Science.gov

Sample records for achromatic contrast sensitivity

  1. Behavioural and electrophysiological chromatic and achromatic contrast sensitivity in an achromatopsic patient.

    PubMed Central

    Heywood, C A; Nicholas, J J; Cowey, A

    1996-01-01

    OBJECTIVES--In cases of incomplete achromatopsia it is unclear whether residual visual function is mediated by intact striate cortex or results from incomplete lesions to extrastriate cortical visual areas. A patient with complete cerebral achromatopsia was tested to establish the nature of his residual vision and to determine the integrity of striate cortex function. METHODS--Behavioural contrast sensitivity, using the method of adjustment, and averaged visually evoked cortical potentials were measured to sinusoidally modulated chromatic and achromatic gratings in an achromatopsic patient and a normal observer. Eye movements were measured in the patient using a Skalar infrared monitoring system. RESULTS--The patient's chromatic contrast sensitivity was normal, indicating that despite his dense colour blindness his occipital cortex still processed information about spatial variations in hue. His sensitivity to achromatic gratings was depressed particularly at high spatial frequencies, possibly because of his jerk nystagmus. These behavioural results were reinforced by the nature of visually evoked responses to chromatic and achromatic gratings, in which total colour blindness coexisted with an almost normal cortical potential to isoluminant chromatic gratings. CONCLUSIONS--The results show that information about chromatic contrast is present in some cortical areas, and coded in a colour-opponent fashion, in the absence of any perceptual experience of colour. PMID:8648330

  2. Measurements of achromatic and chromatic contrast sensitivity functions for an extended range of adaptation luminance

    NASA Astrophysics Data System (ADS)

    Kim, Kil Joong; Mantiuk, Rafal; Lee, Kyoung Ho

    2013-03-01

    Inspired by the ModelFest and ColorFest data sets, a contrast sensitivity function was measured for a wide range of adapting luminance levels. The measurements were motivated by the need to collect visual performance data for natural viewing of static images at a broad range of luminance levels, such as can be found in the case of high dynamic range displays. The detection of sine-gratings with Gaussian envelope was measured for achromatic color axis (black to white), two chromatic axes (green to red and yellow-green to violet) and two mixed chromatic and achromatic axes (dark-green to light-pink, and dark yellow to light-blue). The background luminance varied from 0.02 to 200 cd/m2. The spatial frequency of the gratings varied from 0.125 to 16 cycles per degree. More than four observers participated in the experiments and they individually determined the detection threshold for each stimulus using at least 20 trials of the QUEST method. As compared to the popular CSF models, we observed higher sensitivity drop for higher frequencies and significant differences in sensitivities in the luminance range between 0.02 and 2 cd/m2. Our measurements for chromatic CSF show a significant drop in sensitivity with luminance, but little change in the shape of the CSF. The drop of sensitivity at high frequencies is significantly weaker than reported in other studies and assumed in most chromatic CSF models.

  3. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception.

  4. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution.

    PubMed

    Baden, Tom; Schubert, Timm; Chang, Le; Wei, Tao; Zaichuk, Mariana; Wissinger, Bernd; Euler, Thomas

    2013-12-01

    For efficient coding, sensory systems need to adapt to the distribution of signals to which they are exposed. In vision, natural scenes above and below the horizon differ in the distribution of chromatic and achromatic features. Consequently, many species differentially sample light in the sky and on the ground using an asymmetric retinal arrangement of short- (S, "blue") and medium- (M, "green") wavelength-sensitive photoreceptor types. Here, we show that in mice this photoreceptor arrangement provides for near-optimal sampling of natural achromatic contrasts. Two-photon population imaging of light-driven calcium signals in the synaptic terminals of cone-photoreceptors expressing a calcium biosensor revealed that S, but not M cones, preferred dark over bright stimuli, in agreement with the predominance of dark contrasts in the sky but not on the ground. Therefore, the different cone types do not only form the basis of "color vision," but in addition represent distinct (achromatic) contrast-selective channels.

  5. Signals for color and achromatic contrast in the goldfish inner retina.

    PubMed

    Burkhardt, Dwight A

    2014-11-01

    A moving stimulus paradigm was designed to investigate color contrast encoding in the retina. Recently, this paradigm yielded suggestive evidence for color contrast encoding in zebrafish but the significance and generality remain uncertain since the properties of color coding in the zebrafish inner retina are largely unknown. Here, the question of color contrast is pursued in the goldfish retina where there is much accumulated evidence for retinal mechanisms of color vision and opponent color-coding, in particular. Recordings of a sensitive local field potential of the inner retina, the proximal negative response, were made in the intact, superfused retina in the light-adapted state. Responses to color contrast and achromatic contrast were analyzed by comparing responses to a green moving bar on green versus red backgrounds. The quantitative form of the irradiance/response curves was distinctly different under a range of conditions in 32 retinas, thereby providing robust evidence for red-green color contrast. The color contrast is based on successive contrast, occurs in the absence of overt color opponency, and clearly differs from previous findings in the goldfish retina for simultaneous color contrast mediated by color-opponent neurons. The form of the irradiance/response curves suggests that successive color contrast is particularly important when achromatic contrast is low, as often occurs in natural environments. The present results provide a parallel with the well-known principle of human color vision, first proposed by Kirschmann as the third law of color contrast, and may also have implications for the evolution of vertebrate color vision.

  6. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.

    PubMed

    Lutze, Margaret; Pokorny, Joel; Smith, Vivianne C

    2006-01-01

    The PC pathway conveys both chromatic and achromatic information, with PC neurons being more responsive to chromatic (L-M) than to achromatic (L+M) stimuli. In considering the evolution of color vision, it has been suggested that the dynamic range of chromatic PC-pathway processing is tuned to the chromatic content of the natural environment. Anomalous trichromats, with reduced separation of their L- and M-cone spectral sensitivities, have diminished chromatic input to PC-pathway cells. Dichromats, with absent L or M cones, should have no chromatic input to PC-pathway cells. Therefore, the PC-pathway dynamic range of color defectives should be released from any constraint imposed by the chromatic environment. Here we ask whether this results in compensatory enhancement of achromatic PC-pathway processing in color defectives. This study employed a psychophysical method designed to isolate PC-pathway processing using achromatic stimuli. In a pulsed-pedestal condition, a four-square stimulus array appeared within a uniform surround. During a trial, one of the test squares differed from the other three, and the observer's task was to choose the square that was different. A four-alternative, forced-choice method was used to determine thresholds as a function of the contrast of the four-square array to the surround. Seven color defective and four normal observers participated. Results showed no systematic differences between normals and color defectives. There was no enhancement of achromatic processing as compensation for reduced chromatic processing in the PC-pathway system in color defectives. From physiological recordings, PC-pathway achromatic contrast gains of dichromatic and trichromatic New World primates and trichromatic Old World macaques have also been shown to be similar to each other. Our study and the animal studies imply that PC-pathway contrast gain parameters were regulated by factors other than the environmental chromaticity gamut, and may have arisen

  7. Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color.

    PubMed

    Werner, J S; Walraven, J

    1982-01-01

    Two superposed annular test lights of complementary spectral composition were presented as 60-90' incremental test flashes on 480' steady backgrounds. Two observers adjusted the ratio of the two test lights to maintain an achromatic appearance under conditions of adaptation that varied with respect to background luminance, chromaticity and stimulus contrast. The shift in chromaticity of the achromatic point was in the direction of the chromaticity of the background, while the magnitude of the shift increased as an increasing function of background luminance and as a decreasing function of contrast. These data confirm and extend a model of chromatic adaptation that has the following properties: (1) non-additivity of transient test and steady background fields, in the sense that the background, although physically adding to the test flash, only affects its hue by way of altering the gain of cone pathways; (2) Vos-Walraven cone spectral sensitivities; and (3) adaptation sites in the cone pathways having the same action spectra as Stiles' pi 5, pi 4 and (modified) pi 1 mechanisms, and which generate receptor-specific attenuation factors (von Kries Coefficients) according to Stiles' generalized threshold vs intensity function, zeta (x).

  8. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.

    PubMed

    Lutze, Margaret; Pokorny, Joel; Smith, Vivianne C

    2006-01-01

    The PC pathway conveys both chromatic and achromatic information, with PC neurons being more responsive to chromatic (L-M) than to achromatic (L+M) stimuli. In considering the evolution of color vision, it has been suggested that the dynamic range of chromatic PC-pathway processing is tuned to the chromatic content of the natural environment. Anomalous trichromats, with reduced separation of their L- and M-cone spectral sensitivities, have diminished chromatic input to PC-pathway cells. Dichromats, with absent L or M cones, should have no chromatic input to PC-pathway cells. Therefore, the PC-pathway dynamic range of color defectives should be released from any constraint imposed by the chromatic environment. Here we ask whether this results in compensatory enhancement of achromatic PC-pathway processing in color defectives. This study employed a psychophysical method designed to isolate PC-pathway processing using achromatic stimuli. In a pulsed-pedestal condition, a four-square stimulus array appeared within a uniform surround. During a trial, one of the test squares differed from the other three, and the observer's task was to choose the square that was different. A four-alternative, forced-choice method was used to determine thresholds as a function of the contrast of the four-square array to the surround. Seven color defective and four normal observers participated. Results showed no systematic differences between normals and color defectives. There was no enhancement of achromatic processing as compensation for reduced chromatic processing in the PC-pathway system in color defectives. From physiological recordings, PC-pathway achromatic contrast gains of dichromatic and trichromatic New World primates and trichromatic Old World macaques have also been shown to be similar to each other. Our study and the animal studies imply that PC-pathway contrast gain parameters were regulated by factors other than the environmental chromaticity gamut, and may have arisen

  9. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  10. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].

    PubMed

    Göbel, K; Erb, C

    2013-02-01

    The early detection of functional glaucoma damage plays an increasingly more central role in the diagnosis and treatment of glaucoma disease. Using selective perimetry detection of early glaucomatous defects is more likely and one of these methods is flicker perimetry with Pulsar. Flicker perimetry is used to analyze the temporal visual function in combination with spatial resolution and contrast sensitivity as opposed to standard automated perimetry which measures the differential light sensitivity with a non-specific stimulus. This study showed a higher sensitivity and specificity of Pulsar perimetry in comparison to achromatic perimetry in glaucoma patients.

  11. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].

    PubMed

    Göbel, K; Erb, C

    2013-02-01

    The early detection of functional glaucoma damage plays an increasingly more central role in the diagnosis and treatment of glaucoma disease. Using selective perimetry detection of early glaucomatous defects is more likely and one of these methods is flicker perimetry with Pulsar. Flicker perimetry is used to analyze the temporal visual function in combination with spatial resolution and contrast sensitivity as opposed to standard automated perimetry which measures the differential light sensitivity with a non-specific stimulus. This study showed a higher sensitivity and specificity of Pulsar perimetry in comparison to achromatic perimetry in glaucoma patients. PMID:23338528

  12. The Role of Contrast in the Perception of Achromatic Transparency: Comment on Singh and Anderson (2002) and Anderson (2003)

    ERIC Educational Resources Information Center

    Albert, Marc K.

    2008-01-01

    M. Singh and B. L. Anderson proposed a perceptual theory of achromatic transparency in which the perceived transmittance of a perceived transparent filter is determined by the ratio of the Michelson contrast seen in the region of transparency to that of the background seen directly. Subsequently, B. L. Anderson, M. Singh, and J. Meng proposed that…

  13. [Contrast sensitivity in glaucoma].

    PubMed

    Bartos, D

    1989-05-01

    Author reports on results of the contrast sensitivity examinations using the Cambridge low-contrast lattice test supplied by Clement Clarke International LTD, in patients with open-angle glaucoma and ocular hypertension. In glaucoma patients there was observed statistically significant decrease of the contrast sensitivity. In patients with ocular hypertension decrease of the contrast sensitivity was in patients affected by corresponding changes of the visual field and of the optical disc. The main advantages of the Cambridge low-contrast lattice test were simplicity, rapidity and precision of its performance. PMID:2743444

  14. The spatial tuning of achromatic and chromatic vision in budgerigars.

    PubMed

    Lind, Olle; Kelber, Almut

    2011-01-01

    Birds are assumed to use half of their cones (double cones) to detect fine spatial detail while their other half (single cones) is used for color vision. However, the spatial resolution of the color pathway in birds has never been studied. We determined the spatial contrast sensitivity to achromatic and isoluminant red-green and blue-green color gratings in budgerigars (Melopsittacus undulatus). Contrast sensitivity to achromatic gratings has band-pass characteristics while that for red-green and blue-green gratings has low-pass properties. Maximum sensitivity is lower to blue-green than to red-green gratings and the acuity for both color gratings is less than half (ca. 4.5 cycles/degree) of that for achromatic gratings (ca. 10 cycles/degree). This suggests that achromatic vision in birds, as in humans and bees, is tuned for detecting fine detail while chromatic vision is tuned for viewing larger fields. Similar to humans, blue-sensitive cones contribute little to spatial vision. Moreover, budgerigars detected gratings having both achromatic and chromatic contrasts more reliably at high spatial frequencies than gratings with either of these contrasts, suggesting that the single and double cone pathways are incompletely separated. The study demonstrates the importance of the spatial dimension of color vision; fine patterns remain unresolved even if they present large color contrasts. PMID:21636524

  15. Importance of achromatic contrast in short-range fruit foraging of primates.

    PubMed

    Hiramatsu, Chihiro; Melin, Amanda D; Aureli, Filippo; Schaffner, Colleen M; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a 'red-green' chromatic channel in addition to luminance and 'blue-yellow' channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  16. Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    PubMed Central

    Hiramatsu, Chihiro; Melin, Amanda D.; Aureli, Filippo; Schaffner, Colleen M.; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  17. Measurement of visual contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Vongierke, H. E.; Marko, A. R.

    1985-04-01

    This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.

  18. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-06-13

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation.

  19. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas.

  20. The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin.

    PubMed

    Bruno, Nicola; Martani, Margherita; Corsini, Claudia; Oleari, Claudio

    2013-12-01

    Recent literature suggests that individuals may consume less food when this is served on red plates. We explored this intriguing effect in three experiments. Independent groups of participants were presented with constant amounts of popcorns, chocolate chips, or moisturizing cream, on red, blue, or white plates. They were asked to sample the foods (by tasting them) or the cream (by rubbing it on the hand and forearm) as they wished and to complete mock "sensory analysis" questionnaires. Results confirmed that red plates reduce taste-related consumption and extended this effect to the touch-related consumption of moisturizing cream. Suggesting that the effect was not due to a decrease in the consciously experienced appeal of products on red plates, overall appreciation of the foods or cream did not differ according to plate color. After careful photometric measures of the materials used for each food-plate pairing, we determined that food and cream consumption was not predicted by Michelson (achromatic) contrast. Although the origin of the intriguing effect of the color red on consumption remains unclear, our results may prove useful to future potential explanations. PMID:23999521

  1. Multi-step contrast sensitivity gauge

    SciTech Connect

    Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E

    2014-10-14

    An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.

  2. [Effect of cataract surgery on contrast sensitivity].

    PubMed

    Skorkovská, S; Masková, Z; Synek, S

    2001-03-01

    The authors examined in a group of patients with cataract the visual acuity on Snellen's optotypes and contrast sensitivity using Pelli-Robson's test before cataract surgery and after cataract extraction and implantation of an intraocular lens. A VF-7 questionnaire was used for subjective evaluation of the result of surgery. The values of contrast sensitivity of the pseudophakic eyes were compared with the contrast sensitivity of eyes of a age-matched control group with a natural lens. After cataract surgery and lens implantation highly significant improvement of visual acuity of the operated eye was recorded. There was also significant improvement of binocular contrast sensitivity in the study group. The authors did not detect a significant difference of the contrast sensitivity of eyes with a PMMA lens and eyes with a silicone lens. There was no significant difference in the contrast sensitivity of pseudophakic eyes and phakic eyes of the control group. The CF-7 questionnaire revealed that cataract surgery led to significant improvement of the investigated visual activities, as apparent from the subjective evaluation by the patients. However, no significant correlation was found between objective (contrast sensitivity) and subjective (VF-7 questionnaire) evaluation of cataract surgery. Only one question in the questionnaire correlated significantly with contrast sensitivity. The authors found a significant reduction of contrast sensitivity caused by an altered transparency of the lens. The decline of contrast sensitivity in eyes with cataract and relatively good vision on Snellen's optotypes is the cause of some subjective complaints of the patients and may be an important factor in indication of cataract surgery of eyes with a relatively good visual acuity.

  3. Impact of adaptation time on contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Apelt, Dörte; Strasburger, Hans; Klein, Jan; Preim, Bernhard

    2010-02-01

    For softcopy-reading of mammograms, a room illuminance of 10 lx is recommended in standard procedures. Room illuminance affects both the maximal monitor contrast and the global luminance adaptation of the visual system. A radiologist observer has to adapt to low luminance levels, when entering the reading room. Since the observer's sensitivity to low-contrast patterns depends on adaptation state and processes, it would be expected that the contrast sensitivity is lower at the beginning of a reading session. We investigated the effect of an initial time of dark adaptation on the contrast sensitivity. A study with eight observers was conducted in the context of mammographic softcopy-reading. Using Gabor patterns with varying spatial frequency, orientation, and contrast level as stimuli in an orientation discrimination task, the intra-observer contrast sensitivity was determined for foveal vision. Before performing the discrimination task, the observers adapted for two minutes to an average illuminance of 450 lx. Thereafter, contrast thresholds were repeatedly measured at 10 lx room illuminance over a course of 15 minutes. The results show no significant variations in contrast sensitivity during the 15 minutes period. Thus, it can be concluded that taking an initial adaptation time does not affect the perception of lowcontrast objects in mammographic images presented in the typical softcopy-reading environment. Therefore, the reading performance would not be negatively influenced when the observer started immediately with reading of mammograms. The results can be used to optimize the workflow in the radiology reading room.

  4. Structural modeling of contrast sensitivity in adulthood

    NASA Astrophysics Data System (ADS)

    Scialfa, Charles T.; Kline, Donald W.; Wood, Philip K.

    2002-01-01

    Structural equation modeling was used to assess the utility of the sensorineural model of contrast sensitivity proposed by Sekuler et al. [Vision Res. 24, 689 (1984)] to account for spatial vision in adulthood. In Study 1, visual acuity and contrast sensitivity (1.5-18 c/deg) were measured in 84 people between the ages of 19 and 81 yr. No three-filter model fitted the data well. Although a two-filter model was associated with good fit indices, parameter estimates for both filters were inconsistent with physiological and behavioral data. In Study 2, acuity and contrast sensitivity (1.5-18 c/deg) were assessed in 95 observers between the ages of 23 and 73 yr. All measures were gathered once per month over a three-month period. The Sekuler et al. three-filter model did not fit the data from any time of measure, but a two-filter, bandpass model provided a consistent and excellent fit for all three waves. The model suggests that age-related change in the neural mechanisms underlying contrast sensitivity is minimal once acuity is controlled. Discrepancies between this conclusion and that reported by Sekuler et al. may be related to test type, psychophysical method, reliability, and sample selection.

  5. Peripheral contrast sensitivity and attention in myopia.

    PubMed

    Kerber, Kristen L; Thorn, Frank; Bex, Peter J; Vera-Diaz, Fuensanta A

    2016-08-01

    Disruption of normal visual experience or changes in the normal interaction between central and peripheral retinal input may lead to the development of myopia. In order to examine the relationship between peripheral contrast sensitivity and myopia, we manipulated attentional load for foveal vision in emmetropes and myopes while observers detected targets with peripheral vision. Peripheral contrast detection thresholds were measured binocularly using vertical Gabor stimuli presented at three eccentricities (±8°, 17°, 30°) in a spatial 2 alternative forced choice task. Contrast thresholds were measured in young adult (mean age 24.5±2.6years) emmetropes (n=17; group SE: +0.19±0.32D) and myopes (n=25; group SE: -3.74±1.99D). Attention at central fixation was manipulated with: (1) a low attention task, requiring simple fixation; or (2) a high attention task, which required subjects to perform a mathematical task. We found that at 30° all subjects exhibited lower contrast sensitivity (higher thresholds). In addition, myopes (Wilcoxon, p<0.01), but not emmetropes (Wilcoxon, p=0.1), had a significant decrease in sensitivity at 30° during the high attention task. However, the attention dependent threshold increase for myopes was not significantly greater than for emmetropes (Wilcoxon, p=0.27). Attentional load did not increase thresholds at 8° or 17° for either refractive group. These data indicate that myopes experience a greater decrease in contrast sensitivity in the far periphery than emmetropes when attention is deployed in central vision. PMID:27264028

  6. Peripheral contrast sensitivity and attention in myopia.

    PubMed

    Kerber, Kristen L; Thorn, Frank; Bex, Peter J; Vera-Diaz, Fuensanta A

    2016-08-01

    Disruption of normal visual experience or changes in the normal interaction between central and peripheral retinal input may lead to the development of myopia. In order to examine the relationship between peripheral contrast sensitivity and myopia, we manipulated attentional load for foveal vision in emmetropes and myopes while observers detected targets with peripheral vision. Peripheral contrast detection thresholds were measured binocularly using vertical Gabor stimuli presented at three eccentricities (±8°, 17°, 30°) in a spatial 2 alternative forced choice task. Contrast thresholds were measured in young adult (mean age 24.5±2.6years) emmetropes (n=17; group SE: +0.19±0.32D) and myopes (n=25; group SE: -3.74±1.99D). Attention at central fixation was manipulated with: (1) a low attention task, requiring simple fixation; or (2) a high attention task, which required subjects to perform a mathematical task. We found that at 30° all subjects exhibited lower contrast sensitivity (higher thresholds). In addition, myopes (Wilcoxon, p<0.01), but not emmetropes (Wilcoxon, p=0.1), had a significant decrease in sensitivity at 30° during the high attention task. However, the attention dependent threshold increase for myopes was not significantly greater than for emmetropes (Wilcoxon, p=0.27). Attentional load did not increase thresholds at 8° or 17° for either refractive group. These data indicate that myopes experience a greater decrease in contrast sensitivity in the far periphery than emmetropes when attention is deployed in central vision.

  7. Contrast sensitivity function and image discrimination.

    PubMed

    Peli, E

    2001-02-01

    A previous study tested the validity of simulations of the appearance of a natural image (from different observation distances) generated by using a visual model and contrast sensitivity functions of the individual observers [J. Opt. Soc. Am. A 13, 1131 (1996)]. Deleting image spatial-frequency components that should be undetectable made the simulations indistinguishable from the original images at distances larger than the simulated distance. The simulated observation distance accurately predicted the distance at which the simulated image could be discriminated from the original image. Owing to the 1/f characteristic of natural images' spatial spectra, the individual contrast sensitivity functions (CSF's) used in the simulations of the previous study were actually tested only over a narrow range of retinal spatial frequencies. To test the CSF's over a wide range of frequencies, the same simulations and testing procedure were applied to five contrast versions of the images (10-300%). This provides a stronger test of the model, of the simulations, and specifically of the CSF's used. The relevant CSF for a discrimination task was found to be obtained by using 1-octave Gabor stimuli measured in a contrast detection task. The relevant CSF data had to be measured over a range of observation distances, owing to limitations of the displays.

  8. The Uppsala Contrast Sensitivity Test (UCST): A fast strategy for clinical assessment of contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Malmqvist, Lars D.; Söderberg, Per G.

    2014-02-01

    Routine clinical measurement of spectral contrast sensitivity is hampered by the time consumption of current methods. We are developing a system that allows instantaneous measurement of spectral contrast sensitivity. The UCST system consists of custom software running on an iPad connected to a calibrated TFT-monitor. Twenty healthy subjects were consecutively randomized to have their spectral contrast sensitivity measured with the UCST strategy or with a Vistech VCTS 6500 chart. The examination time and the spectral contrast sensitivity, respectively, were recorded for each eye in each subject. The Vistech strategy resulted in a more extended mean examination time (CI-Vistech:+/- (0.95) = 87 +/-27 s, d.f. = 9) than the UCST strategy (CI-UCST:μ (0.95) = 13 +/-4 s, d.f. = 9), and the estimated mean difference between the two strategies indicated a difference in examination time (CI-difference:μ (0.95) = [47;106] s, d.f. = 18). The overall contrast sensitivity for each group was estimated as the contrast sensitivities for the spatial frequencies sampled, integrated over the spatial frequency band sampled. The Vistech strategy resulted in a higher estimated mean overall contrast sensitivity (CI-Vistech:μ (0.95) = 116+/-24 log rel.·log [c.·deg-1], d.f. = 9) than the UCST strategy (CIUCST: μ (0.95) = 74+/-14 log rel.·log [c.·deg-1], d.f. = 9), and the estimated mean difference between the two strategies indicated a difference in overall contrast sensitivity (CI-difference:μ (0.95) = [15;68] log rel.·log [c.·deg-1]), d.f. = 18). It is concluded that the UCST strategy measures spectral contrast sensitivity on the order of 7 times faster than the Vistech strategy. The slightly lower overall contrast sensitivity recorded for the UCST strategy appeared to be due to a limitation in dynamic range that can be overcome with improved design.

  9. Directional motion contrast sensitivity in developmental dyslexia.

    PubMed

    Slaghuis, Walter L; Ryan, John F

    2006-10-01

    The present study compared the perception of visual motion in two dyslexia classification schemes; the [Boder, E. (1973). Developmental dyslexia: a diagnostic approach based on three atypical reading-spelling patterns. Developmental Medicine and Child Neurology, 15, 663-687.] dyseidetic, dysphonetic and mixed subgroups and [Williams, M. J., Stuart, G. W., Castles, A., & McAnally, K. I. (2003). Contrast sensitivity in subgroups of developmental dyslexia. Vision Research, 43, 467-477.] surface, phonological and mixed subgroups by measuring the contrast sensitivity for drifting gratings at three spatial frequencies (1.0, 4.0, and 8.0 c/deg) and five drift velocities (0.75, 3.0, 6.0, 12.0, and 18.0 cyc/s) in a sample of 32 children with dyslexia and 32 matched normal readers. The findings show that there were no differences in motion direction perception between normal readers and the group with dyslexia when dyslexia was taken as a homogeneous group. Motion direction perception was found to be intact in the dyseidetic and surface dyslexia subgroups and significantly lowered in both mixed dyslexia subgroups. The one inconsistency in the findings was that motion direction perception was significantly lowered in the [Boder, E. (1973). Developmental dyslexia: a diagnostic approach based on three atypical reading-spelling patterns. Developmental Medicine and Child Neurology, 15, 663-687.] dysphonetic subgroup and intact in the [Williams, M. J., Stuart, G. W., Castles, A., & McAnally, K. I. (2003). Contrast sensitivity in subgroups of developmental dyslexia. Vision Research, 43, 467-477.] phonological subgroup. The findings also provide evidence for the presence of a disorder in sequential and temporal order processing that appears to reflect a difficulty in retaining sequences of non-meaningful auditory and visual stimuli in short-term working memory in children with dyslexia.

  10. Spatial contrast sensitivity in benign intracranial hypertension.

    PubMed

    Bulens, C; Meerwaldt, J D; Koudstaal, P J; Van der Wildt, G J

    1988-10-01

    Spatial Contrast Sensitivity (CS) was studied in 20 patients with benign intracranial hypertension (BIH). At presentation CS loss was found in 43% of the eyes, and impairment of visual acuity attributed to BIH in only 16%. Nine patients had blurred vision or visual obscurations, all of whom had abnormal CS. The clinical application of CS measurement in BIH for monitoring the progression or regression of the disease is illustrated by serial measurements in 11 patients. Progressive visual loss in longstanding papilloedema and improvement of visual function in subsiding papilloedema can occur without any change in Snellen acuity or visual field charting.

  11. Spatial contrast sensitivity in benign intracranial hypertension.

    PubMed Central

    Bulens, C; Meerwaldt, J D; Koudstaal, P J; Van der Wildt, G J

    1988-01-01

    Spatial Contrast Sensitivity (CS) was studied in 20 patients with benign intracranial hypertension (BIH). At presentation CS loss was found in 43% of the eyes, and impairment of visual acuity attributed to BIH in only 16%. Nine patients had blurred vision or visual obscurations, all of whom had abnormal CS. The clinical application of CS measurement in BIH for monitoring the progression or regression of the disease is illustrated by serial measurements in 11 patients. Progressive visual loss in longstanding papilloedema and improvement of visual function in subsiding papilloedema can occur without any change in Snellen acuity or visual field charting. PMID:3225588

  12. HCIT Broadband Contrast Performance Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham

    2012-01-01

    One of the important milestones of the TPF Coronagraph project is to demonstrate the ability to predict the performance sensitivities of the system at levels consistent with exo-planet detection requirement. We want to gain some general understanding about the potentials and the limitations of the current single-Deformable-Mirror (DM) High-contrast imaging testbed (HCIT) system through modeling and simulations. Specifically, we want to understand the effects of some common errors on the EFC-based control of e-field over a half dark-hole region and broadband contrast. Investigated errors include: (1) Absorbing particles on a flat-mirror (2) Defects on the Occulter surface (3) Dead actuators on the DM. We also investigated the effects of control bandwidth on the broadband contrast. We used a MACOS-based simulation algorithm which (1) combines a ray trace, diffraction model, & a broadband wavefront control algorithm (2) is capable of performing full three-dimensional near-field diffraction analysis

  13. Gain, noise, and contrast sensitivity of linear visual neurons

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    Contrast sensitivity is a measure of the ability of an observer to detect contrast signals of particular spatial and temporal frequencies. A formal definition of contrast sensitivity that can be applied to individual linear visual neurons is derived. A neuron is modeled by a contrast transfer function and its modulus, contrast gain, and by a noise power spectrum. The distributions of neural responses to signal and blank presentations are derived, and from these, a definition of contrast sensitivity is obtained. This formal definition may be used to relate the sensitivities of various populations of neurons, and to relate the sensitivities of neurons to that of the behaving animal.

  14. Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element.

    PubMed

    Viotti, Matias R; Kapp, Walter; Albertazzi G, Armando

    2009-04-20

    We report on a digital speckle pattern interferometer that applies a binary diffractive optical element (DOE) to generate double illumination and radial in-plane sensitivity. The application of the DOE ensures independence on the wavelength of the laser used as an illumination source. Furthermore, in-plane sensitivity only depends on the grating period of the DOE. An experimental setup was built allowing the measurement of a set of radial in-plane displacement fields either using a red laser as a light source or a green one. When displacement fields computed from the measured optical phase maps obtained with a red or a green laser were compared, two main results were observed: (a) deviations between mean values ranged only up to 7 nm and (b) phase maps presented the same amount of fringes. In addition, phase maps measured with the red laser were processed as they were obtained with green light. For this case, deviations have ranged only up to 0.5 nm. On the other hand, a set of measurements performed changing the DOE by a conical mirror showed clearly that radial in-plane sensitivity increased when the red laser was changed by the green one. PMID:19381178

  15. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-03-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,`` the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic ``S-bend`` configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  16. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  17. The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20-71 year olds.

    PubMed

    Dees, Elise W; Gilson, Stuart J; Neitz, Maureen; Baraas, Rigmor C

    2015-11-01

    Chromatic contrast sensitivity may be a more sensitive measure of an individual's visual function than achromatic contrast sensitivity. Here, the first aim was to quantify individual- and age-related variations in chromatic contrast sensitivity to a range of spatial frequencies for stimuli along two complementary directions in color space. The second aim was to examine whether polymorphisms at specific amino acid residues of the L- and M-opsin genes (OPN1LW and OPN1MW) known to affect spectral tuning of the photoreceptors could influence spatio-chromatic contrast sensitivity. Chromatic contrast sensitivity functions were measured in 50 healthy individuals (20-71 years) employing a novel pseudo-isochromatic grating stimulus. The spatio-chromatic contrast sensitivity functions were found to be low pass for all subjects, independent of age and color vision. The results revealed a senescent decline in spatio-chromatic contrast sensitivity. There were considerable between-individual differences in sensitivity within each age decade for individuals 49 years old or younger, and age did not predict sensitivity for these age decades alone. Forty-six subjects (including a color deficient male and eight female carriers) were genotyped for L- and M-opsin genes. The Ser180Ala polymorphisms on the L-opsin gene were found to influence the subject's color discrimination and their sensitivity to spatio-chromatic patterns. The results expose the significant role of neural and genetic factors in the deterioration of visual function with increasing age.

  18. Visual contrast sensitivity in drug-induced Parkinsonism.

    PubMed Central

    Bulens, C; Meerwaldt, J D; van der Wildt, G J; Keemink, C J

    1989-01-01

    The influence of stimulus orientation on contrast sensitivity function was studied in 10 patients with drug-induced Parkinsonism. Nine of the 10 patients had at least one eye with contrast sensitivity deficit for vertical and/or horizontal stimuli. Only generalised contrast sensitivity loss, observed in two eyes, was stimulus orientation independent. All spatial frequency-selective contrast deficits in 15 eyes were orientation dependent. The striking similarity between the pattern of contrast sensitivity loss in drug-induced Parkinsonism and that in idiopathic Parkinson's disease, suggests that generalised dopaminergic deficiency, from whatever cause, affects visual function in an analogous way. PMID:2926418

  19. Visual contrast sensitivity in drug-induced Parkinsonism.

    PubMed

    Bulens, C; Meerwaldt, J D; van der Wildt, G J; Keemink, C J

    1989-03-01

    The influence of stimulus orientation on contrast sensitivity function was studied in 10 patients with drug-induced Parkinsonism. Nine of the 10 patients had at least one eye with contrast sensitivity deficit for vertical and/or horizontal stimuli. Only generalised contrast sensitivity loss, observed in two eyes, was stimulus orientation independent. All spatial frequency-selective contrast deficits in 15 eyes were orientation dependent. The striking similarity between the pattern of contrast sensitivity loss in drug-induced Parkinsonism and that in idiopathic Parkinson's disease, suggests that generalised dopaminergic deficiency, from whatever cause, affects visual function in an analogous way.

  20. A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.

    PubMed

    Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G

    2013-06-01

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.

  1. Effect of levodopa treatment on contrast sensitivity in Parkinson's disease.

    PubMed

    Bulens, C; Meerwaldt, J D; Van der Wildt, G J; Van Deursen, J B

    1987-09-01

    We studied contrast sensitivity function in 10 parkinsonian patients before and after levodopa treatment. Pretreatment contrast sensitivity function was abnormal in 16 of the 20 eyes. After treatment, only high-frequency loss was observed in 6 eyes. All other types of deficit disappeared under treatment. These changes of contrast sensitivity function following treatment suggest that dopamine is a functional transmitter in the visual pathways.

  2. HCIT Broadband Contrast Performance Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham

    2012-01-01

    The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory employs a broadband wavefront correction algorithm called Electric Field Conjugation (EFC) to obtain the required 10-10 contrast. This algorithm works with one deformable mirror (DM) to estimate the electric-field to be controlled, and with one or multiple DM's to create a "darkhole" in a predefined region of the image plane where terrestrial planets would be found. We have investigated the effects of absorbing dust particles on a flat optic, absorbing spots on the occulting mask, dead actuators on the DM, and the effects of control bandwidth on the efficiency of the EFC algorithm in a Lyot coronagraph configuration. The structural design of the optical system as well as the parameters of various optical elements used in the analysis is drawn from those of the HCIT system that have been implemented with one DM. The simulation takes into account the surface errors of various optical elements. Results of some of these studies have been verified by actual measurements.

  3. Spatial Contrast Sensitivity in Adolescents with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen

    2010-01-01

    Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual…

  4. Achromatic Interaction Point Design

    SciTech Connect

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  5. The relationship of contrast sensitivity functions to sports vision.

    PubMed

    Hoffman, L G; Polan, G; Powell, J

    1984-10-01

    Contrast sensitivity, a more recent test of visual function, has never been studied in its relationship to sports vision. The hypothesis that contrast sensitivity functions among college varsity level baseball players significantly differs from that of a random sample of optometry students was tested using Arden grating plates. A statistically significant difference was found at the 98 percent confidence level, demonstrating that in this study, a sample of college varsity level baseball players have higher level contrast sensitivity functions than those of a randomly selected sample of Southern California College of Optometry students.

  6. Reading performance in low vision patients: relation to contrast and contrast sensitivity.

    PubMed

    Brown, B

    1981-03-01

    Closed circuit television (CCTV) systems have proven useful in professional and recreational rehabilitation of the partially sighted. However, the parameters for optimum performance on such systems have not been examined. This investigation shows that contrast is an important parameter in CCTV reading performance; for many patients, even slight contrast reductions significantly reduce reading performance. Distance acuity is not a good predictor of CCTV reading performance, nor is performance on conventional contrast sensitivity measures. However, a commercially available test for contrast sensitivity (the Arden plates) may be useful for predicting CCTV reading performance. PMID:7223854

  7. The effect of cycloplegia on the visual contrast sensitivity function.

    PubMed

    Bachman, W G; Behar, I

    1987-04-01

    Contrast sensitivity assessment is one of several emergent techniques being considered for inclusion in a visual standards test battery for the Army, particularly for the evaluation of Army aviators. Since a cycloplegic refraction is required for initial selection of candidates for Class I and Class IA flying duty, it is important to determine what effect, if any, cycloplegia has on the contrast sensitivity function. There were 12 subjects tested, all officers in preparation for flight training who had passed a recent Class I flight physical. Contrast sensitivity functions were obtained under normal ambient conditions and in the presence of a glare source both under manifest and cycloplegic conditions. Cycloplegia produced a small reduction in contrast sensitivity under normal ambient conditions, and a greater reduction under glare conditions. For both conditions, the cycloplegia effect was greater for the higher spatial frequency gratings than for the lower.

  8. Long-Term Occupational Exposure to Organic Solvents Affects Color Vision, Contrast Sensitivity and Visual Fields

    PubMed Central

    Costa, Thiago Leiros; Barboni, Mirella Telles Salgueiro; Moura, Ana Laura de Araújo; Bonci, Daniela Maria Oliveira; Gualtieri, Mirella; de Lima Silveira, Luiz Carlos; Ventura, Dora Fix

    2012-01-01

    The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6±6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24–2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann–Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9°, 15° and 21° of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho = 0.52; p<0.05), perimetry results in the fovea (rho = −0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho = −0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created. PMID:22916187

  9. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  10. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  11. Retinal illuminance and contrast sensitivity in human infants.

    PubMed

    Shannon, E; Skoczenski, A M; Banks, M S

    1996-01-01

    Several investigators have related infants' low contrast sensitivity to immaturities in the optics and receptor lattice of the immature eye. A critical element in the modeling is how much the lower photon catch of the immature retina reduces sensitivity; the assumptions vary from square-root to Weber's law and lead to very different modeling outcomes. We measured the relationship between retinal illuminance and contrast sensitivity at different spatial frequencies. The sweep visual-evoked potential was used to measure thresholds in 2- and 3-month olds and adults over a 2.5-log-unit range of illuminances. The contrast threshold vs illuminance functions were fit by power functions. The best-fitting exponents for adults were about -0.5 at higher spatial frequencies (consistent with square-root law) and lower at lower frequencies. The best-fitting exponents for 2- and 3-month olds were -0.2 to -0.35 which indicates that threshold is less affected by changes in illuminance than is the case in adults. These results suggest that none of the models relating optical and receptoral immaturities to infants' spatial vision has assumed an appropriate relationship between lower photon catch and contrast sensitivity. Once the models are modified to incorporate the relationship obtained in the present experiment, the predictions fall well short of explaining 2-month olds' low contrast sensitivity.

  12. Effect of stimulus orientation on contrast sensitivity in Parkinson's disease.

    PubMed

    Bulens, C; Meerwaldt, J D; Van der Wildt, G J

    1988-01-01

    We studied the effect of stimulus orientation on contrast sensitivity function in 21 patients with Parkinson's disease and in 10 normal subjects. This was done by measuring contrast sensitivity over a range of spatial frequencies for vertical and horizontal sine wave grating stimuli. There was a great test-retest consistency in normal subjects and patients. Fifteen of the 21 patients showed contrast sensitivity deficit in at least one eye. Orientation-specific loss was demonstrated in 17 of the 25 "affected" eyes. The most frequent type of orientation-specific loss was a notch defect, which preferentially affected the middle spatial frequencies. We attribute orientation-specific and spatial frequency-selective loss in Parkinson's disease to a functional disruption of neurons on the visual cortex.

  13. Stimulus motion improves spatial contrast sensitivity in budgerigars (Melopsittacus undulatus).

    PubMed

    Haller, Nicola Kristin; Lind, Olle; Steinlechner, Stephan; Kelber, Almut

    2014-09-01

    Birds are generally thought to have excellent vision with high spatial resolution. However, spatial contrast sensitivity of birds for stationary targets is low compared to other animals with similar acuity, such as mammals. For fast flying animals body stability and coordination are highly important, and visual motion cues are known to be relevant for flight control. We have tested five budgerigars (Melopsittacus undulatus) in behavioural discrimination experiments to determine whether or not stimulus motion improves contrast sensitivity. The birds were trained to distinguish between a homogenous grey field and sine-wave gratings of spatial frequencies between 0.48 and 6.5 cyc/deg, and Michelson contrasts between 0.7% and 99%. The gratings were either stationary or drifting with velocities between 0.9 and 13 deg/s. Budgerigars were able to discriminate patterns of lower contrast from grey when the gratings were drifting, and the improvement in sensitivity was strongest at lower spatial frequencies and higher drift velocities. Our findings indicate that motion cues can have positive effects on visual perception of birds. This is similar to earlier results on human vision. Contrast sensitivity, tested solely with stationary stimuli, underestimates the sensory capacity of budgerigars flying through their natural environments. PMID:25072853

  14. Laser speckle contrast imaging is sensitive to advective flux

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Unlike laser Doppler flowmetry, there has yet to be presented a clear description of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to. Herein, we present a theoretical basis for demonstrating that LSCI is sensitive to total flux and, in particular, the summation of diffusive flux and advective flux. We view LSCI from the perspective of mass transport and briefly derive the diffusion with drift equation in terms of an LSCI experiment. This equation reveals the relative sensitivity of LSCI to both diffusive flux and advective flux and, thereby, to both concentration and the ordered velocity of the scattering particles. We demonstrate this dependence through a short series of flow experiments that yield relationships between the calculated speckle contrast and the concentration of the scatterers (manifesting as changes in scattering coefficient), between speckle contrast and the velocity of the scattering fluid, and ultimately between speckle contrast and advective flux. Finally, we argue that the diffusion with drift equation can be used to support both Lorentzian and Gaussian correlation models that relate observed contrast to the movement of the scattering particles and that a weighted linear combination of these two models is likely the most appropriate model for relating speckle contrast to particle motion.

  15. The contrast sensitivity function of the praying mantis Sphodromantis lineola.

    PubMed

    Nityananda, Vivek; Tarawneh, Ghaith; Jones, Lisa; Busby, Natalie; Herbert, William; Davies, Robert; Read, Jenny C A

    2015-08-01

    The detection of visual motion and its direction is a fundamental task faced by several visual systems. The motion detection system of insects has been widely studied with the majority of studies focussing on flies and bees. Here we characterize the contrast sensitivity of motion detection in the praying mantis Sphodromantis lineola, an ambush predator that stays stationary for long periods of time while preying on fast-moving prey. In this, its visual behaviour differs from previously studied insects and we might therefore expect its motion detection system to differ from theirs. To investigate the sensitivity of the mantis we analyzed its optomotor response in response to drifting gratings with different contrasts and spatio-temporal frequencies. We find that the contrast sensitivity of the mantis depends on the spatial and temporal frequencies present in the stimulus and is separably tuned to spatial and temporal frequency rather than specifically to object velocity. Our results also suggest that mantises are sensitive to a broad range of velocities, in which they differ from bees and are more similar to hoverflies. We discuss our results in relation to the contrast sensitivities of other insects and the visual ecology of the mantis. PMID:25894490

  16. Peripheral contrast sensitivity in glaucoma and ocular hypertension.

    PubMed

    Falcão-Reis, F; O'Donoghue, E; Buceti, R; Hitchings, R A; Arden, G B

    1990-12-01

    Contrast sensitivity has been measured in patients with glaucoma and ocular hypertension, the latter graded into high, medium, and low risk clinical groups. Measurements were made centrally and peripherally at 10 degrees, 15 degrees, 20 degrees, and 25 degrees off-axis at each of the four meridians 45 degrees, 135 degrees, 225 degrees, and 315 degrees. A sine wave grating of 1.9 cycles/degree, reversing at 1 Hz was used. It was displayed on a 100-Hz refresh rate monitor. Normal values were established to compare those from 41 eyes from patients with either primary open angle glaucoma (POAG) with minimal field loss detectable on a Humphrey perimeter, or raised IOP and/or disc changes but no field loss (OH). Those with POAG had normal central contrast sensitivity, but at 20 degrees and 25 degrees eccentricity the values were greater than 2 standard deviations above the normal mean. This was also the case for high risk OH, but not for low risk patients. All the high risk patients except one who had abnormal peripheral contrast sensitivity had possible field defects (threshold elevation at one or more points more than 5 but less than 10 dB above normal mean). Only one of those with normal peripheral contrast sensitivity had such 'suspect points'. The results are assessed in terms of screening of glaucoma suspects.

  17. HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham

    2013-01-01

    Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.

  18. The developmental trajectory of contrast sensitivity in autism spectrum disorder.

    PubMed

    Guy, Jacalyn; Mottron, Laurent; Berthiaume, Claude; Bertone, Armando

    2016-08-01

    Autism Spectrum Disorder (ASD) is characterized by a detail-driven visual processing strategy, evidence for which has been based largely on cross-sectional studies in small participant groups of limited age ranges. It is therefore unknown when sensitivity to detailed information emerges and develops in ASD. Contrast sensitivity to sinusoidal gratings of different spatial frequencies (0.5, 1, 2, 4, and 8 cycles per degree (cpd)) was measured for 34 participants with ASD and 55 typically developing participants (aged 6-16 years). Cross-sectional, developmental trajectories were constructed to examine within and between group differences across the range of spatial frequencies tested. Developmental trajectories indicated that sensitivity across low (i.e., 0.5 and 1 cpd) and mid (2 and 4 cpd) spatial frequencies varied by chronological age within each group, with mid frequencies developing at a more significant rate than low frequencies. There was no overall difference between groups in terms of the relationship of sensitivity and age across spatial frequencies, yet the ASD group had an overall lower level of sensitivity. Closer examination revealed that the youngest participants with ASD had a reduced sensitivity for mid frequencies. Moreover, the ASD group showed a statistically significant developmental relationship at 8 cpd, which suggests that a trend for increased sensitivity to early detailed information may manifest beyond the ages tested. These findings demonstrate a differential development of contrast sensitivity for spatial frequencies in ASD and underscore the need to better identify what drives such differences in the "building blocks" of visual perception. Autism Res 2016, 9: 866-878. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26613355

  19. The developmental trajectory of contrast sensitivity in autism spectrum disorder.

    PubMed

    Guy, Jacalyn; Mottron, Laurent; Berthiaume, Claude; Bertone, Armando

    2016-08-01

    Autism Spectrum Disorder (ASD) is characterized by a detail-driven visual processing strategy, evidence for which has been based largely on cross-sectional studies in small participant groups of limited age ranges. It is therefore unknown when sensitivity to detailed information emerges and develops in ASD. Contrast sensitivity to sinusoidal gratings of different spatial frequencies (0.5, 1, 2, 4, and 8 cycles per degree (cpd)) was measured for 34 participants with ASD and 55 typically developing participants (aged 6-16 years). Cross-sectional, developmental trajectories were constructed to examine within and between group differences across the range of spatial frequencies tested. Developmental trajectories indicated that sensitivity across low (i.e., 0.5 and 1 cpd) and mid (2 and 4 cpd) spatial frequencies varied by chronological age within each group, with mid frequencies developing at a more significant rate than low frequencies. There was no overall difference between groups in terms of the relationship of sensitivity and age across spatial frequencies, yet the ASD group had an overall lower level of sensitivity. Closer examination revealed that the youngest participants with ASD had a reduced sensitivity for mid frequencies. Moreover, the ASD group showed a statistically significant developmental relationship at 8 cpd, which suggests that a trend for increased sensitivity to early detailed information may manifest beyond the ages tested. These findings demonstrate a differential development of contrast sensitivity for spatial frequencies in ASD and underscore the need to better identify what drives such differences in the "building blocks" of visual perception. Autism Res 2016, 9: 866-878. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  20. Aging and luminance-adaptation effects on spatial contrast sensitivity.

    PubMed

    Sloane, M E; Owsley, C; Jackson, C A

    1988-12-01

    Contrast sensitivity as a function of target luminance for four spatial frequencies (0.5, 2, 4, and 8 cycles/deg) was measured in younger (n = 12; age range, 19-35 years) and older (n = 11; age range, 68-79 years) adults in order to examine the feasibility of optical and neural explanations for the impairment of contrast sensitivity in older adults. All subjects were free from identifiable ocular disease and had good acuity. Sensitivity for each spatial frequency was measured at eight luminance levels spanning 3.5 log units in the photopic-mesopic range. When gratings were flickered at 0.5 Hz, functions for older adults were displaced downward on the sensitivity axis across all luminance levels, and the slopes of these functions were steeper than those for younger adults, suggesting that optical mechanisms alone cannot account for the vision loss in older adults. Further measurements, in which spatial targets were flickered at 7.5 Hz, indicated that this faster temporal modulation affected sensitivity as a function of luminance differentially in younger and older adults. These data imply that the neural mechanisms subserving human spatial vision undergo significant changes during adulthood.

  1. Achromatic doublets for Gaussian beams

    NASA Astrophysics Data System (ADS)

    Biraud, F.; Daigne, G.

    1991-04-01

    The properties of doublets of thin lenses in the Gaussian optics approximation were investigated. Two different ways for such a doublet to give strictly achromatic images of the input beam waist were found. Both solutions may be useful in a variety of applications, one being the possibility of shaping asymmetrical beams for fan beam antennas illumination. Using modes higher than the fundamental mode will allow the design of more realistic focal systems.

  2. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos; Kayran, Dmitry; Litvinenko, Vladimir; MacKay, William W.

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  3. Chromatic and luminance contrast sensitivity in fullterm and preterm infants

    PubMed Central

    Bosworth, Rain G.; Dobkins, Karen R.

    2010-01-01

    In order to investigate the contributions of visual experience vs. preprogrammed mechanisms on visual development, the current study compared contrast sensitivity in preterm vs. fullterm infants. If development is tied to time since conception, preterm infants should match the developmental trajectories of fullterm infants when plotted in postterm age. By contrast, if development is influenced by visual experience, preterm and fullterm infants should match when plotted in postnatal age. Luminance (light/dark) and chromatic (red/green) contrast sensitivities (CS) were measured in 25 preterm (born, on average, 6.6 weeks early) and 77 fullterm infants, between 1 and 6 months postterm. In the first few months, luminance CS was found to be predicted by postterm age, suggesting that preprogrammed development is sufficient to account for luminance CS. By contrast, chromatic CS exceeded that predicted by postterm age, which suggests that time since birth confers a benefit on chromatic CS. The preterms’ 6.6 weeks of additional time since birth is roughly equivalent to 3.7 weeks of development in chromatic CS. In sum, these results suggest that chromatic CS is more influenced by early postnatal visual experience than luminance CS, which may have implications for development of parvocellular and magnocellular pathways. PMID:20055548

  4. Similar contrast sensitivity functions measured using psychophysics and optokinetic nystagmus

    PubMed Central

    Dakin, Steven C.; Turnbull, Philip R. K.

    2016-01-01

    Although the contrast sensitivity function (CSF) is a particularly useful way of characterising functional vision, its measurement relies on observers making reliable perceptual reports. Such procedures can be challenging when testing children. Here we describe a system for measuring the CSF using an automated analysis of optokinetic nystagmus (OKN); an involuntary oscillatory eye movement made in response to drifting stimuli, here spatial-frequency (SF) band-pass noise. Quantifying the strength of OKN in the stimulus direction allows us to estimate contrast sensitivity across a range of SFs. We compared the CSFs of 30 observers with normal vision measured using both OKN and perceptual report. The approaches yield near-identical CSFs (mean R = 0.95) that capture subtle intra-observer variations in visual acuity and contrast sensitivity (both R = 0.84, p < 0.0001). Trial-by-trial analysis reveals high correlation between OKN and perceptual report, a signature of a common neural mechanism for determining stimulus direction. We also observe conditions where OKN and report are significantly decorrelated as a result of a minority of observers experiencing direction-reversals that are not reflected by OKN. We conclude that there are a wide range of stimulus conditions for which OKN can provide a valid alternative means of measuring of the CSF. PMID:27698486

  5. Contrast sensitivity and the detection of moving patterns and features

    PubMed Central

    O'Carroll, David C.; Wiederman, Steven D.

    2014-01-01

    Theories based on optimal sampling by the retina have been widely applied to visual ecology at the level of the optics of the eye, supported by visual behaviour. This leads to speculation about the additional processing that must lie in between—in the brain itself. But fewer studies have adopted a quantitative approach to evaluating the detectability of specific features in these neural pathways. We briefly review this approach with a focus on contrast sensitivity of two parallel pathways for motion processing in insects, one used for analysis of wide-field optic flow, the other for detection of small features. We further use a combination of optical modelling of image blur and physiological recording from both photoreceptors and higher-order small target motion detector neurons sensitive to small targets to show that such neurons operate right at the limits imposed by the optics of the eye and the noise level of single photoreceptors. Despite this, and the limitation of only being able to use information from adjacent receptors to detect target motion, they achieve a contrast sensitivity that rivals that of wide-field motion sensitive pathways in either insects or vertebrates—among the highest in absolute terms seen in any animal. PMID:24395970

  6. Contrast sensitivity and the detection of moving patterns and features.

    PubMed

    O'Carroll, David C; Wiederman, Steven D

    2014-01-01

    Theories based on optimal sampling by the retina have been widely applied to visual ecology at the level of the optics of the eye, supported by visual behaviour. This leads to speculation about the additional processing that must lie in between-in the brain itself. But fewer studies have adopted a quantitative approach to evaluating the detectability of specific features in these neural pathways. We briefly review this approach with a focus on contrast sensitivity of two parallel pathways for motion processing in insects, one used for analysis of wide-field optic flow, the other for detection of small features. We further use a combination of optical modelling of image blur and physiological recording from both photoreceptors and higher-order small target motion detector neurons sensitive to small targets to show that such neurons operate right at the limits imposed by the optics of the eye and the noise level of single photoreceptors. Despite this, and the limitation of only being able to use information from adjacent receptors to detect target motion, they achieve a contrast sensitivity that rivals that of wide-field motion sensitive pathways in either insects or vertebrates-among the highest in absolute terms seen in any animal. PMID:24395970

  7. The butterfly Papilio xuthus detects visual motion using chromatic contrast.

    PubMed

    Stewart, Finlay J; Kinoshita, Michiyo; Arikawa, Kentaro

    2015-10-01

    Many insects' motion vision is achromatic and thus dependent on brightness rather than on colour contrast. We investigate whether this is true of the butterfly Papilio xuthus, an animal noted for its complex retinal organization, by measuring head movements of restrained animals in response to moving two-colour patterns. Responses were never eliminated across a range of relative colour intensities, indicating that motion can be detected through chromatic contrast in the absence of luminance contrast. Furthermore, we identify an interaction between colour and contrast polarity in sensitivity to achromatic patterns, suggesting that ON and OFF contrasts are processed by two channels with different spectral sensitivities. We propose a model of the motion detection process in the retina/lamina based on these observations. PMID:26490417

  8. Effects of luminance and spatial noise on interferometric contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Coletta, Nancy J.; Sharma, Vineeta

    1995-10-01

    Optical properties of the eye contribute to the reduced visibility of spatial patterns at low luminance. To study the limits of spatial vision when optical factors are minimized, we measured contrast-sensitivity functions (CSF's) for 543.5-nm laser interference fringes imaged directly on the retina. Measurements were made in the fovea at four luminance levels, ranging from 0.3 to 300 photopic trolands (Td). At each luminance the fraction of coherent light in the stimulus pattern was varied to assess the masking effects of laser speckle, which is visible as spatial noise in fields of coherent light. Compared with published CSF's obtained under natural viewing conditions, interferometric CSF's were similar in height but broader, with the range of visibility being extended to higher spatial frequencies. The masking effects of speckle were greatest at the highest luminance and were negligible at the lowest luminance. For low coherent fractions, contrast sensitivity improved over the entire luminance range at a rate consistent with a square-root law; with purely coherent light, sensitivity tended to level off at approximately 30 Td because of speckle masking. The results indicate that the optical quality of the eye reduces the spatial bandwidth of vision even at luminances near the foveal threshold. The change in interference fringe visibility with luminance is consistent with noise-limited behavior, and the masking

  9. Contrast sensitivity perimetry data from adults free of eye disease.

    PubMed

    Swanson, William H; Dul, Mitchell W; Horner, Douglas G; Malinovsky, Victor E

    2016-09-01

    This data article contains data referenced in "Individual Differences in the Shape of the Nasal Visual Field" [1]. The data were gathered from volunteers free of eye disease ages 21-85 who were tested with Contrast Sensitivity Perimetry (CSP), which uses a stimulus resistant to effects of defocus and reduced retinal illumination. Some subjects were tested only once or a few times, and others were part of a longitudinal cohort with as many as 10 tests. Parameters from maximum likelihood estimation of psychophysical threshold at each tested location are included in the data file, along with the participant׳s sex, age at time of test, the center of their physiological blind spot, the duration of test, the time of day that the test was begun, and the starting contrast used for the psychophysical staircases. PMID:27437439

  10. Rapid Assessment of Contrast Sensitivity with Mobile Touch-screens

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2013-01-01

    The availability of low-cost high-quality touch-screen displays in modern mobile devices has created opportunities for new approaches to routine visual measurements. Here we describe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. We will demonstrate a prototype for Apple Computer's iPad-iPod-iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing,

  11. Sluggish and Brisk Ganglion Cells Detect Contrast With Similar Sensitivity

    PubMed Central

    Xu, Ying; Dhingra, Narender K.; Smith, Robert G.; Sterling, Peter

    2010-01-01

    Roughly half of all ganglion cells in mammalian retina belong to the broad class, termed “sluggish.” Many of these cells have small receptive fields and project via lateral geniculate nuclei to visual cortex. However, their possible contributions to perception have been largely ignored because sluggish cells seem to respond weakly compared with the more easily studied “brisk” cells. By selecting small somas under infrared DIC optics and recording with a loose seal, we could routinely isolate sluggish cells. When a spot was matched spatially and temporally to the receptive field center, most sluggish cells could detect the same low contrasts as brisk cells. Detection thresholds for the two groups determined by an “ideal observer” were similar: threshold contrast for sluggish cells was 4.7 ± 0.5% (mean ± SE), and for brisk cells was 3.4 ± 0.3% (Mann-Whitney test: P > 0.05). Signal-to-noise ratios for the two classes were also similar at low contrast. However, sluggish cells saturated at somewhat lower contrasts (contrast for half-maximum response was 14 ± 1 vs. 19 ± 2% for brisk cells) and were less sensitive to higher temporal frequencies (when the stimulus frequency was increased from 2 to 4 Hz, the response rate fell by 1.6-fold). Thus the sluggish cells covered a narrower dynamic range and a narrower temporal bandwidth, consistent with their reported lower information rates. Because information per spike is greater at lower firing rates, sluggish cells may represent “cheaper” channels that convey less urgent visual information at a lower energy cost. PMID:15601731

  12. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts

  13. Context-sensitive underspecification and the acquisition of phonemic contrasts.

    PubMed

    Dinnsen, D A

    1996-02-01

    Several competing proposals for the (under)specification of phonological representations are evaluated against the facts of phonemic acquisition. Longitudinal evidence relating to the emergence of a voice contrast in the well-documented study of Amahl (from age 2;2 to 3;11) is reconsidered. Neither contrastive specification nor context-free radical underspecification is capable of accounting for the facts. The problem is in the characterization of the change in the status of a feature from being noncontrastive and conditioned by context at one stage to being contrastive with phonetic effects that diffuse gradually through the lexicon. Both frameworks must treat as accidental the persistence of the early substitution pattern and require the postulation of wholesale changes in underlying representations, where these changes do not accord well with the observed phonetic changes or with the facts available to the learner. Context-sensitive radical underspecification provides a plausible account of each stage and the transition between stages with minimal grammar change. PMID:8733561

  14. Contrast Sensitivity versus Visual Evoked Potentials in Multiple Sclerosis

    PubMed Central

    Shandiz, Javad Heravian; Nourian, Abbas; Hossaini, Mercedeh Bahr; Moghaddam, Hadi Ostadi; yekta, Abbas-Ali; Sharifzadeh, Laleh; Marouzi, Parviz

    2010-01-01

    Purpose To compare the Cambridge contrast sensitivity (CS) test and visual evoked potentials (VEP) in detecting visual impairment in a population of visually symptomatic and asymptomatic patients affected by clinically definite multiple sclerosis (MS). Methods Fifty patients (100 eyes) presenting with MS and 25 healthy subjects (50 eyes) with normal corrected visual acuity were included in this study. CS was determined using the Cambridge Low Contrast Grating test and VEP was obtained in all eyes. Findings were evaluated in two age strata of 10–29 and 30–49 years. Results Of the 42 eyes in the 10–29 year age group, CS was abnormal in 22 (52%), VEP was also abnormal in 22 (52%), but only 12 eyes (28%) had visual symptoms. Of the 58 eyes in the 30–49 year group, CS was abnormal in 7 (12%), VEP was abnormal in 34 (58%), while only 11 eyes were symptomatic. No single test could detect all of the abnormal eyes. Conclusion The Cambridge Low Contrast Grating test is useful for detection of clinical and subclinical visual dysfunction especially in young patients with multiple sclerosis. Nevertheless, only a combination of CS and VEP tests can detect most cases of visual dysfunction associated with MS. PMID:22737353

  15. Rhythmic oscillations of visual contrast sensitivity synchronized with action.

    PubMed

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2015-05-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ∼500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  16. Radiometric sensitivity contrast metrics for hyperspectral remote sensors

    NASA Astrophysics Data System (ADS)

    Silny, John F.; Zellinger, Lou

    2014-09-01

    This paper discusses the calculation, interpretation, and implications of various radiometric sensitivity metrics for Earth-observing hyperspectral imaging (HSI) sensors. The most commonly used sensor performance metric is signal-to-noise ratio (SNR), from which additional noise equivalent quantities can be computed, including: noise equivalent spectral radiance (NESR), noise equivalent delta reflectance (NEΔρ), noise equivalent delta emittance (NEΔƐ), and noise equivalent delta temperature (NEΔT). For hyperspectral sensors, these metrics are typically calculated from an at-aperture radiance (typically generated by MODTRAN) that includes both target radiance and non-target (atmosphere and background) radiance. Unfortunately, these calculations treat the entire at-aperture radiance as the desired signal, even when the target radiance is only a fraction of the total (such as when sensing through a long or optically dense atmospheric path). To overcome this limitation, an augmented set of metrics based on contrast signal-to-noise ratio (CNSR) is developed, including their noise equivalent counterparts (CNESR, CNEΔρ, CNEΔƐ, and CNEΔT). These contrast metrics better quantify sensor performance in an operational environment that includes remote sensing through the atmosphere.

  17. Gadolinium nanoparticles and contrast agent as radiation sensitizers

    NASA Astrophysics Data System (ADS)

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F.; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist® in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL-1), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly ‘energy dependent’ for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs.

  18. Gadolinium nanoparticles and contrast agent as radiation sensitizers.

    PubMed

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist(®) in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL(-1)), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly 'energy dependent' for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs. PMID:25988839

  19. Gadolinium nanoparticles and contrast agent as radiation sensitizers.

    PubMed

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist(®) in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL(-1)), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly 'energy dependent' for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs.

  20. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges.

    PubMed

    Viotti, Matias R; Albertazzi G, Armando; Kapp, Walter A

    2011-03-01

    This paper shows the optical setup of a radial in-plane digital speckle pattern interferometer which uses an axis-symmetrical diffractive optical element (DOE) to obtain double illumination. The application of the DOE gives in-plane sensitivity which only depends on the grating period of the DOE instead of the wavelength of the laser used as illumination source. A compact optical layout was built in order to have a portable optical strain sensor with a circular measurement area of about 5 mm in diameter. In order to compare its performance with electrical strain sensors (strain gauges), mechanical loading was generated by a four-point bending device and simultaneously monitored by the optical strain sensor and by two-element strain gauge rosettes. Several mechanical stress levels were measured showing a good agreement between both sensors. Results showed that the optical sensor could measure applied mechanical strains with a mean uncertainty of about 5% and 4% for the maximum and minimum principal strains, respectively. PMID:21364725

  1. Achromatic phase shifts utilizing dielectric plates for nulling interferometery

    NASA Astrophysics Data System (ADS)

    Morgan, R. M.; Burge, J. M.

    1998-12-01

    Schemes for detecting planets around other stars using interferometery have been developed which rely on a half wave phase delay to shift the central constructive fringe of an interferometer to a deep, destructive null fringe. To achieve the sensitivity and spectroscopy desired for exo-planets observations, such a null must be achromatic over a broad spectral region. One method for creating such a half wave phase delay achromatically involves the use of pairs of dielectric, plane parallel plates, analogous to the use of two types of glass in an achromatic lens. An analysis of the technique is presented with solutions using single plates to achieve null fringes to a cancellation of 10 exp -4 in the visible, near infrared, and mid infrared for null. Solutions using two matched materials show that nulls to a depth of 10 exp -6 are achievable in 2 um bands in the 7-17 um regime, or to a depth of 10 exp -5 over the entire 7-17 um band. Experimental results using a single plate of BK7 in the visible spectrum verify the technique.

  2. Visual contrast sensitivity in children exposed to tetrachloroethylene.

    PubMed

    Storm, Jan E; Mazor, Kimberly A; Aldous, Kenneth M; Blount, Benjamin C; Brodie, Scott E; Serle, Janet B

    2011-01-01

    This study examined relationships between indoor air, breath, and blood tetrachloroethylene (perc) levels and visual contrast sensitivity (VCS) among adult and child residents of buildings with or without a colocated dry cleaner using perc. Decreasing trends in proportions of adults or children with maximum VCS scores indicated decreased VCS at a single spatial frequency (12 cycles per degree [cpd]) among children residing in buildings with colocated dry cleaners when indoor air perc level averaged 336 μg/m³; breath perc level averaged 159.5 μg/m³; and blood perc level averaged 0.51 μg/L. Adjusted logistic regression indicated that increases in indoor air, breath, and blood perc levels among all child participants significantly increased the odds for decreased VCS at 12 cpd. Adult VCS was not significantly decreased by increasing indoor air, breath, or blood perc level. These results suggest that elevated residential perc exposures may alter children's VCS, a possible subclinical central nervous system effect.

  3. Experimental results of fiber optic contrast-sensitive dislocation sensor

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Palka, N.

    2005-05-01

    The dislocation sensor based on the contrast phenomenon in an unbalanced fiber optic Michelson interferometer with a 3 x 3 coupler and a semiconductor multimode laser. Periodic contrast oscillations, which depend on a laser spectrum, occur if a measuring arm of the interferometer is elongated. A conception of the elongation sensor that based on linearization of contrast oscillations is shown. Next, a setup of the sensor and signal processing scheme of the sensor is presented. During measurements, for 1-m long sensor we obtained 5-mm measuring range with +/-28-μm uncertainty. Explanation of these differences and conclusion to further research are formulated.

  4. Psychophysical measurement of contrast sensitivity in the behaving mouse

    PubMed Central

    Carvalho, Lauren A.; Maunsell, John H. R.

    2012-01-01

    To understand how activity in mammalian neural circuits controls behavior, the mouse is a promising model system due to the convergence of genetic, optical, and physiological methods. The ability to control and quantify behavior precisely is also essential for these studies. We developed an operant visual detection paradigm to make visual psychophysical measurements: head-fixed mice make responses by pressing a lever. We designed this task to permit neurophysiological studies of behavior in cerebral cortex, where activity is variable from trial to trial and neurons encode many types of information simultaneously. To study neural responses in the face of this complexity, we trained mice to do a task where they perform hundreds of trials daily and perceptual thresholds can be measured. We used this task to measure both visual acuity and the minimum detectable contrast in behaving mice. We found that the mouse contrast response function is similar in shape to other species. They can detect low-contrast stimuli, with a peak contrast threshold of 2%, equivalent to ∼15° eccentric in human vision. Mouse acuity is modest, with an upper limit near 0.5 cycles/°, consistent with prior data. PMID:22049334

  5. Effective frequency sensitivity of laser speckle contrast measurements

    NASA Astrophysics Data System (ADS)

    Thompson, O. B.; Hirst, E. R.; Andrews, M. K.

    2013-02-01

    How does speckle contrast K, measured at camera exposures T around 10 ms, give us information about temporal autocorrelation of the speckle pattern with time constants τ < 1 ms, corresponding to Doppler shifts in the KHz range? We explore the implications of this question and show that for any particular assumed temporal speckle autocorrelation function, K measured at T >> τ accurately measures τ, but that K measurements at T < τ are required in order to determine the actual shape of the autocorrelation function. Determining the shape of the autocorrelation function is important if we wish to distinguish between different types of flow or movement in tissue, for example distinguishing Brownian motion or the randomly-oriented flows in capillary networks from more ordered flow in resolvable vessels.

  6. Contrasting ozone sensitivity in related evergreen and deciduous shrubs.

    PubMed

    Calatayud, Vicent; Marco, Francisco; Cerveró, Júlia; Sánchez-Peña, Gerardo; Sanz, María José

    2010-12-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO(2) assimilation and stomatal conductance (g(s)), impaired Rubisco efficiency and regeneration capacity (V(c,max,)J(max)) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed.

  7. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C

    2007-11-07

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  8. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C; LaFreniere, D; Macintosh, B; Doyon, R

    2008-06-02

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  9. Confidence Level and Sensitivity Limits in High-Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Lafrenière, David; Macintosh, Bruce; Doyon, René

    2008-01-01

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground- and space-based telescopes. Previous theoretical analyses have shown that the time intensity variations of a single speckle follow a modified Rician. It is first demonstrated here that for a circular pupil, this temporal intensity distribution also represents the speckle spatial intensity distribution at a fixed separation from the point-spread function center; this fact is demonstrated using numerical simulations for coronagraphic and noncoronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level (CL). In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding CL as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckle noise, a detection threshold up to 3 times higher is required to obtain a CL equivalent to that at 5 σ for Gaussian noise. The technique is then tested on data acquired by simultaneous spectral differential imaging with TRIDENT and by angular differential imaging with NIRI. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. Finally, a power law is derived to predict the 1 - 3 × 10-7 CL detection threshold when averaging a partially correlated non-Gaussian noise. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of

  10. Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes.

    PubMed

    Radhakrishnan, Hema; Pardhan, Shahina; Calver, Richard I; O'Leary, Daniel J

    2004-01-01

    This study investigated the effect of lens induced defocus on the contrast sensitivity function in myopes and non-myopes. Contrast sensitivity for up to 20 spatial frequencies ranging from 1 to 20 c/deg was measured with vertical sine wave gratings under cycloplegia at different levels of positive and negative defocus in myopes and non-myopes. In non-myopes the reduction in contrast sensitivity increased in a systematic fashion as the amount of defocus increased. This reduction was similar for positive and negative lenses of the same power (p = 0.474). Myopes showed a contrast sensitivity loss that was significantly greater with positive defocus compared to negative defocus (p = 0.001). The magnitude of the contrast sensitivity loss was also dependent on the spatial frequency tested for both positive and negative defocus. There was significantly greater contrast sensitivity loss in non-myopes than in myopes at low-medium spatial frequencies (1-8 c/deg) with negative defocus. Latent accommodation was ruled out as a contributor to this difference in myopes and non-myopes. In another experiment, ocular aberrations were measured under cycloplegia using a Shack-Hartmann aberrometer. Modulation transfer functions were calculated using the second order term for defocus as well as the fourth order Zernike term for spherical aberration. The theoretical maximal contrast sensitivity based on aberration data predicted the measured asymmetry in contrast sensitivity to positive and negative defocus that was observed in myopic subjects. The observed asymmetry in contrast sensitivity with positive and negative defocus in myopes may be linked to the altered accommodative response observed in this group.

  11. Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure

    PubMed Central

    Bex, Peter J.; Solomon, Samuel G.; Dakin, Steven C.

    2013-01-01

    The contrast sensitivity function is routinely measured in the laboratory with sine-wave gratings presented on homogenous gray backgrounds; natural images are instead composed of a broad range of spatial and temporal structures. In order to extend channel-based models of visual processing to more natural conditions, we examined how contrast sensitivity varies with the context in which it is measured. We report that contrast sensitivity is quite different under laboratory than natural viewing conditions: adaptation or masking with natural scenes attenuates contrast sensitivity at low spatial and temporal frequencies. Expressed another way, viewing stimuli presented on homogenous screens overcomes chronic adaptation to the natural environment and causes a sharp, unnatural increase in sensitivity to low spatial and temporal frequencies. Consequently, the standard contrast sensitivity function is a poor indicator of sensitivity to structure in natural scenes. The magnitude of masking by natural scenes is relatively independent of local contrast but depends strongly on the density of edges even though neither greatly affects the local amplitude spectrum. These results suggest that sensitivity to spatial structure in natural scenes depends on the distribution of local edges as well as the local amplitude spectrum. PMID:19810782

  12. Genetic influence on contrast sensitivity in middle-aged male twins.

    PubMed

    Cronin-Golomb, Alice; Panizzon, Matthew S; Lyons, Michael J; Franz, Carol E; Grant, Michael D; Jacobson, Kristen C; Eisen, Seth A; Laudate, Thomas M; Kremen, William S

    2007-07-01

    Contrast sensitivity is strongly associated with daily functioning among older adults, but the genetic and environmental contributions to this ability are unknown. Using the classical twin method, we addressed this issue by examining contrast sensitivity at five spatial frequencies (1.5-18 cycles per degree) in 718 middle-aged male twins from the Vietnam Era Twin Study of Aging (VETSA). Heritability estimates were modest (14-38%), whereas individual-specific environmental influences accounted for 62-86% of the variance. Identifying the types of individual-specific events that impact contrast sensitivity may suggest interventions to modulate this ability and thereby improve overall quality of life as adults age.

  13. How does the short-wavelength-sensitive contrast sensitivity function for detection and resolution change with age in the periphery?

    PubMed

    Beirne, Raymond O; Zlatkova, Margarita B; Chang, Chin-Kuo; Chakravarthy, Usha; Anderson, Roger S

    2008-08-01

    To determine the age-related change in the peripheral short-wavelength-sensitive (SWS) grating contrast sensitivity function (CSF), cut-off spatial frequency (acuity) and contrast sensitivity for both a detection and resolution task were measured at 8 degrees eccentricity under conditions of SWS-cone isolation for 51 subjects (19-72 years). The acuity for both the detection and resolution task declined with age, the detection acuity being significantly higher than the resolution acuity at all ages (p<.01). The CSF for both detection and resolution shifted towards lower spatial frequencies with increasing age. The contrast sensitivity for detection remained higher than that for resolution for all ages at the highest spatial frequencies. The age-related loss in the SWS resolution CSF at high spatial frequency probably reflects a loss occurring at the ganglion cells level. PMID:18585404

  14. Achromatized endomicroscope objective for optical biopsy

    PubMed Central

    Kyrish, Matthew; Tkaczyk, Tomasz S.

    2013-01-01

    Currently, researchers and clinicians lack achromatized endomicroscope objectives that are as narrow as biopsy needles. We present a proof-of-concept prototype that validates the optical design of an NA0.4 objective. The objective, built with plastic lenses, has a 0.9 mm clear aperture and is achromatized from 452 nm to 623 nm. The objective’s measured Strehl ratio is 0.74 ± 0.05 across a 250 μm FOV. We perform optical sectioning via structured illumination through the objective while capturing fluorescence images of breast carcinoma cells stained with proflavine and cresyl violet. This technology has the potential to improve optical biopsies and provide the next step forward in cancer diagnostics. PMID:23412009

  15. Adjustable hybrid diffractive/refractive achromatic lens.

    PubMed

    Valley, Pouria; Savidis, Nickolaos; Schwiegerling, Jim; Dodge, Mohammad Reza; Peyman, Gholam; Peyghambarian, N

    2011-04-11

    We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens' focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.

  16. Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.

    PubMed

    Meffin, H; Hietanen, M A; Cloherty, S L; Ibbotson, M R

    2015-12-01

    Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434-444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155-1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457-3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.

  17. Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information

    PubMed Central

    Goetz, Georges; Smith, Richard; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Sher, Alexander; Palanker, Daniel

    2015-01-01

    Purpose To evaluate the contrast sensitivity of a degenerate retina stimulated by a photovoltaic subretinal prosthesis, and assess the impact of low contrast sensitivity on transmission of visual information. Methods We measure ex vivo the full-field contrast sensitivity of healthy rat retina stimulated with white light, and the contrast sensitivity of degenerate rat retina stimulated with a subretinal prosthesis at frequencies exceeding flicker fusion (>20 Hz). Effects of eye movements on retinal ganglion cell (RGC) activity are simulated using a linear–nonlinear model of the retina. Results Retinal ganglion cells adapt to high frequency stimulation of constant intensity, and respond transiently to changes in illumination of the implant, exhibiting responses to ON-sets, OFF-sets, and both ON- and OFF-sets of light. The percentage of cells with an OFF response decreases with progression of the degeneration, indicating that OFF responses are likely mediated by photoreceptors. Prosthetic vision exhibits reduced contrast sensitivity and dynamic range, with 65% contrast changes required to elicit responses, as compared to the 3% (OFF) to 7% (ON) changes with visible light. The maximum number of action potentials elicited with prosthetic stimulation is at most half of its natural counterpart for the ON pathway. Our model predicts that for most visual scenes, contrast sensitivity of prosthetic vision is insufficient for triggering RGC activity by fixational eye movements. Conclusions Contrast sensitivity of prosthetic vision is 10 times lower than normal, and dynamic range is two times below natural. Low contrast sensitivity and lack of OFF responses hamper delivery of visual information via a subretinal prosthesis. PMID:26540657

  18. Achromatic lattice comparison for light sources

    SciTech Connect

    Kramer, S.L.; Crosbie, E.A.; Cho, Y.

    1988-01-01

    The next generation of synchrotron light sources are being designed to support a large number of undulators and require long dispersion-free insertion regions. With less demand for radiation from the dipole magnets, the storage ring cost per undulator beam can be reduced by decreasing the number of dipole magnets and increasing the number of dispersion free straight sections. The two simplest achromatic lattices are the Chasman-Green or double-bend achromatic (DBA) and the three-bend achromat (TBA). The DBA in its simplest form consists of a single horizontally-focussing quadrupole between the two dipole magnets. Since this quadrupole strength is fixed by the achromatic condition, the natural emittance (/var epsilon//sub n/) may vary as the beta functions in the insertion region (IR) are varied. The expanded Chasman-Green (also DBA) uses multiple quadrupoles in the dispersive section to provide emittance control independent of the beta functions in the IR. Although this provides flexibility in the ID beta functions, the horizontal phase advance is constrained to /phi/ /approx equal/ 180/degree/ between approximately the centers of the dipole magnets. If small /var epsilon//sub n/ is required, the horizontal phase advance between the dipoles will be near one and the lattice properties will be dominated by this systematic resonance. The TBA lattice places a third dipole between the DBA dipoles, eliminating the 180/degree/ horizontal phase advance constraint. However, the requirement of small /var epsilon//sub n/ limits the range of tune, since /mu//sub x/ /approx equal/ 1.29 in the dipoles alone for /var epsilon//sub n/ near its minimum value. The minimum emittance is five times smaller for the TBA than for the DBA with the same number of periods and, therefore, its phase advance can be relaxed more than the DBA for the same natural emittance. 5 refs., 4 figs., 1 tab.

  19. Luminance and chromatic contrast sensitivity in dyslexia: the magnocellular deficit hypothesis revisited.

    PubMed

    Bednarek, Dorota B; Grabowska, Anna

    2002-12-20

    The hypothesis of a magnocellular channel deficit in dyslexia was tested. Subjects were 10-year-old dyslexics and normal readers. Psychophysical thresholds for luminance and chromatic contrasts were estimated using black and white and red and green sinusoidal gratings of various spatial frequencies, presented in static and dynamic conditions (drift and reversal). Significant group differences were found for luminance contrast, with a higher sensitivity in dyslexics. No group differences were obtained for chromatic contrast. High luminance contrast sensitivity correlated with low reading and writing skills. The typical finding of an increase contrast sensitivity to low spatial frequency gratings, due to their dynamic presentations, was absent in dyslexics. The results provide support for the magnocellular deficit hypothesis. The pattern of this deficit, however, is much more complex than that emerging from previous research.

  20. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  1. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon.

  2. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. PMID:24845620

  3. Modelling contrast sensitivity as a function of retinal illuminance and grating area.

    PubMed

    Rovamo, J; Mustonen, J; Näsänen, R

    1994-05-01

    We extended the contrast detection model of human vision [Rovamo, Luntinen & Näsänen (1993b) Vision Research, 33, 2773-2788] to low light levels by taking into account the effect of light-dependent quantal noise. The extended model comprises (i) low-pass filtering due to the optical modulation transfer function of the eye, (ii) addition of light-dependent noise at the event of quantal absorption, (iii) high-pass filtering of neural origin (lateral inhibition), (iv) addition of internal neural noise, and (v) detection by a local matched filter whose efficiency decreases with increasing grating area. To test the model we measured foveal contrast sensitivity as a function of retinal illuminance and grating area at spatial frequencies of 0.125-32 c/deg. In agreement with the model, monocular contrast sensitivity at all grating areas increased in proportion to I when retinal illuminance (I) was smaller than critical illuminance. Thereafter the increase saturated and contrast sensitivity became independent of retinal illuminance. Similarly, at all levels of retinal illuminance contrast sensitivity increased in proportion to A when grating area (A) was smaller than critical area. Thereafter the increase saturated and contrast sensitivity became independent of area. Critical level of retinal illuminance increased in proportion to the spatial frequency squared. Critical area marking the saturation of spatial integration was constant at low spatial frequencies but decreased in inverse proportion to spatial frequency squared at medium and high spatial frequencies. The maximum contrast sensitivity obtainable by spatial integration in bright light increased at low spatial frequencies in proportion to spatial frequency, was constant at medium spatial frequencies, and decreased in inverse proportion to spatial frequency cubed at high spatial frequencies. The increase was due to the neural modulation transfer function of the visual pathways whereas the decrease was due to the

  4. Contrast sensitivity of air-breathing nonprofessional scuba divers at a depth of 40 meters.

    PubMed

    Schellart, N A

    1992-08-01

    Photopic contrast sensitivity of air-breathing scuba divers was measured with a translucent test pattern at depths up to 40 m. The pattern was composed of sine wave gratings with spatial frequency and contrast changing logarithmically. The spatial transfer characteristics were measured at various depths under controlled optical conditions in seawater and in fresh water. Analysis indicates that the visual contrast sensitivity, and therefore probably also acuity, of sport divers is not affected up to depths of 40 m. This holds under ideal as well as poor diving conditions.

  5. Spatial contrast sensitivity - Effects of age, test-retest, and psychophysical method

    NASA Technical Reports Server (NTRS)

    Higgins, Kent E.; Jaffe, Myles J.; Caruso, Rafael C.; Demonasterio, Francisco M.

    1988-01-01

    Two different psychophysical methods were used to test the spatial contrast sensitivity in normal subjects from five age groups. The method of adjustment showed a decline in sensitivity with increasing age at all spatial frequencies, while the forced-choice procedure showed an age-related decline predominantly at high spatial frequencies. It is suggested that a neural component is responsible for this decline.

  6. The contrast sensitivity, spatial resolution and velocity tuning of the cat's optokinetic reflex.

    PubMed Central

    Donaghy, M

    1980-01-01

    1. Optokinetic nystagmus has been evoked from two cats using horizontally moving vertical grating patterns with sinusoidally modulated wave forms (mean luminance 8.5 cd/m2). Eye movements were recorded by DC electro-oculography. 2. The velocity 'tuning' of the slow phase response was measured for high-contrast (0.8) gratings with spatial frequencies ranging from 0.18 to 2.8 cycles/deg. Irrespective of spatial frequency, the gain of slow phase tracking always declined as the stimulus velocity exceeded 5-8 deg/sec. 3. The effect of variations in grating contrast on the gain of slow phase tracking was investigated for spatial frequencies ranging from 0.04 to 2.8 cycles/deg. These gratings always moved at a velocity of 3 deg/sec. Reductions in grating contrast produced a fall in the gain of slow phase tracking. At any given contrast, the extent of the fall in gain depended on spatial frequency. At no value of spatial frequency was an optokinetic response demonstrable when the contrast fell below 0.02. 4. The above results have been used to derive the threshold contrast for evoking an optokinetic response at each spatial frequency tested. A contrast sensitivity function is plotted from these threshold contrasts, and this is compared with previous estimates of the cat's contrast sensitivity function derived from measurements of visual discrimination and cortical evoked potentials. PMID:7381791

  7. Edge detection depends on achromatic channel in Drosophila melanogaster.

    PubMed

    Zhou, Yanqiong; Ji, Xiaoxiao; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2012-10-01

    Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated. In the present study, using a color light-emitting-diode-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal luminance, at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE(17) and sev(LY3);rh5(2);rh6(1) demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of rhodopsin 4 (Rh4), Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE(17) mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila. PMID:22735352

  8. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  9. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  10. Spatial frequency tuning functions and contrast sensitivity at different eccentricities in the visual field

    SciTech Connect

    Chen, H.W.; Aine, C.J.; Flynn, E.R.; Wood, C.C.

    1996-07-01

    The human luminance spatial frequency contrast sensitivity function (CSF) has been well studied using psychophysical measurements by detecting spatial frequency (SF) grating patterns at threshold. Threshold CSFs at different eccentricities have proven to be quite useful in both basic and clinical vision research. However, near threshold, the CSF is measured at a linear area of the saturating contrast-response curve. In contrast, most of our everyday vision may be at suprathreshold levels, and thus may function most of the time at the nonlinear area of the contrast-response curve. In this study, in order to better characterize the CSF at normal contrast levels, we measured the SF tuning functions as well as the CR functions at different suprathreshold contrast levels and different eccentricities of the visual field using noninvasive MEG techniques. In this study, in addition to peak analysis, we have developed more reliable averaged power analysis methods where the average power can be calculated from the entire waveforms.

  11. A gaze-contingent display to study contrast sensitivity under natural viewing conditions

    NASA Astrophysics Data System (ADS)

    Dorr, Michael; Bex, Peter J.

    2011-03-01

    Contrast sensitivity has been extensively studied over the last decades and there are well-established models of early vision that were derived by presenting the visual system with synthetic stimuli such as sine-wave gratings near threshold contrasts. Natural scenes, however, contain a much wider distribution of orientations, spatial frequencies, and both luminance and contrast values. Furthermore, humans typically move their eyes two to three times per second under natural viewing conditions, but most laboratory experiments require subjects to maintain central fixation. We here describe a gaze-contingent display capable of performing real-time contrast modulations of video in retinal coordinates, thus allowing us to study contrast sensitivity when dynamically viewing dynamic scenes. Our system is based on a Laplacian pyramid for each frame that efficiently represents individual frequency bands. Each output pixel is then computed as a locally weighted sum of pyramid levels to introduce local contrast changes as a function of gaze. Our GPU implementation achieves real-time performance with more than 100 fps on high-resolution video (1920 by 1080 pixels) and a synthesis latency of only 1.5ms. Psychophysical data show that contrast sensitivity is greatly decreased in natural videos and under dynamic viewing conditions. Synthetic stimuli therefore only poorly characterize natural vision.

  12. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  13. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  14. Spatial contrast sensitivity in unilateral cerebral ischaemic lesions involving the posterior visual pathway.

    PubMed

    Bulens, C; Meerwaldt, J D; van der Wildt, G J; Keemink, C J

    1989-04-01

    Contrast sensitivity function was studied in 16 patients with unilateral ischaemic lesions involving the posterior visual pathway. Sixty-two percent of the patients showed contrast sensitivity loss in at least one eye for horizontal or vertical stimulus orientation. Visual perception was distorted in a qualitatively different way according to the anteroposterior site of the lesion. Patients with occipital or occipitotemporal lesions showed high spatial frequency selective losses and patients with temporal or parietal lesions low frequency selective losses. Stimulus orientation selectivity was observed in patients with lesions of the primary visual cortex as well as in patients with lesions anterior to the striate cortex. Contrast sensitivity orientation-selective losses were demonstrated in 14 of the 17 'affected' eyes.

  15. Spatial contrast sensitivity in unilateral cerebral ischaemic lesions involving the posterior visual pathway.

    PubMed

    Bulens, C; Meerwaldt, J D; van der Wildt, G J; Keemink, C J

    1989-04-01

    Contrast sensitivity function was studied in 16 patients with unilateral ischaemic lesions involving the posterior visual pathway. Sixty-two percent of the patients showed contrast sensitivity loss in at least one eye for horizontal or vertical stimulus orientation. Visual perception was distorted in a qualitatively different way according to the anteroposterior site of the lesion. Patients with occipital or occipitotemporal lesions showed high spatial frequency selective losses and patients with temporal or parietal lesions low frequency selective losses. Stimulus orientation selectivity was observed in patients with lesions of the primary visual cortex as well as in patients with lesions anterior to the striate cortex. Contrast sensitivity orientation-selective losses were demonstrated in 14 of the 17 'affected' eyes. PMID:2706442

  16. VISUAL CONTRAST SENSITIVITY: A SENSITIVE INDICATOR OF NEUROTOXICITY FOR RISK ASSESSMENT AND CLINICAL APPLICATIONS.

    EPA Science Inventory

    Both human-health risk assessments of adverse effects from chronic, environmental exposures to neurotoxics and clinical practice are in need of objective indicators sensitive to the early stages of disruption in neurologic function; risk assessment for the purposes of hazard iden...

  17. Contrast Sensitivity of Cats and Humans in Scotopic and Mesopic Conditions

    PubMed Central

    Kang, Incheol; Reem, Rachel E.; Kaczmarowski, Amy L.; Malpeli, Joseph G.

    2009-01-01

    Human contrast sensitivity in low scotopic conditions is regulated according to the deVries–Rose law. Previous cat behavioral data, as well as cat and mice electrophysiological data, have not confirmed this relationship. To resolve this discrepancy at the behavioral level, we compared sensitivity in dim light for cats and humans in parallel experiments using the same visual stimuli and similar behavioral paradigms. Both species had to detect Gabor functions (SD = 1.5°, spatial frequencies from 0 to 4 cpd, temporal frequency 4 Hz) presented 8° to the right or left of a central fixation point over an 8 log-unit range of adaptation levels spanning scotopic vision and extending well into the mesopic range. Cats had 0.74 log unit greater absolute sensitivity than that of humans for spatial frequencies ≤1/8 cpd. Cats had better contrast sensitivity overall for spatial frequencies <1/2 cpd, whereas humans were more sensitive for spatial frequencies above this. However, most of the cat's sensitivity advantage for low spatial frequencies could be accounted for by the greater light-concentrating abilities of its optics. Contrast sensitivity to 4 cpd was poor or absent in the scotopic range for both species. For both, scotopic increment thresholds were proportional to the square root of retinal illuminance, in accordance with the deVries–Rose law. Overall, cat and human visual systems appear to operate under very similar constraints for rod vision, including the regulation of contrast sensitivity across adaptation levels. A companion paper compares sensitivity of neurons in the lateral geniculate nucleus to these behavioral data. PMID:19458146

  18. On the calculation of optical performance factors from vertebrate spatial contrast sensitivity.

    PubMed

    Jarvis, John R; Wathes, Christopher M

    2007-08-01

    A novel technique for calculating the visual optical modulation transfer function (OMTF) is described. The technique involves application of the Rovamo-Barten model of spatial vision to measured contrast sensitivity data. [For details of the basic model see; Rovamo, J., Mustonen, J., & Nasanen, R. (1994). Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research, 34, 1301-1314 and Barten, P. J. G. (1999). Contrast sensitivity of the human eye and its effects on image quality. Washington: SPIE Optical Engineering Press.] In order to obtain OMTF, the model was simplified for use in the high spatial frequency range and also modified to include a transfer function term relating to attenuation by the retinal receptor sampling process. Calculations of OMTF were initially obtained from published contrast sensitivity for the human, cat, rat and chicken. The results were found to correlate well with OMTF values directly obtained through a double-pass optical measuring technique applied to all four species. It was assumed, following this initial test, that the modified Rovamo-Barten model could be used to extract OMTF from vertebrate contrast sensitivity data in general. Using published behavioural contrast sensitivity, further OMTF values were calculated from the model for the pigeon, goldfish, owl monkey, and tree shrew. The results obtained were used to provide a direct inter-species comparison of optical performance for a matched stimulus luminance. This study also confirms that, in many cases, vertebrate optical and receptor sampling processes are well matched in their attenuation properties. PMID:17588633

  19. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  20. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  1. Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions.

    PubMed

    Cavalcanti-Galdino, M K; Silva, J A da; Mendes, L C; Santos, N A da; Simas, M L B

    2014-04-01

    The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions.

  2. Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions

    PubMed Central

    Cavalcanti-Galdino, M.K.; da Silva, J.A.; Mendes, L.C.; dos Santos, N.A.; Simas, M.L.B.

    2014-01-01

    The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions. PMID:24676473

  3. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    SciTech Connect

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  4. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods

    PubMed Central

    Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter

    2016-01-01

    Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used. PMID:27185492

  5. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods

    NASA Astrophysics Data System (ADS)

    Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter

    2016-05-01

    Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used.

  6. Donepezil increases contrast sensitivity for the detection of objects in scenes.

    PubMed

    Boucart, Muriel; Bubbico, Giovanna; Szaffarczyk, Sebastien; Defoort, Sabine; Ponchel, Amelie; Waucquier, Nawal; Deplanque, Dominique; Deguil, Julie; Bordet, Régis

    2015-10-01

    We assessed the effects of donepezil, a drug that stimulates cholinergic transmission, and scopolamine, an antagonist of cholinergic transmission, on contrast sensitivity. 30 young male participants were tested under three treatment conditions: placebo, donepezil, and scopolamine in a random order. Pairs of photographs varying in contrast were displayed left and right of fixation for 50 ms. Participants were asked to locate the scene containing an animal. Accuracy was better under donepezil than under scopolamine, particularly for signals of high intensity (at higher levels of contrast). A control experiment showed that the lower performance under scopolamine did not result from the mydriasis induced by scopolamine. The results suggest that cholinergic stimulation, through donepezil, facilitates signal detection in agreement with studies on animals showing that the pharmacological activation of cholinergic receptors controls the gain in the relationship between the stimulus contrast (intensity of the visual input) and visual response. As Alzheimer disease is associated to depletion in acetylcholine, and there is evidence of deficits in contrast sensitivity in Alzheimer, it might be interesting to integrate such rapid and sensitive visual tasks in the biomarkers at early stage of drug development.

  7. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods.

    PubMed

    Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter

    2016-05-17

    Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used.

  8. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu.

    PubMed

    Sigg, Severin J; Santini, Francesco; Najer, Adrian; Richard, Pascal U; Meier, Wolfgang P; Palivan, Cornelia G

    2016-08-01

    Current magnetic resonance imaging (MRI) contrast agents often produce insufficient contrast for diagnosis of early disease stages, and do not sense their biochemical environments. Herein, we report a highly sensitive nanoparticle-based MRI probe with r1 relaxivity up to 51.7 ± 1.2 mM(-1) s(-1) (3T). Nanoparticles were co-assembled from Gd(3+) complexed to heparin-poly(dimethylsiloxane) copolymer, and a reduction-sensitive amphiphilic peptide serving to induce responsiveness to environmental changes. The release of the peptide components leads to a r1 relaxivity increase under reducing conditions and increases the MRI contrast. In addition, this MRI probe has several advantages, such as a low cellular uptake, no apparent cellular toxicity (tested up to 1 mM Gd(3+)), absence of an anticoagulation property, and a high shelf stability (no increase in free Gd(3+) over 7 months). Thus, this highly sensitive T1 MRI contrast nanoparticle system represents a promising probe for early diagnosis through possible accumulation and contrast enhancement within reductive extracellular tumour tissue. PMID:27435820

  9. Visual Contrast Sensitivity Functions Obtained from Untrained Observers Using Tracking and Staircase Procedures. Final Report.

    ERIC Educational Resources Information Center

    Geri, George A.; Hubbard, David C.

    Two adaptive psychophysical procedures (tracking and "yes-no" staircase) for obtaining human visual contrast sensitivity functions (CSF) were evaluated. The procedures were chosen based on their proven validity and the desire to evaluate the practical effects of stimulus transients, since tracking procedures traditionally employ gradual stimulus…

  10. Contrast Sensitivity Differences between Proficient and Disabled Readers Using Colored Lenses.

    ERIC Educational Resources Information Center

    Spafford, Carol S.; And Others

    1995-01-01

    This study examined relationships among lens color, visual grating, visual detection task performance, and peripheral retinal brightness thresholds among four adults and four children with reading disabilities and age-matched controls. Subjects with reading disabilities displayed significantly lower contrast sensitivity when tested with sine-wave…

  11. Specific Reading Disability: Differences in Contrast Sensitivity as a Function of Spatial Frequency.

    ERIC Educational Resources Information Center

    Lovegrove, W. J.; And Others

    1980-01-01

    Contrast thresholds for sine-wave gratings of spatial frequencies of 2, 4, 12, and 16 cycles per degree were determined for normal and disabled readers at a range of stimulus durations. The differences in sensitivity pattern across spatial frequencies was greatest at stimulus durations approximately equal to fixation durations during reading.…

  12. Contrast Sensitivity Function Scores, Choices of Illuminated Stand Magnifiers, and Reading

    ERIC Educational Resources Information Center

    Gerritsen, Bryan

    2010-01-01

    Far too often, professionals focus almost solely on individuals' needs for magnification level for reading. Visual acuities are measured and decisions are made for low vision devices largely on the basis of acuity levels. Contrast sensitivity function is often overlooked as a critical need for and predictor of the selection and preference for low…

  13. Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring Contrast Agent Size Distribution: In Vivo Studies

    PubMed Central

    Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.

    2010-01-01

    Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606

  14. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  15. Using argon laser blue light reduces ophthalmologists' color contrast sensitivity. Argon blue and surgeons' vision

    SciTech Connect

    Berninger, T.A.; Canning, C.R.; Guenduez, K.St.; Strong, N.; Arden, G.B. )

    1989-10-01

    Color contrast sensitivity was measured in laser operators before and after laser use. After argon blue-green laser treatment sessions, sensitivity was reduced for colors lying along a tritan color-confusion line for several hours. This acute effect is due to specular flash-backs from the aiming beam off the surface of the contact lens. It is caused only by argon 488-nm light, when the aiming beam intensity is high. In addition, a correlation has been demonstrated between the number of years of laser experience and a chronic reduction in tritan color contrast sensitivity. It is suggested that repeated acute changes caused by the argon lasers may cause cumulative effects and produce a chronic threshold elevation. A simple method of eliminating the acute effect is documented.

  16. Contrast sensitivity loss with aging: sampling efficiency and equivalent noise at different spatial frequencies.

    PubMed

    Pardhan, Shahina

    2004-02-01

    The relative contributions of optical and neural factors to the decrease in visual function with aging were investigated by measurement of contrast detection at three different spatial frequencies, in the presence of external noise, on young and older subjects. Contrast detection in noise functions allows two parameters to be measured: sampling efficiency, which indicates neural changes, and equivalent noise, which demonstrates optical effects. Contrast thresholds were measured in the presence of four levels (including zero) of externally added visual noise. Measurements were obtained from eight young and eight older visually normal observers. Compared with young subjects, older subjects showed significantly (p < 0.05) lower sampling efficiencies at spatial frequencies of 1 and 4 cycles per degree (c/deg) and significantly higher equivalent noise levels for gratings of 10 c/deg. Neural and optical factors affect contrast sensitivity loss with aging differently, depending on the spatial frequency tested, implying the existence of different mechanisms.

  17. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  18. Achromatic Metasurface Lens at Telecommunication Wavelengths.

    PubMed

    Khorasaninejad, Mohammadreza; Aieta, Francesco; Kanhaiya, Pritpal; Kats, Mikhail A; Genevet, Patrice; Rousso, David; Capasso, Federico

    2015-08-12

    Nanoscale optical resonators enable a new class of flat optical components called metasurfaces. This approach has been used to demonstrate functionalities such as focusing free of monochromatic aberrations (i.e., spherical and coma), anomalous reflection, and large circular dichroism. Recently, dielectric metasurfaces that compensate the phase dispersion responsible for chromatic aberrations have been demonstrated. Here, we utilize an aperiodic array of coupled dielectric nanoresonators to demonstrate a multiwavelength achromatic lens. The focal length remains unchanged for three wavelengths in the near-infrared region (1300, 1550, and 1800 nm). Experimental results are in agreement with full-wave simulations. Our findings are an essential step toward a realization of broadband flat optical elements.

  19. Understanding disability glare: light scatter and retinal illuminance as predictors of sensitivity to contrast.

    PubMed

    Patterson, Emily J; Bargary, Gary; Barbur, John L

    2015-04-01

    The presence of a bright light in the visual field has two main effects on the retinal image: reduced contrast and increased retinal illuminance because of scattered light; the latter can, under some conditions, lead to an improvement in retinal sensitivity. The combined effect remains poorly understood, particularly at low light levels. A psychophysical flicker-cancellation test was used to measure the amount and angular distribution of scattered light in the eye for 40 observers. Contrast thresholds were measured using a functional contrast sensitivity test. Pupil-plane glare-source illuminances (i.e., 0, 1.35, and 19.21  lm/m2), eccentricities (5°, 10°, and 15°), and background luminances (1, 2.6, and 26  cd/m2) were investigated. Visual performance was better than predicted, based on a loss of retinal image contrast caused by scattered light, particularly in the mesopic range. Prediction accuracy improved significantly when the expected increase in retinal sensitivity in the presence of scattered light was also incorporated in the model. PMID:26366766

  20. Integration of spatio-temporal contrast sensitivity with a multi-slice channelized Hotelling observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali N.; Espig, Kathryn S.; Marchessoux, Cedric; Krupinski, Elizabeth A.; Bakic, Predrag R.; Kimpe, Tom R. L.; Maidment, Andrew D. A.

    2013-03-01

    Barten's model of spatio-temporal contrast sensitivity function of human visual system is embedded in a multi-slice channelized Hotelling observer. This is done by 3D filtering of the stack of images with the spatio-temporal contrast sensitivity function and feeding the result (i.e., the perceived image stack) to the multi-slice channelized Hotelling observer. The proposed procedure of considering spatio-temporal contrast sensitivity function is generic in the sense that it can be used with observers other than multi-slice channelized Hotelling observer. Detection performance of the new observer in digital breast tomosynthesis is measured in a variety of browsing speeds, at two spatial sampling rates, using computer simulations. Our results show a peak in detection performance in mid browsing speeds. We compare our results to those of a human observer study reported earlier (I. Diaz et al. SPIE MI 2011). The effects of display luminance, contrast and spatial sampling rate, with and without considering foveal vision, are also studied. Reported simulations are conducted with real digital breast tomosynthesis image stacks, as well as stacks from an anthropomorphic software breast phantom (P. Bakic et al. Med Phys. 2011). Lesion cases are simulated by inserting single micro-calcifications or masses. Limitations of our methods and ways to improve them are discussed.

  1. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement

    NASA Technical Reports Server (NTRS)

    Carrasco, M.; Penpeci-Talgar, C.; Eckstein, M.

    2000-01-01

    This study is the first to report the benefits of spatial covert attention on contrast sensitivity in a wide range of spatial frequencies when a target alone was presented in the absence of a local post-mask. We used a peripheral precue (a small circle indicating the target location) to explore the effects of covert spatial attention on contrast sensitivity as assessed by orientation discrimination (Experiments 1-4), detection (Experiments 2 and 3) and localization (Experiment 3) tasks. In all four experiments the target (a Gabor patch ranging in spatial frequency from 0.5 to 10 cpd) was presented alone in one of eight possible locations equidistant from fixation. Contrast sensitivity was consistently higher for peripherally- than for neutrally-cued trials, even though we eliminated variables (distracters, global masks, local masks, and location uncertainty) that are known to contribute to an external noise reduction explanation of attention. When observers were presented with vertical and horizontal Gabor patches an external noise reduction signal detection model accounted for the cueing benefit in a discrimination task (Experiment 1). However, such a model could not account for this benefit when location uncertainty was reduced, either by: (a) Increasing overall performance level (Experiment 2); (b) increasing stimulus contrast to enable fine discriminations of slightly tilted suprathreshold stimuli (Experiment 3); and (c) presenting a local post-mask (Experiment 4). Given that attentional benefits occurred under conditions that exclude all variables predicted by the external noise reduction model, these results support the signal enhancement model of attention.

  2. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement.

    PubMed

    Carrasco, M; Penpeci-Talgar, C; Eckstein, M

    2000-01-01

    This study is the first to report the benefits of spatial covert attention on contrast sensitivity in a wide range of spatial frequencies when a target alone was presented in the absence of a local post-mask. We used a peripheral precue (a small circle indicating the target location) to explore the effects of covert spatial attention on contrast sensitivity as assessed by orientation discrimination (Experiments 1-4), detection (Experiments 2 and 3) and localization (Experiment 3) tasks. In all four experiments the target (a Gabor patch ranging in spatial frequency from 0.5 to 10 cpd) was presented alone in one of eight possible locations equidistant from fixation. Contrast sensitivity was consistently higher for peripherally- than for neutrally-cued trials, even though we eliminated variables (distracters, global masks, local masks, and location uncertainty) that are known to contribute to an external noise reduction explanation of attention. When observers were presented with vertical and horizontal Gabor patches an external noise reduction signal detection model accounted for the cueing benefit in a discrimination task (Experiment 1). However, such a model could not account for this benefit when location uncertainty was reduced, either by: (a) Increasing overall performance level (Experiment 2); (b) increasing stimulus contrast to enable fine discriminations of slightly tilted suprathreshold stimuli (Experiment 3); and (c) presenting a local post-mask (Experiment 4). Given that attentional benefits occurred under conditions that exclude all variables predicted by the external noise reduction model, these results support the signal enhancement model of attention.

  3. Understanding disability glare: light scatter and retinal illuminance as predictors of sensitivity to contrast.

    PubMed

    Patterson, Emily J; Bargary, Gary; Barbur, John L

    2015-04-01

    The presence of a bright light in the visual field has two main effects on the retinal image: reduced contrast and increased retinal illuminance because of scattered light; the latter can, under some conditions, lead to an improvement in retinal sensitivity. The combined effect remains poorly understood, particularly at low light levels. A psychophysical flicker-cancellation test was used to measure the amount and angular distribution of scattered light in the eye for 40 observers. Contrast thresholds were measured using a functional contrast sensitivity test. Pupil-plane glare-source illuminances (i.e., 0, 1.35, and 19.21  lm/m2), eccentricities (5°, 10°, and 15°), and background luminances (1, 2.6, and 26  cd/m2) were investigated. Visual performance was better than predicted, based on a loss of retinal image contrast caused by scattered light, particularly in the mesopic range. Prediction accuracy improved significantly when the expected increase in retinal sensitivity in the presence of scattered light was also incorporated in the model.

  4. Change in contrast sensitivity functions with Corning CPF filters in patients with age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Rimbergas, Sylvia; Raghuram, Aparna; Boothroyd, Gané; Vatianou, Angelo; Lakshminarayanan, Vasudevan; Stelmack, Joan; Stelmack, Thomas

    2005-09-01

    Do Corning CPF filters change contrast sensitivity in patients with age related macular degeneration (AMD)? A retrospective review was conducted of 54 charts of veterans with AMD receiving comprehensive low vision services at VICTORS (VA Chicago West Side). CSF measurements with the VISTECH 6500 test system were compared before and after introduction of Corning CPF filters. Veterans were asked if filters made a noticeable change in contrast. Pre/post-filter CSF data was obtained for 63 trials at 1?m test distance and 60 trials at the 3?m test distance. To evaluate the data we used an analytic function to fit the contrast sensitivity data previously described by Lakshminarayanan [Optom. Vis. Sci. 72 511 (1995)]. An index was used to compare pre- and post-filter information. Veterans were prescribed filters if improvement in contrast was noted, or a subjective improvement was made. Patients were then contacted post-filter during this retrospective study to determine if the filters still enhanced daily activities. Mean improvement in the contrast sensitivity for each spatial frequency ranged from +0.344 to +0.422 patches with the filters at 1?m and +0.183 to +0.548 patches at 3?m. 87.5% of patients reported improvement in contrast while performing activities of daily living with Corning filters. Paired t test are t = -3.8298 (p?=?0.003) at 1?m and t = -4.957 (p = 0.000 01) at 3?m test distance. While the changes in the CSF with filters are statistically significant and consistent with report of self-improvement by patients, the change in the number of patches on the VISTECH 6500 chart is not clinically significant. Clinical implications are that the chart in its current format is not useful for the prescription of filters leaving patient perception of change as a better guideline.

  5. Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Lou, John; Shaklan, Stuart; Levine, Marie

    2010-01-01

    This slide presentation reviews the sensitivity studies on the Phase-Induced Amplitude Apodization (PIAA), or pupil mapping using the High-Contrast Imaging Testbed (HCIT). PIAA is a promising technique in high-dynamic range stellar coronagraph. This presentation reports on the investigation of the effects of the phase and rigid-body errors of various optics on the narrowband contrast performance of the PIAA/HCIT hybrid system. The results have shown that the 2-step wavefront control method utilizing 2-DMs is quite effective in compensating the effects of realistic phase and rigid-body errors of various optics

  6. Effects of Prematurity on the Development of Contrast Sensitivity: Testing the Visual Experience Hypothesis

    PubMed Central

    Bosworth, Rain G.; Dobkins, Karen R.

    2013-01-01

    In order to investigate the effects of visual experience on early visual development, the current study compared contrast sensitivity across infants born with different levels of moderate-to-late prematurity. Here the logic is that at any given postterm age, the most premature infants will have the oldest postnatal age. Given that postnatal age is a proxy for visual experience, the visual experience hypothesis predicts that infants who are more premature, yet healthy, should have higher sensitivity. Luminance (light/dark) and chromatic (red/green) contrast sensitivities (CS) were measured in 236 healthy infants (born −10 to +2 weeks relative to due date) between 5 and 32 weeks postterm age from due date and 8 to 38 weeks postnatal from birth date. For chromatic CS, we found clear evidence that infants who were most premature within our sample had the highest sensitivity. Specifically, 4 to 10 additional weeks of visual experience, by virtue of being born early, enhanced chromatic CS. For luminance CS, similar but weaker results were seen. Here, only infants with an additional 6 to 10 weeks of visual experience, and only at later age points in development, showed enhanced sensitivity. However, CS in preterm infants was still below that of fullterm infants with equivalent postnatal age. In sum, these results suggest that chromatic CS is influenced more by prematurity (and possibly visual experience) than is luminance CS, which has implications for differential development of Parvocellular and Magnocellular pathways. PMID:23485427

  7. Night vision in barn owls: visual acuity and contrast sensitivity under dark adaptation.

    PubMed

    Orlowski, Julius; Harmening, Wolf; Wagner, Hermann

    2012-12-06

    Barn owls are effective nocturnal predators. We tested their visual performance at low light levels and determined visual acuity and contrast sensitivity of three barn owls by their behavior at stimulus luminances ranging from photopic to fully scotopic levels (23.5 to 1.5 × 10⁻⁶). Contrast sensitivity and visual acuity decreased only slightly from photopic to scotopic conditions. Peak grating acuity was at mesopic (4 × 10⁻² cd/m²) conditions. Barn owls retained a quarter of their maximal acuity when luminance decreased by 5.5 log units. We argue that the visual system of barn owls is designed to yield as much visual acuity under low light conditions as possible, thereby sacrificing resolution at photopic conditions.

  8. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society.

    PubMed

    Joulan, Karine; Brémond, Roland; Hautière, Nicolas

    2015-01-01

    The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994

  9. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society

    PubMed Central

    Joulan, Karine; Brémond, Roland

    2015-01-01

    The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994

  10. Sensitivity of edge illumination X-ray phase-contrast imaging

    PubMed Central

    Diemoz, P. C.; Endrizzi, M.; Bravin, A.; Robinson, I. K.; Olivo, A.

    2014-01-01

    Recently, we developed a theoretical model that can predict the signal-to-noise ratio for edge-like features in phase-contrast images. This model was then applied for the estimation of the sensitivity of three different X-ray phase-contrast techniques: propagation-based imaging, analyser-based imaging and grating interferometry. We show here how the same formalism can be used also in the case of the edge illumination (EI) technique, providing results that are consistent with those of a recently developed method for the estimation of noise in the retrieved refraction image. The new model is then applied to calculate, in the case of a given synchrotron radiation set-up, the optimum positions of the pre-sample aperture and detector edge to maximize the sensitivity. Finally, an example of the extremely high angular resolution achievable with the EI technique is presented. PMID:24470420

  11. An achromat for the ANU 14UD linac

    NASA Astrophysics Data System (ADS)

    MacKinnon, B. A.; Stuchbery, A. E.; Weisser, D. C.

    1994-06-01

    A compact magnetic achromat has been designed and constructed to deliver the horizontal output beam of the ANU 14UD Pelletron tandem accelerator to a superconducting booster accelerator to be located in part of the experimental hall of the laboratory. The achromat provides 90° deflection of the ion beam and is fully achromatic with respect to energy spread in the beam. Due to space constraints in the laboratory, it has been necessary to locate the beam chopping device and bunching cryostat upstream of the 90° bend, thereby requiring that the beam trajectory following the bend be independent of beam energy. The optical performance of the achromat has been investigated in first order using the matrix transfer beam calculation code TRANSPORT, and in high order using the particle tracking code RAYTRACE. In first order, the achromat is shown to have precise achromatism and to be isochronous with the exception of small and predictable time waist shifts. High order calculations lead to an expectation of less than 6% worsening of the transverse beam emittance and less than 9 ps timing degradation for 170 MeV 59Ni 13+, an isotope of interest in accelerator mass spectrometry. The effect on the transmission of this isotope through the subsequent acceleration stages and beam-optical elements is negligible.

  12. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-24

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.

  13. Sensitivity to gaze-contingent contrast increments in naturalistic movies: An exploratory report and model comparison

    PubMed Central

    Wallis, Thomas S. A.; Dorr, Michael; Bex, Peter J.

    2015-01-01

    Sensitivity to luminance contrast is a prerequisite for all but the simplest visual systems. To examine contrast increment detection performance in a way that approximates the natural environmental input of the human visual system, we presented contrast increments gaze-contingently within naturalistic video freely viewed by observers. A band-limited contrast increment was applied to a local region of the video relative to the observer's current gaze point, and the observer made a forced-choice response to the location of the target (≈25,000 trials across five observers). We present exploratory analyses showing that performance improved as a function of the magnitude of the increment and depended on the direction of eye movements relative to the target location, the timing of eye movements relative to target presentation, and the spatiotemporal image structure at the target location. Contrast discrimination performance can be modeled by assuming that the underlying contrast response is an accelerating nonlinearity (arising from a nonlinear transducer or gain control). We implemented one such model and examined the posterior over model parameters, estimated using Markov-chain Monte Carlo methods. The parameters were poorly constrained by our data; parameters constrained using strong priors taken from previous research showed poor cross-validated prediction performance. Atheoretical logistic regression models were better constrained and provided similar prediction performance to the nonlinear transducer model. Finally, we explored the properties of an extended logistic regression that incorporates both eye movement and image content features. Models of contrast transduction may be better constrained by incorporating data from both artificial and natural contrast perception settings. PMID:26057546

  14. Hypoxia targeted carbon nanotubes as a sensitive contrast agent for photoacoustic imaging of tumors

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Aguirre, Andres; Biswal, Nrusingh C.; Pavlik, Christopher; Smith, Michael B.; Alqasemi, Umar; Li, Hai; Zhu, Quing

    2011-03-01

    Development of new and efficient contrast agents is of fundamental importance to improve detection sensitivity of smaller lesions. Within the family of nanomaterials, carbon nanotubes (CNT) not only have emerged as a new alternative and efficient transporter and translocater of therapeutic molecules but also as a photoacoustic molecular imaging agent owing to its strong optical absorption in the near-infrared region. Drugs, Antibodies and nucleic acids could functionalize the CNT and prepare an appropriate system for delivering the cargos to cells and organs. In this work, we present a novel photoacoustic contrast agent which is based on a unique hypoxic marker in the near infrared region, 2-nitroimidazole -bis carboxylic acid derivative of Indocyanine Green conjugated to single walled carbon nanotube (SWCNT-2nitroimidazole-ICG). The 2-nitroimidazole-ICG has an absorption peak at 755 nm and an extinction coefficient of 20,5222 M-1cm-1. The conjugation of this marker with SWCNT shows more than 25 times enhancement of optical absorption of carbon nanotubes in the near infrared region. This new conjugate has been optically evaluated and shows promising results for high contrast photoacoustic imaging of deeply located tumors. The conjugate specifically targets tumor hypoxia, an important indicator of tumor metabolism and tumor therapeutic response. The detection sensitivity of the new contrast agent has been evaluated in-vitro cell lines and with in-vivo tumors in mice.

  15. Delayed Luminance and Chromatic Contrast Sensitivity in Infants with Spontaneously Regressed Retinopathy of Prematurity

    PubMed Central

    Bosworth, Rain; Robbins, Shira L.; Granet, David B.; Dobkins, Karen

    2013-01-01

    Background The current study assessed whether contrast sensitivity is affected in preterm infants with a history of spontaneously regressed retinopathy of prematurity (ROP, Stages 1–3). Specifically, we employed luminance (light/dark) and chromatic (red/green) stimuli, which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Methods Contrast sensitivity (CS) was measured using forced choice preferential looking testing in 21 infants with a history of ROP and 41 control preterm infants who were born prematurely but did not develop ROP, tested between 8 and 47 weeks (2–11 months) postterm age. Infants were presented with chromatic and luminance drifting sinusoidal gratings, which appeared randomly on the left or right side of the monitor on each trial. The contrast of the stimuli varied across trials and was defined in terms of root mean squared cone contrast for long- and medium-wavelength cones. Results Between 8 and 25 weeks postterm, ROP infants had significantly worse CS, and there was a trend for greater impairment for Luminance than Chromatic CS. This delay was not seen at older ages between 26 and 47 weeks postterm. Conclusions These findings are consistent with the concept that early maturation of the M pathway is vulnerable to biological insult, as in the case of ROP, to a greater extent than is the P pathway. PMID:23744448

  16. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function

    PubMed Central

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061

  17. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging.

    PubMed

    Posse, S; Wiese, S; Gembris, D; Mathiak, K; Kessler, C; Grosse-Ruyken, M L; Elghahwagi, B; Richards, T; Dager, S R; Kiselev, V G

    1999-07-01

    Improved data acquisition and processing strategies for blood oxygenation level-dependent (BOLD)-contrast functional magnetic resonance imaging (fMRI), which enhance the functional contrast-to-noise ratio (CNR) by sampling multiple echo times in a single shot, are described. The dependence of the CNR on T2*, the image encoding time, and the number of sampled echo times are investigated for exponential fitting, echo summation, weighted echo summation, and averaging of correlation maps obtained at different echo times. The method is validated in vivo using visual stimulation and turbo proton echoplanar spectroscopic imaging (turbo-PEPSI), a new single-shot multi-slice MR spectroscopic imaging technique, which acquires up to 12 consecutive echoplanar images with echo times ranging from 12 to 213 msec. Quantitative T2*-mapping significantly increases the measured extent of activation and the mean correlation coefficient compared with conventional echoplanar imaging. The sensitivity gain with echo summation, which is computationally efficient provides similar sensitivity as fitting. For all data processing methods sensitivity is optimum when echo times up to 3.2 T2* are sampled. This methodology has implications for comparing functional sensitivity at different magnetic field strengths and between brain regions with different magnetic field inhomogeneities.

  18. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging.

    PubMed

    Posse, S; Wiese, S; Gembris, D; Mathiak, K; Kessler, C; Grosse-Ruyken, M L; Elghahwagi, B; Richards, T; Dager, S R; Kiselev, V G

    1999-07-01

    Improved data acquisition and processing strategies for blood oxygenation level-dependent (BOLD)-contrast functional magnetic resonance imaging (fMRI), which enhance the functional contrast-to-noise ratio (CNR) by sampling multiple echo times in a single shot, are described. The dependence of the CNR on T2*, the image encoding time, and the number of sampled echo times are investigated for exponential fitting, echo summation, weighted echo summation, and averaging of correlation maps obtained at different echo times. The method is validated in vivo using visual stimulation and turbo proton echoplanar spectroscopic imaging (turbo-PEPSI), a new single-shot multi-slice MR spectroscopic imaging technique, which acquires up to 12 consecutive echoplanar images with echo times ranging from 12 to 213 msec. Quantitative T2*-mapping significantly increases the measured extent of activation and the mean correlation coefficient compared with conventional echoplanar imaging. The sensitivity gain with echo summation, which is computationally efficient provides similar sensitivity as fitting. For all data processing methods sensitivity is optimum when echo times up to 3.2 T2* are sampled. This methodology has implications for comparing functional sensitivity at different magnetic field strengths and between brain regions with different magnetic field inhomogeneities. PMID:10398954

  19. Optimization of X-ray phase contrast imaging system toward high-sensitivity measurements of biological organs

    SciTech Connect

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2012-07-31

    X-ray phase contrast imaging and tomography using a Talbot grating interferometer is currently available for user experiments at BL20B2 in SPring-8. The measurement condition for X-ray phase contrast tomography has been optimized to achieve high-sensitivity measurements of biological soft tissues and organs. Some biological samples were measured to demonstrate the high-sensitivity imaging.

  20. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    SciTech Connect

    Liu, D.; Khaykovich, B.; Hussey, D.; Jacobson, D.; Arif, M.; Gubarev, M. V.; Ramsey, B. D.; Moncton, D. E.

    2013-05-06

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  1. Achromatic lens systems for near infrared instruments.

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Gennari, S.

    1995-11-01

    The chromatic characteristics of glasses transmitting in the near infrared (λ<=2.5μm) are analyzed. Achromatic systems with superb characteristics can be obtained by coupling the crystals BaF_2_, SrF_2_ and CaF_2_ with the IR Schott glasses irg2, irg3 and irg7, respectively. The best performances are obtained using BaF_2_-irg2 and SrF_2_- irg3 while CaF_2_-irg7 is worse (due to the lower Abbe number of CaF_2_) but significantly better than other pairs normally used in IR astronomical instrumentation. Use of these combinations could much simplify the design of astronomical focal plane instruments. Measurements of the refraction index of the IR glasses at cryogenic temperatures are however necessary. As a practical application we present the preliminary design of a F/11-F/4.3 focal reducer for the Italian 3.5 m Galileo telescope. The system employs 6 spherical lenses and its image quality matches the requirements of a 1024^2^ array with 18.5μm pixels in both the imaging and spectroscopic (with grism) modes.

  2. Motion-Contrast Sensitivity: Visibility of Motion Gradients of Various Spatial Frequencies

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Eckert, Michael P.

    1994-01-01

    The purpose of our experiments was to estimate basic sensitivity to motion gradients and to evaluate the evidence for second-order integration and differentiation of motion signals. We measured sensitivity to spatially sinusoidal contrast modulation between two oppositely moving bandpass-filtered noise images. The motion-contrast sensitivity function, defined as the inverse of threshold modulation amplitude as a function of modulation spatial frequency, was bandpass in shape with declines at both highest and lowest frequencies. The functions for three noise spatial frequencies had approximately the same shape when modulation frequency was expressed as a fraction of noise frequency. We compared the data with a model in which linear motion filters, whose outputs are squared or rectified, are followed by a second stage of excitatory or inhibitory pooling. The data are consistent with a model in which (1) all excitatory pooling occurs at the linear stage and (2) the second stage contains a large inhibitory pooling area, with a radius approximately eight times that of the linear receptive field.

  3. Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method

    PubMed Central

    Lesmes, Luis Andres; Lu, Zhong-Lin; Baek, Jongsoo; Albright, Thomas D.

    2015-01-01

    The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B. Cobo-Lewis, 1996; L. L. Kontsevich & C. W. Tyler, 1999). Before each trial, a one-step-ahead search finds the grating stimulus (defined by frequency and contrast) that maximizes the expected information gain (J. V. Kujala & T. J. Lukka, 2006; L. A. Lesmes et al., 2006), about four CSF parameters. By directly estimating CSF parameters, data collected at one spatial frequency improves sensitivity estimates across all frequencies. A psychophysical study validated that CSFs obtained with 100 qCSF trials (~10 min) exhibited good precision across spatial frequencies (SD < 2–3 dB) and excellent agreement with CSFs obtained independently (mean RMSE = 0.86 dB). To estimate the broad sensitivity metric provided by the area under the log CSF (AULCSF), only 25 trials were needed to achieve a coefficient of variation of 15–20%. The current study demonstrates the method’s value for basic and clinical investigations. Further studies, applying the qCSF to measure wider ranges of normal and abnormal vision, will determine how its efficiency translates to clinical assessment. PMID:20377294

  4. Visual evoked potential latency and contrast sensitivity in patients with posterior chamber intraocular lens implants.

    PubMed Central

    Howe, J. W.; Mitchell, K. W.; Mahabaleswara, M.; Abdel-Khalek, M. N.

    1986-01-01

    An electrophysiological investigation of visual evoked potential (VEP) latency and contrast sensitivity was performed in a group of 13 patients who had undergone extracapsular cataract surgery with posterior chamber lens implantation. In spite of good postoperative visual acuity, abnormalities were detected in nine of the group (69%). This study suggests that, even with successfully implanted lenses, there may be a reduction in visual function which could be the result of altered transmission through the plastic lenticulus or fibrosis of the posterior lens capsule, and/or subtle changes in retinal architecture, not observed ophthalmoscopically. PMID:3801366

  5. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    SciTech Connect

    Shah, Rahul C; Johnson, Randall P; Shimada, Tsutomu; Hegelich, Bjorn M

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  6. Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis.

    PubMed

    Bricq, Stéphanie; Mahé, Guillaume; Rousseau, David; Humeau-Heurtier, Anne; Chapeau-Blondeau, François; Varela, Julio Rojas; Abraham, Pierre

    2012-10-01

    For blood perfusion monitoring, laser speckle contrast (LSC) imaging is a recent non-contact technique that has the characteristic of delivering noise-like speckled images. To exploit LSC images for quantitative physiological measurements, we developed an approach that implements controlled spatial averaging to reduce the detrimental impact of the noise and improve measurement sensitivity. By this approach, spatial resolution and measurement sensitivity can be traded-off in a flexible way depending on the quantitative prospect of the study. As an application, detectability of the cardiac activity from LSC images of forearm using power spectrum analysis is studied through the construction of spatial activity maps offering a window on the blood flow perfusion and its regional distribution. Comparisons with results obtained with signals of laser Doppler flowmetry probes are performed. PMID:22644256

  7. Oxygenation and gender effects on photopic frequency-doubled contrast sensitivity.

    PubMed

    Connolly, Desmond M; Hosking, Sarah L

    2008-01-01

    Thresholds to a temporally modulated contrast stimulus were examined across the central visual field, at photopic luminance (100 cd m(-2)), under aviation-related respiratory disturbances. These were mild hypoxia (14.1% oxygen), hyperoxia (100% oxygen), and hypocapnia (voluntary hyperventilation), with control exposures breathing air at rest. Thresholds were analysed by retinal eccentricity and by visual field quadrant. Hypoxia compromised sensitivity away from fixation (p<.001). Gender differences in sensitivity were apparent over the nasal hemifield and in response to 100% oxygen. An unexpected and highly statistically significant effect of oxygen tension (PO2) exposure order (p<.001) implies the existence of short-term retinal 'memory' for recent PO2. PMID:18093631

  8. Illumination-invariant face recognition with a contrast sensitive silicon retina

    SciTech Connect

    Buhmann, J.M.; Lades, M.; Eeckman, F.

    1993-11-29

    Changes in lighting conditions strongly effect the performance and reliability of computer vision systems. We report face recognition results under drastically changing lighting conditions for a computer vision system which concurrently uses a contrast sensitive silicon retina and a conventional, gain controlled CCD camera. For both input devices the face recognition system employs an elastic matching algorithm with wavelet based features to classify unknown faces. To assess the effect of analog on-chip preprocessing by the silicon retina the CCD images have been digitally preprocessed with a bandpass filter to adjust the power spectrum. The silicon retina with its ability to adjust sensitivity increases the recognition rate up to 50 percent. These comparative experiments demonstrate that preprocessing with an analog VLSI silicon retina generates image data enriched with object-constant features.

  9. Lightness dependence of achromatic loci in color-appearance coordinates

    PubMed Central

    Kuriki, Ichiro

    2015-01-01

    Shifts in the appearance of color under different illuminant chromaticity are known to be incomplete, and fit nicely with a simple linear transformation of cone responses that aligns the achromatic points under two illuminants. Most chromaticity-transfer functions with von-Kries-like transformations use only one set of values to fit the color shifts from one illuminant to another. However, an achromatic point shifts its chromaticity depending on the lightness of the test stimulus. This lightness dependence of the achromatic-point locus is qualitatively similar to a phenomenon known as the Helson-Judd effect. The present study suggests that the lightness dependency of achromatic points appears to be a general trend, which is supported by the results from deriving the optimal von-Kries coefficients for different lightness levels that best fit the color shifts under a different illuminant chromaticity. Further, we report that such a lightness dependence of the achromatic-point loci can be represented simply as a straight line in coordinates defined using color-appearance models such as CIECAM when normalized for daylight. PMID:25713543

  10. Impact of Albedo Contrast Between Cirrus and Boundary-Layer Clouds on Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, R. S.; Hou, A. Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    In assessing the iris effect suggested by Lindzen et al. (2001), Fu et al. (2001) found that the response of high-level clouds to the sea surface temperature had an effect of reducing the climate sensitivity to external radiative forcing, but the effect was not as strong as LCH found. This weaker reduction in climate sensitivity was due to the smaller contrasts in albedos and effective emitting temperatures between cirrus clouds and the neighboring regions. FBH specified the albedos and the outgoing longwave radiation (OLR) in the LCH 3.5-box radiative-convective model by requiring that the model radiation budgets at the top of the atmosphere be consistent with that inferred from the Earth Radiation Budget Experiment (ERBE). In point of fact, the constraint by radiation budgets alone is not sufficient for deriving the correct contrast in radiation properties between cirrus clouds and the neighboring regions, and the approach of FBH to specifying those properties is, we feel inappropriate for assessing the iris effect.

  11. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2016-07-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  12. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging.

    PubMed

    Xue, Shenghui; Yang, Hua; Qiao, Jingjuan; Pu, Fan; Jiang, Jie; Hubbard, Kendra; Hekmatyar, Khan; Langley, Jason; Salarian, Mani; Long, Robert C; Bryant, Robert G; Hu, Xiaoping Philip; Grossniklaus, Hans E; Liu, Zhi-Ren; Yang, Jenny J

    2015-05-26

    With available MRI techniques, primary and metastatic liver cancers that are associated with high mortality rates and poor treatment responses are only diagnosed at late stages, due to the lack of highly sensitive contrast agents without Gd(3+) toxicity. We have developed a protein contrast agent (ProCA32) that exhibits high stability for Gd(3+) and a 10(11)-fold greater selectivity for Gd(3+) over Zn(2+) compared with existing contrast agents. ProCA32, modified from parvalbumin, possesses high relaxivities (r1/r2: 66.8 mmol(-1)⋅s(-1)/89.2 mmol(-1)⋅s(-1) per particle). Using T1- and T2-weighted, as well as T2/T1 ratio imaging, we have achieved, for the first time (to our knowledge), robust MRI detection of early liver metastases as small as ∼0.24 mm in diameter, much smaller than the current detection limit of 10-20 mm. Furthermore, ProCA32 exhibits appropriate in vivo preference for liver sinusoidal spaces and pharmacokinetics for high-quality imaging. ProCA32 will be invaluable for noninvasive early detection of primary and metastatic liver cancers as well as for monitoring treatment and guiding therapeutic interventions, including drug delivery.

  13. Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator.

    PubMed

    Sharkey, Camilla R; Partridge, Julian C; Roberts, Nicholas W

    2015-11-01

    Polarization sensitivity (PS) is a common feature of invertebrate visual systems. In insects, PS is well known for its use in several different visually guided behaviours, particularly navigation and habitat search. Adult dragonflies use the polarization of light to find water but a role for PS in aquatic dragonfly larvae, a stage that inhabits a very different photic environment to the adults, has not been investigated. The optomotor response of the larvae of the Emperor dragonfly, Anax imperator Leach 1815, was used to determine whether these larvae use PS to enhance visual contrast underwater. Two different light scattering conditions were used to surround the larval animals: a naturalistic horizontally polarized light field and a non-naturalistic weakly polarized light field. In both cases these scattering light fields obscured moving intensity stimuli that provoke an optokinetic response in the larvae. Animals were shown to track the movement of a square-wave grating more closely when it was viewed through the horizontally polarized light field, equivalent to a similar increase in tracking ability observed in response to an 8% increase in the intensity contrast of the stimuli. Our results suggest that larval PS enhances the intensity contrast of a visual scene under partially polarized lighting conditions that occur naturally in freshwater environments. PMID:26385333

  14. Senescence of spatial chromatic contrast sensitivity. I. Detection under conditions controlling for optical factors

    PubMed Central

    Hardy, Joseph L.; Delahunt, Peter B.; Okajima, Katsunori

    2008-01-01

    Chromatic contrast thresholds for spatially varying patterns of various spatial frequencies (0.5, 1, 2, and 4 cycles per degree) were measured for ten older (65-77 yr of age) and ten younger (18-30 yr of age) observers. The stimuli were Gabor patches modulated along S-varying or (L - M)-varying chromatic axes. Thresholds were determined for two sets of stimuli. For one set of stimuli, the mean chromaticity and luminance were equated at the cornea for all observers. The second set of stimuli was corrected for ocular media density differences to equate stimulation of each of the three cone types at the retina for each individual. Chromatic contrast thresholds were higher for older observers for all stimuli tested. The magnitude of this difference showed little dependence on spatial frequency. When stimuli were equated at the cornea, this difference was greater for S-varying stimuli. When stimuli were equated at the retina, the age-related difference in thresholds for S-varying stimuli was reduced. Both optical and neural factors contribute to these age-related losses in spatial chromatic contrast sensitivity. PMID:15669614

  15. Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator.

    PubMed

    Sharkey, Camilla R; Partridge, Julian C; Roberts, Nicholas W

    2015-11-01

    Polarization sensitivity (PS) is a common feature of invertebrate visual systems. In insects, PS is well known for its use in several different visually guided behaviours, particularly navigation and habitat search. Adult dragonflies use the polarization of light to find water but a role for PS in aquatic dragonfly larvae, a stage that inhabits a very different photic environment to the adults, has not been investigated. The optomotor response of the larvae of the Emperor dragonfly, Anax imperator Leach 1815, was used to determine whether these larvae use PS to enhance visual contrast underwater. Two different light scattering conditions were used to surround the larval animals: a naturalistic horizontally polarized light field and a non-naturalistic weakly polarized light field. In both cases these scattering light fields obscured moving intensity stimuli that provoke an optokinetic response in the larvae. Animals were shown to track the movement of a square-wave grating more closely when it was viewed through the horizontally polarized light field, equivalent to a similar increase in tracking ability observed in response to an 8% increase in the intensity contrast of the stimuli. Our results suggest that larval PS enhances the intensity contrast of a visual scene under partially polarized lighting conditions that occur naturally in freshwater environments.

  16. Development and evaluation of a 3D model observer with nonlinear spatiotemporal contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn S.; Maidment, Andrew D. A.; Marchessoux, Cedric; Bakic, Predrag R.; Kimpe, Tom R. L.

    2014-03-01

    We investigate improvements to our 3D model observer with the goal of better matching human observer performance as a function of viewing distance, effective contrast, maximum luminance, and browsing speed. Two nonlinear methods of applying the human contrast sensitivity function (CSF) to a 3D model observer are proposed, namely the Probability Map (PM) and Monte Carlo (MC) methods. In the PM method, the visibility probability for each frequency component of the image stack, p, is calculated taking into account Barten's spatiotemporal CSF, the component modulation, and the human psychometric function. The probability p is considered to be equal to the perceived amplitude of the frequency component and thus can be used by a traditional model observer (e.g., LG-msCHO) in the space-time domain. In the MC method, each component is randomly kept with probability p or discarded with 1-p. The amplitude of the retained components is normalized to unity. The methods were tested using DBT stacks of an anthropomorphic breast phantom processed in a comprehensive simulation pipeline. Our experiments indicate that both the PM and MC methods yield results that match human observer performance better than the linear filtering method as a function of viewing distance, effective contrast, maximum luminance, and browsing speed.

  17. Ultrasound-Based Quantification of Vitreous Floaters Correlates with Contrast Sensitivity and Quality of Life

    PubMed Central

    Mamou, Jonathan; Wa, Christianne A.; Yee, Kenneth M. P.; Silverman, Ronald H.; Ketterling, Jeffrey A.; Sadun, Alfredo A.; Sebag, J.

    2015-01-01

    Purpose. Clinical evaluation of floaters lacks quantitative assessment of vitreous structure. This study used quantitative ultrasound (QUS) to measure vitreous opacities. Since floaters reduce contrast sensitivity (CS) and quality of life (Visual Function Questionnaire [VFQ]), it is hypothesized that QUS will correlate with CS and VFQ in patients with floaters. Methods. Twenty-two eyes (22 subjects; age = 57 ± 19 years) with floaters were evaluated with Freiburg acuity contrast testing (FrACT; %Weber) and VFQ. Ultrasonography used a customized probe (15-MHz center frequency, 20-mm focal length, 7-mm aperture) with longitudinal and transverse scans taken in primary gaze and a horizontal longitudinal scan through premacular vitreous in temporal gaze. Each scan set had 100 frames of log-compressed envelope data. Within each frame, two regions of interest (ROIs) were analyzed (whole-central and posterior vitreous) to yield three parameters (energy, E; mean amplitude, M; and percentage of vitreous filled by echodensities, P50) averaged over the entire 100-frame dataset. Statistical analyses evaluated E, M, and P50 correlations with CS and VFQ. Results. Contrast sensitivity ranged from 1.19%W (normal) to 5.59%W. All QUS parameters in two scan positions within the whole-central ROI correlated with CS (R > 0.67, P < 0.001). P50 in the nasal longitudinal position had R = 0.867 (P < 0.001). Correlations with VFQ ranged from R = 0.52 (P < 0.013) to R = 0.65 (P < 0.001). Conclusions. Quantitative ultrasound provides quantitative measures of vitreous echodensity that correlate with CS and VFQ, providing objective assessment of vitreous structure underlying the functional disturbances induced by floaters, useful to quantify vitreous disease severity and the response to therapy. PMID:25613948

  18. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation

    NASA Astrophysics Data System (ADS)

    Pu, Mingbo; Chen, Po; Wang, Yanqin; Zhao, Zeyu; Huang, Cheng; Wang, Changtao; Ma, Xiaoliang; Luo, Xiangang

    2013-04-01

    Polarization states are of particular importance for the manipulation of electromagnetic waves. Here, we proposed the design and experimental demonstration of anisotropic meta-mirror for achromatic polarization tuning. It is demonstrated that linear polarized wave can be achromatically transformed to its cross-polarization state or to arbitrary circular polarization after its reflection from the mirror. Microwave experiments verified that the fraction bandwidth for 90% transformation efficiency can be larger than 3:1. Furthermore, by utilizing photoinduced carrier generation in silicon, a broadband tunable circular polarizer is demonstrated in the terahertz regime.

  19. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    PubMed

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved. PMID:23938926

  20. Bandwidth of the contrast sensitivity function as an index of spatial vision with application to refraction.

    PubMed

    Jiang, B C; Scialfa, C T; Tyrrell, R A; Garvey, P M; Leibowitz, H W

    1990-04-01

    The contrast sensitivity function (CSF), although containing more information than traditional measures of acuity, has found difficulty gaining clinical acceptance. The hesitancy of clinicians to adopt the CSF stems, in part, from the fact that it is not as readily interpreted as is acuity. In order to facilitate such interpretation, five indices of spatial vision which are derivable from the CSF were examined in a sample of 287 persons aged 5 to 85 years. All indices were found to be both age-sensitive and strongly related to each other, but bandwidth of the CSF was chosen as a practical index for clinical settings. In a second study, acuity and CSF bandwidth were measured under 0 to +/- 1 D optical blur. It was found that the correction providing best acuity also maximized CSF bandwidth, and that bandwidth was more sensitive to optical blur than was acuity. Results support the assertion that CSF bandwidth is a readily interpreted index of spatial vision that can be measured efficiently within the context of clinical refraction. PMID:2342788

  1. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies.

  2. The Effects of tDCS Across the Spatial Frequencies and Orientations that Comprise the Contrast Sensitivity Function

    PubMed Central

    Richard, Bruno; Johnson, Aaron P.; Thompson, Benjamin; Hansen, Bruce C.

    2015-01-01

    Transcranial Direct Current Stimulation (tDCS) has recently been employed in traditional psychophysical paradigms in an effort to measure direct manipulations on spatial frequency channel operations in the early visual system. However, the effects of tDCS on contrast sensitivity have only been measured at a single spatial frequency and orientation. Since contrast sensitivity is known to depend on spatial frequency and orientation, we ask how the effects of anodal and cathodal tDCS may vary according to these dimensions. We measured contrast sensitivity with sinusoidal gratings at four different spatial frequencies (0.5, 4, 8, and 12 cycles/°), two orientations (45° Oblique and Horizontal), and for two stimulus size conditions [fixed size (3°) and fixed period (1.5 cycles)]. Only contrast sensitivity measured with a 45° oblique grating with a spatial frequency of 8 cycles/° (period = 1.5 cycles) demonstrated clear polarity specific effects of tDCS, whereby cathodal tDCS increased and anodal tDCS decreased contrast sensitivity. Overall, effects of tDCS were largest for oblique stimuli presented at high spatial frequencies (i.e., 8 and 12 cycles/°), and were small or absent at lower spatial frequencies, other orientations and stimulus size. Thus, the impact of tDCS on contrast sensitivity, and therefore on spatial frequency channel operations, is opposite in direction to other behavioral effects of tDCS, and only measurable in stimuli that generally elicit lower contrast sensitivity (e.g., oblique gratings with period of 1.5 cycles at spatial frequencies above the peak of the contrast sensitivity function). PMID:26640448

  3. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  4. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates.

    PubMed

    Yu, Jing; Martins, André F; Preihs, Christian; Clavijo Jordan, Veronica; Chirayil, Sara; Zhao, Piyu; Wu, Yunkou; Nasr, Khaled; Kiefer, Garry E; Sherry, A Dean

    2015-11-11

    Given the known water exchange rate limitations of a previously reported Zn(II)-sensitive MRI contrast agent, GdDOTA-diBPEN, new structural targets were rationally designed to increase the rate of water exchange to improve MRI detection sensitivity. These new sensors exhibit fine-tuned water exchange properties and, depending on the individual structure, demonstrate significantly improved longitudinal relaxivities (r1). Two sensors in particular demonstrate optimized parameters and, therefore, show exceptionally high longitudinal relaxivities of about 50 mM(-1) s(-1) upon binding to Zn(II) and human serum albumin (HSA). This value demonstrates a 3-fold increase in r1 compared to that displayed by the original sensor, GdDOTA-diBPEN. In addition, this study provides important insights into the interplay between structural modifications, water exchange rate, and kinetic stability properties of the sensors. The new high relaxivity agents were used to successfully image Zn(II) release from the mouse pancreas in vivo during glucose stimulated insulin secretion. PMID:26462412

  5. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  6. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes.

    PubMed

    Khan, Hammad Aziz; Siddique, Kadambot H M; Munir, Rushna; Colmer, Timothy David

    2015-06-15

    Chickpea is a relatively salt sensitive species but shows genotypic variation for salt tolerance, measured as grain yield per plant in mild-to-moderately saline soil. This experiment was designed to evaluate some physiological responses to salinity in three contrasting genotypes. One tolerant (Genesis836), one moderately tolerant (JG11) and one sensitive (Rupali) genotype were grown for 108d in non-saline nutrient solution (controls) and two levels of salinity treatment (30 and 60mM NaCl). No plants survived to maturity in the 60mM NaCl treatment; however, Genesis836 survived longer (87d) than JG11 (67d) while Rupali died after 27d; only Genesis836 flowered, but no pods were filled. At 30mM NaCl, Genesis836 produced a few filled pods, whereas JG11 and Rupali did not. Genotypic differences in plant dry mass at the vegetative stage were evident only at 60mM NaCl, while at maturity differences were evident at 30mM NaCl. Photosynthesis was maintained to different degrees by the three genotypes (e.g. at 30mM NaCl, 35-81% of controls; highest in Genesis836); photosynthesis was restricted predominately due to non-stomatal limitations as the intercellular CO2 concentration was only modestly affected (94-99% of controls). Photosystem II damage was evident in the less tolerant genotypes (e.g. at 30mM NaCl, actual quantum efficiency of photosystem II values were 63-96% of controls). Across treatments, shoot dry mass was negatively correlated with both Na(+) and Cl(-) shoot concentrations. However, the sensitive genotype (Rupali) had equal or lower concentrations of these ions in green leaves, stems or roots compared to tolerant genotypes (JG11 and Genesis836); ion 'exclusion' does not explain variation for salt tolerance among these three chickpea genotypes. The large difference between Rupali (sensitive) and Genesis836 (tolerant) in the salt-induced reduction in net photosynthesis via non-stomatal limitations and the assessed damage to photosystem II, but with similar leaf

  7. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes.

    PubMed

    Khan, Hammad Aziz; Siddique, Kadambot H M; Munir, Rushna; Colmer, Timothy David

    2015-06-15

    Chickpea is a relatively salt sensitive species but shows genotypic variation for salt tolerance, measured as grain yield per plant in mild-to-moderately saline soil. This experiment was designed to evaluate some physiological responses to salinity in three contrasting genotypes. One tolerant (Genesis836), one moderately tolerant (JG11) and one sensitive (Rupali) genotype were grown for 108d in non-saline nutrient solution (controls) and two levels of salinity treatment (30 and 60mM NaCl). No plants survived to maturity in the 60mM NaCl treatment; however, Genesis836 survived longer (87d) than JG11 (67d) while Rupali died after 27d; only Genesis836 flowered, but no pods were filled. At 30mM NaCl, Genesis836 produced a few filled pods, whereas JG11 and Rupali did not. Genotypic differences in plant dry mass at the vegetative stage were evident only at 60mM NaCl, while at maturity differences were evident at 30mM NaCl. Photosynthesis was maintained to different degrees by the three genotypes (e.g. at 30mM NaCl, 35-81% of controls; highest in Genesis836); photosynthesis was restricted predominately due to non-stomatal limitations as the intercellular CO2 concentration was only modestly affected (94-99% of controls). Photosystem II damage was evident in the less tolerant genotypes (e.g. at 30mM NaCl, actual quantum efficiency of photosystem II values were 63-96% of controls). Across treatments, shoot dry mass was negatively correlated with both Na(+) and Cl(-) shoot concentrations. However, the sensitive genotype (Rupali) had equal or lower concentrations of these ions in green leaves, stems or roots compared to tolerant genotypes (JG11 and Genesis836); ion 'exclusion' does not explain variation for salt tolerance among these three chickpea genotypes. The large difference between Rupali (sensitive) and Genesis836 (tolerant) in the salt-induced reduction in net photosynthesis via non-stomatal limitations and the assessed damage to photosystem II, but with similar leaf

  8. The male blue crab, Callinectes sapidus, uses both chromatic and achromatic cues during mate choice.

    PubMed

    Baldwin, Jamie; Johnsen, Sönke

    2012-04-01

    In the blue crab, Callinectes sapidus, claw color varies by sex, sexual maturity and individual. Males rely in part on color cues to select appropriate mates, and these chromatic cues may be perceived through an opponent interaction between two photoreceptors with maximum wavelength sensitivities at 440 and 508 nm. The range of color discrimination of this dichromatic visual system may be limited, however, and it is unclear whether male blue crabs are capable of discriminating the natural variations in claw color that may be important in mate choice. By testing males' innate color preferences in binary choice tests between photographs of red-clawed females and six variations of orange-clawed females, we examined both the chromatic (opponent interaction) and achromatic (relative luminance) cues used in male mate choice. Males significantly preferred red-clawed females to orange-clawed females, except when the test colors were similar in both opponency and relative luminance. Our results are unusual in that they indicate that male mate choice in the blue crab is not guided solely by achromatic or chromatic mechanisms, suggesting that both color and intensity are used to evaluate female claw color.

  9. Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants.

    PubMed

    Dobkins, Karen R; Bosworth, Rain G; McCleery, Joseph P

    2009-09-30

    To investigate effects of visual experience versus preprogrammed mechanisms on visual development, we used multiple regression analysis to determine the extent to which a variety of variables (that differ in the extent to which they are tied to visual experience) predict luminance and chromatic (red/green) contrast sensitivity (CS), which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Our variables included gestational length (GL), birth weight (BW), gender, postnatal age (PNA), and birth order (BO). Two-month-olds (n = 60) and 6-month-olds (n = 122) were tested. Results revealed that (1) at 2 months, infants with longer GL have higher luminance CS; (2) at both ages, CS significantly increases over a approximately 21-day range of PNA, but this effect is stronger in 2- than 6-month-olds and stronger for chromatic than luminance CS; (3) at 2 months, boys have higher luminance CS than girls; and (4) at 2 months, firstborn infants have higher CS, while at 6 months, non-firstborn infants have higher CS. The results for PNA/GL are consistent with the possibility that P pathway development is more influenced by variables tied to visual experience (PNA), while M pathway development is more influenced by variables unrelated to visual experience (GL). Other variables, including prenatal environment, are also discussed.

  10. Repeatability Evaluation of a Contrast Sensitivity System for Transfer to the Eye Clinic

    NASA Astrophysics Data System (ADS)

    Alcalde, N. G.; Castillo, L. R.; Filgueira, C. Paz; Colombo, E. M.

    2016-04-01

    The Contrast Sensitivity Function (CSF) is a valuable tool which can be used to characterize functional vision and also for the diagnosis and management of patients with different eye diseases. In spite of its usefulness, the CSF is currently hardly ever used in clinical practice. The aim of this study was to validate the use of the system called FVC-100 (Tecnovinc-UNT-CONICET, Argentina), which calculates the CSF, in order to transfer this important tool to ophthalmological clinics. The validation was carried out through the design of a repeatability test and the subsequent analysis of the results. Furthermore, we evaluated the impact of different factors influencing the repeatability of the measurements such as age and previous training. The tests were based on the discrimination of sinusoidal gratings for different spatial frequencies (1, 4 and 12 c/°) in both eyes of 12 people, aged between 20 and 70. The results show that the calculated values of SC of each subject have a high repeatability and are not dependent on age or training. These results allow us to conclude positively regarding the effectiveness of the FVC-100, and to validate its use in clinics for the calculation of the FSC as a standard measure of functional vision quality.

  11. Color matrix display simulation based upon luminance and chromatic contrast sensitivity of early vision

    NASA Astrophysics Data System (ADS)

    Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.

    This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.

  12. Color matrix display simulation based on luminance and chromatic contrast sensitivity of early vision

    NASA Astrophysics Data System (ADS)

    Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.

    1992-08-01

    This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.

  13. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex

    PubMed Central

    CRAVO, André M.; ROHENKOHL, Gustavo; WYART, Valentin; NOBRE, Anna C.

    2013-01-01

    Although it is increasingly accepted that temporal expectation can modulate early perceptual processing, the underlying neural computations remain unknown. In the present study, we combined a psychophysical paradigm with electrophysiological recordings to investigate the putative contribution of low-frequency oscillatory activity in mediating the modulation of visual perception by temporal expectation. Human participants judged the orientation of brief targets (visual Gabor patterns tilted clockwise or counter-clockwise) embedded within temporally regular or irregular streams of noise-patches used as temporal cues. Psychophysical results indicated that temporal expectation enhanced the contrast sensitivity of visual targets. A diffusion model indicated that rhythmic temporal expectation modulated the signal-to-noise gain of visual processing. The concurrent electrophysiological data revealed that the phase of delta oscillations overlying human visual cortex (1 to 4 Hz) was predictive of the quality of target processing only in regular streams of events. Moreover, in the regular condition, the optimum phase of these perception-predictive oscillations occurred in anticipation of the expected events. Together, these results show a strong correspondence between psychophysical and neurophysiological data, suggesting that the phase entrainment of low-frequency oscillations to external sensory cues can serve as an important and flexible mechanism for enhancing sensory processing. PMID:23447609

  14. Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization.

    PubMed

    Albala, Lorenzo; Ercan, Utku K; Joshi, Suresh G; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2015-10-15

    Many injectables are not amenable to standard sterilization methods, which destroy sensitive materials. This is particularly true for ultrasound contrast agents (UCA) consisting of gas bubbles stabilized by a surfactant or polymer shell. We investigated a new method to achieve safe and effective sterilization in production by introducing dielectric-barrier discharge non-thermal plasma. A dielectric-barrier discharge was generated to first produce plasma-treated phosphate-buffered saline (PTPBS), which was used as a sterilant solution for our UCA SE61, avoiding direct heat, pressure, chemicals, or radiation. Treated samples were tested for acoustic properties in vitro and in a flow phantom, and for sterility by standard methods. Three minutes plasma treatment of phosphate-buffered saline (PBS) proved effective. The samples showed significant inactivation of inoculated bacteria upon PTPBS treatment as compared to un-treated-PBS (p=0.0022). The treated and untreated samples showed no statistical significance (p>0.05) in acoustic response or bubble diameter (mean±SEM: 2.52±0.31 μm). Nile Red was used to model intercalation of drug in the hydrophobic shell, intercalated successfully into SE61, and was unaffected by plasma treatment. The PTPBS completely sterilized suspensions of UCA, and it did not compromise the acoustic properties of the agent or its ability to retain a hydrophobic compound. PMID:26241754

  15. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences.

    PubMed

    Bartholomew, Alex J; Lad, Eleonora M; Cao, Dingcai; Bach, Michael; Cirulli, Elizabeth T

    2016-01-01

    Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision. PMID:26886100

  16. Mechanistic modeling of vertebrate spatial contrast sensitivity and acuity at low luminance.

    PubMed

    Jarvis, John R; Wathes, Christopher M

    2012-05-01

    The validity of the Barten theoretical model for describing the vertebrate spatial contrast sensitivity function (CSF) and acuity at scotopic light levels has been examined. Although this model (which has its basis in signal modulation transfer theory) can successfully describe vertebrate CSF, and its relation to underlying visual neurophysiology at photopic light levels, significant discrepancies between theory and experimental data have been found at scotopic levels. It is shown that in order to describe scotopic CSF, the theory must be modified to account for important mechanistic changes, which occur as cone vision switches to rod vision. These changes are divided into photon management factors [changes in optical performance (for a dilated pupil), quantum efficiency, receptor sampling] and neural factors (changes in spatial integration area, neural noise, and lateral inhibition in the retina). Predictions of both scotopic CSF and acuity obtained from the modified theory were found to be in good agreement with experimental values obtained from the human, macaque, cat, and owl monkey. The last two species have rod densities particularly suited for scotopic conditions.

  17. Risk-sensitive reproductive allocation: fitness consequences of body mass losses in two contrasting environments

    PubMed Central

    Bårdsen, Bård-Jørgen; Næss, Marius Warg; Tveraa, Torkild; Langeland, Knut; Fauchald, Per

    2014-01-01

    For long-lived organisms, the fitness value of survival is greater than that of current reproduction. Asymmetric fitness rewards suggest that organisms inhabiting unpredictable environments should adopt a risk-sensitive life history, predicting that it is adaptive to allocate resources to increase their own body reserves at the expense of reproduction. We tested this using data from reindeer populations inhabiting contrasting environments and using winter body mass development as a proxy for the combined effect of winter severity and density dependence. Individuals in good and harsh environments responded similarly: Females who lost large amounts of winter body mass gained more body mass the coming summer compared with females losing less mass during winter. Additionally, females experienced a cost of reproduction: On average, barren females gained more body mass than lactating females. Winter body mass development positively affected both the females' reproductive success and offspring body mass. Finally, we discuss the relevance of our findings with respect to scenarios for future climate change. PMID:24772280

  18. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences

    PubMed Central

    Bartholomew, Alex J.; Lad, Eleonora M.; Cao, Dingcai; Bach, Michael; Cirulli, Elizabeth T.

    2016-01-01

    Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision. PMID:26886100

  19. The relationship between contrast sensitivity, gait, and reading speed in Parkinson's disease.

    PubMed

    Moes, Elisabeth; Lombardi, Kathryn M

    2009-03-01

    Parkinson's disease (PD) results in reduced walking speed and visual difficulties, including difficulty reading (Davidsdottir, Cronin-Golomb, & Lee, 2005). PD is characterized by a reduction in dopamine, which is instrumental in determining a person's contrast sensitivity (CS). This study assessed the relationship between CS, gait (step length and walking speed), and reading speed in 18 non-demented PD volunteers with normal acuity. We found that CS correlated with walking speed (r = .57, p = .01), step length (r = .53, p = .02), and reading speed (r = .54, p = .02). Visual acuity (which has not been tied to dopamine in the same way) correlated with reading speed (r(s) = -.65, p = .004), but not with gait measures. We also assessed the contribution of age, education, and cognitive status (Shipley Institute of Living Scale) to these variables. We conclude that CS and age both play an important role in determining gait in PD, while reading speed is related to both acuity and CS, but not age.

  20. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  1. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences.

    PubMed

    Bartholomew, Alex J; Lad, Eleonora M; Cao, Dingcai; Bach, Michael; Cirulli, Elizabeth T

    2016-01-01

    Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision.

  2. Training to improve contrast sensitivity in amblyopia: correction of high-order aberrations

    PubMed Central

    Liao, Meng; Zhao, Haoxing; Liu, Longqian; Li, Qian; Dai, Yun; Zhang, Yudong; Zhou, Yifeng

    2016-01-01

    Perceptual learning is considered a potential treatment for amblyopia even in adult patients who have progressed beyond the critical period of visual development because adult amblyopes retain sufficient visual plasticity. When perceptual learning is performed with the correction of high-order aberrations (HOAs), a greater degree of neural plasticity is present in normal adults and those with highly aberrated keratoconic eyes. Because amblyopic eyes show more severe HOAs than normal eyes, it is interesting to study the effects of HOA-corrected visual perceptual learning in amblyopia. In the present study, we trained twenty-six older child and adult anisometropic amblyopes while their HOAs were corrected using a real-time closed-loop adaptive optics perceptual learning system (AOPL). We found that adaptive optics (AO) correction improved the modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of older children and adults with anisometropic amblyopia. When perceptual learning was performed with AO correction of the ocular HOAs, the improvements in visual function were not only demonstrated in the condition with AO correction but were also maintained in the condition without AO correction. Additionally, the learning effect with AO correction was transferred to the untrained visual acuity and fellow eyes in the condition without AO correction. PMID:27752122

  3. Color matrix display simulation based upon luminance and chromatic contrast sensitivity of early vision

    NASA Technical Reports Server (NTRS)

    Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.

    1992-01-01

    This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.

  4. Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization.

    PubMed

    Albala, Lorenzo; Ercan, Utku K; Joshi, Suresh G; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2015-10-15

    Many injectables are not amenable to standard sterilization methods, which destroy sensitive materials. This is particularly true for ultrasound contrast agents (UCA) consisting of gas bubbles stabilized by a surfactant or polymer shell. We investigated a new method to achieve safe and effective sterilization in production by introducing dielectric-barrier discharge non-thermal plasma. A dielectric-barrier discharge was generated to first produce plasma-treated phosphate-buffered saline (PTPBS), which was used as a sterilant solution for our UCA SE61, avoiding direct heat, pressure, chemicals, or radiation. Treated samples were tested for acoustic properties in vitro and in a flow phantom, and for sterility by standard methods. Three minutes plasma treatment of phosphate-buffered saline (PBS) proved effective. The samples showed significant inactivation of inoculated bacteria upon PTPBS treatment as compared to un-treated-PBS (p=0.0022). The treated and untreated samples showed no statistical significance (p>0.05) in acoustic response or bubble diameter (mean±SEM: 2.52±0.31 μm). Nile Red was used to model intercalation of drug in the hydrophobic shell, intercalated successfully into SE61, and was unaffected by plasma treatment. The PTPBS completely sterilized suspensions of UCA, and it did not compromise the acoustic properties of the agent or its ability to retain a hydrophobic compound.

  5. Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants

    PubMed Central

    Dobkins, Karen R.; Bosworth, Rain G.; McCleery, Joseph P.

    2010-01-01

    To investigate effects of visual experience versus preprogrammed mechanisms on visual development, we used multiple regression analysis to determine the extent to which a variety of variables (that differ in the extent to which they are tied to visual experience) predict luminance and chromatic (red/green) contrast sensitivity (CS), which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Our variables included gestational length (GL), birth weight (BW), gender, postnatal age (PNA), and birth order (BO). Two-month-olds (n = 60) and 6-month-olds (n = 122) were tested. Results revealed that (1) at 2 months, infants with longer GL have higher luminance CS; (2) at both ages, CS significantly increases over a ~21-day range of PNA, but this effect is stronger in 2- than 6-month-olds and stronger for chromatic than luminance CS; (3) at 2 months, boys have higher luminance CS than girls; and (4) at 2 months, firstborn infants have higher CS, while at 6 months, non-firstborn infants have higher CS. The results for PNA/GL are consistent with the possibility that P pathway development is more influenced by variables tied to visual experience (PNA), while M pathway development is more influenced by variables unrelated to visual experience (GL). Other variables, including prenatal environment, are also discussed. PMID:19810800

  6. Contrast and glare sensitivity in epilepsy patients treated with vigabatrin or carbamazepine monotherapy compared with healthy volunteers

    PubMed Central

    Nousiainen, I.; Kalviainen, R.; Mantyjarvi, M.

    2000-01-01

    BACKGROUND/AIM—Many antiepileptic drugs have influence on visual functions. The aim of this study was to investigate possible changes in contrast sensitivity, macular photostress, and brightness acuity (glare) tests in patients with epilepsy undergoing vigabatrin (VGB) or carbamazepine (CBZ) monotherapy compared with healthy volunteers.
METHODS—32 patients undergoing VGB therapy, 18 patients undergoing CBZ therapy, and 35 healthy volunteers were asked to participate in an ophthalmological examination. In the previous study, visual field constrictions were reported in 40% of the patients treated with VGB monotherapy. In the present study, these VGB and CBZ monotherapy patients were examined for photopic contrast sensitivity with the Pelli-Robson letter chart and brightness acuity and macular photostress with the Mentor BAT brightness acuity tester.
RESULTS—Contrast sensitivity with the Pelli-Robson letter chart showed no difference between these groups and normal subjects (ANOVA: p= 0.534 in the right eye, p= 0.692 in the left eye) but the VGB therapy patients showed a positive correlation between the contrast sensitivity values and the extents of the visual fields in linear regression (R = 0.498, p = 0.05 in the right eye, R = 0.476, p = 0.06 in the left eye). Macular photostress and glare tests were equal in both groups and did not differ from normal values.
CONCLUSION—The results of this study indicate that carbamazepine therapy has no effect on contrast sensitivity. Vigabatrin seems to impair contrast sensitivity in those patients who have concentrically constricted in their visual fields. Neither GBZ nor VGB affect glare sensitivity.

 PMID:10837389

  7. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    PubMed Central

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies. PMID:27040492

  8. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes

    PubMed Central

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A.; Myung, Jay I.; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test–retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test–retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  9. [Correlation of the grade of nuclear and cortical cataract, visual acuity, and contrast sensitivity].

    PubMed

    Yuge, T; Ozasa, K; Yamade, S

    1993-05-01

    A correlative investigation of 125 eyes with senile cataractous lenses was conducted to determine the relationships between cortical (CC) and nuclear cataracts (NC), corrected visual acuity (VA), and contrast sensitivity (CS). The CS for the spatial frequency of 1.5 cycles/degree (c/d) and 12.0 c/d was analyzed in particular detail. The results were as follows: (1) CC and CS for both 1.5 and 12.0 c/d showed statistically significant negative correlations with a coefficient (CE) of -0.250 and -0.288 respectively. No correlation was found between CC and VA. (2) NC and VA showed a significant negative correlation with CE of -2.29. No correlation was found between NC and CS for at 1.5 and 12.0 c/d. (3) VA and CS showed a significant positive correlation with a CE of +0.436 at 1.5 c/d and +0.270 at 12.0 c/d. The CS at 1.5 and the CS at 12.0 c/d also showed a significant negative correlation with a CE of +0.477. (4) NC and CC showed a significantly negative correlation (r = -0.224, p < 0.01), suggesting that scattered light from the nucleus may be interfered with by cortical opacities during slitlamp examinations. (5) In 29 cases of no cortical opacity, nuclear opacity showed significant negative correlation with VA (r = 0.556 p < 0.01) but no significant correlation with CS of both 1.5 and 12 c/d. (6) In 30 cases with less than 0.085 of nuclear opacity, cortical opacity showed significant negative correlation with CS at 12.0 c/d (r = 0.364 p < 0.01) but showed no significant correlation with VA and CS at 1.5 c/d. PMID:8337967

  10. Reduced sensitivity to contrast signals from the eye region in developmental prosopagnosia.

    PubMed

    Fisher, Katie; Towler, John; Eimer, Martin

    2016-08-01

    Contrast-related signals from the eye region are known to be important for the processing of facial identity. Individuals with developmental prosopagnosia (DP) have severe face recognition problems, which may be linked to deficits in the perceptual processing of identity-related information from the eyes. We tested this hypothesis by measuring N170 components in DP participants and age-matched controls in response to face images where the contrast polarity of the eyes and of other face parts was independently manipulated. In different trials, participants fixated either the eye region or the lower part of a face. In the Control group, contrast-reversal of the eyes resulted in enhanced and delayed N170 components, irrespective of the contrast of other face parts and of gaze location. In the DP group, these effects of eye contrast on N170 amplitudes were strongly and significantly reduced, demonstrating that perceptual face processing in DP is less well tuned to contrast information from the eye region. Inverting the contrast of other parts of the face affected N170 amplitudes only when fixation was outside the eye region. This effect did not differ between the two groups, indicating that DPs are not generally insensitive to the contrast polarity of face images. These results provide new evidence that a selective deficit in detecting and analysing identity-related information provided by contrast signals from the eye region may contribute to the face recognition impairment in DP. PMID:27179151

  11. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    PubMed

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  12. Spatial Mapping of Macular Pigment Optical Density and Its Relationship to Contrast Sensitivity and Glare Disability

    NASA Astrophysics Data System (ADS)

    Putnam, Christopher

    This dissertation explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of contrast sensitivity (CS), glare disability (GD), relative glare disability (RGD) and intraocular light scatter. A novel device capable of measuring MPOD across the central 160 of retina along 8 principle meridians using customized heterochromatic flicker photometry (cHFP) at eccentricities of 00, 20, 40, 60 and 80 was built. MPOD was calculated as both discrete and integrated values at all measured retinal loci. CS was measured using vertical grating stimuli of 3, 6 and 9 cycles per degree (cpd) also presented at 00, 20, 4 0, 60 and 80 eccentricity. GD was calculated as a difference in CS between glare and no glare conditions (CSNo Glare - CSGlare) using the same vertical grating stimuli presented at the same eccentricities. RGD [(CSNo Glare - CSGlare) / CSNo Glare] was calculated to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Intraocular scatter was assessed through a direct compensation method using a commercially available device. Statistical analyses of the discrete and integrated MPOD associations with CS, GD, RGD and intraocular scatter were evaluated. The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1 st order exponential decay curve as a function of increasing eccentricity. Foveal MPOD revealed the highest correlation coefficients with RGD using 9cpd stimuli. These results are consistent with the glare attenuation effects of MP at higher spatial frequencies. Further support may be seen from the significant correlations found between corresponding parafoveal MPOD measures and both GD and RGD at 20 and 40 of eccentricity using 9cpd stimuli with greater MPOD being associated with less glare disability. All calculated measures of foveal MPOD shared similar significant correlation coefficients with both GD and RGD using 6cpd and 9cpd stimuli. Discrete

  13. Investigation of the effect of ambient lighting on contrast sensitivity using a novel method for conducting visual research on LCDS.

    PubMed

    Sund, Patrik; Båth, Magnus; Månsson, Lars Gunnar

    2010-01-01

    The DICOM part 14 greyscale standard display function provides one way of harmonising image appearance under different monitor luminance settings. This function is based on ideal observer conditions, where the eye is always adapted to the target luminance and thereby also at peak contrast sensitivity. Clinical workstations are, however, often submitted to variations in ambient light due to a sub-optimal reading room light environment. Also, clinical images are inhomogeneous and low-contrast patterns must be detected even at luminance levels that differ from the eye adaptation level. All deviations from ideal luminance conditions cause the observer to detect patterns with reduced eye sensitivity but the magnitude of this reduction is unclear. A method is presented to display well-defined sinusoidal low-contrast test patterns on an liquid crystal display. The observers were exposed to light from three different areas: (i) the test pattern covering approximately 2 degrees x 2 degrees; (ii) the remaining of the display surface and (iii) ambient light from outside the display area covering most of the observers' field of view. By adjusting the luminance from each of these three areas, the observers' ability to detect low-contrast patterns under sub-optimal viewing conditions was studied. Ambient light from outside the display area has a moderate effect on the contrast threshold, except for the combination of high ambient light and dark objects, where the contrast threshold increased considerably.

  14. Temporal contrast sensitivity in the lateral geniculate nucleus of a New World monkey, the marmoset Callithrix jacchus

    PubMed Central

    Solomon, Samuel G; White, Andrew J R; Martin, Paul R

    1999-01-01

    The temporal contrast sensitivity of koniocellular, parvocellular and magnocellular cells in the lateral geniculate nucleus (LGN) of nine adult marmosets was measured. The receptive fields of the cells were between 0.3 and 70 deg from the fovea. The stimulus was a large spatially uniform field which was modulated in luminance at temporal frequencies between 0.98 and 64 Hz. For each cell group there was a gradual increase in modulation sensitivity, especially for temporal frequencies below 8 Hz, with increasing distance from the fovea. At any given eccentricity, magnocellular cells had the greatest sensitivity. In central visual field, the sensitivity of koniocellular cells lay between that of parvocellular and magnocellular cells. In peripheral visual field (above 10 deg eccentricity) koniocellular and parvocellular cells had similar sensitivity. The contrast sensitivity of each cell class was dependent on the anaesthetic used. Cells from animals anaesthetized with isoflurane were less sensitive than cells from animals anaesthetized with sufentanil. This effect was more marked for temporal frequencies below 4 Hz. These results are incompatible with the notion that the koniocellular pathway is functionally homologous to a sluggish, W-like pathway in other mammals. At least in terms of their temporal transfer properties, many koniocellular cells are more like parvocellular cells. PMID:10358129

  15. Assessment of contrast sensitivity and aberrations after photorefractive keratectomy in patients with myopia greater than 5 diopters.

    PubMed

    Fahim, Alireza; Rezvan, Bijan; Hashemi, Hassan

    2013-01-01

    This study aimed to assess changes in contrast sensitivity and aberrations in cases of myopia greater than 5.0 diopter (D) who had photorefractive keratectomy (PRK). In this semi-experimental study, 20 eyes of ten patients were studied. Inclusion criteria were at least 5.0 D of myopia, stable refraction in the past year, no history of refractive surgery, a minimum corneal thickness of 480 μm, and having surgery in both eyes. Exclusion criteria were the presence of any corneal condition. In addition to the routine tests, aberrometry and assessment of contrast sensitivity was done using the WaveLight Allegro Analyzer and the VectorVision CSV-1000. After PRK using the Concerto Excimer Laser (WaveLight, Alcon), patients were scheduled to have follow-up visits at 1 month, 3 months, and 1 year after surgery. Contrast sensitivity with glare showed an increasing trend only at the spatial frequency of 3 cycles per degree (cpd) (P=0.013). Contrast sensitivity without glared increased postoperatively at special frequencies of 3, 6, and 18 cpd (P<0.05). The preoperative level of higher order aberrations root mean square (HOA RMS) of 0.24±0.08 reached 0.71±0.25 at 12 months after surgery. Assessment of comma and trefoil showed no significant difference between preoperative and postoperative values, but the amount of spherical aberration changed from a mean preoperative value of 0.0±0.09 to 0.27±0.15 at 12 months after surgery. In the treatment of myopia greater than 5.0 D, PRK with the Concerto Excimer Laser can improve contrast sensitivity in certain spatial frequencies. This is while HOA RMS and spherical aberration increase.

  16. Apartment residents' and day care workers' exposures to tetrachloroethylene and deficits in visual contrast sensitivity.

    PubMed Central

    Schreiber, Judith S; Hudnell, H Kenneth; Geller, Andrew M; House, Dennis E; Aldous, Kenneth M; Force, Michael S; Langguth, Karyn; Prohonic, Elizabeth J; Parker, Jean C

    2002-01-01

    Tetrachloroethylene (also called perchloroethylene, or perc), a volatile organic compound, has been the predominant solvent used by the dry-cleaning industry for many years. The U.S. Environmental Protection Agency (EPA) classified perc as a hazardous air pollutant because of its potential adverse impact on human health. Several occupational studies have indicated that chronic, airborne perc exposure adversely affects neurobehavioral functions in workers, particularly visual color discrimination and tasks dependent on rapid visual-information processing. A 1995 study by Altmann and colleagues extended these findings, indicating that environmental perc exposure at a mean level of 4,980 microg/m(3) (median=1,360 microg/m(3)) alters neurobehavioral functions in residents living near dry-cleaning facilities. Although the U.S. EPA has not yet set a reference concentration guideline level for environmental exposure to airborne perc, the New York State Department of Health set an air quality guideline of 100 microg/m(3). In the current residential study, we investigated the potential for perc exposure and neurologic effects, using a battery of visual-system function tests, among healthy members of six families living in two apartment buildings in New York City that contained dry-cleaning facilities on the ground floors. In addition, a day care investigation assessed the potential for perc exposure and effects among workers at a day care center located in the same one-story building as a dry-cleaning facility. Results from the residential study showed a mean exposure level of 778 microg/m(3) perc in indoor air for a mean of 5.8 years, and that perc levels in breath, blood, and urine were 1-2 orders of magnitude in excess of background values. Group-mean visual contrast sensitivity (VCS), a measure of the ability to detect visual patterns, was significantly reduced in the 17 exposed study participants relative to unexposed matched-control participants. The groups did not

  17. Achromatic phase matching at third orders of dispersion

    DOEpatents

    Richman, Bruce

    2003-10-21

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal and stationary optical elements whose configuration, properties, and arrangement have been optimized to match the angular dispersion characteristics of the SHG crystal to at least the third order. These elements include prisms and diffraction gratings for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the third order and such that every ray wavelength overlap within the crystal.

  18. Achromatically injection-seeded terahertz-wave parametric generator.

    PubMed

    Imai, Kazuhiro; Kawase, Kodo; Minamide, Hiroaki; Ito, Hiromasa

    2002-12-15

    An achromatically injection-seeded terahertz-wave parametric generator was constructed with MgO:LiNbO (3) crystals and a tunable seeder in a stationary dispersion-compensated optical arrangement. Without readjusting the mirrors, we obtained smooth tuning of the terahertz wave over the 0.6-2.6 THz range by adjusting the seeder wavelength alone. We have successfully demonstrated the feasibility of this system for terahertz-wave absorption measurements over a wide frequency range by using low-pressure water vapor. PMID:18033473

  19. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    NASA Astrophysics Data System (ADS)

    Kagias, M.; Cartier, S.; Wang, Z.; Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B.; Stampanoni, M.

    2016-06-01

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  20. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  1. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    PubMed Central

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2016-01-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART. PMID:26987475

  2. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields

    SciTech Connect

    Ogawa, S.; Lee, T.M.; Nayak, A.S.; Glynn, P. )

    1990-04-01

    At high magnetic fields (7 and 8.4 T), water proton magnetic resonance images of brains of live mice and rats under pentobarbital anesthetization have been measured by a gradient echo pulse sequence with a spatial resolution of 65 x 65-microns pixel size and 700-microns slice thickness. The contrast in these images depicts anatomical details of the brain by numerous dark lines of various sizes. These lines are absent in the image taken by the usual spin echo sequence. They represent the blood vessels in the image slice and appear when the deoxyhemoglobin content in the red cells increases. This contrast is most pronounced in an anoxy brain but not present in a brain with diamagnetic oxy or carbon monoxide hemoglobin. The local field induced by the magnetic susceptibility change in the blood due to the paramagnetic deoxyhemoglobin causes the intra voxel dephasing of the water signals of the blood and the surrounding tissue. This oxygenation-dependent contrast is appreciable in high field images with high spatial resolution.

  3. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging.

    PubMed

    Ju, Myeong Jin; Hong, Young-Joo; Makita, Shuichi; Lim, Yiheng; Kurokawa, Kazuhiro; Duan, Lian; Miura, Masahiro; Tang, Shuo; Yasuno, Yoshiaki

    2013-08-12

    An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated.

  4. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging.

    PubMed

    Ju, Myeong Jin; Hong, Young-Joo; Makita, Shuichi; Lim, Yiheng; Kurokawa, Kazuhiro; Duan, Lian; Miura, Masahiro; Tang, Shuo; Yasuno, Yoshiaki

    2013-08-12

    An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated. PMID:23938857

  5. Ultra-broadband achromatic imaging with diffractive photon sieves

    PubMed Central

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  6. Ultra-broadband achromatic imaging with diffractive photon sieves

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-06-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element.

  7. Metrology of achromatic diffractive features on chalcogenide lenses

    NASA Astrophysics Data System (ADS)

    Scordato, M.; Nelson, J.; Schwertz, K.; Mckenna, P.; Bagwell, J.

    2015-10-01

    Achromatic diffractive features on lenses are widely used in industry for color correction, however there is not a welldefined standard to quantify the performance of the lenses. One metric used to qualify a lens is the sag deviation from the nominal lens profile. Imperfections in the manufacturing of the diffractive feature may cause scattering and performance loss. This is not reflected in sag deviation measurements, therefore performance measurements are required. There are different quantitative approaches to measuring the performance of an achromatic diffractive lens. Diffraction efficiency, a measure of optical power throughput, is a common design metric used to define the percent drop from the modulation transfer function (MTF) metric. The line spread function (LSF) shows a layout of the intensity with linear distance and an ensquared energy specification can be implemented. The MTF is a common analysis tool for assemblies and can be applied to a single element. These functional tests will be performed and compared with diffractive lenses manufactured by different tool designs. This paper displays the results found with various instruments. Contact profilometry was used to inspect the profile of the diffractive elements, and a MTF bench was used to characterize lens performance. Included will be a discussion comparing the results of profile traces and beam profiles to expected diffraction efficiency values and the effects of manufacturing imperfections.

  8. Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Lou, John Z.; Shaklan, Stuart; Levine, Marie

    2009-01-01

    We have investigated the dependence of the High Contrast Imaging Testbed (HCIT) Phase Induced Amplitude Apodization (PIAA) coronagraph system performance on the rigid-body perturbations of various optics. The structural design of the optical system as well as the parameters of various optical elements used in the analysis are drawn from those of the PIAA/HCIT system that have been and will be implemented, and the simulation takes into account the surface errors of various optics. In this paper, we report our findings when the input light is a narrowband beam.

  9. Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity.

    PubMed

    Shvaleva, A L; Costa E Silva, F; Breia, E; Jouve, J; Hausman, J F; Almeida, M H; Maroco, J P; Rodrigues, M L; Pereira, J S; Chaves, M M

    2006-02-01

    We compared the metabolic responses of leaves and roots of two Eucalyptus globulus Labill. clones differing in drought sensitivity to a slowly imposed water deficit. Responses measured included changes in concentrations of soluble and insoluble sugars, proline, total protein and several antioxidant enzymes. In addition to the general decrease in growth caused by water deficit, we observed a decrease in osmotic potential when drought stress became severe. In both clones, the decrease was greater in roots than in leaves, consistent with the observed increases in concentrations of soluble sugars and proline in these organs. In roots of both clones, glutathione reductase activity increased significantly in response to water deficit, suggesting that this enzyme plays a protective role in roots during drought stress by catalyzing the catabolism of reactive oxygen species. Clone CN5 has stress avoidance mechanisms that account for its lower sensitivity to drought compared with Clone ST51.

  10. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN) Influences Visual Contrast Sensitivity in Human Observers

    PubMed Central

    Strumpf, Hendrik; Noesselt, Toemme; Schoenfeld, Mircea Ariel; Voges, Jürgen; Panther, Patricia; Kaufmann, Joern; Heinze, Hans-Jochen; Hopf, Jens-Max

    2016-01-01

    The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC). Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds) in a group of patients with Parkinson’s Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST). We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level. PMID:27167979

  11. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    PubMed

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.

  12. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even

  13. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese

    PubMed Central

    Fernando, Denise R.; Marshall, Alan T.; Lynch, Jonathan P.

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424

  14. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even

  15. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    PubMed

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424

  16. Aptamer-Modified Temperature-Sensitive Liposomal Contrast Agent for Magnetic Resonance Imaging.

    PubMed

    Zhang, Kunchi; Liu, Min; Tong, Xiaoyan; Sun, Na; Zhou, Lu; Cao, Yi; Wang, Jine; Zhang, Hailu; Pei, Renjun

    2015-09-14

    A novel aptamer modified thermosensitive liposome was designed as an efficient magnetic resonance imaging probe. In this paper, Gd-DTPA was encapsulated into an optimized thermosensitive liposome (TSL) formulation, followed by conjugation with AS1411 for specific targeting against tumor cells that overexpress nucleolin receptors. The resulting liposomes were extensively characterized in vitro as a contrast agent. As-prepared TSLs-AS1411 had a diameter about 136.1 nm. No obvious cytotoxicity was observed from MTT assay, which illustrated that the liposomes exhibited excellent biocompatibility. Compared to the control incubation at 37 °C, the liposomes modified with AS1411 exhibited much higher T1 relaxivity in MCF-7 cells incubated at 42 °C. These data indicate that the Gd-encapsulated TSLs-AS1411 may be a promising tool in early cancer diagnosis.

  17. Diffraction contrast as a sensitive indicator of femtosecond sub-nanoscale motion in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.

    2013-09-01

    With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.

  18. A new concept of achromatic phase shifter for nulling interferometry

    NASA Astrophysics Data System (ADS)

    Rouan, Daniel; Pelat, D.; Ygouf, Marie; Reess, Jean-Michel; Chemla, Fanny; Riaud, Pierre

    2007-09-01

    Direct detection and characterization of a planet around a star by nulling interferometry, must be efficient in a large wavelength domain in order to detect simultaneously the infrared bio-tracers CO II, O 3 and H IIO. This condition requires that an achromatic phase shift of π be implemented, with an accuracy sufficient for achieving a deep nulling at all considered wavelengths. Several solutions have been presented. We present here a new concept for designing such an achromatic phase shifter. It is based on two cellular mirrors (alternatively, transparent plates can be used) where cells have thickness which are respectively odd and even multiples of a quarter of the central wavelength. Each cell introduces then a phase shift of (2k + 1)π or of 2kπ, on the fraction of the wave it reflects. Each mirror is introduced in the collimated beam issued from one or the other telescopes. Because of the odd/even distribution, a destructive interference is obviously produced on axis for the central wavelength when recombining the two beams. The trick to obtain a quasi-achromatisation is to distribute the thickness of the cells, so that the nulling is also efficient for a wavelength not too far from the central wavelength. We show that if the thicknesses are distributed according to the Pascal triangle, a fair quasi-achromatism is reached. This effect is the more efficient that the number of cells is large. For instance, with 256 × 256 cells, where phase shift range is between -6π and +6π one shows that the nulling reaches 10 -6 on the wavelength range [0.7λ 0, 1.3λ 0] which corresponds roughly to the DARWIN specification. In a second step, we study the optimum way to distribute the cells in the plane of the pupil. The most important criterion is the isolation of the planet image from the residual image of the star. Several efficient configurations are presented. Finally we consider some practical aspects on a device belonging to the real world and on the bench we are

  19. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    PubMed

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-01

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (<1 microM in calmodulin) that are unlikely to buffer calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  20. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin

    PubMed Central

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-01-01

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein–protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 μM Ca2+, suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (<1 μM in calmodulin) that are unlikely to buffer calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens. PMID:17003117

  1. The scotopic low-frequency spatial contrast sensitivity develops in children between the ages of 5 and 14 years.

    PubMed

    Benedek, György; Benedek, Krisztina; Kéri, Szabolcs; Janáky, Márta

    2003-07-24

    The purpose of this study was to investigate the development of visual contrast sensitivity (CS) in children between 5 and 14 years of age. Six spatial frequencies and static (0 Hz) and dynamic (8 Hz) conditions were used at photopic and scotopic luminance levels. The results revealed significant maturation of CS, which reached the adult-like values by 11-12 years of age. The development was more pronounced at low spatial frequencies (<2 cycles/degree) and in the dynamic condition. The scotopic CS exhibited slower development than the photopic CS. These results suggest the late maturation of the magnocellular visual pathway.

  2. Size, weight, and power reduction regimes in achromatic gradient-index singlets.

    PubMed

    Campbell, Sawyer D; Brocker, Donovan E; Nagar, Jogender; Werner, Douglas H

    2016-05-01

    By analyzing the limitations that achromatic gradient-index (GRIN) lens solutions in the radial and axial extremes place on lens thickness and surface curvature, a radial-axial hybrid GRIN theory is developed in order to overcome these restrictions and expose a larger solution space. With the achromatic hybrid GRIN theory, the trade-offs between thickness, curvature, and GRIN type can be directly studied in the context of size, weight, and power (SWaP) reduction. Finally, the achromatic solution space of a silicon-germanium-based material system is explored, and several designs are verified with ray tracing. PMID:27140376

  3. Contrasting Regulatory Focus and Reinforcement Sensitivity: A Daily Diary Study of Goal Pursuit and Emotion.

    PubMed

    Eddington, Kari M; Majestic, Catherine; Silvia, Paul J

    2012-08-01

    This study examined the moderating effects of motivational orientation on daily affect and goal pursuit. Based on recent revisions to Reinforcement Sensitivity Theory, measures of BIS (BIS-r and Fight-Flight-Freeze System or FFFS), BAS, and regulatory focus (Promotion and Prevention) were administered to 84 college students who participated in a 14-day diary study. Diary items assessed goal-directed activities and positive and negative affect (PA and NA). Results showed that higher FFFS and Promotion were consistently associated with higher NA and PA, respectively, and FFFS was also associated with avoidance of responsibilities. Higher Promotion predicted greater daily goal progress and tendencies to rate goals as more promotion- and prevention-focused. Relationships between daily goal-directed activities and both sadness and satisfaction were moderated by BIS-r. Inconsistent with our hypothesis, low BAS Reward Responsiveness predicted increased enthusiasm with greater goal progress. A trend in the data showed evidence of regulatory fit in daily activities predicted by both Promotion and Prevention. Implications for the theoretical and practical distinctions between measures of motivational orientation are discussed.

  4. Contrasting Regulatory Focus and Reinforcement Sensitivity: A Daily Diary Study of Goal Pursuit and Emotion.

    PubMed

    Eddington, Kari M; Majestic, Catherine; Silvia, Paul J

    2012-08-01

    This study examined the moderating effects of motivational orientation on daily affect and goal pursuit. Based on recent revisions to Reinforcement Sensitivity Theory, measures of BIS (BIS-r and Fight-Flight-Freeze System or FFFS), BAS, and regulatory focus (Promotion and Prevention) were administered to 84 college students who participated in a 14-day diary study. Diary items assessed goal-directed activities and positive and negative affect (PA and NA). Results showed that higher FFFS and Promotion were consistently associated with higher NA and PA, respectively, and FFFS was also associated with avoidance of responsibilities. Higher Promotion predicted greater daily goal progress and tendencies to rate goals as more promotion- and prevention-focused. Relationships between daily goal-directed activities and both sadness and satisfaction were moderated by BIS-r. Inconsistent with our hypothesis, low BAS Reward Responsiveness predicted increased enthusiasm with greater goal progress. A trend in the data showed evidence of regulatory fit in daily activities predicted by both Promotion and Prevention. Implications for the theoretical and practical distinctions between measures of motivational orientation are discussed. PMID:22736878

  5. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    SciTech Connect

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Johnson, Rolland P.

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  6. A Second-Order Achromat Design Based on FODO Cell

    SciTech Connect

    Sun, Yipeng; /SLAC

    2011-08-19

    Two dipole doglegs are widely used to translate the beam axis horizontally or vertically. Quadrupoles are placed between the two consecutive dipoles to match first order dispersion and provide betatron focusing. Similarly a four dipole chicane is usually employed to form a bypass region, where the beam axis is transversely shifted first, then translated back to the original axis. In order to generate an isochronous section, quadrupoles are again needed to tune the first order transfer matrix element R{sub 56} equaling zero. Usually sextupoles are needed to correct second order dispersion in the bending plane, for both the dogleg optics and the chicane (with quad) optics. In this paper, an alternative optics design is introduced, which is based on a simple FODO cell and does not need sextupoles assistance to form a second-order achromat. It may provide a similar function of either a dogleg or a bypass, by using 2 or 4 of such combined supercells.

  7. Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton.

    PubMed

    Johnsen, Sönke; Marshall, N Justin; Widder, Edith A

    2011-03-12

    Because light in the pelagic environment is partially polarized, it has been suggested that the polarization sensitivity found in certain pelagic species may serve to enhance the contrast of their transparent zooplankton prey. We examined its potential during cruises in the Gulf of Mexico and Atlantic Ocean and at a field station on the Great Barrier Reef. First, we collected various species of transparent zooplankton and micronekton and photographed them between crossed polarizers. Many groups, particularly the cephalopods, pelagic snails, salps and ctenophores, were found to have ciliary, muscular or connective tissues with striking birefringence. In situ polarization imagery of the same species showed that, while the degree of underwater polarization was fairly high (approx. 30% in horizontal lines of sight), tissue birefringence played little to no role in increasing visibility. This is most likely due to the low radiance of the horizontal background light when compared with the downwelling irradiance. In fact, the dominant radiance and polarization contrasts are due to unpolarized downwelling light that has been scattered from the animal viewed against the darker and polarized horizontal background light. We show that relatively simple algorithms can use this negative polarization contrast to increase visibility substantially.

  8. Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity.

    PubMed

    Yang, Liming; Jiang, Tingbo; Fountain, Jake C; Scully, Brian T; Lee, Robert D; Kemerait, Robert C; Chen, Sixue; Guo, Baozhu

    2014-01-01

    Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.

  9. Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

    PubMed Central

    Yang, Liming; Jiang, Tingbo; Fountain, Jake C.; Scully, Brian T.; Lee, Robert D.; Kemerait, Robert C.; Chen, Sixue; Guo, Baozhu

    2014-01-01

    Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. PMID:25334062

  10. Global motion perception is independent from contrast sensitivity for coherent motion direction discrimination and visual acuity in 4.5-year-old children

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; Wouldes, Trecia A.; Harding, Jane E.; Thompson, Benjamin

    2015-01-01

    Global motion processing depends on a network of brain regions that includes extrastriate area V5 in the dorsal visual stream. For this reason, psychophysical measures of global motion perception have been used to provide a behavioural measure of dorsal stream function. This approach assumes that global motion is relatively independent of visual functions that arise earlier in the visual processing hierarchy such as contrast sensitivity and visual acuity. We tested this assumption by assessing the relationships between global motion perception, contrast sensitivity for coherent motion direction discrimination (henceforth referred to as contrast sensitivity) and habitual visual acuity in a large group of 4.5-year-old children (n = 117). The children were born at risk of abnormal neurodevelopment because of prenatal drug exposure or risk factors for neonatal hypoglycaemia. Motion coherence thresholds, a measure of global motion perception, were assessed using random dot kinematograms. The contrast of the stimuli was fixed at 100% and coherence was varied. Contrast sensitivity was measured using the same stimuli by fixing motion coherence at 100% and varying dot contrast. Stereoacuity was also measured. Motion coherence thresholds were not correlated with contrast sensitivity or visual acuity. However, lower (better) motion coherence thresholds were correlated with finer stereoacuity (rho=0.38, p=0.004). Contrast sensitivity and visual acuity were also correlated (rho= −0.26, p=0.004) with each other. These results indicate that global motion perception for high contrast stimuli is independent of contrast sensitivity and visual acuity and can be used to assess motion integration mechanisms in children. PMID:26318529

  11. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective

    PubMed Central

    Kyrish, Matthew; Dobbs, Jessica; Jain, Shalini; Wang, Xiao; Yu, Dihua; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In order to diagnose cancer, a sample must be removed, prepared, and examined under a microscope, which is expensive, invasive, and time consuming. Fiber optic fluorescence endomicroscopy, where an image guide is used to obtain high-resolution images of tissue in vivo, has shown promise as an alternative to conventional biopsies. However, the resolution of standard endomicroscopy is limited by the fiber bundle sampling frequency and out-of-focus light. A system is presented which incorporates a plastic, achromatic objective to increase the sampling and which provides optical sectioning via structured illumination to reject background light. An image is relayed from the sample by a fiber bundle with the custom 2.1-mm outer diameter objective lens integrated to the distal tip. The objective is corrected for the excitation and the emission wavelengths of proflavine (452 and 515 nm). It magnifies the object onto the fiber bundle to improve the system’s lateral resolution by increasing the sampling. The plastic lenses were fabricated via single-point diamond turning and assembled using a zero alignment technique. Ex vivo images of normal and neoplastic murine mammary tissues stained with proflavine are captured. The system achieves higher contrast and resolves smaller features than standard fluorescence endomicroscopy. PMID:24002190

  12. Avoidance of achromatic colours by bees provides a private niche for hummingbirds.

    PubMed

    Lunau, Klaus; Papiorek, Sarah; Eltz, Thomas; Sazima, Marlies

    2011-05-01

    That hummingbird-pollinated plants predominantly have red flowers has been known for decades, but well-investigated research studies are still rare. Preference tests have shown that hummingbirds do not have an innate preference for red colours. In addition, hummingbirds do not depend solely upon red flowers, because white-flowered hummingbird-pollinated plants are also common and temporarily abundant. Here we show that both white and red hummingbird-pollinated flowers differ from bee-pollinated flowers in their reflection properties for ultraviolet (UV) light. Hummingbird-pollinated red flowers are on average less UV reflective, and white hummingbird-pollinated flowers are more UV reflective than the same coloured bee-pollinated ones. In preference tests with artificial flowers, neotropical orchid bees prefer red UV-reflecting artificial flowers and white UV-nonreflecting flowers over red and white flowers with the opposite UV properties. By contrast, hummingbirds showed no preference for any colour in the same tests. Plotting floral colours and test stimuli into the honeybees' perceptual colour space suggests that the less attractive colours are achromatic for bees and therefore more difficult to detect against the background. This underlying colour preference in bees might provide hummingbirds with a private niche that is not attractive to bees.

  13. Needle endomicroscope with a plastic, achromatic objective to perform optical biopsies of breast tissue

    NASA Astrophysics Data System (ADS)

    Kyrish, Matthew; Dobbs, Jessica; Richards-Kortum, Rebecca; Tkaczyk, Tomasz

    2013-03-01

    In order to diagnose cancer in breast tissue, a sample must be removed, prepared, and examined under a microscope. To provide an alternative to conventional biopsies, an endomicroscope intended to perform optical biopsies is demonstrated. The system provides high resolution, high contrast images in real-time which could allow a diagnosis to be made during surgery without the need for tissue removal. Optical sectioning is achieved via structured illumination to reject out of focus light. An image is relayed between the sample plane and the imaging system by a coherent fiber bundle with an achromatized objective lens at the distal tip of the fiber bundle which is the diameter of a biopsy needle. The custom, plastic objective provides correction for both the excitation and emission wavelengths of proflavine (452 nm and 515 nm, respectively). It also magnifies the object onto the distal tip of the fiber bundle to increase lateral resolution. The lenses are composed of the optical plastics Zeonex E48R, PMMA, and polystyrene. The lenses are fabricated via single point diamond turning and assembled using a zero alignment technique. The lateral resolution and chromatic focal shift were measured and in vitro images of breast carcinoma cells stained with proflavine were captured. The optical biopsy system is able to achieve optical sectioning and to resolve smaller features than the current high resolution microendoscope.

  14. Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex.

    PubMed

    Grossberg, S; Raizada, R D

    2000-01-01

    Recent neurophysiological studies have shown that primary visual cortex, or V1, does more than passively process image features using the feedforward filters suggested by Hubel and Wiesel. It also uses horizontal interactions to group features preattentively into object representations, and feedback interactions to selectively attend to these groupings. All neocortical areas, including V1, are organized into layered circuits. We present a neural model showing how the layered circuits in areas V1 and V2 enable feedforward, horizontal, and feedback interactions to complete perceptual groupings over positions that do not receive contrastive visual inputs, even while attention can only modulate or prime positions that do not receive such inputs. Recent neurophysiological data about how grouping and attention occur and interact in V1 are simulated and explained, and testable predictions are made. These simulations show how attention can selectively propagate along an object grouping and protect it from competitive masking, and how contextual stimuli can enhance or suppress groupings in a contrast-sensitive manner. PMID:10788649

  15. Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex.

    PubMed

    Grossberg, S; Raizada, R D

    2000-01-01

    Recent neurophysiological studies have shown that primary visual cortex, or V1, does more than passively process image features using the feedforward filters suggested by Hubel and Wiesel. It also uses horizontal interactions to group features preattentively into object representations, and feedback interactions to selectively attend to these groupings. All neocortical areas, including V1, are organized into layered circuits. We present a neural model showing how the layered circuits in areas V1 and V2 enable feedforward, horizontal, and feedback interactions to complete perceptual groupings over positions that do not receive contrastive visual inputs, even while attention can only modulate or prime positions that do not receive such inputs. Recent neurophysiological data about how grouping and attention occur and interact in V1 are simulated and explained, and testable predictions are made. These simulations show how attention can selectively propagate along an object grouping and protect it from competitive masking, and how contextual stimuli can enhance or suppress groupings in a contrast-sensitive manner.

  16. Ultrasound-Triggered Phase Transition Sensitive Magnetic Fluorescent Nanodroplets as a Multimodal Imaging Contrast Agent in Rat and Mouse Model

    PubMed Central

    Chen, Yunchao; Luo, Binhua; Liu, Xuhan; Liu, Wei; Xu, Haibo; Yang, Xiangliang

    2013-01-01

    Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases. PMID:24391983

  17. Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1990-01-01

    A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.

  18. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells.

    PubMed

    Hwang, Christopher K; Chaurasia, Shyam S; Jackson, Chad R; Chan, Guy C-K; Storm, Daniel R; Iuvone, P Michael

    2013-09-18

    Spatial variation in light intensity, called spatial contrast, comprises much of the visual information perceived by mammals, and the relative ability to detect contrast is referred to as contrast sensitivity (Purves et al., 2012). Recently, retinal dopamine D4 receptors (D4Rs) have been implicated in modulating contrast sensitivity (Jackson et al., 2012); however, the cellular and molecular mechanisms have not been elucidated. Our study demonstrates a circadian rhythm of contrast sensitivity that peaks during the daytime, and that its regulation involves interactions of D4Rs, the clock gene Npas2, and the clock-controlled gene adenylyl cyclase 1 (Adcy1) in a subset of retinal ganglion cells (RGCs). Targeted disruption of the gene encoding D4Rs reduces the amplitude of the contrast sensitivity rhythm by reducing daytime sensitivity and abolishes the rhythmic expression of Npas2 and Adcy1 mRNA in the ganglion cell layer (GCL) of the retina. Npas2(-/-) and Adcy1(-/-) mice show strikingly similar reductions in the contrast sensitivity rhythm to that in mice lacking D4Rs. Moreover, Adcy1 transcript rhythms were abolished in the GCL of Npas2(-/-) mice. Luciferase reporter assays demonstrated that the Adcy1 promoter is selectively activated by neuronal PAS-domain protein 2 (NPAS2)/BMAL1. Our results indicate that the contrast sensitivity rhythm is modulated by D4Rs via a signaling pathway that involves NPAS2-mediated circadian regulation of Adcy1. Hence, we have identified a circadian clock mechanism in a subset of RGCs that modulates an important aspect of retinal physiology and visual processing.

  19. What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception

    PubMed Central

    Blakeslee, Barbara; McCourt, Mark E.

    2015-01-01

    Research in lightness perception centers on understanding the prior assumptions and processing strategies the visual system uses to parse the retinal intensity distribution (the proximal stimulus) into the surface reflectance and illumination components of the scene (the distal stimulus—ground truth). It is agreed that the visual system must compare different regions of the visual image to solve this inverse problem; however, the nature of the comparisons and the mechanisms underlying them are topics of intense debate. Perceptual illusions are of value because they reveal important information about these visual processing mechanisms. We propose a framework for lightness research that resolves confusions and paradoxes in the literature, and provides insight into the mechanisms the visual system employs to tackle the inverse problem. The main idea is that much of the debate and confusion in the literature stems from the fact that lightness, defined as apparent reflectance, is underspecified and refers to three different types of judgments that are not comparable. Under stimulus conditions containing a visible illumination component, such as a shadow boundary, observers can distinguish and match three independent dimensions of achromatic experience: apparent intensity (brightness), apparent local intensity ratio (brightness-contrast), and apparent reflectance (lightness). In the absence of a visible illumination boundary, however, achromatic vision reduces to two dimensions and, depending on stimulus conditions and observer instructions, judgments of lightness are identical to judgments of brightness or brightness-contrast. Furthermore, because lightness judgments are based on different information under different conditions, they can differ greatly in their degree of difficulty and in their accuracy. This may, in part, explain the large variability in lightness constancy across studies. PMID:25954181

  20. Athermal achromat lens enabled by polymer gradient index optics

    NASA Astrophysics Data System (ADS)

    Flynn, Richard A.; Beadie, Guy

    2016-05-01

    An optical design is shown which provides simultaneous color correction over the visible spectrum and passive thermal compensation, for an f/4 doublet made of a glass and a polymer gradient index (GRIN) element. The design is enabled by a new optical model for the thermally varying GRIN element, which incorporates measured material properties from 20-40°C (limited only by the extent of the measured data set). The design is made possible because of the GRIN degrees of freedom available to the material. A color-corrected doublet is most efficient when there is a large ratio of the dispersion strength (Abbe number) between the two materials. To make that doublet athermal, however, there needs to be an equally high ratio between the thermal coefficients. The large ratio of polymer to glass thermal coefficients presents a unique advantage for GRIN: the effective GRIN dispersion coefficient can have just as large a ratio to the glass as the thermal coefficients, making for a powerful athermal achromat. To our knowledge, this is the first example of a polymer GRIN used for simultaneous chromatic and thermal correction.

  1. CIAXE: co-axial achromatic interferential coronagraph: first laboratory results

    NASA Astrophysics Data System (ADS)

    Allouche, Fatmé; Gay, Jean; Rabbia, Yves; Assus, Pierre

    2010-07-01

    In 1996, Jean Gay and Yves Rabbia presented their Achromatic Interferential Coronagraph (AIC) for detecting and imaging faint companions (ultimately exoplanets) in the neighboring of a star. As presented then, the Michleson-like Interferometer configuration of the AIC hardens its insertion into an existing (coaxial) optical train, the output beam of the AIC being delivered at right angle from the input beam. To overcome this, they reconfigured the AIC into a compact and fully axial coronagraph, the CIAXE, which main feature consists of using two thick lenses machined in the same optical material. For the CIAXE to deliver the output beam along the same axis as the input beam, the two lenses are coaxially disposed on the optical axis and are separated, at their common spherical contact surface by a thin air gap acting like a beam splitter. We have set up a laboratory experiment aiming at validating the principle of the concept. Our first step was to equalize the thicknesses of the two lenses, so as to make zero the optical path difference between both arms. For this, the (residual) value of the OPD has been evaluated and then the lenses have been re-machined so as to decrease as far as technologically possible, the thicknesses mismatch. As a second step, a micro-controlled rotation around the common curvature center of the spherical surfaces of the lenses is applied. This allows a fine tuning of the residual OPD at the required accuracy level. Are presented here test bench, steps and results.

  2. Multispectral optical metasurfaces enabled by achromatic phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-10-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths.

  3. Multispectral optical metasurfaces enabled by achromatic phase transition

    PubMed Central

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-01-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths. PMID:26503607

  4. Multispectral optical metasurfaces enabled by achromatic phase transition.

    PubMed

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-10-27

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths.

  5. Slow updating of the achromatic point after a change in illumination

    PubMed Central

    Lee, R. J.; Dawson, K. A.; Smithson, H. E.

    2015-01-01

    For a colour constant observer, the colour appearance of a surface is independent of the spectral composition of the light illuminating it. We ask how rapidly colour appearance judgements are updated following a change in illumination. We obtained repeated binary colour classifications for a set of stimuli defined by their reflectance functions and rendered under either sunlight or skylight. We used these classifications to derive boundaries in colour space that identify the observer’s achromatic point. In steady-state conditions of illumination, the achromatic point lay close to the illuminant chromaticity. In our experiment the illuminant changed abruptly every 21 seconds (at the onset of every 10th trial), allowing us to track changes in the achromatic point that were caused by the cycle of illuminant changes. In one condition, the test reflectance was embedded in a spatial pattern of reflectance samples under consistent illumination. The achromatic point migrated across colour space between the chromaticities of the steady-state achromatic points. This update took several trials rather than being immediate. To identify the factors that governed perceptual updating of appearance judgements we used two further conditions, one in which the test reflectance was presented in isolation and one in which the surrounding reflectances were rendered under an inconsistent and unchanging illumination. Achromatic settings were not well predicted by the information available from scenes at a single time-point. Instead the achromatic points showed a strong dependence on the history of chromatic samples. The strength of this dependence differed between observers and was modulated by the spatial context. PMID:22275468

  6. Determining Spatial Summation and Its Effect on Contrast Sensitivity across the Central 20 Degrees of Visual Field

    PubMed Central

    Choi, Agnes Yiu Jeung; Nivison-Smith, Lisa; Khuu, Sieu K; Kalloniatis, Michael

    2016-01-01

    Purpose Recent studies propose that the use of target stimuli within or close to complete spatial summation reveal larger threshold elevation in ocular disease. The Humphrey Visual Field Analyzer (HFA) is used to assess visual function yet the spatial summation characteristics are unexplored for the central macular region. We therefore wanted to establish the relationship between contrast sensitivity and stimulus size (spatial summation) within the central 20° visual field using the high sampling density of the 10–2 test grid. Methods Thresholds were measured for one eye from 37 normal subjects using the HFA 10–2 test grid with all five Goldmann (G) targets (GI to GV). Subject data were converted to 50-year-old equivalent using published and calculated location-specific decade correction factors. Spatial summation curves were fitted for all data at all locations. The size of Ricco’s critical area (Ac) within which complete spatial summation operates (k = 1), and the slope of partial summation (k < 1: to characterize partial summation), was established. Results The 50-year-old age normative data were determined for all Goldmann stimulus sizes for the 10–2 HFA test grid and showed a marked change in contrast sensitivity for small test stimuli (e.g. GI) and little change in larger test stimuli (e.g. GV). Both the Ac and k values did not vary with age allowing for the application of the age correction factors. Ac and k values increased with eccentricity with GI remaining within complete spatial summation and GII was close or within complete spatial summation. GIII or larger test sizes were always outside complete spatial summation operating within various levels of partial summation. Conclusions The developed normative data now allows comparisons of data sets with high sampling density using the 10–2 grid irrespective of subject age. Test size is important when assessing ocular disease yet only GI or GII stimuli operate close to or within complete spatial

  7. Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes.

    PubMed

    Kotula, Lukasz; Khan, Hammad A; Quealy, John; Turner, Neil C; Vadez, Vincent; Siddique, Kadambot H M; Clode, Peta L; Colmer, Timothy D

    2015-08-01

    The reproductive phase in chickpea (Cicer arietinum L.) is affected by salinity, but little is known about the underlying cause. We investigated whether high concentrations of Na(+) and Cl(-) in the reproductive structures influence reproductive processes. Chickpea genotypes contrasting in tolerance were subjected to 0, 35 or 50 mm NaCl applied to soil in pots. Flower production and abortion, pod number, percentage of empty pods, seed number and size were evaluated. The concentrations of Na(+) , K(+) and Cl(-) were measured in various plant tissues and, using X-ray microanalysis, in specific cells of developing reproductive structures. Genotypic variation in reproductive success measured as seed yield in saline conditions was associated with better maintenance of flower production and higher numbers of filled pods (and thus seed number), whereas seed size decreased in all genotypes. Despite the variation in reproductive success, the accumulation of Na(+) and Cl(-) in the early reproductive tissues of developing pods did not differ between a tolerant (Genesis836) and a sensitive (Rupali) genotype. Similarly, salinity tolerance was not associated with the accumulation of salt ions in leaves at the time of reproduction or in seeds at maturity. PMID:25615287

  8. Effect of Sahaja yoga meditation on auditory evoked potentials (AEP) and visual contrast sensitivity (VCS) in epileptics.

    PubMed

    Panjwani, U; Selvamurthy, W; Singh, S H; Gupta, H L; Mukhopadhyay, S; Thakur, L

    2000-03-01

    The effect of Sahaja yoga meditation on 32 patients with primary idiopathic epilepsy on regular and maintained antiepileptic medication was studied. The patients were randomly divided into 3 groups: group I practiced Sahaja Yoga meditation twice daily for 6 months under proper guidance; group II practiced postural exercises mimicking the meditation for the same duration; and group III was the control group. Visual Contrast Sensitivity (VCS), Auditory Evoked Potentials (AEP), Brainstem Auditory Evoked Potentials (BAEP), and Mid Latency Responses (MLR) were recorded initially (0 month) and at 3 and 6 months for each group. There was a significant improvement in VCS following meditation practice in group I participants. Na, the first prominent negative peak of MLR and Pa, the positive peak following Na did not register changes in latency. The Na-Pa amplitude of MLR also showed a significant increase. There were no significant changes in the absolute and interpeak latencies of BAEP. The reduced level of stress following meditation practice may make patients more responsive to specific stimuli. Sahaja Yoga meditation appears to bring about changes in some of the electrophysiological responses studied in epileptic patients.

  9. Evaluation of six channelized Hotelling observers in combination with a contrast sensitivity function to predict human observer performance

    NASA Astrophysics Data System (ADS)

    Goffi, Marco; Veldkamp, Wouter J. H.; van Engen, Ruben E.; Bouwman, Ramona W.

    2015-03-01

    Standard methods to quantify image quality (IQ) may not be adequate for clinical images since they depend on uniform backgrounds and linearity. Statistical model observers are not restricted to these limitations and might be suitable for IQ evaluation of clinical images. One of these statistical model observers is the channelized Hotelling observer (CHO), where the images are filtered by a set of channels. The aim of this study was to evaluate six different channel sets, with an additional filter to simulate the human contrast sensitivity function (CSF), in their ability to predict human observer performance. For this evaluation a two alternative forced choice experiment was performed with two types of background structures (white noise (WN) and clustered lumpy background (CLB)), 5 disk-shaped objects with different diameters and 3 different signal energies. The results show that the correlation between human and model observers have a diameter dependency for some channel sets in combination with CLBs. The addition of the CSF reduces this diameter dependency and in some cases improves the correlation coefficient between human- and model observer. For the CLB the Partial Least Squares channel set shows the highest correlation with the human observer (r2=0.71) and for WN backgrounds it was the Gabor-channel set with CSF (r2=0.72). This study showed that for some channels there is a high correlation between human and model observer, which suggests that the CHO has potential as a tool for IQ analysis of digital mammography systems.

  10. Contrast sensitivity function in stereoscopic viewing of Gabor patches on a medical polarized three-dimensional stereoscopic display

    NASA Astrophysics Data System (ADS)

    Rousson, Johanna; Haar, Jérémy; Santal, Sarah; Kumcu, Asli; Platiša, Ljiljana; Piepers, Bastian; Kimpe, Tom; Philips, Wilfried

    2016-03-01

    While three-dimensional (3-D) imaging systems are entering hospitals, no study to date has explored the luminance calibration needs of 3-D stereoscopic diagnostic displays and if they differ from two-dimensional (2-D) displays. Since medical display calibration incorporates the human contrast sensitivity function (CSF), we first assessed the 2-D CSF for benchmarking and then examined the impact of two image parameters on the 3-D stereoscopic CSF: (1) five depth plane (DP) positions (between DP: -171 and DP: 2853 mm), and (2) three 3-D inclinations (0 deg, 45 deg, and 60 deg around the horizontal axis of a DP). Stimuli were stereoscopic images of a vertically oriented 2-D Gabor patch at one of seven frequencies ranging from 0.4 to 10 cycles/deg. CSFs were measured for seven to nine human observers with a staircase procedure. The results indicate that the 2-D CSF model remains valid for a 3-D stereoscopic display regardless of the amount of disparity between the stereo images. We also found that the 3-D CSF at DP≠0 does not differ from the 3-D CSF at DP=0 for DPs and disparities which allow effortless binocular fusion. Therefore, the existing 2-D medical luminance calibration algorithm remains an appropriate tool for calibrating polarized stereoscopic medical displays.

  11. Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes.

    PubMed

    Kotula, Lukasz; Khan, Hammad A; Quealy, John; Turner, Neil C; Vadez, Vincent; Siddique, Kadambot H M; Clode, Peta L; Colmer, Timothy D

    2015-08-01

    The reproductive phase in chickpea (Cicer arietinum L.) is affected by salinity, but little is known about the underlying cause. We investigated whether high concentrations of Na(+) and Cl(-) in the reproductive structures influence reproductive processes. Chickpea genotypes contrasting in tolerance were subjected to 0, 35 or 50 mm NaCl applied to soil in pots. Flower production and abortion, pod number, percentage of empty pods, seed number and size were evaluated. The concentrations of Na(+) , K(+) and Cl(-) were measured in various plant tissues and, using X-ray microanalysis, in specific cells of developing reproductive structures. Genotypic variation in reproductive success measured as seed yield in saline conditions was associated with better maintenance of flower production and higher numbers of filled pods (and thus seed number), whereas seed size decreased in all genotypes. Despite the variation in reproductive success, the accumulation of Na(+) and Cl(-) in the early reproductive tissues of developing pods did not differ between a tolerant (Genesis836) and a sensitive (Rupali) genotype. Similarly, salinity tolerance was not associated with the accumulation of salt ions in leaves at the time of reproduction or in seeds at maturity.

  12. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  13. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with

  14. Achromatic interfero-coronagraph with variable rotational shear in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Frolov, Pavel; Kiselev, Alexander; Tavrov, Alexander

    2016-07-01

    Direct imaging of earth-like extrasolar planets in the habitable zone and the search for possible biological signatures are among the key scientific objectives in the modern astronomy. Stellar coronagraph such as achromatic interfero coronagraph (AIC) with a small inner working angle has limited possibilities to detect and characterize planets around nearby stars due to the star leakage effect caused by incomplete suppression of the star of finite angular size. We report on an improved instrument for direct imaging of exoplanets and the study of stellar environment - common-path achromatic interfero-coronagraph with variable rotational shear (common-path achromatic rotation-shearing coronagraph, CP-ARC) - a common path implementation of rotation shearing interferometer. We detail CP-ARC approach and discuss its optical configuration, laboratory prototype and experimental results.

  15. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  16. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast.

    PubMed

    Rucker, F J; Osorio, D

    2008-09-01

    Longitudinal chromatic aberration is a well-known imperfection of visual optics, but the consequences in natural conditions, and for the evolution of receptor spectral sensitivities are less well understood. This paper examines how chromatic aberration affects image quality in the middle-wavelength sensitive (M-) cones, viewing broad-band spectra, over a range of spatial frequencies and focal planes. We also model the effects on M-cone contrast of moving the M-cone fundamental relative to the long- and middle-wavelength (L- and M-cone) fundamentals, while the eye is accommodated at different focal planes or at a focal plane that maximizes luminance contrast. When the focal plane shifts towards longer (650 nm) or shorter wavelengths (420 nm) the effects on M-cone contrast are large: longitudinal chromatic aberration causes total loss of M-cone contrast above 10-20 c/d. In comparison, the shift of the M-cone fundamental causes smaller effects on M-cone contrast. At 10 c/d a shift in the peak of the M-cone spectrum from 560 to 460 nm decreases M-cone contrast by 30%, while a 10 nm blue-shift causes only a minor loss of contrast. However, a noticeable loss of contrast may be seen if the eye is focused at focal planes other than that which maximizes luminance contrast. The presence of separate long- and middle-wavelength sensitive cones therefore has a small, but not insignificant cost to the retinal image via longitudinal chromatic aberration. This aberration may therefore be a factor limiting evolution of visual pigments and trichromatic color vision. PMID:18639571

  17. Comparison of Blue-Yellow Opponent Color Contrast Sensitivity Function between Female Badminton Players and Non-athletes

    PubMed Central

    Jafarzadehpur, Ebrahim; Mirzajani, Ali; Hatami, Maryam; Musavian, Razieh; Abbasi, Ebrahim

    2012-01-01

    Purpose To compare the chromatic contrast sensitivity function (CSF) for the blue-yellow opponent channel (BYOC) between female badminton players and non-athlete controls. Methods We recruited 40 young females (18-25 years old) who played badminton for at least 5 consecutive years as the test group, and 30 age-matched female controls who had no history of regular physical activity. The Pattern Generator™ system was used to test the CSF for the BYOC which was performed at three spatial frequencies (SFs) of 2 cycles per degree (cpd), 5 cpd, and 25 cpd. Results Comparison of BYOC thresholds showed significantly better results in the test group for all three SFs (P<0.001). Band pass shift (better CSF in the middle SF) was seen in the test group. The control group had low pass (better CSF in the low SF). Ocular motility (heterophoria, fusional convergence and divergence at far and near distances, and near point of convergence) was better in the test group, but the inter-group difference was not significant. Conclusions The BYOC threshold results for badminton players indicated a better visual performance which may be a result of enhanced performance of the parallel processing of the parvocellular and magnocellular systems. This may be inherent and/or acquired in badminton players. In addition, badminton players appear to have developed sensory-motor programmed activities. Testing the CSF for BYOC may be useful for athlete selection in different levels and/or used as a criterion for screening players in the field of badminton. PMID:23802052

  18. Wavefront aberration and contrast sensitivity after implantation of foldable and rigid iris claw phakic intraocular lenses: Artiflex versus artisan

    PubMed Central

    Parsipour, Faroogh; Razmju, Hassan; Khatavi, Fatima; Panahi, Maryam; Nouralishahi, Alireza; Peyman, Alireza

    2016-01-01

    Aim of study: The aim of this study is to assess wavefront aberration and contrast sensitivity (CS) after implantation of foldable iris claw – artiflex- and rigid iris claw – artisan- phakic intraocular lenses (pIOLs). Materials and Methods: A nonrandomized prospective comparative case study was performed on 57 eyes; of which, 54 were myopia and 3 were hyperopia. Twenty-four patients had artisan pIOL implantation and 33 had artiflex pIOL implantation. Higher-order aberration (HOA) and CS were obtained 1 year after surgery. Results: Total HOA in artisan group was greater than artiflex group (P = 0.044) with a mean HOA of 0.44 ± 0.15 root mean square (RMS) for artisan and 0.35 ± 0.15 RMS for artiflex. Although, there were no significant differences in the vertical trefoil, vertical coma, horizontal trefoil, horizontal coma, secondary astigmatism, quatrefoil, and fourth order spherical aberration in two groups. CS in mesopic conditions was better in artiflex-treated eyes at three spatial frequencies of 6, 12, and 18 cycles per degree (cpd) (P = 0.003, P = 0.007, and P = 0.00, respectively), and no significant difference was seen between two lenses at 3 cpd. Conclusion: Although the components of HOA were not significantly different between two groups, total HOA was higher in artisan group, which may be due to the slight differences in each component, increasing the HOA as a total. CS was significantly better in artiflex group. PMID:27380978

  19. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  20. Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system

    NASA Astrophysics Data System (ADS)

    Bysani Krishnakumar, Sumukh; Podgorsak, Alexander R.; Setlur Nagesh, S. V.; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.; Ionita, Ciprian N.

    2016-03-01

    A small animal micro-CT system was built using an EMCCD detectors having complex pre-digitization amplification technology, high-resolution, high-sensitivity and low-noise. Noise in CBCT reconstructed images when using predigitization amplification behaves differently than commonly used detectors and warrants a detailed investigation. In this study, noise power and contrast sensitivity were estimated for the newly built system. Noise analysis was performed by scanning a water phantom. Tube voltage was lowered to minimum delivered by the tube (20 kVp and 0.5 mA) and detector gain was varied. Contrast sensitivity was analyzed by using a phantom containing different iodine contrast solutions (20% to 70%) filled in six different tubes. First, we scanned the phantom using various x-ray exposures at 40 kVp while changing the gain to maintain the background air value of the projection images constant. Next, the exposure was varied while the detector gain was maintained constant. Radial NPS plots show that noise power level increases as gain increases. Contrast sensitivity was analyzed by calculating ratio of signal-to-noise ratios (SNR) for increased gain with those of low constant gain at each exposure. The SNR value at low constant gain was always lower than SNR of high detector gain at all x-ray settings and iodine contrast. The largest increase of SNR approached 1.3 for low contrast feature for an iodine concentration of 20%. Despite an increase in noise level as gain increases, the SNR improvement shows that signal level also increases because of the unique on-chip gain of the detector.

  1. Achromatic circular polarizer in the 482-535 nm range based on polypropylene films

    NASA Astrophysics Data System (ADS)

    Muravsky, Al. A.; Murauski, An. A.; Agabekov, V. E.; Chuvasheva, O. O.; Ivanova, N. A.

    2012-11-01

    We present a design for an achromatic circular polarizer based on polypropylene films. The circular polarizer, having eccentricity ≥0.92 in the 482-535 nm range and ideally circular for the wavelength of ~505 nm, is obtained by combining BOPP C2-25 and BOPP C2-35 films of thickness 23 m and 33 μm.

  2. Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing.

    PubMed

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2009-09-28

    A broadband ultraviolet pulse with a spectral width of 44 nm was generated by achromatic sum-frequency mixing of an 805-nm pulse and ultrabroadband visible pulse. Angular dispersion was introduced to achieve broadband phase matching by a prism pair. The UV pulse was compressed to 13.2 fs with another prism pair, with energy of 600 nJ. PMID:19907556

  3. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching.

    PubMed

    Treossi, Emanuele; Melucci, Manuela; Liscio, Andrea; Gazzano, Massimo; Samorì, Paolo; Palermo, Vincenzo

    2009-11-01

    We present a novel approach for detecting and visualizing graphene oxide (GO) with high contrast on different substrates, including glass, quartz, and silicon. Visualization of GO sheets is accomplished through quenching the fluorescence of a thiophene dye, giving high optical contrast without the need to use interference methods. A comparison of fluorescence, AFM, and XRD measurements confirmed that even a single GO sheet can completely quench the fluorescence and thus be quickly visualized.

  4. Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla.

    PubMed

    Scheidegger, Rachel; Wong, Eric T; Alsop, David C

    2014-10-01

    Off-resonance saturation transfer images have shown intriguing differences in intensity in glioma compared to normal brain tissues. Interpretation of these differences is complicated, however, by the presence of multiple sources of exchanging magnetization including amide, amine, and hydroxyl protons, asymmetric magnetization transfer contrast (MTC) from macromolecules, and various protons with resonances in the aliphatic spectral region. We report a study targeted at separating these components and identifying their relative contributions to contrast in glioma. Off-resonance z-spectra at several saturation powers and durations were obtained from 6 healthy controls and 8 patients with high grade glioma. Results indicate that broad macromolecular MTC in normal brain tissue is responsible for the majority of contrast with glioma. Amide exchange could be detected with lower saturation power than has previously been reported in glioma, but it was a weak signal source with no detectable contrast from normal brain tissue. At higher saturation powers, amine proton exchange was a major contributor to the observed signal but showed no significant difference from normal brain. Robust acquisition strategies that effectively isolate the contributions of broad macromolecular MTC asymmetry from amine exchange were demonstrated that may provide improved contrast between glioma and normal tissue. PMID:24857712

  5. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging.

  6. A Broad-Band Phase-Contrast Wave-Front Sensor

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric; Wallace, J. Kent

    2005-01-01

    A broadband phase-contrast wave-front sensor has been proposed as a real-time wave-front sensor in an adaptive-optics system. The proposed sensor would offer an alternative to the Shack-Hartmann wave-front sensors now used in high-order adaptive-optics systems of some astronomical telescopes. Broadband sensing gives higher sensitivity than does narrow-band sensing, and it appears that for a given bandwidth, the sensitivity of the proposed phase-contrast sensor could exceed that of a Shack-Hartmann sensor. Relative to a Shack-Hartmann sensor, the proposed sensor may be optically and mechanically simpler. As described below, an important element of the principle of operation of a phase-contrast wave-front sensor is the imposition of a 90deg phase shift between diffracted and undiffracted parts of the same light beam. In the proposed sensor, this phase shift would be obtained by utilizing the intrinsic 90 phase shift between the transmitted and reflected beams in an ideal (thin, symmetric) beam splitter. This phase shift can be characterized as achromatic or broadband because it is 90deg at every wavelength over a broad wavelength range.

  7. Are Normal Decision-Makers Sensitive to Changes in Value Contrast under Uncertainty? Evidence from the Iowa Gambling Task

    PubMed Central

    Lee, We-Kang; Su, Yi-An; Song, Tzu-Jiun; Chiu, Yao-Chu; Lin, Ching-Hung

    2014-01-01

    The Iowa Gambling Task (IGT) developed by Bechara et al. in 1994 is used to diagnose patients with Ventromedial Medial Prefrontal Cortex (VMPFC) lesions, and it has become a landmark in research on decision making. According to Bechara et al., the manipulation of progressive increments of monetary value can normalize the performance of patients with VMPFC lesions; thus, they developed a computerized version of the IGT. However, the empirical results showed that patients' performances did not improve as a result of this manipulation, which suggested that patients with VMPFC lesions performed myopically for future consequences. Using the original version of the IGT, some IGT studies have demonstrated that increments of monetary value significantly influence the performance of normal subjects in the IGT. However, other research has resulted in inconsistent findings. In this study, we used the computerized IGT (1X-IGT) and manipulated the value contrast of progressive increments (i.e., by designing the 10X-IGT, which contained 10 times of progressive increment) to investigate the influence of value contrast on the performance of normal subjects. The resulting empirical observations indicated that the value contrast (1X- vs. 10X-IGT) of the progressive increment had no effect on the performance of normal subjects. This study also provides a discussion of the issue of value in IGT-related studies. Moreover, we found the “prominent deck B phenomenon” in both versions of the IGT, which indicated that the normal subjects were guided mostly by the gain-loss frequency, rather than by the monetary value contrast. In sum, the behavioral performance of normal subjects demonstrated a low correlation with changes in monetary value, even in the 10X-IGT. PMID:25036094

  8. Design study of a low-emittance lattice with a five-bend achromat

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Lin; Kim, Eun-San

    2016-04-01

    The multi-bend achromat (MBA) lattice, which can provide a small horizontal emittance in the subnanometer range, shows promise for future storage-ring-based light-source facilities. We present the linear and the nonlinear properties of an optical design and the results of its optimization. The MBA lattice is designed as a five-bend achromat, and an emittance of 0.270 nm rad is achieved. The energy and the circumference of the designed ring are 3 GeV and 499.3 m, respectively. We investigated an injection system with a single-pulsed sextupole magnet in the storage ring. We describe the space allocation in the injection section and the particle dynamics of the injected beam. The investigation shows that our design exhibits a very low emittance and a sufficient dynamic aperture, and provides a suitable injection scheme for a 3-GeV light source.

  9. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-01

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses.

  10. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-01

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses. PMID:27607727

  11. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms.

    PubMed

    Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2016-08-10

    Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices. PMID:27398793

  12. Contrasts in the Sensitivity of Community Calcification to Saturation State Variability Within Temperate and Tropical Marine Environments

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.

    2015-12-01

    Ongoing emissions of carbon dioxide (CO2) and invasion of part of this CO2 into the oceans are projected to lower the calcium carbonate saturation state. As a result, the ability of many marine organisms to calcify may be compromised, with significant impacts on ocean ecosystems throughout the Anthropocene. In laboratory manipulations, calcifying organisms have exhibited reduced calcification under elevated pCO2 conditions. However, very few experiments have observed how in situ community calcification, which incorporates complex species interactions, responds to natural variations in carbonate chemistry. Using intensive seawater sampling techniques we assess the community level sensitivity of calcification rates to natural variability in the aragonite saturation state (Ωarag) at both a tropical coral reef and temperate intertidal study site. Both sites experiences large daily variation in Ωarag during low tide due to photosynthesis, respiration, and the time at which the sites are isolated from the open ocean. On hourly timescales, we find that community level rates of calcification have only a weak dependence on variability in Ωarag at the tropical study site. At the temperate study site, although weak Ωarag sensitivity is observed during the day, nighttime community calcification rates are found to be strongly influenced by variability in Ωarag, with greater dissolution rates at lower Ωarag levels. If the short-term sensitivity of community calcification to Ωarag described here is representative of the long-term sensitivity of marine ecosystems to ocean acidification, then one would expect temperate intertidal calcifying communities to be more vulnerable than tropical coral reef calcifying communities. In particular, reductions in net community calcification, in the temperate intertidal zone may be predominately due to the nocturnal impact of ocean acidification.

  13. High-salt stacking principles and sweeping: comments and contrasts on mechanisms for high-sensitivity analysis in capillary electrophoresis.

    PubMed

    Palmer, James F

    2004-05-21

    High-salt stacking in electrokinetic chromatography (EKC) is defined and contrasted to the sweeping method. A recent paper argued the two methods are identical, where high concentrations of micelle in the sample were intended to mimic the effect of high-salt stacking. However, high micelle concentration in the sample matrix in EKC is analogous to using a high-conductivity sample instead of a low-conductivity sample in field amplified stacking. High-salt stacking does not require a sample free of pseuostationary phase, only a sample with a high-mobility co-ion compared to the separation buffer electrokinetic vector. High-salt stacking uses a discontinuous buffer system and should not be confused with continuous buffer stacking systems such as sweeping.

  14. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field. PMID:27590882

  15. Segmented refraction of the crystalline lens as a prerequisite for the occurrence of monocular polyplopia, increased depth of focus, and contrast sensitivity function notches

    SciTech Connect

    Bour, L.; Apkarian, P.

    1994-11-01

    Theoretical computations of modulation transfer functions (MTF`s) of the optical system of the human eye have shown that irregular aberration consisting of a small circular segment with refractive power slightly different from the surround introduces at higher spatial frequencies ({gt}20 cpd) an enhancement of the retinal image contrast on flanks of the optimum-focus plane. When the pupil size is larger than 3 mm, enhancement is substantial; as a result, multiple foci appear at the affected, higher spatial frequencies and generate a greater depth of focus. The contrast enhancement also produces troughs on either flank of the optimum-focus plane. With slight coincident defocus ({plus_minus}0.5 diopter) of the retinal image of a sine-wave grating, notches in the MTF curves, with a contrast reduction in the intermediate frequency range of a factor of 2 to 3 and a low cutoff spatial frequency of {similar_to} 3 cycles/deg, are produced. In our theoretical study, multiple foci, monocular polyplopia, and increased depth of focus are implicated in the generation of contrast sensitivity function (CSF) notches. It is demonstrated that CSF notches of optical origin can extend to lower spatial frequencies ({lt}10 cycles/deg). As a result, before the presence of a CSF notch can be attributed to neurological abnormality, optical factors, including irregular aberrations, must be eliminated.

  16. Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity.

    PubMed

    Li, Chung-Tien; Lo, Kun-Chi; Chang, Hsin-Yun; Wu, Hsieh-Ting; Ho, Jennifer H; Yen, Ta-Jen

    2012-01-01

    In wavelength surface plasmon resonance (SPR) biosensor, the manipulation of SPR dispersion relation by Ag/Au bi-metallic film was first time implemented. Due to the enhanced resonant wavelength shift and the sharper SPR slope of using Ag/Au bi-metallic film, the illuminated color of reflection shows one order of magnitude greater contrast than conventional SPR biosensors. Such an Ag/Au bi-metallic film based color SPR biosensor (CSPRB) allows the detail bio-interactions, for example 100 nM streptavidin, to be distinguished by directly observing the color change of reflection through naked eyes rather than the analysis of spectrometer. In addition to the enhanced sensitivity and color contrast, this CSPRB also possesses a great linear detection range up to 0.0254 RIU, which leading to the application of point-of-care tests. PMID:22560104

  17. A sensitive multi-residue method for the determination of 35 micropollutants including pharmaceuticals, iodinated contrast media and pesticides in water.

    PubMed

    Valls-Cantenys, Carme; Scheurer, Marco; Iglesias, Mònica; Sacher, Frank; Brauch, Heinz-Jürgen; Salvadó, Victoria

    2016-09-01

    A sensitive, multi-residue method using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to determine a representative group of 35 analytes, including corrosion inhibitors, pesticides and pharmaceuticals such as analgesic and anti-inflammatory drugs, five iodinated contrast media, β-blockers and some of their metabolites and transformation products in water samples. Few other methods are capable of determining such a broad range of contrast media together with other analytes. We studied the parameters affecting the extraction of the target analytes, including sorbent selection and extraction conditions, their chromatographic separation (mobile phase composition and column) and detection conditions using two ionisation sources: electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI). In order to correct matrix effects, a total of 20 surrogate/internal standards were used. ESI was found to have better sensitivity than APCI. Recoveries ranging from 79 to 134 % for tap water and 66 to 144 % for surface water were obtained. Intra-day precision, calculated as relative standard deviation, was below 34 % for tap water and below 21 % for surface water, groundwater and effluent wastewater. Method quantification limits (MQL) were in the low ng L(-1) range, except for the contrast agents iomeprol, amidotrizoic acid and iohexol (22, 25.5 and 17.9 ng L(-1), respectively). Finally, the method was applied to the analysis of 56 real water samples as part of the validation procedure. All of the compounds were detected in at least some of the water samples analysed. Graphical Abstract Multi-residue method for the determination of micropollutants including pharmaceuticals, iodinated contrast media and pesticides in waters by LC-MS/MS. PMID:27382969

  18. Contrast (modulation) sensitivity functions measured in patients with high refractive error with emphasis on aphakia: II. Determinations of patients.

    PubMed

    Enoch, J M; Yamade, S; Namba, A

    1979-09-17

    Measurements of Constrast Sensitivity Functions (CSF) were made on normal observers made artificially highly ametropic with spectacle lenses (with high back vertex) distance in order to determine the effect of retinal image size alterations upon CSF measures. While not an exact model for high ametropia per se, this experiment served to familiarize the experimenters with problems associated with the task. Image size alterations occur normally in aphakic patients and highly myopic patients. As a clinical trial, a series of aphakic observers were tested using an interferometric acuity device. CSF measures were made with the patient's spectacle corrections in place and again with correcting contact lenses substituted. The contact lenses reduce induced image size alterations in these cases. The use of contact lenses in such measures allows differentiation between artifactual low frequency fall off in aphakia due to lens effects and possible low frequency fall-off due to other causes. PMID:520139

  19. SU-E-I-84: MRI Relaxation Properties of a Pre-Clinical Hypoxia-Sensitive MRI Contrast Agent

    SciTech Connect

    Yee, S; Wilson, G; Chavez, F

    2014-06-01

    Purpose: A possible hypoxia-sensitive MRI agent, hexamethyldisiloxane (HMDSO), has been tried to image oxygen level in proton-based MRI (Kodibagkar et al, NMR Biomed, 2008). The induced changes of T1 (or R1) value by the HMDSO as the oxygenation level changes are the principle that the hypoxia agent is based on: the R1 increases as the oxygen level increases. However, as reported previously, the range of R1 values (0.1–0.3 s-1, corresponding to 3–10 s of T1) is not in the range where a regular MRI technique can easily detect the change. In order for this agent to be widely applied in an MRI environment, more relaxation properties of this agent, including T1 in the rotating frame (T1rho) and T2, need to be explored. Here, the relaxation properties of this agent are explored. Methods: A phantom was made with HMDSO, water and mineral oil, each of which was prepared with oxygen and nitrogen, and was imaged in a 3T MRI system. The T1 properties were explored by the inversion recovery (TR=3000ms, TE=65ms) while varying the inversion time (TI), and also by the fast-field-echo (TR=2 ms, TE=2.8ms) while varying the flip angle (FA). T1rho was explored with a 5-pulse spin-locking technique (TR=5000ms, TE=10ms, spin-lock field=500Hz) while varying the spin-lock duration. T2 was explored with multi-shot TSE (TR=2500ms) while varying TE. Results: With the variable FA and TI, the signals of HMDSO with oxygen and nitrogen change in a similar way and do not respond well by the change of oxygen level, which confirms the large T1 value of HMDSO. The T1rho and T2, however, have a better sensitivity. Conclusion: For the possible pre-clinical hypoxia MRI agent (HMDSO), the detection of T1 (or R1) changes may be more challenging than the detection of other relaxation properties, particularly T2, as the oxygen level changes.

  20. Simultaneous implementation of low dose and high sensitivity capabilities in differential phase contrast and dark-field imaging with laboratory x-ray sources

    NASA Astrophysics Data System (ADS)

    Olivo, A.; Hagen, C. K.; Millard, T. P.; Vittoria, F.; Diemoz, P. C.; Endrizzi, M.

    2014-03-01

    We present a development of the laboratory-based implementation of edge-illumination (EI) x-ray phase contrast imaging (XPCI) that simultaneously enables low-dose and high sensitivity. Lab-based EI-XPCI simplifies the set-up with respect to other methods, as it only requires two optical elements, the large pitch of which relaxes the alignment requirements. Albeit in the past it was erroneously assumed that this would reduce the sensitivity, we demonstrate quantitatively that this is not the case. We discuss a system where the pre-sample mask open fraction is smaller than 50%, and a large fraction of the created beamlets hits the apertures in the detector mask. This ensures that the majority of photons traversing the sample are detected i.e. used for image formation, optimizing dose delivery. We show that the sensitivity depends on the dimension of the part of each beamlet hitting the detector apertures, optimized in the system design. We also show that the aperture pitch does not influence the sensitivity. Compared to previous implementations, we only reduced the beamlet fraction hitting the absorbing septa on the detector mask, not the one falling inside the apertures: the same number of x-rays per second is thus detected, i.e. the dose is reduced, but not at the expense of exposure time. We also present an extension of our phase-retrieval algorithm enabling the extraction of ultra-small-angle scattering by means of only one additional frame, with all three frames acquired within dose limits imposed by e.g. clinical mammography, and easy adaptation to lab-based phase-contrast x-ray microscopy implementations.

  1. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.

  2. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins

    NASA Astrophysics Data System (ADS)

    Tesch, Deanna M.; Nevzorov, Alexander A.

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly 15N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at “optimal” relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.

  3. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    PubMed Central

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  4. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance.

    PubMed

    Yang, Liming; Fountain, Jake C; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D; Kemerait, Robert C; Scully, Brian T; Guo, Baozhu

    2015-10-19

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.

  5. Influence of retinopathy on the achromatic and chromatic vision of patients with type 2 diabetes

    PubMed Central

    2014-01-01

    Background Luminance contrast sensitivity and colour vision are considered to have great predictive value in the evaluation of type 2 diabetic retinopathy. However, these two visual characteristics have seldom been investigated in the same group of patients. In the present study we measured contrast sensitivity and colour vision in a group of patients with type 2 diabetes and correlated the results with estimates of common metabolic markers for the disease. A subgroup of the patients had no clinical signs of retinopathy. Methods The vision of 27 patients (n = 50 eyes) with type 2 diabetes, with retinopathy (n = 20 eyes), or without retinopathy (n = 30 eyes) were evaluated using two psychophysical tests, the Farnsworth–Munsell 100 hue test (FM 100), and measurements of the luminance contrast sensitivity at 11 spatial frequencies. The results were compared with measurements obtained from an age-matched control group (n = 32), and were correlated with the level of glycated haemoglobin, glycaemic level, and time of disease onset. Signs of retinopathy were identified during the ophthalmological examinations. Results Contrast sensitivity and colour vision impairments were present at different levels in diabetes patients. Eyes with retinopathy showed more severe vision loss than eyes without retinopathy. The FM 100 test was more sensitive for separation of patients from controls. Colour vision loss had no colour axes preference. The contrast sensitivity test appeared to have some advantage in differentiating patients with retinopathy from patients without retinopathy. Conclusions Both methods can be useful to follow the visual function of diabetic patients and should be used together to discriminate patients from controls, as well as to identify early signs of retinal damage. PMID:25174264

  6. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  7. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  8. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  9. The achromatic chessboard, a new concept of a phase shifter for nulling interferometry. I. Theory

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Pelat, D.

    2008-06-01

    Context: Direct detection of a planet around a star and its characterisation for identification of bio-tracers in the mid-IR requires a nulling interferometer. Such an instrument must be efficient in a large wavelength domain in order to have the capability of simultaneously detecting the infrared spectral features of several bio-tracers: CO{2}, O{3}, and H{2}O. Aims: A broad wavelength range can be effective provided that an achromatic phase shift of π can be implemented, with good enough accuracy to achieve a deep nulling at all considered wavelengths. A new design concept for such an achromatic phase shifter is presented here. The major interest of this solution is that it allows a simple design with only one device per beam. Methods: The heart of the system consists in two cellular mirrors where each cell has a thickness that introduces, for a given central wavelength, a phase shift of (2k + 1)π or of 2k π on the fraction of the wave it reflects. Each mirror is put in one of the collimated beams of the interferometer. Because of the odd/even distribution, a destructive interference is produced on axis for the central wavelength when recombining the two beams. If the number of cells of a given thickness follows a rather simple law based on the Pascal's triangle, we then show that the nulling is also efficient for a wavelength that is not too far from the central wavelength. Results: The effect of achromatization is more efficient the more cells there are. For instance, with two mirrors of 64 × 64 cells, where the cells' phase shift ranges between -6π and +6π, one reaches a nulling of 10-6 on a wavelength range [0.6 λ0, 1.25λ0], i.e. on more than one complete octave. This is why we claim that this device produces a quasi-achromatic phase shift ; especially, it could satisfy the specifications of a space mission as DARWIN. In a second step, we study the optimum way to distribute the cells in the plane of the pupil. The most important criterion is the

  10. Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors.

    PubMed

    Matsuyama, Satoshi; Emi, Yoji; Kino, Hidetoshi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2015-04-20

    We developed an achromatic and high-resolution full-field X-ray microscope based on advanced Kirkpatrick-Baez mirror optics that comprises two pairs of elliptical mirrors and hyperbolic mirrors utilizing the total reflection of X-rays. Performance tests to investigate the spatial resolution and chromatic aberration were performed at SPring-8. The microscope clearly resolved the pattern with ~100-nm feature size. Imaging the pattern by changing the X-ray energy revealed achromatism in the wide energy range of 8-11 keV.

  11. Single wall carbon nanotube/bis carboxylic acid-ICG as a sensitive contrast agent for in vivo tumor imaging in photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Li, Hai; Kumavor, Patrick; Alqasemi, Umar; Aguirre, Andres; Mohammad, Innus; Stanford, Courtney; Smith, Michael B.; Zhu, Quing

    2013-03-01

    In this study, we present a novel photoacoustic contrast agent which is based on bis-carboxylic acid derivative of Indocyanine green (ICG) covalently conjugated to single-wall carbon nanotubes (ICG/SWCNT). Covalently attaching ICG to the functionalized SWCNT provides a more robust system that delivers much more ICG to the tumor site. The detection sensitivity of the new contrast agent in mouse tumor model is demonstrated in vivo by our custom built photoacoustic imaging system. PAT summation signal is defined to show the long-term light absorption of tumor areas in ICG injected mice and ICG/SWCNT injected mice. It is shown that ICG is able to provide 33% enhancement at approximately 20 minutes peak response time referred to pre-injection PAT summation level, while ICG/SWCNT provides 128% enhancement at 80 minutes and even higher enhancement of 196% at the end point of experiments (120 minutes on average). Additionally, the ICG/SWCNT enhancement was mainly observed at the tumor periphery as confirmed by fluorescence images of the tumor samples. This feature is highly valuable in guiding surgeons to assess tumor boundaries and dimensions in vivo and improve surgical resection of tumors for achieving clean tumor margins.

  12. Individual differences in reward prediction error: contrasting relations between feedback-related negativity and trait measures of reward sensitivity, impulsivity and extraversion

    PubMed Central

    Cooper, Andrew J.; Duke, Éilish; Pickering, Alan D.; Smillie, Luke D.

    2014-01-01

    Medial-frontal negativity occurring ∼200–300 ms post-stimulus in response to motivationally salient stimuli, usually referred to as feedback-related negativity (FRN), appears to be at least partly modulated by dopaminergic-based reward prediction error (RPE) signaling. Previous research (e.g., Smillie et al., 2011) has shown that higher scores on a putatively dopaminergic-based personality trait, extraversion, were associated with a more pronounced difference wave contrasting unpredicted non-reward and unpredicted reward trials on an associative learning task. In the current study, we sought to extend this research by comparing how trait measures of reward sensitivity, impulsivity and extraversion related to the FRN using the same associative learning task. A sample of healthy adults (N = 38) completed a battery of personality questionnaires, before completing the associative learning task while EEG was recorded. As expected, FRN was most negative following unpredicted non-reward. A difference wave contrasting unpredicted non-reward and unpredicted reward trials was calculated. Extraversion, but not measures of impulsivity, had a significant association with this difference wave. Further, the difference wave was significantly related to a measure of anticipatory pleasure, but not consummatory pleasure. These findings provide support for the existing evidence suggesting that variation in dopaminergic functioning in brain “reward” pathways may partially underpin associations between the FRN and trait measures of extraversion and anticipatory pleasure. PMID:24808845

  13. The nature of the late achromatic bump in GRB 120326A

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Virgili, F. J.; Guidorzi, C.; Bernardini, M. G.; Kobayashi, S.; Mundell, C. G.; Gomboc, A.; Dintinjana, B.; Hentunen, V.-P.; Japelj, J.; Kopač, D.; Kuroda, D.; Morgan, A. N.; Steele, I. A.; Quadri, U.; Arici, G.; Arnold, D.; Girelli, R.; Hanayama, H.; Kawai, N.; Mikuž, H.; Nissinen, M.; Salmi, T.; Smith, R. J.; Strabla, L.; Tonincelli, M.; Quadri, A.

    2014-12-01

    The long Swift gamma-ray burst GRB 120326A at redshift z = 1.798 exhibited a multi-band light-curve with a striking feature: a late-time, long-lasting achromatic rebrightening that is rarely seen in such events. Peaking in optical and X-ray bands ~35 ks (~12.5 ks in the GRB rest frame) after the 70 s GRB prompt burst, the feature brightened nearly two orders of magnitude above the underlying optical power-law decay. By modelling the multi-wavelength light-curves, we investigated possible causes of the rebrightening in the context of the standard fireball model. We excluded a range of scenarios for the origin of this feature: reverse-shock flash, late-time forward-shock peak caused by the passage of the brightest synchrotron frequency through the optical band, late central engine optical or X-ray flares, interaction between the expanding blast wave and a density enhancement in the circumburst medium, and gravitational microlensing. Instead we conclude that the achromatic rebrightening may be caused by a refreshed forward shock or a geometrical effect. In addition, we identify an additional component after the end of the prompt emission, which shapes the observed X-ray and optical light-curves differently, and which rules out a single overall emission component to explain the observed early-time emission.

  14. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  15. Achromatic and chromatic sensation as a function of color temperature and retinal illuminance.

    PubMed

    Sternheim, C E; Drum, B

    1993-05-01

    Changes in color appearance with retinal illuminance were studied by scaling the achromatic, yellow, and blue sensation components for test lights with color temperatures from 3041 to 8650 K at 4.10, 2.18, and 0.33 log Td. At 4.10 log Td two observers showed similar pure whites (4823 and 5258 K) and narrow transition zones (1502 and 969 K) from yellow to blue chromatic response categories. The relative amounts of yellow, blue, and white varied with color temperature in a similar manner for both observers. One observer maintained similar absolute whites and transition zones for all illuminances. For the second observer the transition zone broadened and shifted to higher color temperatures as illuminance decreased. At color temperatures both above and below the transition zone chromatic saturation was greatest at the intermediate illuminance. The loss of saturation at 0.33 and 4.10 log Td is consistent with the observation that as the illuminance of a spectral color is raised above threshold, saturation increases to a maximum and then falls. Our findings reinforce the notion that at relatively low illuminances chromatic responses increase with increasing illuminance more rapidly than achromatic responses and that the opposite is true at high illuminances.

  16. The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching.

    PubMed

    Logvinenko, Alexander D; Maloney, Laurence T

    2006-01-01

    In asymmetric lightness matching tasks, observers sometimes report that they cannot achieve satisfactory matches between achromatic surfaces under different neutral illuminants. The surfaces appear different, yet no further adjustment of either surface improves the match. There are evident difficulties in interpreting data from a task that the observer cannot always do, and these difficulties likely affect the interpretation of a large number of previous studies. We investigated, as an alternative to asymmetric matching, the direct use of proximity judgments in the study of surface lightness perception. We asked observers to rate the perceived dissimilarity of pairs of achromatic surfaces that were placed in identical scenes and viewed under different neutral illuminants. We develop a parametric model that accurately predicts perceived dissimilarity in terms of physical light intensities and surface albedos. The parameters of this model are readily interpretable. In particular, the ratio of the influence of changes in illuminant intensity and changes in surface albedo is a measure of the extent to which the observer discounts the illuminant. Asymmetric lightness matching can be interpreted as an unachievable limiting case of proximity judgment. PMID:16617831

  17. Induced contrast asynchronies may be useful for luminance photometry.

    PubMed

    Shapiro, Arthur G; D'Antona, Anthony; Smith, Jared B; Belano, Lindsay A; Charles, Justin P

    2004-01-01

    Shapiro et al. (2004) introduced a new visual effect (the induced contrast asynchrony) that demonstrates a perceptual separation between the response to a modulated light and the response to contrast of the light relative to background. The effect is composed of two physically identical disks, one surrounded by a dark annulus and the other by a light annulus. The luminance levels of both central disks were modulated in time, producing a stimulus with in-phase luminance modulation and antiphase contrast modulation. Observers primarily perceived the disks to be modulating asynchronously (i.e. they perceived the contrast), but at low temporal frequencies could also track the luminance level. Here we document that the induced contrast asynchrony disappears when the surrounds are achromatic and the center lights are modulated near the equiluminant axis. Observers viewed 1-deg-diameter disks embedded 2-deg-diameter achromatic surrounds. The chromaticity of the disks was modulated in time (1 Hz) along lines in an S versus Luminance cardinal color plane and an L-M versus Luminance cardinal color plane; observers responded as to whether the modulation appeared in phase. For all observers and both color planes, the lights appeared in phase most frequently at angles near the standard observer's equiluminant line and out of phase at angles further away from that line. Observers differed in the range of angles that produce the appearance of in-phase modulation. The results suggest that induced contrast asynchronies may be useful as a technique for equating luminance of disparate lights.

  18. RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction.

    PubMed

    Bolton, Melvin D; Ebert, Malaika K; Faino, Luigi; Rivera-Varas, Viviana; de Jonge, Ronnie; Van de Peer, Yves; Thomma, Bart P H J; Secor, Gary A

    2016-07-01

    Cercospora beticola causes Cercospora leaf spot of sugar beet. Cercospora leaf spot management measures often include application of the sterol demethylation inhibitor (DMI) class of fungicides. The reliance on DMIs and the consequent selection pressures imposed by their widespread use has led to the emergence of resistance in C. beticola populations. Insight into the molecular basis of tetraconazole resistance may lead to molecular tools to identify DMI-resistant strains for fungicide resistance management programs. Previous work has shown that expression of the gene encoding the DMI target enzyme (CYP51) is generally higher and inducible in DMI-resistant C. beticola field strains. In this study, we extended the molecular basis of DMI resistance in this pathosystem by profiling the transcriptional response of two C. beticola strains contrasting for resistance to tetraconazole. A majority of the genes in the ergosterol biosynthesis pathway were induced to similar levels in both strains with the exception of CbCyp51, which was induced several-fold higher in the DMI-resistant strain. In contrast, a secondary metabolite gene cluster was induced in the resistance strain, but repressed in the sensitive strain. Genes encoding proteins with various cell membrane fortification processes were induced in the resistance strain. Site-directed and ectopic mutants of candidate DMI-resistance genes all resulted in significantly higher EC50 values than the wild-type strain, suggesting that the cell wall and/or membrane modified as a result of the transformation process increased resistance to tetraconazole. Taken together, this study identifies important cell membrane components and provides insight into the molecular events underlying DMI resistance in C. beticola. PMID:27112724

  19. Contrasting anesthetic sensitivities of T-type Ca2+ channels of reticular thalamic neurons and recombinant Ca(v)3.3 channels.

    PubMed

    Joksovic, Pavle M; Brimelow, Barbara C; Murbartián, Janet; Perez-Reyes, Edward; Todorovic, Slobodan M

    2005-01-01

    Reticular thalamocortical neurons express a slowly inactivating T-type Ca(2+) current that is quite similar to that recorded from recombinant Ca(v)3.3b (alpha1Ib) channels. These neurons also express abundant Ca(v)3.3 mRNA, suggesting that it underlies the native current. Here, we test this hypothesis by comparing the anesthetic sensitivities of recombinant Ca(v)3.3b channels stably expressed in HEK 293 cells to native T channels in reticular thalamic neurons (nRT) from brain slices of young rats. Barbiturates completely blocked both Ca(v)3.3 and nRT currents, with pentobarbital being about twice more potent in blocking Ca(v)3.3 currents. Isoflurane had about the same potency in blocking Ca(v)3.3 and nRT currents, but enflurane, etomidate, propofol, and ethanol exhibited 2-4 fold higher potency in blocking nRT vs Ca(v)3.3 currents. Nitrous oxide (N(2)O; laughing gas) blocked completely nRT currents with IC(50) of 20%, but did not significantly affect Ca(v)3.3 currents at four-fold higher concentrations. In addition, we observed that in lower concentration, N(2)O reversibly increased nRT but not Ca(v)3.3 currents. In conclusion, contrasting anesthetic sensitivities of Ca(v)3.3 and nRT T-type Ca(2+) channels strongly suggest that different molecular structures of Ca(2+) channels give rise to slowly inactivating T-type Ca(2+) currents. Furthermore, effects of volatile anesthetics and ethanol on slowly inactivating T-type Ca(2+) channel variants may contribute to the clinical effects of these agents. PMID:15644869

  20. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  1. Lens design for a white-light cosine-transform achromat.

    PubMed

    Farr, K B; Wang, S G

    1995-01-01

    We describe the lens design for a twin-imaging white-light interferometer in which the interference pattern at the exit-pupil plane is the cosine transform of the spatial-intensity distribution of the object. The achromatic condition in terms of optical power is derived. The analysis of the transform aberration shows that the even aberrations, e.g., spherical aberration and field curvature, do not degrade the cosine transform and need not be corrected. This significant simplification permits us to design systems with good performance and uncomplicated lens structures. We present a lens design with three elements and a length of 320 mm. The system is capable of resolving more than 10(6) pixels with an operating spectral bandwidth of 100 nm. The results of an experiment with an early four-element design are also presented.

  2. ACHROMATIC EIGHT-OCTANT PHASE-MASK CORONAGRAPH USING PHOTONIC CRYSTAL

    SciTech Connect

    Murakami, Naoshi; Baba, Naoshi; Nishikawa, Jun; Yokochi, Kaito; Tamura, Motohide; Abe, Lyu

    2010-05-01

    We designed and manufactured a photonic-crystal mask which can be used for an achromatic eight-octant phase-mask (EOPM) coronagraph for direct detection of extrasolar planets. Laboratory experiments of the EOPM coronagraph were carried out using two laser light sources as a simulated star (wavelengths of 532 and 633 nm). As a result, we attained high extinction of the simulated starlight in both the wavelengths. Halo intensity levels of about 10{sup -6} and 10{sup -7} were achieved at an angular distance of 3 and 13{lambda}/D, respectively. We also discuss several issues, such as an effect of phase aberration on the coronagraphic performance, a transmittance of the proposed EOPM, and a novel two-channel coronagraphic configuration to improve system throughput.

  3. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  4. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware. PMID:19209197

  5. ACHROMATIC LOW-BETA INTERACTION REGION DESIGN FOR AN ELECTRON-ION COLLIDER

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev

    2011-09-01

    An achromatic Interaction Region (IR) design concept is presented with an emphasis on its application at an electron-ion collider. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB's placed symmetrically around an interaction point (IP) allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. Special attention is paid to the difference in the electron and ion IR design requirements. We discuss geometric matching of the electron and ion IR footprints. We investigate limitations on the momentum acceptance in this IR design.

  6. Polypropylene embedded metal mesh broadband achromatic half-wave plate for millimeter wavelengths.

    PubMed

    Zhang, Jin; Ade, Peter A R; Mauskopf, Philip; Savini, Giorgio; Moncelsi, Lorenzo; Whitehouse, Nicola

    2011-07-20

    We describe a novel multilayered metal-mesh achromatic half-wave plate (HWP) for use in astronomical polarimetric instruments. The HWP is designed to operate across the frequency range from 125 to 250 GHz. The wave plate is manufactured from 12 layers of thin film metallic inductive and capacitive grids patterned onto polypropylene sheets, which are then bonded together using a hot-pressing technique. Transmission line modeling and three-dimensional electromagnetic simulations are used to optimize the parameters of the metal-mesh patterns and to evaluate their optical properties. A prototype HWP has been fabricated, and its performance is characterized in a polarizing Fourier transform spectrometer. The device performance is consistent with the modeling, although the measured differential phase shift for two orthogonal polarizations is lower than expected. This difference is likely to result from imperfect patterning of individual layers and misalignment of the grids during manufacture. PMID:21772356

  7. Achromatic flat optical components via compensation between structure and material dispersions

    PubMed Central

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  8. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  9. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  10. Visible–infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  11. The achromatic design of an atmospheric dispersion corrector for extremely large telescopes.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2011-08-29

    For off-zenith observations with ground-based astronomical telescopes, the effect of atmospheric dispersion relative to diffraction on image size increases with telescope diameter. Correction of atmospheric dispersion in extremely large telescopes (ELTs) might become critical. A common solution for ELTs is to use linear atmospheric dispersion correctors (ADCs). In spite of their simplicity, the intrinsic chromatic aberrations of linear ADCs could render diffraction-limited imaging impossible when used in a fast focus. The chromatic problems of the linear ADC in ELTs can be resolved by replacing the linear ADC by the achromatic ADC designs presented here, which provide diffraction-limited image quality and offer several opto-mechanical advantages over linear ADCs.

  12. The Application of a New Maximum Color Contrast Sensitivity Test to the Early Prediction of Chiasma Damage in Cases of Pituitary Adenoma: The Pilot Study

    PubMed Central

    Liutkeviciene, Rasa; Glebauskiene, Brigita; Zaliuniene, Dalia; Kriauciuniene, Loresa; Bernotas, Giedrimantas; Tamasauskas, Arimantas

    2016-01-01

    Purpose Our objective was to estimate the maximum color contrast sensitivity (MCCS) thresholds in individuals with chiasma opticum damage. Methods The pilot study tested 41 people with pituitary adenoma (PA) and 100 age- and gender-matched controls. Patients were divided into two groups according to PA size, PA ≤1 cm or PA >1 cm. A new MCCS test program was used for color discrimination. Results The mean total error score (TES) of MCCS was 1.8 in the PA ≤1 cm group (standard deviation [SD], 0.38), 3.5 in the PA >1 cm group (SD, 0.96), and 1.4 in the control group (SD, 0.31; p < 0.001). There was a positive correlation between tumor size and MCCS result (r = 0.648, p < 0.01). In the group that had PA-producing hormones, the TES was 2.5 (SD, 1.09), compared to 4.2 value in the non-functioning PA group of patients that did not have clinically significant hormone excess (SD, 3.16; p < 0.01). In patients with normal visual acuity (VA) or visual field MCCS, the TES was 3.3 (SD, 1.8), while that in patients with VA <0.00 was 4.6 (SD, 2.9). Conclusions Results of the MCCS test TES were 1.9 times better in patients with PA ≤1 cm compared to patients with PA >1 cm (p < 0.01). In PA patients with normal VA, the TES was 2.35 times worse than that of healthy persons (p < 0.01). PMID:27478357

  13. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  14. A neuromorphic model for achromatic and chromatic surface representation of natural images.

    PubMed

    Hong, Simon; Grossberg, Stephen

    2004-01-01

    This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called 'anchoring' of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.

  15. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  16. The achromatic chessboard, a new concept of a phase shifter for nulling interferometry. V. Experimental demonstration and performance

    NASA Astrophysics Data System (ADS)

    Pickel, D.; Pelat, D.; Rouan, D.; Reess, J.-M.; Chemla, F.; Cohen, M.; Dupuis, O.

    2013-10-01

    Context. To find evidence one day of life on extra solar planets, one will have to directly detect photons of the exoplanet to obtain spectra and to look for specific spectroscopic features. One possible technique is dark fringe interferometry with several telescopes in space. This type of interferometry requires an achromatic π phase shift in one arm of an interferometer. We have already presented a concept of a quasi-achromatic phase shifter that is made of two cellular mirrors in which each cell position and phase shift is specific, so that the behavior of the null depth as a function of the wavelength is flat within a broad range. Aims: We want to experimentally validate this concept of an achromatic phase shifter and measure its performance in two different cases: a transmissive mask, which is made in bulk optics that are machined with ion etching and a reflective one, which is made by using a commercial segmented deformable mirror that is properly controlled. Methods: We assembled a dedicated optical bench, nicknamed DAMNED, to assess the concept and characterize its performance in the visible and to determine the limitations of this phase shifter. We analyze its performance by comparing the experimental results with a numerical instrument model. Results: We tested several transmissive masks and a reflective one. We reached an attenuation of about 2 × 10-3 with a white source (Δλ = 430 to 830 nm) that proved to be the actual achromatic behavior of the phase shifter, despite its modest value. Extrapolated to mid-IR, its performance would be within typical specifications of a space mission as Darwin.

  17. The achromatic chessboard, a new concept of a phase shifter for nulling interferometry: IV. Advanced experimental measurements

    NASA Astrophysics Data System (ADS)

    Pickel, Damien; Rouan, Daniel; Pelat, Didier; Reess, Jean-Michel; Dupuis, Olivier; Chemla, Fanny; Cohen, Mathieu

    2012-09-01

    Context. To characterize their atmospheres in order to find evidences of life, one has to detect directly photons from the exoplanets to measure their spectra. One possible technique is dark fringe interferometry that needs an achromatic π phase shift in one arm of the interferometer. We have conceived a phase shifter made of two cellular mirrors, in which each cell position and phase shift is specific, so that the behaviour of the nulling with respect to wavelength is flat within a broad range. Aims. We want to validate experimentally two versions of this achromatic phase shifter: a transmissive one in bulk optics and a reflective one using a segmented deformable mirror. What we present in this paper are the last results obtained in the lab. Methods. We built an optical bench in the visible that allows us to test the principle and characterize the performances and the limits of this phase shifter. Results. We tested several transmissive and one reflective phase shifter and obtained, for instance, an attenuation of about 2.10-3 for a white source (from 430 to 830 nm) that proved the achromatic behavior of the phase shifter. The preliminary performances and limitations are analyzed.

  18. Monitoring the Effects of Anti-angiogenesis on the Radiation Sensitivity of Pancreatic Cancer Xenografts Using Dynamic Contrast-Enhanced Computed Tomography

    SciTech Connect

    Cao, Ning; Cao, Minsong; Chin-Sinex, Helen; Mendonca, Marc; Ko, Song-Chu; Stantz, Keith M.

    2014-02-01

    Purpose: To image the intratumor vascular physiological status of pancreatic tumors xenografts and their response to anti-angiogenic therapy using dynamic contrast-enhanced computed tomography (DCE-CT), and to identify parameters of vascular physiology associated with tumor x-ray sensitivity after anti-angiogenic therapy. Methods and Materials: Nude mice bearing human BxPC-3 pancreatic tumor xenografts were treated with 5 Gy of radiation therapy (RT), either a low dose (40 mg/kg) or a high dose (150 mg/kg) of DC101, the anti-VEGF receptor-2 anti-angiogenesis antibody, or with combination of low or high dose DC101 and 5 Gy RT (DC101-plus-RT). DCE-CT scans were longitudinally acquired over a 3-week period post-DC101 treatment. Parametric maps of tumor perfusion and fractional plasma volume (F{sub p}) were calculated and their averaged values and histogram distributions evaluated and compared to controls, from which a more homogeneous physiological window was observed 1-week post-DC101. Mice receiving a combination of DC101-plus-RT(5 Gy) were imaged baseline before receiving DC101 and 1 week after DC101 (before RT). Changes in perfusion and F{sub p} were compared with alternation in tumor growth delay for RT and DC101-plus-RT (5 Gy)-treated tumors. Results: Pretreatment with low or high doses of DC101 before RT significantly delayed tumor growth by an average 7.9 days compared to RT alone (P ≤ .01). The increase in tumor growth delay for the DC101-plus-RT-treated tumors was strongly associated with changes in tumor perfusion (ΔP>−15%) compared to RT treated tumors alone (P=.01). In addition, further analysis revealed a trend linking the tumor's increased growth delay to its tumor volume-to-DC101 dose ratio. Conclusions: DCE-CT is capable of monitoring changes in intratumor physiological parameter of tumor perfusion in response to anti-angiogenic therapy of a pancreatic human tumor xenograft that was associated with enhanced radiation response.

  19. Introduction of Peripheral Carboxylates to Decrease the Charge on Tm(3+) DOTAM-Alkyl Complexes: Implications for Detection Sensitivity and in Vivo Toxicity of PARACEST MRI Contrast Agents.

    PubMed

    Suchý, Mojmír; Milne, Mark; Elmehriki, Adam A H; McVicar, Nevin; Li, Alex X; Bartha, Robert; Hudson, Robert H E

    2015-08-27

    A series of structurally modified Tm(3+) DOTAM-alkyl complexes as potential PARACEST MRI contrast agents has been synthesized with the aim to decrease the overall positive charge associated with these molecules and increase their biocompatibility. Two types of structural modification have been performed, an introduction of terminal carboxylate arms to the alkyl side chains and a conjugation of one of the alkyl side chains with aspartic acid. Detailed evaluation of the magnetic resonance imaging chemical exchange contrast associated with the structurally modified contrast agents has been performed. In contrast to the acutely toxic Tm(3+) DOTAM-alkyl complexes, the structurally modified compounds were found to be tolerated well during in vivo MRI studies in mice; however, only the aspartic acid modified chelates produced an amide proton-based PARACEST signal. PMID:26214576

  20. All-prism achromatic phase matching for tunable second-harmonic generation

    SciTech Connect

    Richman, Bruce A.; Bisson, Scott E.; Trebino, Rick; Jacobson, Alexander

    1999-05-01

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of {beta} barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensations with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths. {copyright} 1999 Optical Society of America

  1. Design of a multi-bend achromat lattice for 3 GeV synchrotron light source

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2016-03-01

    We present a lattice design for a low-emittance and high-brilliance 3 GeV synchrotron light source that has been widely investigated in the world. We show the design results for a MBA (Multi-Bend Achromat) lattice with an emittance of 1.3 nm and 282.4 m circumference. Each cell has 5 bending magnets that consist of outer two with bending angle of 4.5° and inner three with bending angle of 7°. The lattice is designed to be flexible and consists of 12 straight sections in which one straight section has a length of 5.9 m. We have studied the dynamic aperture in the lattice with machine errors. It is shown that the designed low-emittance lattice provides sufficient dynamic aperture after COD correction. We present the results of variations of emittance, energy spread and dynamic aperture due to in-vacuum undulators in the straight sections. We performed particle tracking after the beam injection to investigate the efficiency of the injection scheme. We show the designed results of an injection scheme that shows the space allocation in injection section and the particle motions of injected beam. Our designed lattice provides a good optimization in terms of the emittance and brilliance as a light source for 3 GeV energy and circumference of 28 m.

  2. Reduction of Beam Emittance of Pep-X Using Quadruple Bend Achromat Cell

    SciTech Connect

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2009-05-26

    SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1, 2]. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design.

  3. Temperature- and wavelength-insensitive parametric amplification enabled by noncollinear achromatic phase-matching

    PubMed Central

    Tang, Daolong; Ma, Jingui; Wang, Jing; Zhou, Bingjie; Xie, Guoqiang; Yuan, Peng; Zhu, Heyuan; Qian, Liejia

    2016-01-01

    Optical parametric chirped-pulse amplification (OPCPA) has been demonstrated to be a promising approach for pushing femtosecond pulses towards ultra-high peak powers. However, the future success of OPCPA strongly relies on the ability to manipulate its phase-matching (PM) configuration. When a high average power pump laser is involved, the thermal effects in nonlinear crystals induce phase-mismatch distortions that pose an inherent limitation on the conversion efficiency. Here, we demonstrate that the noncollinear configuration previously adopted for wavelength-insensitive PM can be employed for temperature-insensitive PM when the noncollinear angle is properly reset. Simultaneous temperature- and wavelength-insensitive PM is realized for the first time by imposing such a temperature-insensitive noncollinear configuration with an angularly dispersed seed signal. Based on the lithium triborate crystal, the proposed noncollinear achromatic PM has a thermal acceptance 6 times larger than that of the conventional wavelength-insensitive noncollinear PM and has a sufficient spectral acceptance to support pulse durations of ~20 fs at 800 nm. These achievements open new possibilities for generating ultra-high peak power lasers with high average power. PMID:27786299

  4. Plasmonic Color-Graded Nanosystems with Achromatic Subwavelength Architectures for Light Filtering and Advanced SERS Detection.

    PubMed

    Proietti Zaccaria, Remo; Bisio, Francesco; Das, Gobind; Maidecchi, Giulia; Caminale, Michael; Vu, Chinh Duc; De Angelis, Francesco; Di Fabrizio, Enzo; Toma, Andrea; Canepa, Maurizio

    2016-03-01

    Plasmonic color-graded systems are devices featuring a spatially variable plasmonic response over their surface. They are widely used as nanoscale color filters; their typical size is small enough to allow integration with miniaturized electronic circuits, paving the way to realize novel nanophotonic devices. Currently, most plasmonic color-graded systems are intrinsically discrete because their chromatic response exploits the tailored plasmon resonance of microarchitectures characterized by different size or geometry for each target color. Here, we report the realization of multifunctional plasmon-graded devices where continuously graded chromatic response is achieved by smoothly tuning the composition of the resonator material while simultaneously maintaining an achromatic nanoscale geometry. The result is a new class of versatile materials: we show their application as plasmonic filters with a potential pixel size smaller than half of the exciting wavelength but also as multiplexed surface-enhanced Raman spectroscopy (SERS) substrates. Many more implementations, such as photovoltaic efficiency boosters or color routers, await and will benefit from the low fabrication cost and intrinsic plasmonic flexibility of the presented systems. PMID:26959970

  5. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping.

    PubMed

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-05-11

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few.

  6. Achromatic nested Kirkpatrick-Baez mirror optics for hard x-ray nanofocusing.

    SciTech Connect

    Liu, W.; Ice, G. E.; Assoufid, L.; Liu, C.; Shi, B.; Khachatryan, R.; Qian, J.; Zschack, P.; Tischler, J. Z.; Choi, J.-Y.

    2011-07-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 {micro}m by 120 {micro}m incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway.

  7. Achromatic Nested Kirkpatrick-Baez Mirror Optics for Hard X-ray Nanofocusing

    SciTech Connect

    Liu, Wenjun; Ice, Gene E; Assoufid, Lahsen; Liu, Chian; Shi, B.; Khachatryan, Ruben; Qian, J; Zshack, Dr Paul; Tischler, Jonathan Zachary; Choi, Jae-Young

    2011-01-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 {micro}m by 120 {micro}m incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway.

  8. Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing.

    PubMed

    Liu, Wenjun; Ice, Gene E; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z; Choi, J Y

    2011-07-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway.

  9. All-prism achromatic phase matching for tunable second-harmonic generation.

    PubMed

    Richman, B A; Bisson, S E; Trebino, R; Sidick, E; Jacobson, A

    1999-05-20

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of beta barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensation with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths.

  10. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  11. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  12. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping.

    PubMed

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  13. Nonimaging achromatic lens design for LED direct-lit backlight applications

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Che; Chen, Bo-Song; Lee, Tsung-Xian

    2014-09-01

    Nowadays, light emitting diodes (LEDs) have been widely used in backlight module for display technology. Most of researches tend to improve optical performance in specific applications, such as sufficient efficiency, desired intensity distribution and high illuminance uniformity. However, most of phosphor converted white LEDs have the problem of inducing impure white light. The undesired phenomenon of yellow ring or blue ring becomes more serious through incorrect secondary optical design. In this paper, we emphasize on enhancing the spatial color and illuminance uniformity of LED direct-lit backlight using nonimaging achromatic lens design. We propose a new design method to re-distribute and uniform the ratio of blue and yellow light on the target surface. Moreover, we further apply it in direct-lit LED backlight lens design, in which the uniformity of illuminance on the out coupling surface can be as much as 83.7% and the color uniformity triangleu'v') is improved to 0.0039. Therefore, the result of high color and illumination uniformity can be achieved simultaneously.

  14. Gain of a 500-fold sensitivity on an intravital MR Contrast Agent based on an endohedral Gadolinium-Cluster-Fullerene-Conjugate: A new chance in cancer diagnostics

    PubMed Central

    Braun, Klaus; Dunsch, Lothar; Pipkorn, Ruediger; Bock, Michael; Baeuerle, Tobias; Yang, Shangfeng; Waldeck, Waldemar; Wiessler, Manfred

    2010-01-01

    Among the applications of fullerene technology in health sciences the expanding field of magnetic resonance imaging (MRI) of molecular processes is most challenging. Here we present the synthesis and application of a GdxSc3-xN@C80-BioShuttle-conjugate referred to as Gd-cluster@-BioShuttle, which features high proton relaxation and, in comparison to the commonly used contrast agents, high signal enhancement at very low Gd concentrations. This modularly designed contrast agent represents a new tool for improved monitoring and evaluation of interventions at the gene transcription level. Also, a widespread monitoring to track individual cells is possible, as well as sensing of microenvironments. Furthermore, BioShuttle can also deliver constructs for transfection or active pharmaceutical ingredients, and scaffolding for incorporation with the host's body. Using the Gd-cluster@-BioShuttle as MRI contrast agent allows an improved evaluation of radio- or chemotherapy treated tissues. PMID:20567614

  15. Contrastive Lexicology.

    ERIC Educational Resources Information Center

    Hartmann, R. R. K.

    This paper deals with the relation between etymologically related words in different languages. A survey is made of seven stages in the development of contrastive lexicology. These are: prelinguistic word studies, semantics, lexicography, translation, foreign language learning, bilingualism, and finally contrastive analysis. Concerning contrastive…

  16. Stress sensitivity is associated with differential accumulation of reactive oxygen and nitrogen species in maize genotypes with contrasting levels of drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both...

  17. Focal plane wavefront sensor achromatization: The multireference self-coherent camera

    NASA Astrophysics Data System (ADS)

    Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.

    2016-04-01

    Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the

  18. Contrast Materials

    MedlinePlus

    ... or other reactions to contrast materials are rare, radiology departments are well-equipped to deal with them. ... is given. However, both the American College of Radiology (ACR) and the European Society of Urogenital Radiology ...

  19. Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia

    PubMed Central

    Silverstein, Steven M.; Keane, Brian P.; Wang, Yushi; Mikkilineni, Deepthi; Paterno, Danielle; Papathomas, Thomas V.; Feigenson, Keith

    2013-01-01

    Introduction: In the Ebbinghaus illusion, a shape appears larger than its actual size when surrounded by small shapes and smaller than its actual size when surrounded by large shapes. Resistance to this visual illusion has been previously reported in schizophrenia, and linked to disorganized symptoms and poorer prognosis in cross-sectional studies. It is unclear, however, when in the course of illness this resistance first emerges or how it varies longitudinally with illness phase. Method: We addressed these issues by having first-episode psychosis patients, multiple-episode schizophrenia patients and healthy controls complete a psychophysical task at two different time points, corresponding to hospital admission and discharge for patients. The task required judging the relative size of two circular targets centered on either side of the screen. Targets were presented without context (baseline), or were surrounded by shapes that made the size judgment harder or easier (misleading and helpful contexts, respectively). Context sensitivity was operationalized as the amount of improvement relative to baseline in the helpful condition minus the amount of decrement relative to baseline in the misleading condition. Results: At hospital admission, context sensitivity was lower in the multiple-episode group than in the other groups, and was marginally less in the first episode than in the control group. In addition, schizophrenia patients were significantly more and less accurate than the other groups in the misleading and helpful conditions, respectively. At discharge, all groups exhibited similar context sensitivity. In general, poorer context sensitivity was related to higher levels of disorganized symptoms, and lower level of depression, excitement, and positive symptoms. Discussion: Resistance to the Ebbinghaus illusion, as a characteristic of the acute phase of illness in schizophrenia, increases in magnitude after the first episode of psychosis. This suggests that

  20. Contrast lipocryolysis

    PubMed Central

    Pinto, Hernán; Melamed, Graciela

    2014-01-01

    Alternative crystal structures are possible for all lipids and each different crystal structure is called a polymorphic form. Inter-conversion between polymorphisms would imply the possibility of leaning crystal formation toward the most effective polymorphism for adipocyte destruction. Food industry has been tempering lipids for decades. Tempering technology applied to lipocryolysis gave birth to “contrast lipocryolysis”, which involves pre- and post-lipocryolysis fat layer heating as part of a specific tempering protocol. In this study, we evaluated the skinfold thickness of 10 subjects after a single contrast lipocryolysis session and witnessed important and fast reductions. PMID:25068088

  1. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  2. Tumor Sensitive Matching Flow: A Variational Method to Detecting and Segmenting Perihepatic and Perisplenic Ovarian Cancer Metastases on Contrast-Enhanced Abdominal CT

    PubMed Central

    Liu, Jianfei; Wang, Shijun; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M.

    2015-01-01

    Accurate automated segmentation and detection of ovarian cancer metastases may improve the diagnosis and prognosis of women with ovarian cancer. In this paper, we focus on an important subset of ovarian cancer metastases that spread to the surface of the liver and spleen. Automated ovarian cancer metastasis detection and segmentation are very challenging problems to solve. These metastases have a wide variety of shapes and intensity values similar to that of the liver, spleen and adjacent soft tissues. To address these challenges, this paper presents a variational approach, called tumor sensitive matching flow (TSMF), to detect and segment perihepatic and perisplenic ovarian cancer metastases. TSMF is an image motion field that only highlights metastasis-caused deformation on the surface of liver and spleen while dampening all other image motion between the patient image and the atlas image. It provides several benefits: 1) juxtaposing the roles of image matching and metastasis classification within a variational framework; 2) only requiring a small set of features from a few patient images to train a metastasis-likelihood function for classification; and 3) dynamically creating shape priors for geodesic active contour (GAC) to prevent inaccurate metastasis segmentation. We compared the TSMF to an organ surface partition (OSP) baseline approach. At a false positive rate of 2 per patient, the sensitivities of TSMF and OSP were 87% and 17% (p < 0.001), respectively. In a comparison of the segmentations conducted using TSMF-constrained GAC and conventional GAC, the volume overlap rates were 73±9% and 46±26% (p < 0.001) and average surface distances were 2.4±1.2mm and 7.0±6.0mm (p < 0.001), respectively. These encouraging results demonstrate that TSMF could accurately detect and segment ovarian cancer metastases. PMID:24835180

  3. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    PubMed

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered. PMID:27369139

  4. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  5. Design and imaging performance of achromatic diffractive-refractive x-ray and gamma-ray Fresnel lenses.

    PubMed

    Skinner, Gerald K

    2004-09-01

    Achromatic combinations of a diffractive phase Fresnel lens and a refractive correcting element have been proposed for x-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without stepping, is investigated, and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided that the focal ratio is large, correction lenses made from low atomic number materials can be used with x rays in the range of approximately 10-100 keV without stepping. The use of stepping extends the possibility of correction to higher-aperture systems, to energies as low as a few kilo electron volts, and to gamma rays of mega electron volt energy.

  6. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  7. The role of egg-nest contrast in the rejection of brood parasitic eggs.

    PubMed

    Aidala, Zachary; Croston, Rebecca; Schwartz, Jessica; Tong, Lainga; Hauber, Mark E

    2015-04-15

    Hosts of avian brood parasites can avoid the reproductive costs of raising genetically unrelated offspring by rejecting parasitic eggs. The perceptual cues and controls mediating parasitic egg discrimination and ejection are well studied: hosts are thought to use differences in egg color, brightness, maculation, size and shape to discriminate between their own and foreign eggs. Most theories of brood parasitism implicitly assume that the primary criteria to which hosts attend when discriminating eggs are differences between the eggs themselves. However, this assumption is confounded by the degree to which chromatic and achromatic characteristics of the nest lining co-vary with egg coloration, so that egg-nest contrast per se might be the recognition cue driving parasitic egg detection. Here, we systematically tested whether and how egg-nest contrast itself contributes to foreign egg discrimination. In an artificial parasitism experiment, we independently manipulated egg color and nest lining color of the egg-ejector American robin (Turdus migratorius), a host of the obligate brood parasitic brown-headed cowbird (Molothrus ater). We hypothesized that the degree of contrast between foreign eggs and the nest background would affect host egg rejection behavior. We predicted that experimentally decreasing egg-nest chromatic and achromatic contrast (i.e. rendering parasitic eggs more cryptic against the nest lining) would decrease rejection rates, while increasing egg-nest contrast would increase rejection rates. In contrast to our predictions, egg-nest contrast was not a significant predictor of egg ejection patterns. Instead, egg color significantly predicted responses to parasitism. We conclude that egg-egg differences are the primary drivers of egg rejection in this system. Future studies should test for the effects of egg-nest contrast per se in predicting parasitic egg recognition in other host-parasite systems, including those hosts building enclosed nests and

  8. Polarization interferometric nulling coronagraph for high-contrast imaging.

    PubMed

    Murakami, Naoshi; Yokochi, Kaito; Nishikawa, Jun; Tamura, Motohide; Kurokawa, Takashi; Takeda, Mitsuo; Baba, Naoshi

    2010-06-01

    We propose a novel, high-contrast imager called a polarization interferometric nulling coronagraph (PINC) for direct detection of extrasolar planets. The PINC uses achromatic half-wave plates (HWPs) installed in a fully symmetric beam combiner based on polarizing beam splitters. Jones calculus suggests that a stellar halo suppression level of 10(-10) can be achieved at 5 lambda/D for a broad wavelength range from 1.6 to 2.2 microm by using Fresnel-rhomb HWPs made of BK7. Laboratory experiments on the PINC used two laser light sources (wavelengths of lambda=532 and 671 nm), and we obtained a halo suppression level of approximately 10(-6) at 5 lambda/D for both wavelengths. PMID:20517351

  9. Pattern specificity of contrast adaptation

    PubMed Central

    Anstis, Stuart

    2014-01-01

    Contrast adaptation is specific to precisely localised edges, so that adapting to a flickering photograph makes one less sensitive to that same photograph, but not to similar photographs. When two low-contrast photos, A and B, are transparently superimposed, then adapting to a flickering high-contrast B leaves no net afterimage, but it makes B disappear from the A+B picture, which now simply looks like A. PMID:25165518

  10. Human contrast threshold and astronomical visibility

    NASA Astrophysics Data System (ADS)

    Crumey, Andrew

    2014-08-01

    The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g. by Schaefer. However, it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g. Blackwell's), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources, the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang, implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.

  11. [Contrast media in echography].

    PubMed

    Derchi, L E; Rizzatto, G; Solbiati, L

    1992-09-01

    In medical US, the use of specific contrast media to increase the echogenicity of structures and organs changes their absorption of the US beam, and modifies the through-transmission velocity. This can be of great diagnostic value. Contrast media can help depict vessels and cavities, increase the sensitivity of Doppler examination, and make the differentiation of normal and pathologic tissues easier. The products which are currently available do not completely fulfill the needs of clinical researchers. The first papers reporting on some clinical applications of these contrast media in humans are now appearing in literature. Contrast media for diagnostic US can be classified in five groups: 1) free gas bubbles; 2) stabilized gas bubbles; 3) colloidal suspensions; 4) emulsions; 5) aqueous solutions. These agents are quite different, as to both chemical and physical features and distribution within living tissues. Different clinical applications are thus possible for each of them; a unique contrast medium which will meet all the needs of the various clinical situations seems inconceivable at present. Most probably, a variety of products will develop, each with its own application field; in clinical practice, it seems likely that different products will be used, according to the specific clinical needs.

  12. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  13. Visual maladaptation in contrast domain

    NASA Astrophysics Data System (ADS)

    Pajak, Dawid; Cadík, Martin; Aydin, Tunç O.; Myszkowski, Karol; Seidel, Hans-Peter

    2010-02-01

    In this work we simulate the effect of the human eye's maladaptation to visual perception over time through a supra-threshold contrast perception model that comprises adaptation mechanisms. Specifically, we attempt to visualize maladapted vision on a display device. Given the scene luminance, the model computes a measure of perceived multi-scale contrast by taking into account spatially and temporally varying contrast sensitivity in a maladapted state, which is then processed by the inverse model and mapped to a desired display's luminance assuming perfect adaptation. Our system simulates the effect of maladaptation locally, and models the shifting of peak spatial frequency sensitivity in maladapted vision in addition to the uniform decrease in contrast sensitivity among all frequencies. Through our GPU implementation we demonstrate the visibility loss of scene details due to maladaptation over time at an interactive speed.

  14. Postscript: Qualitative and Quantitative Processes in the Perception of Achromatic Transparency

    ERIC Educational Resources Information Center

    Albert, Marc K.

    2008-01-01

    All of the data reported in Robilotto, Khang, and Zaidi (2002) Robilotto and Zaidi (2004), and Singh and Anderson (2002) are consistent with Robilotto and Zaidi's theory that perceived transparency (or opacity) is determined by the perceived contrast of the filter region. Kasrai and Kingdom's (2001) results also appear largely consistent with the…

  15. Contrast Adaptation Implies Two Spatiotemporal Channels but Three Adapting Processes

    ERIC Educational Resources Information Center

    Langley, Keith; Bex, Peter J.

    2007-01-01

    The contrast gain control model of adaptation predicts that the effects of contrast adaptation correlate with contrast sensitivity. This article reports that the effects of high contrast spatiotemporal adaptors are maximum when adapting around 19 Hz, which is a factor of two or more greater than the peak in contrast sensitivity. To explain the…

  16. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint

  17. Perceived contrast in complex images

    PubMed Central

    Haun, Andrew M.; Peli, Eli

    2013-01-01

    To understand how different spatial frequencies contribute to the overall perceived contrast of complex, broadband photographic images, we adapted the classification image paradigm. Using natural images as stimuli, we randomly varied relative contrast amplitude at different spatial frequencies and had human subjects determine which images had higher contrast. Then, we determined how the random variations corresponded with the human judgments. We found that the overall contrast of an image is disproportionately determined by how much contrast is between 1 and 6 c/°, around the peak of the contrast sensitivity function (CSF). We then employed the basic components of contrast psychophysics modeling to show that the CSF alone is not enough to account for our results and that an increase in gain control strength toward low spatial frequencies is necessary. One important consequence of this is that contrast constancy, the apparent independence of suprathreshold perceived contrast and spatial frequency, will not hold during viewing of natural images. We also found that images with darker low-luminance regions tended to be judged as having higher overall contrast, which we interpret as the consequence of darker local backgrounds resulting in higher band-limited contrast response in the visual system. PMID:24190908

  18. Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples.

    PubMed

    Li, Xia; Hu, Junjian; Yin, Daqiang; Hu, Xialin

    2015-06-01

    A highly sensitive method based on solid-phase extraction and ultra high performance liquid chromatography with electrospray tandem mass spectrometry has been developed for simultaneous determination of five iodinated X-ray contrast media in environmental water samples. Various solid-phase extraction cartridges have been evaluated and a combination of LiChrolute EN and ENVI-Carb solid phase extraction cartridges was selected for sample enrichment. The method was comprehensively validated on ground water, tap water, surface water, drinking water, and waste water by the conventional procedures: linearity, method detection limits, accuracy and precision, matrix effects. Good linearity (R(2) > 0.999), low detection limits (0.4-8.1 ng/L), satisfactory recoveries (55.1-109.5%) and precision (0.8-10.0% for intra-day precisions and 0.6-16.5% for inter-day precisions) were obtained for all the target compounds. Iopamidol, iohexol, and diatrizoate in some matrices were affected by matrix effects, which were slightly eased by using the isotope-labeled internal standard. The developed method was successfully applied for real samples collected in Shanghai, China, with detected concentrations up to 2200 ± 200 and 9000 ± 1000 ng/L for iohexol and iopamidol, respectively.

  19. Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples.

    PubMed

    Li, Xia; Hu, Junjian; Yin, Daqiang; Hu, Xialin

    2015-06-01

    A highly sensitive method based on solid-phase extraction and ultra high performance liquid chromatography with electrospray tandem mass spectrometry has been developed for simultaneous determination of five iodinated X-ray contrast media in environmental water samples. Various solid-phase extraction cartridges have been evaluated and a combination of LiChrolute EN and ENVI-Carb solid phase extraction cartridges was selected for sample enrichment. The method was comprehensively validated on ground water, tap water, surface water, drinking water, and waste water by the conventional procedures: linearity, method detection limits, accuracy and precision, matrix effects. Good linearity (R(2) > 0.999), low detection limits (0.4-8.1 ng/L), satisfactory recoveries (55.1-109.5%) and precision (0.8-10.0% for intra-day precisions and 0.6-16.5% for inter-day precisions) were obtained for all the target compounds. Iopamidol, iohexol, and diatrizoate in some matrices were affected by matrix effects, which were slightly eased by using the isotope-labeled internal standard. The developed method was successfully applied for real samples collected in Shanghai, China, with detected concentrations up to 2200 ± 200 and 9000 ± 1000 ng/L for iohexol and iopamidol, respectively. PMID:25832295

  20. Optical and X-Ray Observations of GRB 060526: A Complex Afterglow Consistent with an Achromatic Jet Break

    NASA Technical Reports Server (NTRS)

    Dai, X.; Halpern, J. P.; Morgan, N. D.; Armstrong, E.; Mirabal, N.; Haislip. J. B.; Reichart, D. E.; Stanek, K. Z.

    2007-01-01

    We obtained 98 R-band and 18 B, r', i' images of the optical afterglow of GRB 060526 (z = 3.21) with the MDM 1.3 m, 2.4 m, and the PROMPT telescopes at CTIO over the five nights following the burst trigger. Combining these data with other optical observations reported in GCN and the Swift XRT observations, we compare the optical and X-ray afterglow light curves of GRB 060526. Both the optical and X-ray afterglow light curves show rich features, such as flares and breaks. The densely sampled optical observations provide very good coverage at T > 10(exp 4) s. We observed a break at 2.4 x 10(exp 5) sin the optical afterglow light curve. Compared with the X-ray afterglow light curve, the break is consistent with an achromatic break supporting the beaming models of GRBs. However, the prebreak and postbreak temporal decay slopes are difficult to explain in simple afterglow models. We estimated a jet angle of theta(sub j) approx. 7deg and a prompt emission size of R(sub prompt) approx. 2 x 10(exp 14) cm. In addition, we detected several optical flares with amplitudes of (Delta)m approx. 0.2,0.6, and 0.2 mag. The X-ray afterglows detected by Swift have shown complicated decay patterns. Recently, many well-sampled optical afterglows also show decays with flares and multiple breaks. GRB 060526 provides an additional case of such a complex, well-observed optical afterglow. The accumulated well-sampled afterglows indicate that most of the optical afterglows are complex.

  1. Development of achromatic full-field hard x-ray microscopy and its application to x-ray absorption near edge structure spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Emi, Y.; Kino, H.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2014-09-01

    An achromatic and high-resolution hard X-ray microscope was developed, in which advanced Kirkpatrick-Baez mirror optics with four total-reflection mirrors was employed as an objective. A fine test pattern with a 100 nm feature size could successfully be resolved. Full-field imaging, in combination with X-ray absorption near edge structure (XANES) spectroscopy, was used to characterize tungsten particles. XANES spectra were obtained over the entire observation area, showing good agreement with the XANES spectrum of pure tungsten.

  2. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  3. Mechanism of degradation of electrolyte solutions for dye-sensitized solar cells under ultraviolet light irradiation

    NASA Astrophysics Data System (ADS)

    Nakajima, Shohei; Katoh, Ryuzi

    2015-01-01

    We studied the mechanism of the degradation of I-/I3--containing electrolyte solutions for dye-sensitized solar cells under UV light irradiation. The yellow electrolyte solutions underwent achromatization during irradiation, indicating the reduction of I3-. We propose a mechanism involving the production of holes in TiO2, reaction of the holes with solvent molecules, and subsequent reduction of I3- by electrons remaining in the TiO2. Although the quantum yield of the photodegradation reaction is estimated to be low (3 × 10-3), this reaction can nevertheless be expected to affect the long-term stability of dye-sensitized solar cell devices.

  4. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  5. Demonstrating Broadband Billion-to-One Contrast with the Visible Nulling Coronagraph

    NASA Technical Reports Server (NTRS)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter, III; Miller, Ian J.; Bolcar, Matthew R.; Clampin, Mark; Helmbrecht, Michael A.; Mallik, Udayan

    2015-01-01

    The key to broadband operation of the Visible Nulling Coronagraph (VNC) is achieving a condition of quasi- achromatic destructive interference between combined beams. Here we present efforts towards meeting this goal using Fresnel rhombs in each interferometric arm as orthogonally aligned half wave phase retarders. The milestone goal of the demonstration is to achieve 1 × 10-9 contrast at 2/D over a 40 nm bandpass centered at 633 nm. Rhombs have been designed and fabricated, and a multi-step approach to alignment using coarse positioners for each rhomb and pair has been developed to get within range of piezo stages used for fine positioning. The previously demonstrated narrowband VNC sensing and control approach that uses a segmented deformable mirror is being adapted to broadband to include fine positioning of the piezo-mounted rhombs, all demonstrated in a low-pressure environment.

  6. Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy.

    PubMed

    Chen, Yu; Huang, Shu-Wei; Zhou, Chao; Potsaid, Benjamin; Fujimoto, James G

    2012-05-01

    Optical coherence microscopy (OCM) is a promising technology for high-resolution cellular-level imaging in human tissues. Line-scanning OCM is a new form of OCM that utilizes line-field illumination for parallel detection. In this study, we demonstrate improved detection sensitivity by using an achromatic design for line-field generation. This system operates at 830-nm wavelength with 82-nm bandwidth. The measured axial resolution is 3.9 μm in air (corresponding to ~2.9 μm in tissue), and the transverse resolutions are 2.1 μm along the line-field illumination direction and 1.7 μm perpendicular to line illumination direction. The measured sensitivity is 98 dB with 25 line averages, resulting in an imaging speed of ~2 frames/s (516 lines/s). Real-time, cellular-level imaging of scattering tissues is demonstrated using human-colon specimens.

  7. Electronic magnification and perceived contrast of video

    PubMed Central

    Haun, Andrew; Woods, Russell L; Peli, Eli

    2012-01-01

    Electronic magnification of an image results in a decrease in its perceived contrast. The decrease in perceived contrast could be due to a perceived blur or to limited sampling of the range of contrasts in the original image. We measured the effect on perceived contrast of magnification in two contexts: either a small video was enlarged to fill a larger area, or a portion of a larger video was enlarged to fill the same area as the original. Subjects attenuated the source video contrast to match the perceived contrast of the magnified videos, with the effect increasing with magnification and decreasing with viewing distance. These effects are consistent with expectations based on both the contrast statistics of natural images and the contrast sensitivity of the human visual system. We demonstrate that local regions within videos usually have lower physical contrast than the whole, and that this difference accounts for a minor part of the perceived differences. Instead, visibility of ‘missing content’ (blur) in a video is misinterpreted as a decrease in contrast. We detail how the effects of magnification on perceived contrast can be measured while avoiding confounding factors. PMID:23483111

  8. Contrast Intravasation During Hysterosalpingography

    PubMed Central

    Bhoil, Rohit; Sood, Dinesh; Sharma, Tanupriya; Sood, Shilpa; Sharma, Jiten; Kumar, Nitesh; Ahluwalia, Ajay; Parekh, Dipen; Mistry, Kewal A.; Sood, Saurav

    2016-01-01

    Summary Hysterosalpingography is an imaging method to evaluate the endometrial and uterine morphology and fallopian tube patency. Contrast intravasation implies backflow of injected contrast into the adjoining vessels mostly the veins and may be related to factors altering endometrial vascularity and permeability. Radiologists and gynaecologists should be well acquainted with the technique of hysterosalpingography, its interpretation, and intravasation of contrast agents for safer procedure and to minimize the associated complications. PMID:27279925

  9. Stimulus Contrast and Retinogeniculate Signal Processing.

    PubMed

    Rathbun, Daniel L; Alitto, Henry J; Warland, David K; Usrey, W Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  10. Stimulus Contrast and Retinogeniculate Signal Processing

    PubMed Central

    Rathbun, Daniel L.; Alitto, Henry J.; Warland, David K.; Usrey, W. Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  11. Stimulus Contrast and Retinogeniculate Signal Processing.

    PubMed

    Rathbun, Daniel L; Alitto, Henry J; Warland, David K; Usrey, W Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals.

  12. Pattern glare: the effects of contrast and color

    PubMed Central

    Monger, Laura J.; Wilkins, Arnold J.; Allen, Peter M.

    2015-01-01

    Aim: To test a theory of visual stress by investigating the inter-relationships between (1) the threshold contrast/saturation at which individuals first report discomfort when viewing colored gratings of progressively increasing contrast and decreasing saturation; (2) the choice of a colored overlay for reading; (3) any increase in reading speed when the overlay is used. Method: Ninety-five young adults, with normal color vision, reported illusions from square-wave gratings (Pattern Glare Test), chose any colored overlays that improved clarity (Intuitive Color Overlays) and read aloud randomly ordered common words (Wilkins Rate of Reading Test). This was followed by an automated choice of tints for text using various screen colors on a tablet, and a test of discomfort from patterns of progressively increasing contrast and decreasing saturation, using software developed for this study. All participants wore their optimal refractive correction throughout the procedure. Results: Fifty-eight participants chose a colored overlay and reported that it made text easier and more comfortable to read. On average, these individuals had a greater improvement in reading speed with their overlays (p = 0.003), a lower contrast threshold at which discomfort from achromatic gratings was first reported (p = 0.015), and a tendency to report more pattern glare (p = 0.052), compared to the other participants. Participants who chose both a most and least preferred tint for text using the automated procedure reported discomfort from colored gratings at a significantly higher contrast with their most preferred color compared to their least preferred color (p = 0.003). The choice of a colored tint was moderately consistent across tests. The most and least preferred colors tended to be complementary. Conclusion: Colored tints that improved reading speed reduced pattern glare both in terms of the illusion susceptibility and in terms of discomfort contrast threshold, supporting a theory of

  13. Behavioral Contrast in Infants.

    ERIC Educational Resources Information Center

    Fagen, Jeffrey W.

    This study used the behavioral contrast paradigm to assess the excitatory and inhibitory capabilities of young infants. Behavioral contrast is described as the phenomenon whereby the rates of responding in the presence of two stimuli, both of which were previously associated with reinforcement, change in opposite directions when only one of them…

  14. Contrast constancy revisited: the perceived contrast of sinusoidal gratings above threshold.

    PubMed

    Smith, Wayne S

    2015-01-01

    The contrast sensitivity function of the human visual system, measured with sinusoidal luminance gratings, has an inverted U shape with a peak around 2-4 c/deg. Above threshold, it is thought that luminance gratings of equal physical contrasts but of distinguishably different spatial frequencies are all perceived as having similar contrasts, a phenomenon that has been termed contrast constancy. However, when suprathreshold contrast matches were measured for pairs of luminance gratings whose spatial frequencies were indistinguishable, the matching curves were not flat and followed a similar inverted U shape form as the contrast sensitivity function at threshold. It was therefore suggested that contrast constancy may only be revealed when matching the contrasts of clearly distinguishable spatial frequencies. Here, observers matched the perceived contrasts of suprathreshold luminance gratings of similar but visibly different spatial frequencies between 0.25 and 16 c/deg. The results show that, much like the contrast sensitivity function at threshold, observers are more sensitive to intermediate spatial frequencies (1-6 c/deg) than they are to either higher or to lower spatial frequencies. This tuning is evident when matching reference contrasts of 30-80%, implying a significant role in everyday vision. To demonstrate that these results were not due to local adaptation, the experiment was repeated with shorter stimulus duration, producing the same results. The extent of departure from contrast constancy found in the present study is compared to previously reported suprathreshold measurements. The results are also discussed with consideration to limitations with display apparatus such as monitor blur.

  15. Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat.

    PubMed

    Millan, M J; Brocco, M; Gobert, A; Joly, F; Bervoets, K; Rivet, J; Newman-Tancredi, A; Audinot, V; Maurel, S

    1999-12-01

    In the present study, the comparative mechanisms of action of phencyclidine (PCP) and amphetamine were addressed employing the parameter of locomotion in rats. PCP-induced locomotion (PLOC) was potently blocked by the selective serotonin (5-HT)2A vs. D2 antagonists, SR46349, MDL100,907, ritanserin and fananserin, which barely affected amphetamine-induced locomotion (ALOC). In contrast, the selective D2 vs. 5-HT2A antagonists, eticlopride, raclopride and amisulpride, preferentially inhibited ALOC vs. PLOC. The potency of these drugs and 12 multireceptorial antipsychotics in inhibiting PLOC vs. ALOC correlated significantly with affinities at 5-HT2A vs. D2 receptors, respectively. Amphetamine and PCP both dose dependently increased dialysate levels of dopamine (DA) and 5-HT in the nucleus accumbens, striatum and frontal cortex (FCX) of freely moving rats, but PCP was proportionally more effective than amphetamine in elevating levels of 5-HT vs. DA in the accumbens. Further, whereas microinjection of PCP into the accumbens elicited locomotion, its introduction into the striatum or FCX was ineffective. The action of intra-accumbens PCP, but not intra-accumbens amphetamine, was abolished by SR46349 and clozapine. Parachloroamphetamine, which depleted accumbens pools of 5-HT but not DA, likewise abolished PLOC without affecting ALOC. In contrast, intra-accumbens 6-hydroxydopamine (6-OHDA), which depleted DA but not 5-HT, abolished ALOC but only partially attenuated PLOC. In conclusion, PLOC involves (indirect) activation of accumbens-localized 5-HT2A receptors by 5-HT. PLOC is, correspondingly, more potently blocked than ALOC by antipsychotics displaying marked affinity at 5-HT2A receptors.

  16. Compressive Phase Contrast Tomography

    SciTech Connect

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  17. Ferrimagnetic susceptibility contrast agents.

    PubMed

    Bach-Gansmo, T

    1993-01-01

    Contrast agents based on superparamagnetic particles have been in clinical development for more than 5 years, and the complexity of their effects is still not elucidated. The relaxivities are frequently used to give an idea of their efficacy, but these parameters can only be used if they are concentration independent. For large superparamagnetic systems, the evolution of the transverse magnetization is biexponential, after an initial loss of magnetization. Both these characteristics of large superparamagnetic systems should lead to prudence in using the relaxivities as indicators of contrast medium efficacy. Susceptibility induced artefacts have been associated with the use of superparamagnetic contrast agents since the first imaging evaluation took place. The range of concentrations where good contrast effect was achieved without inducing artefacts, as well as blurring and metal artefacts were evaluated. The influence of motion on the induction of artefacts was studied, and compared to the artefacts induced by a paramagnetic agent subject to motion. With a suitable concentration of a negative contrast agent, a signal void could be achieved in the region prone to motion, and no artefacts were induced. If the concentration was too high, a displacement of the region close to the contrast agent was observed. The artefacts occurred in a volume surrounding the contrast agent, i.e., also outside the imaging plane. In comparison a positive, paramagnetic contrast agent induced heavy artefacts in the phase encoding direction, appearing as both high intensity regions and black holes, in a mosaic pattern. Clinical trials of the oral contrast agent OMP for abdominal MR imaging showed this agent to be safe and efficacious. OMP increased the diagnostic efficacy of abdominal MR imaging in 2 of 3 cases examined, with a significant decrease in motion artefacts. Susceptibility contrast agents may also be of use in the evaluation of small lesions in the liver. Particulate material

  18. Transmission Measurements With The Target Contrast Characterizer

    NASA Astrophysics Data System (ADS)

    Watkins, Wendell R.; Kantrowitz, Frank T.; Crow, Samuel B.

    1989-10-01

    The Target Contrast Characterizer (TCC) was described in detail by the authors last year in the Proceedings of SPIE Vol. 926. It consists of experimental equipment and methodology which permit images of near-field (or close up) and far-field (or at engagement range) targets and their backgrounds to be registered in near real-time for characterizing the effects of the atmosphere on inherent and propagated target contrast. This paper details the method for obtaining target contrast transmission measurements using the TCC. Measurements of target contrast transmission are compared with model predictions of atmospheric transmission. In addition, the very sensitive measure of pixel-to-pixel or area-to-area contrast transmission obtained with the TCC is discussed as well as improvements which should be added to optimize near-field/far-field image comparisons.

  19. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography

    PubMed Central

    Li, Shiping; Zhong, Jingang

    2012-01-01

    The surface plasmon resonance imaging technique provides a tool that allows high-throughput analysis and real-time kinetic measurement. A simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging method is presented. The amplitude-contrast and phase-contrast images are simultaneously obtained by use of digital holography. The detection sensitivity of amplitude-contrast imaging and phase-contrast imaging can compensate for each other. Thus, the detectable sample components may cover a wider range of refractive index values for the simultaneous amplitude-contrast and phase-contrast imaging method than for the phase-contrast imaging method or amplitude-contrast imaging method. A detailed description of the theory and an experiment of monitoring the evaporation process of a drop of NaCl injection in real time are presented. In addition, the amplitude-contrast image has less coherent noise by digital holography. PMID:23243569

  20. A Hybrid Reflective/Refractive/Diffractive Achromatic Fiber-Coupled Radiation Resistant Imaging System for Use in the Spallation Neutron Source (SNS)

    SciTech Connect

    Maxey, L Curt; Ally, Tanya R; Brunson, Aly; Garcia, Frances; Goetz, Kathleen C; Hasse, Katelyn E; McManamy, Thomas J; Shea, Thomas J; Simpson, Marc Livingstone

    2011-01-01

    A fiber-coupled imaging system for monitoring the proton beam profile on the target of the Spallation Neutron Source was developed using reflective, refractive and diffractive optics to focus an image onto a fiber optic imaging bundle. The imaging system monitors the light output from a chromium-doped aluminum oxide (Al{sub 2}0{sub 3}:Cr) scintillator on the nose of the target. Metal optics are used to relay the image to the lenses that focus the image onto the fiber. The material choices for the lenses and fiber were limited to high-purity fused silica, due to the anticipated radiation dose of 10{sup 8} R. In the first generation system (which had no diffractive elements), radiation damage to the scintillator on the nose of the target significantly broadened the normally monochromatic (694 nm) spectrum. This created the need for an achromatic design in the second generation system. This was achieved through the addition of a diffractive optic for chromatic correction. An overview of the target imaging system and its performance, with particular emphasis on the design and testing of a hybrid refractive/diffractive high-purity fused silica imaging triplet, is presented.

  1. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    PubMed

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots.

  2. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  3. Contrast image correction method

    NASA Astrophysics Data System (ADS)

    Schettini, Raimondo; Gasparini, Francesca; Corchs, Silvia; Marini, Fabrizio; Capra, Alessandro; Castorina, Alfio

    2010-04-01

    A method for contrast enhancement is proposed. The algorithm is based on a local and image-dependent exponential correction. The technique aims to correct images that simultaneously present overexposed and underexposed regions. To prevent halo artifacts, the bilateral filter is used as the mask of the exponential correction. Depending on the characteristics of the image (piloted by histogram analysis), an automated parameter-tuning step is introduced, followed by stretching, clipping, and saturation preserving treatments. Comparisons with other contrast enhancement techniques are presented. The Mean Opinion Score (MOS) experiment on grayscale images gives the greatest preference score for our algorithm.

  4. Renal stones on portal venous phase contrast-enhanced CT: does intravenous contrast interfere with detection?

    PubMed Central

    Dym, R. Joshua; Duncan, Dameon R.; Spektor, Michael; Cohen, Hillel W.; Scheinfeld, Meir H.

    2015-01-01

    Purpose To determine the sensitivity of portal venous phase contrast-enhanced CT for the detection of renal stones. Methods This retrospective study included 97 CT examinations of the abdomen without and with intravenous contrast, including 85 (87.6%) examinations with at least one renal stone on the “gold standard” noncontrast images, as scored by a single radiologist. Three other radiologists each independently reviewed only the contrast-enhanced images from all 97 examinations and recorded all renal stones. Reviewer sensitivity for stones was categorized by stone diameter. Reviewer sensitivity and specificity for stone disease were also calculated on a per-kidney basis. Results The 97 cases included a total of 238 stones ≥1 mm, with a mean (±SD) of 1.2 ± 1.9 stones per kidney and a stone diameter of 3.5 ± 3.0 mm. Pooling data for the three reviewers, sensitivity for all stones was 81%; sensitivity for stones ≥2, ≥3, ≥4, and ≥5 mm was 88%, 95%, 99%, and 98%, respectively. Sensitivity for stone disease on a per-kidney basis was 94% when considering all stones; when considering only stones ≥2, ≥3, and ≥4 mm, sensitivity was 96%, 99%, and 100%, respectively. Specificity for stone disease on a per-kidney basis was 98% overall, 99% when considering only stones ≥2 mm, and 100% when considering only stones ≥3 mm. Conclusion: Contrast-enhanced CT is highly sensitive for the detection of renal stones ≥3 mm in diameter and less sensitive for smaller stones. In cases where the clinical diagnosis is uncertain and performance of a CT examination is being contemplated, intravenous contrast utilization would allow assessment for stone disease while also optimizing evaluation for other conditions. PMID:24504541

  5. Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.

    1984-01-01

    A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.

  6. Phonation in Tonal Contrasts

    ERIC Educational Resources Information Center

    Kuang, Jianjing

    2013-01-01

    Phonation is used in many tonal languages, but how it should be incorporated into tonal systems is not well understood. The purpose of this dissertation thus is to examine the role of phonation in tonal contrasts, and to investigate how phonation and pitch interact in the tonal space. This dissertation presents close studies of tonal contrasts…

  7. Directionality in Contrastive Analysis.

    ERIC Educational Resources Information Center

    James, Carl

    A contrastive analysis (CA) does not require commitment to directionality. Even asymmetrical interlingual correspondence can be handled by adirectional statements. If well executed, a CA is capable of handling three pairs of L2 learning phenomena: (1) going from language A to language B and vice versa; (2) productive and receptive command; and (3)…

  8. High sensitivity and resolution integrated optical system for portable Raman spectrometer.

    PubMed

    Tang, Ming; Wang, Xin; Xianguang, Fan; Li, Wei; Xu, Yingjie; Que, Jing; He, Jian; Zuo, Yong

    2016-09-10

    An integrated optical system with high sensitivity and resolution was presented. This was made possible by coupling a probe to a monochromator directly, using an aspheric lens and an achromatic lens in the coupling path, using a dichroic filter with high transmission and a steep transitional zone as a beam splitter, increasing the throughput of the monochromator, and optimizing its structural parameters. This optical system has a high sensitivity; the tested spectrogram of a glass rod demonstrated that the signal-to-noise ratio measured by the integrated optical system was almost 4 times as high as an independent probe and monochromator. The optical system also has the advantages of high resolution (4  cm-1 or 0.28 nm), low cost, and portable size. This work lays a good groundwork for the development of a high sensitivity, high resolution, and low cost integrated portable Raman spectrometer.

  9. High sensitivity and resolution integrated optical system for portable Raman spectrometer.

    PubMed

    Tang, Ming; Wang, Xin; Xianguang, Fan; Li, Wei; Xu, Yingjie; Que, Jing; He, Jian; Zuo, Yong

    2016-09-10

    An integrated optical system with high sensitivity and resolution was presented. This was made possible by coupling a probe to a monochromator directly, using an aspheric lens and an achromatic lens in the coupling path, using a dichroic filter with high transmission and a steep transitional zone as a beam splitter, increasing the throughput of the monochromator, and optimizing its structural parameters. This optical system has a high sensitivity; the tested spectrogram of a glass rod demonstrated that the signal-to-noise ratio measured by the integrated optical system was almost 4 times as high as an independent probe and monochromator. The optical system also has the advantages of high resolution (4  cm-1 or 0.28 nm), low cost, and portable size. This work lays a good groundwork for the development of a high sensitivity, high resolution, and low cost integrated portable Raman spectrometer. PMID:27661352

  10. NMDA receptor contributions to visual contrast coding

    PubMed Central

    Manookin, Michael B.; Weick, Michael; Stafford, Benjamin K.; Demb, Jonathan B.

    2010-01-01

    Summary In the retina, it is not well understood how visual processing depends on AMPA- and NMDA-type glutamate receptors. Here, we investigated how these receptors contribute to contrast coding in identified guinea pig ganglion cell types, in vitro. NMDA-mediated responses were negligible in ON α cells but substantial in OFF α and δ cells. OFF δ cell NMDA receptors were composed of GluN2B subunits. Using a novel deconvolution method, we determined the individual contributions of AMPA, NMDA and inhibitory currents to light responses of each cell type. OFF α and δ cells used NMDA receptors for encoding either the full contrast range (α), including near-threshold responses, or only a high range (δ). However, contrast sensitivity depended substantially on NMDA receptors only in OFF α cells. NMDA receptors contribute to visual contrast coding in a cell-type specific manner. Certain cell types generate excitatory responses using primarily AMPA receptors or disinhibition. PMID:20670835

  11. Chromatography: concepts and contrasts

    SciTech Connect

    Miller, J.M.

    1988-01-01

    As the author states in the Preface, this text attempts to provide a unified approach to chromatography (hence the title) by way of contrasting similarities and differences between gas chromatography (GC), column liquid chromatography (LC), and thin-layer chromatography (TLC). This book is also said to be pitched at an elementary level, suitable for most newcomers to the field (e.g., advanced undergraduates and beginning graduate students in the academic world, as well as bench-level chemists in industry).

  12. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  13. Peripheral venous contrast echocardiography.

    PubMed

    Seward, J B; Tajik, A J; Hagler, D J; Ritter, D G

    1977-02-01

    Contrast echocardiography is the technique of injecting various echo-producing agents into the bloodstream and, with standard echocardiographic techniques, observing the blood flow patterns as revealed by the resulting cloud of echoes. These techniques have only recently been utilized to evaluate various cardiac defects. Two physical properties of these agents characterize their usefulness: (1) clouds of echoes can be observed downstream as well as at the injection site, and (2) the echo-producing quality of these agents is completely lost with a single transit through either the pulmonary or the systemic capillary bed. Thus, detection of resultant echoes in both the venous and the arterial blood pool is indicative of abnormal shunting. In 60 patients with a spectrum of cardiac defects and a wide range in age of presentation, studies were made of (1) the feasibility of performing contrast echocardiography with superficial peripheral venous injections, and (2) the clinical usefulness of this relatively noninvasive technique in detecting and localizing intracardiac right ot left shunting. Most superficial peripheral veins could be utilized, and the resultant contrast echograms were reproducible and similar in quality to those obtained more central (caval) injections. Right to left shunts could be localized in the atrial, ventricular or intrapulmonary level. Characteristic flow patterns were also recognized for tricuspid atresia and common ventricle.

  14. Sensitivity of photoacoustic microscopy

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement. PMID:25302158

  15. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  16. Contrast adaptation in the Limulus lateral eye.

    PubMed

    Valtcheva, Tchoudomira M; Passaglia, Christopher L

    2015-12-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision. PMID:26445869

  17. Contrast adaptation in the Limulus lateral eye.

    PubMed

    Valtcheva, Tchoudomira M; Passaglia, Christopher L

    2015-12-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision.

  18. Multi-contrast magnetic resonance image reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Chen, Yunmei; Zhang, Hao; Huang, Feng

    2015-03-01

    In clinical exams, multi-contrast images from conventional MRI are scanned with the same field of view (FOV) for complementary diagnostic information, such as proton density- (PD-), T1- and T2-weighted images. Their sharable information can be utilized for more robust and accurate image reconstruction. In this work, we propose a novel model and an efficient algorithm for joint image reconstruction and coil sensitivity estimation in multi-contrast partially parallel imaging (PPI) in MRI. Our algorithm restores the multi-contrast images by minimizing an energy function consisting of an L2-norm fidelity term to reduce construction errors caused by motion, a regularization term of underlying images to preserve common anatomical features by using vectorial total variation (VTV) regularizer, and updating sensitivity maps by Tikhonov smoothness based on their physical property. We present the numerical results including T1- and T2-weighted MR images recovered from partially scanned k-space data and provide the comparisons between our results and those obtained from the related existing works. Our numerical results indicate that the proposed method using vectorial TV and penalties on sensitivities can be made promising and widely used for multi-contrast multi-channel MR image reconstruction.

  19. Contrast and depth perception: effects of texture contrast and area contrast.

    PubMed

    Ichihara, Shigeru; Kitagawa, Norimichi; Akutsu, Hiromi

    2007-01-01

    Many objects in natural scenes have textures on their surfaces. Contrast of the texture surfaces (the texture contrast) reduces when the viewing distance increases. Similarly, contrast between the surfaces of the objects and the background (the area contrast) reduces when the viewing distance increases. The texture contrast and the area contrast were defined by the contrast between random dots, and by the contrast between the average luminance of the dot pattern and the luminance of the background, respectively. To examine how these two types of contrast influence depth perception, we ran two experiments. In both experiments two areas of random-dot patterns were presented against a uniform background, and participants rated relative depth between the two areas. We found that the rated depth of the patterned areas increased with increases in texture contrast. Furthermore, the effect of the texture contrast on depth judgment increased when the area contrast became low.

  20. On Establishing Underlying Tonal Contrast

    ERIC Educational Resources Information Center

    Snider, Keith

    2014-01-01

    Phonological field work is largely about establishing contrast in comparable environments. The notion of phonological contrast, however, can be confusing, particularly in its application to tone analysis. Does it mean phonemic contrast in the structuralist sense, or does it mean underlying contrast in the generative sense? Many linguists, in…

  1. Toward Clinically Compatible Phase-Contrast Mammography

    PubMed Central

    Scherer, Kai; Willer, Konstantin; Gromann, Lukas; Birnbacher, Lorenz; Braig, Eva; Grandl, Susanne; Sztrókay-Gaul, Anikó; Herzen, Julia; Mayr, Doris; Hellerhoff, Karin; Pfeiffer, Franz

    2015-01-01

    Phase-contrast mammography using laboratory X-ray sources is a promising approach to overcome the relatively low sensitivity and specificity of clinical, absorption-based screening. Current research is mostly centered on identifying potential diagnostic benefits arising from phase-contrast and dark-field mammography and benchmarking the latter with conventional state-of-the-art imaging methods. So far, little effort has been made to adjust this novel imaging technique to clinical needs. In this article, we address the key points for a successful implementation to a clinical routine in the near future and present the very first dose-compatible and rapid scan-time phase-contrast mammograms of both a freshly dissected, cancer-bearing mastectomy specimen and a mammographic accreditation phantom. PMID:26110618

  2. Toward Clinically Compatible Phase-Contrast Mammography.

    PubMed

    Scherer, Kai; Willer, Konstantin; Gromann, Lukas; Birnbacher, Lorenz; Braig, Eva; Grandl, Susanne; Sztrókay-Gaul, Anikó; Herzen, Julia; Mayr, Doris; Hellerhoff, Karin; Pfeiffer, Franz

    2015-01-01

    Phase-contrast mammography using laboratory X-ray sources is a promising approach to overcome the relatively low sensitivity and specificity of clinical, absorption-based screening. Current research is mostly centered on identifying potential diagnostic benefits arising from phase-contrast and dark-field mammography and benchmarking the latter with conventional state-of-the-art imaging methods. So far, little effort has been made to adjust this novel imaging technique to clinical needs. In this article, we address the key points for a successful implementation to a clinical routine in the near future and present the very first dose-compatible and rapid scan-time phase-contrast mammograms of both a freshly dissected, cancer-bearing mastectomy specimen and a mammographic accreditation phantom.

  3. Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients.

    PubMed

    Zhang, Peng; Wen, Wen; Sun, Xinghuai; He, Sheng

    2016-02-01

    Glaucoma is now viewed not just a disease of the eye but also a disease of the brain. The prognosis of glaucoma critically depends on how early the disease can be detected. However, early glaucomatous loss of the laminar functions in the human lateral geniculate nucleus (LGN) and superior colliculus (SC) remains difficult to detect and poorly understood. Using functional MRI, we measured neural signals from different layers of the LGN and SC, as well as from the early visual cortices (V1, V2 and MT), in patients with early-stage glaucoma and normal controls. Compared to normal controls, early glaucoma patients showed more reduction of response to transient achromatic stimuli than to sustained chromatic stimuli in the magnocellular layers of the LGN, as well as in the superficial layer of the SC. Magnocellular responses in the LGN were also significantly correlated with the degree of behavioral deficits to the glaucomatous eye. Finally, early glaucoma patients showed no reduction of fMRI response in the early visual cortex. These findings demonstrate that 'large cells' in the human LGN and SC suffer selective loss of response to transient achromatic stimuli at the early stage of glaucoma. Hum Brain Mapp 37:558-569, 2016. © 2015 Wiley Periodicals, Inc.

  4. V1 mechanisms underlying chromatic contrast detection

    PubMed Central

    Hass, Charles A.

    2013-01-01

    To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689

  5. Localized surface plasmon assisted contrast microscopy for ultrathin transparent specimens

    SciTech Connect

    Wei, Feifei; Lu, Dylan; Aguinaldo, Ryan; Ma, Yicong; Sinha, Sunil K.; Liu, Zhaowei

    2014-10-20

    We demonstrate a high contrast imaging technique, termed localized surface plasmon assisted contrast microscopy, by combining localized surface plasmon resonances (LSPR) and dark-field microscopy technique. Due to the sensitive response of LSPR to the refractive index of the surrounding media, this technique is capable of converting a small refractive index difference to a change in scattering intensity, resulting in a high-contrast, diffraction limited image of a thin unstained specimen with small, gradual refractive-index variation.

  6. Surface metrology by phase contrast

    NASA Astrophysics Data System (ADS)

    Baker, Lionel R.

    1990-08-01

    Increasing use of electrooptical imaging and detection systems in thermography high density information storage laser instrumentation and X-ray optics has led to a pressing need for machinecompatible sensors for the measurement of surface texture. This paper reviews recent advances in the use of deterministic and parametric noncontact methods for texture measurement and justifies the need for objective simple and yet precise means for displaying the microfinish of a machined surface. The design of a simple two channel phase contrast microscope is described which can be calibrated by test pieces and used as a means for optimising the process parameters involved in the generation of high quality surfaces. Typical results obtained with this technique including dynamic range and ultimate sensitivity are discussed. 1 . NEED FOR SURFACE METROLOGY Surface quality has a direct influence on product acceptability in many different industries including those concerned with optoelectronics and engineering. The influence may be cosmetic as with paint finish on a motor car body or functional for example when excessive wear rates may occur in a bearing surface with inadequate oil retention. Since perfection can never be achieved and overspecification can be costly it is clearly necessary to be able to define thresholds of acceptance in relation to different situations. Such thresholds do of course require agreed methods of measurement with traceability to national standards. The current trends in surface metrology are towards higher

  7. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay.

    PubMed

    Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T

    2006-05-01

    We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.

  8. Recognition memory reveals just how CONTRASTIVE contrastive accenting really is

    PubMed Central

    Fraundorf, Scott H.; Watson, Duane G.; Benjamin, Aaron S.

    2010-01-01

    The effects of pitch accenting on memory were investigated in three experiments. Participants listened to short recorded discourses that contained contrast sets with two items (e.g. British scientists and French scientists); a continuation specified one item from the set. Pitch accenting on the critical word in the continuation was manipulated between non-contrastive (H* in the ToBI system) and contrastive (L+H*). On subsequent recognition memory tests, the L+H* accent increased hits to correct statements and correct rejections of the contrast item (Experiments 1–3), but did not impair memory for other parts of the discourse (Experiment 2). L+H* also did not facilitate correct rejections of lures not in the contrast set (Experiment 3), indicating that contrastive accents do not simply strengthen the representation of the target item. These results suggest comprehenders use pitch accenting to encode and update information about multiple elements in a contrast set. PMID:20835405

  9. Maximized Posttest Contrasts: A Clarification.

    ERIC Educational Resources Information Center

    Hollingsworth, Holly

    1980-01-01

    A solution to some problems of maximized contrasts for analysis of variance situations when the cell sizes are unequal is offered. It is demonstrated that a contrast is maximized relative to the analysis used to compute the sum of squares between groups. Interpreting a maximum contrast is discussed. (Author/GK)

  10. Contrastive Analysis and Language Tendencies.

    ERIC Educational Resources Information Center

    Ree, Joe J.

    The purpose of this paper is to show that: (1) language universals have much to offer to students of contrastive linguistics, and (2) in order to make contrastive analysis more meaningful, one ought to go beyond cataloguing mere contrastive structure statements and capture underlying structural tendencies. Some characteristics of word order in…

  11. Neglect for low luminance contrast stimuli but not for high colour contrast stimuli: a behavioural and electrophysiological case study.

    PubMed

    Doricchi, F; Angelelli, P; De Luca, M; Spinelli, D

    1996-05-31

    We describe a patient with a right hemisphere lesion involving the frontal lobe, the post-central gyrus and the superior parietal lobule. Behavioural testing demonstrated severe left unilateral neglect to low luminance contrast stimuli, but not to high colour contrast stimuli. Evoked potentials to low contrast luminance gratings presented in the left hemifield were not reliable. However, equiluminant coloured gratings presented in the same hemifield evoked reliable electrophysiological responses, although longer in latency than those evoked in the right hemifield. These findings suggest that the patient has severe damage of the high contrast sensitivity magnocellular pathway in the right hemisphere, with minor involvement of the parvocellular pathway.

  12. Direct tomography with chemical-bond contrast.

    PubMed

    Huotari, Simo; Pylkkänen, Tuomas; Verbeni, Roberto; Monaco, Giulio; Hämäläinen, Keijo

    2011-05-29

    Three-dimensional (3D) X-ray imaging methods have advanced tremendously during recent years. Traditional tomography uses absorption as the contrast mechanism, but for many purposes its sensitivity is limited. The introduction of diffraction, small-angle scattering, refraction, and phase contrasts has increased the sensitivity, especially in materials composed of light elements (for example, carbon and oxygen). X-ray spectroscopy, in principle, offers information on element composition and chemical environment. However, its application in 3D imaging over macroscopic length scales has not been possible for light elements. Here we introduce a new hard-X-ray spectroscopic tomography with a unique sensitivity to light elements. In this method, dark-field section images are obtained directly without any reconstruction algorithms. We apply the method to acquire the 3D structure and map the chemical bonding in selected samples relevant to materials science. The novel aspects make this technique a powerful new imaging tool, with an inherent access to the molecular-level chemical environment.

  13. Extreme Ultraviolet Phase Contrast Imaging

    SciTech Connect

    Denbeaux, Gregory; Garg, Rashi; Aquila, Andy; Barty, Anton; Goldberg, Kenneth; Gullikson, Eric; Liu, Yanwei; Wood, Obert

    2005-11-01

    The conclusions of this report are: (1) zone plate microscopy provides high resolution imaging of EUV masks; (2) using phase plates in the back focal plane of the objective lens can provide contrast mechanisms for measurement of the phase shift from defects on the mask; (3) the first high resolution EUV Zernike phase contrast images have been acquired; and (4) future work will include phase contrast mode in reflection from an EUV mask to directly measure the reflectivity and phase shift from defects.

  14. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  15. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  16. Correction of contrast in projection systems by means of phase-controlled prism coatings and band-shifted twist compensators

    NASA Astrophysics Data System (ADS)

    Rosenbluth, Alan E.; Lu, Minhua; Yang, Kei H.; Ho, Kenneth; Singh, Rama N.; Nakasogi, Teruhiro

    2000-04-01

    Projectors that use LCOS lightvalves face special contrast requirements. Most configurations for reflective light valves employ tilted beam-dividing coatings that see both bright and dark polarization states. The optics must then be designed to eliminate polarization mixing at these coatings, which ordinarily arises when the S and P planes for different rays are non-parallel. We show how phase- controlled coatings can exploit the double-pass symmetry of the Plumbicon tri-prism geometry to correct this effect, reducing cross-polarized reflectivity to approximately 1E-3 when the light valve is mirror-like in black-state. Though contrast in different rays varies as a function of both ray skew component and coating angle of incidence, we show that for NA contrast is essentially equivalent to tracing a single ray. Light valves that use a normally-black TN mode exhibit a non-mirror-like phase dispersion in their black-state, complicating contrast control in the optics. Scatter depolarization at the edges of pixel electrodes is enhanced in these light valves, because the inherent twist causes the backplane polarization to be rotated out of alignment with pixel edges. We show that all of these contrast degradation mechanisms can be addressed by incorporating into the light valve a compensating layer having opposite birefringence to the black-state TN active layer. Moreover, when the compensating layer and driven layer are blue-shifted to a shorter LC thickness than would ordinarily be appropriate for the wavelength band of interest, a highly achromatic response is obtained at all gray levels.

  17. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  18. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  19. Inorganic nanoparticle-based contrast agents for molecular imaging

    PubMed Central

    Cho, Eun Chul; Glaus, Charles; Chen, Jingyi; Welch, Michael J.; Xia, Younan

    2010-01-01

    Inorganic nanoparticles including semiconductor quantum dots, iron oxide nanoparticles, and gold nanoparticles have been developed as contrast agents for diagnostics by molecular imaging. Compared to traditional contrast agents, nanoparticles offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size, and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multi-modal imaging. Here, we review recent advances in the development of contrast agents based on inorganic nanoparticles for molecular imaging, with a touch on contrast enhancement, surface modification, tissue targeting, clearance, and toxicity. As research efforts intensify, contrast agents based on inorganic nanoparticles that are highly sensitive, target-specific, and safe to use are expected to enter clinical applications in the near future. PMID:21074494

  20. Neural correlates of stimulus spatial frequency-dependent contrast detection

    PubMed Central

    Meng, Jianjun; Liu, Ruilong; Wang, Ke; Hua, Tianmiao; Lu, Zhong-Lin; Xi, Minmin

    2016-01-01

    Psychophysical studies on human and non-human vertebrate species have shown that visual contrast sensitivity function (CSF) peaks at a certain stimulus spatial frequency and declines in both lower and higher spatial frequencies. The underlying neural substrate and mechanisms remain in debate. Here, we investigated the role of primary visual cortex (V1: area 17) in spatial frequency-dependent contrast detection in cats. Perceptual CSFs of three cats were measured using a two-alternative forced choice task. The responses of V1 neurons to their optimal visual stimuli in a range of luminance contrast levels (from 0 to 1.0) were recorded subsequently using in vivo extracellular single-unit recording techniques. The contrast sensitivity of each neuron was determined. The neuronal CSF for each cat was constructed from the mean contrast sensitivity of neurons with different preferred stimulus spatial frequencies. Results (1) The perceptual and neuronal CSFs of each of the three cats exhibited a similar shape with peak amplitude near 0.4 c/deg. (2) The neuronal CSF of each cat was highly correlated with its perceptual CSF. (3) V1 neurons with different preferred stimulus spatial frequencies had different contrast gains. Conclusion (1) Contrast detection of visual stimuli with different spatial frequencies may likely involve population coding of V1 neurons with different preferred stimulus spatial frequencies. (2) Difference in contrast-gain may underlie the observed contrast sensitivity variation of V1 neurons with different preferred stimulus spatial frequencies, possibly from either evolution or postnatal visual experiences. PMID:23314692

  1. Faithful Contrastive Features in Learning

    ERIC Educational Resources Information Center

    Tesar, Bruce

    2006-01-01

    This article pursues the idea of inferring aspects of phonological underlying forms directly from surface contrasts by looking at optimality theoretic linguistic systems (Prince & Smolensky, 1993/2004). The main result proves that linguistic systems satisfying certain conditions have the faithful contrastive feature property: Whenever 2 distinct…

  2. Contrast Agent Dose Effects in Cerebral Dynamic Susceptibility Contrast Magnetic Resonance Perfusion Imaging

    PubMed Central

    Alger, Jeffry R.; Schaewe, Timothy J.; Lai, Tom C.; Frew, Andrew J.; Vespa, Paul M.; Etchepare, Maria; Liebeskind, David S.; Saver, Jeffrey L.; Kidwell, S. Chelsea

    2009-01-01

    Purpose To study the contrast agent dose sensitivity of hemodynamic parameters derived from brain dynamic susceptibility contrast MRI (DSC-MRI). Materials and Methods Sequential DSC-MRI (1.5T gradient-echo echo-planar imaging using an echo time of 61–64 msec) was performed using contrast agent doses of 0.1 and 0.2 mmol/kg delivered at a fixed rate of 5.0 mL/second in 12 normal subjects and 12 stroke patients. Results 1) Arterial signal showed the expected doubling in relaxation response (ΔR2*) to dose doubling. 2) The brain signal showed a less than doubled ΔR2* response to dose doubling. 3) The 0.2 mmol/kg dose studies subtly under-estimated cerebral blood volume (CBV) and cerebral blood flow (CBF) relative to the 0.1 mmol/kg studies. 4) In the range of low CBV and CBF, the 0.2 mmol/kg studies over-estimated the CBV and CBF compared with the 0.1 mmol/kg studies. 5) The 0.1 mmol/kg studies reported larger ischemic volumes in stroke. Conclusion Subtle but statistically significant dose sensitivities were found. Therefore, it is advisable to carefully control the contrast agent dose when DSC-MRI is used in clinical trials. The study also suggests that a 0.1 mmol/kg dose is adequate for hemodynamic measurements. PMID:19097106

  3. Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy

    PubMed Central

    Chen, Yu; Huang, Shu-Wei; Zhou, Chao; Potsaid, Benjamin; Fujimoto, James G.

    2012-01-01

    Optical coherence microscopy (OCM) is a promising technology for high-resolution cellular-level imaging in human tissues. Line-scanning OCM is a new form of OCM that utilizes line-field illumination for parallel detection. In this study, we demonstrate improved detection sensitivity by using an achromatic design for line-field generation. This system operates at 830-nm wavelength with 82-nm bandwidth. The measured axial resolution is 3.9 μm in air (corresponding to ~2.9 μm in tissue), and the transverse resolutions are 2.1 μm along the line-field illumination direction and 1.7 μm perpendicular to line illumination direction. The measured sensitivity is 98 dB with 25 line averages, resulting in an imaging speed of ~2 frames/s (516 lines/s). Real-time, cellular-level imaging of scattering tissues is demonstrated using human-colon specimens. PMID:22685379

  4. Ionic versus nonionic contrast use.

    PubMed

    Stolberg, H O; McClennan, B L

    1991-01-01

    It has taken many years of research, development and intense scientific investigation to produce intravascular contrast media. Research on relations between chemical structure, animal toxicity, and water-solubility has produced a number of highly water-soluble, iodinated compounds for use in diagnostic radiology as intravascular contrast agents. The currently used intravascular agents may be classified into four groups according to their chemical structure: 1. Ionic monomers 2. Ionic monoacid dimers 3. Nonionic monomers 4. Nonionic dimers It is the objective of this publication to review the history and development of intravascular contrast media as well as their properties, general effects and clinical use. The four types of contrast media differ significantly in their chemical structure and physico-chemical properties, and these differences determine their osmotoxicity, chemotoxicity, and ion toxicity. We analyze the organ specific toxic effects of intravascular contrast media upon the central nervous system, the cardiovascular system, and the renal system. We also review the secondary effects, clinical manifestations, and the incidence of adverse events associated with different types of contrast. The choice of contrast media has become critical since the introduction of nonionic agents because their toxicological and pharmacological properties differ from those of the ionic agents. The application of basic concepts involved in the use of contrast media in excretory urography, computed tomography, angiography, and angiocardiography is discussed, and the advantages of the use of nonionic contrast agents are outlined. Economic and ethical issues are presented with emphasis upon strategies to reduce the risk associated with the injection of intravascular contrast and to curtail consumption according to rational principles of use. PMID:2049958

  5. Sensitive skin.

    PubMed

    Misery, L; Loser, K; Ständer, S

    2016-02-01

    Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin. PMID:26805416

  6. Climate Sensitivity

    SciTech Connect

    Lindzen, Richard

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  7. Gluten Sensitivity

    MedlinePlus

    Gluten is a protein found in wheat, rye, and barley. It is found mainly in foods but ... products like medicines, vitamins, and supplements. People with gluten sensitivity have problems with gluten. It is different ...

  8. Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Hansen, J.

    2007-12-01

    Discussion of climate sensitivity requires careful definition of forcings, feedbacks and response times, indeed, foggy definitions have produced flawed assessments of climate sensitivity. The best information available on climate sensitivity comes from insightful interpretation of the Earth's history aided by quantitative information from climate models and understanding of climate processes. Climate sensitivity is a strong function of time scale, in part because of the nature of climate feedbacks. Unfortunately for humanity, the preponderance of feedbacks on the century time scale appears to be positive. The chief implication is the need for a sharp reversal in the trend of human-made climate forcing, if we are to avoid creating a planet that is dramatically different than the one on which civilization developed.

  9. Small intestine contrast injection (image)

    MedlinePlus

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  10. A theory of behavioral contrast.

    PubMed

    Killeen, Peter R

    2014-11-01

    The reinforcers that maintain target instrumental responses also reinforce other responses that compete with them for expression. This competition, and its imbalance at points of transition between different schedules of reinforcement, causes behavioral contrast. The imbalance is caused by differences in the rates at which different responses come under the control of component stimuli. A model for this theory of behavioral contrast is constructed by expanding the coupling coefficient of MPR (Killeen, 1994). The coupling coefficient gives the degree of association of a reinforcer with the target response (as opposed to other competing responses). Competing responses, often identified as interim or adjunctive or superstitious behavior, are intrinsic to reinforcement schedules, especially interval schedules. In addition to that base-rate of competition, additional competing responses may spill over from the prior component, causing initial contrast; and they may be modulated by conditioned reinforcement or punishment from stimuli associated with subsequent component change, causing terminal contrast. A formalization of these hypotheses employed (a) a hysteresis model of off-target responses giving rise to initial contrast, and (b) a competing traces model of the suppression or enhancement of ongoing competitive responses by signals of following-schedule transition. The theory was applied to transient contrast, the following schedule effect, and the component duration effect. PMID:25244535

  11. A theory of behavioral contrast.

    PubMed

    Killeen, Peter R

    2014-11-01

    The reinforcers that maintain target instrumental responses also reinforce other responses that compete with them for expression. This competition, and its imbalance at points of transition between different schedules of reinforcement, causes behavioral contrast. The imbalance is caused by differences in the rates at which different responses come under the control of component stimuli. A model for this theory of behavioral contrast is constructed by expanding the coupling coefficient of MPR (Killeen, 1994). The coupling coefficient gives the degree of association of a reinforcer with the target response (as opposed to other competing responses). Competing responses, often identified as interim or adjunctive or superstitious behavior, are intrinsic to reinforcement schedules, especially interval schedules. In addition to that base-rate of competition, additional competing responses may spill over from the prior component, causing initial contrast; and they may be modulated by conditioned reinforcement or punishment from stimuli associated with subsequent component change, causing terminal contrast. A formalization of these hypotheses employed (a) a hysteresis model of off-target responses giving rise to initial contrast, and (b) a competing traces model of the suppression or enhancement of ongoing competitive responses by signals of following-schedule transition. The theory was applied to transient contrast, the following schedule effect, and the component duration effect.

  12. Control of magnetic contrast with nonlinear magneto-plasmonics.

    PubMed

    Zheng, Wei; Hanbicki, Aubrey T; Jonker, Berend T; Lüpke, Gunter

    2014-08-26

    The interaction between surface plasmons (SP) and magnetic behavior has generated great research interest due to its potential for future magneto-optical devices with ultra-high sensitivity and ultra-fast switching. Here we combine two surface sensitive effects: magnetic second-harmonic generation (MSHG) and SP to enhance the detection sensitivity of the surface magnetization in a single-crystal iron film. We show that the MSHG signal can be significantly enhanced by SP in an attenuated total reflection (ATR) condition, and that the magnetic contrast can be varied over a wide range by the angle-of-incidence. Furthermore, the magnetic contrast of transverse and longitudinal MSHG display opposite trends, which originates from the change of relative phase between MSHG components. This new effect enhances the sensing of magnetic switching, which has potential usage in quaternary magnetic storage systems and bio-chemical sensors due to its very high surface sensitivity and simple structure.

  13. Contrast enhanced endoscopic ultrasound: More than just a fancy Doppler.

    PubMed

    Mohamed, Rachid M; Yan, Brian M

    2010-07-16

    Contrast enhanced endoscopic ultrasound (CEUS) is a new modality that takes advantage of vascular structure and blood flow to distinguish different clinical entities. Contrast agents are microbubbles that oscillate when exposed to ultrasonographic waves resulting in characteristic acoustic signals that are then converted to colour images. This permits exquisite imaging of macro- and microvasculature, providing information to help delineate malignant from non-malignant processes. The use of CEUS may significantly increase the sensitivity and specificity over conventional endoscopic ultrasound. Currently available contrast agents are safe, with infrequent adverse effects. This review summarizes the theory and technique behind CEUS and the current and future clinical applications.

  14. A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M

    2014-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  15. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  16. Photon-counting spectral phase-contrast mammography

    NASA Astrophysics Data System (ADS)

    Fredenberg, E.; Roessl, E.; Koehler, T.; van Stevendaal, U.; Schulze-Wenck, I.; Wieberneit, N.; Stampanoni, M.; Wang, Z.; Kubik-Huch, R. A.; Hauser, N.; Lundqvist, M.; Danielsson, M.; Åslund, M.

    2012-03-01

    Phase-contrast imaging is an emerging technology that may increase the signal-difference-to-noise ratio in medical imaging. One of the most promising phase-contrast techniques is Talbot interferometry, which, combined with energy-sensitive photon-counting detectors, enables spectral differential phase-contrast mammography. We have evaluated a realistic system based on this technique by cascaded-systems analysis and with a task-dependent ideal-observer detectability index as a figure-of-merit. Beam-propagation simulations were used for validation and illustration of the analytical framework. Differential phase contrast improved detectability compared to absorption contrast, in particular for fine tumor structures. This result was supported by images of human mastectomy samples that were acquired with a conventional detector. The optimal incident energy was higher in differential phase contrast than in absorption contrast when disregarding the setup design energy. Further, optimal weighting of the transmitted spectrum was found to have a weaker energy dependence than for absorption contrast. Taking the design energy into account yielded a superimposed maximum on both detectability as a function of incident energy, and on optimal weighting. Spectral material decomposition was not facilitated by phase contrast, but phase information may be used instead of spectral information.

  17. Hearing in noisy environments: noise invariance and contrast gain control

    PubMed Central

    Willmore, Ben D B; Cooke, James E; King, Andrew J

    2014-01-01

    Contrast gain control has recently been identified as a fundamental property of the auditory system. Electrophysiological recordings in ferrets have shown that neurons continuously adjust their gain (their sensitivity to change in sound level) in response to the contrast of sounds that are heard. At the level of the auditory cortex, these gain changes partly compensate for changes in sound contrast. This means that sounds which are structurally similar, but have different contrasts, have similar neuronal representations in the auditory cortex. As a result, the cortical representation is relatively invariant to stimulus contrast and robust to the presence of noise in the stimulus. In the inferior colliculus (an important subcortical auditory structure), gain changes are less reliably compensatory, suggesting that contrast- and noise-invariant representations are constructed gradually as one ascends the auditory pathway. In addition to noise invariance, contrast gain control provides a variety of computational advantages over static neuronal representations; it makes efficient use of neuronal dynamic range, may contribute to redundancy-reducing, sparse codes for sound and allows for simpler decoding of population responses. The circuits underlying auditory contrast gain control are still under investigation. As in the visual system, these circuits may be modulated by factors other than stimulus contrast, forming a potential neural substrate for mediating the effects of attention as well as interactions between the senses. PMID:24907308

  18. Copper complexes as a source of redox active MRI contrast agents.

    PubMed

    Dunbar, Lynsey; Sowden, Rebecca J; Trotter, Katherine D; Taylor, Michelle K; Smith, David; Kennedy, Alan R; Reglinski, John; Spickett, Corinne M

    2015-10-01

    The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

  19. Nanoparticle contrast agents for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gabriele, Michelle Lynn

    Optical coherence tomography (OCT) provides real-time, objective, in-vivo, optical cross-sectional representations of the retina and optic nerve. Recent innovations in image acquisition, including the incorporation of Fourier/spectral-domain detection, have improved imaging speed, sensitivity and resolution. Still, there remain specific structures within ocular OCT images, such as retinal ganglion cells (RGCs), which are of clinical interest but consistently have low contrast. This makes it difficult to differentiate between surrounding layers and structures. The objectives of this project were: (1) To establish a reliable method for OCT imaging of the healthy and diseased mouse eye in order to provide a platform for testing the utility of OCT contrast agents for ocular imaging, (2) To develop antibody-conjugated gold nanoparticles suitable for targeting specific structures and enhancing OCT image contrast in the mouse eye, and (3) To examine the localized contrast-enhancing ability and biocompatibility of gold nanoparticle contrast agents in-vivo. Our organizing hypotheses were that nanoparticles could improve contrast by modulating the intensity of backscattered light detected by OCT and that they could be directed to ocular structures of interest using antibodies specific to cellular markers. A reproducible method for imaging the mouse retina and quantifying retinal thickness was developed and this technique was then applied to a mouse model for retinal ganglion cell loss, optic nerve crush. Gold nanorods were designed specifically to augment the backscattering OCT signal at the same wavelengths of light used in current ophthalmic OCT imaging schemes (resonant wavelength lambda = 840 nm). Anti-CD90.1 (Thy1.1) antibodies were conjugated to the gold nanorods and a protocol for characterization of the success of antibody conjugation was developed. Upon injection, the gold nanorods were found to remain in the vitreous post-injection, with many consumed by an early

  20. The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions.

    PubMed

    Lind, Olle; Chavez, Johanna; Kelber, Almut

    2014-03-01

    Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m². We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m², as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m², spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision. PMID:24366429

  1. One-stage model for color conversion.

    NASA Technical Reports Server (NTRS)

    Richards, W.

    1972-01-01

    Description of a one-stage approximation to the color-conversion model of Richards and Parks (1971). The modified model proposes three channels for color vision, each with different center-surround sensitivities. In its strongest form, the model predicts that the gain-setting control that alters the sensitivities of each channel is solely a function of achromatic contrast.

  2. Abnormal Contrast Responses in the Extrastriate Cortex of Blindsight Patients

    PubMed Central

    Rees, Geraint; Kennard, Christopher; Bridge, Holly

    2015-01-01

    When the human primary visual cortex (V1) is damaged, the dominant geniculo-striate pathway can no longer convey visual information to the occipital cortex. However, many patients with such damage retain some residual visual function that must rely on an alternative pathway directly to extrastriate occipital regions. This residual vision is most robust for moving stimuli, suggesting a role for motion area hMT+. However, residual vision also requires high-contrast stimuli, which is inconsistent with hMT+ sensitivity to contrast in which even low-contrast levels elicit near-maximal neural activation. We sought to investigate this discrepancy by measuring behavioral and neural responses to increasing contrast in patients with V1 damage. Eight patients underwent behavioral testing and functional magnetic resonance imaging to record contrast sensitivity in hMT+ of their damaged hemisphere, using Gabor stimuli with a spatial frequency of 1 cycle/°. The responses from hMT+ of the blind hemisphere were compared with hMT+ and V1 responses in the sighted hemisphere of patients and a group of age-matched controls. Unlike hMT+, neural responses in V1 tend to increase linearly with increasing contrast, likely reflecting a dominant parvocellular channel input. Across all patients, the responses in hMT+ of the blind hemisphere no longer showed early saturation but increased linearly with contrast. Given the spatiotemporal parameters used in this study and the known direct subcortical projections from the koniocellular layers of the lateral geniculate nucleus to hMT+, we propose that this altered contrast sensitivity in hMT+ could be consistent with input from the koniocellular pathway. PMID:26019336

  3. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  4. Contrasting coloration in terrestrial mammals

    PubMed Central

    Caro, Tim

    2008-01-01

    Here I survey, collate and synthesize contrasting coloration in 5000 species of terrestrial mammals focusing on black and white pelage. After briefly reviewing alternative functional hypotheses for coloration in mammals, I examine nine colour patterns and combinations on different areas of the body and for each mammalian taxon to try to identify the most likely evolutionary drivers of contrasting coloration. Aposematism and perhaps conspecific signalling are the most consistent explanations for black and white pelage in mammals; background matching may explain white pelage. Evidence for contrasting coloration is being involved in crypsis through pattern blending, disruptive coloration or serving other functions, such as signalling dominance, lures, reducing eye glare or in temperature regulation has barely moved beyond anecdotal stages of investigation. Sexual dichromatism is limited in this taxon and its basis is unclear. Astonishingly, the functional significance of pelage coloration in most large charismatic black and white mammals that were new to science 150 years ago still remains a mystery. PMID:18990666

  5. Polycatechol Nanoparticle MRI Contrast Agents.

    PubMed

    Li, Yiwen; Huang, Yuran; Wang, Zhao; Carniato, Fabio; Xie, Yijun; Patterson, Joseph P; Thompson, Matthew P; Andolina, Christopher M; Ditri, Treffly B; Millstone, Jill E; Figueroa, Joshua S; Rinehart, Jeffrey D; Scadeng, Miriam; Botta, Mauro; Gianneschi, Nathan C

    2016-02-01

    Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement. PMID:26681255

  6. Segment aberration effects on contrast.

    PubMed

    Crossfield, Ian J; Troy, Mitchell

    2007-07-20

    High-contrast imaging, particularly the direct detection of extrasolar planets, is a major science driver for the next generation of telescopes. This science requires the suppression of scattered starlight at extremely high levels and that telescopes be correctly designed today to meet these stringent requirements in the future. The challenge increases in systems with complicated aperture geometries such as obscured, segmented telescopes. Such systems can also require intensive modeling and simulation efforts in order to understand the trade-offs between different optical parameters. The feasibility and development of a contrast prediction tool for use in the design and systems engineering of these telescopes is described. The performance of a particular starlight suppression system on a large segmented telescope is described analytically. These analytical results and the results of a contrast predictor are then compared with the results of a full wave-optics simulation. PMID:17609697

  7. Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation

    NASA Astrophysics Data System (ADS)

    Hillis, James M.; Brainard, David H.

    2007-08-01

    Are effects of background contrast on color appearance and sensitivity controlled by the same mechanism of adaptation? We examined the effects of background color contrast on color appearance and on color-difference sensitivity under well-matched conditions. We linked the data using Fechner's hypothesis that the rate of apparent stimulus change is proportional to sensitivity and examined a family of parametric models of adaptation. Our results show that both appearance and discrimination are consistent with the same mechanism of adaptation.

  8. Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation.

    PubMed

    Hillis, James M; Brainard, David H

    2007-08-01

    Are effects of background contrast on color appearance and sensitivity controlled by the same mechanism of adaptation? We examined the effects of background color contrast on color appearance and on color-difference sensitivity under well-matched conditions. We linked the data using Fechner's hypothesis that the rate of apparent stimulus change is proportional to sensitivity and examined a family of parametric models of adaptation. Our results show that both appearance and discrimination are consistent with the same mechanism of adaptation.

  9. Visible Contrast Energy Metrics for Detection and Discrimination

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  10. Quantitative flow phantom for contrast-enhanced breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Nock, Melissa L.; Kempston, Michael P.; Mainprize, James G.; Yaffe, Martin J.

    2007-03-01

    The use of contrast agents can help to overcome a lack of intrinsic radiographic contrast between malignant and benign breast tissue by taking advantage of the properties of tumour angiogenesis. Studies of contrast-enhanced mammography have demonstrated increased lesion conspicuity and have shown that this technique provides information on contrast uptake kinetics. It has been suggested that malignant and benign lesions can be differentiated in part by their uptake kinetics, so this additional data may lead to more accurate diagnoses. Tomosynthesis is a 3D x-ray imaging technique that permits lesion depth localization and increased conspicuity in comparison with 2D x-ray projection techniques. This modality, used in combination with contrast agents, promises to be a sensitive method of breast cancer detection. To develop the technique of contrast-enhanced breast tomosynthesis, a dynamic flow phantom has been constructed to provide the same types of imaging challenges anticipated in the clinical setting. These challenges include a low-contrast tumour space, relevant temporal contrast agent uptake and washout profiles, and a need for quantitative analysis of enhancement levels. The design of a flow phantom will be presented that includes a dynamic tumour space, a background that masks the tumour space in images without contrast enhancement, and flow characteristics that simulate tumour contrast agent uptake and washout kinetics. The system is calibrated to relate signal to concentration of the contrast agent using a well plate filled with iodinated water. Iodine detectability in the flow phantom is evaluated in terms of the signal-difference-to-noise ratio for various tomosynthesis image acquisition parameters including number of acquired angular views, angular extent, and reconstruction voxel size.

  11. Contrast Rendition in School Lighting.

    ERIC Educational Resources Information Center

    Sampson, Foster K.

    Eighteen significantly different classroom lighting systems were measured and analyzed in order to determine how contrasts from different light sources affect the ability to see visual tasks in the school room. Using criteria and techniques established from previous lighting research, the lighting systems are evaluated according to their…

  12. Contrast Analysis for Scale Differences.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; And Others

    Research on tests for scale equality have focused exclusively on an overall test statistic and have not examined procedures for identifying specific differences in multiple group designs. The present study compares four contrast analysis procedures for scale differences in the single factor four-group design: (1) Tukey HSD; (2) Kramer-Tukey; (3)…

  13. UV-sensitive syndrome.

    PubMed

    Spivak, Graciela

    2005-09-01

    UV-sensitive syndrome (UV(S)S) is a human DNA repair-deficiency disorder with mild clinical manifestations. In contrast to other disorders with photosensitivity, no neurological or developmental abnormalities and no predisposition to cancer have been reported. The cellular and biochemical responses of UV(S)S and Cockayne syndrome (CS) cells to UV light are indistinguishable, and result from defective transcription-coupled repair of photoproducts in expressed genes [G. Spivak, T. Itoh, T. Matsunaga, O. Nikaido, P. Hanawalt, M. Yamaizumi, Ultra violet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers, DNA Repair, 1, 2002, 629-643]. The severe neurological and developmental deficiency characteristic of CS may arise from unresolved blockage of transcription at oxidative DNA lesions, which could result in excessive cell death and/or attenuated transcription. We have proposed that individuals with UV(S)S develop normally because they are proficient in repair of oxidative base damage or in transcriptional bypass of these lesions; consistent with this hypothesis, CS-B cells, but not UV(S)S cells, are deficient in host cell reactivation of plasmids containing oxidative base lesions [G. Spivak, P. Hanawalt, Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome, 2005, submitted for publication]. In this review, I will summarize the current understanding of the UV-sensitive syndrome and compare it with the Cockayne syndrome. PMID:15916784

  14. Comparing and Contrasting Consensus versus Empirical Domains

    PubMed Central

    Jason, Leonard A.; Kot, Bobby; Sunnquist, Madison; Brown, Abigail; Reed, Jordan; Furst, Jacob; Newton, Julia L.; Strand, Elin Bolle; Vernon, Suzanne D.

    2015-01-01

    Background Since the publication of the CFS case definition [1], there have been a number of other criteria proposed including the Canadian Consensus Criteria [2] and the Myalgic Encephalomyelitis: International Consensus Criteria. [3] Purpose The current study compared these domains that were developed through consensus methods to one obtained through more empirical approaches using factor analysis. Methods Using data mining, we compared and contrasted fundamental features of consensus-based criteria versus empirical latent factors. In general, these approaches found the domain of Fatigue/Post-exertional malaise as best differentiating patients from controls. Results Findings indicated that the Fukuda et al. criteria had the worst sensitivity and specificity. Conclusions These outcomes might help both theorists and researchers better determine which fundamental domains to be used for the case definition. PMID:26977374

  15. Contrast-Enhanced Anatomic Imaging as Compared to Contrast-Enhanced Tissue Characterization for Detection of Left Ventricular Thrombus

    PubMed Central

    Weinsaft, Jonathan W.; Kim, Raymond J.; Ross, Michael; Krauser, Daniel; Manoushagian, Shant; LaBounty, Troy M.; Cham, Matthew D.; Min, James K.; Healy, Kirsten; Wang, Yi; Parker, Michele; Roman, Mary J.; Devereux, Richard B.

    2016-01-01

    Objectives To compare contrast-enhanced anatomic imaging to contrast-enhanced tissue characterization (DE-CMR) for left ventricular (LV) thrombus detection. Background Contrast echocardiography (echo) detects LV thrombus based on anatomic appearance whereas delayed-enhancement cardiac magnetic resonance (DE-CMR) imaging detects thrombus based on tissue characteristics. DE-CMR has been validated as an accurate technique for thrombus but its utility compared to contrast echo is unknown. Methods Multimodality imaging was performed in 121 patients at high-risk for thrombus due to myocardial infarction or heart failure. Imaging included three anatomic imaging techniques for thrombus detection (contrast echo, non-contrast echo, cine-CMR) and a reference of DE-CMR tissue characterization. LV structural parameters were quantified to identify markers for thrombus and predictors of additive utility of contrast-enhanced thrombus imaging. Results 24 patients had thrombus by DE-CMR. Patients with thrombus had larger infarcts (by DE-CMR), more aneurysms and lower LVEF (by CMR and echo) than those without thrombus. Contrast echo nearly doubled sensitivity (61% vs. 33%, p<0.05) and yielded improved accuracy (92% vs. 82%, p<0.01) vs. non-contrast echo. Patients who derived incremental diagnostic utility from DE-CMR had lower LVEF vs. those in whom non-contrast echo alone accurately assessed thrombus (35±9% vs. 42±14%, p<0.01), with a similar trend for patients that derived incremental benefit from contrast echo (p=0.08). Contrast echo and cine-CMR closely agreed on the diagnosis of thrombus (kappa=0.79, p<0.001). Thrombus prevalence was lower by contrast echo than DE-CMR (p<0.05). Thrombus detected by DE-CMR but not by contrast echo was more likely to be mural in shape or, when apical, small in volume (p<0.05). Conclusions Echo contrast in high-risk patients markedly improves detection of LV thrombus, but does not detect a substantial number of thrombi identified by DE-CMR tissue

  16. Theory and Methods of Contrastive Phonetics.

    ERIC Educational Resources Information Center

    Lehtonen, Jaakko

    This paper defines contrastive phonetics and discusses phonetic work in the Jyvaskyla Contrastive Project, the background theory of contrastive analysis, and expansion of the framework of contrastive phonetics. Contrastive phonetics is defined as a method which is used to compare the similarities and differences in the chain of speech…

  17. Novel nanomedicine-based MRI contrast agents for gynecological malignancies.

    PubMed

    Mody, Vicky V; Nounou, Mohamed Ismail; Bikram, Malavosklish

    2009-08-10

    Gynecological cancers result in significant morbidity and mortality in women despite advances in treatment and diagnosis. This is due to detection of the disease in the late stages following metastatic spread in which treatment options become limited and may not result in positive outcomes. In addition, traditional contrast agents are not very effective in detecting primary metastatic tumors and cells due to a lack of specificity and sensitivity of the diagnostic tools, which limits their effectiveness. Recently, the field of nanomedicine-based contrast agents offers a great opportunity to develop highly sophisticated devices that can overcome many traditional hurdles of contrast agents including solubility, cell-specific targeting, toxicities, and immunological responses. These nanomedicine-based contrast agents including liposomes, micelles, dendrimers, multifunctional magnetic polymeric nanohybrids, fullerenes, and nanotubes represent improvements over their traditional counterparts, which can significantly advance the field of molecular imaging.

  18. Nulling interferometers for space-based high contrast visible imaging and measurement of exoplanetary environments

    NASA Astrophysics Data System (ADS)

    Hicks, Brian Andrew

    an orbital platform, robust optical systems are necessary. A novel feature of the nuller described in this work is its monolithic design, which greatly enhances optical stability, the primary obstacle plaguing all high-contrast imaging efforts. Additional design benefits include theoretical achromatic performance and an inner working angle that is 2-4 times smaller than other coronagraph designs, enabling its use with proportionally smaller telescopes.

  19. High-contrast imaging testbed

    SciTech Connect

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  20. High contrast cathode ray tube

    NASA Technical Reports Server (NTRS)

    Lisovicz, E. J.; Catlaw, T. G. (Inventor)

    1971-01-01

    A layer of material is described, which contains fine grains of phosphor material stimulated by electrons to produce visible radiation. The layer, which also contains fine grains of cobalt oxide, is deposited on the glass screen of a cathode ray tube to provide high contrast, by absorbing most of the visible radiation which is directed to the layer through the screen, while not materially affecting the visible light which the phosphor material produces in response to the electron stimulation.

  1. Electrofluidic systems for contrast management

    NASA Astrophysics Data System (ADS)

    Rebello, Keith J.; Maranchi, Jeffrey P.; Tiffany, Jason E.; Brown, Christopher Y.; Maisano, Adam J.; Hagedon, Matthew A.; Heikenfeld, Jason C.

    2012-06-01

    Operating in dynamic lighting conditions and in greatly varying backgrounds is challenging. Current paints and state-ofthe- art passive adaptive coatings (e.g. photochromics) are not suitable for multi- environment situations. A semi-active, low power, skin is needed that can adapt its reflective properties based on the background environment to minimize contrast through the development and incorporation of suitable pigment materials. Electrofluidic skins are a reflective display technology for electronic ink and paper applications. The technology is similar to that in E Ink but makes use of MEMS based microfluidic structures, instead of simple black and white ink microcapsules dispersed in clear oil. Electrofluidic skin's low power operation and fast switching speeds (~20 ms) are an improvement over current state-ofthe- art contrast management technologies. We report on a microfluidic display which utilizes diffuse pigment dispersion inks to change the contrast of the underlying substrate from 5.8% to 100%. Voltage is applied and an electromechanical pressure is used to pull a pigment dispersion based ink from a hydrophobic coated reservoir into a hydrophobic coated surface channel. When no voltage is applied, the Young-Laplace pressure pushes the pigment dispersion ink back down into the reservoir. This allows the pixel to switch from the on and off state by balancing the two pressures. Taking a systems engineering approach from the beginning of development has enabled the technology to be integrated into larger systems.

  2. [Contrast media in MR mammography].

    PubMed

    Tontsch, P; Bauer, M; Birmelin, G; von Landenberg, E; Moeller, T B; Raible, G

    1997-03-01

    A standardized relationship between concentration of contrast media and normalized signal intensity should be the basis of a diagnostic evaluation of MR-mammography at different sites and with different sequences. In this work we compared the dynamic range of the MR-compatible contrast medium Magnevist at different sequences and machines. For this purpose we made measurements with a phantom, consisting of MR-compatible glass tubes filled with contrast medium of different concentrations. The glass tubes were placed in a water bath. All measurements were made with breast coils. The signal intensity of the glass tubes was normalized to the signal intensity of the native probe (water = 1). These normalized dynamic curves were compared with each other in order to find, for the different machines, the sequence which is nearest to a defined "Standard-Curve". As this task proved not possible for all machines, we measured how the dynamic curves of the different machines related to the "Standard-Curve". For all sequences we made also measurements with a female student to assure the quality of the pictures. Thus the participating radiologists can now compare their dynamic measurements of breast lesions with each other. PMID:9172669

  3. Rapid contrast gain reduction following motion adaptation.

    PubMed

    Nordström, Karin; Moyer de Miguel, Irene; O'Carroll, David C

    2011-12-01

    Neural and sensory systems adapt to prolonged stimulation to allow signaling across broader input ranges than otherwise possible with the limited bandwidth of single neurons and receptors. In the visual system, adaptation takes place at every stage of processing, from the photoreceptors that adapt to prevailing luminance conditions, to higher-order motion-sensitive neurons that adapt to prolonged exposure to motion. Recent experiments using dynamic, fluctuating visual stimuli indicate that adaptation operates on a time scale similar to that of the response itself. Further work from our own laboratory has highlighted the role for rapid motion adaptation in reliable encoding of natural image motion. Physiologically, motion adaptation can be broken down into four separate components. It is not clear from the previous studies which of these motion adaptation components are involved in the fast and dynamic response changes. To investigate the adapted response in more detail, we therefore analyzed the effect of motion adaptation using a test-adapt-test protocol with adapting durations ranging from 20 ms to 20 s. Our results underscore the very rapid rate of motion adaptation, suggesting that under free flight, visual motion-sensitive neurons continuously adapt to the changing scenery. This might help explain recent observations of strong invariance in the response to natural scenes with highly variable contrast and image structure.

  4. Contrast enhancement of propagation based X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Pan, Adam; Xu, Ling; Petruccelli, Jon C.; Gupta, Rajiv; Barbastathis, George

    2014-09-01

    We demonstrate a quantitative X-ray phase contrast imaging (XPCI) technique derived from propagation dependent phase change. We assume that the absorption and phase components are correlated and solve the Transport of Intensity Equation (TIE). The experimental setup is simple compared to other XPCI techniques; the only requirements are a micro-focus X-ray source with sufficient temporal coherence and an X-ray detector of sufficient spatial resolution. This method was demonstrated in three scenarios, the first of which entails identification of an index-matched sphere. A rubber and nylon sphere were immersed in water and imaged. While the rubber sphere could be plainly seen on a radiograph, the nylon sphere was only visible in the phase reconstruction. Next, the technique was applied to differentiating liquid samples. In this scenario, three liquid samples (acetone, water, and hydrogen peroxide) were analyzed using both conventional computed tomography (CT) and phase contrast CT. While conventional CT was capable of differentiating between acetone and the other two liquids, it failed to distinguish between water and hydrogen peroxide; only phase CT was capable of differentiating all three samples. Finally, the technique was applied to CT imaging of a human artery specimen with extensive atherosclerotic plaque. This scenario demonstrated the increased sensitivity to soft tissue compared to conventional CT; it also uncovered some drawbacks of the method, which will be the target of future work. In all cases, the signal-to-noise ratio of phase contrast was greatly enhanced relative to conventional attenuation-based imaging.

  5. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  6. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed.

  7. Redox- and Hypoxia-Responsive MRI Contrast Agents

    PubMed Central

    Do, Quyen N.; Ratnakar, James S.; Kovács, Zoltán

    2014-01-01

    The development of responsive or “smart” magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd3+-based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  8. Contrasting strategic and Milan therapies.

    PubMed

    MacKinnon, L

    1983-12-01

    Three related models of therapy are often grouped together as the strategic therapies. These are brief therapy model associated with the Mental Research Institute, approaches developed by Jay Haley and Cloë Madanes, and the model developed by the Milan associates. Controversy exists, however, as to whether the Milan model should be included as a strategic therapy. It appears that the similarities among the three models can mask deeper differences, thus confounding the confusion. This paper contrast the models in their development, theory, and practice.

  9. Signal contrast in coherent Raman scattering: Optical phonons versus biomolecules

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2012-09-01

    We show that the limiting contrast of the coherent anti-Stokes Raman scattering (CARS) signal with respect to the coherent background due to nonresonant four-wave mixing is controlled by the Q factor of the Raman mode and is independent of the parameters of laser pulses. High-Q phonon modes of semiconductor nanoparticles, such as diamond nanoprobes, can therefore substantially enhance the contrast of CARS images, as well as the sensitivity of CARS spectroscopy and microscopy compared to typical Raman-active vibrations of organic molecules in biotissues.

  10. Gluten Sensitivity.

    PubMed

    Catassi, Carlo

    2015-01-01

    Non-celiac gluten sensitivity (NCGS) is a syndrome characterized by intestinal and extraintestinal symptoms related to the ingestion of gluten-containing food in subjects who are not affected by either celiac disease (CD) or wheat allergy (WA). The prevalence of NCGS is not clearly defined yet. Indirect evidence suggests that NCGS is slightly more common than CD, the latter affecting around 1% of the general population. NCGS has been mostly described in adults, particularly in females in the age group of 30-50 years; however, pediatric case series have also been reported. Since NCGS may be transient, gluten tolerance needs to be reassessed over time in patients with NCGS. NCGS is characterized by symptoms that usually occur soon after gluten ingestion, disappear with gluten withdrawal, and relapse following gluten challenge within hours/days. The 'classical' presentation of NCGS is a combination of irritable bowel syndrome-like symptoms, including abdominal pain, bloating, bowel habit abnormalities (either diarrhea or constipation), and systemic manifestations such as 'foggy mind', headache, fatigue, joint and muscle pain, leg or arm numbness, dermatitis (eczema or skin rash), depression, and anemia. In recent years, several studies explored the relationship between the ingestion of gluten-containing food and the appearance of neurological and psychiatric disorders/symptoms like ataxia, peripheral neuropathy, schizophrenia, autism, depression, anxiety, and hallucinations (so-called gluten psychosis). The diagnosis of NCGS should be considered in patients with persistent intestinal and/or extraintestinal complaints showing a normal result of the CD and WA serological markers on a gluten-containing diet, usually reporting worsening of symptoms after eating gluten-rich food. NCGS should not be an exclusion diagnosis only. Unfortunately, no biomarker is sensitive and specific enough for diagnostic purposes; therefore, the diagnosis of NCGS is currently based on

  11. Gluten Sensitivity.

    PubMed

    Catassi, Carlo

    2015-01-01

    Non-celiac gluten sensitivity (NCGS) is a syndrome characterized by intestinal and extraintestinal symptoms related to the ingestion of gluten-containing food in subjects who are not affected by either celiac disease (CD) or wheat allergy (WA). The prevalence of NCGS is not clearly defined yet. Indirect evidence suggests that NCGS is slightly more common than CD, the latter affecting around 1% of the general population. NCGS has been mostly described in adults, particularly in females in the age group of 30-50 years; however, pediatric case series have also been reported. Since NCGS may be transient, gluten tolerance needs to be reassessed over time in patients with NCGS. NCGS is characterized by symptoms that usually occur soon after gluten ingestion, disappear with gluten withdrawal, and relapse following gluten challenge within hours/days. The 'classical' presentation of NCGS is a combination of irritable bowel syndrome-like symptoms, including abdominal pain, bloating, bowel habit abnormalities (either diarrhea or constipation), and systemic manifestations such as 'foggy mind', headache, fatigue, joint and muscle pain, leg or arm numbness, dermatitis (eczema or skin rash), depression, and anemia. In recent years, several studies explored the relationship between the ingestion of gluten-containing food and the appearance of neurological and psychiatric disorders/symptoms like ataxia, peripheral neuropathy, schizophrenia, autism, depression, anxiety, and hallucinations (so-called gluten psychosis). The diagnosis of NCGS should be considered in patients with persistent intestinal and/or extraintestinal complaints showing a normal result of the CD and WA serological markers on a gluten-containing diet, usually reporting worsening of symptoms after eating gluten-rich food. NCGS should not be an exclusion diagnosis only. Unfortunately, no biomarker is sensitive and specific enough for diagnostic purposes; therefore, the diagnosis of NCGS is currently based on

  12. Photoreceptor sectral sensitivities in terrestrial animals: adaptations for luminance and colour vision

    PubMed Central

    Osorio, D; Vorobyev, M

    2005-01-01

    This review outlines how eyes of terrestrial vertebrates and insects meet the competing requirements of coding both spatial and spectral information. There is no unique solution to this problem. Thus, mammals and honeybees use their long-wavelength receptors for both achromatic (luminance) and colour vision, whereas flies and birds probably use separate sets of photoreceptors for the two purposes. In particular, we look at spectral tuning and diversification among ‘long-wavelength’ receptors (sensitivity maxima at greater than 500 nm), which play a primary role in luminance vision. Data on spectral sensitivities and phylogeny of visual photopigments can be incorporated into theoretical models to suggest how eyes are adapted to coding natural stimuli. Models indicate, for example, that animal colour vision—involving five or fewer broadly tuned receptors—is well matched to most natural spectra. We can also predict that the particular objects of interest and signal-to-noise ratios will affect the optimal eye design. Nonetheless, it remains difficult to account for the adaptive significance of features such as co-expression of photopigments in single receptors, variation in spectral sensitivities of mammalian L-cone pigments and the diversification of long-wavelength receptors that has occurred in several terrestrial lineages. PMID:16096084

  13. Dynamic contrast-enhanced ultrasound for quantification of tissue perfusion.

    PubMed

    Fröhlich, Eckhart; Muller, Reinhold; Cui, Xin-Wu; Schreiber-Dietrich, Dagmar; Dietrich, Christoph F

    2015-02-01

    Dynamic contrast-enhanced ultrasound (US) imaging, a technique that uses microbubble contrast agents with diagnostic US, has recently been technically summarized and reviewed by a European Federation of Societies for Ultrasound in Medicine and Biology position paper. However, the practical applications of this imaging technique were not included. This article reviews and discusses the published literature on the clinical use of dynamic contrast-enhanced US. This review finds that dynamic contrast-enhanced US imaging is the most sensitive cross-sectional real-time method for measuring the perfusion of parenchymatous organs noninvasively. It can measure parenchymal perfusion and therefore can differentiate between benign and malignant tumors. The most important routine clinical role of dynamic contrast-enhanced US is the prediction of tumor responses to chemotherapy within a very short time, shorter than using Response Evaluation Criteria in Solid Tumors criteria. Other applications found include quantifying the hepatic transit time, diabetic kidneys, transplant grafts, and Crohn disease. In addition, the problems involved in using dynamic contrast-enhanced US are discussed.

  14. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents

    PubMed Central

    Zhu, Derong; Liu, Fuyao; Ma, Lina; Liu, Dianjun; Wang, Zhenxin

    2013-01-01

    Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality. PMID:23698781

  15. Tuberculin sensitivity.

    PubMed

    Eason, R J

    1987-06-01

    A prospective study of tuberculin sensitivity has been conducted among 3610 subjects under 20 years old in the Solomon Islands, Western Province. Mantoux positivity (greater than or equal to mm induration after 5 TU) fell from 81% during the 6 months following birth BCG vaccination to 13% for children aged 1-8 years of age among whom it was not significantly higher than the rate of 9% noted for unvaccinated subjects. Birth BCG does not, therefore, hinder the diagnostic usefulness of tuberculin testing for such children. For the study population as a whole, BCG-induced Mantoux positivity was restricted to induration under 15 mm diameter. Stronger responses were considered specific for tuberculin infection and indicated a prevalence rate that rose from 2% to 16% with age. Accelerated BCG reactions recorded among 45% of 162 tuberculin non-reactors under 8 years old indicated that the waning of tuberculin responsiveness at this time could not be equated with loss of clinical protection against tuberculosis. PMID:2441657

  16. Multi-contrast Photoacoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie

    Photoacoustic microscopy is a hybrid imaging modality with high spatial resolution, moderate imaging depth, excellent imaging contrast and functional imaging capability. Taking full advantage of this powerful weapon, we have investigated different anatomical, functional, flow dynamic and metabolic parameter measurements using photoacoustic microscopy. Specifically, Evans-blue dye was used to enhance photoacoustic microscopy of capillaries; label-free transverse and axial blood flow was measured based on bandwidth broadening and time shift of the photoacoustic signals; metabolic rate of oxygen was quantified in vivo from all the five parameters measured by photoacoustic microcopy; whole cross-sectional imaging of small intestine was achieved on a double-illumination photoacoustic microscopy with extended depth of focus and imaging depth; hemodynamic imaging was performed on a MEMS-mirror enhanced photoacoustic microscopy with a cross-sectional imaging rate of 400 Hz. As a maturing imaging technique, PAM is expected to find new applications in both fundamental life science and clinical practice.

  17. Individual Variation in Cone Photoreceptor Density in House Sparrows: Implications for Between-Individual Differences in Visual Resolution and Chromatic Contrast

    PubMed Central

    Ensminger, Amanda L.; Fernández-Juricic, Esteban

    2014-01-01

    Between-individual variation has been documented in a wide variety of taxa, especially for behavioral characteristics; however, intra-population variation in sensory systems has not received similar attention in wild animals. We measured a key trait of the visual system, the density of retinal cone photoreceptors, in a wild population of house sparrows (Passer domesticus). We tested whether individuals differed from each other in cone densities given within-individual variation across the retina and across eyes. We further tested whether the existing variation could lead to individual differences in two aspects of perception: visual resolution and chromatic contrast. We found consistent between-individual variation in the densities of all five types of avian cones, involved in chromatic and achromatic vision. Using perceptual modeling, we found that this degree of variation translated into significant between-individual differences in visual resolution and the chromatic contrast of a plumage signal that has been associated with mate choice and agonistic interactions. However, there was no evidence for a relationship between individual visual resolution and chromatic contrast. The implication is that some birds may have the sensory potential to perform “better” in certain visual tasks, but not necessarily in both resolution and contrast simultaneously. Overall, our findings (a) highlight the need to consider multiple individuals when characterizing sensory traits of a species, and (b) provide some mechanistic basis for between-individual variation in different behaviors (i.e., animal personalities) and for testing the predictions of several widely accepted hypotheses (e.g., honest signaling). PMID:25372039

  18. MMP-14 Triggered Fluorescence Contrast Agent.

    PubMed

    Nguyen, Mai-Dung; Kang, Kyung A

    2016-01-01

    Matrix metalloproteinase-14 (MMP-14) is involved in cancer invasion, metastasis, and angiogenesis. Therefore, it is considered to be a biomarker for aggressive cancer types, including some of the triple-negative breast cancer. Accurate (i.e., specific) and sensitive detection of MMP-14 can, thus, be important for the early diagnosis of and accurate prognosis for aggressive cancer, including the breast cancer caused by cell line MDA-MB 231. Fluorophore-mediated molecular sensing has been used for detecting biomarkers, for a long time. One way to increase the specificity of the sensing is designing the fluorophore to emit its fluorescence only when it encounters the biomarker of interest. When a fluorophore is placed on the surface of, or very close to a gold nanoparticle (GNP), its fluorescence is quenched. Applying this relationship between the GNP and fluorophore, we have developed a GNP-based, near-infrared fluorescent contrast agent that is highly specific for MMP-14. This agent normally emits only 14-17 % fluorescence of the free fluorophore. When the agent encounters MMP-14, its fluorescence gets fully restored, allowing MMP-14 specific optical signal emission. PMID:27526171

  19. Hypersensitivity reactions to iodinated contrast media.

    PubMed

    Guéant-Rodriguez, Rosa-Maria; Romano, Antonino; Barbaud, Annick; Brockow, Knut; Guéant, Jean-Louis

    2006-01-01

    Adverse reactions after iodinate contrast media (ICM) administration have been observed, which can be classified as immediate (i.e., occurring within one hour after administration) and delayed or non-immediate (i.e., occurring more than one hour after administration). Even though the incidence of ICM adverse reactions has been significantly reduced by the introduction of non-ionic compounds, immediate reactions still occur in about 3% of administrations. Different pathogenic mechanisms have been suggested for ICM reactions, including immunologic ones. Basophils and mast cells participate in immediate reactions through the release of mediators like histamine and tryptase, whereas a T-cell-mediated pathogenic mechanism is involved in most non-immediate reactions, particularly maculopapular rashes. Skin tests and specific IgE assays are carried out to diagnose immediate hypersensitivity reactions, while both delayed-reading intradermal tests and patch tests are usually performed to evaluate non-immediate reactions. However, in vitro specific IgE assays are not commercially available. As far as in vitro tests are concerned, a response involving ICM-related T-cell activity may be assessed by the lymphocyte transformation test. Allergologic evaluation appears to be indicated in hypersensitivity reactions to ICM, although the sensitivity, specificity, and predictive values of allergologic tests have not yet been established. This paper summarizes the current state of the art and addresses the research that is still needed on the pathogenic mechanisms, diagnosis, and prevention of ICM-induced hypersensitivity reactions.

  20. Parametric Mapping of Contrasted Ovarian Transvaginal Sonography

    PubMed Central

    Korhonen, Katrina; Moore, Ryan; Lyshchik, Andrej; Fleischer, Arthur C.

    2014-01-01

    The purpose of this study was to assess the accuracy of parametric analysis of transvaginal contrast-enhanced ultrasound (TV-CEUS) for distinguishing benign versus malignant ovarian masses. A total of 48 ovarian masses (37 benign and 11 borderline/malignant) were examined with TV-CEUS (Definity, Lantheus, North Bilreca, MA; Philips iU22, Bothell, WA). Parametric images were created offline with a quantification software (Bracco Suisse SA, Geneva, Switzerland) with map color scales adjusted such that abnormal hemodynamics were represented by the color red and the presence of any red color could be used to differentiate benign and malignant tumors. Using these map color scales, low values of the perfusion parameter were coded in blue, and intermediate values of the perfusion parameter were coded in yellow. Additionally, for each individual color (red, blue, or yellow), a darker shade of that color indicated a higher intensity value. Our study found that the parametric mapping method was considerably more sensitive than standard ROI analysis for the detection of malignant tumors but was also less specific than standard ROI analysis. Parametric mapping allows for stricter cut-off criteria, as hemodynamics are visualized on a finer scale than ROI analyses, and as such, parametric maps are a useful addition to TV-CEUS analysis by allowing ROIs to be limited to areas of highest malignant potential. PMID:26002525