photographs of red-clawed females and six variations of orange-clawed females, we examined both the chromatic (opponent interaction) and achromatic (relative luminance) cues used in male mate choice. Males significantly preferred red-clawed females to orange-clawed females, except when the test colors were similar in both opponency and relative luminance. Our results are unusual in that they indicate that male mate choice in the blue crab is not guided solely by achromatic or chromatic mechanisms, suggesting that both color and intensity are used to evaluate female claw color.

  19. Bright color reflective displays with interlayer reflectors

    NASA Astrophysics Data System (ADS)

    Kitson, Stephen; Geisow, Adrian; Rudin, John; Taphouse, Tim

    2011-08-01

    A good solution to the reflective display of color has been a major challenge for the display industry, with very limited color gamuts demonstrated to date. Conventional side-by-side red, green and blue color filters waste two-thirds of incident light. The alternative of stacking cyan, magenta and yellow layers is also challenging -- a 10% loss per layer compounds to nearly 50% overall. Here we demonstrate an architecture that interleaves absorbing-to-clear shutters with matched wavelength selective reflectors. This increases color gamut by reducing losses and more cleanly separating the color channels, and gives much wider choice of electro-optic colorants.

  20. Evaluation of the Sony GDM-FW900 16:10 Aspect Ratio, 24-Inch Diagonal Flat Face CRT Color Monitor

    DTIC Science & Technology

    2007-11-02

    Color Gamut ....................................................................................... 46 II. 23 Color Tracking...daylight color imagery. Other color features include: variable RGB gain/bias, the sRGB color display system. Adjusting the color temperature somewhat...delta u’v’ Pass Color Tracking Not specified Less than 0.013 delta u’v’ between Lmin to Lmax Color Gamut Area Not specified 27% Pixel aspect

  1. Realistic fetus skin color processing for ultrasound volume rendering

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Tae; Kim, Kyuhong; Park, Sung-Chan; Kang, Jooyoung; Kim, Jung-Ho

    2014-01-01

    This paper proposes realistic fetus skin color processing using a 2D color map and a tone mapping function (TMF) for ultrasound volume rendering. The contributions of this paper are a 2D color map generated through a gamut model of skin color and a TMF that depends on the lighting position. First, the gamut model of fetus skin color is calculated by color distribution of baby images. The 2D color map is created using a gamut model for tone mapping of ray casting. For the translucent effect, a 2D color map in which lightness is inverted is generated. Second, to enhance the contrast of rendered images, the luminance, color, and tone curve TMF parameters are changed using 2D Gaussian function that depends on the lighting position. The experimental results demonstrate that the proposed method achieves better realistic skin color reproduction than the conventional method.

  2. Selection of small color palette for color image quantization

    NASA Astrophysics Data System (ADS)

    Chau, Wing K.; Wong, S. K. M.; Yang, Xuedong; Wan, Shijie J.

    1992-05-01

    Two issues are involved in color image quantization: color palette selection and color mapping. A common practice for color palette selection is to minimize the color distortion for each pixel (the median-cut, the variance-based and the k-means algorithms). After the color palette has been chosen, a quantized image may be generated by mapping the original color of each pixel onto its nearest color in the color palette. Such an approach can usually produce quantized images of high quality with 128 or more colors. For 32 - 64 colors, the quality of the quantized images is often acceptable with the aid of dithering techniques in the color mapping process. For 8 - 16 color, however, the above statistical method for color selection becomes no longer suitable because of the great reduction of color gamut. In order to preserve the color gamut of the original image, one may want to select the colors in such a way that the convex hull formed by these colors in the RGB color space encloses most colors of the original image. Quantized images generated in such a geometrical way usually preserve a lot of image details, but may contain too much high frequency noises. This paper presents an effective algorithm for the selection of very small color palette by combining the strengths of the above statistical and geometrical approaches. We demonstrate that with the new method images of high quality can be produced by using only 4 to 8 colors.

  3. Filter methods to preserve local contrast and to avoid artifacts in gamut mapping

    NASA Astrophysics Data System (ADS)

    Meili, Marcel; Küpper, Dennis; Barańczuk, Zofia; Caluori, Ursina; Simon, Klaus

    2010-01-01

    Contrary to high dynamic range imaging, the preservation of details and the avoidance of artifacts is not explicitly considered in popular color management systems. An effective way to overcome these difficulties is image filtering. In this paper we investigate several image filter concepts for detail preservation as part of a practical gamut mapping strategy. In particular we define four concepts including various image filters and check their performance with a psycho-visual test. Additionally, we compare our performance evaluation to two image quality measures with emphasis on local contrast. Surprisingly, the most simple filter concept performs highly efficient and achieves an image quality which is comparable to the more established but slower methods.

  4. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  5. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  6. An achromatic low-order wavefront sensor

    NASA Astrophysics Data System (ADS)

    Brousseau, Denis; Allain, Guillaume; Thibault, Simon; Véran, Jean-Pierre

    2016-07-01

    Many wavefront sensors have been developed over the years, but most are not well suited for the photon-limited regime of coronagraphs designed for 10-9 contrast ratios and small inner working angles (IWAs). To meet current coronagraphs low-order wavefront sensing requirements, it is essential to have a method that offers high sensitivity and preferably a linear response. We propose an innovative low-order wavefront sensor (LOWFS) design that is both achromatic and near free of non-common path aberrations (NCPAs).

  7. An analytical study of double bend achromat lattice

    SciTech Connect

    Fakhri, Ali Akbar Kant, Pradeep; Singh, Gurnam; Ghodke, A. D.

    2015-03-15

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  8. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  9. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

    PubMed Central

    2016-01-01

    Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255

  10. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  11. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Conn, Andrew; Cerruto, Antonio; Winters, Amy; Roke, Calum

    2014-03-01

    Chromatophores are the colour changing organelles in the skins of animals including fish and cephalopods. The ability of cephalopods in particular to rapidly change their colouration in response to environmental changes, for example to camouflage against a new background, and in social situations, for example to attract a mate or repel a rival, is extremely attractive for engineering, medical, active clothing and biomimetic robotic applications. The rapid response of these chromatophores is possible by the direct coupling of fast acting muscle and pigmented saccules. In artificial chromatophores we are able to mimic this structure using electroactive polymer artificial muscles. In contrast to prior research which has demonstrated monochromatic artificial chromatophores, here we consider a novel multi-colour, multi-layer, artificial chromatophore structure inspired by the complex dermal chromatophore unit in nature and which exploits dielectric elastomer artificial muscles as the electroactive actuation mechanism. We investigate the optical properties of this chromatophore unit and explore the range of colours and effects that a single unit and a matrix of chromatophores can produce. The colour gamut of the multi-colour chromatophore is analysed and shows its suitability for practical display and camouflage applications. It is demonstrated how, by varying actuator strain and chromatophore base colour, the gamut can be shifted through colour space, thereby tuning the artificial chromatophore to a specific environment or application.

  12. Gradient Index Polymer Optics: Achromatic Singlet Lens Design

    DTIC Science & Technology

    2010-01-01

    achromatic singlet lenses. The designs are based on gradient index lenses fabricated from nanolayered polymer materials. Raytraced results confirm the...fabricated from nanolayered polymer materials. Raytraced results confirm the achromatic performance of the designs. OCIS codes: (110.2760) Gradient...lenses in Zemax®. In order to model these lenses, user-defined surfaces had to be developed for the software. RL RG z y • • Δz • tc •n0 n1• Raytrace

  13. Achromatic phase shifting focal plane masks

    NASA Astrophysics Data System (ADS)

    Newman, Kevin

    The search for life on other worlds is an exciting scientific endeavor that could change the way we perceive our place in the universe. Thousands of extrasolar planets have been discovered using indirect detection techniques. One of the most promising methods for discovering new exoplanets and searching for life is direct imaging with a coronagraph. Exoplanet coronagraphy of Earth-like planets is a challenging task, but we have developed many of the tools necessary to make it feasible. The Phase-Induced Amplitude Apodization (PIAA) Coronagraph is one of the highest-performing architectures for direct exoplanet imaging. With a complex phase-shifting focal plane mask, the PIAA Complex Mask Coronagraph (PIAACMC) can approach the theoretical performance limit for any direct detection technique. The architecture design is flexible enough to be applied to any arbitrary aperture shape, including segmented and obscured apertures. This is an important feature for compatibility with next-generation ground and space-based telescopes. PIAA and PIAACMC focal plane masks have been demonstrated in monochromatic light. An important next step for high-performance coronagraphy is the development of broadband phase-shifting focal plane masks. In this dissertation, we present an algorithm for designing the PIAA and PIAACMC focal plane masks to operate in broadband. We also demonstrate manufacturing of the focal plane masks, and show laboratory results. We use simulations to show the potential performance of the coronagraph system, and the use of wavefront control to correct for mask manufacturing errors. Given the laboratory results and simulations, we show new areas of exoplanet science that can potentially be explored using coronagraph technology. The main conclusion of this dissertation is that we now have the tools required to design and manufacture PIAA and PIAACMC achromatic focal plane masks. These tools can be applied to current and future telescope systems to enable new

  14. One-stage model for color conversion.

    NASA Technical Reports Server (NTRS)

    Richards, W.

    1972-01-01

    Description of a one-stage approximation to the color-conversion model of Richards and Parks (1971). The modified model proposes three channels for color vision, each with different center-surround sensitivities. In its strongest form, the model predicts that the gain-setting control that alters the sensitivities of each channel is solely a function of achromatic contrast.

  15. OPTIMIZING THE DYNAMIC APERTURE FOR TRIPLE BEND ACHROMATIC LATTICES.

    SciTech Connect

    KRAMER, S.L.; BENGTSSON, J.

    2006-06-26

    The Triple Bend Achromatic (TBA) lattice has the potential for lower natural emittance per period than the Double Bend Achromatic (DBA) lattice for high brightness light sources. However, the DBA has been chosen for 3rd generation light sources more often due to the higher number of undulator straight section available for a comparable emittance. The TBA has considerable flexibility in linear optics tuning while maintaining this emittance advantage. We have used the tune and chromaticity flexibility of a TBA lattice to minimize the lowest order nonlinearities to implement a 3rd order achromatic tune, while maintaining a constant emittance. This frees the geometric sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the TBA as a proposed lattice for NSLS-II facility. The flexibility of the TBA lattice will also provide for future upgrade capabilities of the beam parameters.

  16. Adaptive Local Linear Regression with Application to Printer Color Management

    DTIC Science & Technology

    2008-01-01

    values formed the test samples. This process guaranteed that the CIELAB test samples were in the gamut for each printer, but each printer had a...digital images has recently led to increased consumer demand for accurate color reproduction. Given a CIELAB color one would like to reproduce, the color...management problem is to determine what RGB color one must send the printer to minimize the error between the desired CIELAB color and the CIELAB

  17. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  18. Color and Visual Factors in ATC Displays

    DTIC Science & Technology

    2006-06-01

    displayed materials (called distractors ) within the surrounding visual field that typically spans a view angle of 20~40 degrees. Because achromatic at...create conspicuous differ- ences between a target and distractors . Thus, pop-out of color-coded information in complex scenes is extremely efficient and...We summarized the important results as follows: 1) Color can effectively draw attention when a colored target is brighter than distractors , and the

  19. Achromatic correction of diffractive dispersion in white light SLM imaging.

    PubMed

    Bouchal, Zdeněk; Chlup, Vladimír; Celechovský, Radek; Bouchal, Petr; Nistor, Ioan Cristian

    2014-05-19

    In contemporary optics, the spatial light modulator (SLM) is effectively used as a flexible optoelectronic device playing the key role in a number of experiments of science and technology. Its operation is optimal when using almost monochromatic light but an extremely strong diffractive dispersion occurs when white light is applied. In this paper, the design concepts are proposed resulting in optimization and implementation of a refractive corrector cooperating with the SLM. The corrector maintains the operation of the SLM unchanged for the central wavelength of light and ensures an achromatic dispersion compensation throughout the visible region in applications based on a lens-pattern formation. A significant improvement of the imaging performance of the achromatic SLM was proved by the computer simulation and measurement of the chromatic focal shift and the image contrast of the resolution target.

  20. A simple analytical method to obtain achromatic waveplate retarders

    NASA Astrophysics Data System (ADS)

    Vilas, Jose Luis; Lazarova-Lazarova, Aleksandra

    2017-04-01

    A new linear and analytical method to design achromatic retarders using waveplates is proposed. The root of this procedure is a generalization of the Hariharan method, which supposes a set of waveplates with fast axes aligned. Hence, it imposes a set of contour conditions over the overall retardation with the aim of determining the thicknesses of the waveplates. Our method proposes a polynomial approximation of the birefringences, thus removing the contour condition. Analytic expressions for calculating the thicknesses of the waveplates are then derived, showing a non-explicit dependence on the wavelength. Moreover, the overall retardation obtained by this method is close to the optimal retardation curve achieved by minimizing the merit function of the achromatism degree.

  1. Watermarking spot colors

    NASA Astrophysics Data System (ADS)

    Alattar, Osama M.; Reed, Alastair M.

    2003-06-01

    Watermarking of printed materials has usually focused on process inks of cyan, magenta, yellow and black (CMYK). In packaging, almost three out of four printed materials include spot colors. Spot colors are special premixed inks, which can be produced in a vibrant range of colors, often outside the CMYK color gamut. In embedding a watermark into printed material, a common approach is to modify the luminance value of each pixel in the image. In the case of process color work pieces, the luminance change can be scaled to the C, M, Y and K channels using a weighting function, to produce the desired change in luminance. In the case of spot color art designs, there is only one channel available and the luminance change is applied to this channel. In this paper we develop a weighting function to embed the watermark signal across the range of different spot colors. This weighting function normalizes visibility effect and signal robustness across a wide range of different spot colors. It normalizes the signal robustness level over the range of an individual spot color"s intensity levels. Further, it takes into account the sensitivity of the capturing device to the different spot colors.

  2. Relationship between Color and Emotion: A Study of College Students

    ERIC Educational Resources Information Center

    Kaya, Naz; Epps, Helen H.

    2004-01-01

    Ninety-eight college students were asked to indicate their emotional responses to five principle hues (i.e., red, yellow, green, blue, purple), five intermediate hues (i.e., yellow-red, green-yellow, blue-green, purple-blue, and red-purple), and three achromatic colors (white, gray, and black) and the reasons for their choices. The color stimuli…

  3. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    PubMed

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web.

  4. Achromatic phase matching at third orders of dispersion

    DOEpatents

    Richman, Bruce

    2003-10-21

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal and stationary optical elements whose configuration, properties, and arrangement have been optimized to match the angular dispersion characteristics of the SHG crystal to at least the third order. These elements include prisms and diffraction gratings for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the third order and such that every ray wavelength overlap within the crystal.

  5. Ultra-broadband achromatic imaging with diffractive photon sieves

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-06-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element.

  6. Large-deviation achromatic Risley prisms pointing systems

    NASA Astrophysics Data System (ADS)

    Lacoursiere, Jean; Doucet, Michel; Curatu, Eugene O.; Savard, Maxime; Verreault, Sonia; Thibault, Simon; Chevrette, Paul C.; Ricard, Benoit

    2002-06-01

    As part of the Infrared Eye project, this article describes the design of large-deviation, achromatic Risley prisms scanning systems operating in the 0.5 - 0.92 and 8 - 9.5 μm spectral regions. Designing these systems is challenging due to the large deviation required (zero - 25 degrees), the large spectral bandwidth and the mechanical constraints imposed by the need to rotate the prisms to any position in 1/30 second. A design approach making extensive use of the versatility of optical design softwares is described. Designs consisting of different pairs of optical materials are shown in order to illustrate the trade-off between chromatic aberration, mass and vignetting. Control of chromatic aberration and reasonable prism shape is obtained over 8 - 9.5 μm with zinc sulfide and germanium. The design is more difficult for the 0.5 - 0.92 μm band. Trade-offs consist in using sapphire with Cleartran« over a reduced bandwidth (0.75 - 0.9 μm ) or acrylic singlets with the Infrared Eye in active mode (0.85 - 0.86 μm). Non-sequential ray-tracing is used to study the effects of fresnelizing one element of the achromat to reduce its mass, and to evaluate detector narcissus in the 8 - 9.5 μm region.

  7. Ultra-broadband achromatic imaging with diffractive photon sieves

    PubMed Central

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  8. A unified account of gloss and lightness perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-08-01

    A recently introduced computational theory of visual surface representation, termed gamut relativity, overturns the classical assumption that brightness, lightness, and transparency constitute perceptual dimensions corresponding to the physical dimensions of luminance, diffuse reflectance, and transmittance, respectively. Here I extend the theory to show how surface gloss and lightness can be understood in a unified manner in terms of the vector computation of "layered representations" of surface and illumination properties, rather than as perceptual dimensions corresponding to diffuse and specular reflectance, respectively. The theory simulates the effects of image histogram skewness on surface gloss/lightness and lightness constancy as a function of specular highlight intensity. More generally, gamut relativity clarifies, unifies, and generalizes a wide body of previous theoretical and experimental work aimed at understanding how the visual system parses the retinal image into layered representations of surface and illumination properties.

  9. Color quality scale

    NASA Astrophysics Data System (ADS)

    Davis, Wendy; Ohno, Yoshi

    2010-03-01

    The color rendering index (CRI) has been shown to have deficiencies when applied to white light-emitting-diode-based sources. Furthermore, evidence suggests that the restricted scope of the CRI unnecessarily penalizes some light sources with desirable color qualities. To solve the problems of the CRI and include other dimensions of color quality, the color quality scale (CQS) has been developed. Although the CQS uses many of elements of the CRI, there are a number of fundamental differences. Like the CRI, the CQS is a test-samples method that compares the appearance of a set of reflective samples when illuminated by the test lamp to their appearance under a reference illuminant. The CQS uses a larger set of reflective samples, all of high chroma, and combines the color differences of the samples with a root mean square. Additionally, the CQS does not penalize light sources for causing increases in the chroma of object colors but does penalize sources with smaller rendered color gamut areas. The scale of the CQS is converted to span 0-100, and the uniform object color space and chromatic adaptation transform used in the calculations are updated. Supplementary scales have also been developed for expert users.

  10. Full Color Rainbow Hologram Using A Photoresist Plate

    NASA Astrophysics Data System (ADS)

    Ohnuma, Kazuhiko; Nishihara, Takashi; Iwata, Fujio

    1989-05-01

    A new method of full color rainbow hologram which can reconstruct a natural color image is developed and has been shown in Applied Optics. This method uses a technique of achromatic holographic stereogram invented by Benton and is realized by only one wavelength of Argon-ion laser and a photoresist plate. It is found from the result of experiments that the reconstructed image has sufficient contrast and wide range of color reproduction in both bright and dark area.

  11. Transforming reflectance spectra into Munsell color space by using prime colors.

    PubMed

    Romney, A Kimball; Fulton, James T

    2006-10-17

    Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.

  12. Dynamic egg color mimicry.

    PubMed

    Hanley, Daniel; Šulc, Michal; Brennan, Patricia L R; Hauber, Mark E; Grim, Tomáš; Honza, Marcel

    2016-06-01

    Evolutionary hypotheses regarding the function of eggshell phenotypes, from solar protection through mimicry, have implicitly assumed that eggshell appearance remains static throughout the laying and incubation periods. However, recent research demonstrates that egg coloration changes over relatively short, biologically relevant timescales. Here, we provide the first evidence that such changes impact brood parasite-host eggshell color mimicry during the incubation stage. First, we use long-term data to establish how rapidly the Acrocephalus arundinaceus Linnaeus (great reed warbler) responded to natural parasitic eggs laid by the Cuculus canorus Linnaeus (common cuckoo). Most hosts rejected parasitic eggs just prior to clutch completion, but the host response period extended well into incubation (~10 days after clutch completion). Using reflectance spectrometry and visual modeling, we demonstrate that eggshell coloration in the great reed warbler and its brood parasite, the common cuckoo, changes rapidly, and the extent of eggshell color mimicry shifts dynamically over the host response period. Specifically, 4 days after being laid, the host should notice achromatic color changes to both cuckoo and warbler eggs, while chromatic color changes would be noticeable after 8 days. Furthermore, we demonstrate that the perceived match between host and cuckoo eggshell color worsened over the incubation period. These findings have important implications for parasite-host coevolution dynamics, because host egg discrimination may be aided by disparate temporal color changes in host and parasite eggs.

  13. Complete achromatic optical switching between two waveguides with a sign flip of the phase mismatch

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Rangelov, Andon A.; Kyoseva, Elica

    2014-11-01

    We present a two-waveguide coupler which realizes complete achromatic all-optical switching. The coupling of the waveguides has a hyperbolic-secant shape, while the phase mismatch has a sign flip at the maximum of the coupling. We derive an analytic solution for the electric field propagation using coupled-mode theory and show that the light switching is robust against small to moderate variations in the coupling strength and phase mismatch. Thus, we realize an achromatic light switching between the two waveguides. We further consider the extended case of three coupled waveguides in an array and pay special attention to the case of equal bidirectional achromatic light beam splitting.

  14. COMPARISON OF DOUBLE BEND AND TRIPLE BEND ACHROMATIC LATTICE STRUCTURES AND NSLS-II.

    SciTech Connect

    KRAMER, S.L.; KRINSKY, S.; BENGTSSON, J.

    2006-06-26

    The Double Bend Achromatic (DBA) and the Triple Bend Achromatic (TBA) lattice have been studied rather extensively for use for the NSLS-II storage ring. The advantage of the TBA compared to the DBA in terms of emittance per period is well known. However, the DBA has the advantage of greater number of ID straight sections for the users and maybe easier to tune the dispersive section for reduced chromatic sextupole strength. We present a comparison of these lattices based on optimization of the non-linear driving terms using high order achromatic cancellation of driving terms of the nonlinear lattice.

  15. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    SciTech Connect

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Johnson, Rolland P.

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  16. [Research on developping the spectral dataset for Dunhuang typical colors based on color constancy].

    PubMed

    Liu, Qiang; Wan, Xiao-Xia; Liu, Zhen; Li, Chan; Liang, Jin-Xing

    2013-11-01

    The present paper aims at developping a method to reasonably set up the typical spectral color dataset for different kinds of Chinese cultural heritage in color rendering process. The world famous wall paintings dating from more than 1700 years ago in Dunhuang Mogao Grottoes was taken as typical case in this research. In order to maintain the color constancy during the color rendering workflow of Dunhuang culture relics, a chromatic adaptation based method for developping the spectral dataset of typical colors for those wall paintings was proposed from the view point of human vision perception ability. Under the help and guidance of researchers in the art-research institution and protection-research institution of Dunhuang Academy and according to the existing research achievement of Dunhuang Research in the past years, 48 typical known Dunhuang pigments were chosen and 240 representative color samples were made with reflective spectral ranging from 360 to 750 nm was acquired by a spectrometer. In order to find the typical colors of the above mentioned color samples, the original dataset was devided into several subgroups by clustering analysis. The grouping number, together with the most typical samples for each subgroup which made up the firstly built typical color dataset, was determined by wilcoxon signed rank test according to the color inconstancy index comprehensively calculated under 6 typical illuminating conditions. Considering the completeness of gamut of Dunhuang wall paintings, 8 complementary colors was determined and finally the typical spectral color dataset was built up which contains 100 representative spectral colors. The analytical calculating results show that the median color inconstancy index of the built dataset in 99% confidence level by wilcoxon signed rank test was 3.28 and the 100 colors are distributing in the whole gamut uniformly, which ensures that this dataset can provide reasonable reference for choosing the color with highest

  17. Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface.

    PubMed

    Wang, Shaowu; Lai, Jianjun; Wu, Tao; Chen, Changhong; Sun, Junqiang

    2017-03-20

    A new method for realizing achromatic flat focusing based on all-dielectric silicon subwavelength metasurface is presented. The designed subwavelength silicon-air slits waveguide array with varied widths can provide desired phase shift of beam focusing and has the non-dispersive characteristic when the period of each unit cell is far less than the wavelength of incident electromagnetic wave (about λ/10) in mid-infrared and far-infrared spectral range. Numerical simulation of an achromatic flat focusing lens in wide spectral range from 8μm to 12μm is performed by the finite difference time domain method and the results show agreement with theory analysis results. This work indicates an effective solution for wide-band achromatic flat optical elements and potential application in integrated achromatic infrared optical systems.

  18. Quantitative measurement of binocular color fusion limit for non-spectral colors.

    PubMed

    Jung, Yong Ju; Sohn, Hosik; Lee, Seong-il; Ro, Yong Man; Park, Hyun Wook

    2011-04-11

    Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u'v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram.

  19. Precision of synesthetic color matching resembles that for recollected colors rather than physical colors.

    PubMed

    Arnold, Derek H; Wegener, Signy V; Brown, Francesca; Mattingley, Jason B

    2012-10-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but hearing the name of a grapheme does not. This dissociation allowed us to compare the precision with which synesthetes are able to match their color experiences triggered by visible graphemes, with the precision of their matches for recalled colors based on the same graphemes spoken aloud. In six synesthetes, color matching for printed graphemes was equally variable relative to recalled experiences. In a control experiment, synesthetes and age-matched controls either matched the color of a circular patch while it was visible on a screen, or they judged its color from memory after it had disappeared. Both synesthetes and controls were more variable when matching from memory, and the variance of synesthetes' recalled color judgments matched that associated with their synesthetic judgments for visible graphemes in the first experiment. Results suggest that synesthetic experiences of color triggered by achromatic graphemes are analogous to recollections of color.

  20. Angularly positioned LED-based spatial-temporal color separation system.

    PubMed

    Lee, Chi-Hung

    2012-08-13

    This study proposes a two-field driving scheme for field sequential color liquid crystal displays (LCDs) without color filters. The proposed scheme is based on angularly positioned color LEDs. In each field, the angular rays of two colors are collimated by a collimation lens, redirected by a light guide, and converged by a cylindrical-lens array to map into corresponding sub-pixel positions to efficiently display color images. The three main advantages of this approach are the elimination of dye color filters, high feasibility using conventional ultra-precision machining processes, and a larger color gamut.

  1. Color separation system with angularly positioned light source module for pixelized backlighting.

    PubMed

    Chen, Po-Chou; Lin, Hui-Hsiung; Chen, Cheng-Huan; Lee, Chi-Hung; Lu, Mao-Hong

    2010-01-18

    A color-separation system that angularly positions color LEDs to produce color separation and a lens array to focus this light onto the pixels is proposed. The LED rays from different incident angles are mapped into corresponding sub-pixel positions to efficiently display color image, which can be used to replace the absorbing color filter in the conventional liquid crystal layer. In this paper, the prototype backlight has been designed, fabricated and characterized. The measurement results of this module showed that a gain factor of transmission efficiency three times more than that of conventional color filters efficiency improvement and a larger color gamut are expected.

  2. Development of the IES method for evaluating the color rendition of light sources.

    PubMed

    David, Aurelien; Fini, Paul T; Houser, Kevin W; Ohno, Yoshi; Royer, Michael P; Smet, Kevin A G; Wei, Minchen; Whitehead, Lorne

    2015-06-15

    We have developed a two-measure system for evaluating light sources' color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score R(f) is an improved version of the CIE color rendering index. The color gamut score R(g) is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).

  3. Development of the IES method for evaluating the color rendition of light sources

    DOE PAGES

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; ...

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score Rf is an improved version of themore » CIE color rendering index. The color gamut score Rg is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  4. Development of the IES method for evaluating the color rendition of light sources

    SciTech Connect

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; Ohno, Yoshi; Royer, Michael P.; USA, Richland Washington; Smet, Kevin A. G.; Whitehead, Lorne

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score Rf is an improved version of the CIE color rendering index. The color gamut score Rg is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).

  5. The modern Japanese color lexicon.

    PubMed

    Kuriki, Ichiro; Lange, Ryan; Muto, Yumiko; Brown, Angela M; Fukuda, Kazuho; Tokunaga, Rumi; Lindsey, Delwin T; Uchikawa, Keiji; Shioiri, Satoshi

    2017-03-01

    Despite numerous prior studies, important questions about the Japanese color lexicon persist, particularly about the number of Japanese basic color terms and their deployment across color space. Here, 57 native Japanese speakers provided monolexemic terms for 320 chromatic and 10 achromatic Munsell color samples. Through k-means cluster analysis we revealed 16 statistically distinct Japanese chromatic categories. These included eight chromatic basic color terms (aka/red, ki/yellow, midori/green, ao/blue, pink, orange, cha/brown, and murasaki/purple) plus eight additional terms: mizu ("water")/light blue, hada ("skin tone")/peach, kon ("indigo")/dark blue, matcha ("green tea")/yellow-green, enji/maroon, oudo ("sand or mud")/mustard, yamabuki ("globeflower")/gold, and cream. Of these additional terms, mizu was used by 98% of informants, and emerged as a strong candidate for a 12th Japanese basic color term. Japanese and American English color-naming systems were broadly similar, except for color categories in one language (mizu, kon, teal, lavender, magenta, lime) that had no equivalent in the other. Our analysis revealed two statistically distinct Japanese motifs (or color-naming systems), which differed mainly in the extension of mizu across our color palette. Comparison of the present data with an earlier study by Uchikawa & Boynton (1987) suggests that some changes in the Japanese color lexicon have occurred over the last 30 years.

  6. Cross-modal, bidirectional priming in grapheme-color synesthesia.

    PubMed

    Paffen, Chris L E; Van der Smagt, Maarten J; Nijboer, Tanja C W

    2015-05-01

    Grapheme-color synesthetes perceive achromatic graphemes to be inherently colored. In this study grapheme-color synesthetes and non-synesthetes discriminated (1) the color of visual targets presented along with aurally presented digit primes, and (2) the identity of aurally presented digit targets presented with visual color primes. Reaction times to visual color targets were longer when the color of the target was incongruent with the synesthetic percept reported for the prime. Likewise, discriminating aurally presented digit targets took longer when the color of the prime was incongruent with the synesthetic percept for the target. These priming effects were absent in non-synesthetes. We conclude that binding between digits and colors in grapheme-color synesthetes can occur bidirectionally across senses. The results are in line with the idea that synesthesia is the result of linking inducing stimuli (e.g. digits) to synesthetic percepts (colors) at an abstract - supra-modal - conceptual level of processing.

  7. Do graphemes attract spatial attention in grapheme-color synesthesia?

    PubMed

    Volberg, G; Chockley, A S; Greenlee, M W

    2017-03-03

    Grapheme-color synesthetes perceive concurrent colors for some objectively achromatic graphemes (inducers). Using oscillatory responses in the electroencephalogram, we tested the hypothesis that inducers automatically attract spatial attention and, thus, favor a conscious experience of color. Achromatic inducers and real-colored non-inducers were presented to the left or to the right visual hemifield and orientation judgments were required for subsequently presented Gabor patches. The graphemes were irrelevant for the task so that the related brain response was purely stimulus-driven. Synesthetes (n =12), but not an equal number of controls, showed an early theta power increase for inducers presented to the right compared to the left hemifield, with sources in left fusiform gyrus. Alpha power asymmetries indicative of shifts of spatial attention were not observed. Together, synesthetes showed an increased responsiveness to inducers in grapheme processing areas. However, contrary to our hypothesis, inducers did not attract spatial attention in synesthetes.

  8. Color management with a hammer: the B-spline fitter

    NASA Astrophysics Data System (ADS)

    Bell, Ian E.; Liu, Bonny H. P.

    2003-01-01

    To paraphrase Abraham Maslow: If the only tool you have is a hammer, every problem looks like a nail. We have a B-spline fitter customized for 3D color data, and many problems in color management can be solved with this tool. Whereas color devices were once modeled with extensive measurement, look-up tables and trilinear interpolation, recent improvements in hardware have made B-spline models an affordable alternative. Such device characterizations require fewer color measurements than piecewise linear models, and have uses beyond simple interpolation. A B-spline fitter, for example, can act as a filter to remove noise from measurements, leaving a model with guaranteed smoothness. Inversion of the device model can then be carried out consistently and efficiently, as the spline model is well behaved and its derivatives easily computed. Spline-based algorithms also exist for gamut mapping, the composition of maps, and the extrapolation of a gamut. Trilinear interpolation---a degree-one spline---can still be used after nonlinear spline smoothing for high-speed evaluation with robust convergence. Using data from several color devices, this paper examines the use of B-splines as a generic tool for modeling devices and mapping one gamut to another, and concludes with applications to high-dimensional and spectral data.

  9. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  10. CIAXE: co-axial achromatic interferential coronagraph: first laboratory results

    NASA Astrophysics Data System (ADS)

    Allouche, Fatmé; Gay, Jean; Rabbia, Yves; Assus, Pierre

    2010-07-01

    In 1996, Jean Gay and Yves Rabbia presented their Achromatic Interferential Coronagraph (AIC) for detecting and imaging faint companions (ultimately exoplanets) in the neighboring of a star. As presented then, the Michleson-like Interferometer configuration of the AIC hardens its insertion into an existing (coaxial) optical train, the output beam of the AIC being delivered at right angle from the input beam. To overcome this, they reconfigured the AIC into a compact and fully axial coronagraph, the CIAXE, which main feature consists of using two thick lenses machined in the same optical material. For the CIAXE to deliver the output beam along the same axis as the input beam, the two lenses are coaxially disposed on the optical axis and are separated, at their common spherical contact surface by a thin air gap acting like a beam splitter. We have set up a laboratory experiment aiming at validating the principle of the concept. Our first step was to equalize the thicknesses of the two lenses, so as to make zero the optical path difference between both arms. For this, the (residual) value of the OPD has been evaluated and then the lenses have been re-machined so as to decrease as far as technologically possible, the thicknesses mismatch. As a second step, a micro-controlled rotation around the common curvature center of the spherical surfaces of the lenses is applied. This allows a fine tuning of the residual OPD at the required accuracy level. Are presented here test bench, steps and results.

  11. Range and stability of structural colors generated by Morpho-inspired color reflectors.

    PubMed

    Chung, Kyungjae; Shin, Jung H

    2013-05-01

    The range and stability of structural colors generated by Morpho-inspired color reflectors are investigated. We find that despite the internal randomness of such structures that gives rise to their Morpho-like angle-independent iridescence, their colors under ambient lighting condition can be predicted by simple transfer-matrix calculations of corresponding planar multilayer structures. By calculating the possible range of colors generated by multilayers of different structures and material combinations using such transfer-matrix methods, we find that low-refractive index multilayers with intrastructure absorption, such as the melanin-containing chitin/air multilayer structure from the Morpho butterflies, can provide not only the most pure structural colors with the largest color gamut, but also the highest stability of color against variations in multilayer structure.

  12. Instrumental color control in textile printing

    NASA Astrophysics Data System (ADS)

    Connelly, Roland L., Sr.

    1996-03-01

    In textile printing there are several color outputs that need to be controlled. Just as important is the color coordination of these outputs. The types of color output are the video display on the textile design system (CATD for Computer Aided Textile Design), the color scanner, the color pattern printer, and the actual pattern printed on the textile substrate. Each of these systems has its own gamut(s) that is partially overlapping of the others and will require mapping and/or truncation to adequately represent the colors of the final print in the other systems. One of the goals of instrumentation systems is to control these devices so that the message of the pattern is the same on all four media. To accomplish this is a significant task that has yet to be completed to meet the rigorous requirements of the textile and apparel industries. Several of the major problems and directions for solving them will be discussed in this paper. These include getting good instrumental measurements, translation of data between systems, and specific problems related to the hard copy output.

  13. Color calibration of swine gastrointestinal tract images acquired by radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Wu, Hsien-Ming; Lin, Jyh-Hung

    2016-01-01

    The type of illumination systems and color filters used typically generate varying levels of color difference in capsule endoscopes, which influence medical diagnoses. In order to calibrate the color difference caused by the optical system, this study applied a radial imaging capsule endoscope (RICE) to photograph standard color charts, which were then employed to calculate the color gamut of RICE. Color gamut was also measured using a spectrometer in order to get a high-precision color information, and the results obtained using both methods were compared. Subsequently, color-correction methods, namely polynomial transform and conformal mapping, were used to improve the color difference. Before color calibration, the color difference value caused by the influences of optical systems in RICE was 21.45±1.09. Through the proposed polynomial transformation, the color difference could be reduced effectively to 1.53±0.07. Compared to another proposed conformal mapping, the color difference value was substantially reduced to 1.32±0.11, and the color difference is imperceptible for human eye because it is <1.5. Then, real-time color correction was achieved using this algorithm combined with a field-programmable gate array, and the results of the color correction can be viewed from real-time images.

  14. Number of perceptually distinct surface colors in natural scenes.

    PubMed

    Marín-Franch, Iván; Foster, David H

    2010-09-30

    The ability to perceptually identify distinct surfaces in natural scenes by virtue of their color depends not only on the relative frequency of surface colors but also on the probabilistic nature of observer judgments. Previous methods of estimating the number of discriminable surface colors, whether based on theoretical color gamuts or recorded from real scenes, have taken a deterministic approach. Thus, a three-dimensional representation of the gamut of colors is divided into elementary cells or points which are spaced at one discrimination-threshold unit intervals and which are then counted. In this study, information-theoretic methods were used to take into account both differing surface-color frequencies and observer response uncertainty. Spectral radiances were calculated from 50 hyperspectral images of natural scenes and were represented in a perceptually almost uniform color space. The average number of perceptually distinct surface colors was estimated as 7.3 × 10(3), much smaller than that based on counting methods. This number is also much smaller than the number of distinct points in a scene that are, in principle, available for reliable identification under illuminant changes, suggesting that color constancy, or the lack of it, does not generally determine the limit on the use of color for surface identification.

  15. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with

  16. A new perceptual problem: the amodal completion of color.

    PubMed

    Pinna, Baingio

    2008-01-01

    Amodal completion is the most common form of visual completion occurring when portions of an object are hidden, due to their occlusion behind another object (Michotte, 1951). Just as a shape is completed amodally behind another occluding shape, so is a color behind another occluding color or behind a lighting: a bright light reflected by a three-dimensional object. Four possible phenomenal combinations related to the amodal completion of color are shown: amodal or modal coloration or discoloration. Purposes of four experiments were: (1) to demonstrate the amodal completion of color under different stimulus conditions and under chromatic and achromatic conditions and (2) to extract the general principles ruling the amodal completion of color: "which, among many, is the color that completes amodally?" and, consequently, "which is the region of an object that determines its color?" The results showed the effectiveness of the amodal completion of color and that chromatic and achromatic conditions reveal different results. Four general principles of the amodal completion of color, useful to understand the more general problem of phenomenal organization of color, are suggested.

  17. Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes

    PubMed Central

    Cabezos, Inmaculada; Luque, Maria José; de Fez, Dolores; Moncho, Vicenta; Camps, Vicente

    2015-01-01

    Background: Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye's posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease. Materials and Methods: In addition to the standard white-on-white (standard automated perimetry [SAP]), a test battery has been used to study patient's contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry). The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin); chromatic red-green (parvocellular origin); and chromatic blue-yellow (koniocellular origin). Results: The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP. Conclusions: Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry. PMID:25827546

  18. An infrared achromatic quarter-wave plate designed based on simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Huang, Zhanhua; Yang, Huaidong

    2017-03-01

    Quarter-wave plates are primarily used to change the polarization state of light. Their retardation usually varies depending on the wavelength of the incident light. In this paper, the design and characteristics of an achromatic quarter-wave plate, which is formed by a cascaded system of birefringent plates, are studied. For the analysis of the combination, we use Jones matrix method to derivate the general expressions of the equivalent retardation and the equivalent azimuth. The infrared achromatic quarter-wave plate is designed based on the simulated annealing (SA) algorithm. The maximum retardation variation and the maximum azimuth variation of this achromatic waveplate are only about 1.8 ° and 0.5 ° , respectively, over the entire wavelength range of 1250-1650 nm. This waveplate can change the linear polarized light into circular polarized light with a less than 3.2% degree of linear polarization (DOLP) over that wide wavelength range.

  19. Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey; Wolf, Greg; Vandendriessche, Stefaan; Sparrold, Scott

    2016-09-01

    An achromatic component shares a common focus at two wavelengths and is a commonly used device in optical assemblies. This work explores the cost versus performance tradeoff for several types of achromatic lenses: conventional doublets with homogenous glass elements, hybrid doublets with a diffractive surface, axial GRadient INdex (GRIN) lenses (where the index of refraction changes along the length of the lens), and radial GRIN lenses (where the index of refraction changes depending on radial position). First order achromatic principles will be reviewed and applied to each system as a starting point and refined through the use of ray trace software. Optical performance will be assessed in terms of focusing efficiency and imaging. Cost will then be evaluated by accounting for current manufacturing costs and retail price through several distributors.

  20. Achromatic interfero-coronagraph with variable rotational shear in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Frolov, Pavel; Kiselev, Alexander; Tavrov, Alexander

    2016-07-01

    Direct imaging of earth-like extrasolar planets in the habitable zone and the search for possible biological signatures are among the key scientific objectives in the modern astronomy. Stellar coronagraph such as achromatic interfero coronagraph (AIC) with a small inner working angle has limited possibilities to detect and characterize planets around nearby stars due to the star leakage effect caused by incomplete suppression of the star of finite angular size. We report on an improved instrument for direct imaging of exoplanets and the study of stellar environment - common-path achromatic interfero-coronagraph with variable rotational shear (common-path achromatic rotation-shearing coronagraph, CP-ARC) - a common path implementation of rotation shearing interferometer. We detail CP-ARC approach and discuss its optical configuration, laboratory prototype and experimental results.

  1. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  2. Geometric enumerated chrominance watermark embed for spot colors

    NASA Astrophysics Data System (ADS)

    Lyons, Robert; Reed, Alastair; Stach, John

    2013-03-01

    Most packaging is printed using spot colors to reduce cost, produce consistent colors, and achieve a wide color gamut on the package. Most watermarking techniques are designed to embed a watermark in cyan, magenta, yellow, and black for printed images or red, green, and blue for displayed digital images. Our method addresses the problem of watermarking spot color images. An image containing two or more spot colors is embedded with a watermark in two of the colors with the maximum signal strength within a user-selectable visibility constraint. The user can embed the maximum watermark signal while meeting the required visibility constraint. The method has been applied to the case of two spot colors and images have been produced that are more than twice as robust to Gaussian noise as a single color image embedded with a luminance-only watermark with the same visibility constraint.

  3. Status of Studies of Achromat-based 6D Ionization Cooling Rings for Muons

    SciTech Connect

    Ding, X.; Kirk, H.; Cline, D.; Garren, A.A.; Berg, J.S.

    2011-09-04

    Six dimensional ionization cooling of muons is needed to achieve the necessary luminosity for a muon collider. If that cooling could occur over multiple turns in a closed ring, there would be significant cost savings over a single-pass cooling channel. We report on the status of a cooling ring with achromatic arcs. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring. The ring is designed with sufficient space in each superperiod for injection and extraction magnets. We describe the ring's lattice design, performance, and injection/extraction requirements.

  4. Color image reproduction based on multispectral and multiprimary imaging: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Teraji, Taishi; Ohsawa, Kenro; Uchiyama, Toshio; Motomura, Hideto; Murakami, Yuri; Ohyama, Nagaaki

    2001-12-01

    Multispectral imaging is significant technology for the acquisition and display of accurate color information. Natural color reproduction under arbitrary illumination becomes possible using spectral information of both image and illumination light. In addition, multiprimary color display, i.e., using more than three primary colors, has been also developed for the reproduction of expanded color gamut, and for discounting observer metamerism. In this paper, we present the concept for the multispectral data interchange for natural color reproduction, and the experimental results using 16-band multispectral camera and 6-primary color display. In the experiment, the accuracy of color reproduction is evaluated in CIE (Delta) Ea*b* for both image capture and display systems. The average and maximum (Delta) Ea*b* = 1.0 and 2.1 in 16-band mutispectral camera system, using Macbeth 24 color patches. In the six-primary color projection display, average and maximum (Delta) Ea*b* = 1.3 and 2.7 with 30 test colors inside the display gamut. Moreover, the color reproduction results with different spectral distributions but same CIE tristimulus value are visually compared, and it is confirmed that the 6-primary display gives improved agreement between the original and reproduced colors.

  5. Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing.

    PubMed

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2009-09-28

    A broadband ultraviolet pulse with a spectral width of 44 nm was generated by achromatic sum-frequency mixing of an 805-nm pulse and ultrabroadband visible pulse. Angular dispersion was introduced to achieve broadband phase matching by a prism pair. The UV pulse was compressed to 13.2 fs with another prism pair, with energy of 600 nJ.

  6. New Light on an Old Question: Who Invented the Achromatic Telescope?

    NASA Astrophysics Data System (ADS)

    Rudd, M. Eugene; Jaecks, Duane H.; Willach, Rolf; Sorrenson, Richard; Abrahams, Peter

    A discussion of the events leading up to the invention of the achromatic telescope, including topics on spherical aberration and Franciscus Maurolycus, the discovery of chromatic aberration, Issac Newton, John Dollond and his experiments, Samuel Klingenstierna, patent trials, and letters from Dollond and Ramsden.

  7. Adaptive color rendering of maps for users with color vision deficiencies

    NASA Astrophysics Data System (ADS)

    Kvitle, Anne Kristin; Green, Phil; Nussbaum, Peter

    2015-01-01

    A map is an information design object for which canonical colors for the most common elements are well established. For a CVD observer, it may be difficult to discriminate between such elements - for example, it may be hard to distinguish a red road from a green landscape on the basis of color alone. We address this problem through an adaptive color schema in which the conspicuity of elements in a map to the individual user is maximized. This paper outlines a method to perform adaptive color rendering of map information for users with color vision deficiencies. The palette selection method is based on a pseudo-color palette generation technique which constrains colors to those which lie on the boundary of a reference object color gamut. A user performs a color vision discrimination task, and based on the results of the test, a palette of colors is selected using the pseudo-color palette generation method. This ensures that the perceived difference between palette elements is high but which retains the canonical color of well-known elements as far as possible. We show examples of color palettes computed for a selection of normal and CVD observers, together with maps rendered using these palettes.

  8. Performance Evaluation of Color Models in the Fusion of Functional and Anatomical Images.

    PubMed

    Ganasala, Padma; Kumar, Vinod; Prasad, A D

    2016-05-01

    Fusion of the functional image with an anatomical image provides additional diagnostic information. It is widely used in diagnosis, treatment planning, and follow-up of oncology. Functional image is a low-resolution pseudo color image representing the uptake of radioactive tracer that gives the important metabolic information. Whereas, anatomical image is a high-resolution gray scale image that gives structural details. Fused image should consist of all the anatomical details without any changes in the functional content. This is achieved through fusion in de-correlated color model and the choice of color model has greater impact on the fusion outcome. In the present work, suitability of different color models for functional and anatomical image fusion is studied. After converting the functional image into de-correlated color model, the achromatic component of functional image is fused with an anatomical image by using proposed nonsubsampled shearlet transform (NSST) based image fusion algorithm to get new achromatic component with all the anatomical details. This new achromatic and original chromatic channels of functional image are converted to RGB format to get fused functional and anatomical image. Fusion is performed in different color models. Different cases of SPECT-MRI images are used for this color model study. Based on visual and quantitative analysis of fused images, the best color model for the stated purpose is determined.

  9. A color hierarchy for automatic target selection.

    PubMed

    Tchernikov, Illia; Fallah, Mazyar

    2010-02-24

    Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the background and is considered achromatic motion processing. Is motion processing independent of color processing? We find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore, when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy. The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer interfaces.

  10. A unified account of perceptual layering and surface appearance in terms of gamut relativity.

    PubMed

    Vladusich, Tony; McDonnell, Mark D

    2014-01-01

    When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.

  11. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings.

    PubMed

    Stoddard, Mary Caswell; Prum, Richard O

    2008-06-01

    We use a tetrahedral color space to describe and analyze male plumage color variation and evolution in a clade of New World buntings--Cyanocompsa and Passerina (Aves: Cardinalidae). The Goldsmith color space models the relative stimulation of the four retinal cones, using the integrals of the product of plumage reflectance spectra and cone sensitivity functions. A color is represented as a vector defined by the relative stimulation of the four cone types--ultraviolet, blue, green, and red. Color vectors are plotted in a tetrahedral, or quaternary, plot with the achromatic point at the origin and the ultraviolet/violet channel along the Z-axis. Each color vector is specified by the spherical coordinates theta, phi, and r. Hue is given by the angles theta and phi. Chroma is given by the magnitude of r, the distance from the achromatic origin. Color vectors of all distinct patches in a plumage characterize the plumage color phenotype. We describe the variation in color space occupancy of male bunting plumages, using various measures of color contrast, hue contrast and diversity, and chroma. Comparative phylogenetic analyses using linear parsimony (in MacClade) and generalized least squares (GLS) models (in CONTINUOUS) with a molecular phylogeny of the group document that plumage color evolution in the clade has been very dynamic. The single best-fit GLS evolutionary model of plumage color variation over the entire clade is a directional change model with no phylogenetic correlation among species. However, phylogenetic innovations in feather color production mechanisms--derived pheomelanin and carotenoid expression in two lineages--created new opportunities to colonize novel areas of color space and fostered the explosive differentiation in plumage color. Comparison of the tetrahedral color space of Goldsmith with that of Endler and Mielke demonstrates that both provide essentially identical results. Evolution of avian ultraviolet/violet opsin sensitivity in relation

  12. Context-dependent judgments of color that might allow color constancy in scenes with multiple regions of illumination.

    PubMed

    Lee, R J; Smithson, H E

    2012-02-01

    For a color-constant observer, a change in the spectral composition of the illumination is accompanied by a corresponding change in the chromaticity associated with an achromatic percept. However, maintaining color constancy for different regions of illumination within a scene implies the maintenance of multiple perceptual references. We investigated the features of a scene that enable the maintenance of separate perceptual references for two displaced but overlapping chromaticity distributions. The time-averaged, retinotopically localized stimulus was the primary determinant of color appearance judgments. However, spatial separation of test samples additionally served as a symbolic cue that allowed observers to maintain two separate perceptual references.

  13. An experimental method for the assessment of color simulation tools.

    PubMed

    Lillo, Julio; Alvaro, Leticia; Moreira, Humberto

    2014-07-22

    The Simulcheck method for evaluating the accuracy of color simulation tools in relation to dichromats is described and used to test three color simulation tools: Variantor, Coblis, and Vischeck. A total of 10 dichromats (five protanopes, five deuteranopes) and 10 normal trichromats participated in the current study. Simulcheck includes two psychophysical tasks: the Pseudoachromatic Stimuli Identification task and the Minimum Achromatic Contrast task. The Pseudoachromatic Stimuli Identification task allows determination of the two chromatic angles (h(uv) values) that generate a minimum response in the yellow–blue opponent mechanism and, consequently, pseudoachromatic stimuli (greens or reds). The Minimum Achromatic Contrast task requires the selection of the gray background that produces minimum contrast (near zero change in the achromatic mechanism) for each pseudoachromatic stimulus selected in the previous task (L(R) values). Results showed important differences in the colorimetric transformations performed by the three evaluated simulation tools and their accuracy levels. Vischeck simulation accurately implemented the algorithm of Brettel, Viénot, and Mollon (1997). Only Vischeck appeared accurate (similarity in huv and L(R) values between real and simulated dichromats) and, consequently, could render reliable color selections. It is concluded that Simulcheck is a consistent method because it provided an equivalent pattern of results for huv and L(R) values irrespective of the stimulus set used to evaluate a simulation tool. Simulcheck was also considered valid because real dichromats provided expected huv and LR values when performing the two psychophysical tasks included in this method.

  14. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  15. Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Wang, Jiafu; Li, Yongfeng; Wang, Zhuoluo; Chen, Hongya; Wang, Xinhua; Qu, Shaobo

    2016-11-01

    Planar reflectors are generally composed of non-uniform inclusions positioned on conducting sheet. Restricted by strong dispersion of the inclusions, the reflection of planar reflectors is usually chromatic. In this letter, we first obtain the dispersion relation for planar achromatic anomalous reflector (PAAR). Then, we propose to realize the dispersion relation based on dispersion engineering of spoof surface plasmon polariton (SSPP). Metallic blades structure is proposed to achieve the linear dispersion response by tailoring the weak dispersion region of SSPP. 6 metallic blade structures are designed to compose the super cell of the PAAR. A prototype was fabricated and measured. Both the simulation and experiment results show that the PAAR can achieve an achromatic reflected angle of 49.3° in 10.7-11.7 GHz under normal incidence.

  16. Alternate Lattice Design for Advanced Photon Source Multi-Bend Achromat Upgrade

    SciTech Connect

    Sun, Yipeng; Borland, Michael

    2015-01-01

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is proposed for a futureAdvanced Photon Source (APS)multibend- achromat (MBA) upgrade. This lattice requires use of a swap-out (on-axis) injection scheme. Alternate lattice design work has also been performed to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow beam accumulation. One of such alternate H7BA lattice designs, which still targets a very low emittance of 76 pm, is discussed in this paper. With these lattices, existing APS injector complex can be employed without the requirement of a very high charge operation. Studies show that an emittance below 76 pm can be achieved with the employment of reverse bends in an alternate lattice. We discuss the predicted performance and requirements for these lattices and compare them to the nominal lattice.

  17. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-05

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses.

  18. A Fast linking approach for CMYK to CMYK conversion preserving black separation in ICC color management system

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2003-12-01

    In the linking step of the standard ICC color management workflow for CMYK to CMYK conversion, a CMM takes an AToBn tag (n = 0, 1, or 2) from a source ICC profile to convert a color from the source color space to PCS (profile connection space), and then takes a BToAn tag from the destination ICC profile to convert the color from PCS to the destination color space. This approach may give satisfactory result perceptually or colorimetrically. However, it does not preserve the K channel for CMYK to CMYK conversion, which is often required in graphic art"s market. The problem is that the structure of a BtoAn tag is designed to convert colors from PCS to a device color space ignoring the K values from the source color space. Different approaches have been developed to control K in CMYK to CMYK printing, yet none of them well fits into the "Profile - PCS - Profile" model in the ICC color management system. A traditional approach is to transform the source CMYK to the destination CMYK by 1-D TRC curves and GCR/UCR tables. This method is so simple that it cannot accurately transform colors perceptually or colorimetrically. Another method is to build a 4-D CMYK to CMYK closed-loop lookup table (LUT) (or a deviceLink ICC profile) for the color transformation. However, this approach does not fit into opened color management workflows for it ties the source and the destination color spaces in the color characterization step. A specialized CMM may preserve K for a limit number of colors by mapping those CMYK colors to some carefully chosen PCS colors in both the AToBi tag and the BToAi tag. A more complete solution is to move to smart linking in which gamut mapping is performed in the real-time linking at a CMM. This method seems to solve all problems existed in the CMYK to CMYK conversion. However, it introduces new problems: 1) gamut mapping at real-time linking is often unacceptable slow; 2) gamut mapping may not be optimized or may be unreliable; 3) manual adjustment for

  19. Color constancy in a scene with bright colors that do not have a fully natural surface appearance.

    PubMed

    Fukuda, Kazuho; Uchikawa, Keiji

    2014-04-01

    Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.

  20. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  1. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  2. Possibilities of achromatization of coaxial asymmetric phase shifters with an even number of reflections

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Ali, M.; Kovalev, S. V.; Kovalev, V. V.

    2014-07-01

    Two types of coaxial phase shifters (PSs) are considered. They are designed for spectral ellipsometry, where achromatism is improved using a pair of parallel Al mirrors oriented at small angle θ2 with respect to the incident laser beam. In a phase device based on a fused silica Fresnel rhomb, a high degree of achromatism (Δ = 440° ± 0.4° in the wavelength range of 250-1000 nm) is obtained with the aid of two Al mirrors coated by a native oxide layer about 5 nm thick and tilted at θ2 = 18°. The achromatism of four-mirror PSs can be improved using two mirrors with a thin dielectric coating (Al2O3 or MgF2) 20-80 nm thick, for which phase shift Δ is close to 180° at small angles θ2 and there are fragments of spectrum Δ(λ) where Δ decreases with an increase in the light wavelength.

  3. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  4. Memory Color Effect Induced by Familiarity of Brand Logos

    PubMed Central

    Kimura, Atsushi; Wada, Yuji; Masuda, Tomohiro; Goto, Sho-ichi; Tsuzuki, Daisuke; Hibino, Haruo; Cai, Dongsheng; Dan, Ippeita

    2013-01-01

    Background When people are asked to adjust the color of familiar objects such as fruits until they appear achromatic, the subjective gray points of the objects are shifted away from the physical gray points in a direction opposite to the memory color (memory color effect). It is still unclear whether the discrepancy between memorized and actual colors of objects is dependent on the familiarity of the objects. Here, we conducted two experiments in order to examine the relationship between the degree of a subject’s familiarity with objects and the degree of the memory color effect by using logographs of food and beverage companies. Methods and Findings In Experiment 1, we measured the memory color effects of logos which varied in terms of their familiarity (high, middle, or low). Results demonstrate that the memory color effect occurs only in the high-familiarity condition, but not in the middle- and low-familiarity conditions. Furthermore, there is a positive correlation between the memory color effect and the actual number of domestic stores of the brand. In Experiment 2, we assessed the semantic association between logos and food/beverage names by using a semantic priming task to elucidate whether the memory color effect of logos relates to consumer brand cognition, and found that the semantic associations between logos and food/beverage names in the high-familiarity brands were stronger than those in the low-familiarity brands only when the logos were colored correctly, but not when they were appropriately or inappropriately colored, or achromatic. Conclusion The current results provide behavioral evidence of the relationship between the familiarity of objects and the memory color effect and suggest that the memory color effect increases with the familiarity of objects, albeit not constantly. PMID:23874638

  5. Uniform color spaces and natural image statistics.

    PubMed

    McDermott, Kyle C; Webster, Michael A

    2012-02-01

    Many aspects of visual coding have been successfully predicted by starting from the statistics of natural scenes and then asking how the stimulus could be efficiently represented. We started from the representation of color characterized by uniform color spaces, and then asked what type of color environment they implied. These spaces are designed to represent equal perceptual differences in color discrimination or appearance by equal distances in the space. The relative sensitivity to different axes within the space might therefore reflect the gamut of colors in natural scenes. To examine this, we projected perceptually uniform distributions within the Munsell, CIE L(*)u(*)v(*) or CIE L(*)a(*)b(*) spaces into cone-opponent space. All were elongated along a bluish-yellowish axis reflecting covarying signals along the L-M and S-(L+M) cardinal axes, a pattern typical (though not identical) to many natural environments. In turn, color distributions from environments were more uniform when projected into the CIE L(*)a(*)b(*) perceptual space than when represented in a normalized cone-opponent space. These analyses suggest the bluish-yellowish bias in environmental colors might be an important factor shaping chromatic sensitivity, and also suggest that perceptually uniform color metrics could be derived from natural scene statistics and potentially tailored to specific environments.

  6. Uniform color spaces and natural image statistics

    PubMed Central

    McDermott, Kyle C.; Webster, Michael A.

    2011-01-01

    Many aspects of visual coding have been successfully predicted by starting from the statistics of natural scenes and then asking how the stimulus could be efficiently represented. We started from the representation of color characterized by uniform color spaces, and then asked what type of color environment they implied. These spaces are designed to represent equal perceptual differences in color discrimination or appearance by equal distances in the space. The relative sensitivity to different axes within the space might therefore reflect the gamut of colors in natural scenes. To examine this, we projected perceptually uniform distributions within the Munsell, CIEL*u*v* or CIEL*a*b* spaces into cone-opponent space. All were elongated along a bluish-yellowish axis reflecting covarying signals along the L-M and S-L+M cardinal axes, a pattern typical (though not identical) to many natural environments. In turn, color distributions from environments were more uniform when projected into the CIEL*a*b* perceptual space than when represented in a normalized cone-opponent space. These analyses suggest the bluish-yellowish bias in environmental colors might be an important factor shaping chromatic sensitivity, and also suggest that perceptually uniform color metrics could be derived from natural scene statistics and potentially tailored to specific environments. PMID:22330376

  7. Evaluating Light Source Color Rendition using the IES TM-30-15 Method

    SciTech Connect

    Houser, Kevin W.; Royer, Michael P.; David, Aurelien

    2015-11-30

    A system for evaluating the color rendition of light sources was recently published as IES TM-30-15 IES Method for Evaluating Light Source Color Rendition. The system includes a fidelity index (Rf) to quantify similarity to a reference illuminant, a relative-gamut index (Rg) to quantify saturation relative to a reference illuminant, and a color vector icon that visually presents information about color rendition. The calculation employs CAM02-UCS and uses a newly-developed set of reflectance functions, comprising 99 color evaluation samples (CES). The CES were down-selected from 105,000 real object samples and are uniformly distributed in color space (fairly representing different colors) and wavelength space (avoiding artificial increase of color rendition values by selective optimization).

  8. Color segmentation in the HSI color space using the K-means algorithm

    NASA Astrophysics Data System (ADS)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  9. De-entangling colorfulness and fidelity for a complete statistical description of color quality.

    PubMed

    Quintero, Jesús M; Hunt, Charles E; Carreras, Josep

    2012-12-01

    In this Letter, the main attributes known to affect color quality are treated statistically over a set of 118 spectra representing the current mainstream lighting technology. The color rendering index (CRI) is used to assess color fidelity while colorfulness is used to complement CRI-R(a), supported by the growing evidence that assessment of light spectra cannot overlook color preference inputs. Colorfulness is evaluated by our optimal color (O(c)) index, through a code that computes the (MacAdam) theoretical maximum volumetric gamut of objects under a given illuminant for all the spectra in our database. Pearson correlation coefficients for CRI-R(a), the (Y. Ohno's) color quality scale (CQS) and O(c) show a high correlation (0.950) between CRI-R(a) and CQS-Q(a), while O(c) shows the lowest correlation (0.577) with CRI-R(a), meaning that O(c) represents the best complement to CRI-R(a) and Q(a) for an in-depth study of color quality.

  10. The elementary representation of spatial and color vision in the human retina

    PubMed Central

    Sabesan, Ramkumar; Schmidt, Brian P.; Tuten, William S.; Roorda, Austin

    2016-01-01

    The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units—the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength–sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system. PMID:27652339

  11. Object knowledge changes visual appearance: semantic effects on color afterimages.

    PubMed

    Lupyan, Gary

    2015-10-01

    According to predictive coding models of perception, what we see is determined jointly by the current input and the priors established by previous experience, expectations, and other contextual factors. The same input can thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly when color input is unreliable. Participants were tested on a version of the 'Spanish Castle Illusion' in which viewing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes containing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The differences between images with diagnostic and arbitrary colors disappeared when the association between the image and color priors was weakened by, e.g., presenting the image upside-down, consistent with the prediction that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowledge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as shown by the final study which uses conventional images rather than afterimages. As input certainty is increased, unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding models.

  12. Hewlett-Packard's Approaches to Full Color Reflective Displays

    NASA Astrophysics Data System (ADS)

    Gibson, Gary

    2012-02-01

    Reflective displays are desirable in applications requiring low power or daylight readability. However, commercial reflective displays are currently either monochrome or capable of only dim color gamuts. Low cost, high-quality color technology would be rapidly adopted in existing reflective display markets and would enable new solutions in areas such as retail pricing and outdoor digital signage. Technical breakthroughs are required to enable bright color gamuts at reasonable cost. Pixel architectures that rely on pure reflection from a single layer of side-by-side primary-color sub-pixels use only a fraction of the display area to reflect incident light of a given color and are, therefore, unacceptably dark. Reflective devices employing stacked color primaries offer the possibility of a somewhat brighter color gamut but can be more complex to manufacture. In this talk, we describe HP's successes in addressing these fundamental challenges and creating both high performance stacked-primary reflective color displays as well as inexpensive single layer prototypes that provide good color. Our stacked displays utilize a combination of careful light management techniques, proprietary high-contrast electro-optic shutters, and highly transparent active-matrix TFT arrays based on transparent metal oxides. They also offer the possibility of relatively low cost manufacturing through roll-to-roll processing on plastic webs. To create even lower cost color displays with acceptable brightness, we have developed means for utilizing photoluminescence to make more efficient use of ambient light in a single layer device. Existing reflective displays create a desired color by reflecting a portion of the incident spectrum while absorbing undesired wavelengths. We have developed methods for converting the otherwise-wasted absorbed light to desired wavelengths via tailored photoluminescent composites. Here we describe a single active layer prototype display that utilizes these materials

  13. Six-color solid state illuminator for cinema projector

    NASA Astrophysics Data System (ADS)

    Huang, Junejei; Wang, Yuchang

    2014-09-01

    Light source for cinema projector requires reliability, high brightness, good color and 3D for without silver screens. To meet these requirements, a laser-phosphor based solid state illuminator with 6 primary colors is proposed. The six primary colors are divided into two groups and include colors of R1, R2, G1, G2, B1 and B2. Colors of B1, B2 and R2 come from lasers of wavelengths 440 nm, 465 nm and 639 nm. Color of G1 comes from G-phosphor pumped by B2 laser. Colors of G2 and R1 come from Y-phosphor pumped by B1 laser. Two groups of colors are combined by a multiband filter and working by alternately switching B1 and B2 lasers. The combined two sequences of three colors are sent to the 3-chip cinema projector and synchronized with frame rate of 120Hz. In 2D mode, the resulting 6 primary colors provide a very wide color gamut. In 3D mode, two groups of red, green and blue primary colors provide two groups of images that received by left and right eyes.

  14. Background matching by means of dorsal color change in treefrog populations (Hyla japonica).

    PubMed

    Choi, Noori; Jang, Yikweon

    2014-02-01

    Treefrogs change dorsal coloration to match background colors, presumably for predator avoidance. Dorsal coloration in treefrogs results from rearrangement of pigment granules in dermal chromatophores. This physiological basis for color change suggests that brightness and chroma are the color components that may change in response to background color. However, results of experiments are conflicting in that there is no consensus as to which color component is critical for color change in treefrogs. We tested predictions of the physiological model for color change in treefrogs by investigating dorsal color change under five background colors in three different populations of the treefrog Hyla japonica. Differences in color components between background colors and frogs were used as a measure of background matching. Throughout a 1-week experimental period, brightness and chroma differences decreased monotonically, while hue difference remained constant for all background colors. Chroma differences were smaller with the natural colors such as green and brown than with achromatic colors. Moreover, variation in color change among frogs from three localities that differed in land cover suggested that chroma change capacity may be sensitive to environmental conditions. Under the white background color, however, decreasing brightness difference seemed to be crucial to background matching. Furthermore, chroma difference and brightness difference did not decrease indefinitely, suggesting a trade-off between chroma difference and brightness difference under the white background. Thus, background matching may generally occur by decreasing chroma difference under most background colors in H. japonica, but brightness matching may be important under the white color.

  15. Multiple neural mechanisms for coloring words in synesthesia.

    PubMed

    Yokoyama, Takemasa; Noguchi, Yasuki; Koga, Hiroki; Tachibana, Ryosuke; Saiki, Jun; Kakigi, Ryusuke; Kita, Shinichi

    2014-07-01

    Grapheme-color synesthesia is a phenomenon in which achromatic letters/digits automatically induce particular colors. When multiple letters are integrated into a word, some synesthetes perceive that all those letters are changed into the same color, reporting lexical color to that word. Previous psychological studies found several "rules" that determine those lexical colors. The colors to most words are determined by the first letters of the words, while some words in ordinal sequences have their specific colors. Recent studies further reported the third case where lexical colors might be influenced by semantic information of words. Although neural mechanisms determining those lexical colors remained unknown, here we identified three separate neural systems in the synesthete's brain underlying three rules for illusory coloring of words. In addition to the occipito-temporal and parietal regions previously found to be associated with the grapheme-color synesthesia, neural systems for lexical coloring extended to linguistic areas in the left inferior frontal and anterior temporal regions that were engaged in semantic analyses of words. Those results indicate an involvement of wider and higher neural networks than previously assumed in a production of synesthetic colors to visual stimuli and further showed a multiplicity of synesthetic mechanisms represented in the single brain.

  16. EEG alpha rhythms and transient chromatic and achromatic pattern visual evoked potentials in children and adults.

    PubMed

    Boon, Mei Ying; Chan, Kar Ying; Chiang, Jaclyn; Milston, Rebecca; Suttle, Catherine

    2011-04-01

    Transient chromatic pattern visual evoked potentials (VEPs) have been found to be less repeatable in morphology in children than in adults at low to moderate chromatic contrasts. The purpose of this study is to investigate whether low repeatability of VEP components can be associated with high alpha power, in a comparison of alpha activity in children and adults. Transient chromatic contrast and achromatic resolution VEPs were recorded in children (n = 14, mean 9.6 years) and adults (n = 12, mean 21.8 years) with normal vision and assessed for repeatability. Isoluminant chromatic (magenta-cyan) and luminance-modulated achromatic grating stimuli were presented at and above psychophysical threshold levels, in pattern onset-offset at 2 Hz temporal frequency. EEGs (eyes closed and open) were recorded as single sweeps (1 s long) over three 30 s periods while facing a uniform computer display. An index of VEP detectability by observation was developed based on VEP component repeatability. The index was examined for correlations with alpha-wave parameters. Alpha power was calculated as the sum of the powers of 8-13 Hz frequencies of the EEG sweeps (using the discrete Fourier transform). Alpha power variability was calculated using the standard deviation of the powers of each sweep in a 30 s time period. The children had significantly higher alpha powers than the adults for both the eyes-open and eyes-closed conditions. Alpha power variability was significantly higher for the eyes-open condition only. There was no relationship between alpha power parameters and index of VEP detectability by observation for both the chromatic and achromatic grating stimuli. Poor repeatability of transient pattern VEPs is not associated with high alpha power or its variability in EEG measurements in older children or young adults at Oz.

  17. The role of color in motion feature-binding errors

    PubMed Central

    Stepien, Natalie N.; Shevell, Steven K.

    2015-01-01

    Color-motion feature-binding errors occur in the periphery when half of the objects are red and move downward, and the other half are green and move upward. When red and green objects in the central visual field are similar but move in the opposite directions (red upward, green downward), peripheral objects often take on the perceived motion direction of the like-colored central objects (Wu, Kanai, & Shimojo, 2004). The present study determined whether color is essential to elicit these motion-binding errors, and tested two hypotheses that attempt to explain them. One hypothesis holds that binding errors occur because peripheral and central objects become linked if they have combinations of features in common. A peripheral object's link to central objects overwhelms its posited weak peripheral representation for motion feature binding, so the peripheral object appears to move in the direction of the linked central objects. Eliminating color by making all stimuli achromatic, therefore, should not increase peripheral binding errors. An alternative hypothesis is that binding errors depend on the overall feature correspondence among central and peripheral features represented at a preconjunctive level. In this case, binding errors may increase when all objects are changed to achromatic because chromatic central/peripheral correspondence is maximal (100%). Experiments showed more motion-binding errors with all-achromatic objects than with half red and half green objects. This and additional findings imply that peripheral motion-binding errors (a) can be elicited without color and (b) depend at least in part on the similarity of central and peripheral features represented preconjunctively. PMID:26381839

  18. Optimization of color LC displays

    NASA Astrophysics Data System (ADS)

    Kosmowski, Bogdan B.

    1995-08-01

    The advancement of the liquid crystal display (LCD) technology, and improvements of the optical and electro-optical properties, have enabled the broad expansion of LCDs application field. The rapid development of the multimedia techniques, new applications in automotive, office, medical domain, forced the demand for the color displays--for the information presentation with the color code. The necessity to fulfil many contradictory and extreme conditions caused the development of the optimization procedures of the color LC displays to be a big problem. Most of the LCDs used nowadays are the twisted nematic, super twisted nematic, and active matrix thin film transistor LCD. The characterization of the achromatic black/white LCDs is made by means of photometric measuring methods, and quantitative measures are used: luminance, reflectance, contrast, contrast ration; as a function of a driving voltage, viewing angle, temperature, etc. The characterization of the color LCD is based on the spectral distributions of the transmittance or reflectance. Quantitative measures are chromatic coordinates and luminance factors are defined according to the colorimetric systems--CIE 1931, CIE 1976, CIELUV, CIELAB. The color difference (Delta) E in the CIELUV system is applied as a optimization parameter for the color display module. The spectral properties of all optical elements of the display module are analyzed and their influence on the set of the optical factors of LCD is evaluated. The correlation between technological parameters and optical characteristics of the LCD has been investigated. The choice of the optimization criterion is discussed and the optimization algorithm is proposed. Results of the color displays evaluation for some examples with different preconditions are presented.

  19. Modified Savart polariscope with wide field of view and achromatic lateral displacement

    NASA Astrophysics Data System (ADS)

    Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui

    2017-01-01

    A modified Savart polariscope with wide field of view and achromatic lateral displacement is presented. The modified Savart polariscope can be made from two different birefringent crystal materials. The principle of the element is described and the impacts of systematic errors are analyzed. The achievement and performance of the modified Savart polariscope is demonstrated with numerical simulations. The maximum acceptable angle of incidence can be increased by an order of magnitude and the chromatic variations in lateral displacement are inhibited obviously across the specified spectral range 0.4 μm to 0.9 μm.

  20. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  1. Design, manufacturing, performance and application of wide angle aspherical achromatic doublet

    NASA Astrophysics Data System (ADS)

    Melich, Radek; Procháska, František; Tomka, David; Rail, Zdeněk.; Bartoňíček, Jiří; Pleštil, Jan; Šrajer, Bohdan

    2016-11-01

    The paper describes an achromatic Steinhal type doublet that employs an aspherical surface to allow wide angle imaging. A design criteria, optimization techniques and tolerancing of the doublet are described. Further a manufacturing process of the system and achieved optical performance measurement is discussed. Benefits of the wide angle imaging doublet are recently planned to be used in automotive industry application, namely for optimizing of head-light performance and their final evaluation. The final device is planned to be part of the production line.

  2. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  3. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  4. Magnifying Lenses with Weak Achromatic Bends for High-Energy Electron Radiography

    SciTech Connect

    Walstrom, Peter Lowell

    2015-02-27

    This memo briefly describes bremsstrahlung background effects in GeV-range electron radiography systems and the use of weak bending magnets to deflect the image to the side of the forward bremsstrahlung spot to reduce background. The image deflection introduces first-order chromatic image blur due to dispersion. Two approaches to eliminating the dispersion effect to first order by use of magnifying lens with achromatic bends are described. Also, higher-order image blur terms caused by weak bends are also discussed, and shown to be negligibly small in most cases of interest.

  5. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    SciTech Connect

    Liu, D.; Khaykovich, B.; Hussey, D.; Jacobson, D.; Arif, M.; Gubarev, M. V.; Ramsey, B. D.; Moncton, D. E.

    2013-05-06

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  6. Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    NASA Astrophysics Data System (ADS)

    Long, David L.

    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE's 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of

  7. Rainbow Solfege: new perspective for color theory and music education

    NASA Astrophysics Data System (ADS)

    Colla, Virginia C.

    2002-06-01

    The Rainbow Solfege System is an innovative, interdisciplinary music teaching method that illustrates in living color the linear and vertical energy of melodic movement and harmonic progressions: a synthesis of color, shape, sound and language. The system is rooted in proven pedagogical practice, while providing a fresh approach to educational methodology. Rainbow Solfege is based upon principles of tertian harmony and concepts of tonality in music and is analogous to color theory and shape theory in art. The pedagogy is holistic in design involving a variety of learning modes - visual, aural and kinesthetic - and is an effective learning tool for all ages and stages. Educational uses run the gamut from teaching musical concepts and color/shape theory for very young children to applications in college level music theory and analysis courses. With consistent application, particularly in early childhood, the method has potential for increasing musical, artistic and linguistic abilities for life.

  8. Unique hue correction applied to the color rendering of LED light sources.

    PubMed

    Pardo, Pedro J; Cordero, Eduardo; Suero, María Isabel; Pérez, Ángel L

    2016-03-01

    Existing color quality indices for light sources provide broad information about different dimensions related to color quality. Color fidelity, harmony, and gamut area are concepts related to these indices, and industry requests this information. For the last few years, LED light sources have been widely used at home and at work, and now a color rendering index that solves the problem of underestimation of this type of light source is needed to provide a score of subjective assessments made by real observers related to color fidelity. In this work, this problem has been studied in two ways, theoretically and experimentally, and the results show discrepancies between the hue composition calculated theoretically using a color appearance model and hue composition evaluated by real observers. These discrepancies could originate from divergences in the color fidelity score and the subjective evaluation of the naturalness of a scene.

  9. Is "Σ" purple or green? Bistable grapheme-color synesthesia induced by ambiguous characters.

    PubMed

    Kim, Suhkyung; Blake, Randolph; Kim, Chai-Youn

    2013-09-01

    People with grapheme-color synesthesia perceive specific colors when viewing different letters or numbers. Previous studies have suggested that synesthetic color experience can be bistable when induced by an ambiguous character. However, the exact relationship between processes underlying the identity of an alphanumeric character and the experience of the induced synesthetic color has not been examined. In the present study, we explored this by focusing on the temporal relation of inducer identification and color emergence using inducers whose identity could be rendered ambiguous upon rotation of the characters. Specifically, achromatic alphabetic letters (W/M) and digits (6/9) were presented at varying angles to 9 grapheme-color synesthetes. Results showed that grapheme identification and synesthetically perceived grapheme color covary with the orientation of the test stimulus and that synesthetes were slower naming the experienced color than identifying the character, particularly at intermediate angles where ambiguity was greatest.

  10. Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors.

    PubMed

    Matsuyama, Satoshi; Emi, Yoji; Kino, Hidetoshi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2015-04-20

    We developed an achromatic and high-resolution full-field X-ray microscope based on advanced Kirkpatrick-Baez mirror optics that comprises two pairs of elliptical mirrors and hyperbolic mirrors utilizing the total reflection of X-rays. Performance tests to investigate the spatial resolution and chromatic aberration were performed at SPring-8. The microscope clearly resolved the pattern with ~100-nm feature size. Imaging the pattern by changing the X-ray energy revealed achromatism in the wide energy range of 8-11 keV.

  11. Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer.

    PubMed

    Naik, Dinesh N; Ezawa, Takahiro; Singh, Rakesh Kumar; Miyamoto, Yoko; Takeda, Mitsuo

    2012-08-27

    We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.

  12. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the most ...

  13. Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.

    PubMed

    Shawkey, Matthew D; Maia, Rafael; D'Alba, Liliana

    2011-11-01

    Colors of living organisms are produced by selective light absorption from pigments and/or by light scattering from highly ordered nanostructures (i.e., structural color). While the physical bases of metallic colors of arthropods and fish are fairly well-known, those of birds are not. Here we examine structurally based silver color and its production in feathers of the waterbird species Anhinga. This achromatic color is distinguished from grey by high specular reflectance, from white by low diffuse reflectance, and from both by high gloss. Light and electron microscopy revealed three modifications of feathers likely leading to silver color. First, proximal barbules were highly elongated and contained glossy black color at their base and white color at their pennulum. Second, this glossy black portion contained a single outer layer of keratin weakly bounded by melanosomes. Finally, the white portion contained a disordered amorphous matrix of keratin and air. Optical analyzes suggest that these structures produce, respectively, glossy black color through thin-film interference and white color through incoherent light scattering. Silver color likely results from the combined reflectance of these adjacent structures. This represents a distinct mechanism for attaining silver colors that may have been partially derived through selection for display, thermoregulation or decreased hydrophobicity.

  14. Saccadic suppression of achromatic and chromatic responses measured by increment-threshold spectral sensitivity

    NASA Astrophysics Data System (ADS)

    Uchikawa, Keiji; Sato, Masayuki

    1995-04-01

    We measured spectral-sensitivity functions during saccadic eye movement by the increment-threshold method to test whether saccades selectively suppressed achromatic or chromatic responses. A circular monochromatic test stimulus of 12-deg diameter was presented for 10 ms on a 62 deg X 43 deg white background, and observations were made 6-deg saccades, and immediately after saccades. In two additional conditions the test stimulus was made to move during fixation and during 6-deg saccades at the same speed and in the same direction as the saccades. The during-fixation spectral-sensitivity function was found to resemble the relative luminous efficiency V( lambda ) function in shape except for the case of short wavelengths, whereas the during-saccade spectral-sensitivity function showed lower sensitivity for all wavelengths and had three prominent peaks at approximately 440, 530, and 600 nm. These characteristics did not depend on whether the stimulus was stationary or moving. These results indicated that saccadic suppression was greater for achromatic than for chromatic response. A possible suppression mechanism was discussed involving the magno and parvo pathways.

  15. Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade

    SciTech Connect

    Jaski, Y.; Westferro, F.; Lee, S. H.; Yang, B.; Abliz, M.; Ramanathan, M.

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shutters open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.

  16. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  17. Influence of residual achromatic aberration on the isochronicity in the FAIR collector ring

    NASA Astrophysics Data System (ADS)

    Litvinov, S.; Dolinskii, A.; Koop, I.; Weick, H.

    2015-11-01

    In order to understand how the heavy elements from iron to uranium were produced in nature, masses and lifetimes of extremely exotic nuclei up to the limits of nuclear existence have to be measured. In particular, for modeling the r-process nucleosynthesis the nuclei close to the neutron drip line are relevant. However, such nuclei typically have very short half-lives and furthermore have tiny production cross-sections. The Super-FRS-CR facility at FAIR [1] offers unique possibilities for such measurements. Exotic nuclei with half-lives of {{{T}}}1/2\\gt 20 μ {{s}} will be produced and selected in flight with the Super-FRS fragment separator [2], injected and stored in the large acceptance collector ring (CR) [3] which will be tuned into the isochronous ion-optical mode and operated as a time-of-flight (TOF) spectrometer. We demonstrate here, a comparison between the achromatic and non-achromatic isochronous optics. The importance of the TOF detectors installation in the dispersion free region will be shown.

  18. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  19. A comparison study of multivariate fixed models and Gene Association with Multiple Traits (GAMuT) for next-generation sequencing.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Wang, Yifan; Weeks, Daniel E; Wilson, Alexander F; Bailey-Wilson, Joan E; Amos, Christopher I; Mills, James L; Boehnke, Michael; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    In this paper, extensive simulations are performed to compare two statistical methods to analyze multiple correlated quantitative phenotypes: (1) approximate F-distributed tests of multivariate functional linear models (MFLM) and additive models of multivariate analysis of variance (MANOVA), and (2) Gene Association with Multiple Traits (GAMuT) for association testing of high-dimensional genotype data. It is shown that approximate F-distributed tests of MFLM and MANOVA have higher power and are more appropriate for major gene association analysis (i.e., scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT has higher power and is more appropriate for analyzing polygenic effects (i.e., effects from a large number of genetic variants each of which contributes a small amount to the phenotypes). MFLM and MANOVA are very flexible and can be used to perform association analysis for (i) rare variants, (ii) common variants, and (iii) a combination of rare and common variants. Although GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of rare and common variants and it performs well when (1) the number of genetic variants is large and (2) each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are fixed effect models that perform well for major gene association analysis. GAMuT can be viewed as an extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for analyzing polygenic effects and they perform well not only in the rare variant case, but also in the case of a combination of rare and common variants. Data analyses of European cohorts and the Trinity Students Study are presented to compare the performance of the two methods.

  20. Chromatic settings and the structural color constancy index.

    PubMed

    Roca-Vila, Jordi; Parraga, C Alejandro; Vanrell, Maria

    2013-03-11

    Color constancy is usually measured by achromatic setting, asymmetric matching, or color naming paradigms, whose results are interpreted in terms of indexes and models that arguably do not capture the full complexity of the phenomenon. Here we propose a new paradigm, chromatic setting, which allows a more comprehensive characterization of color constancy through the measurement of multiple points in color space under immersive adaptation. We demonstrated its feasibility by assessing the consistency of subjects' responses over time. The paradigm was applied to two-dimensional (2-D) Mondrian stimuli under three different illuminants, and the results were used to fit a set of linear color constancy models. The use of multiple colors improved the precision of more complex linear models compared to the popular diagonal model computed from gray. Our results show that a diagonal plus translation matrix that models mechanisms other than cone gain might be best suited to explain the phenomenon. Additionally, we calculated a number of color constancy indices for several points in color space, and our results suggest that interrelations among colors are not as uniform as previously believed. To account for this variability, we developed a new structural color constancy index that takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations among colors and memory effects.

  1. The Role of Contrast in the Perception of Achromatic Transparency: Comment on Singh and Anderson (2002) and Anderson (2003)

    ERIC Educational Resources Information Center

    Albert, Marc K.

    2008-01-01

    M. Singh and B. L. Anderson proposed a perceptual theory of achromatic transparency in which the perceived transmittance of a perceived transparent filter is determined by the ratio of the Michelson contrast seen in the region of transparency to that of the background seen directly. Subsequently, B. L. Anderson, M. Singh, and J. Meng proposed that…

  2. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  3. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

  4. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  5. The achromatic design of an atmospheric dispersion corrector for extremely large telescopes.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2011-08-29

    For off-zenith observations with ground-based astronomical telescopes, the effect of atmospheric dispersion relative to diffraction on image size increases with telescope diameter. Correction of atmospheric dispersion in extremely large telescopes (ELTs) might become critical. A common solution for ELTs is to use linear atmospheric dispersion correctors (ADCs). In spite of their simplicity, the intrinsic chromatic aberrations of linear ADCs could render diffraction-limited imaging impossible when used in a fast focus. The chromatic problems of the linear ADC in ELTs can be resolved by replacing the linear ADC by the achromatic ADC designs presented here, which provide diffraction-limited image quality and offer several opto-mechanical advantages over linear ADCs.

  6. Metal-mesh achromatic half-wave plate for use at submillimeter wavelengths.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic

    2008-11-20

    A metal-mesh achromatic half-wave plate (HWP) has been designed, manufactured, and tested for potential use in millimeter and submillimeter astronomical instruments. The prototype device presented here is based on a 12-grid Shatrow [IEEE Trans. Antennas Propag. 43, 109 (1995)] recipe to operate over the frequency range of 120-180 GHz. Transmission line modeling and finite-element analysis [Ansoft HFSS website: http://www.ansoft.com/hfss/] were used to optimize the design geometrical parameters in terms of the device transmission, reflection, absorption, phase-shift, and cross-polarization as a function of frequency. The resulting prototype device was constructed and characterized using incoherent radiation from a polarizing Fourier transform spectrometer to explore its frequency and polarization behavior. These measurements are shown to be in excellent agreement with the models. Lists of the achieved HWP performance characteristics are reported.

  7. A case study of cortical colour "blindness" with relatively intact achromatic discrimination.

    PubMed

    Heywood, C A; Wilson, B; Cowey, A

    1987-01-01

    A patient is described whose most striking visual disorder was a grossly impaired ability to discriminate between different colours (hues) that were matched for brightness. In contrast his ability to discriminate between different neutral greys presented in the same fashion was much less abnormal, even though the greys were perceptually difficult. Although visual acuity was reduced and visual fields were constricted, and the patient's memory was moderately impaired, these associated symptoms could not themselves be the cause of his unusual colour vision. The patient had the symptoms of cerebral achromatopsia, and the relative preservation of his form vision (when his reduced acuity is taken into account) and his achromatic vision supports the view that the many different visual cortical areas recently demonstrated in the brains of monkeys, and presumed to exist in man, have a perceptual specialisation that matches their physiological differences.

  8. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  9. Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion.

    PubMed

    Khorasaninejad, M; Shi, Z; Zhu, A Y; Chen, W T; Sanjeev, V; Zaidi, A; Capasso, F

    2017-03-08

    In this Letter, we experimentally report an achromatic metalens (AML) operating over a continuous bandwidth in the visible. This is accomplished via dispersion engineering of dielectric phase shifters: titanium dioxide nanopillars tiled on a dielectric spacer layer above a metallic mirror. The AML works in reflection mode with a focal length independent of wavelength from λ = 490 to 550 nm. We also design a metalens with reverse chromatic dispersion, where the focal length increases as the wavelength increases, contrary to conventional diffractive lenses. The ability to engineer the chromatic dispersion of metalenses at will enables a wide variety of applications that were not previously possible. In particular, for the AML design, we envision applications such as imaging under LED illumination, fluorescence, and photoluminescence spectroscopy.

  10. Achromatic flat optical components via compensation between structure and material dispersions

    PubMed Central

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  11. MAGNET DESIGNS FOR THE MULTI-BEND ACHROMAT LATTICE AT THE ADVANCED PHOTON SOURCE

    SciTech Connect

    Jaski, M.; Liu, J.; Jain, A.; Spataro, C; Harding, D. J.; Kashikhin, V.; Lopes, M. L.

    2015-01-01

    The Advanced Photon Source (APS) is currently investigating replacing the existing two-bend 7 GeV lattice with a 6 GeV seven-bend achromat magnet lattice in order to achieve a low electron beam emittance [1]. This new lattice requires 1320 magnets, of which there are nine types. These include high strength quadrupoles (gradient up to ~97 T/m), sextupoles with second derivative of field up to ~7000 T/m2, longitudinal gradient dipoles with field ratio of up to 5, and transverse gradient dipoles with gradients of ~50 T/m and central field of ~0.6 T. These field requirements and the limited space available pose several design challenges. This paper presents a summary of magnet designs for the various magnet types developed through a collaboration of APS with FNAL and BNL.

  12. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  13. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  14. Color spaces in digital video

    SciTech Connect

    Gaunt, R.

    1997-05-01

    Whether it`s photography, computer graphics, publishing, or video; each medium has a defined color space, or gamut, which defines the extent that a given set of RGB colors can be mixed. When converting from one medium to another, an image must go through some form of conversion which maps colors into the destination color space. The conversion process isn`t always straight forward, easy, or reversible. In video, two common analog composite color spaces are Y`tjv (used in PAL) and Y`IQ (used in NTSC). These two color spaces have been around since the beginning of color television, and are primarily used in video transmission. Another analog scheme used in broadcast studios is Y`, R`-Y`, B`-Y` (used in Betacam and Mll) which is a component format. Y`, R`-Y`,B`-Y` maintains the color information of RGB but in less space. From this, the digital component video specification, ITU-Rec. 601-4 (formerly CCIR Rec. 601) was based. The color space for Rec. 601 is symbolized as Y`CbCr. Digital video formats such as DV, Dl, Digital-S, etc., use Rec. 601 to define their color gamut. Digital composite video (for D2 tape) is digitized analog Y`UV and is seeing decreased use. Because so much information is contained in video, segments of any significant length usually require some form of data compression. All of the above mentioned analog video formats are a means of reducing the bandwidth of RGB video. Video bulk storage devices, such as digital disk recorders, usually store frames in Y`CbCr format, even if no other compression method is used. Computer graphics and computer animations originate in RGB format because RGB must be used to calculate lighting and shadows. But storage of long animations in RGB format is usually cost prohibitive and a 30 frame-per-second data rate of uncompressed RGB is beyond most computers. By taking advantage of certain aspects of the human visual system, true color 24-bit RGB video images can be compressed with minimal loss of visual information

  15. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity

    PubMed Central

    Yue, Wenjing; Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2016-01-01

    Highly efficient subtractive tri-color filters of cyan, magenta, and yellow with enhanced color purity and robustness have been proposed and realized, by exploiting a silicon-aluminum (Si-Al) hybrid-nanodisk (ND) metasurface atop a Si substrate. The aspect ratio of the Si-Al hybrid ND is much lower than that of the conventional Si nanowire, which is disadvantageous due to its fragility and low color purity. In response to incident light impinging upon the metasurface, the hybrid-NDs individually play the role in exciting a magnetic dipole (MD) resonance through the mediation of Mie-scattering between the hybrid ND and air. The light stored in the resonance is coupled to the substrate, giving rise to a suppressed reflection. By virtue of the top Al ND, the excited MD resonance is strongly confined by the Si ND. As a consequence, a near-zero resonant dip that exhibits high off-resonance reflection and narrow bandwidth is produced for embodying highly efficient tri-color filters with enhanced color purity. The spectral position can be tuned by a simple adjustment of the hybrid-ND diameter. A full-color palette was successfully created with a high color purity and large color gamut. The proposed devices may be applied for photorealistic high-resolution color printing and holographic displays. PMID:27407024

  16. Color blindness

    MedlinePlus

    ... have trouble telling the difference between red and green. This is the most common type of color ... color blindness often have problems seeing reds and greens, too. The most severe form of color blindness ...

  17. Color characterization of coatings with diffraction pigments.

    PubMed

    Ferrero, A; Bernad, B; Campos, J; Perales, E; Velázquez, J L; Martínez-Verdú, F M

    2016-10-01

    Coatings with diffraction pigments present high iridescence, which needs to be characterized in order to describe their appearance. The spectral bidirectional reflectance distribution functions (BRDFs) of six coatings with SpectraFlair diffraction pigments were measured using the robot-arm-based goniospectrophotometer GEFE, designed and developed at CSIC. Principal component analysis has been applied to study the coatings of BRDF data. From data evaluation and based on theoretical considerations, we propose a relevant geometric factor to study the spectral reflectance and color gamut variation of coatings with diffraction pigments. At fixed values of this geometric factor, the spectral BRDF component due to diffraction is almost constant. Commercially available portable goniospectrophotometers, extensively used in several industries (automotive and others), should be provided with more aspecular measurement angles to characterize the complex reflectance of goniochromatic coatings based on diffraction pigments, but they would not require either more than one irradiation angle or additional out-of-plane geometries.

  18. The application study on building materials with computer color quantification system

    NASA Astrophysics Data System (ADS)

    Li, Zhendong; Yu, Haiye; Li, Hongnan; Zhao, Hongxia

    2006-01-01

    The first impression of any building to a person is its exterior and decoration, and therefore the quality of decoration project shows the more important position in building project. A lot of projects produce quality problem because of the material color difference, which exists universally at the common project, and is often found at the high-grade decoration; therefore, how to grasp and control the color change of building materials, and carry out color quantification, it has the very important meaning. According to the color theory, a computer vision system used in color quantification measurement is established, the standard illuminant A is selected as the light source. In order to realize the standardization of color evaluation, the mutual conversion between RGB and XYZ color space is studied, which is realized by the BP network. According to the colorimetry theory, the computer program is compiled in order to establish the software system, and realize the color quantitative appraisement in whole color gamut. LCH model is used at quantifying the color of building materials, and L *a *b * model is used at comparing the color change. If the wooden floor is selected and laid improperly during family fitment, it is easy to present "flower face". The color also arises greater discrepancy using the laths of same tree. We can give the laying scheme using the color quantification system; at the same time, the color difference problem laying stone materials is also studied in this paper, and the solution scheme has been given using this system.

  19. Local adaptive contrast enhancement for color images

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; den Hollander, Richard J. M.; Schavemaker, John G. M.; Schutte, Klamer

    2007-04-01

    A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects that can be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a human is observing a scene with different kinds of lighting, such as shadows, he will need to see details in both the dark and light parts of the scene. For grey value images such as IR imagery, algorithms have been developed in which the local contrast of the image is enhanced using local adaptive techniques. In this paper, we present how such algorithms can be adapted so that details in color images are enhanced while color information is retained. We propose to apply the contrast enhancement on color images by applying a grey value contrast enhancement algorithm to the luminance channel of the color signal. The color coordinates of the signal will remain the same. Care is taken that the saturation change is not too high. Gamut mapping is performed so that the output can be displayed on a monitor. The proposed technique can for instance be used by operators monitoring movements of people in order to detect suspicious behavior. To do this effectively, specific individuals should both be easy to recognize and track. This requires optimal local contrast, and is sometimes much helped by color when tracking a person with colored clothes. In such applications, enhanced local contrast in color images leads to more effective monitoring.

  20. Selection, constraint, and the evolution of coloration in African starlings.

    PubMed

    Maia, Rafael; Rubenstein, Dustin R; Shawkey, Matthew D

    2016-05-01

    Colorful plumage plays a prominent role in the evolution of birds, influencing communication (sexual/social selection), and crypsis (natural selection). Comparative studies have focused primarily on these selective pressures, but the mechanisms underlying color production can also be important by constraining the color gamut upon which selection acts. Iridescence is particularly interesting to study the interaction between selection and color-producing mechanisms because a broad range of colors can be produced with a shared template, and innovations to this template further expand this by increasing the parameters interacting to produce colors. We examine the patterns of ornamentation and dichromatism evolution in African starlings, a group remarkably diverse in color production mechanisms, social systems, and ecologies. We find that the presence of iridescence is ancestral to the group, being predominantly lost in females and cooperative breeders, as well as species with less labile templates. Color-producing mechanisms interact and are the main predictors of plumage ornamentation and elaboration, with little influence of selective pressures in their evolution. Dichromatism, however is influenced by social system and the loss of iridescence. Our results show the importance of considering both selection and constraints, and the different roles that they may have, in the evolution of ornamentation and dimorphism.

  1. LED light with enhanced color saturation and improved white light perception.

    PubMed

    Feng, Xiangfen; Xu, Wei; Han, Qiuyi; Zhang, Shanduan

    2016-01-11

    The light emitting diodes (LEDs) with high light quality were investigated to enhance the color appearance of the illuminated objects and increase the white light perception of the ambience. The spectral power distributions of the LED lights were optimized by addition of the RGB components and by shifting the color coordinate below the blackbody line to get desired color rendering index (CRI) and high gamut area index (GAI). The results of the human factor study reveal that the "perfect" white light can be achieved to both enhance color saturation and improve light visual impression. The effects of observer metamerism were studied to clarify the observed phenomenon that the white lights with the same color coordinates were perceived differently by real observers.

  2. Highly efficient omnidirectional structural color tuning method based on dielectric-metal-dielectric structure.

    PubMed

    Fang, Bo; Yang, Chenying; Shen, Weidong; Zhang, Xing; Zhang, Yueguang; Liu, Xu

    2017-02-01

    A novel and convenient scheme is proposed to achieve angle insensitive color filtering across a large color gamut by simply altering the thickness of the dielectric layer of a dielectric-metal-dielectric grating structure. The plasmonic filter presents a great feature of angle resolved spectrum response up to 60° and is independent of the azimuthal angle and the polarization state as well so as to construct an omnidirectional filter for practical applications. The color tuning feature of the proposed filter with varied dielectric thickness is attributed to the modulation of the condition for the localized surface plasmon resonance, which bears responsibility for the omnidirectional property of this plasmonic filter. This color-tuning method with a single mold size required can have wide applications in fields of display, colorful decoration, printing, and so forth.

  3. Design and production of color calibration targets for digital input devices

    NASA Astrophysics Data System (ADS)

    Wen, ChaoHua; Lee, Jyh-Jiun

    2000-06-01

    This paper presents the design and production of calibration targets for digital input color devices. By experimentally determined gamut of surface color, this study redesigns the aim values based on ISO/FDIS 12641 and to meet process specifications of Noritsu QSS23-HRCRT photographic printer with silver halide photography. The calibration target includes four components: a set of 144 color patches (3 levels in lightness and 4 levels in chroma at 12 different hue angles) within printing gamut, a neutral scale containing 22 steps based on visual perception, a set of C- M-Y-K-R-G-B dye scales showing characteristics of photographic materials, and a series of facial colors ranked by red. This research will describe the meaning of each element, the use of colorimetric mapping to CIELCH for each element, the conversion of these patch into a RGB-mode electronic image file, and how to control the processing of color photographic materials. And we proposed an approach of dynamic subgroup linear interpolation to achieve high process quality of manufacturing calibration targets and cost-down. Finally, statistic results revealed that 99% of the patches are within 10 delta Eab of the aim values specified in this study from long-term test and 99% of the patches in the manufacturing batch are within 5 delta Eab of the mean values from short-term test.

  4. Graphemes Sharing Phonetic Features Tend to Induce Similar Synesthetic Colors

    PubMed Central

    Kang, Mi-Jeong; Kim, Yeseul; Shin, Ji-Young; Kim, Chai-Youn

    2017-01-01

    Individuals with grapheme-color synesthesia experience idiosyncratic colors when viewing achromatic letters or digits. Despite large individual differences in grapheme-color association, synesthetes tend to associate graphemes sharing a perceptual feature with similar synesthetic colors. Sound has been suggested as one such feature. In the present study, we investigated whether graphemes of which representative phonemes have similar phonetic features tend to be associated with analogous synesthetic colors. We tested five Korean multilingual synesthetes on a color-matching task using graphemes from Korean, English, and Japanese orthography. We then compared the similarity of synesthetic colors induced by those characters sharing a phonetic feature. Results showed that graphemes associated with the same phonetic feature tend to induce synesthetic color in both within- and cross-script analyses. Moreover, this tendency was consistent for graphemes that are not transliterable into each other as well as graphemes that are. These results suggest that it is the perceptual—i.e., phonetic—properties associated with graphemes, not just conceptual associations such as transliteration, that determine synesthetic color. PMID:28348537

  5. A Proposal of Color Correction Method with Self-Organizing Maps for Personal User's Visibility on the Web Browsing

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Akiko; Notomi, Kazuhiro; Saito, Keiichi

    In this article, we describe a Web browsing method with an automatic color correction (palette changing) for personal user's visibility. Especially we describe a paired comparison test and SOM (Self-Organizing Map) analysis for achromatic character colors and chromatic background colors. We are implementing and evaluating a web application system for this method as CGI (Common Gateway Interface) software on a HTTP server of the Internet. Since a user profiling is required beforehand for every user, we considered about this problem with SOM.

  6. Color vision in attention-deficit/hyperactivity disorder: A pilot visual evoked potential study

    PubMed Central

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2014-01-01

    Background Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue–yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Method Thirty-one adolescents (aged 13–18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue–yellow, red–green) and achromatic stimuli. Result No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Conclusion Larger amplitude in the P1 component for blue–yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue–yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. PMID:25435188

  7. A new class of chromatic filters for color image processing. Theory and applications.

    PubMed

    Lucchese, Luca; Mitra, Sanjit K

    2004-04-01

    This paper advances a new framework for chromatic filtering of color images. The chromatic content of a color image is encoded in the CIE u'v' chromaticity coordinates whereas the achromatic content is encoded as CIE Y tristimulus value. Within the u'v' chromaticity diagram, colors are added according to the well-known center of gravity law of additive color mixtures, which is generalized here into a nonlinear filtering scheme for processing the two chromatic signals u' and v'. The achromatic channel Y can be processed with traditional filtering schemes, either linear or nonlinear, depending on the specific task at hand. The most interesting characteristics of the new filtering scheme are: 1) the elimination of color smearing effects along edges between bright and dark areas; 2) the possibility of processing chromatic components in a noniterative fashion through linear convolution operations; and 3) the consequent amenability to computationally efficient implementations with fast Fourier transform. The paper includes several examples with both synthetic and real images where the performance of the new filtering method is compared with that of other color image processing algorithms.

  8. A Study on Visibility Estimation of Web-Safe Colors using Paired Comparison and Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Saito, Daisuke; Saito, Keiichi; Notomi, Kazuhiro; Saito, Masao

    This paper presents the visibility ordering of several web safe colors. The research of web page visibility is important because of the rapid dissemination of the World Wide Web. The combination of a foreground color and a background color is an important factor in providing sufficient visibility. Therefore, the rating of color combination visibility is necessary when developing accessible web sites. In this study, the visibility of several web-safe color combinations was examined using psychological methodology, i.e., paired comparison. Eighteen chromatic and 3 achromatic web-safe colors were employed for visual stimuli. Twenty-eight subjects ranging from ages 21 to 75 were recruited, and all were with normal color sensation. They looked at two different colored characters simultaneously on the white background and were instructed to identify which one enabled them to see more clearly. In examining the relationship between the psychological rankings of the color combinations and the visual sensations, each color combination was first scored as to the visibility by Thurstone's paired comparison technique. Secondly, the visual sensation was deduced by applying Weber-Fechner's law to the luminance of the foreground colors. As results, the luminance of a foreground color influenced the visibility; however the visibility rating is difficult only using the luminance of web-safe colors. These indicate that the chromaticity and chroma saturation are necessary in rating of chromatic web-safe color visibility.

  9. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  10. The Whole is Other Than the Sum: Perceived Contrast Summation Within Color and Luminance Plaids

    PubMed Central

    Cherniawsky, Avital S.

    2016-01-01

    The apparent contrast of a plaid is a reflection of the neural relationship between the responses to its two orthogonal component gratings. To investigate the perceived contrast summation of the responses to component gratings in plaids, we compared the apparent contrasts of monocular plaids to a component grating presented alone across chromaticity and spatial frequency. Observers performed a contrast-matching task for red–green color and luminance stimuli at low- and medium-spatial frequencies. Using the measured points of subjective equality between plaids and gratings, we evaluate perceived contrast summation across conditions, which may vary between 1 (no summation) and 2 (full summation). We show that achromatic plaids have higher perceived contrast summation than chromatic plaids. The greatest difference occurs at the medium-spatial frequency, with summation highest for achromatic plaids (1.87) and lowest for chromatic plaids (1.49), while at low-spatial frequencies, there is a smaller summation difference between achromatic (1.72) and chromatic (1.65) plaids. These results are consistent with recent theories of distinct cross-orientation suppression and summation mechanisms in color and luminance vision. Two control experiments for binocular versus monocular viewing, and the overall size of the stimulus patches did not reveal any differences from our main results. PMID:27822354

  11. Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting

    PubMed Central

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kim, Eun-Soo

    2015-01-01

    A color-tunable novel-look-up-table (CT-NLUT) for fast one-step calculation of full-color computer-generated holograms is proposed. The proposed method is composed of four principal fringe patterns (PFPs) such as a baseline, a depth-compensating and two color-compensating PFPs. CGH patterns for one color are calculated by combined use of baseline-PFP and depth-compensating-PFP and from them, those for two other colors are generated by being multiplied by the corresponding color-compensating-PFPs. color-compensating-PFPs compensate for differences in the wavelength between two colors based on their unique achromatic thin-lens properties, enabling transformation of one-color CGH pattern into those for other colors. This color-conversion property of the proposed method enables simultaneous generation of full color-CGH patterns, resulting in a significant reduction of the full color-CGH calculation time. Experimental results with test scenario show that the full color-CGH calculation time of the proposed CT-NLUT has been reduced by 45.10%, compared to the conventional NLUT. It has been further reduced by 96.01% when a data compression algorithm, called temporal redundancy-based NLUT, was used together, which means 25-fold reduction of its full color-CGH calculation time. Successful computational and optical reconstructions of full color-CGH patterns confirm the feasibility of the proposed method. PMID:26358334

  12. Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kim, Eun-Soo

    2015-09-11

    A color-tunable novel-look-up-table (CT-NLUT) for fast one-step calculation of full-color computer-generated holograms is proposed. The proposed method is composed of four principal fringe patterns (PFPs) such as a baseline, a depth-compensating and two color-compensating PFPs. CGH patterns for one color are calculated by combined use of baseline-PFP and depth-compensating-PFP and from them, those for two other colors are generated by being multiplied by the corresponding color-compensating-PFPs. color-compensating-PFPs compensate for differences in the wavelength between two colors based on their unique achromatic thin-lens properties, enabling transformation of one-color CGH pattern into those for other colors. This color-conversion property of the proposed method enables simultaneous generation of full color-CGH patterns, resulting in a significant reduction of the full color-CGH calculation time. Experimental results with test scenario show that the full color-CGH calculation time of the proposed CT-NLUT has been reduced by 45.10%, compared to the conventional NLUT. It has been further reduced by 96.01% when a data compression algorithm, called temporal redundancy-based NLUT, was used together, which means 25-fold reduction of its full color-CGH calculation time. Successful computational and optical reconstructions of full color-CGH patterns confirm the feasibility of the proposed method.

  13. Temperature- and wavelength-insensitive parametric amplification enabled by noncollinear achromatic phase-matching

    PubMed Central

    Tang, Daolong; Ma, Jingui; Wang, Jing; Zhou, Bingjie; Xie, Guoqiang; Yuan, Peng; Zhu, Heyuan; Qian, Liejia

    2016-01-01

    Optical parametric chirped-pulse amplification (OPCPA) has been demonstrated to be a promising approach for pushing femtosecond pulses towards ultra-high peak powers. However, the future success of OPCPA strongly relies on the ability to manipulate its phase-matching (PM) configuration. When a high average power pump laser is involved, the thermal effects in nonlinear crystals induce phase-mismatch distortions that pose an inherent limitation on the conversion efficiency. Here, we demonstrate that the noncollinear configuration previously adopted for wavelength-insensitive PM can be employed for temperature-insensitive PM when the noncollinear angle is properly reset. Simultaneous temperature- and wavelength-insensitive PM is realized for the first time by imposing such a temperature-insensitive noncollinear configuration with an angularly dispersed seed signal. Based on the lithium triborate crystal, the proposed noncollinear achromatic PM has a thermal acceptance 6 times larger than that of the conventional wavelength-insensitive noncollinear PM and has a sufficient spectral acceptance to support pulse durations of ~20 fs at 800 nm. These achievements open new possibilities for generating ultra-high peak power lasers with high average power. PMID:27786299

  14. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  15. Reduction of Beam Emittance of Pep-X Using Quadruple Bend Achromat Cell

    SciTech Connect

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2009-05-26

    SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1, 2]. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design.

  16. Needle endomicroscope with a plastic, achromatic objective to perform optical biopsies of breast tissue

    NASA Astrophysics Data System (ADS)

    Kyrish, Matthew; Dobbs, Jessica; Richards-Kortum, Rebecca; Tkaczyk, Tomasz

    2013-03-01

    In order to diagnose cancer in breast tissue, a sample must be removed, prepared, and examined under a microscope. To provide an alternative to conventional biopsies, an endomicroscope intended to perform optical biopsies is demonstrated. The system provides high resolution, high contrast images in real-time which could allow a diagnosis to be made during surgery without the need for tissue removal. Optical sectioning is achieved via structured illumination to reject out of focus light. An image is relayed between the sample plane and the imaging system by a coherent fiber bundle with an achromatized objective lens at the distal tip of the fiber bundle which is the diameter of a biopsy needle. The custom, plastic objective provides correction for both the excitation and emission wavelengths of proflavine (452 nm and 515 nm, respectively). It also magnifies the object onto the distal tip of the fiber bundle to increase lateral resolution. The lenses are composed of the optical plastics Zeonex E48R, PMMA, and polystyrene. The lenses are fabricated via single point diamond turning and assembled using a zero alignment technique. The lateral resolution and chromatic focal shift were measured and in vitro images of breast carcinoma cells stained with proflavine were captured. The optical biopsy system is able to achieve optical sectioning and to resolve smaller features than the current high resolution microendoscope.

  17. Temperature- and wavelength-insensitive parametric amplification enabled by noncollinear achromatic phase-matching

    NASA Astrophysics Data System (ADS)

    Tang, Daolong; Ma, Jingui; Wang, Jing; Zhou, Bingjie; Xie, Guoqiang; Yuan, Peng; Zhu, Heyuan; Qian, Liejia

    2016-10-01

    Optical parametric chirped-pulse amplification (OPCPA) has been demonstrated to be a promising approach for pushing femtosecond pulses towards ultra-high peak powers. However, the future success of OPCPA strongly relies on the ability to manipulate its phase-matching (PM) configuration. When a high average power pump laser is involved, the thermal effects in nonlinear crystals induce phase-mismatch distortions that pose an inherent limitation on the conversion efficiency. Here, we demonstrate that the noncollinear configuration previously adopted for wavelength-insensitive PM can be employed for temperature-insensitive PM when the noncollinear angle is properly reset. Simultaneous temperature- and wavelength-insensitive PM is realized for the first time by imposing such a temperature-insensitive noncollinear configuration with an angularly dispersed seed signal. Based on the lithium triborate crystal, the proposed noncollinear achromatic PM has a thermal acceptance 6 times larger than that of the conventional wavelength-insensitive noncollinear PM and has a sufficient spectral acceptance to support pulse durations of ~20 fs at 800 nm. These achievements open new possibilities for generating ultra-high peak power lasers with high average power.

  18. Designing of the low energy beam lines with achromatic condition in the RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O.

    2017-01-01

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the KOrea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  19. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective

    PubMed Central

    Kyrish, Matthew; Dobbs, Jessica; Jain, Shalini; Wang, Xiao; Yu, Dihua; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In order to diagnose cancer, a sample must be removed, prepared, and examined under a microscope, which is expensive, invasive, and time consuming. Fiber optic fluorescence endomicroscopy, where an image guide is used to obtain high-resolution images of tissue in vivo, has shown promise as an alternative to conventional biopsies. However, the resolution of standard endomicroscopy is limited by the fiber bundle sampling frequency and out-of-focus light. A system is presented which incorporates a plastic, achromatic objective to increase the sampling and which provides optical sectioning via structured illumination to reject background light. An image is relayed from the sample by a fiber bundle with the custom 2.1-mm outer diameter objective lens integrated to the distal tip. The objective is corrected for the excitation and the emission wavelengths of proflavine (452 and 515 nm). It magnifies the object onto the fiber bundle to improve the system’s lateral resolution by increasing the sampling. The plastic lenses were fabricated via single-point diamond turning and assembled using a zero alignment technique. Ex vivo images of normal and neoplastic murine mammary tissues stained with proflavine are captured. The system achieves higher contrast and resolves smaller features than standard fluorescence endomicroscopy. PMID:24002190

  20. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal.

  1. Perception of Fechner Illusory Colors in Alzheimer Disease Patients

    PubMed Central

    Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas

    2016-01-01

    Background Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. Material/Methods W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham’s disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. Results Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ2=26.87, p<0.001 clockwise, χ2=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham’s disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. Conclusions AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment. PMID:27902677

  2. Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method

    NASA Astrophysics Data System (ADS)

    Aida, Teizo

    In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.

  3. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  4. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  5. Color Facsimile.

    DTIC Science & Technology

    1995-02-01

    modification of existing JPEG compression and decompression software available from Independent JPEG Users Group to process CIELAB color images and to use...externally specificed Huffman tables. In addition a conversion program was written to convert CIELAB color space images to red, green, blue color space

  6. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  7. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  8. The ecological drivers of nuptial color evolution in darters (Percidae: Etheostomatinae).

    PubMed

    Ciccotto, Patrick J; Mendelson, Tamra C

    2016-04-01

    Closely related animal lineages often vary in male coloration, and ecological selection is hypothesized to shape this variation. The role of ecological selection in inhibiting male color has been documented extensively at the population level, but relatively few studies have investigated the evolution of male coloration across a clade of closely related species. Darters are a diverse group of fishes that vary in the presence of elaborate male nuptial coloration, with some species exhibiting vivid color patterns and others mostly or entirely achromatic. We used phylogenetic logistic regression to test for correlations between the presence/absence of color traits across darter species and the ecological conditions in which these species occur. Environmental variables were correlated with the presence of nuptial color in darters with colorful species tending to inhabit environments that would support fewer predators and potentially transmit a broader spectrum of natural light compared to species lacking male coloration. We also tested the color preferences of a common darter predator, largemouth bass, and found that it exhibits a strong preference for red, providing further evidence of predation as a source of selection on color evolution in darters. Ecological selection therefore appears to be an important factor in dictating the presence or absence of male coloration in this group of fishes.

  9. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  10. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  11. The relationship between perifoveal achromatic, L- and M-cone acuity and retinal structure as assessed with multimodal high resolution imaging.

    PubMed

    Baraas, Rigmor C; Gjelle, Jon V B; Finstad, Elisabeth Bratlie; Jacobsen, Siri Bjørnetun; Gilson, Stuart J

    2016-07-02

    The relationships between perifoveal measures of achromatic-, L- and M-cone acuity and retinal structure were investigated in healthy young males. Thirty-two males, aged 20-39years, with normal foveal logMAR letter acuity and no observed ocular abnormalities participated in the study. Achromatic and isolated L- and M-cone spatial acuity was measured in the dominant eye with a Sloan E letter of 90% achromatic decrement contrast or 23% increment cone contrast, respectively. Separately, the central part of the same eye was imaged with high-resolution spectral-domain optical coherence tomography (SD-OCT) and adaptive optics ophthalmoscopy (AOO). Thickness measures and cone density in the fovea and parafoveal region were not correlated with perifoveal structural measures. A significant correlation was observed between thicker retinal pigment epithelium (RPE) complex, higher cone density and better L-cone logMAR at 5deg eccentricity, but not for achromatic or M-cone logMAR. The results imply that single letter perifoveal L-cone acuity, rather than achromatic acuity, may provide a useful measure for assessing the structure-function relationship and detecting early changes in the perifoveal cone mosaic.

  12. Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration

    PubMed Central

    Akkaynak, Derya; Treibitz, Tali; Xiao, Bei; Gürkan, Umut A.; Allen, Justine J.; Demirci, Utkan; Hanlon, Roger T.

    2014-01-01

    Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging. PMID:24562030

  13. Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration.

    PubMed

    Akkaynak, Derya; Treibitz, Tali; Xiao, Bei; Gürkan, Umut A; Allen, Justine J; Demirci, Utkan; Hanlon, Roger T

    2014-02-01

    Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.

  14. Design of an achromatic and uncoupled medical gantry for radiation therapy

    SciTech Connect

    Tsoupas, N.; Kayran, D.; Litvinenko, V.; MacKay, W.W.

    2011-03-28

    We are presenting the layout and the optics of a beam line to be used as a medical gantry in radiation therapy. The optical properties of the gantry's beam line are such as to make the beam line achromatic and uncoupled. These two properties make the beam spot size, which is delivered and focused by the gantry, on the tumor of the patient, independent of the angular orientation of the gantry. In this paper we present the layout of the magnetic elements of the gantry, and also present the theoretical basis for the optics design of such a gantry. A medical gantry, as it is used in the radiation treatment of cancer patients, is the last part of the beam optical system, of the accelerator complex, which delivers and focuses the beam on the tumor. The curved line shown in figure 1 is a schematic diagram of a gantry which can rotate about a horizontal axis. The particle beam (green arrow in fig. 1) enters the gantry, and is guided by the gantry on the tumor (red spot in fig. 1). As the gantry rotates about the axis shown in figure 1, the beam exiting the gantry always lies on a plane normal to the rotation axis at the point of the icocenter. Thus the gantry facilitates the ability of the beam delivery system, to deliver the beam at the tumor, which is placed at the icocenter, from any angle on this vertical plane, which is normal to the rotation angle of the gantry as stated earlier. The gantry consists of dipoles and quadrupoles elements whose median symmetry plane lies on a plane which contains the rotation axis of the gantry. In this paper we define this plane as the 'plane of the gantry'. As the beam is transported along the axis of rotation of the gantry and before it enters the gantry, it is focused by 'normal' quadrupoles and experiences no linear beam coupling. Subsequently the beam enters the gantry, and is transported by the gantry to the delivery point which is the tumor. The transported beam at the tumor is still linearly uncoupled as long as the plane of the

  15. [Achromatic watercolor effect: about requirement of formation of sumi painting effect].

    PubMed

    Takashima, Midori

    2008-10-01

    The watercolor effect (Pinna, Brelstaff, & Spillmann, 2001) is a new color spreading phenomenon. Pinna et al. (2001) proposed that the watercolor effect is a new Gestalt factor because it determines figure-ground organization more strongly than classical Gestalt factors. We used achroriatic watercolor patterns and varied the lightness of the background and two border lines to study the relationship between the color spreading effect and figure-ground organization. The results demonstrated (a)a bidirectional color spreading phenomenon when the background lightness was between the two border-lines' lightness, and that (b) some patterns elicit only a color spreading effect without organization of figure-ground, while others elicit only figure-ground organization without a color spreading effect.

  16. Color terms and color concepts.

    PubMed

    Davidoff, Jules

    2006-08-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction are taken up in the current commentary, especially with regard to the neuropsychological evidence. Data from aphasic patients also argue for a priority for abstract thought, but nevertheless it may still be that the use of color terms is the only way in which to form color categories even if both linguistic and attentional factors play an important role.

  17. Consistency of color representation in smart phones.

    PubMed

    Dain, Stephen J; Kwan, Benjamin; Wong, Leslie

    2016-03-01

    One of the barriers to the construction of consistent computer-based color vision tests has been the variety of monitors and computers. Consistency of color on a variety of screens has necessitated calibration of each setup individually. Color vision examination with a carefully controlled display has, as a consequence, been a laboratory rather than a clinical activity. Inevitably, smart phones have become a vehicle for color vision tests. They have the advantage that the processor and screen are associated and there are fewer models of smart phones than permutations of computers and monitors. Colorimetric consistency of display within a model may be a given. It may extend across models from the same manufacturer but is unlikely to extend between manufacturers especially where technologies vary. In this study, we measured the same set of colors in a JPEG file displayed on 11 samples of each of four models of smart phone (iPhone 4s, iPhone5, Samsung Galaxy S3, and Samsung Galaxy S4) using a Photo Research PR-730. The iPhones are white LED backlit LCD and the Samsung are OLEDs. The color gamut varies between models and comparison with sRGB space shows 61%, 85%, 117%, and 110%, respectively. The iPhones differ markedly from the Samsungs and from one another. This indicates that model-specific color lookup tables will be needed. Within each model, the primaries were quite consistent (despite the age of phone varying within each sample). The worst case in each model was the blue primary; the 95th percentile limits in the v' coordinate were ±0.008 for the iPhone 4 and ±0.004 for the other three models. The u'v' variation in white points was ±0.004 for the iPhone4 and ±0.002 for the others, although the spread of white points between models was u'v'±0.007. The differences are essentially the same for primaries at low luminance. The variation of colors intermediate between the primaries (e.g., red-purple, orange) mirror the variation in the primaries. The variation in

  18. Ratio model serves suprathreshold color- luminance discrimination

    NASA Astrophysics Data System (ADS)

    Sankeralli, Marcel J.; Mullen, Kathy T.; Hine, Trevor J.

    2002-03-01

    We extended earlier results [J. Opt. Soc. Am. A 16, 2625 (1999)] to examine how the responses of the three postreceptoral mechanisms are combined to subserve discrimination of suprathreshold stimuli. Test thresholds were obtained in the presence of suprathreshold pedestals selected in different quadrants of the red-green/luminance and blue-yellow/luminance planes of cardinal color space. We showed that (1) test threshold was directly proportional to pedestal contrast for pedestal contrasts exceeding five times pedestal contrast threshold, and (2) there were exceptions to this proportionality, notably when the test and pedestal directions were fixed in the cardinal directions. Results support a ratio model of suprathreshold color-luminance discrimination, in which discrimination depends on a ratio of outputs of the postreceptoral mechanisms. We also observed that when test threshold was measured as a function of test color-space direction, masking by the achromatic component of the pedestal was less than that by the chromatic component. In addition, masking by a dark (negative luminance component) pedestal was lower than masking by a light (positive luminance) pedestal of a similar contrast. Our results demonstrated that (1) there is no fundamental difference between discrimination in the isoluminant and in the two chromoluminant cardinal planes, (2) there exists the possibility that discrimination in cardinal directions differs from that in noncardinal (intermediate) directions, and (3) suprathreshold discrimination of luminance differences may be more sensitive than that of chromatic differences for a given suprathreshold pedestal.

  19. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  20. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  1. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  2. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].

    PubMed

    Göbel, K; Erb, C

    2013-02-01

    The early detection of functional glaucoma damage plays an increasingly more central role in the diagnosis and treatment of glaucoma disease. Using selective perimetry detection of early glaucomatous defects is more likely and one of these methods is flicker perimetry with Pulsar. Flicker perimetry is used to analyze the temporal visual function in combination with spatial resolution and contrast sensitivity as opposed to standard automated perimetry which measures the differential light sensitivity with a non-specific stimulus. This study showed a higher sensitivity and specificity of Pulsar perimetry in comparison to achromatic perimetry in glaucoma patients.

  3. Achromatic-phase-shifting low-coherence digital holography: theoretical analyses of zero-phase-shifting error condition and linear and nonlinear calibrations

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2015-10-01

    Some methods for decreasing a measurement error derived from a phase-shifting error for broadband light in phase-shifting low-coherence digital holography are proposed based on theoretical analysis and numerical calculations. It is well-known that an achromatic-phase shifter based on a rotating polarizer drastically decreases the error, but it is found that a small error remains according to the imperfection of the achromatic-phase shifter. It is also found that an ideal achromatic-phase shifter perfectly eliminates the error only when the light source has a symmetrical spectrum. Furthermore, it is demonstrated that a simple linear calibration method decreases the error in a narrow range of optical path differences if a light source with an asymmetrical spectrum is used. Finally, a nonlinear calibration method that can further decrease the error in a wide range of optical path differences is discussed.

  4. The orientation selectivity of color-responsive neurons in macaque V1.

    PubMed

    Johnson, Elizabeth N; Hawken, Michael J; Shapley, Robert

    2008-08-06

    Form has a strong influence on color perception. We investigated the neural basis of the form-color link in macaque primary visual cortex (V1) by studying orientation selectivity of single V1 cells for pure color patterns. Neurons that responded to color were classified, based on cone inputs and spatial selectivity, into chromatically single-opponent and double-opponent groups. Single-opponent cells responded well to color but weakly to luminance contrast; they were not orientation selective for color patterns. Most double-opponent cells were orientation selective to pure color stimuli as well as to achromatic patterns. We also found non-opponent cells that responded weakly or not at all to pure color; most were orientation selective for luminance patterns. Double-opponent and non-opponent cells' orientation selectivities were not contrast invariant; selectivity usually increased with contrast. Double-opponent cells were approximately equally orientation selective for luminance and equiluminant color stimuli when stimuli were matched in average cone contrast. V1 double-opponent cells could be the neural basis of the influence of form on color perception. The combined activities of single- and double-opponent cells in V1 are needed for the full repertoire of color perception.

  5. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-20

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  6. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  7. Evolution of the circuitry for conscious color vision in primates.

    PubMed

    Neitz, J; Neitz, M

    2017-02-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.

  8. Color reproduction on inkjet printers and paper colorimetric properties

    NASA Astrophysics Data System (ADS)

    Fernandez-Reche, Jesus; Uroz, Joan; Diaz, Jose A.; Garcia-Beltran, Antonio

    2003-12-01

    The goal of this work is to study the relationship between the colorimetric characteristics that identify a kind of paper and those that allow us to evaluate its color reproduction capabilities on inkjet printers. A set of 29 different commercial papers from several companies has been tested. The category of those papers ranged from photo quality to prepress proof and ordinary office papers, being their finishing matte, semi-matte or glossy. For each sample, we have measured their reflectance, intrinsic reflectance, opacity, CIE whiteness index and tint. All these measurements followed the procedures established in the international standards about paper and board. Then, we have printed on three different sheet of each paper the color chart proposed in the international standard for color printer characterization ANSI IT8/7.3. When calculated the CIELAB coordinates using the D50 standard illuminant, we studied the dynamic range, color gamut and the rendering linearity. The results show that the colorimetric properties and reproduction capabilities of the 29 commercial papers let us cluster them in accordance with their behavior. However, we found no systematic correlation between color reproduction and specific colorimetric properties of the types of paper: we should search for other physical (not just colorimetric) properties (for instance, gloss or ink absorption capacity).

  9. Achromatic optical compensation using dispersion of uniaxial films for elimination of off-axis light leakage in a liquid crystal cell.

    PubMed

    Oh, Seung-Won; Wok Park, Byung; Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-11-10

    We propose an achromatic optical-compensation method using uniaxial films to eliminate the off-axis light leakage at the dark state in a homogeneously aligned liquid crystal cell. Three uniaxial films with different dispersion characteristics are used so that they can compensate each other to achieve achromatic effective phase retardation at off-axis. The retardation values are optimized with the aid of the Poincaré sphere and through numerical research. A contrast ratio of higher than 2000∶1 is predicted over the entire ±60° viewing cone for a homogeneously aligned LC cell with zero pretilt angle.

  10. Color Metric.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    This booklet was designed to convey metric information in pictoral form. The use of pictures in the coloring book enables the more mature person to grasp the metric message instantly, whereas the younger person, while coloring the picture, will be exposed to the metric information long enough to make the proper associations. Sheets of the booklet…

  11. "Giant" red and green core/shell quantum dots with high color purity and photostability

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Xu, Ruilin; Zhuo, Ningze; Zhang, Lei; Wang, Haibo; Cui, Yiping; Zhang, Jiayu

    2016-03-01

    "Giant" red CdSe/CdS and green CdSeS/ZnS core/shell quantum dots (QDs), whose color purity were ∼100% and 91%, respectively, were synthesized, and the color gamut could be more than 120% relative to the NTSC color space for the display utilizing these two kinds of QDs. Time-resolved photoluminescence (PL) measurement showed that the PL dynamics was evolved from tri-exponential decay to bi-exponential type with the increase of the shell thickness, and the PL decay characteristics of these giant QDs did not evidently change under long-term UV irradiation, indicating that the thick shell could isolate the effect of the surface's defects on the exciton's recombination within these QDs. Their high photostability could have an advantage in the application on display and white-light LEDs.

  12. Reflectance, illumination, and appearance in color constancy

    PubMed Central

    McCann, John J.; Parraman, Carinna; Rizzi, Alessandro

    2013-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation. PMID:24478738

  13. Color Imaging management in film processing

    NASA Astrophysics Data System (ADS)

    Tremeau, Alain; Konik, Hubert; Colantoni, Philippe

    2003-12-01

    The latest research projects in the laboratory LIGIV concerns capture, processing, archiving and display of color images considering the trichromatic nature of the Human Vision System (HSV). Among these projects one addresses digital cinematographic film sequences of high resolution and dynamic range. This project aims to optimize the use of content for the post-production operators and for the end user. The studies presented in this paper address the use of metadata to optimise the consumption of video content on a device of user's choice independent of the nature of the equipment that captured the content. Optimising consumption includes enhancing the quality of image reconstruction on a display. Another part of this project addresses the content-based adaptation of image display. Main focus is on Regions of Interest (ROI) operations, based on the ROI concepts of MPEG-7. The aim of this second part is to characterize and ensure the conditions of display even if display device or display media changes. This requires firstly the definition of a reference color space and the definition of bi-directional color transformations for each peripheral device (camera, display, film recorder, etc.). The complicating factor is that different devices have different color gamuts, depending on the chromaticity of their primaries and the ambient illumination under which they are viewed. To match the displayed image to the aimed appearance, all kind of production metadata (camera specification, camera colour primaries, lighting conditions) should be associated to the film material. Metadata and content build together rich content. The author is assumed to specify conditions as known from digital graphics arts. To control image pre-processing and image post-processing, these specifications should be contained in the film's metadata. The specifications are related to the ICC profiles but need additionally consider mesopic viewing conditions.

  14. Different temporal structure for form versus surface cortical color systems--evidence from chromatic non-linear VEP.

    PubMed

    Crewther, David P; Crewther, Sheila G

    2010-12-20

    Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature.

  15. Chrominance watermark embed using a full-color visibility model

    NASA Astrophysics Data System (ADS)

    Bradley, Brett; Reed, Alastair; Stach, John

    2012-03-01

    A watermark embed scheme has been developed to insert a watermark with the maximum signal strength for a user selectable visibility constraint. By altering the watermark strength and direction to meet a visibility constraint, the maximum watermark signal for a particular image is inserted. The method consists of iterative embed software and a full color human visibility model plus a watermark signal strength metric. The iterative approach is based on the intersections between hyper-planes, which represent visibility and signal models, and the edges of a hyper-volume, which represent output device visibility and gamut constraints. The signal metric is based on the specific watermark modulation and detection methods and can be adapted to other modulation approaches. The visibility model takes into account the different contrast sensitivity functions of the human eye to L, a and b, and masking due to image content.

  16. Quantum Color

    SciTech Connect

    Lincoln, Don

    2016-07-05

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  17. Assessing color reproduction tolerances in commercial print workflow

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Hoarau, Eric; Kothari, Sunil; Lin, I.-Jong; Zeng, Jun

    2012-01-01

    Except for linear devices like CRTs, color transformations from colorimetric specifications to device coordinates are mostly obtained by measuring a set of samples, inverting the table, and looking up values in the table (including interpolation), and mapping the gamut from input to output device. The accuracy of a transformation is determined by reproducing a second set of samples and measuring the reproduction errors. Accuracy as the average predicted perceptual error is then used as a metric for quality. Accuracy and precision are important metrics in commercial print because a print service provider can charge a higher price for more accurate color, or can widen his tolerances when customers prefer cheap prints. The disadvantage of determining tolerances through averaging perceptual errors is that the colors in the sample sets are independent and this is not necessarily a good correlate of print quality as determined through psychophysics studies. Indeed, images consist of color palettes and the main quality factor is not color fidelity but color integrity. For example, if the divergence of the field of error vectors is zero, color constancy is likely to take over and humans will perceive the color reproduction as being of good quality, even if the average error is relatively large. However, if the errors are small but in random directions, the perceived image quality is poor because the relation among colors is altered. We propose a standard practice to determine tolerance based on the Farnsworth-Munsell 100-hue test (FM-100) for the second set and to evaluate the color transpositions-a metric for color integrity-instead of the color differences. The quality metric is then the FM-100 score. There are industry standards for the tolerances of color judges, and the same tolerances and classification can be use for print workflows or its components (e.g., presses, proofers, displays). We generalize this practice to arbitrary perceptually uniform scales tailored to

  18. Grounding context in face processing: color, emotion, and gender.

    PubMed

    Gil, Sandrine; Le Bigot, Ludovic

    2015-01-01

    In recent years, researchers have become interested in the way that the affective quality of contextual information transfers to a perceived target. We therefore examined the effect of a red (vs. green, mixed red/green, and achromatic) background - known to be valenced - on the processing of stimuli that play a key role in human interactions, namely facial expressions. We also examined whether the valenced-color effect can be modulated by gender, which is also known to be valenced. Female and male adult participants performed a categorization task of facial expressions of emotion in which the faces of female and male posers expressing two ambiguous emotions (i.e., neutral and surprise) were presented against the four different colored backgrounds. Additionally, this task was completed by collecting subjective ratings for each colored background in the form of five semantic differential scales corresponding to both discrete and dimensional perspectives of emotion. We found that the red background resulted in more negative face perception than the green background, whether the poser was female or male. However, whereas this valenced-color effect was the only effect for female posers, for male posers, the effect was modulated by both the nature of the ambiguous emotion and the decoder's gender. Overall, our findings offer evidence that color and gender have a common valence-based dimension.

  19. Pattern glare: the effects of contrast and color

    PubMed Central

    Monger, Laura J.; Wilkins, Arnold J.; Allen, Peter M.

    2015-01-01

    Aim: To test a theory of visual stress by investigating the inter-relationships between (1) the threshold contrast/saturation at which individuals first report discomfort when viewing colored gratings of progressively increasing contrast and decreasing saturation; (2) the choice of a colored overlay for reading; (3) any increase in reading speed when the overlay is used. Method: Ninety-five young adults, with normal color vision, reported illusions from square-wave gratings (Pattern Glare Test), chose any colored overlays that improved clarity (Intuitive Color Overlays) and read aloud randomly ordered common words (Wilkins Rate of Reading Test). This was followed by an automated choice of tints for text using various screen colors on a tablet, and a test of discomfort from patterns of progressively increasing contrast and decreasing saturation, using software developed for this study. All participants wore their optimal refractive correction throughout the procedure. Results: Fifty-eight participants chose a colored overlay and reported that it made text easier and more comfortable to read. On average, these individuals had a greater improvement in reading speed with their overlays (p = 0.003), a lower contrast threshold at which discomfort from achromatic gratings was first reported (p = 0.015), and a tendency to report more pattern glare (p = 0.052), compared to the other participants. Participants who chose both a most and least preferred tint for text using the automated procedure reported discomfort from colored gratings at a significantly higher contrast with their most preferred color compared to their least preferred color (p = 0.003). The choice of a colored tint was moderately consistent across tests. The most and least preferred colors tended to be complementary. Conclusion: Colored tints that improved reading speed reduced pattern glare both in terms of the illusion susceptibility and in terms of discomfort contrast threshold, supporting a theory of

  20. Segregating animals in naturalistic surroundings: interaction of color distributions and mechanisms.

    PubMed

    Jansen, Michael; Giesel, Martin; Zaidi, Qasim

    2016-03-01

    Humans have been shown to rapidly detect animals in naturalistic scenes, but the role of color in this task is unclear. We first analyze the color information contained in a large number of images of salient and camouflaged animals in generic backgrounds. We found that color distributions of most animals and of their immediate backgrounds were oriented along other than the cardinal directions of color space. In addition, the maximum distances between animals and background distributions also tended to be along noncardinal directions, suggesting a role for higher-order cortical color mechanisms whose preferred axes are distributed widely in color space. We measured temporal thresholds for segmenting animal color distributions from background distributions in the absence of spatial cues. Combined over all observers and all images in our sample, thresholds for segmenting isoluminant projections of these distributions were lower than for segmenting the original distributions and considerably lower than for segmenting achromatic projections. Color information is thus likely to be useful in segregating animals in generic views, i.e., views not purposely chosen by the photographer to enhance the visibility of the animal. However, a comparison of thresholds with distances between distributions failed to reveal any advantage conferred by higher-order color mechanisms.

  1. A practical and predictive two-metric system for characterizing the color rendering properties of light sources used for architectural applications

    NASA Astrophysics Data System (ADS)

    Rea, Mark S.

    2010-08-01

    A source of illumination with good color properties, daylight or electric, should reveal a full range of colors, should enable good color discrimination between objects of similar spectral reflectance, and should not distort colors. We presently have only one recognized measure of color rendering in the lighting industry, color rendering index (CRI), developed in the early 1960s. However, CRI should not be used alone as a predictive measure of the color rendering properties of a light source. First, CRI is a poor predictor of color discrimination. Gamut area index (GAI), another measure of color rendering, is consistently better at predicting performance on the Farnsworth-Munsell 100 Hue test than is CRI. GAI is also better at predicting subjective judgments of "vividness" than CRI. On the other hand, when measuring the ability of a light source to display colors "naturally," neither the GAI nor the CRI performs consistently. In fact, sometimes GAI is a better predictor of "naturalness" than CRI, and sometimes the opposite is true. When GAI and CRI are used jointly in characterizing the color rendering characteristics of a light source used for illumination, high values on both metrics appear to ensure subjective impressions of both "naturalness" and "vividness." In general, this two-metric system appears to be predictive of an average individual's "preference." A priori tests of this two-metric system of color rendering were conducted, lending support to the validity of this approach for characterizing the color rendering properties of electric light sources.

  2. Color vision test

    MedlinePlus

    ... from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... test - color; Ishihara color vision test Images Color blindness tests References Adams AJ, Verdon WA, Spivey BE. ...

  3. Design and imaging performance of achromatic diffractive-refractive x-ray and gamma-ray Fresnel lenses.

    PubMed

    Skinner, Gerald K

    2004-09-01

    Achromatic combinations of a diffractive phase Fresnel lens and a refractive correcting element have been proposed for x-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without stepping, is investigated, and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided that the focal ratio is large, correction lenses made from low atomic number materials can be used with x rays in the range of approximately 10-100 keV without stepping. The use of stepping extends the possibility of correction to higher-aperture systems, to energies as low as a few kilo electron volts, and to gamma rays of mega electron volt energy.

  4. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  5. What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception

    PubMed Central

    Blakeslee, Barbara; McCourt, Mark E.

    2015-01-01

    Research in lightness perception centers on understanding the prior assumptions and processing strategies the visual system uses to parse the retinal intensity distribution (the proximal stimulus) into the surface reflectance and illumination components of the scene (the distal stimulus—ground truth). It is agreed that the visual system must compare different regions of the visual image to solve this inverse problem; however, the nature of the comparisons and the mechanisms underlying them are topics of intense debate. Perceptual illusions are of value because they reveal important information about these visual processing mechanisms. We propose a framework for lightness research that resolves confusions and paradoxes in the literature, and provides insight into the mechanisms the visual system employs to tackle the inverse problem. The main idea is that much of the debate and confusion in the literature stems from the fact that lightness, defined as apparent reflectance, is underspecified and refers to three different types of judgments that are not comparable. Under stimulus conditions containing a visible illumination component, such as a shadow boundary, observers can distinguish and match three independent dimensions of achromatic experience: apparent intensity (brightness), apparent local intensity ratio (brightness-contrast), and apparent reflectance (lightness). In the absence of a visible illumination boundary, however, achromatic vision reduces to two dimensions and, depending on stimulus conditions and observer instructions, judgments of lightness are identical to judgments of brightness or brightness-contrast. Furthermore, because lightness judgments are based on different information under different conditions, they can differ greatly in their degree of difficulty and in their accuracy. This may, in part, explain the large variability in lightness constancy across studies. PMID:25954181

  6. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  7. Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer.

    PubMed

    Lee, Ki-Heon; Han, Chang-Yeol; Kang, Hee-Don; Ko, Heejoo; Lee, Changho; Lee, Jonghyuk; Myoung, NoSoung; Yim, Sang-Youp; Yang, Heesun

    2015-11-24

    Over the past few years the performance of colloidal quantum dot-light-emitting diode (QLED) has been progressively improved. However, most of QLED work has been fulfilled in the form of monochromatic device, while full-color-enabling white QLED still remains nearly unexplored. Using red, green, and blue quantum dots (QDs), herein, we fabricate bichromatic and trichromatic QLEDs through sequential solution-processed deposition of poly(9-vinlycarbazole) (PVK) hole transport layer, two or three types of QDs-mixed multilayer, and ZnO nanoparticle electron transport layer. The relative electroluminescent (EL) spectral ratios of constituent QDs in the above multicolored devices are found to inevitably vary with applied bias, leading to the common observation of an increasing contribution of a higher-band gap QD EL over low-band gap one at a higher voltage. The white EL from a trichromatic device is resolved into its primary colors through combining with color filters, producing an exceptional color gamut of 126% relative to National Television Systems Committee (NTSC) color space that a state-of-the-art full-color organic LED counterpart cannot attain. Our trichromatic white QLED also displays the record-high EL performance such as the peak values of 23,352 cd/m(2) in luminance, 21.8 cd/A in current efficiency, and 10.9% in external quantum efficiency.

  8. Progress in characterizing the multidimensional color quality properties of white LED light sources

    NASA Astrophysics Data System (ADS)

    Teunissen, Kees; Hoelen, Christoph

    2016-03-01

    With the introduction of solid state light sources, the variety in emission spectra is almost unlimited. However, the set of standardized parameters to characterize a white LED light source, such as correlated color temperature (CCT) and CIE general color rendering index (Ra), is known to be limited and insufficient for describing perceived differences between light sources. Several characterization methods have been proposed over the past decades, but their contribution to perceived color quality has not always been validated. To gain more insight in the relevant characteristics of the emission spectra for specific applications, we have conducted a perception experiment to rate the attractiveness of three sets of objects, including fresh food, packaging materials and skin tones. The objects were illuminated with seven different combinations of Red, Green, Blue, Amber and White LEDs, all with the same CCT and illumination level, but with differences in Ra and color saturation. The results show that, in general, object attractiveness does not correlate well with Ra, but shows a positive correlation with saturation increase for two out of three applications. There is no clear relation between saturation and skin tone attractiveness, partly due to differences in preference between males and females. A relative gamut area index (Ga) represents the average change in saturation and a complementary color vector graphic shows the direction and magnitude of chromatic differences for the eight CIE-1974 test-color samples. Together with the CIE general color rendering index (Ra) they provide useful information for designing and optimizing application specific emission spectra.

  9. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay.

    PubMed

    Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T

    2006-05-01

    We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.

  10. Color transparency

    SciTech Connect

    Jennings, B.K.; Miller, G.A.

    1993-11-01

    The anomously large transmission of nucleons through a nucleus following a hard collision is explored. This effect, known as color transparency, is believed to be a prediction of QCD. The necessary conditions for its occurrence and the effects that must be included a realistic calculation are discussed.

  11. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  12. Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    PubMed Central

    Hiramatsu, Chihiro; Melin, Amanda D.; Aureli, Filippo; Schaffner, Colleen M.; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  13. Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays

    NASA Astrophysics Data System (ADS)

    Froehlich, Jan; Grandinetti, Stefan; Eberhardt, Bernd; Walter, Simon; Schilling, Andreas; Brendel, Harald

    2014-03-01

    High quality video sequences are required for the evaluation of tone mapping operators and high dynamic range (HDR) displays. We provide scenic and documentary scenes with a dynamic range of up to 18 stops. The scenes are staged using professional film lighting, make-up and set design to enable the evaluation of image and material appearance. To address challenges for HDR-displays and temporal tone mapping operators, the sequences include highlights entering and leaving the image, brightness changing over time, high contrast skin tones, specular highlights and bright, saturated colors. HDR-capture is carried out using two cameras mounted on a mirror-rig. To achieve a cinematic depth of field, digital motion picture cameras with Super-35mm size sensors are used. We provide HDR-video sequences to serve as a common ground for the evaluation of temporal tone mapping operators and HDR-displays. They are available to the scientific community for further research.

  14. Grapheme-color synesthetes show peculiarities in their emotional brain: cortical and subcortical evidence from VBM analysis of 3D-T1 and DTI data.

    PubMed

    Melero, Helena; Peña-Melián, Ángel; Ríos-Lago, Marcos; Pajares, Gonzalo; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan

    2013-06-01

    Grapheme-color synesthesia is a neurological phenomenon in which viewing achromatic letters/numbers leads to automatic and involuntary color experiences. In this study, voxel-based morphometry analyses were performed on T1 images and fractional anisotropy measures to examine the whole brain in associator grapheme-color synesthetes. These analyses provide new evidence of variations in emotional areas (both at the cortical and subcortical levels), findings that help understand the emotional component as a relevant aspect of the synesthetic experience. Additionally, this study replicates previous findings in the left intraparietal sulcus and, for the first time, reports the existence of anatomical differences in subcortical gray nuclei of developmental grapheme-color synesthetes, providing a link between acquired and developmental synesthesia. This empirical evidence, which goes beyond modality-specific areas, could lead to a better understanding of grapheme-color synesthesia as well as of other modalities of the phenomenon.

  15. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    NASA Astrophysics Data System (ADS)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-02-01

    Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O2), nitrogen (N2) and sulfur hexafluoride (SF6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O2 plasma treatments produced new functional groups, sbnd Osbnd Csbnd O/Cdbnd O and Osbnd Cdbnd O while N2 plasma treatments produced additionally new functional groups, Csbnd N and Odbnd Csbnd NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher ink adhesion and wider color gamut after the O2 plasma treatment comparing with those after N2 plasma treatment.

  16. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies.

  17. Spectral prediction model for color prints on paper with fluorescent additives.

    PubMed

    Hersch, Roger David

    2008-12-20

    I propose a model for predicting the total reflectance of color halftones printed on paper incorporating fluorescent brighteners. The total reflectance is modeled as the additive superposition of the relative fluorescent emission and the pure reflectance of the color print. The fluorescent emission prediction model accounts for both the attenuation of light by the halftone within the excitation wavelength range and for the attenuation of the fluorescent emission by the same halftone within the emission wavelength range. The model's calibration relies on reflectance measurements of the optically brightened paper and of the solid colorant patches with two illuminants, one including and one excluding the UV components. The part of the model predicting the pure reflectance relies on an ink-spreading extended Clapper-Yule model. On uniformly distributed surface coverages of cyan, magenta, and yellow halftone patches, the proposed model predicts the relative fluorescent emission with a high accuracy (mean DeltaE(94)=0.42 under a D65 standard illuminant). For optically brightened paper exhibiting a moderate fluorescence, the total reflectance prediction improves the spectral reflectance prediction mainly for highlight color halftones, comprising a proportion of paper white above 12%. Applications include the creation of improved printer characterization tables for color management purposes and the prediction of color gamuts for new combinations of optically brightened papers and inks.

  18. Ultrathin phase-change coatings on metals for electrothermally tunable colors

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu

    2016-08-01

    Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

  19. Introduction To Color Vision

    NASA Astrophysics Data System (ADS)

    Thorell, Lisa G.

    1983-08-01

    Several human cognitive studies have reported that color facilitates certain learning, memory and search tasks. Consideration of the color-opponent organization of human color vision and the spatial modulation transfer function for color suggests several simple sensory explanations.

  20. A web-based troubleshooting tool to help customers self-solve color issues with a digital printing workflow

    NASA Astrophysics Data System (ADS)

    Santos-Villalobos, Hector J.; Loewen, Victor; Lehto, Mark; Allebach, Jan

    2011-03-01

    Current printing technologies enable customers to reproduce high quality, realistic, and colorful hard copies of their digital documents. Although the activity of printing is transparent to the customers, the progression of a customer's document through the color printing workflow (CPW) is a complex process that may alter the colors in the print job. Given the complexity of the CPW, it is a difficult problem to diagnose the source of the color issue. Novel tools and methods that address this challenge are beneficial for both the manufacturer and its customers. We propose a Web-based troubleshooting tool that helps customers to self-solve color issues with electrophotographic laser printers when printing solid colors in graphics and text. The tool helps the customer to reconfigure his/her CPW following printing best practices. If the issue is still unresolved, the tool guides the user to search the gamut of the printer for his/her color preference. The usability of the tool was carefully evaluated with human subject experiments. Also, the description and organization of the troubleshooting tasks were continuously reviewed and improved in regular meetings of the development team. In this paper, we describe the troubleshooting strategy, the color preference search algorithm, and the results of the usability experiments.

  1. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach.

    PubMed

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10-150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes' reported grapheme-color association. A mathematical model, based on Bundesen's (1990) Theory of Visual Attention (TVA), was fitted to each observer's data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group's model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes' expertise regarding their specific grapheme-color associations.

  2. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach

    PubMed Central

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10–150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes’ reported grapheme-color association. A mathematical model, based on Bundesen’s (1990) Theory of Visual Attention (TVA), was fitted to each observer’s data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group’s model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes’ expertise regarding their specific grapheme-color associations. PMID:26252019

  3. Color polymorphism in a land snail Cepaea nemoralis (Pulmonata: Helicidae) as viewed by potential avian predators

    NASA Astrophysics Data System (ADS)

    Surmacki, Adrian; Ożarowska-Nowicka, Agata; Rosin, Zuzanna M.

    2013-06-01

    Avian predation is one of the most probable factors maintaining polymorphism of shell coloration in Cepaea nemoralis. This assumption is justified by the fact that birds frequently forage on snails and their prey choice varies with morph coloration. However, in all preceding studies, the conspicuousness of morphs was determined only by using human vision which is significantly different from birds' visual perception. In this study, we assessed how birds perceive colors of four Cepaea nemoralis morphs using physiological models of avian color vision. We calculated combined chromatic and achromatic contrast between shells and three habitat background types as a measure of shell conspicuousness. The degree of background color matching in Cepaea nemoralis depended on both shell morph and habitat type. On average, banded morphs were more conspicuous than unbanded morphs. Morphs were the most cryptic against dry vegetation and the most conspicuous on bare ground. We also found a significant interaction between habitat type and color morph. The relative conspicuousness of shell morphs depended on habitat and was the most variable against green vegetation. Our study provides the first insight into how potential avian predators view Cepaea nemoralis morphs. The results are discussed in light of multiple hypotheses explaining selective predation on Cepaea nemoralis morphs.

  4. Full-color autostereoscopic video display system using computer-generated synthetic phase holograms

    NASA Astrophysics Data System (ADS)

    Choi, Kyongsik; Kim, Hwi; Lee, Byoungho

    2005-03-01

    A full-color auto-stereoscopic video display system has been introduced and developed using only a single phase-only spatial light modulator, a simple projection lens module, and three laser diode sources with the wavelengths of 635nm (red), 532nm (green), and 473nm (blue). Full-color stereoscopic input video frames are separated by each red, green, and blue component with respect to each stereo eye view for a 3D image frame. Each hologram is then optimized by a modified iterative Fresnel transform algorithm method, for the reconstruction of each gray-level quantized stereo image without color dispersion. To solve the color dispersion problem we applied scaling constraints and phase-leveling techniques for each hologram. Then the optimized holograms are synthesized with direction-multiplexed holograms and modulated by a single phase-type spatial light modulator. The modulated signals are Fourier-transformed by an achromatic lens and redirected to each viewer's eye for the reconstruction of the composed full-color auto-stereoscopic 3D display. Experimentally, we demonstrated that the designed computer-generated holograms were able to generate full-color stereoscopic 3D video images without glasses.

  5. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor.

    PubMed

    Johnsen, Sönke; Kelber, Almut; Warrant, Eric; Sweeney, Alison M; Widder, Edith A; Lee, Raymond L; Hernández-Andrés, Javier

    2006-03-01

    Recent studies have shown that certain nocturnal insect and vertebrate species have true color vision under nocturnal illumination. Thus, their vision is potentially affected by changes in the spectral quality of twilight and nocturnal illumination, due to the presence or absence of the moon, artificial light pollution and other factors. We investigated this in the following manner. First we measured the spectral irradiance (from 300 to 700 nm) during the day, sunset, twilight, full moon, new moon, and in the presence of high levels of light pollution. The spectra were then converted to both human-based chromaticities and to relative quantum catches for the nocturnal hawkmoth Deilephila elpenor, which has color vision. The reflectance spectra of various flowers and leaves and the red hindwings of D. elpenor were also converted to chromaticities and relative quantum catches. Finally, the achromatic and chromatic contrasts (with and without von Kries color constancy) of the flowers and hindwings against a leaf background were determined under the various lighting environments. The twilight and nocturnal illuminants were substantially different from each other, resulting in significantly different contrasts. The addition of von Kries color constancy significantly reduced the effect of changing illuminants on chromatic contrast, suggesting that, even in this light-limited environment, the ability of color vision to provide reliable signals under changing illuminants may offset the concurrent threefold decrease in sensitivity and spatial resolution. Given this, color vision may be more common in crepuscular and nocturnal species than previously considered.

  6. Color Relationalism and Relativism.

    PubMed

    Byrne, Alex; Hilbert, David R

    2017-01-01

    This paper critically examines color relationalism and color relativism, two theories of color that are allegedly supported by variation in normal human color vision. We mostly discuss color relationalism, defended at length in Jonathan Cohen's The Red and the Real, and argue that the theory has insuperable problems.

  7. Primary Theme Club. Colors.

    ERIC Educational Resources Information Center

    Walmsley, Bonnie Brown; Camp, Anne-Marie

    1997-01-01

    Presents a cross-curricular theme unit on colors that includes a pullout poster and a resource list. Social studies activities highlight flags of the world. Science activities teach about colors of animals and the science of color. Language arts activities describe colorful language. Mathematics activities involve sorting and graphing colors. (SM)

  8. Activities: Some Colorful Mathematics.

    ERIC Educational Resources Information Center

    DeTemple, Duane W.; Walker, Dean A.

    1996-01-01

    Describes three activities in discrete mathematics that involve coloring geometric objects: counting colored regions of overlapping simple closed curves, counting colored triangulations of polygons, and determining the number of colors required to paint the plane so that no two points one inch apart are the same color. (MKR)

  9. An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex.

    PubMed

    Beauchamp, M S; Haxby, J V; Jennings, J E; DeYoe, E A

    1999-01-01

    Studies of patients with cerebral achromatopsia have suggested that ventral occipitotemporal cortex is important for color perception. We created a functional magnetic resonance imaging (fMRI) version of a clinical test commonly used to assess achromatopsia, the Farnsworth-Munsell 100-Hue test. The test required normal subjects to use color information in the visual stimulus to perform a color sequencing task. A modification of the test requiring ordering by luminance was used as a control task. Subjects were also imaged as they passively viewed colored stimuli. A limited number of areas responded more to chromatic than achromatic stimulation, including primary visual cortex. Most color-selective activity was concentrated in ventral occipitotemporal cortex. Several areas in ventral cortex were identified. The most posterior, located in posterior fusiform gyrus, corresponded to the area activated by passive viewing of colored stimuli. More anterior and medial color-selective areas were located in the collateral sulcus and fusiform gyrus. These more anterior areas were not identified in previous imaging studies which used passive viewing of colored stimuli, and were most active in our study when visual color information was behaviorally relevant, suggesting that attention influences activity in color-selective areas. The fMRI version of the Farnsworth-Munsell test may be useful in the study of achromatopsia.

  10. Color vision and color formation in dragonflies.

    PubMed

    Futahashi, Ryo

    2016-10-01

    Dragonflies including damselflies are colorful and large-eyed insects, which show remarkable sexual dimorphism, color transition, and color polymorphism. Recent comprehensive visual transcriptomics has unveiled an extraordinary diversity of opsin genes within the lineage of dragonflies. These opsin genes are differentially expressed between aquatic larvae and terrestrial adults, as well as between dorsal and ventral regions of adult compound eyes. Recent topics of color formation in dragonflies are also outlined. Non-iridescent blue color is caused by coherent light scattering from the quasiordered nanostructures, whereas iridescent color is produced by multilayer structures. Wrinkles or wax crystals sometimes enhances multilayer structural colors. Sex-specific and stage-specific color differences in red dragonflies is attributed to redox states of ommochrome pigments.

  11. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  12. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  13. LED Color Characteristics

    SciTech Connect

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  14. Color Blindness Simulations

    MedlinePlus

    ... Coordinator Color blindness Simulations Normal Color Vision Deuteranopia Color blindness marked by confusion of purplish red and green Tritanopia A dichromatism in which the spectrum is seen in tones of red and green. ...

  15. A Spectrophotometric Study of Plumage Color in the Eared Dove (Zenaida auriculata), the Most Abundant South American Columbiforme

    PubMed Central

    Benitez-Vieyra, Santiago Miguel

    2016-01-01

    For birds, plumage color perception is critical in social interactions such as courtship, in both monochromatic and dichromatic species. In the Eared Dove (Zenaida auriculata), perhaps the most abundant South American Columbiforme, the plumage of males and females looks alike and both sexes share the same melanistic coloration with gray and pink tones. The aim of this study was therefore to determine whether evident sexual dichromatism exists in the plumage of the Eared Dove using a spectrophotometry technique in the avian-visible range (300–700 nm). The results of the classic colorimetric variables analysis (hue, chroma and brightness) show that males are in general brighter and have higher UV chroma values than females. The avian visual model points to differences in achromatic and chromatic levels between males and females in body regions possibly involved in sexual selection (e.g. the crown). The model also indicates chromatic or achromatic differences in body regions not subject to sexual selection such as the black spots on the wing coverts and white tail bands, both of which may be involved in intra- or inter-gender-specific communication. PMID:27213273

  16. A Spectrophotometric Study of Plumage Color in the Eared Dove (Zenaida auriculata), the Most Abundant South American Columbiforme.

    PubMed

    Valdez, Diego Javier; Benitez-Vieyra, Santiago Miguel

    2016-01-01

    For birds, plumage color perception is critical in social interactions such as courtship, in both monochromatic and dichromatic species. In the Eared Dove (Zenaida auriculata), perhaps the most abundant South American Columbiforme, the plumage of males and females looks alike and both sexes share the same melanistic coloration with gray and pink tones. The aim of this study was therefore to determine whether evident sexual dichromatism exists in the plumage of the Eared Dove using a spectrophotometry technique in the avian-visible range (300-700 nm). The results of the classic colorimetric variables analysis (hue, chroma and brightness) show that males are in general brighter and have higher UV chroma values than females. The avian visual model points to differences in achromatic and chromatic levels between males and females in body regions possibly involved in sexual selection (e.g. the crown). The model also indicates chromatic or achromatic differences in body regions not subject to sexual selection such as the black spots on the wing coverts and white tail bands, both of which may be involved in intra- or inter-gender-specific communication.

  17. A two-metric proposal to specify the color-rendering properties of light sources for retail lighting

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Rea, Mark

    2010-08-01

    Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.

  18. A low cost color visual stimulator for fMRI.

    PubMed

    Rogers, Bill; Shih, Yen-Yu I; Garza, Bryan De La; Harrison, Joseph M; Roby, John; Duong, Timothy Q

    2012-03-15

    This low cost visual stimulator was developed for use in small animal imaging. The stimulator uses a single tri-color LED for each eye and can output red, green, or blue light or any combination of the three. When all three LED colors are illuminated at the same time achromatic light is the output. The stimulator is almost entirely implemented in software with only minimal electronics. The LEDs are controlled via the parallel port of a desktop computer. Flicker frequency, wavelength, intensity and waveform shape are under software control. The LEDs are coupled to fiber optic cables which run into the MRI scanner room leaving the LEDs and the power source in the control room. Calibration with a radiometer shows the light output to be very linear from zero to full intensity. The stimulator was used in fMRI visual stimulation studies performed on Sprague Dawley rats with an 11.7Tesla magnet. As the stimulator is software driven, modifications to accommodate other protocols and extensions for new functionality can be readily incorporated. With this in mind, the visual stimulator circuit diagram and software including source code are available upon request.

  19. Diffractive parameric colors.

    PubMed

    Orava, Joni; Heikkila, Noora; Jaaskelainen, Timo; Parkkinen, Jussi

    2008-12-01

    A method of producing inkless parameric color pairs is studied. In this method, colors are formed additively using diffraction gratings with differing grating periods as primary colors. Gratings with different grating periods reflect different spectral radiance peaks of a fluorescent lamp to the desired viewing angle, according to the grating equation. Four spectral peaks of a 4000 K fluorescent lamp--red, green, cyan, and blue-are used as the primary colors. The colors are mixed additively by fixing the relative areas of different grating periods inside a pixel. With four primary colors it is possible to mix certain colors with different triplets of primary colors. Thus, it is theoretically possible to produce metameric colors. In this study, three parameric color pairs are fabricated using electron beam lithography, electroplating, and hot embossing. The radiance spectra of the color pairs are measured by spectroradiometer from hot-embossed plastic samples. The CIELAB DeltaE(ab) and CIEDE2000 color differences between radiance spectra of the color pairs are calculated. The CIEDE2000 color differences of color pairs are between 2.6 and 7.2 units in reference viewing conditions. The effects of viewing angle and different light sources are also evaluated. It is found that both the viewing angle and the light source have very strong influences on the color differences of the color pairs.

  20. Standing-wave resonances in plasmonic nanoumbrella cavities for color generation and colorimetric refractive index sensor

    NASA Astrophysics Data System (ADS)

    Fan, Jiaorong; Li, Zhongyuan; Chen, Zhuojie; Wu, Wengang

    2016-10-01

    We theoretically investigate the hybridization of the elemental surface plasmons in umbrella-shape plasmonic nanostructures and experimentally demonstrate the implementation of plasmonic multicolor metasurfaces as well as their application in colorimetric sensing. The three-dimension metallic umbrella arrays consist of a periodic canopy-capped-nanopillars with metal-coated sidewall and a backplane metal-film to form vertical nanocavity of canopy and film. Plasmonic coupling and energy confinement in nanocavity induce a noticeably resonance narrowing of multispectral reflection. The metasurfaced nanostructures appeared in vibrant and tunable colors with broad gamut derived from color blending mechanism due to multiple, narrow-band resonances. Vivid colors varied from red, yellow, green, blue to violet are easily achieved. It is also shown that such plasmonic metasurfaces can work as the feasible and real-time colorimetric refractive index sensor by measuring the distinct color variation to glucose concentration changes. Our sensor scheme shows its spectral sensitivity in the periodic umbrella array with respect to the refractive index change to be 242.5 nm/RIU with a figure of merit of 7.3. Furthermore, a refractive index resolution of colorimetric sensing up to 0.025 RIU has been accomplished.

  1. Striking individual differences in color perception uncovered by 'the dress' photograph.

    PubMed

    Lafer-Sousa, Rosa; Hermann, Katherine L; Conway, Bevil R

    2015-06-29

    'The dress' is a peculiar photograph: by themselves the dress' pixels are brown and blue, colors associated with natural illuminants, but popular accounts (#TheDress) suggest the dress appears either white/gold or blue/black. Could the purported categorical perception arise because the original social-media question was an alternative-forced-choice? In a free-response survey (N = 1401), we found that most people, including those naïve to the image, reported white/gold or blue/black, but some said blue/brown. Reports of white/gold over blue/black were higher among older people and women. On re-test, some subjects reported a switch in perception, showing the image can be multistable. In a language-independent measure of perception, we asked subjects to identify the dress' colors from a complete color gamut. The results showed three peaks corresponding to the main descriptive categories, providing additional evidence that the brain resolves the image into one of three stable percepts. We hypothesize that these reflect different internal priors: some people favor a cool illuminant (blue sky), discount shorter wavelengths, and perceive white/gold; others favor a warm illuminant (incandescent light), discount longer wavelengths, and see blue/black. The remaining subjects may assume a neutral illuminant, and see blue/brown. We show that by introducing overt cues to the illumination, we can flip the dress color.

  2. Paper whiteness and its effect on the reproduction of colors

    NASA Astrophysics Data System (ADS)

    Norberg, Ole

    2007-02-01

    The whiteness level of a printing paper is considered as an important quality measure. High paper whiteness improves the contrast to printed areas providing a more distinct appearance of printed text and colors and increases the number of reproducible colors. Its influence on perceived color rendering quality is however not completely explained. The intuitive interpretation of paper whiteness is a material with high light reflection for all wavelengths in the visual part of the color spectrum. However, a slightly bluish shade is perceived as being whiter than a neutral white. Accordingly, papers with high whiteness values incline toward bluish-white. In paper production, a high whiteness level is achieved by the use of highly bleached pulp together with high light scattering filler pigment. To further increase whiteness levels expensive additives such as Fluorescent Whitening Agents (FWA) and shading dyes are needed. During the last years, the CIE whiteness level of some commercial available office paper has exceeded 170 CIE units, a level that can only be reached by the addition of significant amounts of FWA. Although paper whiteness is considered as an important paper quality criterion, its influence on printed color images is complicated. The dynamic mechanisms of the human visual system strive to optimize the visual response to each particular viewing condition. One of these mechanisms is chromatic adaptation, where colored objects get the same appearance under different light sources, i.e. a white paper appears white under tungsten, fluorescent and day light. In the process of judging printed color images, paper whiteness will be part of the chromatic adaptation. This implies that variations in paper whiteness would be discounted by the human visual system. On the other hand, high paper whiteness improves the contrast as well as the color gamut, both important parameters for the perceived color reproduction quality. In order to quantify the influence of paper

  3. Uniform color space based on color matching

    NASA Astrophysics Data System (ADS)

    Liao, Shih-Fang; Yang, Tsung-Hsun; Lee, Cheng-Chung

    2007-09-01

    This research intends to explore with a uniform color space based on the CIE 1931 x-y chromatic coordinate system. The goal is to improve the non-uniformity of the CIE 1931 x-y chromaticity diagram such as to approach the human color sensation as possible; however, its simple methodology still can be kept. In spite of the existence of various kinds of the uniform color coordinate systems built up early (CIE u'-v', CIE Lab, CIE LUV, etc.), the establishment of a genuine uniform color space is actually still an important work both for the basic research in color science and the practical applications of colorimetry, especially for recent growing request in illumination engineering and in display technology. In this study, the MacAdam ellipses and the Munsell color chips are utilized for the comparison with the human color sensation. One specific linear transformation matrix is found for the CIE 1931 color matching functions (see manuscript) to become the novel uniform ones. With the aid of the optimization method, the transformation matrix can be easily discovered and makes the 25 MacAdam ellipses are similar to each other in the novel uniform color space. On the other hand, the perfectiveness of the equal-hue curves and the equal-chroma contours from the Mnusell color chips evaluates for the best optimization conditions among several different definitions for the similarity of all the MacAdam ellipses. Finally, the color difference between any two colors can be simply measured by the Euclidean distance in the novel uniform color space and is still fitted to the human color sensation.

  4. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  5. Color Me Understood.

    ERIC Educational Resources Information Center

    Harris, Judy J.

    2000-01-01

    Describes the "color system" as a way of grouping children into different personality types based on a certain color: orange, blue, green, and gold. Lists stress producers for specific color people. Asserts that, through making groups of different colors, children begin to see the various specialties others can bring to the group and learn to…

  6. Digital Color Image Restoration

    DTIC Science & Technology

    1975-08-01

    color image recording system is derived and the equations representing the model and the equations of colorimetry are expressed in matrix form. Computer ... algorithms are derived which correct color errors introduced by imperfections in the color recording system. The sources of color error which are

  7. Motion Alters Color Appearance

    PubMed Central

    Hong, Sang-Wook; Kang, Min-Suk

    2016-01-01

    Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098

  8. Resolution for color photography

    NASA Astrophysics Data System (ADS)

    Hubel, Paul M.; Bautsch, Markus

    2006-02-01

    Although it is well known that luminance resolution is most important, the ability to accurately render colored details, color textures, and colored fabrics cannot be overlooked. This includes the ability to accurately render single-pixel color details as well as avoiding color aliasing. All consumer digital cameras on the market today record in color and the scenes people are photographing are usually color. Yet almost all resolution measurements made on color cameras are done using a black and white target. In this paper we present several methods for measuring and quantifying color resolution. The first method, detailed in a previous publication, uses a slanted-edge target of two colored surfaces in place of the standard black and white edge pattern. The second method employs the standard black and white targets recommended in the ISO standard, but records these onto the camera through colored filters thus giving modulation between black and one particular color component; red, green, and blue color separation filters are used in this study. The third method, conducted at Stiftung Warentest, an independent consumer organization of Germany, uses a whitelight interferometer to generate fringe pattern targets of varying color and spatial frequency.

  9. Magnetoencephalography reveals early activation of V4 in grapheme-color synesthesia.

    PubMed

    Brang, D; Hubbard, E M; Coulson, S; Huang, M; Ramachandran, V S

    2010-10-15

    Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g. A may be experienced as red). The cross-activation theory proposes that synesthesia arises as a result of cross-activation between posterior temporal grapheme areas (PTGA) and color processing area V4, while the disinhibited feedback theory proposes that synesthesia arises from disinhibition of pre-existing feedback connections. Here we used magnetoencephalography (MEG) to test whether V4 and PTGA activate nearly simultaneously, as predicted by the cross-activation theory, or whether V4 activation occurs only after the initial stages of grapheme processing, as predicted by the disinhibited feedback theory. Using our high-resolution MEG source imaging technique (VESTAL), PTGA and V4 regions of interest (ROIs) were separately defined, and activity in response to the presentation of achromatic graphemes was measured. Activation levels in PTGA did not significantly differ between synesthetes and controls (suggesting similar grapheme processing mechanisms), whereas activation in V4 was significantly greater in synesthetes. In synesthetes, PTGA activation exceeded baseline levels beginning 105-109ms, and V4 activation did so 5ms later, suggesting nearly simultaneous activation of these areas. Results are discussed in the context of an updated version of the cross-activation model, the cascaded cross-tuning model of grapheme-color synesthesia.

  10. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  11. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  12. A natural experiment on the condition-dependence of achromatic plumage reflectance in black-capped chickadees

    USGS Publications Warehouse

    D'Alba, L.; Van Hemert, C.; Handel, C.M.; Shawkey, M.D.

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association.

  13. Color Adaptation for Color Deficient Learners.

    ERIC Educational Resources Information Center

    Johnson, Donald D.

    1995-01-01

    Describes a corrective method of color adaptation designed to allow most, if not all, individuals to participate in the learning process as well as social and work-related environments. Provides a concise summation of facts and theories concerning color deficiency. Includes anatomical drawings, graphs, and statistical data. (MJP)

  14. Color and Streptomycetes1

    PubMed Central

    Pridham, Thomas G.

    1965-01-01

    A report summarizing the results of an international workshop on determination of color of streptomycetes is presented. The results suggest that the color systems which seem most practically appealing and effective to specialists on actinomycetes are those embracing a limited number of color names and groups. The broad groupings allow placement of isolates into reasonably well-defined categories based on color of aerial mycelium. Attempts to expand such systems (more color groups) lead to difficulties. It is common knowledge that many, if not all, of the individual groups would in these broad systems contain strains that differ in many other respects, e.g., spore-wall ornamentation, color of vegetative (substratal) mycelium, morphology of chains of spores, and numerous physiological criteria. Also, cultures of intermediate color can be found, which makes placement difficult. As it now stands, color as a criterion for characterization of streptomycetes and streptoverticillia is in questionable status. Although much useful color information can be obtained by an individual, the application of this information to that in the literature or its use in communication with other individuals leaves much to be desired. More objective methods of color determination are needed. At present, the most effective method that could be used internationally is the color-wheel system of Tresner and Backus. Furthermore, the significance of color in speciation of these organisms is an open question. Obviously, more critical work on the color problem is needed. PMID:14264847

  15. Colored hard coatings with AlN–TiN multilayer structures

    SciTech Connect

    Hong Lu, Jong Ying Chen, Bo

    2014-03-15

    AlN–TiN multilayer structures can be used to extend the color gamut of hard coatings while maintaining good hardness and corrosion resistance. This study used reactive magnetron sputtering on a glass substrate to produce coatings with a microhardness of 19 GPa as well as optical reflectance exceeding 80% and controllable saturation (chroma) for various hues of red, yellow, green, blue, and purple. The authors characterized the complex index of refraction of the TiN films using ellipsometry; the real refractive indices of the AlN films were derived from the reflectance values obtained using photometry. Finally, the colors of the samples were quantified using CIE-1931 chromaticity coordinates in the L*a*b* color space, and the microhardness of the films was measured using a nanoindenter. Simulation results using a multiple-beam-interference recursive method presented good consistency with experimental measurements with regard to the optical reflective spectra of AlN–TiN multilayer thin film samples.

  16. The physiology and psychophysics of the color-form relationship: a review

    PubMed Central

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies. PMID:26578989

  17. The Trouble with Color.

    ERIC Educational Resources Information Center

    Merchant, David

    1999-01-01

    Discusses problems with color quality in Web sites. Topics include differences in monitor settings, including contrast; amount of video RAM; user preference settings; browser-safe colors; cross-platform readability; and gamma values. (LRW)

  18. Focus on Color Photography

    ERIC Educational Resources Information Center

    Galindez, Peter

    1978-01-01

    Photographs and text describe techniques by which color negative film can be developed and printed. An equipment list, by which black and white printing facilities can be converted to make color prints, is provided. (CP)

  19. Color rendition engine.

    PubMed

    Zukauskas, Artūras; Vaicekauskas, Rimantas; Vitta, Pranciškus; Tuzikas, Arūnas; Petrulis, Andrius; Shur, Michael

    2012-02-27

    A source of white light with continuously tuned color rendition properties, such as color fidelity, as well as color saturating and color dulling ability has been developed. The source, which is composed of red (R), amber (A), green (G), and blue (B) light-emitting diodes, has a spectral power distribution varied as a weighted sum of "white" RGB and AGB blends. At the RGB and AGB end-points, the source has a highest color saturating and color dulling ability, respectively, as follows from the statistical analysis of the color-shift vectors for 1269 Munsell samples. The variation of the weight parameter allows for continuously traversing all possible metameric RAGB blends, including that with the highest color fidelity. The source was used in a psychophysical experiment on the estimation of the color appearance of familiar objects, such as vegetables, fruits, and soft-drink cans of common brands, at correlated color temperatures of 3000 K, 4500 K, and 6500 K. By continuously tuning the weight parameter, each of 100 subjects selected RAGB blends that, to their opinion, matched lighting characterized as "most saturating," "most dulling," "most natural," and "preferential". The end-point RGB and AGB blends have been almost unambiguously attributed to "most saturating" and "most dulling" lighting, respectively. RAGB blends that render a highest number of colors with high fidelity have, on average, been attributed to "most natural" lighting. The "preferential" color quality of lighting has, on average, been matched to RAGB blends that provide color rendition with fidelity somewhat reduced in favor of a higher saturation. Our results infer that tunable "color rendition engines" can validate color rendition metrics and provide lighting meeting specific needs and preferences to color quality.

  20. Reimagining the Color Wheel

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2011-01-01

    Color wheels are a traditional project for many teachers. The author has used them in art appreciation classes for many years, but one problem she found when her pre-service art education students created colored wheels was that they were boring: simple circles, with pie-shaped pieces, which students either painted or colored in. This article…

  1. Color: Implications in dentistry

    PubMed Central

    Sikri, Vimal K

    2010-01-01

    The success of restorative dentistry is determined on the basis of functional and esthetic results. To achieve esthetics, four basic determinants are required in sequence; viz., position, contour, texture and color. The knowledge of the concept of color is essential for achieving good esthetics. This review compiles the various aspects of color, its measurements and shade matching in dentistry. PMID:21217954

  2. Biology of Skin Color.

    ERIC Educational Resources Information Center

    Corcos, Alain

    1983-01-01

    Information from scientific journals on the biology of skin color is discussed. Major areas addressed include: (1) biology of melanin, melanocytes, and melanosomes; (2) melanosome and human diversity; (3) genetics of skin color; and (4) skin color, geography, and natural selection. (JN)

  3. Color vision deficiencies

    NASA Astrophysics Data System (ADS)

    Vannorren, D.

    1982-04-01

    Congenital and acquired color vision defects are described in the context of physiological data. Light sources, photometry, color systems and test methods are described. A list of medicines is also presented. The practical social consequences of color vision deficiencies are discussed.

  4. Color Television in Instruction.

    ERIC Educational Resources Information Center

    Bretz, Rudy

    In spite of repeated research into the matter, no evidence has been discovered to support the claim that color television is superior to black-and-white television as an instructional aid. It is possible that there are advantages to color television which are unmeasured or unmeasurable, but the current claims for color; that it heightens realism,…

  5. Color Discrimination Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's ability to see likenesses or differences in colors or shades, identifying or matching certain colors, and selecting colors that go together. Section 1 describes the assessment and lists related occupations and DOT codes. Instructions to the evaluator are provided in the…

  6. Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope.

    PubMed

    Yamada, Jumpei; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto

    2017-02-01

    We propose the use of two pairs of concave-convex mirrors as imaging optics for the compact full-field x-ray microscope with high resolution and magnification factors. The optics consists of two pairs of hyperbolic convex and elliptical concave mirrors with the principal surface near the object, consequently enabling the focal length to be 10 times shorter than conventional advanced Kirkpatrick-Baez mirror optics. This paper describes characteristics of the optics calculated by ray-tracing and wave-optical simulators. The expected spatial resolution is approximately 40 nm with a wide field of view of more than 10 μm and a total length of about 2 m, which may lead to the possibility of laboratory-sized, achromatic, and high-resolution full-field x-ray microscopes.

  7. Color Classification of Coordination Compounds.

    ERIC Educational Resources Information Center

    Poncini, Laurence; Wimmer, Franz L.

    1987-01-01

    Proposes that colored compounds be classified by reference to a standard color-order system incorporating a color dictionary. Argues that the colors of new compounds could be incorporated into the characterization process and into computer storage systems. (TW)

  8. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  9. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  10. Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs with excellent color rendering properties

    NASA Astrophysics Data System (ADS)

    Wang, Shengda; Zhu, Zhifeng; Chang, Yajing; Wang, Hui; Yuan, Nan; Li, Guopeng; Yu, Dabin; Jiang, Yang

    2016-07-01

    A novel type of aqueous fluorescent carbon dot (CD) was synthesized using citric acid as the only carbon source via an ammonium hydroxide modulated method, providing a blue color gamut. The amino group is considered to be the key factor in the high fluorescence of CDs and a model is established to investigate the mechanism of fluorescence. In addition, white light-emitting diodes (WLEDs) are fabricated by utilizing the prepared CDs and rare earth luminescent materials (SrSi2O2N2:Eu and Sr2Si5N8:Eu) as color conversion layers and UV-LED chips as the excitation light source. The WLEDs produce bright white light with attractive color rendering properties including a color rendering index of up to 95.1, a CIE coordinate of (0.33, 0.37), and a T c of 5447 K under a 100 mA driven current, indicating that the CDs are promising in the field of optoelectronic devices.

  11. Improved Efficiency and Enhanced Color Quality of Light-Emitting Diodes with Quantum Dot and Organic Hybrid Tandem Structure.

    PubMed

    Zhang, Heng; Feng, Yuanxiang; Chen, Shuming

    2016-10-03

    Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.

  12. Colors, colored overlays, and reading skills.

    PubMed

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions - e.g., color, shape, or movement illusions - while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  13. Colors, colored overlays, and reading skills

    PubMed Central

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions – e.g., color, shape, or movement illusions – while reading. This condition would interest the 12–14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature. PMID:25120525

  14. Color Reproduction with a Smartphone

    ERIC Educational Resources Information Center

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  15. Modeling of display color parameters and algorithmic color selection

    NASA Astrophysics Data System (ADS)

    Silverstein, Louis D.; Lepkowski, James S.; Carter, Robert C.; Carter, Ellen C.

    1986-01-01

    An algorithmic approach to color selection, which is based on psychophysical models of color processing, is described. The factors that affect color differentiation, such as wavelength separation, color stimulus size, and brightness adaptation level, are discussed. The use of the CIE system of colorimetry and the CIELUV color difference metric for display color modeling is examined. The computer program combines the selection algorithm with internally derived correction factors for color image field size, ambient lighting characteristics, and anomalous red-green color vision deficiencies of display operators. The performance of the program is evaluated and uniform chromaticity scale diagrams for six-color and seven-color selection problems are provided.

  16. Associative memory advantage in grapheme-color synesthetes compared to older, but not young adults

    PubMed Central

    Pfeifer, Gaby; Rothen, Nicolas; Ward, Jamie; Chan, Dennis; Sigala, Natasha

    2014-01-01

    People with grapheme-color synesthesia perceive enriched experiences of colors in response to graphemes (letters, digits). In this study, we examined whether these synesthetes show a generic associative memory advantage for stimuli that do not elicit a synesthetic color. We used a novel between group design (14 young synesthetes, 14 young, and 14 older adults) with a self-paced visual associative learning paradigm and subsequent retrieval (immediate and delayed). Non-synesthesia inducing, achromatic fractal pair-associates were manipulated in visual similarity (high and low) and corresponded to high and low memory load conditions. The main finding was a learning and retrieval advantage of synesthetes relative to older, but not to younger, adults. Furthermore, the significance testing was supported with effect size measures and power calculations. Differences between synesthetes and older adults were found during dissimilar pair (high memory load) learning and retrieval at immediate and delayed stages. Moreover, we found a medium size difference between synesthetes and young adults for similar pair (low memory load) learning. Differences between young and older adults were also observed during associative learning and retrieval, but were of medium effect size coupled with low power. The results show a subtle associative memory advantage in synesthetes for non-synesthesia inducing stimuli, which can be detected against older adults. They also indicate that perceptual mechanisms (enhanced in synesthesia, declining as part of the aging process) can translate into a generic associative memory advantage, and may contribute to associative deficits accompanying healthy aging. PMID:25071664

  17. Information through color imagery

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1975-01-01

    The color-sensing capability of the human eye is a powerful tool. In remote sensing we should use color to display data more meaningfully, not to re-create the scene. Color disappears with distance, and features change color with viewing angle. Color infrared film lets us apply color with additional meaning even though we introduce a false color response. Although the marginal gray scale on an ERTS (Earth Resources Technology Satellite) image may indicate balance between the green, red, and infrared bands, and although each band may be printed in a primary color, tests show that we are not fully applying the three primary colors. Therefore, contrast in the green band should be raised. For true three-color remote sensing of the Earth, we must find two generally meaningful signatures in the visible spectrum, or perhaps extend our spectral range. Before turning to costly digital processing we should explore analog processing. Most ERTS users deal with relative spectral radiance; the few concerned with absolute radiance could use the computer-compatible tapes or special annotations. NASA (National Aeronautics and Space Administration), which assigns the range and contrast to the ERTS image, controls processing and could adjust the density range for maximum contrast in any ERTS scene. NASA cannot alter processing for local changes in reflective characteristics of the Earth but could adjust for Sun elevation and optimize the contrast in a given band.

  18. The nature of colors

    NASA Astrophysics Data System (ADS)

    da Pos, Osvaldo

    2002-06-01

    Color is a visible aspect of objects and lights, and as such is an objective characteristic of our phenomenal world. Correspondingly also objects and lights are objective, although their subjectivity cannot be disregarded since they belong to our phenomenal world. The distinction between perception and sensation deals with colors seen either in complex displays or in isolation. Reality of colors is apparently challenged by virtual reality, while virtual reality is a good example of what colors are. It seems difficult to combine that aspect of reality colors have in our experience and the concept that colors represent something in the external environment: the distinction between stimulation and perceived object is crucial for understanding the relationships between phenomenal world and physical reality. A modern concept of isomorphism seems useful in interpreting the role of colors. The relationship between the psychological structure of colors and the physical stimulation is enlightened by the analysis of pseudocolors. The perceptual, subjective characteristics of colors go along with the subjectivity of scientific concepts. Colors, emotions, and concepts are all in some people's mind: none of them is independent of the subject mind. Nevertheless they can be communicated from person to person by an appropriate scientific terminology.

  19. Digital color representation

    DOEpatents

    White, James M.; Faber, Vance; Saltzman, Jeffrey S.

    1992-01-01

    An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes which represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete lookup table (LUT) where an 8-bit data signal is enabled to form a display of 24-bit color values. The LUT is formed in a sampling and averaging process from the image color values with no requirement to define discrete Voronoi regions for color compression. Image color values are assigned 8-bit pointers to their closest LUT value whereby data processing requires only the 8-bit pointer value to provide 24-bit color values from the LUT.

  20. True Colors of Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken on Mars by the panoramic camera on the Mars Exploration Rover Spirit shows the rover's color calibration target, also known as the MarsDial. The target's mirror and the shadows cast on it by the Sun help scientists determine the degree to which dusty martian skies alter the panoramic camera's perception of color. By adjusting for this effect, Mars can be seen in all its true colors.

  1. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  2. MonoColor CMOS sensor

    NASA Astrophysics Data System (ADS)

    Wang, Ynjiun P.

    2009-02-01

    A new breed of CMOS color sensor called MonoColor sensor is developed for a barcode reading application in AIDC industry. The RGBW color filter array (CFA) in a MonoColor sensor is arranged in a 8 x 8 pixels CFA with only 4 pixels of them are color (RGB) pixels and the rest of 60 pixels are transparent or monochrome. Since the majority of pixels are monochrome, MonoColor sensor maintains 98% barcode decode performance compared with a pure monochrome CMOS sensor. With the help of monochrome and color pixel fusion technique, the resulting color pictures have similar color quality in terms of Color Semantic Error (CSE) compared with a Bayer pattern (RGB) CMOS color camera. Since monochrome pixels are more sensitive than color pixels, a MonoColor sensor produces in general about 2X brighter color picture and higher luminance pixel resolution.

  3. The Colors of 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image shows visible mineral changes between the materials that make up the rim of the impact crater known as 'Endurance.' The image was taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity using all 13 color filters. The cyan blue color denotes basalts, whereas the dark green color denotes a mixture of iron oxide and basaltic materials. Reds and yellows indicate dusty material containing sulfates. Scientists are very interested in exploring the interior and exterior material around the crater's rim for clues to the processes that formed the crater, as well as the rocks and textures that define the crater.

  4. Universality of color names.

    PubMed

    Lindsey, Delwin T; Brown, Angela M

    2006-10-31

    We analyzed the World Color Survey (WCS) color-naming data set by using k-means cluster and concordance analyses. Cluster analysis relied on a similarity metric based on pairwise Pearson correlation of the complete chromatic color-naming patterns obtained from individual WCS informants. When K, the number of k-means clusters, varied from 2 to 10, we found that (i) the average color-naming patterns of the clusters all glossed easily to single or composite English patterns, and (ii) the structures of the k-means clusters unfolded in a hierarchical way that was reminiscent of the Berlin and Kay sequence of color category evolution. Gap statistical analysis showed that 8 was the optimal number of WCS chromatic categories: RED, GREEN, YELLOW-OR-ORANGE, BLUE, PURPLE, BROWN, PINK, and GRUE (GREEN-OR-BLUE). Analysis of concordance in color naming within WCS languages revealed small regions in color space that exhibited statistically significantly high concordance across languages. These regions agreed well with five of six primary focal colors of English. Concordance analysis also revealed boundary regions of statistically significantly low concordance. These boundary regions coincided with the boundaries associated with English WARM and COOL. Our results provide compelling evidence for similarities in the mechanisms that guide the lexical partitioning of color space among WCS languages and English.

  5. Crater Floor in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 5 May 2004 This daytime visible color image was collected on November 18, 2003 during the Southern Summer season in Terra Cimmeria.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -23.7, Longitude 135.6 East (224.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  6. Luminance contours can gate afterimage colors and "real" colors.

    PubMed

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  7. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    PubMed

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  8. Ocean color imagery: Coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1975-01-01

    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.

  9. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  10. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  11. The Achromatic Light Curve of the Optical Afterglow of GRB 030226 at a Redshift of z Approximately 2

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Masetti, N.; Guenther, E.; Stecklum, B.; Lindsay, K.

    2003-01-01

    Abstract. We report on optical and near-infrared (NIR) follow-up observations of the afterglow of GRB 030226, mainly performed with the telescopes at ESO La Silla and Paranal, with additional data obtained at other places. Our first observations started 0.2 days after the burst when the afterglow was at a magnitude of R approximately equal to 19 . One week later the magnitude of the afterglow had fallen to R=25, and at two weeks after the burst it could no longer be detected (R > 26). Our VLT blueband spectra show two absorption line systems at redshifts z = 1.962 +/- 0.001 and at z = 1.986 +/- 0.001, placing the redshift of the burster close to 2. Within our measurement errors no evidence for variations in the line strengths has been found between 0.2 and 1.2 days after the burst. An overabundance of alpha-group elements might indicate that the burst occurred in a chemically young interstellar region shaped by the nucleosynthesis from type II supernovae. The spectral slope of the afterglow shows no signs for cosmic dust along the line of sight in the GRB host galaxy, which itself remained undetected (R > 26.2). At the given redshift no supernova component affected the light from the GRB afterglow, so that the optical transient was essentially only powered by the radiation from the GRB fireball, allowing for a detailed investigation of the color evolution of the afterglow light. In our data set no obvious evidence for color changes has been found before, during, or after the smooth break in the light curve approximately 1 day after the burst. In comparison with investigations by others, our data favor the interpretation that the afterglow began to develop into a homogeneous interstellar medium before the break in the light curve became apparent.

  12. 3-D Color Wheels

    ERIC Educational Resources Information Center

    DuBois, Ann

    2010-01-01

    The blending of information from an academic class with projects from art class can do nothing but strengthen the learning power of the student. Creating three-dimensional color wheels provides the perfect opportunity to combine basic geometry knowledge with color theory. In this article, the author describes how her seventh-grade painting…

  13. Drawing Color Lines.

    ERIC Educational Resources Information Center

    Gude, Olivia

    2000-01-01

    Addresses the teaching of color symbolism and asserts that racism is embodied and perpetuated through conventional notions of black and white symbolism. Discusses a project with two eighth grade classes, focusing on the discussion of color symbolism in school and popular culture. Considers the importance of analyzing contemporary languages of…

  14. Color: an exosomatic organ?

    NASA Astrophysics Data System (ADS)

    van Brakel, Jaap; Saunders, Barbara

    2001-12-01

    According to the dominant view in cognitive science, in particular in its more popularized versions, color sensings or perceptions are located in a 'quality space'. This space has three dimensions: hue (the chromatic aspect of color), saturation (the 'intensity' of hue), and brightness. This space is structured further via a small number of primitive hues or landmark colors, usually four (red, yellow, green, blue) or six (if white and black are included). It has also been suggested that there are eleven semantic universals - the six colors previously mentioned plus orange, pink, brown, purple, and grey. Scientific evidence for these widely accepted theories is at best minimal, based on sloppy methodology and at worst non-existent. Against the standard view, it is argued that color might better be regarded as the outcome of a social-historical developmental trajectory in which there is mutual shaping of philosophical presuppositions, scientific theories, experimental practices, technological tools, industrial products, rhetorical frameworks, and their intercalated and recursive interactions with the practices of daily life. That is: color, the domain of color, is the outcome of interactive processes of scientific, instrumental, industrial, and everyday lifeworlds. That is: color might better be called an exosomatic organ, a second nature.

  15. A Semester of Color

    ERIC Educational Resources Information Center

    Rabinovitch, Andrea

    2006-01-01

    Every Thursday evening, ten high school students meet at the Riverdale Art Project, a New York City-based art program that the author co-founded ten years ago. Students are participating in a semester-long color workshop where they learn about color theory in a structured and engaging way. Focusing on five essential characteristics of color…

  16. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  17. Disabled Students of Color.

    ERIC Educational Resources Information Center

    Frank, Zelma Lloyd; Ball-Brown, Brenda

    1993-01-01

    Explores why few disabled students of color use student services. Details why some of these students were unnecessarily placed in special education programs and focuses on the experiences of this group. Addresses general cultural differences that can affect responses between people of color and disability services. Provides guidelines for service…

  18. Plasmonic color tuning

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Yun, Hansik; Lee, Seung-Yeol; Kim, Hwi

    2016-03-01

    In general, color filter is an optical component to permit the transmission of a specific color in cameras, displays, and microscopes. Each filter has its own unchangeable color because it is made by chemical materials such as dyes and pigments. Therefore, in order to express various colorful images in a display, one pixel should have three sub-pixels of red, green, and blue colors. Here, we suggest new plasmonic structure and method to change the color in a single pixel. It is comprised of a cavity and a metal nanoaperture. The optical cavity generally supports standing waves inside it, and various standing waves having different wavelength can be confined together in one cavity. On the other hand, although light cannot transmit sub-wavelength sized aperture, surface plasmons can propagate through the metal nanoaperture with high intensity due to the extraordinary transmission. If we combine the two structures, we can organize the spatial distribution of amplitudes according to wavelength of various standing waves using the cavity, and we can extract a light with specific wavelength and amplitude using the nanoaperture. Therefore, this cavity-aperture structure can simultaneously tune the color and intensity of the transmitted light through the single nanoaperture. We expect that the cavity-apertures have a potential for dynamic color pixels, micro-imaging system, and multiplexed sensors.

  19. Colorful Underwater Sea Creatures

    ERIC Educational Resources Information Center

    McCutcheon, Heather

    2011-01-01

    In this article, the author describes a project wherein students created colorful underwater sea creatures. This project began with a discussion about underwater sea creatures and how they live. The first step was making the multi-colored tissue paper that would become sea creatures and seaweed. Once students had the shapes of their sea creatures…

  20. TOCM digital color photography

    NASA Astrophysics Data System (ADS)

    Zhang, Baoying; Mu, Guoguang; Fang, Zhiliang; Li, Zhengqun; Fang, Hui; Yang, Yong

    2009-11-01

    In this paper, total optical color modulator (TOCM) digital color photography is presented. TOCM has the character of multi-wave superposed in spatial domain and separated in frequency domain. If TOCM is close-contacted with the image plane of a black-and-white (B&W) CCD, the encoding B&W CCD is formed. Image from the encoding B&W CCD are digital encoded by the TOCM. The decoded color image can be obtained by computer program. The program includes four main steps. The first step is Fourier transforming of the encoded image. The second step is filtering the spectra of the first and zero order in frequency domain. The third is inverse Fourier transforming of the filtered spectra. The last is melting the image with zero order. Then the digital color image will be shown on the display of the computer. The experiment proves that this technique is feasible. The principle of encoding color information in B&W image can be applied to color-blind sensors to get digital color image. Furthermore, it can be applied to digital multi-spectra color photography.

  1. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  2. Color vision and dentistry.

    PubMed

    Wasson, W; Schuman, N

    1992-05-01

    Color vision is a critical component of restorative and esthetic dentistry, but dentists, as a group, do not have their color vision tested at any time during their careers. A study was undertaken to ascertain the color-vision status of practicing dental personnel at the University of Tennessee, College of Dentistry. One hundred fifty individuals, 75 men and 75 women, were screened. The results corroborated the existing medical data for the general population. It was found that 9.3% of the men and none of the women exhibited color-vision defect. Since most dentists are male, this study demonstrates an area of potential weakness for some practitioners. Once a color-vision problem is found, it is simple to remedy by employing a team approach to shade matching or mechanical means of matching shades (by the practitioner). No ethnic or racial distinctions were detected, although these have been reported in other studies.

  3. Colour also matters for nocturnal birds: owlet bill coloration advertises quality and influences parental feeding behaviour in little owls.

    PubMed

    Avilés, J M; Parejo, D

    2013-10-01

    Chromatic signals of offspring quality have been shown to play a role in parent-offspring communication in diurnal birds, but are assumed to be useless in dim light conditions because colour-based discrimination probably requires more light. A major ecological and evolutionary conundrum in this scenario is why the nestlings of some nocturnal owls display colourful beaks. Here, we test the hypothesis that yellow bill coloration of owlets of the nocturnal little owl Athene noctua may function as a chromatic signal revealing to parents aspects of quality of their offspring. In a first step, we examined physical variation in bill coloration and its covariation with owlet quality. Secondly, we studied parental provisioning in relation to an experimental manipulation of bill coloration of owlets. Bills of owlets showed higher within-nest variation in yellow-red chroma than in brightness. Plasma carotenoid concentration and nestling immunological status were not associated with chromatic or achromatic features of the bill. Interestingly, however, heavier owlets displayed more yellow bills than lighter ones. The effect of bill coloration on parental favouritism changed with brood size. Parents holding large broods preferentially fed owlets with enhanced over reduced yellow bill coloration, whereas those with small broods did not significantly bias feeding in relation to owlet bill coloration. Our results, based on integration of objective spectrophotometric assessment of colour and experimental procedures, confirm that parent little owls use bill coloration to reveal information on owlet body mass to adjust their feeding strategies, thus highlighting the importance of considering potential chromatic signals for a full comprehension of parent-offspring communication processes in nocturnal bird species.

  4. Examining the Relationship Between Schizotypy and Self-Reported Visual Imagery Vividness in Grapheme-Color Synaesthesia

    PubMed Central

    Janik McErlean, Agnieszka B.; Banissy, Michael J.

    2016-01-01

    Synaesthesia is a condition in which one property of a stimulus triggers a secondary experience not typically associated with the first (e.g., seeing achromatic graphemes can evoke the perception of color). Recent work has explored a variety of cognitive and perceptual traits associated with synaesthesia. One example is in the domain of personality, where higher rates of positive schizotypy and openness to experience and lower agreeableness have been reported in synaesthetes who experience color as their evoked sensation relative to typical adult controls. Additionally, grapheme-color synaesthetes have previously been reported to show elevated mental imagery compared to typical adults. Here, we aimed to further elucidate the relationship between personality, synaesthesia, and other cognitive traits. In Study 1, we examined self-reported schizotypy and self-reported visual imagery vividness in grapheme-color synaesthetes and typical adults. Our results partially replicated previous findings by showing that synaesthesia was associated with greater positive schizotypy and enhanced self-reported imagery vividness. The results also extend previous reports by demonstrating that differences in positive schizotypy and mental imagery vividness are not related in grapheme-color synaesthesia. In Study 2, we sought to build on prior work showing lower agreeableness and increased openness to experience in synaesthetes by examining whether grapheme-color synaesthesia is associated with other conceptually related traits; namely lower self-monitoring and increased sensation seeking. We did not find any differences between synaesthetes and controls on either of these traits. These findings are discussed in relation to potential factors that may contribute to the observed personality profile in grapheme-color synaesthesia. PMID:26973548

  5. Evaluation of color categorization for representing vehicle colors

    NASA Astrophysics Data System (ADS)

    Zeng, Nan; Crisman, Jill D.

    1997-02-01

    This paper evaluates the accuracy of three color categorization techniques in describing vehicles colors for a system, AutoColor, which we are developing for Intelligent Transportation Systems. Color categorization is used to efficiently represent 24-bit color images with up to 8 bits of color information. Our inspiration for color categorization is based on the fact that humans typically use only a few color names to describe the numerous colors they perceive. Our Crayon color categorization technique uses a naming scheme for digitized colors which is roughly based on human names for colors. The fastest and most straight forward method for compacting a 24-bit representation into an 8-bit representation is to use the most significant bits (MSB) to represent the colors. In addition, we have developed an Adaptive color categorization technique which can derive a set of color categories for the current imaging conditions. In this paper, we detail the three color categorization techniques, Crayon, MSB, and Adaptive, and we evaluate their performance on representing vehicle colors in our AutoColor system.

  6. Stool Color: When to Worry

    MedlinePlus

    ... to worry Yesterday, my stool color was bright green. Should I be concerned? Answers from Michael F. ... of colors. All shades of brown and even green are considered normal. Only rarely does stool color ...

  7. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  8. Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment

    NASA Astrophysics Data System (ADS)

    Hill, Charles A.; Beckman, Shawn; Chinone, Yuji; Goeckner-Wald, Neil; Hazumi, Masashi; Keating, Brian; Kusaka, Akito; Lee, Adrian T.; Matsuda, Frederick; Plambeck, Richard; Suzuki, Aritoki; Takakura, Satoru

    2016-07-01

    We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.

  9. THE IMPACT OF THE SPECTRAL RESPONSE OF AN ACHROMATIC HALF-WAVE PLATE ON THE MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION

    SciTech Connect

    Bao, C.; Gold, B.; Hanany, S.; Baccigalupi, C.; Leach, S.; Didier, J.; Johnson, B. R.; Miller, A.; Jaffe, A.; O'Dea, D.; Matsumura, T.

    2012-03-10

    We study the impact of the spectral dependence of the linear polarization rotation induced by an achromatic half-wave plate on measurements of cosmic microwave background polarization in the presence of astrophysical foregrounds. We focus on the systematic effects induced on the measurement of inflationary gravitational waves by uncertainties in the polarization and spectral index of Galactic dust. We find that for the experimental configuration and noise levels of the balloon-borne EBEX experiment, which has three frequency bands centered at 150, 250, and 410 GHz, a crude dust subtraction process mitigates systematic effects to below detectable levels for 10% polarized dust and tensor-to-scalar ratio of as low as r = 0.01. We also study the impact of uncertainties in the spectral response of the instrument. With a top-hat model of the spectral response for each band, characterized by band center and bandwidth, and with the same crude dust subtraction process, we find that these parameters need to be determined to within 1 and 0.8 GHz at 150 GHz; 9 and 2.0 GHz at 250 GHz; and 20 and 14 GHz at 410 GHz, respectively. The approach presented in this paper is applicable to other optical elements that exhibit polarization rotation as a function of frequency.

  10. A Hybrid Reflective/Refractive/Diffractive Achromatic Fiber-Coupled Radiation Resistant Imaging System for Use in the Spallation Neutron Source (SNS)

    SciTech Connect

    Maxey, L Curt; Ally, Tanya R; Brunson, Aly; Garcia, Frances; Goetz, Kathleen C; Hasse, Katelyn E; McManamy, Thomas J; Shea, Thomas J; Simpson, Marc Livingstone

    2011-01-01

    A fiber-coupled imaging system for monitoring the proton beam profile on the target of the Spallation Neutron Source was developed using reflective, refractive and diffractive optics to focus an image onto a fiber optic imaging bundle. The imaging system monitors the light output from a chromium-doped aluminum oxide (Al{sub 2}0{sub 3}:Cr) scintillator on the nose of the target. Metal optics are used to relay the image to the lenses that focus the image onto the fiber. The material choices for the lenses and fiber were limited to high-purity fused silica, due to the anticipated radiation dose of 10{sup 8} R. In the first generation system (which had no diffractive elements), radiation damage to the scintillator on the nose of the target significantly broadened the normally monochromatic (694 nm) spectrum. This created the need for an achromatic design in the second generation system. This was achieved through the addition of a diffractive optic for chromatic correction. An overview of the target imaging system and its performance, with particular emphasis on the design and testing of a hybrid refractive/diffractive high-purity fused silica imaging triplet, is presented.

  11. Color universal design: analysis of color category dependency on color vision type (3)

    NASA Astrophysics Data System (ADS)

    Kojima, Natsuki; Ichihara, Yasuyo G.; Ikeda, Tomohiro; Kamachi, Miyuki G.; Ito, Kei

    2012-01-01

    We report on the results of a study investigating the color perception characteristics of people with red-green color confusion. We believe that this is an important step towards achieving Color Universal Design. In Japan, approximately 5% of men and 0.2% of women have red-green confusion. The percentage for men is higher in Europe and the United States; up to 8% in some countries. Red-green confusion involves a perception of colors different from normal color vision. Colors are used as a means of disseminating clear information to people; however, it may be difficult to convey the correct information to people who have red-green confusion. Consequently, colors should be chosen that minimize accidents and that promote more effective communication. In a previous survey, we investigated color categories common to each color vision type, trichromat (C-type color vision), protan (P-type color vision) and deuteran (D-type color vision). In the present study, first, we conducted experiments in order to verify a previous survey of C-type color vision and P-type color vision. Next, we investigated color difference levels within "CIE 1976 L*a*b*" (the CIELAB uniform color space), where neither C-type nor P-type color vision causes accidents under certain conditions (rain maps/contour line levels and graph color legend levels). As a result, we propose a common chromaticity of colors that the two color vision types are able to categorize by means of color names common to C-type color vision. We also offer a proposal to explain perception characteristics of color differences with normal color vision and red-green confusion using the CIELAB uniform color space. This report is a follow-up to SPIE-IS & T / Vol. 7528 7528051-8 and SPIE-IS & T /vol. 7866 78660J-1-8.

  12. Stork Color Proofing Technology

    NASA Astrophysics Data System (ADS)

    Ekman, C. Frederick

    1989-04-01

    For the past few years, Stork Colorproofing B.V. has been marketing an analog color proofing system in Europe based on electrophoto-graphic technology it pioneered for the purpose of high resolution, high fidelity color imaging in the field of the Graphic Arts. Based in part on this technology, it will make available on a commercial basis a digital color proofing system in 1989. Proofs from both machines will provide an exact reference for the user and will look, feel, and behave in a reproduction sense like the printed press sheet.

  13. Colors on Jupiter

    NASA Technical Reports Server (NTRS)

    Owen, T.; Terrile, R. J.

    1981-01-01

    The colors present in the clouds of Jupiter at the time of the Voyager encounters are described as they appear in high resolution images. It is shown that latitude, altitude and dwelltime are all critical factors in determining which colors appear where, although the identities of the responsible chromophores remain unestablished. Simultaneous ground-based 5 micron observations are used to determine the relative altitudes of the cloud systems which are characterized as white clouds, tawny clouds, dark brown cloud belts, and blue-grey hot spots in equatorial regions. Correlations between cloud color and certain latitudes have been maintained for decades, which suggests the importance of the internal energy source.

  14. Colors and contact dermatitis.

    PubMed

    Bonamonte, Domenico; Foti, Caterina; Romita, Paolo; Vestita, Michelangelo; Angelini, Gianni

    2014-01-01

    The diagnosis of skin diseases relies on several clinical signs, among which color is of paramount importance. In this review, we consider certain clinical presentations of both eczematous and noneczematous contact dermatitis in which color plays a peculiar role orientating toward the right diagnosis. The conditions that will be discussed include specific clinical-morphologic subtypes of eczematous contact dermatitis, primary melanocytic, and nonmelanocytic contact hyperchromia, black dermographism, contact chemical leukoderma, and others. Based on the physical, chemical, and biologic factors underlying a healthy skin color, the various skin shades drawing a disease picture are thoroughly debated, stressing their etiopathogenic origins and histopathologic aspects.

  15. A new method for colors characterization of colored stainless steel using CIE and Munsell color systems

    NASA Astrophysics Data System (ADS)

    Ji, Keming; Xue, Yongqiang; Cui, Zixiang

    2015-09-01

    It is important to establish an accurate and comprehensive method of characterizing colors of colored stainless steel and understand the changing mechanism and the regularity of colors for the research, production and application of colored stainless steel. In this work, the method which combines reflectance-wavelength with both CIE and Munsell color systems is studied, the changing regularity of hue, brightness and saturation with increasing coloring potential differences is investigated, and the mechanism of color changing is discussed. The results show that by using this method the colors of colored stainless steel can be accurately and comprehensively characterized; with coloring potential differences and colored film thickness increasing, the peaks and troughs of the reflectance curves in visible region move toward long wave, causing the cyclically changing of hue and brightness; the amplitude of reflectance curves increases, resulting in growing of the saturation; the CIE 1931 coordinate curve of colors counterclockwise and cyclically changes around the equal energy light spot.

  16. Color Video Petrography.

    ERIC Educational Resources Information Center

    Nagle, Frederick

    1981-01-01

    Describes the production and use of color videocassettes with an inexpensive, conventional TV camera and an ordinary petrographic microscope. The videocassettes are used in optical mineralogy and petrology courses. (Author/WB)

  17. Copying and Coloring

    ERIC Educational Resources Information Center

    Kohl, Herb

    1977-01-01

    Investigates what appeals to students in using coloring books and whether they use them in imaginative ways. The intent was to use the information to develop creative book activities that interest and challenge students. (Author/RK)

  18. Phoenix Color Targets

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images of three Phoenix color targets were taken on sols 1 and 2 by the Surface Stereo Imager (SSI) on board the Phoenix lander. The bottom target was imaged in approximate color (SSI's red, green, and blue filters: 600, 530, and 480 nanometers), while the others were imaged with an infrared filter (750 nanometers). All of them will be imaged many times over the mission to monitor the color calibration of the camera. The two at the top show grains 2 to 3 millimeters in size that were likely lifted to the Phoenix deck during landing. Each of the large color chips on each target contains a strong magnet to protect the interior material from Mars' magnetic dust.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Colored Contact Lens Dangers

    MedlinePlus

    ... Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Sep. 26, 2013 It ... the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By ...

  20. Colors of the Sky.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Fraser, Alistair B.

    1985-01-01

    Explains the physical principles which result in various colors of the sky. Topics addressed include: blueness, mystical properties of water vapor, ozone, fluctuation theory of scattering, variation of purity and brightness, and red sunsets and sunrises. (DH)

  1. Chemistry, Color, and Art.

    ERIC Educational Resources Information Center

    Orna, Mary Virginia

    2001-01-01

    Describes pigments and artists' colors from a chronological perspective. Explains how chemical analysis can be used to distinguish the differences between artists' palettes, identify the evolution of art, and lead to restoration of an art work. (Contains 13 references.) (YDS)

  2. Color harmonization for images

    NASA Astrophysics Data System (ADS)

    Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei

    2011-04-01

    Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.

  3. Color of the ocean.

    PubMed

    Plass, G N; Humphreys, T J; Kattawar, G W

    1978-05-01

    The color of the ocean is calculated from a model that realistically takes into account the various types of scattering and absorption events that occur in both the atmosphere and ocean. Solar photons are followed through the atmosphere and into the ocean by a Monte Carlo technique. The reflection and refraction at the ocean surface are included in the calculation. The upward and downward flux is calculated at several different heights in the atmosphere, at thirteen different wavelengths from 0.4 mum to 0.7 mum. These results are compared with two approximate theories: (1) one-dimensional; (2) single scattering. The first of these theories gives results which are accurate within 10% in most cases and are easy to calculate. The chromaticity coordinates as well as the dominant wavelength and purity of the color are calculated from the Monte Carlo results for the variation of upward flux with wavelength. The ocean color near the horizon is almost entirely determined by the color of the sky reflected by the ocean surface. The upwelling light from the ocean can be observed near the nadir if precautions are taken to exclude as much light as possible reflected from the ocean surface. The color of this upwelling light from the ocean contains much information about the hydrosol, chlorophyll, and yellow substance amounts in the ocean water. The model calculations show how the ocean color changes from a deep blue of high purity for relatively pure water to a greenish blue and then to green of low purity as the cholorphyll and yellow substance amounts increase. Further increases in these substances cause the color to change to yellow green of a higher purity. A large increase in the hydrosol amount usually causes a marked decrease in the purity of the color.

  4. Color Laser Microscope

    NASA Astrophysics Data System (ADS)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  5. Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques

    PubMed Central

    Conway, Bevil R.; Kanwisher, Nancy G.

    2016-01-01

    The existence of color-processing regions in the human ventral visual pathway (VVP) has long been known from patient and imaging studies, but their location in the cortex relative to other regions, their selectivity for color compared with other properties (shape and object category), and their relationship to color-processing regions found in nonhuman primates remain unclear. We addressed these questions by scanning 13 subjects with fMRI while they viewed two versions of movie clips (colored, achromatic) of five different object classes (faces, scenes, bodies, objects, scrambled objects). We identified regions in each subject that were selective for color, faces, places, and object shape, and measured responses within these regions to the 10 conditions in independently acquired data. We report two key findings. First, the three previously reported color-biased regions (located within a band running posterior–anterior along the VVP, present in most of our subjects) were sandwiched between face-selective cortex and place-selective cortex, forming parallel bands of face, color, and place selectivity that tracked the fusiform gyrus/collateral sulcus. Second, the posterior color-biased regions showed little or no selectivity for object shape or for particular stimulus categories and showed no interaction of color preference with stimulus category, suggesting that they code color independently of shape or stimulus category; moreover, the shape-biased lateral occipital region showed no significant color bias. These observations mirror results in macaque inferior temporal cortex (Lafer-Sousa and Conway, 2013), and taken together, these results suggest a homology in which the entire tripartite face/color/place system of primates migrated onto the ventral surface in humans over the course of evolution. SIGNIFICANCE STATEMENT Here we report that color-biased cortex is sandwiched between face-selective and place-selective cortex on the bottom surface of the brain in humans

  6. Color-Blindness Study: Color Discrimination on the TICCIT System.

    ERIC Educational Resources Information Center

    Asay, Calvin S.; Schneider, Edward W.

    The question studied whether the specific seven TICCIT system colors used within color coding schemes can be a source of confusion, or not seen at all, by the color-blind segment of target populations. Subjects were 11 color-blind and three normally sighted students at Brigham Young University. After a preliminary training exercise to acquaint the…

  7. Color planner for designers based on color emotions

    NASA Astrophysics Data System (ADS)

    Cheng, Ka-Man; Xin, John H.; Taylor, Gail

    2002-06-01

    During the color perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is termed as 'color emotion.' The researchers in the field of color emotions have put many efforts in quantifying color emotions with the standard color specifications and evaluating the influence of hue, lightness and chroma to the color emotions of human beings. In this study, a color planner was derived according to these findings so that the correlation of color emotions and standard color specifications was clearly indicated. Since people of different nationalities usually have different color emotions as different cultural and traditional backgrounds, the subjects in this study were all native Hong Kong Chinese and the color emotion words were all written in Chinese language in the visual assessments. Through the color planner, the designers from different areas, no matter fashion, graphic, interior or web site etc., can select suitable colors for inducing target color emotions to the customers or product-users since different colors convey different meanings to them. In addition, the designers can enhance the functionality and increase the attractiveness of their designed products by selecting suitable colors.

  8. Color television system using single gun color cathode ray tube

    NASA Technical Reports Server (NTRS)

    Gaiser, E. E.; Hilborn, E. H.

    1970-01-01

    Two-primary color and single gun system provides quality differential color and variation in brightness for specific colors by varying current and controlling duty cycle of electron beam. Number of video amplifiers, deflection circuits, and guns required to display color TV picture is reduced and less complex tube is required.

  9. Color measurement and discrimination

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Theories of color measurement attempt to provide a quantative means for predicting whether two lights will be discriminable to an average observer. All color measurement theories can be characterized as follows: suppose lights a and b evoke responses from three color channels characterized as vectors, v(a) and v(b); the vector difference v(a) - v(b) corresponds to a set of channel responses that would be generated by some real light, call it *. According to theory a and b will be discriminable when * is detectable. A detailed development and test of the classic color measurement approach are reported. In the absence of a luminance component in the test stimuli, a and b, the theory holds well. In the presence of a luminance component, the theory is clearly false. When a luminance component is present discrimination judgements depend largely on whether the lights being discriminated fall in separate, categorical regions of color space. The results suggest that sensory estimation of surface color uses different methods, and the choice of method depends upon properties of the image. When there is significant luminance variation a categorical method is used, while in the absence of significant luminance variation judgments are continuous and consistant with the measurement approach.

  10. Toward a No-Reference Image Quality Assessment Using Statistics of Perceptual Color Descriptors.

    PubMed

    Lee, Dohyoung; Plataniotis, Konstantinos N

    2016-08-01

    Analysis of the statistical properties of natural images has played a vital role in the design of no-reference (NR) image quality assessment (IQA) techniques. In this paper, we propose parametric models describing the general characteristics of chromatic data in natural images. They provide informative cues for quantifying visual discomfort caused by the presence of chromatic image distortions. The established models capture the correlation of chromatic data between spatially adjacent pixels by means of color invariance descriptors. The use of color invariance descriptors is inspired by their relevance to visual perception, since they provide less sensitive descriptions of image scenes against viewing geometry and illumination variations than luminances. In order to approximate the visual quality perception of chromatic distortions, we devise four parametric models derived from invariance descriptors representing independent aspects of color perception: 1) hue; 2) saturation; 3) opponent angle; and 4) spherical angle. The practical utility of the proposed models is examined by deploying them in our new general-purpose NR IQA metric. The metric initially estimates the parameters of the proposed chromatic models from an input image to constitute a collection of quality-aware features (QAF). Thereafter, a machine learning technique is applied to predict visual quality given a set of extracted QAFs. Experimentation performed on large-scale image databases demonstrates that the proposed metric correlates well with the provided subjective ratings of image quality over commonly encountered achromatic and chromatic distortions, indicating that it can be deployed on a wide variety of color image processing problems as a generalized IQA solution.

  11. Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision.

    PubMed

    Melin, A D; Kline, D W; Hickey, C M; Fedigan, L M

    2013-06-28

    Efficient detection and selection of reddish fruits against green foliage has long been thought to be a major selective pressure favoring the evolution of primate trichromatic color vision. This has recently been questioned by studies of free-ranging primates that fail to show predicted differences in foraging efficiency between dichromats and trichromats. In the present study, we use a unique approach to evaluate the adaptive significance of trichromacy for fruit detection by undertaking a functional substitution model. The color vision phenotypes of neotropical monkeys are simulated for human observers, who use a touch-sensitive computer interface to search for monkey food items in digital images taken under natural conditions. We find an advantage to trichromatic phenotypes - especially the variant with the most spectrally separated visual pigments - for red, yellow and greenish fruits, but not for dark (purple or black) fruits. These results indicate that trichromat advantage is task-specific, and that shape, size and achromatic contrast variation between ripe and unripe fruits cannot completely mitigate the advantage of color vision. Similarities in fruit foraging performance between primates with different phenotypes in the wild likely reflect the behavioral flexibility of dichromats in overcoming a chromatic disadvantage.

  12. Color in Astronomy

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2002-05-01

    The vocabulary of astronomy is riddled with color terms. Stars are referred to as red or blue - even brown -- though rarely green. Astronomers say light from a star can be "blueshifted" or that it can be "reddened". Color, however, is not a simple one-dimensional physical parameter equal to wavelength or frequency. It is a complex, psychophysical phenomenon involving at least three degrees of freedom - hue, saturation and brightness -- as well as observational context. Nonetheless, many astronomers treat hue alone or hue plus saturation as the same thing as color. A recent report on "the color of the universe" is a case in point (Baldry and Glazebrook, Bull. Am. As. Soc., 34, No. 1, 571, 2002). Even discounting the authors' initial and (possibly) subsequent errors in arriving at a "color" associated with the composite spectrum derived from the 2dF Galaxy Redshift Survey (first reported as "pale turquoise", then "beige"), the method of viewing the light was left vague, and context is important. For example, consider the question "What color is the Moon?" When viewed from Earth, the Moon appears white against the black sky. Place a piece of "average" lunar material in a lighted room, and it will appear dark gray. To most human observers, the 2000 or so naked eye stars observable from the northern hemisphere all appear white, with the few exceptions which look reddish/orange such as Betelgeuse, Arcturus, Aldeberan, Antares and Pollux. Yet the dimmer double star companion to Alberio can appear bluish when viewed beside its much brighter yellowish/orange neighbor if both are viewed by eye through a small aperture, slightly defocused telescope. This presentation will explore several visual phenomena that can help clarify the concept of color in astronomy. Supported in part by NSF grant # DUE-9950551 for "Project LITE: Light Inquiry Through Experiments".

  13. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  14. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas.

  15. Color Memory of University Students: Influence of Color Experience and Color Characteristic

    ERIC Educational Resources Information Center

    Bynum, Carlisle; Epps, Helen H.; Kaya, Naz

    2006-01-01

    The ability to select a previously viewed color specimen from an array of specimens that differ in hue, value, or chroma varies among individuals, and may be related to one's basic color discrimination ability or to prior experience with color. This study investigated short-term color memory of 40 college students, 20 of whom were interior design…

  16. Precision of Synesthetic Color Matching Resembles That for Recollected Colors Rather than Physical Colors

    ERIC Educational Resources Information Center

    Arnold, Derek H.; Wegener, Signy V.; Brown, Francesca; Mattingley, Jason B.

    2012-01-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but "hearing" the name of a grapheme does not. This dissociation allowed us to…

  17. Color universal design: analysis of color category dependency on color vision type (4)

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomohiro; Ichihara, Yasuyo G.; Kojima, Natsuki; Tanaka, Hisaya; Ito, Kei

    2013-02-01

    This report is af ollow-up to SPIE-IS+T / Vol. 7528 7528051-8, SPIE-IS+T / Vol. 7866 78660J-1-8 and SPIE-IS+T / Vol. 8292 829206-1-8. Colors are used to communicate information in various situations, not just for design and apparel. However, visual information given only by color may be perceived differently by individuals with different color vision types. Human color vision is non-uniform and the variation in most cases is genetically linked to L-cones and M-cones. Therefore, color appearance is not the same for all color vision types. Color Universal Design is an easy-to-understand system that was created to convey color-coded information accurately to most people, taking color vision types into consideration. In the present research, we studied trichromat (C-type), prolan (P-type), and deutan (D-type) forms of color vision. We here report the result of two experiments. The first was the validation of the confusion colors using the color chart on CIELAB uniform color space. We made an experimental color chart (total of color cells is 622, the color difference between color cells is 2.5) for fhis experiment, and subjects have P-type or D-type color vision. From the data we were able to determine "the limits with high probability of confusion" and "the limits with possible confusion" around various basing points. The direction of the former matched with the theoretical confusion locus, but the range did not extend across the entire a* range. The latter formed a belt-like zone above and below the theoretical confusion locus. This way we re-analyzed a part of the theoretical confusion locus suggested by Pitt-Judd. The second was an experiment in color classification of the subjects with C-type, P-type, or D-type color vision. The color caps of fhe 100 Hue Test were classified into seven categories for each color vision type. The common and different points of color sensation were compared for each color vision type, and we were able to find a group of color caps

  18. PROCESS FOR COLORING DIAMONDS

    DOEpatents

    Dugdale, R.A.

    1960-07-19

    A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

  19. Color education in architecture

    NASA Astrophysics Data System (ADS)

    Unver, Rengin

    2002-06-01

    Architecture is an interdisciplinary profession that combines and uses the elements of various major fields such as humanities, social and physical sciences, technology and creative arts. The main aim of architectural education is to enable students acquire the skills to create designs sufficient both aesthetically and technically. The goals of the under graduate program can be summarized as; the information transfer on subjects and problems related to the application of the profession, the acquisition of relevant skills, and information on specialist subjects. Color is one of the most important design parameters every architect has to use. Architect candidates should be equipped in the field of color just as they are in other relevant subjects. This paper deals with the significance, goals, methods and the place of color education in the undergraduate program of architectural education.

  20. Adaptive color correction based on object color classification

    NASA Astrophysics Data System (ADS)

    Kotera, Hiroaki; Morimoto, Tetsuro; Yasue, Nobuyuki; Saito, Ryoichi

    1998-09-01

    An adaptive color management strategy depending on the image contents is proposed. Pictorial color image is classified into different object areas with clustered color distribution. Euclidian or Mahalanobis color distance measures, and maximum likelihood method based on Bayesian decision rule, are introduced to the classification. After the classification process, each clustered pixels are projected onto principal component space by Hotelling transform and the color corrections are performed for the principal components to be matched each other in between the individual clustered color areas of original and printed images.

  1. Light and Color

    NASA Astrophysics Data System (ADS)

    Overheim, R. Daniel; Wagner, David L.

    1982-08-01

    Equally valuable as a semester course for non-majors or an introduction for general readers, this text uses only a minimum of science and mathematical background to explain the physical principles of light. It emphasizes color: the properties of light and materials that give rise to it, how it is described and analyzed, how it is produced in nature, and how the eye sees it. Also discusses topics such as geometrical and wave optics and color phenomena, such as rainbows, that appear in nature. Learning aids include problems and exercises at the end of each chapter.

  2. The Colors of Saturn

    NASA Astrophysics Data System (ADS)

    DeVogel, Kayla; Chanover, Nancy; Thelen, Alexander

    2015-11-01

    Very little is known about the coloring agents, or chromophores, that color the clouds of Saturn’s belts and zones. Although the clouds of Saturn are more muted in their coloration and do not exhibit the more striking variations seen among Jupiter’s belts, zones, and cyclonic storm features, the physical processes that render Saturn’s clouds a yellowish hue are likely similar to those at work on Jupiter. Thus, a comprehensive color study that includes both Jupiter and Saturn is warranted to advance our understanding of chromophores in the giant planet atmospheres. Here we report on our efforts to characterize the colors of Saturn’s clouds.This study involves the analysis of two imaging data sets: those from Cassini’s Imaging Science Subsystem (ISS), and Wide Field Planetary Camera 2 images taken with the Hubble Space Telescope (HST). The HST data were acquired in 1994, 1998, 2002 and 2004 using eleven different filters spanning 255-973 nm. After the images were photometrically and geometrically calibrated, we used them to create low resolution spectra for six different latitude regions: the Equatorial Zone, the Equatorial Belt, the South Equatorial Belt, the South Temperate Zone, the South Temperate Belt and the South South Temperate Belt. The Cassini ISS images were acquired in 2004 and 2011 using twelve different filters spanning 258-938 nm, and corresponding low resolution spectra of the same latitude regions were generated using the ISS images. We compare these low resolution spectra to Saturn’s full-disk spectrum (Karkoschka, E., 1994, Icarus 111, 174) to examine colors of discrete latitudes versus the full-disk spectrum of Saturn. The extensive temporal coverage afforded by the combination of the HST and ISS images will enable us to explore possible seasonal variations in Saturn’s cloud colors. Finally, we examine the color evolution of the major 2011 storm on Saturn using the ISS data.This work was supported by the Discovery Scholars Program in

  3. Color constancy in Japanese animation

    NASA Astrophysics Data System (ADS)

    Ichihara, Yasuyo G.

    2006-01-01

    In this study, we measure the colors used in a Japanese Animations. The result can be seen on CIE-xy color spaces. It clearly shows that the color system is not a natural appearance system but an imagined and artistic appearance system. Color constancy of human vision can tell the difference in skin and hair colors between under moonlight and day light. Human brain generates a match to the memorized color of an object from daylight viewing conditions to the color of the object in different viewing conditions. For example, Japanese people always perceive the color of the Rising Sun in the Japanese flag as red even in a different viewing condition such as under moonlight. Color images captured by a camera cannot present those human perceptions. However, Japanese colorists in Animation succeeded in painting the effects of color constancy not only under moonlight but also added the memory matching colors. They aim to create a greater impact on viewer's perceptions by using the effect of the memory matching colors. In this paper, we propose the Imagined Japanese Animation Color System. This system in art is currently a subject of research in Japan. Its importance is that it could also provide an explanation on how human brain perceives the same color under different viewing conditions.

  4. An object-color space.

    PubMed

    Logvinenko, Alexander D

    2009-10-05

    Putting aside metaphorical meanings of the term, color space is understood as a vector space, where lights having the same color (i.e., subjectively indistinguishable) are represented as a point. The CIE 1931 color space, empirically based on trichromatic color measurements, is a classical example. Its derivatives, such as CIELAB and sRGB, have been successfully used in many applications (e.g., in color management). However, having been designed for presenting the color of self-luminous objects, these spaces are less suitable for presenting color of reflecting objects. Specifically, they can be used to represent color of objects only for a fixed illumination. Here I put forward a color space to represent the color of objects independently of illumination. It is based on an ideal color atlas comprising the reflectance spectra taking two values: k or 1 - k (0 < or = k < or = 1), with two transitions (at wavelengths lambda(1) and lambda(2)) across the spectrum. This color atlas is complete; that is, every reflecting object is metameric to some element of the atlas. When illumination alters, the classes of metameric reflectance spectra are reshuffled but in each class there is exactly one element of the atlas. Hence, the atlas can uniquely represent the metameric classes irrespective of illumination. Each element of the atlas (thus, object color) is specified by three numbers: (i) lambda = (lambda(1) + lambda(2))/2, which correlates well with hue of object color (as dominant wavelength correlates with hue of light color); (ii) delta =/lambda(1) - lambda/, which correlates with whiteness/blackness; and (iii) alpha =/1 - 2k/, which correlates with chroma of object color (as colorimetric purity correlates with saturation of light color). Using a geographical coordinate system, each element of the atlas (thus, each object color) is geometrically represented as a radius vector so that its length equals alpha, the latitude and longitude being proportional to delta and lambda

  5. A model for the simultaneous analysis of reflectance spectra and basis factors of Munsell color samples under D65 illumination in three-dimensional Euclidean space

    PubMed Central

    Romney, A. Kimball; Indow, Tarow

    2002-01-01

    In this paper we present the results of an analysis of the physically measured surface reflectance spectra of 360 matte Munsell chromatic color chips plus 10 flat achromatic vectors corresponding to Munsell value levels 10 (white) to 1 (near black) for a total sample size of 370. Each of the 370 spectra was multiplied by the spectral radiant power distribution of D65 light so that the final results represent the spectra of reflected light from Munsell color chips under D65 illumination. We simultaneously model the structure of the color chips and the spectra in a common three-dimensional Euclidean space, oriented to yield the most interpretable structure with respect of the Munsell color structure. In this orientation, axis 1 roughly corresponds to the mean power of the spectral reflectance (approximate Munsell value), axis 2 goes from Munsell red to blue-green, and axis 3 goes from Munsell green-yellow to purple. Basis factors for the spectra are also plotted against wavelength and Munsell hue. These plots have implications for theories of opponent processes. By plotting the chips and spectra in the same space we obtain virtually exact correspondences between the various Munsell hues and spectral values in nanometers for comparison to those obtained by previous researchers. Mathematical derivations are provided to validate the common Euclidean model. PMID:12161561

  6. Color Wheel Windows

    ERIC Educational Resources Information Center

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  7. Color Us American.

    ERIC Educational Resources Information Center

    Baldwin, Virginia; Hodges, Ethel

    A coloring book containing drawings and information on eight different countries is designed to help children obtain cultural understanding of themselves and other persons as individuals and as members of groups within our society. The countries presented are Poland/Germany, the Navajo Nation (Native American), China, Nigeria (Africa), Mexico,…

  8. Colorful Kindergarten Mice

    ERIC Educational Resources Information Center

    Bobick, Bryna; Wheeler, Elizabeth

    2008-01-01

    Developing kindergarten lessons can be very challenging, especially at the beginning of the school year when many students are just learning to cut paper and hold crayons. The author's favorite beginning unit of the year is "mice paintings," a practical introduction to drawing, color theory, and painting. This unit also incorporates children's…

  9. SATURN, IN NATURAL COLORS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided images of Saturn in many colors, from black-and-white, to orange, to blue, green, and red. But in this picture, image processing specialists have worked to provide a crisp, extremely accurate view of Saturn, which highlights the planet's pastel colors. Bands of subtle color - yellows, browns, grays - distinguish differences in the clouds over Saturn, the second largest planet in the solar system. Saturn's high-altitude clouds are made of colorless ammonia ice. Above these clouds is a layer of haze or smog, produced when ultraviolet light from the sun shines on methane gas. The smog contributes to the planet's subtle color variations. One of Saturn's moons, Enceladus, is seen casting a shadow on the giant planet as it passes just above the ring system. The flattened disk swirling around Saturn is the planet's most recognizable feature, and this image displays it in sharp detail. This is the planet's ring system, consisting mostly of chunks of water ice. Although it appears as if the disk is composed of only a few rings, it actually consists of tens of thousands of thin 'ringlets.' This picture also shows the two classic divisions in the ring system. The narrow Encke Gap is nearest to the disk's outer edge; the Cassini division, is the wide gap near the center. Scientists study Saturn and its ring system to gain insight into the birth of our solar system. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  10. Perfect Color Registration Realized.

    ERIC Educational Resources Information Center

    Lovedahl, Gerald G.

    1979-01-01

    Describes apparatus and procedures to design and construct a "printing box" as a graphic arts project to make color prints on T-shirts using photography, indirect and direct photo screen methods, and other types of stencils. Step-by-step photographs illustrate the process. (MF)

  11. Spas color camera

    NASA Technical Reports Server (NTRS)

    Toffales, C.

    1983-01-01

    The procedures to be followed in assessing the performance of the MOS color camera are defined. Aspects considered include: horizontal and vertical resolution; value of the video signal; gray scale rendition; environmental (vibration and temperature) tests; signal to noise ratios; and white balance correction.

  12. Structural Colors of Birds

    NASA Astrophysics Data System (ADS)

    Hall, Cecilia; Dushkina, Natalia

    2016-03-01

    Structural colors create iridescent colors in bird feathers. The goal is to understand why structural colors act the way they do in certain situations. The research conducted over the course of the fall semester was to understand the optical phenomenon producing colors in individual barbules. Through the use of a polarizing optical microscope, certain hypotheses were built to explain certain phenomenon. Using a dark field illumination involving light acting at wide angles in microscopy, the barbules were not affected by polarization. So it can be suggested that the barbules have certain characteristics, possibly internal, which prevents wide-angle polarization. More recently, it was found that the barbules, when stacked upon one another, create a discoloration at the cross over point. It can be suggested that the barbules act as thin films and create a situation of thin film interference. More data will be taken using the Scanning Electron Microscope as well as getting cross sectional data to help understand the internal characteristics of the barbules. From the support of the Neimeyer-Hodgson Grant, Chris Stull, and Millersville University of Pennsylvania.

  13. Color appearance in stereoscopy

    NASA Astrophysics Data System (ADS)

    Gadia, Davide; Rizzi, Alessandro; Bonanomi, Cristian; Marini, Daniele; Galmonte, Alessandra; Agostini, Tiziano

    2011-03-01

    The relationship between color and lightness appearance and the perception of depth has been studied since a while in the field of perceptual psychology and psycho-physiology. It has been found that depth perception affects the final object color and lightness appearance. In the stereoscopy research field, many studies have been proposed on human physiological effects, considering e.g. geometry, motion sickness, etc., but few has been done considering lightness and color information. Goal of this paper is to realize some preliminar experiments in Virtual Reality in order to determine the effects of depth perception on object color and lightness appearance. We have created a virtual test scene with a simple 3D simultaneous contrast configuration. We have created three different versions of this scene, each with different choices of relative positions and apparent size of the objects. We have collected the perceptual responses of several users after the observation of the test scene in the Virtual Theater of the University of Milan, a VR immersive installation characterized by a semi-cylindrical screen that covers 120° of horizontal field of view from an observation distance of 3.5 m. We present a description of the experiments setup and procedure, and we discuss the obtained results.

  14. Hupa Nature Coloring Book.

    ERIC Educational Resources Information Center

    Bennett, Ruth, Ed.; And Others

    Animals familiar to the northwest region of California where Hupa Indians reside are depicted in this coloring book which belongs to a series of materials developed to promote the use of the Hupa language. Each page contains a bold pen and ink drawing of an animal and the animal's name in the Unifon alphabet used for writing the Hupa language.…

  15. Color Counts, Too!

    ERIC Educational Resources Information Center

    Sewell, Julia H.

    1983-01-01

    Students with undetected color blindness can have problems with specific teaching methods and materials. The problem should be ruled out in children with suspected learning disabilities and taken into account in career counseling. Nine examples of simple classroom modifications are described. (CL)

  16. "Color-Blind" Racism.

    ERIC Educational Resources Information Center

    Carr, Leslie G.

    Examining race relations in the United States from a historical perspective, this book explains how the constitution is racist and how color blindness is actually a racist ideology. It is argued that Justice Harlan, in his dissenting opinion in Plessy v. Ferguson, meant that the constitution and the law must remain blind to the existence of race…

  17. Color Display Design Guide

    DTIC Science & Technology

    1978-10-01

    22 . 20 - MEAN/ALL COLORS/*. .. %.’ 18 -.-. YELLOW u- 16 . . RED /- ........ WHITE ൖ /- MAGENTA -,f 12 - / / CYAN ’"’- 10 /GREEN BLUE C= Ś S• l I I...Hawaii Laboratory P.O. Box 997 Kailua, Hawaii 96734 Attn: Dr. Ross L. Pepper Department of Psychology Panel Displays Incorporated Vanderbilt University

  18. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  19. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    PubMed

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  20. Using Single Colors and Color Pairs to Communicate Basic Tastes

    PubMed Central

    Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed. PMID:27698979

  1. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table IV. Table IV Color terms Black varieties Red varieties White varieties...

  2. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table IV. Table IV Color terms Black varieties Red varieties White varieties...

  3. Human preference for individual colors

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen E.; Schloss, Karen B.

    2010-02-01

    Color preference is an important aspect of human behavior, but little is known about why people like some colors more than others. Recent results from the Berkeley Color Project (BCP) provide detailed measurements of preferences among 32 chromatic colors as well as other relevant aspects of color perception. We describe the fit of several color preference models, including ones based on cone outputs, color-emotion associations, and Palmer and Schloss's ecological valence theory. The ecological valence theory postulates that color serves an adaptive "steering' function, analogous to taste preferences, biasing organisms to approach advantageous objects and avoid disadvantageous ones. It predicts that people will tend to like colors to the extent that they like the objects that are characteristically that color, averaged over all such objects. The ecological valence theory predicts 80% of the variance in average color preference ratings from the Weighted Affective Valence Estimates (WAVEs) of correspondingly colored objects, much more variance than any of the other models. We also describe how hue preferences for single colors differ as a function of gender, expertise, culture, social institutions, and perceptual experience.

  4. New computer-controlled color vision test

    NASA Astrophysics Data System (ADS)

    Ladunga, Karoly; Wenzel, Klara; Abraham, Gyorgy

    1999-12-01

    A computer controlled color discrimination test is described which enables rapid testing using selected colors from the color space of normal CRT monitors. We have investigated whether difference sin color discrimination between groups of normal and color deficient observers could be detected using a computer-controlled test of color vision. The test accurately identified the differences between the normal and color deficient groups. New color discrimination test have been developed to more efficiently evaluate color vision.

  5. Relating raw rice color and composition to cooked rice color.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  6. At-line cotton color measurements by portable color spectrophotometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  7. Reducing Color/Brightness Interaction in Color Television

    NASA Technical Reports Server (NTRS)

    Marchman, Robert H.

    1987-01-01

    Proposed digitally sampled scan-conversion scheme for color television reduces unwanted interactions between chrominance and luminance signals. New scheme reduces luminance and chrominance bandwidth to increase frequency separation between signals. To avoid proportionally reducing horizontal brightness resolution and horizontal color resolution, horizontal interlace of luminance signal and two color-difference signals used.

  8. How Safe Are Color Additives?

    MedlinePlus

    ... Home For Consumers Consumer Updates How Safe are Color Additives? Share Tweet Linkedin Pin it More sharing ... Consumer Updates RSS Feed Download PDF (380 K) Color additives give the red tint to your fruit ...

  9. Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients.

    PubMed

    Zhang, Peng; Wen, Wen; Sun, Xinghuai; He, Sheng

    2016-02-01

    Glaucoma is now viewed not just a disease of the eye but also a disease of the brain. The prognosis of glaucoma critically depends on how early the disease can be detected. However, early glaucomatous loss of the laminar functions in the human lateral geniculate nucleus (LGN) and superior colliculus (SC) remains difficult to detect and poorly understood. Using functional MRI, we measured neural signals from different layers of the LGN and SC, as well as from the early visual cortices (V1, V2 and MT), in patients with early-stage glaucoma and normal controls. Compared to normal controls, early glaucoma patients showed more reduction of response to transient achromatic stimuli than to sustained chromatic stimuli in the magnocellular layers of the LGN, as well as in the superficial layer of the SC. Magnocellular responses in the LGN were also significantly correlated with the degree of behavioral deficits to the glaucomatous eye. Finally, early glaucoma patients showed no reduction of fMRI response in the early visual cortex. These findings demonstrate that 'large cells' in the human LGN and SC suffer selective loss of response to transient achromatic stimuli at the early stage of glaucoma. Hum Brain Mapp 37:558-569, 2016. © 2015 Wiley Periodicals, Inc.

  10. Wetting in Color

    NASA Astrophysics Data System (ADS)

    Burgess, Ian Bruce

    Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. However, expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. In this thesis I present in detail the development of Wetting in Color Technology, focusing primarily on its application as an inexpensive and highly selective colorimetric indicator for organic liquids. The technology exploits chemically-encoded inverse-opal photonic crystals to control the infiltration of fluids to liquid-specific spatial patterns, projecting minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize structural color patterns. It is shown experimentally and corroborated with theoretical modeling using percolation theory that the high selectivity of wetting, upon-which the sensitivity of the indicator relies, is caused by the highly symmetric structure of our large-area, defect-free SiO2 inverse-opals. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid - naturally coupling the optical and fluidic responses. Surface modification protocols are developed, requiring only silanization and selective oxidation, to facilitate the deterministic design of an indicator that differentiates a broad range of liquids. The resulting tunable, built-in horizontal and vertical chemistry gradients allow the wettability threshold to be tailored to specific liquids across a continuous range, and make the readout rely only on countable color differences. As wetting is a generic fluidic phenomenon, Wetting in Color technology could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries. However, the generic nature of the response also ensures chemical non-specificity. It is shown

  11. Color correction using color-flow eigenspace model in color face recognition

    NASA Astrophysics Data System (ADS)

    Choi, JaeYoung; Ro, Yong Man

    2009-02-01

    We propose a new color correction approach which, as opposed to existing methods, take advantages of a given pair of two color face images (probe and gallery) in the color face recognition (FR) framework. In the proposed color correction method, the color-flow vector and color-flow eigenspace model are developed to generate color corrected probe images. The main contribution of this paper is threefold: 1) the proposed method can reliably compensate the non-linear photic variations imposed on probe face images comparing to traditional color correction techniques; 2) to the best of our knowledge, for the first time, we conduct extensive experiment studies to compare the effectiveness of various color correction methods to deal with photometrical distortions in probe images; 3) the proposed method can significantly enhance the recognition performance degraded by severely illuminant probe face images. Two standard face databases CMU PIE and XM2VTSDB were used to demonstrate the effectiveness of the proposed color correction method. The usefulness of the proposed method in the color FR is shown in terms of both absolute and comparative recognition performances against four traditional color correction solutions of White balance, Gray-world, Retinex, and Color-by-correlation.

  12. Characterization of color texture: color texture based sorting of tiles

    NASA Astrophysics Data System (ADS)

    Bourada, Y.; Lafon, Dominique; Eterradossi, O.

    1998-09-01

    Many materials used by the building industry show a color texture which affects the product commercial value. This texture can be seen as the spatial arrangement of regions of acceptable color differences. This work describes an appearance based automated sorting via color texture analysis, using ceramic tiles as example. Textural analysis of the tiles digital images expressed in CIEL*a*b* color system is performed through the analysis of intrinsic features of each region and relationships between regions. Results obtained through the automated process are compared to a visual sorting which leads to calculation of application dependant color and texture tolerances.

  13. Color Addition and Subtraction Apps

    ERIC Educational Resources Information Center

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  14. Astronomy with the Color Blind

    ERIC Educational Resources Information Center

    Smith, Donald A.; Melrose, Justyn

    2014-01-01

    The standard method to create dramatic color images in astrophotography is to record multiple black and white images, each with a different color filter in the optical path, and then tint each frame with a color appropriate to the corresponding filter. When combined, the resulting image conveys information about the sources of emission in the…

  15. Image indexing using color correlograms

    DOEpatents

    Huang, Jing; Kumar, Shanmugasundaram Ravi; Mitra, Mandar; Zhu, Wei-Jing

    2001-01-01

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  16. Unlocking the Color of White

    ERIC Educational Resources Information Center

    Sabiston, Duane

    2004-01-01

    In this article, the author describes that teaching students how to unlock the color of white is his passion. Like so many other art teachers, he struggled for years teaching color wheels and making value scales, only to be frustrated when students produced colorful charts and then made colorless paintings. He was teaching students how to mix…

  17. Typography, Color, and Information Structure.

    ERIC Educational Resources Information Center

    Keyes, Elizabeth

    1993-01-01

    Focuses on how typography and color complement and differ from each other in signaling an underlying content structure; the synergism between typography, color, and page layout (use of white space) that aids audience understanding and use; and the characteristics of typography and of color that are most important in these contexts. (SR)

  18. Can Coloring Mandalas Reduce Anxiety?

    ERIC Educational Resources Information Center

    Curry, Nancy A.; Kasser, Tim

    2005-01-01

    This study examined the effectiveness of different types of art activities in the reduction of anxiety. After undergoing a brief anxiety-induction, 84 undergraduate students were randomly assigned to color a mandala, to color a plaid form, or to color on a blank piece of paper. Results demonstrated that anxiety levels declined approximately the…

  19. Color-Video Thermal Maps

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Laren, C. A.; Tonis, W. T.

    1987-01-01

    Computer-simulation method produces color-video representation of temperatures in combustion-chamber wall. New method displays two-dimensional or three-dimensional temperature variation. Colors in display represent specific temperature ranges. Colors change to show changes in temperature with flow, pressure, heat flux, and other factors during startup, steady-state operation, and shutdown.

  20. Violating expectations of color order

    NASA Astrophysics Data System (ADS)

    Burling, Bil; Bender, Walter R.

    1996-04-01

    An exploration of emotion in color communication is presented in this paper. It begins with an outline of a proposed theory of emotion and a hypothesis of how color may induce emotion. A discussion follows that details what is essential in a color message to predict emotional responses. Experiments are described that might assist in validating the theory put forth in this paper.

  1. Nonlinearities and adaptation of color vision from sequential principal curves analysis.

    PubMed

    Laparra, Valero; Jiménez, Sandra; Camps-Valls, Gustavo; Malo, Jesús

    2012-10-01

    Mechanisms of human color vision are characterized by two phenomenological aspects: the system is nonlinear and adaptive to changing environments. Conventional attempts to derive these features from statistics use separate arguments for each aspect. The few statistical explanations that do consider both phenomena simultaneously follow parametric formulations based on empirical models. Therefore, it may be argued that the behavior does not come directly from the color statistics but from the convenient functional form adopted. In addition, many times the whole statistical analysis is based on simplified databases that disregard relevant physical effects in the input signal, as, for instance, by assuming flat Lambertian surfaces. In this work, we address the simultaneous statistical explanation of the nonlinear behavior of achromatic and chromatic mechanisms in a fixed adaptation state and the change of such behavior (i.e., adaptation) under the change of observation conditions. Both phenomena emerge directly from the samples through a single data-driven method: the sequential principal curves analysis (SPCA) with local metric. SPCA is a new manifold learning technique to derive a set of sensors adapted to the manifold using different optimality criteria. Here sequential refers to the fact that sensors (curvilinear dimensions) are designed one after the other, and not to the particular (eventually iterative) method to draw a single principal curve. Moreover, in order to reproduce the empirical adaptation reported under D65 and A illuminations, a new database of colorimetrically calibrated images of natural objects under these illuminants was gathered, thus overcoming the limitations of available databases. The results obtained by applying SPCA show that the psychophysical behavior on color discrimination thresholds, discount of the illuminant, and corresponding pairs in asymmetric color matching emerge directly from realistic data regularities, assuming no a priori

  2. Structural color in Myxomycetes.

    PubMed

    Inchaussandague, Marina; Skigin, Diana; Carmaran, Cecilia; Rosenfeldt, Sonia

    2010-07-19

    In this paper we report evidence of structural color in Myxomycetes, a group of eukaryotic microorganisms with an uncertain taxonomic position. We investigated the Diachea leucopoda, which belongs to the Physarales order, Myxomycetes class, and found that its peridium -protective layer that encloses the mass of spores- is basically a corrugated layer of a transparent material, which produces a multicolored pointillistic effect, characteristic of this species. Scanning (SEM) and transmission (TEM) electron microscopy techniques have been employed to characterize the samples. A simple optical model of a planar slab is proposed to calculate the reflectance. The chromaticity coordinates are obtained, and the results confirm that the color observed is a result of an interference effect.

  3. Color View of Ceres

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a NASA Hubble Space Telescope color image of Ceres, the largest object in the asteroid belt.

    Astronomers enhanced the sharpness in these Advanced Camera for Surveys images to bring out features on Ceres' surface, including brighter and darker regions that could be asteroid impact features. The observations were made in visible and ultraviolet light between December 2003 and January 2004.

    The colors represent the differences between relatively red and blue regions. These differences may simply be due to variation on the surface among different types of material.

    Ceres' round shape suggests that its interior is layered like those of terrestrial planets such as Earth. Ceres may have a rocky inner core, an icy mantle, and a thin, dusty outer crust inferred from its density and rotation rate of 9 hours. Ceres is approximately 590 miles (950 kilometers) across and was first discovered in 1801.

  4. 'Burns Cliff' Color Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Burns Cliff' Color Panorama (QTVR)

    NASA's Mars Exploration Rover Opportunity captured this view of 'Burns Cliff' after driving right to the base of this southeastern portion of the inner wall of 'Endurance Crater.' The view combines frames taken by Opportunity's panoramic camera between the rover's 287th and 294th martian days (Nov. 13 to 20, 2004).

    This is a composite of 46 different images, each acquired in seven different Pancam filters. It is an approximately true-color rendering generated from the panoramic camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The mosaic spans more than 180 degrees side to side. Because of this wide-angle view, the cliff walls appear to bulge out toward the camera. In reality the walls form a gently curving, continuous surface.

  5. Coloring the FITS Universe

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.

    2004-12-01

    A new, freely-available accessory for Adobe's widely-used Photoshop image editing software makes it much more convenient to produce presentable images directly from FITS data. It merges a fully-functional FITS reader with an intuitive user interface and includes fully interactive flexibility in scaling data. Techniques for producing attractive images from astronomy data using the FITS plugin will be presented, including the assembly of full-color images. These techniques have been successfully applied to producing colorful images for public outreach with data from the Hubble Space Telescope and other major observatories. Now it is much less cumbersome for students or anyone not experienced with specialized astronomical analysis software, but reasonably familiar with digital photography, to produce useful and attractive images.

  6. Coloring geographical threshold graphs

    SciTech Connect

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  7. Moon - False Color Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This false-color mosaic was constructed from a series of 53 images taken through three spectral filters by Galileo's imaging system as the spacecraft flew over the northern regions of the Moon on December 7, 1992. The part of the Moon visible from Earth is on the left side in this view. The color mosaic shows compositional variations in parts of the Moon's northern hemisphere. Bright pinkish areas are highlands materials, such as those surrounding the oval lava-filled Crisium impact basin toward the bottom of the picture. Blue to orange shades indicate volcanic lava flows. To the left of Crisium, the dark blue Mare Tranquillitatis is richer in titanium than the green and orange maria above it. Thin mineral-rich soils associated with relatively recent impacts are represented by light blue colors; the youngest craters have prominent blue rays extending from them. The Galileo project, whose primary mission is the exploration of the Jupiter system in 1995-97, is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory.

  8. Color on emergency mapping

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Qi, Qingwen; Zhang, An

    2007-06-01

    There are so many emergency issues in our daily life. Such as typhoons, tsunamis, earthquake, fires, floods, epidemics, etc. These emergencies made people lose their lives and their belongings. Every day, every hour, even every minute people probably face the emergency, so how to handle it and how to decrease its hurt are the matters people care most. If we can map it exactly before or after the emergencies; it will be helpful to the emergency researchers and people who live in the emergency place. So , through the emergency map, before emergency is occurring we can predict the situation, such as when and where the emergency will be happen; where people can refuge, etc. After disaster, we can also easily assess the lost, discuss the cause and make the lost less. The primary effect of mapping is offering information to the people who care about the emergency and the researcher who want to study it. Mapping allows the viewers to get a spatial sense of hazard. It can also provide the clues to study the relationship of the phenomenon in emergency. Color, as the basic element of the map, it can simplify and clarify the phenomenon. Color can also affects the general perceptibility of the map, and elicits subjective reactions to the map. It is to say, structure, readability, and the reader's psychological reactions can be affected by the use of color.

  9. Color vision of the budgerigar (Melopsittacus undulatus): hue matches, tetrachromacy, and intensity discrimination.

    PubMed

    Goldsmith, Timothy H; Butler, Byron K

    2005-10-01

    Budgerigars, Melopsittacus undulatus, were trained to discriminate monochromatic lights from mixtures of two comparison lights. The addition of small amounts of UV (365 nm) to blue or yellow lights dramatically changed the color for the birds. Hue matches showed the birds to be dichromatic both at long wavelengths (only P565 and P508 active) and at short wavelengths (only P370 and P445 active because of screening of P508 and P565 by cone oil droplets). In mid-spectrum (only P445 and P508 active), a hue match was achieved, but the results were more complicated because two opponent neural processes were activated. All observed hue matches were in quantitative agreement with calculations of relative quantum catch in the pairs of participating single cones and point to the presence of a minimum of three opponent neural processes. For the hue matches at mid- and short wavelengths, the calculations also predict peak values of absorbance of the cone oil droplets associated with P508 and P445. Relative intensity of the training light affected difficult matches at long but not short wavelengths, likely due to achromatic signals from the double cones. With suitable training, birds could make intensity discriminations at short wavelengths, where the double cones have diminished sensitivity.

  10. Printer model inversion by constrained optimization

    NASA Astrophysics Data System (ADS)

    Cholewo, Tomasz J.

    1999-12-01

    This paper describes a novel method for finding colorant amounts for which a printer will produce a requested color appearance based on constrained optimization. An error function defines the gamut mapping method and black replacement method. The constraints limit the feasible solution region to the device gamut and prevent exceeding the maximum total area coverage. Colorant values corresponding to in-gamut colors are found with precision limited only by the accuracy of the device model. Out-of- gamut colors are mapped to colors within the boundary of the device gamut. This general approach, used in conjunction with different types of color difference equations, can perform a wide range of out-of-gamut mappings such as chroma clipping or for finding colors on gamut boundary having specified properties. We present an application of this method to the creation of PostScript color rendering dictionaries and ICC profiles.

  11. Myoglobin chemistry and meat color.

    PubMed

    Suman, Surendranath P; Joseph, Poulson

    2013-01-01

    Consumers rely heavily on fresh meat color as an indicator of wholesomeness at the point of sale, whereas cooked color is exploited as an indicator of doneness at the point of consumption. Deviations from the bright cherry-red color of fresh meat lead to product rejection and revenue loss. Myoglobin is the sarcoplasmic heme protein primarily responsible for the meat color, and the chemistry of myoglobin is species specific. The mechanistic interactions between myoglobin and multiple extrinsic and intrinsic factors govern the color of raw as well as cooked meats. The objective of this review is to provide an overview of the current research in meat color and how the findings are applied in the meat industry. Characterizing the fundamental basis of myoglobin's interactions with biomolecules in postmortem skeletal muscles is necessary to interpret the chemistry of meat color phenomena and to engineer innovative processing strategies to minimize meat discoloration-induced revenue loss to the agricultural economy.

  12. Enriching tortoises: assessing color preference.

    PubMed

    Passos, Luiza F; Mello, Humberto Espirito Santo; Young, Robert John

    2014-01-01

    Environmental enrichment is a principle that is used to enhance the quality of care for nonhuman animals in captivity. To achieve this, it is necessary to understand the animal's needs. This study focused on color preference to provide food stimuli as a source of environmental enrichment for the tortoise, Chelonoidis denticulata. During this study, the stimuli green-, blue-, yellow-, and red-colored bananas and plaster blocks were randomly offered to the tortoises. Analysis of the data showed that the tortoises had a preference for the stimuli dyed with colors red and yellow over the other presented colors. It was possible to conclude that presenting food in different colors stimulated the animals to evaluate their environment and make choices in relation to their color preference. Thus, this experiment introduced an element of choice into their lives, beyond identifying color food preferences for the tortoises. The element of choice is known to be important to animal welfare.

  13. A series of color tunable yellow-orange-red-emitting SrWO4:RE (Sm3+, Eu3+-Sm3+) phosphor for near ultraviolet and blue light-based warm white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Ren, Yandong; Liu, Yonghao; Yang, Rui

    2016-03-01

    A series of wide-range-tunable light emissive SrWO4:Sm3+, SrWO4:Sm3+,Eu3+ phosphors were synthesized via the simple co-precipitation method. The charge compensation can greatly improve SrWO4: Sm3+ phosphors luminous intensity. The critical distance, ηT and energy transfer mechanism of SrWO4:0.01Sm3+,0.12Eu3+ were studied. These obtained phosphors exhibit a high luminous efficiency, purity and lower color temperature of the comfortable warm white LEDs. Hues varying have been generated by appropriately tuning the Sm3+ ions concentration, excitation wavelength or Sm3+, Eu3+ co-doping, which have the color tunable wide gamut light covering the yellow-green, greenish-yellow, yellow, yellow orange, orange, reddish orange and red chromaticity region. In particular, SrWO4:0.01Sm3+,0.12Eu3+ phosphors excited at 404 and 480 nm have higher color saturation than commercially available Y2O2S:Eu3+ red phosphor. These phosphors can be excited efficiently using commercial ultraviolet, blue laser diodes and LEDs, and can be used for developing new color light sources, fluorescent display devices, ultraviolet-sensors and tunable visible lasers.

  14. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  15. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  16. Achromatic orbital angular momentum generator

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W.

    2014-12-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed.

  17. Boosting color feature selection for color face recognition.

    PubMed

    Choi, Jae Young; Ro, Yong Man; Plataniotis, Konstantinos N

    2011-05-01

    This paper introduces the new color face recognition (FR) method that makes effective use of boosting learning as color-component feature selection framework. The proposed boosting color-component feature selection framework is designed for finding the best set of color-component features from various color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to facilitate the complementary effect of the selected color-component features for the purpose of color FR, they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the proposed method are impressively better than the results of other state-of-the-art color FR methods over different FR challenges including highly uncontrolled illumination, moderate pose variation, and small resolution face images.

  18. Computational color constancy using chromagenic filters in color filter arrays

    NASA Astrophysics Data System (ADS)

    Shrestha, Raju; Hardeberg, Jon Yngve

    2012-03-01

    We have proposed, in this paper, a new color constancy technique, an extension to the chromagenic color constancy. Chromagenic based illuminant estimation methods take two shots of a scene, one without and one with a specially chosen color filter in front of the camera lens. Here, we introduce chromagenic filters into the color filter array itself by placing them on top of R, G or B filters and replacing one of the two green filters in the Bayer's pattern with them. This allows obtaining two images of the same scene via demosaicking: a normal RGB image, and a chromagenic image, equivalent of RGB image with a chromagenic filter. The illuminant can then be estimated using chromagenic based illumination estimation algorithms. The method, we named as CFA based chromagenic color constancy (or 4C in short), therefore, does not require two shots and no registration issues involved unlike as in the other chromagenic based color constancy algorithms, making it more practical and useful computational color constancy method in many applications. Experiments show that the proposed color filter array based chromagenic color constancy method produces comparable results with the chromagenic color constancy without interpolation.

  19. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table...

  20. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table...

  1. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture....2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades of walnut skin color listed as color classifications....

  2. 7 CFR 51.892 - Color terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color terms. 51.892 Section 51.892 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.892 Color terms. The color terms well colored, reasonably well colored, and fairly well colored are defined in Table...

  3. 7 CFR 51.2276 - Color chart.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color chart. 51.2276 Section 51.2276 Agriculture....2276 Color chart. The color chart (USDA Walnut Color Chart) to which reference is made in §§ 51.2281 and 51.2282 illustrates the four shades of walnut skin color listed as color classifications....

  4. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    PubMed

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  5. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus.

    PubMed

    Vergara, P; Fargallo, J A; Martínez-Padilla, J

    2015-01-01

    Knowledge of the genetic basis of sexual ornaments is essential to understand their evolution through sexual selection. Although carotenoid-based ornaments have been instrumental in the study of sexual selection, given the inability of animals to synthesize carotenoids de novo, they are generally assumed to be influenced solely by environmental variation. However, very few studies have directly estimated the role of genes and the environment in shaping variation in carotenoid-based traits. Using long-term individual-based data, we here explore the evolutionary potential of a dynamic, carotenoid-based ornament (namely skin coloration), in male and female common kestrels. We first estimate the amount of genetic variation underlying variation in hue, chroma and brightness. After correcting for sex differences, the chroma of the orange-yellow eye ring coloration was significantly heritable (h2±SE=0.40±0.17), whereas neither hue (h2=0) nor brightness (h2=0.02) was heritable. Second, we estimate the strength and shape of selection acting upon chromatic (hue and chroma) and achromatic (brightness) variation and show positive and negative directional selection on female but not male chroma and hue, respectively, whereas brightness was unrelated to fitness in both sexes. This suggests that different components of carotenoid-based signals traits may show different evolutionary dynamics. Overall, we show that carotenoid-based coloration is a complex and multifaceted trait. If we are to gain a better understanding of the processes responsible for the generation and maintenance of variation in carotenoid-based coloration, these complexities need to be taken into account.

  6. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning.

    PubMed

    Lichtenstein, Leonie; Sommerlandt, Frank M J; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.

  7. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    PubMed Central

    Lichtenstein, Leonie; Sommerlandt, Frank M. J.; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation. PMID:26230643

  8. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground-Background Color Combinations.

    PubMed

    Woods, Andy T; Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined.

  9. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground–Background Color Combinations

    PubMed Central

    Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined. PMID:27708752

  10. Tree Colors: Color Schemes for Tree-Structured Data.

    PubMed

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  11. False Color Bands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it.

    Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Spatial processing in color reproduction

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yang, Yongyi; Stark, Henry

    2005-08-01

    We consider the reproduction of color subject to material and neighborhood constraints. By 'material constraints,' we mean any constraints that are applied to the amount of ink, lights, voltages, and currents that are used in the generation of color. In the first instance we consider the problem of reproducing a target color constrained by maximum additive color signals, such as in the phosphorescence process in a cathode ray tube. In the second instance we consider the more difficult problem of reproducing color subject to constraints on the maximum primary color variations in a (spatial) neighborhood. We introduce the idea of adjacent color variance (ACV) and then attempt to reproduce colors subject to an upper bound on the ACV. An algorithm that is suitable for this task is the method of vector space projections (VSP). In order to use VSP for constrained color reproduction, we use a novel approach to linearize nonlinear CIE-Lab space constraints. Experimental results are furnished that demonstrate that using the ACV as a bound helps to reduce reproduction artifacts in a color image.

  13. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  14. The Computation of Color

    DTIC Science & Technology

    1989-09-01

    reviews 14 cases of achromatopsia due to cerebral lesions, the earliest being MacKay and Dunlop’s of 1899 [69], the latest one of his own (1974). All but...Meadows [81] and Damasio et. al. [20] note, this is supported by the fact that prosopagnosia and achromatopsia may occur independently of each other... achromatopsia in a patient (C. B.) who suffered occipital lobe damage in an auto accident. C.B.’s color perception is "grossly impaired," as evidenced by

  15. Color measurement and discrimination

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    The present investigation is concerned with new results which show that for test lights with slow temporal modulations, and thus little effect on the luminance system, the vector-difference hypothesis represents an adequate characterization of discrimination data. It is pointed out that for certain experimental conditions color measurements can be successfully extended to include a difference measure which predicts the discriminability of pairs of lights. When discrimination depends principally on opponent-channel responses, discrimination thresholds can be predicted from the detection contour alone. Attention is given to discriminations with a 6-Hz Gabor function, the categorization of stimulus regions, and the nature of the visual mechanisms.

  16. Displaying Colors of Specified Chrominance on a Color Graphics Display.

    DTIC Science & Technology

    1982-12-01

    coordinates (such as Commission Internationale de l’Eclairage CIEXYZ coordinates). This report contains the description of a procedure for displaying...colors of known chrominance as specified by CIEXYZ coordinates. The procedure makes use of models of a color graphics system intensity (bits) to lumi...coordinates (e.g., CIELUV -1976 CT contrast equations as described in Robertson, 1977). Thus, the results of most efforts to specify a set of colors to

  17. Simultaneous brightness and apparent depth from true colors on grey: Chevreul revisited.

    PubMed

    Dresp-Langley, Birgitta; Reeves, Adam

    2012-01-01

    We show that true colors as defined by Chevreul (1839) produce unsuspected simultaneous brightness induction effects on their immediate grey backgrounds when these are placed on a darker (black) general background surrounding two spatially separated configurations. Assimilation and apparent contrast may occur in one and the same stimulus display. We examined the possible link between these effects and the perceived depth of the color patterns which induce them as a function of their luminance contrast. Patterns of square-shaped inducers of a single color (red, green, blue, yellow, or grey) were placed on background fields of a lighter and a darker grey, presented on a darker screen. Inducers were always darker on one side of the display and brighter on the other in a given trial. The intensity of the grey backgrounds varied between trials only. This permitted generating four inducer luminance contrasts, presented in random order, for each color. Background fields were either spatially separated or consisted of a single grey field on the black screen. Experiments were run under three environmental conditions: dark-adaptation, daylight, and rod-saturation after exposure to bright light. In a first task, we measured probabilities of contrast, assimilation, and no effect in a three-alternative forced-choice procedure (background appears brighter on the 'left', on the 'right' or the 'same'). Visual adaptation and inducer contrast had no significant influence on the induction effects produced by colored inducers. Achromatic inducers produced significantly stronger contrast effects after dark-adaptation, and significantly stronger assimilation in daylight conditions. Grouping two backgrounds into a single one was found to significantly decrease probabilities of apparent contrast. Under the same conditions, we measured probabilities of the inducers to be perceived as nearer to the observer (inducers appear nearer on 'left', on 'right' or the 'same'). These, as predicted by

  18. Human preferences for colorful birds: Vivid colors or pattern?

    PubMed

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  19. Note on color preference and color vision test performance.

    PubMed

    Buckalew, L W; Buckalew, N M; Ross, S

    1989-12-01

    The incidence of color deficient vision was investigated using the Pseudo-Isochromatic Plates on a relatively large and representative group. In the sample of 112 adults aged 20 to 80 yr. and comprised of 53% women and 12% minorities, 8% of men and 3% of women were color deficient. Over-all performance indicated no effects for sex or race. Nearly half of the plates were nondiscriminating among sex, minority/majority, and "normal" and "defective" color vision groups. Named color preferences within the "normal" group strongly favored blues and reflected no sex differences.

  20. Color adaptation induced from linguistic description of color

    PubMed Central

    Zheng, Liling; Huang, Ping; Zhong, Xiao; Li, Tianfeng; Mo, Lei

    2017-01-01

    Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience. PMID:28358807