Science.gov

Sample records for achromatic contrast sensitivity

  1. Behavioural and electrophysiological chromatic and achromatic contrast sensitivity in an achromatopsic patient.

    PubMed Central

    Heywood, C A; Nicholas, J J; Cowey, A

    1996-01-01

    OBJECTIVES--In cases of incomplete achromatopsia it is unclear whether residual visual function is mediated by intact striate cortex or results from incomplete lesions to extrastriate cortical visual areas. A patient with complete cerebral achromatopsia was tested to establish the nature of his residual vision and to determine the integrity of striate cortex function. METHODS--Behavioural contrast sensitivity, using the method of adjustment, and averaged visually evoked cortical potentials were measured to sinusoidally modulated chromatic and achromatic gratings in an achromatopsic patient and a normal observer. Eye movements were measured in the patient using a Skalar infrared monitoring system. RESULTS--The patient's chromatic contrast sensitivity was normal, indicating that despite his dense colour blindness his occipital cortex still processed information about spatial variations in hue. His sensitivity to achromatic gratings was depressed particularly at high spatial frequencies, possibly because of his jerk nystagmus. These behavioural results were reinforced by the nature of visually evoked responses to chromatic and achromatic gratings, in which total colour blindness coexisted with an almost normal cortical potential to isoluminant chromatic gratings. CONCLUSIONS--The results show that information about chromatic contrast is present in some cortical areas, and coded in a colour-opponent fashion, in the absence of any perceptual experience of colour. PMID:8648330

  2. Measurements of achromatic and chromatic contrast sensitivity functions for an extended range of adaptation luminance

    NASA Astrophysics Data System (ADS)

    Kim, Kil Joong; Mantiuk, Rafal; Lee, Kyoung Ho

    2013-03-01

    Inspired by the ModelFest and ColorFest data sets, a contrast sensitivity function was measured for a wide range of adapting luminance levels. The measurements were motivated by the need to collect visual performance data for natural viewing of static images at a broad range of luminance levels, such as can be found in the case of high dynamic range displays. The detection of sine-gratings with Gaussian envelope was measured for achromatic color axis (black to white), two chromatic axes (green to red and yellow-green to violet) and two mixed chromatic and achromatic axes (dark-green to light-pink, and dark yellow to light-blue). The background luminance varied from 0.02 to 200 cd/m2. The spatial frequency of the gratings varied from 0.125 to 16 cycles per degree. More than four observers participated in the experiments and they individually determined the detection threshold for each stimulus using at least 20 trials of the QUEST method. As compared to the popular CSF models, we observed higher sensitivity drop for higher frequencies and significant differences in sensitivities in the luminance range between 0.02 and 2 cd/m2. Our measurements for chromatic CSF show a significant drop in sensitivity with luminance, but little change in the shape of the CSF. The drop of sensitivity at high frequencies is significantly weaker than reported in other studies and assumed in most chromatic CSF models.

  3. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception. PMID:22902644

  4. Contrast polarity and edge integration in achromatic color perception.

    PubMed

    Rudd, Michael E; Zemach, Iris K

    2007-08-01

    Previous work has shown that the achromatic color of a target patch embedded in simple two-dimensional display depends not only on the luminance contrast between the target and its immediate surround but also on the contrasts of other nearby edges. Quantitative models have been proposed in which the target color is modeled as a spatially weighted sum of edge contrasts in which the target edge receives the largest weight. Rudd and Arrington [Vision Res.41, 3649 (2001)] elaborated on this idea to include an additional mechanism whereby effects of individual color-inducing edges are "partially blocked" by edges lying along the path between the inducing edge and the target. We tested the blockage model in appearance matching experiments performed with disk-and-single-ring stimuli having all four possible combinations of inner and outer ring edge contrast polarities. Evidence was obtained for both "blockage" (attenuation) and "antiblockage" (amplification) of achromatic color induction signals, depending on the contrast polarities of the inner and outer ring edges. A neural model is proposed to account for our data on the basis of the contrast gain control occurring between cortical edge detector neurons. PMID:17621319

  5. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution.

    PubMed

    Baden, Tom; Schubert, Timm; Chang, Le; Wei, Tao; Zaichuk, Mariana; Wissinger, Bernd; Euler, Thomas

    2013-12-01

    For efficient coding, sensory systems need to adapt to the distribution of signals to which they are exposed. In vision, natural scenes above and below the horizon differ in the distribution of chromatic and achromatic features. Consequently, many species differentially sample light in the sky and on the ground using an asymmetric retinal arrangement of short- (S, "blue") and medium- (M, "green") wavelength-sensitive photoreceptor types. Here, we show that in mice this photoreceptor arrangement provides for near-optimal sampling of natural achromatic contrasts. Two-photon population imaging of light-driven calcium signals in the synaptic terminals of cone-photoreceptors expressing a calcium biosensor revealed that S, but not M cones, preferred dark over bright stimuli, in agreement with the predominance of dark contrasts in the sky but not on the ground. Therefore, the different cone types do not only form the basis of "color vision," but in addition represent distinct (achromatic) contrast-selective channels. PMID:24314730

  6. Effective contrast of colored stimuli in the mesopic range: a metric for perceived contrast based on achromatic luminance contrast.

    PubMed

    Walkey, Helen C; Barbur, John L; Harlow, J Alister; Hurden, Antony; Moorhead, Ian R; Taylor, Julie A F

    2005-01-01

    Little is known about how color signals and cone- and rod-based luminance signals contribute to perceived contrast in the mesopic range. In this study the perceived contrast of colored, mesopic stimuli was matched with that of spatially equivalent achromatic stimuli. The objective was to develop a metric for perceived contrast in the mesopic range in terms of an equivalent achromatic luminance contrast, referred to here as effective contrast. Stimulus photopic luminance contrast, scotopic luminance contrast, and chromatic difference from the background all contributed to effective contrast over the mid-mesopic range, but their contributions were not independent and varied markedly with background luminance. Surprisingly, color made a significant contribution to effective contrast from 10 to approximately 0.003 cd m(-2). A model describing this relationship is introduced (R2 = 0.89) and compared with predictions of mesopic luminance contrast obtained from a number of models proposed as systems of mesopic photometry. PMID:15669611

  7. Effective contrast of colored stimuli in the mesopic range: a metric for perceived contrast based on achromatic luminance contrast

    NASA Astrophysics Data System (ADS)

    Walkey, Helen C.; Barbur, John L.; Harlow, J. Alister; Hurden, Antony; Moorhead, Ian R.; Taylor, Julie A. F.

    2005-01-01

    Little is known about how color signals and cone- and rod-based luminance signals contribute to perceived contrast in the mesopic range. In this study the perceived contrast of colored, mesopic stimuli was matched with that of spatially equivalent achromatic stimuli. The objective was to develop a metric for perceived contrast in the mesopic range in terms of an equivalent achromatic luminance contrast, referred to here as effective contrast. Stimulus photopic luminance contrast, scotopic luminance contrast, and chromatic difference from the background all contributed to effective contrast over the mid-mesopic range, but their contributions were not independent and varied markedly with background luminance. Surprisingly, color made a significant contribution to effective contrast from 10 to approximately 0.003 cd m-2. A model describing this relationship is introduced (R2=0.89) and compared with predictions of mesopic luminance contrast obtained from a number of models proposed as systems of mesopic photometry.

  8. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  9. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast.

    PubMed

    Gheiratmand, Mina; Cherniawsky, Avital S; Mullen, Kathy T

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  10. The effect of contrast intensity and polarity in the achromatic watercolor effect.

    PubMed

    Cao, Bo; Yazdanbakhsh, Arash; Mingolla, Ennio

    2011-01-01

    The watercolor effect (WCE) is a filling-in phenomenon in a region demarcated by two thin abutting lines. The perceived chromaticity of the region is similar to that of the interior line. We develop a series of achromatic WCE stimuli to induce lightness changes analogous to the induced chromaticity in the chromatic version of the WCE. We use a variation of the paired-comparison paradigm to quantify the induced lightness of the filled-in regions to regions with real luminance variations. The luminance of the inner line is fixed, while the luminance of the outer line varies across stimuli. Data from seven subjects (five naive) confirm that an achromatic WCE exists. Moreover, outer lines with both high and low luminances can generate a WCE with an inner line of a moderate luminance. All subjects show a single peak of the effect strength for both polarity conditions, which is never at the extreme luminance levels. Most subjects show an inverted U curve for effect strength as a function of the contrast of the outer lines against the background. Results suggest that the contrast difference between the outer line and the inner line affects the existence and the strength of the achromatic WCE in a nonlinear way. PMID:21436347

  11. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].

    PubMed

    Göbel, K; Erb, C

    2013-02-01

    The early detection of functional glaucoma damage plays an increasingly more central role in the diagnosis and treatment of glaucoma disease. Using selective perimetry detection of early glaucomatous defects is more likely and one of these methods is flicker perimetry with Pulsar. Flicker perimetry is used to analyze the temporal visual function in combination with spatial resolution and contrast sensitivity as opposed to standard automated perimetry which measures the differential light sensitivity with a non-specific stimulus. This study showed a higher sensitivity and specificity of Pulsar perimetry in comparison to achromatic perimetry in glaucoma patients. PMID:23338528

  12. The Role of Contrast in the Perception of Achromatic Transparency: Comment on Singh and Anderson (2002) and Anderson (2003)

    ERIC Educational Resources Information Center

    Albert, Marc K.

    2008-01-01

    M. Singh and B. L. Anderson proposed a perceptual theory of achromatic transparency in which the perceived transmittance of a perceived transparent filter is determined by the ratio of the Michelson contrast seen in the region of transparency to that of the background seen directly. Subsequently, B. L. Anderson, M. Singh, and J. Meng proposed that…

  13. [Contrast sensitivity in glaucoma].

    PubMed

    Bartos, D

    1989-05-01

    Author reports on results of the contrast sensitivity examinations using the Cambridge low-contrast lattice test supplied by Clement Clarke International LTD, in patients with open-angle glaucoma and ocular hypertension. In glaucoma patients there was observed statistically significant decrease of the contrast sensitivity. In patients with ocular hypertension decrease of the contrast sensitivity was in patients affected by corresponding changes of the visual field and of the optical disc. The main advantages of the Cambridge low-contrast lattice test were simplicity, rapidity and precision of its performance. PMID:2743444

  14. Measuring contrast sensitivity

    PubMed Central

    Pelli, Denis G.; Bex, Peter

    2013-01-01

    Contrast sensitivity defines the threshold between the visible and invisible, which has obvious significance for basic and clinical vision science. Fechner's 1860 review reported that threshold contrast is 1% for a remarkably wide range of targets and conditions. While printed charts are still in use, computer testing is becoming more popular because it offers efficient adaptive measurement of threshold for a wide range of stimuli. Both basic and clinical studies usually want to know fundamental visual capability, regardless of the observer's subjective criterion. Criterion effects are minimized by the use of an objective task: multiple-alternative forced-choice detection or identification. Having many alternatives reduces the guessing rate, which makes each trial more informative, so fewer trials are needed. Finally, populations who may experience crowding or target confusion should be tested with one target at a time. PMID:23643905

  15. Rapid categorization of achromatic natural scenes: how robust at very low contrasts?

    PubMed

    Macé, Marc J-M; Thorpe, Simon J; Fabre-Thorpe, Michèle

    2005-04-01

    The human visual system is remarkably good at categorizing objects even in challenging visual conditions. Here we specifically assessed the robustness of the visual system in the face of large contrast variations in a high-level categorization task using natural images. Human subjects performed a go/no-go animal/nonanimal categorization task with briefly flashed grey level images. Performance was analysed for a large range of contrast conditions randomly presented to the subjects and varying from normal to 3% of initial contrast. Accuracy was very robust and subjects were performing well above chance level (approximately 70% correct) with only 10-12% of initial contrast. Accuracy decreased with contrast reduction but reached chance level only in the most extreme condition (3% of initial contrast). Conversely, the maximal increase in mean reaction time was approximately 60 ms (at 8% of initial contrast); it then remained stable with further contrast reductions. Associated ERPs recorded on correct target and distractor trials showed a clear differential effect whose amplitude and peak latency were correlated respectively with task accuracy and mean reaction times. These data show the strong robustness of the visual system in object categorization at very low contrast. They suggest that magnocellular information could play a role in ventral stream visual functions such as object recognition. Performance may rely on early object representations which lack the details provided subsequently by the parvocellular system but contain enough information to reach decision in the categorization task. PMID:15869494

  16. Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    PubMed Central

    Hiramatsu, Chihiro; Melin, Amanda D.; Aureli, Filippo; Schaffner, Colleen M.; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  17. Measurement of visual contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Vongierke, H. E.; Marko, A. R.

    1985-04-01

    This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.

  18. Spectral sensitivities for illusory contour perception: a manifold linkage of chromatic and achromatic cues with the generation of contours.

    PubMed

    Takahashi, S; Kaihara, T; Takemoto, A; Ido, K; Ejima, Y

    1992-09-01

    Using colored inducing patterns presented as increments upon a white uniform background, the increment thresholds needed for illusory contour perception were measured as a function of the wavelength of inducing pattern. The spectral sensitivity functions were obtained with varying adaptation level and stimulus configuration, high and low background illumination, and line-based and figure-based inducing patterns. The results showed a distinctive feature between the line-based and the figure-based illusory contours. The sensitivity functions for the line-based illusory contours showed the characteristics of non-opponent mechanisms and they were shape invariant with background intensity and spatial variables. On the other hand, the sensitivity functions for the figure-based illusory contours showed non-opponent nature for low background illumination but opponent nature for high background illumination. It is suggested that the generation of illusory contours involves concurrent processing of different cues of luminance and color, and that photopic adaptation level and stimulus configuration control the degree of the contributions of chromatic and achromatic mechanisms to contour formation. PMID:1455742

  19. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  20. Sensitivity to Auditory Velocity Contrast

    PubMed Central

    Locke, Shannon M.; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static “snapshot” model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  1. Multi-step contrast sensitivity gauge

    SciTech Connect

    Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E

    2014-10-14

    An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.

  2. Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes

    PubMed Central

    Cabezos, Inmaculada; Luque, Maria José; de Fez, Dolores; Moncho, Vicenta; Camps, Vicente

    2015-01-01

    Background: Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye's posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease. Materials and Methods: In addition to the standard white-on-white (standard automated perimetry [SAP]), a test battery has been used to study patient's contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry). The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin); chromatic red-green (parvocellular origin); and chromatic blue-yellow (koniocellular origin). Results: The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP. Conclusions: Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry. PMID:25827546

  3. [Spatial contrast sensitivity in multiple sclerosis].

    PubMed

    Vighetto, A; Grochowicki, M; Cousin, J

    1990-01-01

    Spatial contrast sensitivity was measured in 110 patients with multiple sclerosis (definite = 72, probable = 22, possible = 16) as part of a routine evaluation in a neuro-ophthalmological clinic. Results were compared with those of 37 normal controls matched for age. The test was abnormal in 71 p. 100 of patients. Contrast sensitivity was attenuated for 97 p. 100 of the eyes with optic neuritis and visual acuity drop, for 60 p. 100 of the eyes with recovered optic neuritis and for 36 p. 100 of the non affected eyes in the cases of unilateral optic neuritis. Among the 57 patients with normal visual acuity and no history of optic neuritis, 62 p. 100 had abnormal findings. Globally, contrast sensitivity was reduced on the whole spatial frequency range in cases of current optic neuritis, and mostly on the high or high and medium frequencies in the other cases. Our study confirms that spatial contrast sensitivity is the most sensitive of psychophysical methods to detect subclinical visual impairement in multiple sclerosis. Comparison with VEP's was performed in 66 patients. Both tests were roughly equally sensitive, but findings were concordant in only 63 p. 100 of the cases. The use of both VEP's and spatial contrast sensitivity increases the detection of latent optic neuritis. PMID:2359900

  4. Contrast sensitivity and discrimination of complex scenes

    NASA Astrophysics Data System (ADS)

    Triantaphillidou, S.; Jarvis, J.; Gupta, G.

    2013-01-01

    The aim of our research is to specify experimentally and further model spatial frequency response functions, which quantify human sensitivity to spatial information in real complex images. Three visual response functions are measured: the isolated Contrast Sensitivity Function (iCSF), which describes the ability of the visual system to detect any spatial signal in a given spatial frequency octave in isolation, the contextual Contrast Sensitivity Function (cCSF), which describes the ability of the visual system to detect a spatial signal in a given octave in an image and the contextual Visual Perception Function (VPF), which describes visual sensitivity to changes in suprathreshold contrast in an image. In this paper we present relevant background, along with our first attempts to derive experimentally and further model the VPF and CSFs. We examine the contrast detection and discrimination frameworks developed by Barten, which we find provide a sound starting position for our own modeling purposes. Progress is presented in the following areas: verification of the chosen model for detection and discrimination; choice of contrast metrics for defining contrast sensitivity; apparatus, laboratory set-up and imaging system characterization; stimuli acquisition and stimuli variations; spatial decomposition; methodology for subjective tests. Initial iCSFs are presented and compared with `classical' findings that have used simple visual stimuli, as well as with more recent relevant work in the literature.

  5. Spatiotemporal contrast sensitivity of early vision.

    PubMed

    Van Hateren, J H

    1993-01-01

    Based on the spatial and temporal statistics of natural images, a theory is developed that specifies spatiotemporal filters that maximize the flow of information through noisy channels of limited dynamic range. Sensitivities resulting from these spatiotemporal filters are very similar to the human spatiotemporal contrast sensitivity, including the dependence on ambient light intensity. The theory predicts several psychophysical laws: Ferry-Porter's law, the de Vries-Rose law, Weber's law, Bloch's law, Ricco's law, and Piper's law. PMID:8447098

  6. Peripheral contrast sensitivity and attention in myopia.

    PubMed

    Kerber, Kristen L; Thorn, Frank; Bex, Peter J; Vera-Diaz, Fuensanta A

    2016-08-01

    Disruption of normal visual experience or changes in the normal interaction between central and peripheral retinal input may lead to the development of myopia. In order to examine the relationship between peripheral contrast sensitivity and myopia, we manipulated attentional load for foveal vision in emmetropes and myopes while observers detected targets with peripheral vision. Peripheral contrast detection thresholds were measured binocularly using vertical Gabor stimuli presented at three eccentricities (±8°, 17°, 30°) in a spatial 2 alternative forced choice task. Contrast thresholds were measured in young adult (mean age 24.5±2.6years) emmetropes (n=17; group SE: +0.19±0.32D) and myopes (n=25; group SE: -3.74±1.99D). Attention at central fixation was manipulated with: (1) a low attention task, requiring simple fixation; or (2) a high attention task, which required subjects to perform a mathematical task. We found that at 30° all subjects exhibited lower contrast sensitivity (higher thresholds). In addition, myopes (Wilcoxon, p<0.01), but not emmetropes (Wilcoxon, p=0.1), had a significant decrease in sensitivity at 30° during the high attention task. However, the attention dependent threshold increase for myopes was not significantly greater than for emmetropes (Wilcoxon, p=0.27). Attentional load did not increase thresholds at 8° or 17° for either refractive group. These data indicate that myopes experience a greater decrease in contrast sensitivity in the far periphery than emmetropes when attention is deployed in central vision. PMID:27264028

  7. The Uppsala Contrast Sensitivity Test (UCST): A fast strategy for clinical assessment of contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Malmqvist, Lars D.; Söderberg, Per G.

    2014-02-01

    Routine clinical measurement of spectral contrast sensitivity is hampered by the time consumption of current methods. We are developing a system that allows instantaneous measurement of spectral contrast sensitivity. The UCST system consists of custom software running on an iPad connected to a calibrated TFT-monitor. Twenty healthy subjects were consecutively randomized to have their spectral contrast sensitivity measured with the UCST strategy or with a Vistech VCTS 6500 chart. The examination time and the spectral contrast sensitivity, respectively, were recorded for each eye in each subject. The Vistech strategy resulted in a more extended mean examination time (CI-Vistech:+/- (0.95) = 87 +/-27 s, d.f. = 9) than the UCST strategy (CI-UCST:μ (0.95) = 13 +/-4 s, d.f. = 9), and the estimated mean difference between the two strategies indicated a difference in examination time (CI-difference:μ (0.95) = [47;106] s, d.f. = 18). The overall contrast sensitivity for each group was estimated as the contrast sensitivities for the spatial frequencies sampled, integrated over the spatial frequency band sampled. The Vistech strategy resulted in a higher estimated mean overall contrast sensitivity (CI-Vistech:μ (0.95) = 116+/-24 log rel.·log [c.·deg-1], d.f. = 9) than the UCST strategy (CIUCST: μ (0.95) = 74+/-14 log rel.·log [c.·deg-1], d.f. = 9), and the estimated mean difference between the two strategies indicated a difference in overall contrast sensitivity (CI-difference:μ (0.95) = [15;68] log rel.·log [c.·deg-1]), d.f. = 18). It is concluded that the UCST strategy measures spectral contrast sensitivity on the order of 7 times faster than the Vistech strategy. The slightly lower overall contrast sensitivity recorded for the UCST strategy appeared to be due to a limitation in dynamic range that can be overcome with improved design.

  8. Quick contrast sensitivity measurements in the periphery.

    PubMed

    Rosén, Robert; Lundström, Linda; Venkataraman, Abinaya Priya; Winter, Simon; Unsbo, Peter

    2014-01-01

    Measuring the contrast sensitivity function (CSF) in the periphery of the eye is complicated. The lengthy measurement time precludes all but the most determined subjects. The aim of this study was to implement and evaluate a faster routine based on the quick CSF method (qCSF) but adapted to work in the periphery. Additionally, normative data is presented on neurally limited peripheral CSFs. A peripheral qCSF measurement using 100 trials can be performed in 3 min. The precision and accuracy were tested for three subjects under different conditions (number of trials, peripheral angles, and optical corrections). The precision for estimates of contrast sensitivity at individual spatial frequencies was 0.07 log units when three qCSF measurements of 100 trials each were averaged. Accuracy was estimated by comparing the qCSF results with a more traditional measure of CSF. Average accuracy was 0.08 log units with no systematic error. In the second part of the study, we collected three CSFs of 100 trials for six persons in the 20° nasal, temporal, inferior, and superior visual fields. The measurements were performed in an adaptive optics system running in a continuous closed loop. The Tukey HSD test showed significant differences (p < 0.05) between all fields except between the nasal and the temporal fields. Contrast sensitivity was higher in the horizontal fields, and the inferior field was better than the superior. This modified qCSF method decreases the measurement time significantly and allows otherwise unfeasible studies of the peripheral CSF. PMID:24993017

  9. HCIT Broadband Contrast Performance Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham

    2012-01-01

    One of the important milestones of the TPF Coronagraph project is to demonstrate the ability to predict the performance sensitivities of the system at levels consistent with exo-planet detection requirement. We want to gain some general understanding about the potentials and the limitations of the current single-Deformable-Mirror (DM) High-contrast imaging testbed (HCIT) system through modeling and simulations. Specifically, we want to understand the effects of some common errors on the EFC-based control of e-field over a half dark-hole region and broadband contrast. Investigated errors include: (1) Absorbing particles on a flat-mirror (2) Defects on the Occulter surface (3) Dead actuators on the DM. We also investigated the effects of control bandwidth on the broadband contrast. We used a MACOS-based simulation algorithm which (1) combines a ray trace, diffraction model, & a broadband wavefront control algorithm (2) is capable of performing full three-dimensional near-field diffraction analysis

  10. Gain, noise, and contrast sensitivity of linear visual neurons

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    Contrast sensitivity is a measure of the ability of an observer to detect contrast signals of particular spatial and temporal frequencies. A formal definition of contrast sensitivity that can be applied to individual linear visual neurons is derived. A neuron is modeled by a contrast transfer function and its modulus, contrast gain, and by a noise power spectrum. The distributions of neural responses to signal and blank presentations are derived, and from these, a definition of contrast sensitivity is obtained. This formal definition may be used to relate the sensitivities of various populations of neurons, and to relate the sensitivities of neurons to that of the behaving animal.

  11. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  12. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-03-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,`` the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic ``S-bend`` configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  13. The Achromatic Interfero Coronagraph

    NASA Astrophysics Data System (ADS)

    Rabbia, Yves; Gay, Jean; Rivet, Jean-Pierre

    2007-04-01

    We report on the Achromatic Interfero Coronagraph, a focal imaging device which aims at rejecting the energy contribution of a point-like source set on-axis, so as to make detectable its angularly-close environment (applicable to stellar environment: circumstellar matter, faint companions, planetary systems, but also conceivably to Active Galactic Nucleii and multiple asteroïds). With AIC, starlight rejection is based on destructive interference, which allows exploration of the star's neighbourhood at an angular resolution better than the diffraction limit of the hosting telescope. Thanks to the focus crossing property of light, rejection is achromatic thus yielding a large spectral bandwidth of work. Descriptions and comments are given regarding the principle, the device itself, the constraints and limitations, and the theoretical performance. Results are presented which demonstrate the close-sensing capability and which show images of a companion obtained in laboratory and ‘on the sky’ as well. A short pictorial description of the alternative AIC concepts, CIAXE and Open-Air CIAXE, currently under study, is given. To cite this article: Y. Rabbia et al., C. R. Physique 8 (2007).

  14. Spatial Contrast Sensitivity in Adolescents with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen

    2010-01-01

    Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual…

  15. HCIT Broadband Contrast Performance Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham

    2012-01-01

    The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory employs a broadband wavefront correction algorithm called Electric Field Conjugation (EFC) to obtain the required 10-10 contrast. This algorithm works with one deformable mirror (DM) to estimate the electric-field to be controlled, and with one or multiple DM's to create a "darkhole" in a predefined region of the image plane where terrestrial planets would be found. We have investigated the effects of absorbing dust particles on a flat optic, absorbing spots on the occulting mask, dead actuators on the DM, and the effects of control bandwidth on the efficiency of the EFC algorithm in a Lyot coronagraph configuration. The structural design of the optical system as well as the parameters of various optical elements used in the analysis is drawn from those of the HCIT system that have been implemented with one DM. The simulation takes into account the surface errors of various optical elements. Results of some of these studies have been verified by actual measurements.

  16. Achromatic Interaction Point Design

    SciTech Connect

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  17. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  18. Exogenous attention enhances 2nd-order contrast sensitivity.

    PubMed

    Barbot, Antoine; Landy, Michael S; Carrasco, Marisa

    2011-05-11

    Natural scenes contain a rich variety of contours that the visual system extracts to segregate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention--the involuntary and transient capture of spatial attention--affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer's 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  19. Exogenous attention enhances 2nd-order contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2011-01-01

    Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  20. Building achromatic refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Shealy, David

    2014-10-01

    Achromatic beam shapers can provide beam shaping in a certain spectral band and are very important for various laser techniques, such as, applications based on ultra-short pulse lasers with pulse width <100 fs, confocal microscopy, multicolour holography, life sciences fluorescence techniques, where several lasers in spectrum 405-650 nm are used simultaneously, for example 405-650 nm. Conditions of energy re-distribution and zero wave aberration are strictly fulfilled in ordinary plano-aspheric lens pair beam shapers for a definite wavelength only. Hence, these beam shapers work efficiently in relatively narrow, few nm spectrum. To provide acceptable beam quality for refractive beam shaping over a wide spectrum, an achromatizing design condition should be added. Consequently, the typical beam shaper design contains more than two-lenses, to avoid any damaging and other undesirable effects the lenses of beam shaper should be air-spaced. We suggest a two-step method of designing the beam shaper: 1) achromatizing of each plano-aspheric lens using a buried achromatizing surface ("chromatic radius"), then each beam shaper component presents a cemented doublet lens, 2) "splitting" the cemented lenses and realizing air-spaced lens design using optical systems design software. This method allows for using an achromatic design principle during the first step of the design, and then, refining the design by using optimization software. We shall present examples of this design procedure for an achromatic Keplerian beam shaper and for the design of an achromatic Galilean type of beam shaper. Experimental results of operation of refractive beam shapers will be presented as well.

  1. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  2. Long-Term Occupational Exposure to Organic Solvents Affects Color Vision, Contrast Sensitivity and Visual Fields

    PubMed Central

    Costa, Thiago Leiros; Barboni, Mirella Telles Salgueiro; Moura, Ana Laura de Araújo; Bonci, Daniela Maria Oliveira; Gualtieri, Mirella; de Lima Silveira, Luiz Carlos; Ventura, Dora Fix

    2012-01-01

    The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6±6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24–2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann–Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9°, 15° and 21° of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho = 0.52; p<0.05), perimetry results in the fovea (rho = −0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho = −0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created. PMID:22916187

  3. Transfer of contrast sensitivity in linear visual networks

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1992-01-01

    Contrast sensitivity is a useful measure of the ability of an observer to distinguish contrast signals from noise. Although usually applied to human observers, contrast sensitivity can also be defined operationally for individual visual neurons. In a model linear neuron consisting of a filter and noise source, this operational measure is a function of filter gain, noise power spectrum, signal duration, and a performance criterion. This definition allows one to relate the sensitivities of linear neurons at different levels in the visual pathway. Mathematical formulas describing these relationships are derived, and the general model is applied to the specific problem of relating the sensitivities of parvocellular LGN neurons and cortical simple cells in the primate.

  4. Achromatic axially symmetric wave plate.

    PubMed

    Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru

    2012-12-31

    An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751

  5. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  6. Development of infant contrast sensitivity to chromatic stimuli.

    PubMed

    Morrone, M C; Burr, D C; Fiorentini, A

    1993-12-01

    We have monitored the development of contrast sensitivity to equiluminant red-green chromatic patterns by monitoring visual evoked potentials (VEPs) in 13 infants. The results confirm our previous report [Morrone, Burr and Fiorentini, Proceedings of the Royal Society B, 242 (1990a)] that, before 7-8 weeks of age, there was no response to purely chromatic stimuli, while at the same age luminance stimuli of 20% contrast produced reliable responses. At all ages (even before the onset of a chromatic response) the colour mixture to yield equiluminance was similar to that of adults, suggesting that the relative proportion and efficacy of medium- and long-wave cones is similar for infants as for adults. For both luminance and chromatic stimuli, amplitude increased roughly linearly with log-contrast, so sensitivity thresholds could be predicted by linear extrapolation to the abscissa. Detailed contrast sensitivity curves were measured for four infants at various ages. The results show that luminance and chromatic contrast sensitivity develop independently at different rates, probably reflecting differential development of postreceptoral neural mechanisms. PMID:8249333

  7. Stimulus motion improves spatial contrast sensitivity in budgerigars (Melopsittacus undulatus).

    PubMed

    Haller, Nicola Kristin; Lind, Olle; Steinlechner, Stephan; Kelber, Almut

    2014-09-01

    Birds are generally thought to have excellent vision with high spatial resolution. However, spatial contrast sensitivity of birds for stationary targets is low compared to other animals with similar acuity, such as mammals. For fast flying animals body stability and coordination are highly important, and visual motion cues are known to be relevant for flight control. We have tested five budgerigars (Melopsittacus undulatus) in behavioural discrimination experiments to determine whether or not stimulus motion improves contrast sensitivity. The birds were trained to distinguish between a homogenous grey field and sine-wave gratings of spatial frequencies between 0.48 and 6.5 cyc/deg, and Michelson contrasts between 0.7% and 99%. The gratings were either stationary or drifting with velocities between 0.9 and 13 deg/s. Budgerigars were able to discriminate patterns of lower contrast from grey when the gratings were drifting, and the improvement in sensitivity was strongest at lower spatial frequencies and higher drift velocities. Our findings indicate that motion cues can have positive effects on visual perception of birds. This is similar to earlier results on human vision. Contrast sensitivity, tested solely with stationary stimuli, underestimates the sensory capacity of budgerigars flying through their natural environments. PMID:25072853

  8. Laser speckle contrast imaging is sensitive to advective flux

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Unlike laser Doppler flowmetry, there has yet to be presented a clear description of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to. Herein, we present a theoretical basis for demonstrating that LSCI is sensitive to total flux and, in particular, the summation of diffusive flux and advective flux. We view LSCI from the perspective of mass transport and briefly derive the diffusion with drift equation in terms of an LSCI experiment. This equation reveals the relative sensitivity of LSCI to both diffusive flux and advective flux and, thereby, to both concentration and the ordered velocity of the scattering particles. We demonstrate this dependence through a short series of flow experiments that yield relationships between the calculated speckle contrast and the concentration of the scatterers (manifesting as changes in scattering coefficient), between speckle contrast and the velocity of the scattering fluid, and ultimately between speckle contrast and advective flux. Finally, we argue that the diffusion with drift equation can be used to support both Lorentzian and Gaussian correlation models that relate observed contrast to the movement of the scattering particles and that a weighted linear combination of these two models is likely the most appropriate model for relating speckle contrast to particle motion.

  9. The contrast sensitivity function of the praying mantis Sphodromantis lineola.

    PubMed

    Nityananda, Vivek; Tarawneh, Ghaith; Jones, Lisa; Busby, Natalie; Herbert, William; Davies, Robert; Read, Jenny C A

    2015-08-01

    The detection of visual motion and its direction is a fundamental task faced by several visual systems. The motion detection system of insects has been widely studied with the majority of studies focussing on flies and bees. Here we characterize the contrast sensitivity of motion detection in the praying mantis Sphodromantis lineola, an ambush predator that stays stationary for long periods of time while preying on fast-moving prey. In this, its visual behaviour differs from previously studied insects and we might therefore expect its motion detection system to differ from theirs. To investigate the sensitivity of the mantis we analyzed its optomotor response in response to drifting gratings with different contrasts and spatio-temporal frequencies. We find that the contrast sensitivity of the mantis depends on the spatial and temporal frequencies present in the stimulus and is separably tuned to spatial and temporal frequency rather than specifically to object velocity. Our results also suggest that mantises are sensitive to a broad range of velocities, in which they differ from bees and are more similar to hoverflies. We discuss our results in relation to the contrast sensitivities of other insects and the visual ecology of the mantis. PMID:25894490

  10. HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham

    2013-01-01

    Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.

  11. Meeting the UK driving vision standards with reduced contrast sensitivity.

    PubMed

    Rae, S; Latham, K; Katsou, M F

    2016-01-01

    PurposeThe visual standard to hold a UK driver's license since 2012 includes visual acuity (VA) measured indoors and the ability to read a car numberplate outdoors. Individuals with reduced contrast sensitivity may have greater visual difficulties outdoors. The agreement between the two tests in the presence of combined reduction in contrast sensitivity and VA was investigated.MethodsSimulation glasses ('sim-specs') were used to reduce both high-contrast VA and contrast sensitivity (CS). Following evaluation of the influence of sim-specs on VA and CS, levels 2 to 4 were chosen to give a range of VAs on either side of the driving standard of 6/12. Sixty-two participants wearing sim-specs then had VA tested with Snellen and ETDRS charts indoors, and ability to read a numberplate assessed outdoors as per DVLA regulations.ResultsSim-specs reduced VA and CS by ~0.10 logMAR VA per 0.10 logCS. The sensitivity of test chart VA <6/12 to correctly predict failure on the numberplate was 61% for Snellen and 56% for ETDRS.ConclusionFalse-negative and -positive rates were higher than in a previous study with uncorrected refractive error only. Reduced CS increased the lack of agreement between the two driving vision standards, which likely occurs as the VA test is performed indoors and the numberplate test outdoors. The increased likelihood of failing the numberplate test even though VA is 6/12 or better needs to be considered when advising patients on fitness to drive who have ocular disease such as cataract. PMID:26471119

  12. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos; Kayran, Dmitry; Litvinenko, Vladimir; MacKay, William W.

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  13. Noise provides new insights on contrast sensitivity function.

    PubMed

    Chen, Ge; Hou, Fang; Yan, Fang-Fang; Zhang, Pan; Xi, Jie; Zhou, Yifeng; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-01-01

    Sensitivity to luminance difference, or contrast sensitivity, is critical for animals to survive in and interact with the external world. The contrast sensitivity function (CSF), which measures visual sensitivity to spatial patterns over a wide range of spatial frequencies, provides a comprehensive characterization of the visual system. Despite its popularity and significance in both basic research and clinical practice, it hasn't been clear what determines the CSF and how the factors underlying the CSF change in different conditions. In the current study, we applied the external noise method and perceptual template model to a wide range of external noise and spatial frequency (SF) conditions, and evaluated how the various sources of observer inefficiency changed with SF and determined the limiting factors underlying the CSF. We found that only internal additive noise and template gain changed significantly with SF, while the transducer non-linearity and coefficient for multiplicative noise were constant. The 12-parameter model provided a very good account of all the data in the 200 tested conditions (86.5%, 86.2%, 89.5%, and 96.4% for the four subjects, respectively). Our results suggest a re-consideration of the popular spatial vision model that employs the CSF as the front-end filter and constant internal additive noise across spatial frequencies. The study will also be of interest to scientists and clinicians engaged in characterizing spatial vision deficits and/or developing rehabilitation methods to restore spatial vision in clinical populations. PMID:24626135

  14. An improved image sharpness assessment method based on contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Tian, Yan; Yin, Yili

    2015-10-01

    An image sharpness assessment method based on the property of Contrast Sensitivity Function (CSF) was proposed to realize the sharpness assessment of unfocused image. Firstly, image was performed the two-dimensional Discrete Fourier Transform (DFT), and intermediate frequency coefficients and high frequency coefficients are divided into two parts respectively. Secondly the four parts were performed the inverse Discrete Fourier Transform (IDFT) to obtain subimages. Thirdly, using Range Function evaluates the four sub-image sharpness value. Finally, the image sharpness is obtained through the weighted sum of the sub-image sharpness value. In order to comply with the CSF characteristics, weighting factor is setting based on the Contrast Sensitivity Function. The new algorithm and four typical evaluation algorithm: Fourier, Range , Variance and Wavelet are evaluated based on the six quantitative evaluation index, which include the width of steep part of focusing curve, the ration of sharpness, the steepness, the variance of float part of focusing curve, the factor of local extreme and the sensitivity. On the other hand, the effect of noise, and image content on algorithm is analyzed in this paper. The experiment results show that the new algorithm has better performance of sensitivity, anti-nose than the four typical evaluation algorithms. The evaluation results are consistent with human visual characteristics.

  15. Contrast sensitivity and the detection of moving patterns and features.

    PubMed

    O'Carroll, David C; Wiederman, Steven D

    2014-01-01

    Theories based on optimal sampling by the retina have been widely applied to visual ecology at the level of the optics of the eye, supported by visual behaviour. This leads to speculation about the additional processing that must lie in between-in the brain itself. But fewer studies have adopted a quantitative approach to evaluating the detectability of specific features in these neural pathways. We briefly review this approach with a focus on contrast sensitivity of two parallel pathways for motion processing in insects, one used for analysis of wide-field optic flow, the other for detection of small features. We further use a combination of optical modelling of image blur and physiological recording from both photoreceptors and higher-order small target motion detector neurons sensitive to small targets to show that such neurons operate right at the limits imposed by the optics of the eye and the noise level of single photoreceptors. Despite this, and the limitation of only being able to use information from adjacent receptors to detect target motion, they achieve a contrast sensitivity that rivals that of wide-field motion sensitive pathways in either insects or vertebrates-among the highest in absolute terms seen in any animal. PMID:24395970

  16. Contrast sensitivity and the detection of moving patterns and features

    PubMed Central

    O'Carroll, David C.; Wiederman, Steven D.

    2014-01-01

    Theories based on optimal sampling by the retina have been widely applied to visual ecology at the level of the optics of the eye, supported by visual behaviour. This leads to speculation about the additional processing that must lie in between—in the brain itself. But fewer studies have adopted a quantitative approach to evaluating the detectability of specific features in these neural pathways. We briefly review this approach with a focus on contrast sensitivity of two parallel pathways for motion processing in insects, one used for analysis of wide-field optic flow, the other for detection of small features. We further use a combination of optical modelling of image blur and physiological recording from both photoreceptors and higher-order small target motion detector neurons sensitive to small targets to show that such neurons operate right at the limits imposed by the optics of the eye and the noise level of single photoreceptors. Despite this, and the limitation of only being able to use information from adjacent receptors to detect target motion, they achieve a contrast sensitivity that rivals that of wide-field motion sensitive pathways in either insects or vertebrates—among the highest in absolute terms seen in any animal. PMID:24395970

  17. Effects of luminance and spatial noise on interferometric contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Coletta, Nancy J.; Sharma, Vineeta

    1995-10-01

    Optical properties of the eye contribute to the reduced visibility of spatial patterns at low luminance. To study the limits of spatial vision when optical factors are minimized, we measured contrast-sensitivity functions (CSF's) for 543.5-nm laser interference fringes imaged directly on the retina. Measurements were made in the fovea at four luminance levels, ranging from 0.3 to 300 photopic trolands (Td). At each luminance the fraction of coherent light in the stimulus pattern was varied to assess the masking effects of laser speckle, which is visible as spatial noise in fields of coherent light. Compared with published CSF's obtained under natural viewing conditions, interferometric CSF's were similar in height but broader, with the range of visibility being extended to higher spatial frequencies. The masking effects of speckle were greatest at the highest luminance and were negligible at the lowest luminance. For low coherent fractions, contrast sensitivity improved over the entire luminance range at a rate consistent with a square-root law; with purely coherent light, sensitivity tended to level off at approximately 30 Td because of speckle masking. The results indicate that the optical quality of the eye reduces the spatial bandwidth of vision even at luminances near the foveal threshold. The change in interference fringe visibility with luminance is consistent with noise-limited behavior, and the masking

  18. Contrast sensitivity perimetry data from adults free of eye disease.

    PubMed

    Swanson, William H; Dul, Mitchell W; Horner, Douglas G; Malinovsky, Victor E

    2016-09-01

    This data article contains data referenced in "Individual Differences in the Shape of the Nasal Visual Field" [1]. The data were gathered from volunteers free of eye disease ages 21-85 who were tested with Contrast Sensitivity Perimetry (CSP), which uses a stimulus resistant to effects of defocus and reduced retinal illumination. Some subjects were tested only once or a few times, and others were part of a longitudinal cohort with as many as 10 tests. Parameters from maximum likelihood estimation of psychophysical threshold at each tested location are included in the data file, along with the participant׳s sex, age at time of test, the center of their physiological blind spot, the duration of test, the time of day that the test was begun, and the starting contrast used for the psychophysical staircases. PMID:27437439

  19. Rapid Assessment of Contrast Sensitivity with Mobile Touch-screens

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2013-01-01

    The availability of low-cost high-quality touch-screen displays in modern mobile devices has created opportunities for new approaches to routine visual measurements. Here we describe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. We will demonstrate a prototype for Apple Computer's iPad-iPod-iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing,

  20. Video Quality Assessment Using Spatio-Velocity Contrast Sensitivity Function

    NASA Astrophysics Data System (ADS)

    Hirai, Keita; Tumurtogoo, Jambal; Kikuchi, Ayano; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    Due to the development and popularization of high-definition televisions, digital video cameras, Blu-ray discs, digital broadcasting, IP television and so on, it plays an important role to identify and quantify video quality degradations. In this paper, we propose SV-CIELAB which is an objective video quality assessment (VQA) method using a spatio-velocity contrast sensitivity function (SV-CSF). In SV-CIELAB, motion information in videos is effectively utilized for filtering unnecessary information in the spatial frequency domain. As the filter to apply videos, we used the SV-CSF. It is a modulation transfer function of the human visual system, and consists of the relationship among contrast sensitivities, spatial frequencies and velocities of perceived stimuli. In the filtering process, the SV-CSF cannot be directly applied in the spatial frequency domain because spatial coordinate information is required when using velocity information. For filtering by the SV-CSF, we obtain video frames separated in spatial frequency domain. By using velocity information, the separated frames with limited spatial frequencies are weighted by contrast sensitivities in the SV-CSF model. In SV-CIELAB, the criteria are obtained by calculating image differences between filtered original and distorted videos. For the validation of SV-CIELAB, subjective evaluation experiments were conducted. The subjective experimental results were compared with SV-CIELAB and the conventional VQA methods such as CIELAB color difference, Spatial-CIELAB, signal to noise ratio and so on. From the experimental results, it was shown that SV-CIELAB is a more efficient VQA method than the conventional methods.

  1. Relationship among fMRI, contrast sensitivity and visual acuity.

    PubMed

    Leguire, L E; Algaze, A; Kashou, N H; Lewis, J; Rogers, G L; Roberts, C

    2011-01-01

    The purpose of this study was to ascertain whether visual acuity or contrast sensitivity function (CSF) is proportional to visual cortical function based on fMRI volume and level of activation or Z-score. Forced choice procedures were utilized to measure the monocular log minimal angle of resolution (logMAR) visual acuity and CSF. The CSF data were collapsed into a single index by the use of weighted mean contrast sensitivity (WMCS), being defined as the mean of the products of each spatial frequency multiplied by its corresponding contrast sensitivity. fMRI data had been obtained with a 1.5 T GE Signa scanner with visual stimuli including 1.0 and 2.0 c/deg vertical sinusoidal gratings. Subjects consisted of eight normal adults and five amblyopic patients, with the amblyopic subjects added to gauge whether the outcome was due to a restricted range of scores or the small number of study participants. In normal subjects, the fMRI volume and level of activation exhibited no statistically significant correlation with visual acuity at P<0.05. Statistically significant correlations were obtained between WMCS and fMRI volume (R=0.765, P=0.027) and fMRI level of activation (R=0.645, P=0.007), with right eye stimulation using the 1.0 c/deg grating. On the whole, statistically significant correlations between WMCS and fMRI parameters were maintained when subject age was held constant and when data from the five amblyopic subjects were included to expand the range of values and increase the number of data sets for analysis. fMRI volume and Z-score were more closely associated with the CSF, as defined by WMCS, than visual acuity. The results suggest that the CSF reflects the underlying visual cortical cells responsible for fMRI volume and the level of activation. PMID:21035430

  2. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments

    NASA Astrophysics Data System (ADS)

    Gudasz, Cristian; Sobek, Sebastian; Bastviken, David; Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Temperature alone explains a great amount of variation in sediment organic carbon (OC) mineralization. Studies on decomposition of soil OC suggest that (1) temperature sensitivity differs between the fast and slowly decomposition OC and (2) over time, decreasing soil respiration is coupled with increase in temperature sensitivity. In lakes, autochthonous and allochthonous OC sources are generally regarded as fast and slowly decomposing OC, respectively. Lake sediments with different contributions of allochthonous and autochthonous components, however, showed similar temperature sensitivity in short-term incubation experiments. Whether the mineralization of OC in lake sediments dominated by allochthonous or autochthonous OC has different temperature sensitivity in the longer term has not been addressed. We incubated sediments from two boreal lakes that had contrasting OC origin (allochthonous versus autochthonous), and OC characteristics (C/N ratios of 21 and 10) at 1, 3, 5, 8, 13, and 21°C for five months. Compared to soil and litter mineralization, sediment OC mineralization rates were low in spite of low apparent activation energy (Ea). The fraction of the total OC pool that was lost during five months varied between 0.4 and 14.8%. We estimate that the sediment OC pool not becoming long-term preserved was degraded with average apparent turnover times between 3 and 32 years. While OC mineralization was strongly dependent on temperature as well as on OC composition and origin, temperature sensitivity was similar across lakes and over time. We suggest that the temperature sensitivity of OC mineralization in lake sediments is similar across systems within the relevant seasonal scales of OC supply and degradation.

  3. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts

  4. Context-sensitive underspecification and the acquisition of phonemic contrasts.

    PubMed

    Dinnsen, D A

    1996-02-01

    Several competing proposals for the (under)specification of phonological representations are evaluated against the facts of phonemic acquisition. Longitudinal evidence relating to the emergence of a voice contrast in the well-documented study of Amahl (from age 2;2 to 3;11) is reconsidered. Neither contrastive specification nor context-free radical underspecification is capable of accounting for the facts. The problem is in the characterization of the change in the status of a feature from being noncontrastive and conditioned by context at one stage to being contrastive with phonetic effects that diffuse gradually through the lexicon. Both frameworks must treat as accidental the persistence of the early substitution pattern and require the postulation of wholesale changes in underlying representations, where these changes do not accord well with the observed phonetic changes or with the facts available to the learner. Context-sensitive radical underspecification provides a plausible account of each stage and the transition between stages with minimal grammar change. PMID:8733561

  5. Contrast Sensitivity versus Visual Evoked Potentials in Multiple Sclerosis

    PubMed Central

    Shandiz, Javad Heravian; Nourian, Abbas; Hossaini, Mercedeh Bahr; Moghaddam, Hadi Ostadi; yekta, Abbas-Ali; Sharifzadeh, Laleh; Marouzi, Parviz

    2010-01-01

    Purpose To compare the Cambridge contrast sensitivity (CS) test and visual evoked potentials (VEP) in detecting visual impairment in a population of visually symptomatic and asymptomatic patients affected by clinically definite multiple sclerosis (MS). Methods Fifty patients (100 eyes) presenting with MS and 25 healthy subjects (50 eyes) with normal corrected visual acuity were included in this study. CS was determined using the Cambridge Low Contrast Grating test and VEP was obtained in all eyes. Findings were evaluated in two age strata of 10–29 and 30–49 years. Results Of the 42 eyes in the 10–29 year age group, CS was abnormal in 22 (52%), VEP was also abnormal in 22 (52%), but only 12 eyes (28%) had visual symptoms. Of the 58 eyes in the 30–49 year group, CS was abnormal in 7 (12%), VEP was abnormal in 34 (58%), while only 11 eyes were symptomatic. No single test could detect all of the abnormal eyes. Conclusion The Cambridge Low Contrast Grating test is useful for detection of clinical and subclinical visual dysfunction especially in young patients with multiple sclerosis. Nevertheless, only a combination of CS and VEP tests can detect most cases of visual dysfunction associated with MS. PMID:22737353

  6. Achromatic and Uncoupled Medical Gantry

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Kayran, D.; Litvinenko, V.

    One of the functions of a medical gantry is to irradiate a tumor from different angles to reduce the dose received by the healthy tissue which surrounds the tumor. The rotation of the gantry rotates also its quadrupoles that focus the beam, as a result the beam is "coupled" in the sense that the horizontal motion of the beam particles is affected by the vertical motion and vice-versa therefore the beam spot size at the tumor may vary with the angular orientation of the gantry. Although such a beam-coupling is inevitable in a rotated gantry in which the horizontal plane is not the symmetry plane of the quadrupoles, it is possible to find a solution that the optics of the gantry"appears uncoupled" at any angular orientation of the gantry. As we show in the paper, the condition of an uncoupled gantry is equivalent to an uncoupled linear-beam-transport-matrix which is independent of the angular orientation of the gantry, therefore the beam spot size at the location of the tumor is independent of the orientation of the gantry. In this paper we present the theoretical basis to generate the beam optics for a gantry which is constrained to provide uncoupled and also achromatic beamtransport to the location of the tumor. In addition we present the layout of the magnetic elements and the optics of a medical gantrywhich satisfies the achromaticity and uncoupled conditions.

  7. Measurement of dark adapted foveal contrast sensitivity: effect of age

    NASA Astrophysics Data System (ADS)

    Mandel, Yossi; Belkin, Michael; Yehezkel, Oren; Rosner, Mordechai; Polat, Uri

    2005-04-01

    Contrast sensitivity function (CSF) measures the overall sensitivity of the visual system from the retina to the visual cortex. There are numerous diseases, clinical and physiological conditions as well as aging processes that can influence the CSF. METHODS: The 22 subjects (8 male and 14 females) ranging in age from 19 to 75 years that participated in the study were divided into two groups - below and above 50 years of age. The older patients were all pseudophakic. All subjects underwent complete eye examination and were refracted and corrected for the trial's working distance of 1.5 meter. Scotopic CSF was tested monocularly after 3 minutes of dark adaptation by a computerized method using Gabor patches as targets with spatial frequencies between 1.5-6 cycles per degree (cpd). The test was conducted in a completely darkened room, with the monitor covered with neutral density filters having a luminance of 0.35 cd/m2. RESULTS: The mean CSF for the older age group was 11.6, 10.3, 5.5, 2.9 for 1.5, 2.25, 3, 6 cpd respectively while the mean CSF for the younger age was 20.7, 9.8, 3.8, for the frequencies of 1.5, 3, 6 cpd respectively. Univariant analysis had found the association between CSF and both age group and spatial frequencies to be statistically significant (p=0.027, p<0.001 for age group and spatial frequency, respectively). A fair negative correlation between age and the dark-adapted contrast sensitivity was calculated (correlation coefficient=-0.35, p=0.004, adjusted for spatial frequency). CONCLUSION: CSF under nearly scotopic conditions declines with age, a decline that can only partially explained by preneuronal factors. In both age groups the CSF declines with increasing spatial frequency. In most of the older subjects the 6 cpd Gabor patches were too difficult to detect. This selective CSF loss may reflect either reduction in cone spacing, or decreased efficiency of neural processing from the fovea to the cortex. The fact that the younger subjects are

  8. Contrast sensitivity function calibration based on image quality prediction

    NASA Astrophysics Data System (ADS)

    Han, Yu; Cai, Yunze

    2014-11-01

    Contrast sensitivity functions (CSFs) describe visual stimuli based on their spatial frequency. However, CSF calibration is limited by the size of the sample collection and this remains an open issue. In this study, we propose an approach for calibrating CSFs that is based on the hypothesis that a precise CSF model can accurately predict image quality. Thus, CSF calibration is regarded as the inverse problem of image quality prediction according to our hypothesis. A CSF could be calibrated by optimizing the performance of a CSF-based image quality metric using a database containing images with known quality. Compared with the traditional method, this would reduce the work involved in sample collection dramatically. In the present study, we employed three image databases to optimize some existing CSF models. The experimental results showed that the performance of a three-parameter CSF model was better than that of other models. The results of this study may be helpful in CSF and image quality research.

  9. Perceptual development of phoneme contrasts: how sensitivity changes along acoustic dimensions that contrast phoneme categories.

    PubMed

    Heeren, W F L; Schouten, M E H

    2008-10-01

    Listeners discriminate acoustic differences between phoneme categories at a higher level than similarly sized differences within phoneme categories. The question this paper aims to answer is how this pattern in perceptual sensitivity develops along an acoustic dimension that contrasts two non-native speech sounds: through acquired distinctiveness, through acquired similarity, or through a combination of the two. A pretest-training-post-test experiment was designed to study perceptual development directly, i.e., by including (i) a discrimination task to measure perceptual sensitivity, (ii) a transfer test to ensure language learning instead of stimulus learning, and (iii) a control group to exclude task repetition as an explanation of improvement. It is shown that the typical peak in perceptual sensitivity near a phoneme boundary that native listeners show is not found in relatively inexperienced language learners, despite their ability to classify a continuum in a nativelike way after short laboratory training. Experiment II indicates that a discrimination peak may be achieved by language learners, but only after much more language experience than short-term laboratory training can offer. Furthermore, reasons are given why classification improvement in the laboratory should not be taken as evidence for (i) increased discrimination of the newly learned phonemes and (ii) learning of phoneme representations. PMID:19062867

  10. Rhythmic oscillations of visual contrast sensitivity synchronized with action.

    PubMed

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2015-05-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ∼500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  11. Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action

    PubMed Central

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2016-01-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  12. Radiometric sensitivity contrast metrics for hyperspectral remote sensors

    NASA Astrophysics Data System (ADS)

    Silny, John F.; Zellinger, Lou

    2014-09-01

    This paper discusses the calculation, interpretation, and implications of various radiometric sensitivity metrics for Earth-observing hyperspectral imaging (HSI) sensors. The most commonly used sensor performance metric is signal-to-noise ratio (SNR), from which additional noise equivalent quantities can be computed, including: noise equivalent spectral radiance (NESR), noise equivalent delta reflectance (NEΔρ), noise equivalent delta emittance (NEΔƐ), and noise equivalent delta temperature (NEΔT). For hyperspectral sensors, these metrics are typically calculated from an at-aperture radiance (typically generated by MODTRAN) that includes both target radiance and non-target (atmosphere and background) radiance. Unfortunately, these calculations treat the entire at-aperture radiance as the desired signal, even when the target radiance is only a fraction of the total (such as when sensing through a long or optically dense atmospheric path). To overcome this limitation, an augmented set of metrics based on contrast signal-to-noise ratio (CNSR) is developed, including their noise equivalent counterparts (CNESR, CNEΔρ, CNEΔƐ, and CNEΔT). These contrast metrics better quantify sensor performance in an operational environment that includes remote sensing through the atmosphere.

  13. Gadolinium nanoparticles and contrast agent as radiation sensitizers.

    PubMed

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist(®) in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL(-1)), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly 'energy dependent' for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs. PMID:25988839

  14. Gadolinium nanoparticles and contrast agent as radiation sensitizers

    NASA Astrophysics Data System (ADS)

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F.; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist® in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL-1), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly ‘energy dependent’ for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs.

  15. Dichoptic training improves contrast sensitivity in adults with amblyopia.

    PubMed

    Li, Jinrong; Spiegel, Daniel P; Hess, Robert F; Chen, Zidong; Chan, Lily Y L; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2015-09-01

    Dichoptic training is designed to promote binocular vision in patients with amblyopia. Initial studies have found that the training effects transfer to both binocular (stereopsis) and monocular (recognition acuity) visual functions. The aim of this study was to assess whether dichoptic training effects also transfer to contrast sensitivity (CS) in adults with amblyopia. We analyzed CS data from 30 adults who had taken part in one of two previous dichoptic training studies and assessed whether the changes in CS exceeded the 95% confidence intervals for change based on test-retest data from a separate group of observers with amblyopia. CS was measured using Gabor patches (0.5, 3 and 10cpd) before and after 10days of dichoptic training. Training was delivered using a dichoptic video game viewed through video goggles (n=15) or on an iPod touch equipped with a lenticular overlay screen (n=15). In the iPod touch study, training was combined with anodal transcranial direct current stimulation of the visual cortex. We found that dichoptic training significantly improved CS across all spatial frequencies tested for both groups. These results suggest that dichoptic training modifies the sensitivity of the neural systems that underpin monocular CS. PMID:25676883

  16. Sensitivity, noise and quantitative model of Laser Speckle Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai

    In the dissertation, I present several studies on Laser Speckle Contrast Imaging (LSCI). The two major goals of those studies are: (1) to improve the signal-noise-ratio (SNR) of LSCI so it can be used to detect small blood flow change due to brain activities; (2) to find a reliable quantitative model so LSCI results can be compared among experiments and subjects and even with results from other blood flow monitoring techniques. We sought to improve SNR in the following ways: (1) We investigated the relationship between exposure time and the sensitivities of LSCI. We found that relative sensitivity reaches its maximum at an exposure time of around 5 ms. (2) We studied the relationship between laser speckle and camera aperture stop, which is actually the relationship between laser speckle and speckle/pixel size ratio. In general, speckle and pixel size should be approximately 1.5 - 2 to reach the maximum of detection factor beta as well as speckle contrast (SC) value and absolute sensitivity. This is also an important study for quantitative model development. (3) We worked on noise analysis and modeling. Noise affects both SNR and quantitative model. Usually random noise is more critical for SNR analysis. The main random noises in LSCI are statistical noise and physiological noise. Some physiological noises are caused by the small motions induced by heart beat or breathing. These are periodic and can be eliminated using methods discussed in this dissertation. Statistical noise is more fundamental and cannot be eliminated entirely. However it can be greatly reduced by increasing the effective pixel number N for speckle contrast processing. To develop the quantitative model, we did the following: (1) We considered more experimental factors in the quantitative model and removed several ideal case assumptions. In particular, in our model we considered the general detection factor beta, static scatterers and systematic noise. A simple calibration procedure is suggested

  17. Behavioral measurement of temporal contrast sensitivity development in macaque monkeys (Macaca nemestrina)

    PubMed Central

    Stavros, Kara A.; Kiorpes, Lynne

    2009-01-01

    We measured the developmental time course for temporal contrast sensitivity in macaque monkeys. The animals, aged 5 wks to 4 yrs, detected an unpatterned field of light sinusoidally modulated over time at frequencies ranging from 1 to 40 Hz. Young infants showed reduced sensitivity for all frequencies, and a reduced range of detectable frequencies. Sensitivity to high and low frequencies developed at different rates, but the shape of the temporal contrast sensitivity function did not change significantly with age. Temporal contrast sensitivity matures earlier than spatial contrast sensitivity. The development of high, but not low, frequency sensitivity may be limited by maturation of the magnocellular pathway. PMID:18406441

  18. Achromatic phase shifts utilizing dielectric plates for nulling interferometery

    NASA Astrophysics Data System (ADS)

    Morgan, R. M.; Burge, J. M.

    1998-12-01

    Schemes for detecting planets around other stars using interferometery have been developed which rely on a half wave phase delay to shift the central constructive fringe of an interferometer to a deep, destructive null fringe. To achieve the sensitivity and spectroscopy desired for exo-planets observations, such a null must be achromatic over a broad spectral region. One method for creating such a half wave phase delay achromatically involves the use of pairs of dielectric, plane parallel plates, analogous to the use of two types of glass in an achromatic lens. An analysis of the technique is presented with solutions using single plates to achieve null fringes to a cancellation of 10 exp -4 in the visible, near infrared, and mid infrared for null. Solutions using two matched materials show that nulls to a depth of 10 exp -6 are achievable in 2 um bands in the 7-17 um regime, or to a depth of 10 exp -5 over the entire 7-17 um band. Experimental results using a single plate of BK7 in the visible spectrum verify the technique.

  19. Spatial vision of the achromat: spatial frequency and orientation-specific adaptation.

    PubMed Central

    Greenlee, M W; Magnussen, S; Nordby, K

    1988-01-01

    1. The psychophysical technique of selective adaptation to stationary sine-wave gratings of varying spatial frequency and orientation was used to investigate the central processing of spatial information in the visual system of the complete achromat. 2. For adapting spatial frequencies of 1 and 2 cycles/deg, the spatial frequency and orientation selectivity of contrast threshold elevation is similar for achromatic and trichromatic vision. 3. For adapting frequencies below 1 cycle/deg, the achromat shows threshold elevations of normal magnitude with symmetrical spatial frequency and orientation tuning for adapting frequencies as low as 0.09 cycles/deg with 'bandwidth' estimates similar to those found at high frequencies in the trichromat. Below 0.66 cycles/deg no after-effect could be obtained in the trichromat, and the frequency tuning at 0.66 cycles/deg was skewed towards higher frequencies. 4. The interocular transfer of low-frequency adaptation in the achromat was 50%, which is the same value obtained at higher frequencies. 5. The time course of the decay of low spatial frequency adaptation in the achromat was similar to that found at higher frequencies. 6. Control experiments show no low-frequency adaptation in peripheral vision or in central vision in the dark-adapted trichromat indicating that low spatial frequency adaptation cannot be elicited through the rod system of the trichromat. 7. It is proposed that the observed range shift of adaptable spatial frequency mechanisms in the achromat's visual cortex is the result of an arrest at an early stage of sensory development. The visual cortex of the achromat is comparable, with respect to spatial processing, to that of the young, visually normal human infant. PMID:3261791

  20. End stopping in V1 is sensitive to contrast

    PubMed Central

    Yazdanbakhsh, Arash; Livingstone, Margaret S

    2009-01-01

    Common situations that result in different perceptions of grouping and border ownership, such as shadows and occlusion, have distinct sign-of-contrast relationships at their edge-crossing junctions. Here we report a property of end stopping in V1 that distinguishes among different sign-of-contrast situations, thereby obviating the need for explicit junction detectors. We show that the inhibitory effect of the end zones in end-stopped cells is highly selective for the relative sign of contrast between the central activating stimulus and stimuli presented at the end zones. Conversely, the facilitatory effect of end zones in length-summing cells is not selective for the relative sign of contrast between the central activating stimulus and stimuli presented at the end zones. This finding indicates that end stopping belongs in the category of cortical computations that are selective for sign of contrast, such as direction selectivity and disparity selectivity, but length summation does not. PMID:16633342

  1. Machine vision based on the concept of contrast sensitivity of the human eye

    NASA Astrophysics Data System (ADS)

    Bezzubik, Vitali; Belashenkov, Nikolai; Vdovin, Gleb

    2014-09-01

    The model of contrast sensitivity function (CSF) of machine vision system, based on the CSF of the human visual system is proposed. By analogy with the human eye, we employ the concept of ganglion cell receptive field to the artificial light-sensitive elements. By further following this concept, we introduced quantative metrics of local and global contrast of digital image. We suggested that the contrast sensitivity threshold forms an iso-line in the parameter space contrast - spatial frequency. The model, implemented in a computer vision system, has been compared to the results of contrast sensitivity research, conducted directly with the human visual system, and demonstrated a good match.

  2. Tritan colour contrast sensitivity function in refractive multifocal intraocular lenses

    PubMed Central

    Pieh, S.; Hanselmayer, G.; Lackner, B.; Marvan, P.; Grechenig, A.; Weghaupt, H.; Vass, C.; Skorpik, C.

    2001-01-01

    AIMS—To compare tritan colour contrast sensitivity (CCS), without and with glare, in patients with refractive multifocal intraocular lenses (IOLs) and with monofocal intraocular lenses.
METHODS—Tritan CCS was determined (Moorfields Vision System, CH Electronics) in 15 eyes (14 patients, 75.7 (±6.6) years) with a refractive multifocal IOL (Allergan SA 40N) and in 11 eyes (10 patients, 73.7 (±6.4) years) with a monofocal IOL (Allergan SI 40 NB). Measurements were made monocularly under mesopic conditions at a distance of 2 metres from the monitor with best distance refraction plus 0.5 D at 0.5, 1, 3, 6, 11.4, and 22.8 cycles per degree (cpd). The test was then repeated for the multifocal IOLs, adding minus 2.5 D to the best distance refraction to force the patient to use the near focus. Both lenses were also investigated under glare conditions with the same set-up and using the brightness acuity tester (BAT).
RESULTS—The tritan CCS function without glare in multifocal lenses through the distance focus was nearly identical to that through the near focus. The following statistically significant differences were measured: the CCS function without glare for the multifocal lens was worse at 0.5 cpd and 1.0 cpd than that of the monofocal lens. In CCS testing of the multifocal group with glare at 6 cpd, the results through the distance focus were better than the results through the near focus. For the CCS function with glare, the values for the distance focus in the multifocal lens were worse than the values for the monofocal lens at 0.5 cpd and 1 cpd. In CCS testing with glare through the near focus and CCS testing through the monofocal lens, the monofocal lens performed better at 0.5 cpd, 1 cpd, 3 cpd, and 6 cpd.
CONCLUSION—Refractive multifocal intraocular lenses influence tritan CCS function compared to monofocal lenses.

 PMID:11423455

  3. Ultra-sensitive X-ray sensors give improved contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Stupin, David M.

    Low-light-level cameras used with phosphors detect very small contrast differences and very small features in X-ray images. I used (1) a Silicon-Intensifier-Tube (SIT) television camera coupled by a fiber optic to a phosphor screen and (2) an integrating CCD camera focused on a phosphor to detect a 0.1 percent contrast difference and 2-micrometer-diameter wires in a digital image. Flannery, et al., and Kinney, et al., reported spatial resolution as small as 1 micrometer in computer X-ray tomography (CAT scans) using synchrotron X-ray sources and CCD cameras. I thought that these cameras could be used with industrial X-ray sources with microfocal spot sizes to produce X-ray images with spatial resolution as small as 1 micrometer and contrast sensitivity as small as 0.01 percent. Hence, near-real time X-ray inspection system could be made that have the resolution of X-ray film and 20 times better contrast sensitivity. As a proof of principle experiment, I used an X-ray camera composed of an X-ray phosphor deposited on a fiber optic that is coupled to a night vision camera (SIT). Using a digital subtraction technique and an 8-bit frame grabber, this camera detected wires as small as 2 micrometers in diameter and X-ray attenuations as small as 0.27 percent. Verhoeven reported 0.14 percent for a free-standing foil without a substrate. However, some CCD cameras have 64 times more levels of digitization than the frame grabber and can integrate images for as long as 30 minutes before the images are digitized. Hence, I predicted that the CCD camera would also detect wires 2 micrometers in diameter and contrast differences as small as 0.02 percent, ten times better than the SIT and 20 better than film. Unfortunately, my preliminary experiments with CCD camera duplicate, but do not improve upon, the performance of the SIT.

  4. Uncoupled achromatic tilted S-bend

    SciTech Connect

    Tsoupas,N.; Kayran, D.; Litvinenko, V.; MacKay, W.W.

    2008-06-23

    A particular section of the electron beam transport line, to be used in the e-cooling project [l] of the Relativistic Heavy Ion Collider (RHIC), is constrained to displace the trajectory with both horizontal and vertical offsets so that the outgoing beamline is parallel to the incoming beamline. We also require that section be achromatic in both planes. This mixed horizontal and vertical achromatic Sbend is accomplished by rotating the two dipoles and the quadrupoles of the line, about the longitudinal axis of the incoming beam. However such a rotation of the magnetic elements may couple the transported beam through the first order beam transfer matrix (linear coupling). In this paper we study a sufficient condition, that the first order transport matrix (R-matrix) can satisfy, so that this section of beam transfer line is both achromatic and linearly uncoupled. We provide a complete solution for the beam optics which satisfies both conditions.

  5. Luminance-dependent changes in mesopic visual contrast sensitivity

    PubMed Central

    Smith, Robert A.

    1973-01-01

    Spatial and temporal modulation transfer functions have been measured as a function of luminance at scotopic and mesopic levels. It is found that throughout the scotopic range the data can be accounted for by a two process visual system, with the processes having the following properties. Simple excitatory process This mechanism summates over somewhat less than 1 square degree of visual angle and over about 200 msec of time. These properties do not change with luminance, but the over-all sensitivity of the mechanism follows the De Vries—Rose law. The temporal properties of this mechanism follows those of the scotopic b-wave. At high luminances, the temporal, but not spatial, properties of this mechanism break down in a manner which had not been studied. Low-frequency inhibitory process This process is manifest as a decrease in sensitivity from that of the simple excitatory process. Its effect is observed only when both spatial and temporal frequency are low, suggesting that it has a larger (perhaps 3 ×) summation area in both space and time. The inhibitory process is not observed below a certain threshold luminance, which is highly dependent upon the configuration of the stimulus. For a suitable stimulus, this threshold will be well into the scotopic luminance range. It is suggested that these two processes represent psychophysical correlates of the centre and surround of retinal receptive fields. PMID:4702414

  6. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C

    2007-11-07

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  7. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C; LaFreniere, D; Macintosh, B; Doyon, R

    2008-06-02

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  8. Confidence Level and Sensitivity Limits in High-Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Lafrenière, David; Macintosh, Bruce; Doyon, René

    2008-01-01

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground- and space-based telescopes. Previous theoretical analyses have shown that the time intensity variations of a single speckle follow a modified Rician. It is first demonstrated here that for a circular pupil, this temporal intensity distribution also represents the speckle spatial intensity distribution at a fixed separation from the point-spread function center; this fact is demonstrated using numerical simulations for coronagraphic and noncoronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level (CL). In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding CL as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckle noise, a detection threshold up to 3 times higher is required to obtain a CL equivalent to that at 5 σ for Gaussian noise. The technique is then tested on data acquired by simultaneous spectral differential imaging with TRIDENT and by angular differential imaging with NIRI. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. Finally, a power law is derived to predict the 1 - 3 × 10-7 CL detection threshold when averaging a partially correlated non-Gaussian noise. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of

  9. Correlation between contrast sensitivity and higher-order aberration based on pupil diameter after cataract surgery

    PubMed Central

    Yamaguchi, Takefumi; Negishi, Kazuno; Ohnuma, Kazuhiko; Tsubota, Kazuo

    2011-01-01

    Background The purpose of this study was to evaluate the correlation between contrast sensitivity and calculated higher-order aberrations based on individual natural pupil diameter after cataract surgery. Methods This prospective study included 120 eyes from 92 patients who were randomized to receive one of four lenses, including three aspheric lenses (Acrysof SN60WF, Tecnis ZA9000, and Hoya Py60AD) and one spherical lens (Acrysof SN60AT). Contrast sensitivity, higher-order aberrations of the whole eye, and pupil diameter under photopic and mesopic conditions were measured 1 month postoperatively. Higher-order aberrations were decomposed into Zernike coefficients, calculated according to individual pupil diameter. The correlation between higher-order aberrations and contrast sensitivity was evaluated. Results There were no significant differences in contrast sensitivity function between the four types of lenses under photopic conditions. However, the contrast sensitivity function and area under log contrast sensitivity function in the aspheric lenses were significantly better than in the spherical lens under mesopic conditions. Under mesopic conditions, spherical aberration in eyes with aspheric lenses was significantly lower than in eyes with spherical lenses (P < 0.05). Under photopic conditions, coma aberration had a significant negative correlation with contrast sensitivity at 12 cycles/degree. Under mesopic conditions, spherical aberration had a significant negative correlation with contrast sensitivity at 3, 6, and 12 cycles/degree with glare, and with contrast sensitivity at 6 and 18 cycles/degree without glare. Conclusion In terms of influence on visual function, coma aberration may be more significant under photopic conditions and spherical aberration under mesopic conditions. PMID:22205829

  10. Contrast visual acuity in patients with retinitis pigmentosa assessed by a contrast sensitivity tester

    PubMed Central

    Oishi, Maho; Nakamura, Hajime; Hangai, Masanori; Oishi, Akio; Otani, Atsushi; Yoshimura, Nagahisa

    2012-01-01

    Purpose: To assess contrast visual acuity (CVA) in patients with retinitis pigmentosa (RP) and compare the result with standard visual acuity (VA), retinal thickness, status of inner segment/outer segment junction, and central visual field. Materials and Methods: Thirty-nine eyes of 39 patients with RP and 39 eyes of 39 healthy individuals were studied. To see the difference in CVA between RP patients and normal controls, only subjects with standard VA of 1.0 (20/20) or better were included. This was a cross-sectional study. CVA in various light conditions was measured with CAT-2000 and was compared between patients and controls. CVA of patients was further analyzed for association with other parameters including foveal retinal thickness, outer nuclear layer thickness, the status of inner segment/outer segment junction measured with optical coherence tomography (OCT), and visual field mean deviation (MD) measured with Humphrey field analyzer 10-2 program. Results: CVA impairment was evident in RP patients compared to controls (P < 0.01, in all measurement conditions). Multivariate analysis showed association of logarithm of the minimum angle of resolution (logMAR) with CVAs in several conditions. None of the OCT measurements was associated with CVA. When patients were divided into three groups based on MD, the most advanced group (MD worse than or equal to –20 dB) showed impairment of mesopic CVA (P < 0.05, under mesopic condition of 100% without glare, with glare, and 25% without glare). Conclusion: CVA impairment was confirmed in RP patients, especially in advanced cases. CVA measured with CAT-2000 may be a useful tool for assessing foveal function in RP patients. PMID:23202395

  11. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction.

    PubMed

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  12. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  13. Achromatic lattice comparison for light sources

    SciTech Connect

    Kramer, S.L.; Crosbie, E.A.; Cho, Y.

    1988-01-01

    The next generation of synchrotron light sources are being designed to support a large number of undulators and require long dispersion-free insertion regions. With less demand for radiation from the dipole magnets, the storage ring cost per undulator beam can be reduced by decreasing the number of dipole magnets and increasing the number of dispersion free straight sections. The two simplest achromatic lattices are the Chasman-Green or double-bend achromatic (DBA) and the three-bend achromat (TBA). The DBA in its simplest form consists of a single horizontally-focussing quadrupole between the two dipole magnets. Since this quadrupole strength is fixed by the achromatic condition, the natural emittance (/var epsilon//sub n/) may vary as the beta functions in the insertion region (IR) are varied. The expanded Chasman-Green (also DBA) uses multiple quadrupoles in the dispersive section to provide emittance control independent of the beta functions in the IR. Although this provides flexibility in the ID beta functions, the horizontal phase advance is constrained to /phi/ /approx equal/ 180/degree/ between approximately the centers of the dipole magnets. If small /var epsilon//sub n/ is required, the horizontal phase advance between the dipoles will be near one and the lattice properties will be dominated by this systematic resonance. The TBA lattice places a third dipole between the DBA dipoles, eliminating the 180/degree/ horizontal phase advance constraint. However, the requirement of small /var epsilon//sub n/ limits the range of tune, since /mu//sub x/ /approx equal/ 1.29 in the dipoles alone for /var epsilon//sub n/ near its minimum value. The minimum emittance is five times smaller for the TBA than for the DBA with the same number of periods and, therefore, its phase advance can be relaxed more than the DBA for the same natural emittance. 5 refs., 4 figs., 1 tab.

  14. Common-path achromatic rotational-shearing coronagraph.

    PubMed

    Tavrov, Alexander; Korablev, Oleg; Ksanfomaliti, Leonid; Rodin, Alexander; Frolov, Pavel; Nishikwa, Jun; Tamura, Motohide; Kurokawa, Takashi; Takeda, Mitsuo

    2011-06-01

    To suppress starlight for direct exoplanet observation, we propose a common-path achromatic rotational-shearing coronagraph (CP-ARC), which is an interferocoronagraph with an angular-adjustable field rotator. The CP-ARC aims to maintain unwanted detection of stellar light, which can be suppressed incompletely by interference because of the finite diameter of the star. Compared to the previous interferocoronagraph, which had a nonadjustable 180° field rotation, the proposed CP-ARC can improve the coronagraphic contrast by several orders if the CP-ARC is combined with medium or large telescopes where the companion-star separation is optically resolved by more than a few Airy radii. The CP-ARC is made robust against mechanical disturbances due to the common-path interferometer principle. PMID:21633419

  15. Achromatic optical correlator for white light pattern recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang; Chen, Ming; Cai, Luzhong

    1987-01-01

    An achromatic optical correlator using spatially multiplexed achromatic matched spatial filters (MSFs) for white light optical pattern recognition is presented. The MSF array is synthesizd using a monochromatic laser and its achromaticity is achieved by adjusting the scale and spatial carrier frequency of each MSF to accommodate the wavelength variations in white light correlation detections. Systems analysis and several experimental results showing the correlation peak intensity using white-light illumination are presented.

  16. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. PMID:24845620

  17. Spatial contrast sensitivity - Effects of age, test-retest, and psychophysical method

    NASA Technical Reports Server (NTRS)

    Higgins, Kent E.; Jaffe, Myles J.; Caruso, Rafael C.; Demonasterio, Francisco M.

    1988-01-01

    Two different psychophysical methods were used to test the spatial contrast sensitivity in normal subjects from five age groups. The method of adjustment showed a decline in sensitivity with increasing age at all spatial frequencies, while the forced-choice procedure showed an age-related decline predominantly at high spatial frequencies. It is suggested that a neural component is responsible for this decline.

  18. Revisiting grating orientation effects on visual contrast sensitivity using optical interferometry

    NASA Astrophysics Data System (ADS)

    Serra, P. M.; Santos, L. F.; Corte-Real, J. P.; Fiadeiro, P. T.

    2014-08-01

    Sinusoidal gratings of equal spatial frequency but different orientation require different levels of contrast to be detected by the human visual system. This phenomenon defined as oblique effect has a neuronal origin. The purpose of this work was to determine the neuronal magnitude of this effect, by isolating it from the optics of the eye. A visual interferometer was assembled to generate and project on the retina an interference pattern consisting of sinusoidal gratings with variable orientation (0º to 165º, 15º step). Adding background light to the interference pattern of 12 cycles/degree (cpd), different contrast levels were generated while the retinal illuminance was kept unaltered. A 2º circular stimulus was presented (during 500 ms) on the fovea producing a retinal illuminance of 134 Td (trolands). The contrast sensitivity threshold of four observers (ages 23, 33, 33, 52 years old) was determined using a Yes-No psychophysical method, and the 50% odds of correct response determined by a Weibull cumulative function. The four observers showed different contrast sensitivity thresholds dependent on the grating orientation. Oblique gratings (≈45º/≈135º) required more contrast to be detected than horizontal and vertical gratings. The maximum differences in contrast sensitivity between orientations ranged from 0.15 to 0.31 log units. The mean contrast threshold across all orientations was then calculated to investigate the effect of age on the contrast sensitivity. It was found a 0.046 log units decrease per decade (r=0.94). Oblique effect is an evident neuronal phenomenon with considerable inter-subject variability, making grating orientation important information in contrast sensitivity evaluation.

  19. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2012-01-01

    The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879

  20. Spatial frequency tuning functions and contrast sensitivity at different eccentricities in the visual field

    SciTech Connect

    Chen, H.W.; Aine, C.J.; Flynn, E.R.; Wood, C.C.

    1996-07-01

    The human luminance spatial frequency contrast sensitivity function (CSF) has been well studied using psychophysical measurements by detecting spatial frequency (SF) grating patterns at threshold. Threshold CSFs at different eccentricities have proven to be quite useful in both basic and clinical vision research. However, near threshold, the CSF is measured at a linear area of the saturating contrast-response curve. In contrast, most of our everyday vision may be at suprathreshold levels, and thus may function most of the time at the nonlinear area of the contrast-response curve. In this study, in order to better characterize the CSF at normal contrast levels, we measured the SF tuning functions as well as the CR functions at different suprathreshold contrast levels and different eccentricities of the visual field using noninvasive MEG techniques. In this study, in addition to peak analysis, we have developed more reliable averaged power analysis methods where the average power can be calculated from the entire waveforms.

  1. Edge detection depends on achromatic channel in Drosophila melanogaster.

    PubMed

    Zhou, Yanqiong; Ji, Xiaoxiao; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2012-10-01

    Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated. In the present study, using a color light-emitting-diode-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal luminance, at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE(17) and sev(LY3);rh5(2);rh6(1) demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of rhodopsin 4 (Rh4), Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE(17) mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila. PMID:22735352

  2. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  3. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  4. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  5. High-speed analog achromatic intensity modulator.

    PubMed

    Stockley, J E; Sharp, G D; Doroski, D; Johnson, K M

    1994-05-15

    We report what is to our knowledge the first implementation of a broadband analog intensity modulator composed of two chiral smectic liquid-crystal half-wave retarders. A reflection-mode intensity modulator employing a single active device has also demonstrated achromatic transmission. A quantitative theory for chromatic compensation is presented. By optimum selection of liquid-crystal retardance and orientation, intensity transmission is uniform throughout the visible. The chiral smectic liquid-crystal devices used in the implementation are capable of switching in less than 20 micros. PMID:19844436

  6. VISUAL CONTRAST SENSITIVITY: A SENSITIVE INDICATOR OF NEUROTOXICITY FOR RISK ASSESSMENT AND CLINICAL APPLICATIONS.

    EPA Science Inventory

    Both human-health risk assessments of adverse effects from chronic, environmental exposures to neurotoxics and clinical practice are in need of objective indicators sensitive to the early stages of disruption in neurologic function; risk assessment for the purposes of hazard iden...

  7. Maturation of polarization and luminance contrast sensitivities in cuttlefish (Sepia officinalis).

    PubMed

    Cartron, Lelia; Dickel, Ludovic; Shashar, Nadav; Darmaillacq, Anne-Sophie

    2013-06-01

    Polarization sensitivity is a characteristic of the visual system of cephalopods. It has been well documented in adult cuttlefish, which use polarization sensitivity in a large range of tasks such as communication, orientation and predation. Because cuttlefish do not benefit from parental care, their visual system (including the ability to detect motion) must be efficient from hatching to enable them to detect prey or predators. We studied the maturation and functionality of polarization sensitivity in newly hatched cuttlefish. In a first experiment, we examined the response of juvenile cuttlefish from hatching to the age of 1 month towards a moving, vertically oriented grating (contrasting and polarized stripes) using an optomotor response apparatus. Cuttlefish showed differences in maturation of polarization versus luminance contrast motion detection. In a second experiment, we examined the involvement of polarization information in prey preference and detection in cuttlefish of the same age. Cuttlefish preferentially chose not to attack transparent prey whose polarization contrast had been removed with a depolarizing filter. Performances of prey detection based on luminance contrast improved with age. Polarization contrast can help cuttlefish detect transparent prey. Our results suggest that polarization is not a simple modulation of luminance information, but rather that it is processed as a distinct channel of visual information. Both luminance and polarization sensitivity are functional, though not fully matured, in newly hatched cuttlefish and seem to help in prey detection. PMID:23430993

  8. An analytical study of double bend achromat lattice

    SciTech Connect

    Fakhri, Ali Akbar Kant, Pradeep; Singh, Gurnam; Ghodke, A. D.

    2015-03-15

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  9. An analytical study of double bend achromat lattice

    NASA Astrophysics Data System (ADS)

    Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A. D.

    2015-03-01

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  10. An analytical study of double bend achromat lattice.

    PubMed

    Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D

    2015-03-01

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented. PMID:25832220

  11. Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions

    PubMed Central

    Cavalcanti-Galdino, M.K.; da Silva, J.A.; Mendes, L.C.; dos Santos, N.A.; Simas, M.L.B.

    2014-01-01

    The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions. PMID:24676473

  12. Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex.

    PubMed

    Davis, Mitchell A; Gagnon, Louis; Boas, David A; Dunn, Andrew K

    2016-03-01

    Laser speckle contrast imaging has become a ubiquitous tool for imaging blood flow in a variety of tissues. However, due to its widefield imaging nature, the measured speckle contrast is a depth integrated quantity and interpretation of baseline values and the depth dependent sensitivity of those values to changes in underlying flow has not been thoroughly evaluated. Using dynamic light scattering Monte Carlo simulations, the sensitivity of the autocorrelation function and speckle contrast to flow changes in the cerebral cortex was extensively examined. These simulations demonstrate that the sensitivity of the inverse autocorrelation time, [Formula: see text], varies across the field of view: directly over surface vessels [Formula: see text] is strongly localized to the single vessel, while parenchymal ROIs have a larger sensitivity to flow changes at depths up to 500 μm into the tissue and up to 200 μm lateral to the ROI. It is also shown that utilizing the commonly used models the relate [Formula: see text] to flow resulted in nearly the same sensitivity to the underlying flow, but fail to accurately relate speckle contrast values to absolute [Formula: see text]. PMID:27231587

  13. Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex

    PubMed Central

    Davis, Mitchell A.; Gagnon, Louis; Boas, David A.; Dunn, Andrew K.

    2016-01-01

    Laser speckle contrast imaging has become a ubiquitous tool for imaging blood flow in a variety of tissues. However, due to its widefield imaging nature, the measured speckle contrast is a depth integrated quantity and interpretation of baseline values and the depth dependent sensitivity of those values to changes in underlying flow has not been thoroughly evaluated. Using dynamic light scattering Monte Carlo simulations, the sensitivity of the autocorrelation function and speckle contrast to flow changes in the cerebral cortex was extensively examined. These simulations demonstrate that the sensitivity of the inverse autocorrelation time, 1τc, varies across the field of view: directly over surface vessels 1τc is strongly localized to the single vessel, while parenchymal ROIs have a larger sensitivity to flow changes at depths up to 500 μm into the tissue and up to 200 μm lateral to the ROI. It is also shown that utilizing the commonly used models the relate 1τc to flow resulted in nearly the same sensitivity to the underlying flow, but fail to accurately relate speckle contrast values to absolute 1τc. PMID:27231587

  14. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  15. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    SciTech Connect

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  16. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  17. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods

    NASA Astrophysics Data System (ADS)

    Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter

    2016-05-01

    Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used.

  18. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods

    PubMed Central

    Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter

    2016-01-01

    Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used. PMID:27185492

  19. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods.

    PubMed

    Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter

    2016-01-01

    Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used. PMID:27185492

  20. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu.

    PubMed

    Sigg, Severin J; Santini, Francesco; Najer, Adrian; Richard, Pascal U; Meier, Wolfgang P; Palivan, Cornelia G

    2016-08-01

    Current magnetic resonance imaging (MRI) contrast agents often produce insufficient contrast for diagnosis of early disease stages, and do not sense their biochemical environments. Herein, we report a highly sensitive nanoparticle-based MRI probe with r1 relaxivity up to 51.7 ± 1.2 mM(-1) s(-1) (3T). Nanoparticles were co-assembled from Gd(3+) complexed to heparin-poly(dimethylsiloxane) copolymer, and a reduction-sensitive amphiphilic peptide serving to induce responsiveness to environmental changes. The release of the peptide components leads to a r1 relaxivity increase under reducing conditions and increases the MRI contrast. In addition, this MRI probe has several advantages, such as a low cellular uptake, no apparent cellular toxicity (tested up to 1 mM Gd(3+)), absence of an anticoagulation property, and a high shelf stability (no increase in free Gd(3+) over 7 months). Thus, this highly sensitive T1 MRI contrast nanoparticle system represents a promising probe for early diagnosis through possible accumulation and contrast enhancement within reductive extracellular tumour tissue. PMID:27435820

  1. Visual Contrast Sensitivity Functions Obtained from Untrained Observers Using Tracking and Staircase Procedures. Final Report.

    ERIC Educational Resources Information Center

    Geri, George A.; Hubbard, David C.

    Two adaptive psychophysical procedures (tracking and "yes-no" staircase) for obtaining human visual contrast sensitivity functions (CSF) were evaluated. The procedures were chosen based on their proven validity and the desire to evaluate the practical effects of stimulus transients, since tracking procedures traditionally employ gradual stimulus…

  2. Contrast Sensitivity Function Scores, Choices of Illuminated Stand Magnifiers, and Reading

    ERIC Educational Resources Information Center

    Gerritsen, Bryan

    2010-01-01

    Far too often, professionals focus almost solely on individuals' needs for magnification level for reading. Visual acuities are measured and decisions are made for low vision devices largely on the basis of acuity levels. Contrast sensitivity function is often overlooked as a critical need for and predictor of the selection and preference for low…

  3. Contrast Sensitivity Differences between Proficient and Disabled Readers Using Colored Lenses.

    ERIC Educational Resources Information Center

    Spafford, Carol S.; And Others

    1995-01-01

    This study examined relationships among lens color, visual grating, visual detection task performance, and peripheral retinal brightness thresholds among four adults and four children with reading disabilities and age-matched controls. Subjects with reading disabilities displayed significantly lower contrast sensitivity when tested with sine-wave…

  4. The importance of measuring contrast sensitivity in cases of visual disturbance.

    PubMed Central

    Arden, G. B.

    1978-01-01

    A description is given of a practical clinical test of contrast sensitivity and of the results obtained on a normal population. An account is given of recent physiological work which illustrates the potential usefulness of the method in ophthalmology, and the clinical results obtained by the author and others are summarised. Images PMID:348230

  5. Spatio-temporal Contrast Sensitivity in the Cardinal Directions of the Colour Space. A Review

    PubMed Central

    Díez-Ajenjo, Maria Amparo; Capilla, Pascual

    2010-01-01

    We review the psychophysics of the spatio-temporal contrast sensitivity in the cardinal directions of the colour space and their correlation with those neural characteristics of the visual system that limit the ability to perform contrast detection or pattern-resolution tasks. We focus our attention particularly on the influence of luminance level, spatial extent and spatial location of the stimuli - factors that determine the characteristics of the physiological mechanisms underlying detection. Optical factors do obviously play a role, but we will refer to them only briefly. Contrast sensitivity measurements are often used in clinical practice as a method to detect, at their early stages, a variety of pathologies affecting the visual system, but their usefulness is very limited due to several reasons. We suggest some considerations about stimuli characteristics that should be taken into account in order to improve the performance of this kind of measurement.

  6. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  7. Integration of spatio-temporal contrast sensitivity with a multi-slice channelized Hotelling observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali N.; Espig, Kathryn S.; Marchessoux, Cedric; Krupinski, Elizabeth A.; Bakic, Predrag R.; Kimpe, Tom R. L.; Maidment, Andrew D. A.

    2013-03-01

    Barten's model of spatio-temporal contrast sensitivity function of human visual system is embedded in a multi-slice channelized Hotelling observer. This is done by 3D filtering of the stack of images with the spatio-temporal contrast sensitivity function and feeding the result (i.e., the perceived image stack) to the multi-slice channelized Hotelling observer. The proposed procedure of considering spatio-temporal contrast sensitivity function is generic in the sense that it can be used with observers other than multi-slice channelized Hotelling observer. Detection performance of the new observer in digital breast tomosynthesis is measured in a variety of browsing speeds, at two spatial sampling rates, using computer simulations. Our results show a peak in detection performance in mid browsing speeds. We compare our results to those of a human observer study reported earlier (I. Diaz et al. SPIE MI 2011). The effects of display luminance, contrast and spatial sampling rate, with and without considering foveal vision, are also studied. Reported simulations are conducted with real digital breast tomosynthesis image stacks, as well as stacks from an anthropomorphic software breast phantom (P. Bakic et al. Med Phys. 2011). Lesion cases are simulated by inserting single micro-calcifications or masses. Limitations of our methods and ways to improve them are discussed.

  8. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement

    NASA Technical Reports Server (NTRS)

    Carrasco, M.; Penpeci-Talgar, C.; Eckstein, M.

    2000-01-01

    This study is the first to report the benefits of spatial covert attention on contrast sensitivity in a wide range of spatial frequencies when a target alone was presented in the absence of a local post-mask. We used a peripheral precue (a small circle indicating the target location) to explore the effects of covert spatial attention on contrast sensitivity as assessed by orientation discrimination (Experiments 1-4), detection (Experiments 2 and 3) and localization (Experiment 3) tasks. In all four experiments the target (a Gabor patch ranging in spatial frequency from 0.5 to 10 cpd) was presented alone in one of eight possible locations equidistant from fixation. Contrast sensitivity was consistently higher for peripherally- than for neutrally-cued trials, even though we eliminated variables (distracters, global masks, local masks, and location uncertainty) that are known to contribute to an external noise reduction explanation of attention. When observers were presented with vertical and horizontal Gabor patches an external noise reduction signal detection model accounted for the cueing benefit in a discrimination task (Experiment 1). However, such a model could not account for this benefit when location uncertainty was reduced, either by: (a) Increasing overall performance level (Experiment 2); (b) increasing stimulus contrast to enable fine discriminations of slightly tilted suprathreshold stimuli (Experiment 3); and (c) presenting a local post-mask (Experiment 4). Given that attentional benefits occurred under conditions that exclude all variables predicted by the external noise reduction model, these results support the signal enhancement model of attention.

  9. Change in contrast sensitivity functions with Corning CPF filters in patients with age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Rimbergas, Sylvia; Raghuram, Aparna; Boothroyd, Gané; Vatianou, Angelo; Lakshminarayanan, Vasudevan; Stelmack, Joan; Stelmack, Thomas

    2005-09-01

    Do Corning CPF filters change contrast sensitivity in patients with age related macular degeneration (AMD)? A retrospective review was conducted of 54 charts of veterans with AMD receiving comprehensive low vision services at VICTORS (VA Chicago West Side). CSF measurements with the VISTECH 6500 test system were compared before and after introduction of Corning CPF filters. Veterans were asked if filters made a noticeable change in contrast. Pre/post-filter CSF data was obtained for 63 trials at 1?m test distance and 60 trials at the 3?m test distance. To evaluate the data we used an analytic function to fit the contrast sensitivity data previously described by Lakshminarayanan [Optom. Vis. Sci. 72 511 (1995)]. An index was used to compare pre- and post-filter information. Veterans were prescribed filters if improvement in contrast was noted, or a subjective improvement was made. Patients were then contacted post-filter during this retrospective study to determine if the filters still enhanced daily activities. Mean improvement in the contrast sensitivity for each spatial frequency ranged from +0.344 to +0.422 patches with the filters at 1?m and +0.183 to +0.548 patches at 3?m. 87.5% of patients reported improvement in contrast while performing activities of daily living with Corning filters. Paired t test are t = -3.8298 (p?=?0.003) at 1?m and t = -4.957 (p = 0.000 01) at 3?m test distance. While the changes in the CSF with filters are statistically significant and consistent with report of self-improvement by patients, the change in the number of patches on the VISTECH 6500 chart is not clinically significant. Clinical implications are that the chart in its current format is not useful for the prescription of filters leaving patient perception of change as a better guideline.

  10. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  11. Achromatic Metasurface Lens at Telecommunication Wavelengths.

    PubMed

    Khorasaninejad, Mohammadreza; Aieta, Francesco; Kanhaiya, Pritpal; Kats, Mikhail A; Genevet, Patrice; Rousso, David; Capasso, Federico

    2015-08-12

    Nanoscale optical resonators enable a new class of flat optical components called metasurfaces. This approach has been used to demonstrate functionalities such as focusing free of monochromatic aberrations (i.e., spherical and coma), anomalous reflection, and large circular dichroism. Recently, dielectric metasurfaces that compensate the phase dispersion responsible for chromatic aberrations have been demonstrated. Here, we utilize an aperiodic array of coupled dielectric nanoresonators to demonstrate a multiwavelength achromatic lens. The focal length remains unchanged for three wavelengths in the near-infrared region (1300, 1550, and 1800 nm). Experimental results are in agreement with full-wave simulations. Our findings are an essential step toward a realization of broadband flat optical elements. PMID:26168329

  12. Nulling interferometry without achromatic phase shifters.

    PubMed

    Mieremet, Arjan L; Braat, Joseph J M

    2002-08-01

    In the infrared wavelength region, a typical star is approximately a million times brighter than the planet that surrounds it, which is a major problem when we attempt to detect exoplanets in a direct manner. Nulling interferometry is a technique that one can use to solve this problem by attenuating the stellar light and enhancing that of the planet. Generally, deep nulling is achieved by use of achromatic phase shifters (APSs). Unfortunately, the technology needed to build these APSs is not yet fully developed. We show that deep nulling can also be achieved by using delay lines only. We investigate the nulling depth as a function of the width of the wavelength interval and the number of telescopes. We also show that we can obtain nulling depths of less than 10(-6), which are required for exoplanet detection. Furthermore, we investigate the properties of the transmission map and make a comparison between our system and an APS system. PMID:12153105

  13. Temporal analysis of the chromatic flash VEP--separate colour and luminance contrast components.

    PubMed

    Klistorner, A; Crewther, D P; Crewther, S G

    1998-12-01

    of photopic isoluminance to the point of zero cone contrast (at the silent substitution point) for the remaining cone type. The waveforms recorded with a series of luminance ratios were much simpler than those recorded from trichromats and symmetrical with respect to their isoluminant points. Despite the indication of the presence of L cones of apparently normal spectral sensitivity in the deuteranopes (on the basis of flicker photometry), there was no evidence for a red-sensitive component in the desaturation or heterochromatic stimulation series. The results are discussed in terms of the possibility of separate generation of chromatic and achromatic contributions to the VEP. PMID:10211389

  14. Effects of Prematurity on the Development of Contrast Sensitivity: Testing the Visual Experience Hypothesis

    PubMed Central

    Bosworth, Rain G.; Dobkins, Karen R.

    2013-01-01

    In order to investigate the effects of visual experience on early visual development, the current study compared contrast sensitivity across infants born with different levels of moderate-to-late prematurity. Here the logic is that at any given postterm age, the most premature infants will have the oldest postnatal age. Given that postnatal age is a proxy for visual experience, the visual experience hypothesis predicts that infants who are more premature, yet healthy, should have higher sensitivity. Luminance (light/dark) and chromatic (red/green) contrast sensitivities (CS) were measured in 236 healthy infants (born −10 to +2 weeks relative to due date) between 5 and 32 weeks postterm age from due date and 8 to 38 weeks postnatal from birth date. For chromatic CS, we found clear evidence that infants who were most premature within our sample had the highest sensitivity. Specifically, 4 to 10 additional weeks of visual experience, by virtue of being born early, enhanced chromatic CS. For luminance CS, similar but weaker results were seen. Here, only infants with an additional 6 to 10 weeks of visual experience, and only at later age points in development, showed enhanced sensitivity. However, CS in preterm infants was still below that of fullterm infants with equivalent postnatal age. In sum, these results suggest that chromatic CS is influenced more by prematurity (and possibly visual experience) than is luminance CS, which has implications for differential development of Parvocellular and Magnocellular pathways. PMID:23485427

  15. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society

    PubMed Central

    Joulan, Karine; Brémond, Roland

    2015-01-01

    The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994

  16. Sensitivity of edge illumination X-ray phase-contrast imaging

    PubMed Central

    Diemoz, P. C.; Endrizzi, M.; Bravin, A.; Robinson, I. K.; Olivo, A.

    2014-01-01

    Recently, we developed a theoretical model that can predict the signal-to-noise ratio for edge-like features in phase-contrast images. This model was then applied for the estimation of the sensitivity of three different X-ray phase-contrast techniques: propagation-based imaging, analyser-based imaging and grating interferometry. We show here how the same formalism can be used also in the case of the edge illumination (EI) technique, providing results that are consistent with those of a recently developed method for the estimation of noise in the retrieved refraction image. The new model is then applied to calculate, in the case of a given synchrotron radiation set-up, the optimum positions of the pre-sample aperture and detector edge to maximize the sensitivity. Finally, an example of the extremely high angular resolution achievable with the EI technique is presented. PMID:24470420

  17. Alemtuzumab improves contrast sensitivity in patients with relapsing–remitting multiple sclerosis

    PubMed Central

    Galetta, Steven L; Palmer, Jeffrey; Margolin, David H; Rizzo, Marco; Bilbruck, John; Balcer, Laura J

    2013-01-01

    Background: Alemtuzumab is a monoclonal antibody directed against CD52 that depletes T and B lymphocytes. Objective: To evaluate the treatment effect of alemtuzumab on low-contrast vision in relapsing–remitting multiple sclerosis (RRMS) patients. Methods: This was a pre-defined exploratory analysis within a randomized, rater-blinded trial (CAMMS223) that was run at 49 academic medical centers in the US and in Europe. Patients with untreated, early, RRMS (McDonald, n = 334) were randomized 1:1:1 to subcutaneous interferon beta-1a (IFNB-1a), or alemtuzumab 12 mg or 24 mg. Visual contrast sensitivity was measured for each eye at baseline and quarterly, with Pelli-Robson charts. Results: The eyes of patients in the pooled alemtuzumab group (versus IFNB-1a) had a greater than 2-fold higher rate of both 3-month and 6-month sustained visual improvement, of at least 0.3 log units (2 triplets, 6 letters) (At 3 months the hazard ratio (HR) = 2.26; CI = 1.19 to 4.31; P = 0.013; and at 6 months the HR = 2.44; CI =1.16 to 5.15; P = 0.019), and they had a lower risk of 3- and 6-month sustained worsening of at least 0.15 log units (1 triplet, 3 letters) (At 3 months the HR = 0.58; CI = 0.38 to 0.89; P = 0.012; and at 6 months HR = 0.55; CI=0.35 to 0.87; P = 0.010). Over the 36-month study period, the eyes of patients in the pooled alemtuzumab group improved in mean contrast sensitivity to a greater extent than those in the IFNB-1a group (0.080 log units versus 0.038 log units; P = 0.0102). Conclusions: Alemtuzumab was associated with a greater chance of improved contrast sensitivity in patients with RRMS and may delay the worsening of visual function. Contrast sensitivity testing was sensitive to treatment effects, even within an active comparator study design. These results support the validity of low-contrast vision testing as a clinical outcome in MS trials. PMID:23459567

  18. Sensitivity to gaze-contingent contrast increments in naturalistic movies: An exploratory report and model comparison

    PubMed Central

    Wallis, Thomas S. A.; Dorr, Michael; Bex, Peter J.

    2015-01-01

    Sensitivity to luminance contrast is a prerequisite for all but the simplest visual systems. To examine contrast increment detection performance in a way that approximates the natural environmental input of the human visual system, we presented contrast increments gaze-contingently within naturalistic video freely viewed by observers. A band-limited contrast increment was applied to a local region of the video relative to the observer's current gaze point, and the observer made a forced-choice response to the location of the target (≈25,000 trials across five observers). We present exploratory analyses showing that performance improved as a function of the magnitude of the increment and depended on the direction of eye movements relative to the target location, the timing of eye movements relative to target presentation, and the spatiotemporal image structure at the target location. Contrast discrimination performance can be modeled by assuming that the underlying contrast response is an accelerating nonlinearity (arising from a nonlinear transducer or gain control). We implemented one such model and examined the posterior over model parameters, estimated using Markov-chain Monte Carlo methods. The parameters were poorly constrained by our data; parameters constrained using strong priors taken from previous research showed poor cross-validated prediction performance. Atheoretical logistic regression models were better constrained and provided similar prediction performance to the nonlinear transducer model. Finally, we explored the properties of an extended logistic regression that incorporates both eye movement and image content features. Models of contrast transduction may be better constrained by incorporating data from both artificial and natural contrast perception settings. PMID:26057546

  19. Comparing the Shape of Contrast Sensitivity Functions for Normal and Low Vision

    PubMed Central

    Chung, Susana T. L.; Legge, Gordon E.

    2016-01-01

    Purpose The contrast sensitivity function (CSF) provides a detailed description of an individual's spatial-pattern detection capability. We tested the hypothesis that the CSFs of people with low vision differ from a “normal” CSF only in their horizontal and vertical positions along the spatial frequency (SF) and contrast sensitivity (CS) axes. Methods Contrast sensitivity for detecting horizontal sinewave gratings was measured with a two temporal-interval forced-choice staircase procedure, for a range of SFs spanning 5 to 6 octaves, for 20 low-vision observers and five adults with normal vision. An asymmetric parabolic function was used to fit the aggregate data of the normal-vision observers, yielding the “normal template.” Each of the 20 low-vision CSFs was fit in two ways, by using a shape-invariant version of the normal template (with the width parameters fixed) that was shifted along the log-SF and log-CS axes, and by an unconstrained asymmetric parabolic function (“free-fit”). Results The two fitting methods yielded values of the peak CS, the SF corresponding to peak CS, and the high cut-off SF that were highly correlated and in good agreement with each other. In addition, the width parameters of the low-vision CSFs were comparable with those of the normal template, implying that low-vision CSFs are similar in shape to the normal CSF. Conclusions The excellent agreement of parameters estimated by the two fitting methods suggests that low-vision CSFs can be approximated by a normal CSF shifted along the log-SF and log-CS axes to account for the impaired acuity and contrast sensitivity. PMID:26795826

  20. Achromatic phase retarder applied to MWIR & LWIR dual-band.

    PubMed

    Kang, Guoguo; Tan, Qiaofeng; Wang, Xiaoling; Jin, Guofan

    2010-01-18

    The development of the dual-band IR imaging polarimetry creates the need for achromatic phase retarder used in dual-band. Dielectric grating with the period smaller than the illuminating wavelength presents a strong form-birefringence. With this feature, the combination of several subwavelength gratings can be used as achromatic phase retarders. We proposed a combination of 4 subwavelength structured gratings (SWGs) used as an achromatic quarter-wave plate (QWP) applied to MWIR & LWIR bandwidths. Design method using effective medium theory and optimization algorithms is described in detail. The simulation results led to the possibility of an dual-band achromatic QWP whose retardance deviates from 90 degrees by <+/-0.75 degrees with the fast axis unfixed and by <+/-1.35 degrees with the fast axis fixed over MWIR(3-5microm) & LWIR(8-12microm) bandwiths. PMID:20173997

  1. Hypoxia targeted carbon nanotubes as a sensitive contrast agent for photoacoustic imaging of tumors

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Aguirre, Andres; Biswal, Nrusingh C.; Pavlik, Christopher; Smith, Michael B.; Alqasemi, Umar; Li, Hai; Zhu, Quing

    2011-03-01

    Development of new and efficient contrast agents is of fundamental importance to improve detection sensitivity of smaller lesions. Within the family of nanomaterials, carbon nanotubes (CNT) not only have emerged as a new alternative and efficient transporter and translocater of therapeutic molecules but also as a photoacoustic molecular imaging agent owing to its strong optical absorption in the near-infrared region. Drugs, Antibodies and nucleic acids could functionalize the CNT and prepare an appropriate system for delivering the cargos to cells and organs. In this work, we present a novel photoacoustic contrast agent which is based on a unique hypoxic marker in the near infrared region, 2-nitroimidazole -bis carboxylic acid derivative of Indocyanine Green conjugated to single walled carbon nanotube (SWCNT-2nitroimidazole-ICG). The 2-nitroimidazole-ICG has an absorption peak at 755 nm and an extinction coefficient of 20,5222 M-1cm-1. The conjugation of this marker with SWCNT shows more than 25 times enhancement of optical absorption of carbon nanotubes in the near infrared region. This new conjugate has been optically evaluated and shows promising results for high contrast photoacoustic imaging of deeply located tumors. The conjugate specifically targets tumor hypoxia, an important indicator of tumor metabolism and tumor therapeutic response. The detection sensitivity of the new contrast agent has been evaluated in-vitro cell lines and with in-vivo tumors in mice.

  2. Delayed Luminance and Chromatic Contrast Sensitivity in Infants with Spontaneously Regressed Retinopathy of Prematurity

    PubMed Central

    Bosworth, Rain; Robbins, Shira L.; Granet, David B.; Dobkins, Karen

    2013-01-01

    Background The current study assessed whether contrast sensitivity is affected in preterm infants with a history of spontaneously regressed retinopathy of prematurity (ROP, Stages 1–3). Specifically, we employed luminance (light/dark) and chromatic (red/green) stimuli, which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Methods Contrast sensitivity (CS) was measured using forced choice preferential looking testing in 21 infants with a history of ROP and 41 control preterm infants who were born prematurely but did not develop ROP, tested between 8 and 47 weeks (2–11 months) postterm age. Infants were presented with chromatic and luminance drifting sinusoidal gratings, which appeared randomly on the left or right side of the monitor on each trial. The contrast of the stimuli varied across trials and was defined in terms of root mean squared cone contrast for long- and medium-wavelength cones. Results Between 8 and 25 weeks postterm, ROP infants had significantly worse CS, and there was a trend for greater impairment for Luminance than Chromatic CS. This delay was not seen at older ages between 26 and 47 weeks postterm. Conclusions These findings are consistent with the concept that early maturation of the M pathway is vulnerable to biological insult, as in the case of ROP, to a greater extent than is the P pathway. PMID:23744448

  3. Image quality optimization, via application of contextual contrast sensitivity and discrimination functions

    NASA Astrophysics Data System (ADS)

    Fry, Edward; Triantaphillidou, Sophie; Jarvis, John; Gupta, Gaurav

    2015-01-01

    What is the best luminance contrast weighting-function for image quality optimization? Traditionally measured contrast sensitivity functions (CSFs), have been often used as weighting-functions in image quality and difference metrics. Such weightings have been shown to result in increased sharpness and perceived quality of test images. We suggest contextual CSFs (cCSFs) and contextual discrimination functions (cVPFs) should provide bases for further improvement, since these are directly measured from pictorial scenes, modeling threshold and suprathreshold sensitivities within the context of complex masking information. Image quality assessment is understood to require detection and discrimination of masked signals, making contextual sensitivity and discrimination functions directly relevant. In this investigation, test images are weighted with a traditional CSF, cCSF, cVPF and a constant function. Controlled mutations of these functions are also applied as weighting-functions, seeking the optimal spatial frequency band weighting for quality optimization. Image quality, sharpness and naturalness are then assessed in two-alternative forced-choice psychophysical tests. We show that maximal quality for our test images, results from cCSFs and cVPFs, mutated to boost contrast in the higher visible frequencies.

  4. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function

    PubMed Central

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061

  5. Optical transfer function in corneal topography for clinical contrast sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Bende, Thomas; Jean, Benedikt J.; Oltrup, Theo

    2000-06-01

    Customized ablation aiming to optimize visual acuity in refractive surgery requires objective data on corneal surface, like the contrast sensitivity. Fast ray tracing, using the high resolution 3-D elevation data in conjunction with Snell's law describe the diffraction of the incident rays and the resulting image on a 'virtual retina.' A retroprojection leads to a 'surface quality map.' For objective contrast sensitivity measurement a sinus (or cos) wave of different frequencies is used for a calculated projection in analogy to the clinical contrast sensitivity charts. The projection on the individual cornea surface is analyzed for the Modular Transfer Function (MTF) and the Phase Shift Function (PSF) as a function of frequencies. PSF, not yet clinically used, is a parameter to determine even minimal corneal tilt. The resulting corneal aberration map (CAM) as described here and applied to a 4.5 D PRK (OZD equals 6.5 mm) reveals that the area of minimal aberration measures only 4.2 mm. The CAM can likewise be used to describe the 'quality' of a laser system's ablation pattern based upon the area of minimal optical aberrations. The CAM only describes surface aberration with high resolution, an advantage over wave front sensing which measures all accumulated optical aberrations including the changing ones of the lens during accommodation and the transient ones due to lens aging and early cataract formation.

  6. Design of achromatic and apochromatic plastic micro-objectives.

    PubMed

    Greisukh, Grigoriy I; Ezhov, Evgeniy G; Levin, Il'ya A; Stepanov, Sergei A

    2010-08-10

    The possibility and the efficiency of using a single diffractive lens to achromatize and apochromatize micro-objectives with plastic lenses are shown. In addition, recommendations are given on assembling the starting configurations of the objectives and calculating the design parameters required for subsequent optimization. It is also shown that achievable optical performance of achromatic and apochromatic micro-objectives with plastic lenses satisfy the qualifying standards for cell-phone objectives and closed-circuit television (CCTV) cameras. PMID:20697440

  7. An achromat for the ANU 14UD linac

    NASA Astrophysics Data System (ADS)

    MacKinnon, B. A.; Stuchbery, A. E.; Weisser, D. C.

    1994-06-01

    A compact magnetic achromat has been designed and constructed to deliver the horizontal output beam of the ANU 14UD Pelletron tandem accelerator to a superconducting booster accelerator to be located in part of the experimental hall of the laboratory. The achromat provides 90° deflection of the ion beam and is fully achromatic with respect to energy spread in the beam. Due to space constraints in the laboratory, it has been necessary to locate the beam chopping device and bunching cryostat upstream of the 90° bend, thereby requiring that the beam trajectory following the bend be independent of beam energy. The optical performance of the achromat has been investigated in first order using the matrix transfer beam calculation code TRANSPORT, and in high order using the particle tracking code RAYTRACE. In first order, the achromat is shown to have precise achromatism and to be isochronous with the exception of small and predictable time waist shifts. High order calculations lead to an expectation of less than 6% worsening of the transverse beam emittance and less than 9 ps timing degradation for 170 MeV 59Ni 13+, an isotope of interest in accelerator mass spectrometry. The effect on the transmission of this isotope through the subsequent acceleration stages and beam-optical elements is negligible.

  8. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-01

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes. PMID:24464164

  9. Sensitivity maps for low-contrast perturbations within conducting background in magnetic induction tomography.

    PubMed

    Scharfetter, Hermann; Riu, Pere; Populo, Marcos; Rosell, Javier

    2002-02-01

    Magnetic induction tomography (MIT) is a contactless method for mapping the electrical conductivity of tissue by measuring the perturbation of an alternating magnetic field with appropriate receiver coils. Reconstruction algorithms so far suggested for biomedical applications are based on weighted backprojection, hence requiring tube-shaped zones of sensitivity between excitation coils and receiving coils, the sensitivity being essentially zero outside this 'projection beam'. This condition is met for conducting perturbations in empty space and for some special configurations of insulators in saline. In biological structures, however, perturbations with low conductivity contrast are embedded into a bulk conductor. The respective sensitivity distribution was investigated and quantified theoretically and experimentally by displacing a conducting (agar, 8 S m(-1)) and an insulating sphere within a saline tank (4 S m(-1)). In contrast to the case in the empty space the sensitivity is not confined to a tube but even increases outside the 'projection beam'. The difference can be explained by the interaction of bulk currents with the perturbing object. This effect invalidates backprojection and hence the solution of the complete inverse eddy-current problem is suggested. PMID:11876234

  10. Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method

    PubMed Central

    Lesmes, Luis Andres; Lu, Zhong-Lin; Baek, Jongsoo; Albright, Thomas D.

    2015-01-01

    The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B. Cobo-Lewis, 1996; L. L. Kontsevich & C. W. Tyler, 1999). Before each trial, a one-step-ahead search finds the grating stimulus (defined by frequency and contrast) that maximizes the expected information gain (J. V. Kujala & T. J. Lukka, 2006; L. A. Lesmes et al., 2006), about four CSF parameters. By directly estimating CSF parameters, data collected at one spatial frequency improves sensitivity estimates across all frequencies. A psychophysical study validated that CSFs obtained with 100 qCSF trials (~10 min) exhibited good precision across spatial frequencies (SD < 2–3 dB) and excellent agreement with CSFs obtained independently (mean RMSE = 0.86 dB). To estimate the broad sensitivity metric provided by the area under the log CSF (AULCSF), only 25 trials were needed to achieve a coefficient of variation of 15–20%. The current study demonstrates the method’s value for basic and clinical investigations. Further studies, applying the qCSF to measure wider ranges of normal and abnormal vision, will determine how its efficiency translates to clinical assessment. PMID:20377294

  11. Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method.

    PubMed

    Lesmes, Luis Andres; Lu, Zhong-Lin; Baek, Jongsoo; Albright, Thomas D

    2010-01-01

    The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B. Cobo-Lewis, 1996; L. L. Kontsevich & C. W. Tyler, 1999). Before each trial, a one-step-ahead search finds the grating stimulus (defined by frequency and contrast) that maximizes the expected information gain (J. V. Kujala & T. J. Lukka, 2006; L. A. Lesmes et al., 2006), about four CSF parameters. By directly estimating CSF parameters, data collected at one spatial frequency improves sensitivity estimates across all frequencies. A psychophysical study validated that CSFs obtained with 100 qCSF trials ( approximately 10 min) exhibited good precision across spatial frequencies (SD < 2-3 dB) and excellent agreement with CSFs obtained independently (mean RMSE = 0.86 dB). To estimate the broad sensitivity metric provided by the area under the log CSF (AULCSF), only 25 trials were needed to achieve a coefficient of variation of 15-20%. The current study demonstrates the method's value for basic and clinical investigations. Further studies, applying the qCSF to measure wider ranges of normal and abnormal vision, will determine how its efficiency translates to clinical assessment. PMID:20377294

  12. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    SciTech Connect

    Liu, D.; Khaykovich, B.; Hussey, D.; Jacobson, D.; Arif, M.; Gubarev, M. V.; Ramsey, B. D.; Moncton, D. E.

    2013-05-06

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  13. Principle of a coaxial Achromatic Interfero Coronagraph

    NASA Astrophysics Data System (ADS)

    Gay, J.; Fressin, F.; Rivet, J.-P.

    We describe here the principle of a new type of coronagraph, based on the incident flux division with pupil reversal and phase shift on one beam, then recombination with destructive interferences at the center orf the field. This concept of nulling has already been used in the Interferometrical Achromatic Interfero-Coronagraph (AIC, Gay & Rabbia [CITE]), which lies on a Michelson interferometer interferomùetry which does not allow an easy insertion in the focal facility of a telescope. The variant under consideration has a completely coaxial design with an original and very compact optical combination. It is based upon two coaxial thick lenses in the same medium, stuck one to each other with a very narrow gap in between and a proper coating of the interfaces. The very geometry of the device ensures moreover the permanent and rigorous cophasing of the interferometer. The optical combination which fulfills this problem is unique and presents a range of properties which ease its insertion in the focal instrumentation of existing telescopes or next generation ones.

  14. Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations

    PubMed Central

    Ohnuma, Kazuhiko; Kayanuma, Hiroyuki; Lawu, Tjundewo; Negishi, Kazuno; Yamaguchi, Takefumi; Noda, Toru

    2011-01-01

    Correcting spherical and chromatic aberrations in vitro in human eyes provides substantial visual acuity and contrast sensitivity improvements. We found the same improvement in the retinal images using a model eye with/without correction of longitudinal chromatic aberrations (LCAs) and spherical aberrations (SAs). The model eye included an intraocular lens (IOL) and artificial cornea with human ocular LCAs and average human SAs. The optotypes were illuminated using a D65 light source, and the images were obtained using two-dimensional luminance colorimeter. The contrast improvement from the SA correction was higher than the LCA correction, indicating the benefit of an aspheric achromatic IOL. PMID:21698008

  15. Synthesis and characterization of a redox- and light-sensitive MRI contrast agent

    PubMed Central

    Tu, Chuqiao; Osborne, Elizabeth A.; Louie, Angelique Y.

    2009-01-01

    A redox- and light-sensitive, T1-weighted magnetic resonance imaging (MRI) contrast agent which tethers a spiropyran(SP)/merocyanine(MC) motif to a Gd-DO3A moiety was synthesized and characterized. When in the dark, the probe is in its MC form which has an r1 relaxivity of 2.51 mM−1s−1 (60MHz, 37°C). After irradiation with visible light or mixing with NADH, the probe experiences an isomerization and the r1 relaxivity decreased 18% and 26%, respectively. Additionally, the signal intensity in MRI showed an observable decrease after the compound was mixed with NADH. PMID:20126289

  16. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    SciTech Connect

    Shah, Rahul C; Johnson, Randall P; Shimada, Tsutomu; Hegelich, Bjorn M

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  17. Effect on contrast sensitivity after clear, yellow and orange intraocular lens implantation.

    PubMed

    Bandyopadhyay, Sabyasachi; Saha, Mita; Chakrabarti, Asim; Sinha, Abhik

    2016-06-01

    The objective of this study is to evaluate contrast sensitivity function (CSF) after clear, yellow- and orange-tinted intraocular lens (IOL) implantation. This was a prospective randomized study of 98 patients with senile cataract for a period of 6 months from day 1 of August 2014 to day 31 of January 2015. After phacoemulsification, 33 patients were implanted with clear IOLs (AcrySof UV-filtering IOL, SA60AT), 32 patients were implanted with yellow coloured IOLs (AcrySof Natural blue-light-attenuating and UV-filtering IOL, SN60AT with IMPRUV(®) filter) and 33 patients were implanted with orange-tinted blue-filtering IOLs (PC440Y Optech). After 1 month, monocular CSF was done under photopic (85 cd/m(2)) and mesopic (3 cd/m(2)) illumination condition with CSV-1000 test. The best corrected visual acuity (BCVA) after 1 month was 0.021 ± 0.058 logMAR for clear lens, 0.022 ± 0.059 logMAR for yellow lens and 0.019 ± 0.065 logMAR for orange lens (p = 0.989). Uniocular average photopic contrast sensitivity was 1.36 ± 0.19, 1.43 ± 0.18 and 1.46 ± 0.15 log units for clear lens, yellow lens and orange lens, respectively (statistically not significant; p = 0.076). Average mesopic contrast sensitivity was 1.02 ± 0.21 log units for clear lens, 1.00 ± 0.17 log units for yellow lens and 0.99 ± 0.15 log units for orange lens (statistically not significant; p = 0.771). Yellow or orange coloured blue-filtering IOLs are comparable to clear IOLs in terms of photopic and mesopic contrast sensitivity. PMID:26286756

  18. Illumination-invariant face recognition with a contrast sensitive silicon retina

    SciTech Connect

    Buhmann, J.M.; Lades, M.; Eeckman, F.

    1993-11-29

    Changes in lighting conditions strongly effect the performance and reliability of computer vision systems. We report face recognition results under drastically changing lighting conditions for a computer vision system which concurrently uses a contrast sensitive silicon retina and a conventional, gain controlled CCD camera. For both input devices the face recognition system employs an elastic matching algorithm with wavelet based features to classify unknown faces. To assess the effect of analog on-chip preprocessing by the silicon retina the CCD images have been digitally preprocessed with a bandpass filter to adjust the power spectrum. The silicon retina with its ability to adjust sensitivity increases the recognition rate up to 50 percent. These comparative experiments demonstrate that preprocessing with an analog VLSI silicon retina generates image data enriched with object-constant features.

  19. Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis.

    PubMed

    Bricq, Stéphanie; Mahé, Guillaume; Rousseau, David; Humeau-Heurtier, Anne; Chapeau-Blondeau, François; Varela, Julio Rojas; Abraham, Pierre

    2012-10-01

    For blood perfusion monitoring, laser speckle contrast (LSC) imaging is a recent non-contact technique that has the characteristic of delivering noise-like speckled images. To exploit LSC images for quantitative physiological measurements, we developed an approach that implements controlled spatial averaging to reduce the detrimental impact of the noise and improve measurement sensitivity. By this approach, spatial resolution and measurement sensitivity can be traded-off in a flexible way depending on the quantitative prospect of the study. As an application, detectability of the cardiac activity from LSC images of forearm using power spectrum analysis is studied through the construction of spatial activity maps offering a window on the blood flow perfusion and its regional distribution. Comparisons with results obtained with signals of laser Doppler flowmetry probes are performed. PMID:22644256

  20. Rapid and Reliable Assessment of the Contrast Sensitivity Function on an iPad

    PubMed Central

    Dorr, Michael; Lesmes, Luis A.; Lu, Zhong-Lin; Bex, Peter J.

    2013-01-01

    Purpose. Letter acuity, the predominant clinical assessment of vision, is relatively insensitive to slow vision loss caused by eye disease. While the contrast sensitivity function (CSF) has demonstrated the potential to monitor the slow progress of blinding eye diseases, current tests of CSF lack the reliability or ease-of-use to capture changes in vision timely. To improve the current state of home testing for vision, we have developed and validated a computerized adaptive test on a commercial tablet device (iPad) that provides an efficient and easy-to-use assessment of the CSF. Methods. We evaluated the reliability, accuracy, and flexibility of tablet-based CSF assessment. Repeated tablet-based assessments of the spatial CSF, obtained from four normally-sighted observers, which each took 3 to 5 minutes, were compared to measures obtained on CRT-based laboratory equipment; additional tablet-based measures were obtained from six subjects under three different luminance conditions. Results. A Bland-Altman analysis demonstrated that tablet-based assessment was reliable for estimating sensitivities at specific spatial frequencies (coefficient of repeatability 0.14–0.40 log units). The CRT- and tablet-based results demonstrated excellent agreement with absolute mean sensitivity differences <0.05 log units. The tablet-based test also reliably identified changes in contrast sensitivity due to different luminance conditions. Conclusions. We demonstrate that CSF assessment on a mobile device is indistinguishable from that obtained with specialized laboratory equipment. We also demonstrate better reliability than tests used currently for clinical trials of ophthalmic therapies, drugs, and devices. PMID:24114545

  1. Lightness dependence of achromatic loci in color-appearance coordinates.

    PubMed

    Kuriki, Ichiro

    2015-01-01

    Shifts in the appearance of color under different illuminant chromaticity are known to be incomplete, and fit nicely with a simple linear transformation of cone responses that aligns the achromatic points under two illuminants. Most chromaticity-transfer functions with von-Kries-like transformations use only one set of values to fit the color shifts from one illuminant to another. However, an achromatic point shifts its chromaticity depending on the lightness of the test stimulus. This lightness dependence of the achromatic-point locus is qualitatively similar to a phenomenon known as the Helson-Judd effect. The present study suggests that the lightness dependency of achromatic points appears to be a general trend, which is supported by the results from deriving the optimal von-Kries coefficients for different lightness levels that best fit the color shifts under a different illuminant chromaticity. Further, we report that such a lightness dependence of the achromatic-point loci can be represented simply as a straight line in coordinates defined using color-appearance models such as CIECAM when normalized for daylight. PMID:25713543

  2. Impact of Albedo Contrast Between Cirrus and Boundary-Layer Clouds on Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, R. S.; Hou, A. Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    In assessing the iris effect suggested by Lindzen et al. (2001), Fu et al. (2001) found that the response of high-level clouds to the sea surface temperature had an effect of reducing the climate sensitivity to external radiative forcing, but the effect was not as strong as LCH found. This weaker reduction in climate sensitivity was due to the smaller contrasts in albedos and effective emitting temperatures between cirrus clouds and the neighboring regions. FBH specified the albedos and the outgoing longwave radiation (OLR) in the LCH 3.5-box radiative-convective model by requiring that the model radiation budgets at the top of the atmosphere be consistent with that inferred from the Earth Radiation Budget Experiment (ERBE). In point of fact, the constraint by radiation budgets alone is not sufficient for deriving the correct contrast in radiation properties between cirrus clouds and the neighboring regions, and the approach of FBH to specifying those properties is, we feel inappropriate for assessing the iris effect.

  3. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2016-07-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  4. Subjective contrast sensitivity function assessment in stereoscopic viewing of Gabor patches

    NASA Astrophysics Data System (ADS)

    Rousson, Johanna; Haar, Jérémy; Platiša, Ljiljana; Piepers, Bastian; Kimpe, Tom R.; Philips, Wilfried

    2015-03-01

    While 3D displays are entering hospitals, no study to-date has explored the impact of binocular disparity and 3D inclination on contrast sensitivity function (CSF) of humans. However, knowledge of the CSF is crucial to properly calibrate medical, especially diagnostic, displays. This study examined the impact of two parameters on the CSF: (1) the depth plane position (0 mm or 171 mm behind the display plane, respectively DP:0 or DP:171), and (2) the 3D inclination (0° or 45° around the horizontal axis of the considered DP), each of these for seven spatial frequencies ranging from 0.4 to 10 cycles per degree (cpd). The stimuli were computer-generated stereoscopic images of a vertically oriented 2D Gabor patch with a given frequency. They were displayed on a 24" full HD stereoscopic display using a patterned retarder. Nine human observers assessed the CSF in a 3-down 1-up staircase experiment. Medians of the measured contrast sensitivities and results of Friedman tests suggest that the 2D CSF as modeled by Barten1 still holds when a 3D display is used as a 2D visualization system (DP:0). However, the 3D CSF measured at DP:171 was found different from the 2D CSF at frequencies below 1 cpd and above 10 cpd.

  5. Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation

    PubMed Central

    Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie

    2013-01-01

    Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542

  6. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging

    PubMed Central

    Yang, Hua; Qiao, Jingjuan; Pu, Fan; Jiang, Jie; Hubbard, Kendra; Hekmatyar, Khan; Langley, Jason; Salarian, Mani; Long, Robert C.; Bryant, Robert G.; Hu, Xiaoping Philip; Grossniklaus, Hans E.; Liu, Zhi-Ren; Yang, Jenny J.

    2015-01-01

    With available MRI techniques, primary and metastatic liver cancers that are associated with high mortality rates and poor treatment responses are only diagnosed at late stages, due to the lack of highly sensitive contrast agents without Gd3+ toxicity. We have developed a protein contrast agent (ProCA32) that exhibits high stability for Gd3+ and a 1011-fold greater selectivity for Gd3+ over Zn2+ compared with existing contrast agents. ProCA32, modified from parvalbumin, possesses high relaxivities (r1/r2: 66.8 mmol−1⋅s−1/89.2 mmol−1⋅s−1 per particle). Using T1- and T2-weighted, as well as T2/T1 ratio imaging, we have achieved, for the first time (to our knowledge), robust MRI detection of early liver metastases as small as ∼0.24 mm in diameter, much smaller than the current detection limit of 10–20 mm. Furthermore, ProCA32 exhibits appropriate in vivo preference for liver sinusoidal spaces and pharmacokinetics for high-quality imaging. ProCA32 will be invaluable for noninvasive early detection of primary and metastatic liver cancers as well as for monitoring treatment and guiding therapeutic interventions, including drug delivery. PMID:25971726

  7. Steady-State Contrast Response Functions Provide a Sensitive and Objective Index of Amblyopic Deficits

    PubMed Central

    Baker, Daniel H.; Simard, Mathieu; Saint-Amour, Dave; Hess, Robert F.

    2015-01-01

    Purpose. Visual deficits in amblyopia are neural in origin, yet are difficult to characterize with functional magnetic resonance imagery (fMRI). Our aim was to develop an objective electroencephalography (EEG) paradigm that can be used to provide a clinically useful index of amblyopic deficits. Methods. We used steady-state visual evoked potentials (SSVEPs) to measure full contrast response functions in both amblyopic (n = 10, strabismic or mixed amblyopia, mean age: 44 years) and control (n = 5, mean age: 31 years) observers, both with and without a dichoptic mask. Results. At the highest target contrast, the ratio of amplitudes across the weaker and stronger eyes was highly correlated (r = 0.76) with the acuity ratio between the eyes. We also found that the contrast response function in the amblyopic eye had both a greatly reduced amplitude and a shallower slope, but that surprisingly dichoptic masking was weaker than in controls. The results were compared with the predictions of a computational model of amblyopia and suggest a modification to the model whereby excitatory (but not suppressive) signals are attenuated in the amblyopic eye. Conclusions. We suggest that SSVEPs offer a sensitive and objective measure of the ocular imbalance in amblyopia and could be used to assess the efficacy of amblyopia therapies currently under development. PMID:25634977

  8. Development and evaluation of a 3D model observer with nonlinear spatiotemporal contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn S.; Maidment, Andrew D. A.; Marchessoux, Cedric; Bakic, Predrag R.; Kimpe, Tom R. L.

    2014-03-01

    We investigate improvements to our 3D model observer with the goal of better matching human observer performance as a function of viewing distance, effective contrast, maximum luminance, and browsing speed. Two nonlinear methods of applying the human contrast sensitivity function (CSF) to a 3D model observer are proposed, namely the Probability Map (PM) and Monte Carlo (MC) methods. In the PM method, the visibility probability for each frequency component of the image stack, p, is calculated taking into account Barten's spatiotemporal CSF, the component modulation, and the human psychometric function. The probability p is considered to be equal to the perceived amplitude of the frequency component and thus can be used by a traditional model observer (e.g., LG-msCHO) in the space-time domain. In the MC method, each component is randomly kept with probability p or discarded with 1-p. The amplitude of the retained components is normalized to unity. The methods were tested using DBT stacks of an anthropomorphic breast phantom processed in a comprehensive simulation pipeline. Our experiments indicate that both the PM and MC methods yield results that match human observer performance better than the linear filtering method as a function of viewing distance, effective contrast, maximum luminance, and browsing speed.

  9. Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator.

    PubMed

    Sharkey, Camilla R; Partridge, Julian C; Roberts, Nicholas W

    2015-11-01

    Polarization sensitivity (PS) is a common feature of invertebrate visual systems. In insects, PS is well known for its use in several different visually guided behaviours, particularly navigation and habitat search. Adult dragonflies use the polarization of light to find water but a role for PS in aquatic dragonfly larvae, a stage that inhabits a very different photic environment to the adults, has not been investigated. The optomotor response of the larvae of the Emperor dragonfly, Anax imperator Leach 1815, was used to determine whether these larvae use PS to enhance visual contrast underwater. Two different light scattering conditions were used to surround the larval animals: a naturalistic horizontally polarized light field and a non-naturalistic weakly polarized light field. In both cases these scattering light fields obscured moving intensity stimuli that provoke an optokinetic response in the larvae. Animals were shown to track the movement of a square-wave grating more closely when it was viewed through the horizontally polarized light field, equivalent to a similar increase in tracking ability observed in response to an 8% increase in the intensity contrast of the stimuli. Our results suggest that larval PS enhances the intensity contrast of a visual scene under partially polarized lighting conditions that occur naturally in freshwater environments. PMID:26385333

  10. Bandwidth of the contrast sensitivity function as an index of spatial vision with application to refraction.

    PubMed

    Jiang, B C; Scialfa, C T; Tyrrell, R A; Garvey, P M; Leibowitz, H W

    1990-04-01

    The contrast sensitivity function (CSF), although containing more information than traditional measures of acuity, has found difficulty gaining clinical acceptance. The hesitancy of clinicians to adopt the CSF stems, in part, from the fact that it is not as readily interpreted as is acuity. In order to facilitate such interpretation, five indices of spatial vision which are derivable from the CSF were examined in a sample of 287 persons aged 5 to 85 years. All indices were found to be both age-sensitive and strongly related to each other, but bandwidth of the CSF was chosen as a practical index for clinical settings. In a second study, acuity and CSF bandwidth were measured under 0 to +/- 1 D optical blur. It was found that the correction providing best acuity also maximized CSF bandwidth, and that bandwidth was more sensitive to optical blur than was acuity. Results support the assertion that CSF bandwidth is a readily interpreted index of spatial vision that can be measured efficiently within the context of clinical refraction. PMID:2342788

  11. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI

    NASA Astrophysics Data System (ADS)

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T 1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T 1-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status.

  12. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI.

    PubMed

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T(1)-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T(1)-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  13. Monitoring Redox-Sensitive Paramagnetic Contrast Agent by EPRI, OMRI and MRI

    PubMed Central

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T1 weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  14. OPTIMIZING THE DYNAMIC APERTURE FOR TRIPLE BEND ACHROMATIC LATTICES.

    SciTech Connect

    KRAMER, S.L.; BENGTSSON, J.

    2006-06-26

    The Triple Bend Achromatic (TBA) lattice has the potential for lower natural emittance per period than the Double Bend Achromatic (DBA) lattice for high brightness light sources. However, the DBA has been chosen for 3rd generation light sources more often due to the higher number of undulator straight section available for a comparable emittance. The TBA has considerable flexibility in linear optics tuning while maintaining this emittance advantage. We have used the tune and chromaticity flexibility of a TBA lattice to minimize the lowest order nonlinearities to implement a 3rd order achromatic tune, while maintaining a constant emittance. This frees the geometric sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the TBA as a proposed lattice for NSLS-II facility. The flexibility of the TBA lattice will also provide for future upgrade capabilities of the beam parameters.

  15. Design and laboratory demonstration of an achromatic vector vortex coronagraph.

    PubMed

    Murakami, Naoshi; Hamaguchi, Shoki; Sakamoto, Moritsugu; Fukumoto, Ryohei; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Tamura, Motohide

    2013-03-25

    A vector vortex coronagraph (VVC) is one of promising means for imaging extremely faint objects around bright stars such as exoplanets. We present a design of an achromatic VVC, in which an axially-symmetric half-wave plate (AHP) is placed between crossed polarization filters (circular polarizer and analyzer). The circular polarizer and the analyzer are both composed of a polarizer and a quarter-wave plate (QWP). We demonstrate, via Jones calculus and Fourier analysis, that the achromatic stellar elimination can theoretically be realized by optimal polarization filters, even when chromatic AHP and QWPs are used. We carried out laboratory demonstrations of the designed VVC using a photonic-crystal AHP. As a result, we observed achromatic coronagraphic performance, a light suppression level of 7 × 10(-5), over a wavelength from 543 nm to 633 nm. PMID:23546123

  16. Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2015-09-01

    Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extrasolar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numerous and well demonstrated. However they essentially aim at realizing an achromatic central null in order to extinguish the star. In this communication is described a major improvement of the technique, where the achromatization process is extended to the entire fringe pattern. Therefore higher Signal-to-noise ratios (SNR) and appreciable simplification of the detection system should result. The basic principle of this Fully achromatic nulling interferometer (FANI) consists in inserting dispersive elements along the arms of the interferometer. Herein this principle is explained and illustrated by a preliminary optical system design. The typical achievable performance and limitations are discussed and some initial tolerance requirements are also provided.

  17. Color analysis of apparently achromatic automotive paints by visible microspectrophotometry.

    PubMed

    Kopchick, Kristin A; Bommarito, Christopher R

    2006-03-01

    Chromatic secondary pigments are utilized in achromatic automotive paints to create unique paint systems. These pigments may not be observable in reflected light; however, utilizing visible microspectrophotometry (MSP) discriminating data may be gathered. This study analyzed 160 apparently achromatic automotive paints via this technique for spectral evidence of secondary pigmentation. These results were compared with visual observations made via polarizing light microscopy. Positive spectral results were attained in approximately 25% of the black and gray/silver topcoat sample sets, whereas the white topcoat and gray undercoat set yielded no probative spectral data. The black sample set did yield several samples that produced spectral evidence of pigmentation when no visual chromatic data was observed. The results of this study suggest that paint analysis schemes should incorporate visible MSP for apparently achromatic black and gray/silver paint samples. PMID:16566767

  18. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. PMID:27036098

  19. The Effects of tDCS Across the Spatial Frequencies and Orientations that Comprise the Contrast Sensitivity Function

    PubMed Central

    Richard, Bruno; Johnson, Aaron P.; Thompson, Benjamin; Hansen, Bruce C.

    2015-01-01

    Transcranial Direct Current Stimulation (tDCS) has recently been employed in traditional psychophysical paradigms in an effort to measure direct manipulations on spatial frequency channel operations in the early visual system. However, the effects of tDCS on contrast sensitivity have only been measured at a single spatial frequency and orientation. Since contrast sensitivity is known to depend on spatial frequency and orientation, we ask how the effects of anodal and cathodal tDCS may vary according to these dimensions. We measured contrast sensitivity with sinusoidal gratings at four different spatial frequencies (0.5, 4, 8, and 12 cycles/°), two orientations (45° Oblique and Horizontal), and for two stimulus size conditions [fixed size (3°) and fixed period (1.5 cycles)]. Only contrast sensitivity measured with a 45° oblique grating with a spatial frequency of 8 cycles/° (period = 1.5 cycles) demonstrated clear polarity specific effects of tDCS, whereby cathodal tDCS increased and anodal tDCS decreased contrast sensitivity. Overall, effects of tDCS were largest for oblique stimuli presented at high spatial frequencies (i.e., 8 and 12 cycles/°), and were small or absent at lower spatial frequencies, other orientations and stimulus size. Thus, the impact of tDCS on contrast sensitivity, and therefore on spatial frequency channel operations, is opposite in direction to other behavioral effects of tDCS, and only measurable in stimuli that generally elicit lower contrast sensitivity (e.g., oblique gratings with period of 1.5 cycles at spatial frequencies above the peak of the contrast sensitivity function). PMID:26640448

  20. Influence of local inhomogeneities induced in corneal ablation on the evolution of contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Ortiz, Dolores; Saiz, Jose M.; González, Francisco

    2004-04-01

    The presence of local inhomogeneities in corneal tissue after refractive surgery has an influence on visual performance. Here we focus on the corneal ablation associated with Lasik surgery and its effect on the modulation transfer function (MTF) that we obtained by modifying a personalized Kooijman model. Inhomogeneities induced by the ablation occur in the form of Gaussian-distributed refractive-index variations of a given correlation length. We show how variation of refractive-index deviation and correlation length (size) of the inhomogeneities allows us to obtain pairs of values that are able to achieve a MTF evolution similar to that observed for contrast sensitivity in the same patients. An estimate of the characteristics of the local effects is obtained.

  1. The Nursing Home Minimum Data Set for Vision and Its Association with Visual Acuity and Contrast Sensitivity

    PubMed Central

    Swanson, Mark W.; McGwin, Gerald; Elliott, Amanda F.; Owsley, Cynthia

    2009-01-01

    Objectives To evaluate the association between the Minimum Data Set's (MDS) Vision Patterns section and near and distance visual acuity and contrast sensitivity in nursing home residents. Design Cross-sectional study Setting Seventeen nursing homes in the Birmingham, Alabama area. Participants 371 nursing home residents ≥ 55 years old with Mini-mental State Exams of ≥ 13. Measurements The MDS 2.0 assessment for vision from the date closest to acuity and contrast sensitivity assessment was obtained from the resident's medical record. Acuity and contrast sensitivity were measured by the ETDRS chart and Pelli-Robson chart, respectively. Results The MDS rating of visual status was associated with both distance and near visual acuity and contrast sensitivity. The MDS performed poorly in distinguishing residents with mild versus moderate visual impairment. For residents who were rated on the MDS as having adequate vision, 45.9% had distance acuity worse than 20/40 in the better eye, 72.8% had near acuity worse than 20/40 in the better eye, and 85.8% had contrast sensitivity < 1.50. Conclusion The MDS 2.0 assessment for vision in nursing home residents is positively associated with visual acuity and contrast sensitivity, but does not adequately distinguish between individuals with mild versus moderate visual impairment and classifies many as having adequate vision who have visual impairment. The validity of the MDS 2.0 as a mechanism for triggering comprehensive eye care for nursing home residents is questionable. PMID:19187419

  2. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  3. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates.

    PubMed

    Yu, Jing; Martins, André F; Preihs, Christian; Clavijo Jordan, Veronica; Chirayil, Sara; Zhao, Piyu; Wu, Yunkou; Nasr, Khaled; Kiefer, Garry E; Sherry, A Dean

    2015-11-11

    Given the known water exchange rate limitations of a previously reported Zn(II)-sensitive MRI contrast agent, GdDOTA-diBPEN, new structural targets were rationally designed to increase the rate of water exchange to improve MRI detection sensitivity. These new sensors exhibit fine-tuned water exchange properties and, depending on the individual structure, demonstrate significantly improved longitudinal relaxivities (r1). Two sensors in particular demonstrate optimized parameters and, therefore, show exceptionally high longitudinal relaxivities of about 50 mM(-1) s(-1) upon binding to Zn(II) and human serum albumin (HSA). This value demonstrates a 3-fold increase in r1 compared to that displayed by the original sensor, GdDOTA-diBPEN. In addition, this study provides important insights into the interplay between structural modifications, water exchange rate, and kinetic stability properties of the sensors. The new high relaxivity agents were used to successfully image Zn(II) release from the mouse pancreas in vivo during glucose stimulated insulin secretion. PMID:26462412

  4. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  5. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes.

    PubMed

    Khan, Hammad Aziz; Siddique, Kadambot H M; Munir, Rushna; Colmer, Timothy David

    2015-06-15

    Chickpea is a relatively salt sensitive species but shows genotypic variation for salt tolerance, measured as grain yield per plant in mild-to-moderately saline soil. This experiment was designed to evaluate some physiological responses to salinity in three contrasting genotypes. One tolerant (Genesis836), one moderately tolerant (JG11) and one sensitive (Rupali) genotype were grown for 108d in non-saline nutrient solution (controls) and two levels of salinity treatment (30 and 60mM NaCl). No plants survived to maturity in the 60mM NaCl treatment; however, Genesis836 survived longer (87d) than JG11 (67d) while Rupali died after 27d; only Genesis836 flowered, but no pods were filled. At 30mM NaCl, Genesis836 produced a few filled pods, whereas JG11 and Rupali did not. Genotypic differences in plant dry mass at the vegetative stage were evident only at 60mM NaCl, while at maturity differences were evident at 30mM NaCl. Photosynthesis was maintained to different degrees by the three genotypes (e.g. at 30mM NaCl, 35-81% of controls; highest in Genesis836); photosynthesis was restricted predominately due to non-stomatal limitations as the intercellular CO2 concentration was only modestly affected (94-99% of controls). Photosystem II damage was evident in the less tolerant genotypes (e.g. at 30mM NaCl, actual quantum efficiency of photosystem II values were 63-96% of controls). Across treatments, shoot dry mass was negatively correlated with both Na(+) and Cl(-) shoot concentrations. However, the sensitive genotype (Rupali) had equal or lower concentrations of these ions in green leaves, stems or roots compared to tolerant genotypes (JG11 and Genesis836); ion 'exclusion' does not explain variation for salt tolerance among these three chickpea genotypes. The large difference between Rupali (sensitive) and Genesis836 (tolerant) in the salt-induced reduction in net photosynthesis via non-stomatal limitations and the assessed damage to photosystem II, but with similar leaf

  6. Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye.

    PubMed

    Artal, P; Marcos, S; Iglesias, I; Green, D G

    1996-11-01

    Human observers experience a large decrement in visual acuity when a small artificial pupil is displaced from the center to the edge of the dilated natural pupil. This decrement in visual resolution, called the Campbell effect, has been attributed to the retina, the ocular optics, or a combination of the two. Given the uncertainty about the relative magnitudes of these two components over the range of spatial frequencies used in normal vision, we have obtained objective measurements of the retinal image quality and psychophysical measurements of visual performance, with decentered pupils. The contributions of monochromatic aberrations were determined by using double pass measurements of the modulus of the optical transfer function (MTF). For all of the observers, there was a substantial decrement in the MTF with decentering, showing that even when using a 1.5 mm pupil and appropriate spherical/cylindrical refractive corrections, there is a considerable contribution of monochromatic aberrations to the effect. We have compared these optical MTFs with the psychophysical contrast sensitivity functions (CSFs) measured under exactly the same conditions using green gratings generated on the screen of a color monitor. At the low and intermediate spatial frequencies considered (2-16 c/deg), we find the fall in the CSF is much greater than the fall in the monochromatic MTF, with the difference becoming greater as the spatial frequency increases. We show that this discrepancy can be mostly attributed to the effect of transverse chromatic aberration due to the bandwidth of the green stimulus used for the CSF measurements. In conclusion, the combination of the ocular transverse chromatic aberration and monochromatic aberrations accounts for the loss in visual sensitivity found with a decentered small pupil at low and intermediate spatial frequencies. PMID:8976989

  7. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia

    PubMed Central

    Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2016-01-01

    Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954

  8. Contrast sensitivity for motion detection and direction discrimination in adolescents with autism spectrum disorders and their siblings.

    PubMed

    Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen

    2010-12-01

    The magnocellular (M) pathway hypothesis proposes that impaired visual motion perception observed in individuals with Autism Spectrum Disorders (ASD) might be mediated by atypical functioning of the subcortical M pathway, as this pathway provides the bulk of visual input to cortical motion detectors. To test this hypothesis, we measured luminance and chromatic contrast sensitivity, thought to tap M and Parvocellular (P) pathway processing, respectively. We also tested the hypothesis that motion processing is impaired in ASD using a novel paradigm that measures motion processing while controlling for detectabilty. Specifically, this paradigm compares contrast sensitivity for detection of a moving grating with contrast sensitivity for direction-of-motion discrimination of that same moving grating. Contrast sensitivities from adolescents with ASD were compared to typically-developing adolescents, and also unaffected siblings of individuals with ASD (SIBS). The results revealed significant group differences on P, but not M, pathway processing, with SIBS showing higher chromatic contrast sensitivity than both participants with ASD and TD participants. This atypicality, unique to SIBS, suggests the possible existence of a protective factor in these individuals against developing ASD. The results also revealed impairments in motion perception in both participants with ASD and SIBS, which may be an endophenotype of ASD. This impairment may be driven by impairments in motion detectors and/or by reduced input from neural areas that project to motion detectors, the latter possibility being consistent with the notion of reduced connectivity between neural areas in ASD. PMID:20937290

  9. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences

    PubMed Central

    Bartholomew, Alex J.; Lad, Eleonora M.; Cao, Dingcai; Bach, Michael; Cirulli, Elizabeth T.

    2016-01-01

    Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision. PMID:26886100

  10. Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants

    PubMed Central

    Dobkins, Karen R.; Bosworth, Rain G.; McCleery, Joseph P.

    2010-01-01

    To investigate effects of visual experience versus preprogrammed mechanisms on visual development, we used multiple regression analysis to determine the extent to which a variety of variables (that differ in the extent to which they are tied to visual experience) predict luminance and chromatic (red/green) contrast sensitivity (CS), which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Our variables included gestational length (GL), birth weight (BW), gender, postnatal age (PNA), and birth order (BO). Two-month-olds (n = 60) and 6-month-olds (n = 122) were tested. Results revealed that (1) at 2 months, infants with longer GL have higher luminance CS; (2) at both ages, CS significantly increases over a ~21-day range of PNA, but this effect is stronger in 2- than 6-month-olds and stronger for chromatic than luminance CS; (3) at 2 months, boys have higher luminance CS than girls; and (4) at 2 months, firstborn infants have higher CS, while at 6 months, non-firstborn infants have higher CS. The results for PNA/GL are consistent with the possibility that P pathway development is more influenced by variables tied to visual experience (PNA), while M pathway development is more influenced by variables unrelated to visual experience (GL). Other variables, including prenatal environment, are also discussed. PMID:19810800

  11. Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization.

    PubMed

    Albala, Lorenzo; Ercan, Utku K; Joshi, Suresh G; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2015-10-15

    Many injectables are not amenable to standard sterilization methods, which destroy sensitive materials. This is particularly true for ultrasound contrast agents (UCA) consisting of gas bubbles stabilized by a surfactant or polymer shell. We investigated a new method to achieve safe and effective sterilization in production by introducing dielectric-barrier discharge non-thermal plasma. A dielectric-barrier discharge was generated to first produce plasma-treated phosphate-buffered saline (PTPBS), which was used as a sterilant solution for our UCA SE61, avoiding direct heat, pressure, chemicals, or radiation. Treated samples were tested for acoustic properties in vitro and in a flow phantom, and for sterility by standard methods. Three minutes plasma treatment of phosphate-buffered saline (PBS) proved effective. The samples showed significant inactivation of inoculated bacteria upon PTPBS treatment as compared to un-treated-PBS (p=0.0022). The treated and untreated samples showed no statistical significance (p>0.05) in acoustic response or bubble diameter (mean±SEM: 2.52±0.31 μm). Nile Red was used to model intercalation of drug in the hydrophobic shell, intercalated successfully into SE61, and was unaffected by plasma treatment. The PTPBS completely sterilized suspensions of UCA, and it did not compromise the acoustic properties of the agent or its ability to retain a hydrophobic compound. PMID:26241754

  12. Repeatability Evaluation of a Contrast Sensitivity System for Transfer to the Eye Clinic

    NASA Astrophysics Data System (ADS)

    Alcalde, N. G.; Castillo, L. R.; Filgueira, C. Paz; Colombo, E. M.

    2016-04-01

    The Contrast Sensitivity Function (CSF) is a valuable tool which can be used to characterize functional vision and also for the diagnosis and management of patients with different eye diseases. In spite of its usefulness, the CSF is currently hardly ever used in clinical practice. The aim of this study was to validate the use of the system called FVC-100 (Tecnovinc-UNT-CONICET, Argentina), which calculates the CSF, in order to transfer this important tool to ophthalmological clinics. The validation was carried out through the design of a repeatability test and the subsequent analysis of the results. Furthermore, we evaluated the impact of different factors influencing the repeatability of the measurements such as age and previous training. The tests were based on the discrimination of sinusoidal gratings for different spatial frequencies (1, 4 and 12 c/°) in both eyes of 12 people, aged between 20 and 70. The results show that the calculated values of SC of each subject have a high repeatability and are not dependent on age or training. These results allow us to conclude positively regarding the effectiveness of the FVC-100, and to validate its use in clinics for the calculation of the FSC as a standard measure of functional vision quality.

  13. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences.

    PubMed

    Bartholomew, Alex J; Lad, Eleonora M; Cao, Dingcai; Bach, Michael; Cirulli, Elizabeth T

    2016-01-01

    Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision. PMID:26886100

  14. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex

    PubMed Central

    CRAVO, André M.; ROHENKOHL, Gustavo; WYART, Valentin; NOBRE, Anna C.

    2013-01-01

    Although it is increasingly accepted that temporal expectation can modulate early perceptual processing, the underlying neural computations remain unknown. In the present study, we combined a psychophysical paradigm with electrophysiological recordings to investigate the putative contribution of low-frequency oscillatory activity in mediating the modulation of visual perception by temporal expectation. Human participants judged the orientation of brief targets (visual Gabor patterns tilted clockwise or counter-clockwise) embedded within temporally regular or irregular streams of noise-patches used as temporal cues. Psychophysical results indicated that temporal expectation enhanced the contrast sensitivity of visual targets. A diffusion model indicated that rhythmic temporal expectation modulated the signal-to-noise gain of visual processing. The concurrent electrophysiological data revealed that the phase of delta oscillations overlying human visual cortex (1 to 4 Hz) was predictive of the quality of target processing only in regular streams of events. Moreover, in the regular condition, the optimum phase of these perception-predictive oscillations occurred in anticipation of the expected events. Together, these results show a strong correspondence between psychophysical and neurophysiological data, suggesting that the phase entrainment of low-frequency oscillations to external sensory cues can serve as an important and flexible mechanism for enhancing sensory processing. PMID:23447609

  15. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  16. Color matrix display simulation based upon luminance and chromatic contrast sensitivity of early vision

    NASA Technical Reports Server (NTRS)

    Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.

    1992-01-01

    This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.

  17. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    NASA Astrophysics Data System (ADS)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  18. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    PubMed Central

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies. PMID:27040492

  19. Enhanced sensitivity and contrast with bimodal atomic force microscopy with small and ultra-small amplitudes in ambient conditions

    SciTech Connect

    Santos, Sergio

    2013-12-02

    Here, we introduce bimodal atomic force microscopy operated with sub-nm and ultra-small, i.e., sub-angstrom, first and second mode amplitudes in ambient conditions. We show how the tip can be made to oscillate in the proximity of the surface and in perpetual contact with the adsorbed water layers while the second mode amplitude and phase provide enhanced contrast and sensitivity. Nonlinear and nonmonotonic behavior of the experimental observables is discussed theoretically with a view to high resolution, enhanced contrast, and minimally invasive mapping. Fractions of meV of energy dissipation are shown to provide contrast above the noise level.

  20. Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure.

    PubMed

    Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni

    2016-06-01

    Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709

  1. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes.

    PubMed

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A; Myung, Jay I; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test-retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test-retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  2. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes

    PubMed Central

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A.; Myung, Jay I.; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test–retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test–retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  3. Discrimination and detection thresholds: the effect of observer criterion on the spatial properties of chromatic and achromatic mechanisms.

    PubMed

    Moorhead, I R; Saunders, J E

    1982-01-01

    Spectral sensitivity functions were determined for structured test targets presented on a white background field. Data obtained for threshold detection of the targets are consistent with results obtained from previous studies which used unstructured test fields showing functions, with three maxima, dependent on opponent colour mechanisms. Data obtained from threshold discrimination measurements show a marked reduction in the blue sensitivity when 1 degree test targets are used. This effect decreases significantly when larger targets are used. A change of the observer's criterion can significantly alter the relative contributions of the achromatic and chromatic channels at threshold. PMID:7135843

  4. The contribution of chromatic and achromatic valence to spectral saturation.

    PubMed

    Fuld, K

    1991-01-01

    The spectral efficiency of the achromatic and opponent chromatic channels was measured in three subjects by use of heterochromatic flicker photometry and hue cancellation, respectively. Heterochromatic brightness matching was also used for measuring achromatic spectral efficiency. These data were then used to predict spectral saturation based on Hurvich and Jameson's (1957; Psychological Review, 64, 384-404) opponent colors model. A standard color-naming procedure and a saturation matching technique were used for measures of spectral saturation. The ratio of saturation of short-wave to long-wave lights was found to be less than that predicted by the linear valence model. Allowing for nonlinearity at the opponent site of the yellow-blue channel plus a desaturating signal from the rods provided a good fit between data and theory. PMID:2017884

  5. Reduced sensitivity to contrast signals from the eye region in developmental prosopagnosia.

    PubMed

    Fisher, Katie; Towler, John; Eimer, Martin

    2016-08-01

    Contrast-related signals from the eye region are known to be important for the processing of facial identity. Individuals with developmental prosopagnosia (DP) have severe face recognition problems, which may be linked to deficits in the perceptual processing of identity-related information from the eyes. We tested this hypothesis by measuring N170 components in DP participants and age-matched controls in response to face images where the contrast polarity of the eyes and of other face parts was independently manipulated. In different trials, participants fixated either the eye region or the lower part of a face. In the Control group, contrast-reversal of the eyes resulted in enhanced and delayed N170 components, irrespective of the contrast of other face parts and of gaze location. In the DP group, these effects of eye contrast on N170 amplitudes were strongly and significantly reduced, demonstrating that perceptual face processing in DP is less well tuned to contrast information from the eye region. Inverting the contrast of other parts of the face affected N170 amplitudes only when fixation was outside the eye region. This effect did not differ between the two groups, indicating that DPs are not generally insensitive to the contrast polarity of face images. These results provide new evidence that a selective deficit in detecting and analysing identity-related information provided by contrast signals from the eye region may contribute to the face recognition impairment in DP. PMID:27179151

  6. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    PubMed

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  7. Temporal contrast sensitivity in the lateral geniculate nucleus of a New World monkey, the marmoset Callithrix jacchus

    PubMed Central

    Solomon, Samuel G; White, Andrew J R; Martin, Paul R

    1999-01-01

    The temporal contrast sensitivity of koniocellular, parvocellular and magnocellular cells in the lateral geniculate nucleus (LGN) of nine adult marmosets was measured. The receptive fields of the cells were between 0.3 and 70 deg from the fovea. The stimulus was a large spatially uniform field which was modulated in luminance at temporal frequencies between 0.98 and 64 Hz. For each cell group there was a gradual increase in modulation sensitivity, especially for temporal frequencies below 8 Hz, with increasing distance from the fovea. At any given eccentricity, magnocellular cells had the greatest sensitivity. In central visual field, the sensitivity of koniocellular cells lay between that of parvocellular and magnocellular cells. In peripheral visual field (above 10 deg eccentricity) koniocellular and parvocellular cells had similar sensitivity. The contrast sensitivity of each cell class was dependent on the anaesthetic used. Cells from animals anaesthetized with isoflurane were less sensitive than cells from animals anaesthetized with sufentanil. This effect was more marked for temporal frequencies below 4 Hz. These results are incompatible with the notion that the koniocellular pathway is functionally homologous to a sluggish, W-like pathway in other mammals. At least in terms of their temporal transfer properties, many koniocellular cells are more like parvocellular cells. PMID:10358129

  8. Spatial Mapping of Macular Pigment Optical Density and Its Relationship to Contrast Sensitivity and Glare Disability

    NASA Astrophysics Data System (ADS)

    Putnam, Christopher

    This dissertation explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of contrast sensitivity (CS), glare disability (GD), relative glare disability (RGD) and intraocular light scatter. A novel device capable of measuring MPOD across the central 160 of retina along 8 principle meridians using customized heterochromatic flicker photometry (cHFP) at eccentricities of 00, 20, 40, 60 and 80 was built. MPOD was calculated as both discrete and integrated values at all measured retinal loci. CS was measured using vertical grating stimuli of 3, 6 and 9 cycles per degree (cpd) also presented at 00, 20, 4 0, 60 and 80 eccentricity. GD was calculated as a difference in CS between glare and no glare conditions (CSNo Glare - CSGlare) using the same vertical grating stimuli presented at the same eccentricities. RGD [(CSNo Glare - CSGlare) / CSNo Glare] was calculated to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Intraocular scatter was assessed through a direct compensation method using a commercially available device. Statistical analyses of the discrete and integrated MPOD associations with CS, GD, RGD and intraocular scatter were evaluated. The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1 st order exponential decay curve as a function of increasing eccentricity. Foveal MPOD revealed the highest correlation coefficients with RGD using 9cpd stimuli. These results are consistent with the glare attenuation effects of MP at higher spatial frequencies. Further support may be seen from the significant correlations found between corresponding parafoveal MPOD measures and both GD and RGD at 20 and 40 of eccentricity using 9cpd stimuli with greater MPOD being associated with less glare disability. All calculated measures of foveal MPOD shared similar significant correlation coefficients with both GD and RGD using 6cpd and 9cpd stimuli. Discrete

  9. Finite Element Modeling of the Magnetotelluric Phase Tensor Response to Evaluate Sensitivity to Lateral and Vertical Resistivity Contrasts

    NASA Astrophysics Data System (ADS)

    Hawkes, S.; McClain, J. S.

    2015-12-01

    Phase tensor analysis of magnetotelluric data is a relatively new technique introduced by Caldwell et. al. (2004) and requires substantial research efforts to evaluate the capabilities of the method. We have conducted finite element (FE) modeling using the AC/DC module of Comsol Multiphysics to determine the effect of resistivity structure on the phase tensor response. Measurements are made at eleven frequencies from 10-104 Hz at points on a 5x5 grid above various simple model geometries. Phase tensor plotting methods are adapted from Booker (2013) and involve displaying data graphically as stacks of colored ellipses. This allows for interpretation across the frequency spectrum vertically as well as laterally between stations. Two types of plot are presented for each model, a "ϕmin plot" where the ellipses are colored according to the minimum principle phase and a "delta plot" where the ellipses are colored according to the difference between the principle phases (ϕmax - ϕmin), which provides a quantification of the phase anisotropy. Results suggest that the principle phases ϕmin and ϕmax are sensitive to vertical resistivity contrasts but not lateral resistivity contrasts. Conversely, delta plots reveal sensitivity to lateral resistivity contrasts but not vertical resistivity contrasts. A clear distance relationship is observed with proximity to the boundary controlling the frequency range that senses a lateral resistivity contrast. Rotation of the phase tensor ellipses and increased skew values occur in the presence of resistivity contrasts that strike nonparallel to the source field, with the effect increasing towards lower frequencies. The total phase tensor response is confirmed to be sensitive to both vertical and lateral resistivity contrasts and can be used effectively to interpret subsurface resistivity structure.

  10. Achromatic wide-view circular polarizers for a high-transmittance vertically-aligned liquid crystal cell.

    PubMed

    Oh, Seung-Won; Yoon, Tae-Hoon

    2014-08-15

    We propose an optical compensation scheme through which we can eliminate the off-axis light leakage in a vertically-aligned liquid crystal cell with circular polarizers. In this scheme, four uniaxial films with complementary dispersion characteristics are used to compensate one another, resulting in achromatic effective phase retardation for off-axis angles. By using the proposed optical compensation, a contrast ratio higher than 2000:1 can be realized over the entire 55° viewing cone in a multi-domain vertical-alignment liquid crystal cell with circular polarizers. PMID:25121848

  11. Relationship between absorptive lenses and contrast sensitivity in healthy young subjects with glare under photopic- and mesopic-vision conditions

    NASA Astrophysics Data System (ADS)

    Kanazawa, Masatsugu; Uozato, Hiroshi

    2013-05-01

    We investigated the effect of absorptive lenses on contrast sensitivity under photopic- and mesopic-visions with glare, from the viewpoint of luminous transmittance (LT) and spectral transmittance. The subjects were 24 healthy volunteers. Log contrast sensitivity (logCS) under two luminance conditions with glare was measured with a contrast glare test device. Binocular logCSs with absorptive lenses were compared with those without absorptive lenses (control condition). Furthermore, to investigate the effect of spectral transmittance, we calculated the ratio of stimulus quantity and the correlation between this ratio and logCS. Compared with that in the control, logCS was hardly affected in the case of high-luminous-transmittance absorptive lenses under binocular visions with glare. Middle- and long-wavelength lights effectively contribute to contrast sensitivity under photopic-vision and lights at each wavelength showed almost the same coefficients of correlation under mesopic-vision. Previous studies suggested that absorptive lenses provide users with protection against harmful radiation and glare. Our present results suggested that short-wavelength and high-LT absorptive lenses are particularly useful in daylight.

  12. Apartment residents' and day care workers' exposures to tetrachloroethylene and deficits in visual contrast sensitivity.

    PubMed Central

    Schreiber, Judith S; Hudnell, H Kenneth; Geller, Andrew M; House, Dennis E; Aldous, Kenneth M; Force, Michael S; Langguth, Karyn; Prohonic, Elizabeth J; Parker, Jean C

    2002-01-01

    Tetrachloroethylene (also called perchloroethylene, or perc), a volatile organic compound, has been the predominant solvent used by the dry-cleaning industry for many years. The U.S. Environmental Protection Agency (EPA) classified perc as a hazardous air pollutant because of its potential adverse impact on human health. Several occupational studies have indicated that chronic, airborne perc exposure adversely affects neurobehavioral functions in workers, particularly visual color discrimination and tasks dependent on rapid visual-information processing. A 1995 study by Altmann and colleagues extended these findings, indicating that environmental perc exposure at a mean level of 4,980 microg/m(3) (median=1,360 microg/m(3)) alters neurobehavioral functions in residents living near dry-cleaning facilities. Although the U.S. EPA has not yet set a reference concentration guideline level for environmental exposure to airborne perc, the New York State Department of Health set an air quality guideline of 100 microg/m(3). In the current residential study, we investigated the potential for perc exposure and neurologic effects, using a battery of visual-system function tests, among healthy members of six families living in two apartment buildings in New York City that contained dry-cleaning facilities on the ground floors. In addition, a day care investigation assessed the potential for perc exposure and effects among workers at a day care center located in the same one-story building as a dry-cleaning facility. Results from the residential study showed a mean exposure level of 778 microg/m(3) perc in indoor air for a mean of 5.8 years, and that perc levels in breath, blood, and urine were 1-2 orders of magnitude in excess of background values. Group-mean visual contrast sensitivity (VCS), a measure of the ability to detect visual patterns, was significantly reduced in the 17 exposed study participants relative to unexposed matched-control participants. The groups did not

  13. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.

    2004-01-01

    The most critical element of an adaptive optics system is its wavefront sensor, which must measure the closed-loop difference between the corrected wavefront and an ideal template at high speed, in real time, over a dense sampling of the pupil. Most high-order systems have used Shack-Hartmann wavefront sensors, but a novel approach based on Zernike's phase contrast principle appears promising. In this paper we discuss a simple way to achromatize such a phase contrast wavefront sensor, using the pi/2 phase difference between reflected and transmitted rays in a thin, symmetric beam splitter. We further model the response at a range of wavelengths to show that the required transverse dimension of the focal-plane phase-shifting spot, nominally lambda/D, may not be very sensitive to wavelength, and so in practice additional optics to introduce wavelength-dependent transverse magnification achromatizing this spot diameter may not be required. A very simple broadband implementation of the phase contrast wavefront sensor results.

  14. Effect of yellow filter on visual acuity and contrast sensitivity under glare condition among different age groups.

    PubMed

    Mahjoob, Monireh; Heydarian, Samira; Koochi, Somayyeh

    2016-08-01

    The aim of this study is to investigate the effect of yellow filter on visual acuity and contrast sensitivity under glare condition for various ages. A total of 60 subjects, aged 5-60 years, with no ocular pathology and no previous surgery were assessed in this cross-sectional study. We divided subjects into six subgroups according to their ages, and the number of subjects in each group was 10: group 1, aged 5-10 years; group 2, aged 11-20 years; group 3, aged 21-30 years; group 4, aged 31-40 years; group 5, aged 41-50 years; and group 6, aged 51-60 years. Snellen visual acuity and Pelli Robson contrast sensitivity with and without glare and with the use of yellow filter under glare condition were determined. Data analysis was carried out using SPSS, version 20. Our results showed a significant reduction in contrast sensitivity under glare condition in all age groups (p = 0.000), which improved significantly with the use of yellow filter (p = 0.000). Although when data in different age groups were analyzed separately, this improvement was only significant in older subjects, aged 51-60 years (p = 0.007). No significant difference was found between Snellen visual acuity with and without glare (p = 0.083), and also we found no yellow filter effect on visual acuity under glare condition. We conclude that yellow filter, which absorbs short wavelength, may provide significant contrast sensitivity benefits for individuals and influences older subjects more than younger ones. PMID:26613932

  15. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    NASA Astrophysics Data System (ADS)

    Kagias, M.; Cartier, S.; Wang, Z.; Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B.; Stampanoni, M.

    2016-06-01

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  16. Neuropsychological functions and visual contrast sensitivity in schizophrenia: the potential impact of comorbid posttraumatic stress disorder (PTSD).

    PubMed

    Halász, Ibolya; Levy-Gigi, Einat; Kelemen, Oguz; Benedek, György; Kéri, Szabolcs

    2013-01-01

    Previous studies have revealed a high prevalence of posttraumatic stress disorder (PTSD) in patients with other severe mental disorders, including schizophrenia. However, the neuropsychological and psychophysical correlates of comorbid PTSD are less exactly defined. The purpose of the present study was to assess immediate and delayed memory, attention, visuospatial skills, language, and basic visual information processing in patients with schizophrenia with or without PTSD. We recruited 125 patients with schizophrenia and 70 healthy controls matched for visual acuity, age, gender, education, and socioeconomic status. Twenty-one of patients with schizophrenia exhibited comorbid PTSD. We administered the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and visual contrast sensitivity tasks for low spatial/high temporal frequency (0.3 cycle/degree and 18 Hz) and high spatial/low temporal frequency (10 cycles/degree and 1Hz) sinusoidal gratings. All patients were clinically stable and received antipsychotic medications. Results revealed that relative to healthy controls, patients with schizophrenia exhibited significant and generalized neuropsychological dysfunctions and reduced visual contrast sensitivity, which was more pronounced at low spatial/high temporal frequency. When we compared schizophrenia patients with and without PTSD, we found that patients with comorbid PTSD displayed lower scores for RBANS attention, immediate and delayed memory, and visuospatial scores. Schizophrenia patients with or without PTSD displayed similar visual contrast sensitivity. In conclusion, comorbid PTSD in schizophrenia may be associated with worse neuropsychological functions, whereas it does not affect basic visual information processing. PMID:23519404

  17. Achromatic phase matching at third orders of dispersion

    DOEpatents

    Richman, Bruce

    2003-10-21

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal and stationary optical elements whose configuration, properties, and arrangement have been optimized to match the angular dispersion characteristics of the SHG crystal to at least the third order. These elements include prisms and diffraction gratings for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the third order and such that every ray wavelength overlap within the crystal.

  18. Review of Concepts and Constraints for Achromatic Phase Shifters

    NASA Astrophysics Data System (ADS)

    Rabbia, Y.; Gay, J.; Rivet, J.-P.; Schneider, J.-L.

    2003-03-01

    The search for earth-like exoplanets requires nulling interferometry in the thermal infrared domain. Nulling is needed because the star overshines the planet and the starlight must be eliminated. Thermal infrared is selected so as to record the light radiated by the planet itself , not the one from the star, reflected by the planet, but also because the flux ratio between star and planet is fainter than in the visible. Search for "life" (as known on Earth) requires large bandwidth observation so as to allow spectroscopy [1]. Achromatic Phase Shifters (APS) are crucial components since they govern destructive interference of the lightwaves collected from the star. The effective phase shifts to perform between collected lightwaves depends on the instrumental configuration but the achromaticity of the phase shift is needed in any case so as to achieve the nulling over the largest possible spectral bandwidth, what is required for detection of the planet (signal to noise ratio) and for its spectroscopic study as well. Since several concepts have been devised for Achromatic Phase Shifting, it is important to consider them before selecting the appropriate device in the framework of a nulling interferometry project. Some of them are an extension of concepts already used in optical instrumentation, some others have been specifically devised for large bandwidth nulling missions. Others incidentally revealed applicable to the topic. In this paper we report on various types of APS's, found in the literature. We recall the general constraints to satisfy, the underlying principle, and the critical points pertaining to their use over large bandwidths in the infrared thermal domain for nulling interferometry. The topic is considered in the framework of a space mission since the constraints to meet are covering the ones encountered in ground-based nulling projects, at the exception of the thermal background. Basically two families of concepts are found in the literature : the ones

  19. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  20. Color and contrast sensitivity after glare from high-brightness LEDs

    NASA Astrophysics Data System (ADS)

    Reidenbach, H.-D.

    2008-02-01

    The color contrast capability was investigated for 3 volunteers with 7 specially developed test charts in red, green, blue, cyan, magenta, yellow and black as a reference, namely without and after glare from 4 colored high-brightness LEDs. Each subject completed 56 tests in order to check especially the ability to discriminate low contrast. It was found that a contrast decrease of one level is equivalent to an increase of about 4 s in the required identification time and in addition a delay time between about 14 s and 16 s has been measured at the beginning of the respective test as a result of the dazzling glare from an LED. In addition trials have been performed with 4 different pseudoisochromatic color plates designed by Ishihara for color vision. These plates have been used to determine temporary color deficiencies after an exposure from a high-brightness LED. For this purpose 40 volunteers have been included in a laboratory test. Color vision was impaired for periods between 27 s and 186 s depending on the applied color plate and respective LED color.

  1. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    PubMed Central

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2016-01-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART. PMID:26987475

  2. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging.

    PubMed

    Ju, Myeong Jin; Hong, Young-Joo; Makita, Shuichi; Lim, Yiheng; Kurokawa, Kazuhiro; Duan, Lian; Miura, Masahiro; Tang, Shuo; Yasuno, Yoshiaki

    2013-08-12

    An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated. PMID:23938857

  3. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN) Influences Visual Contrast Sensitivity in Human Observers

    PubMed Central

    Strumpf, Hendrik; Noesselt, Toemme; Schoenfeld, Mircea Ariel; Voges, Jürgen; Panther, Patricia; Kaufmann, Joern; Heinze, Hans-Jochen; Hopf, Jens-Max

    2016-01-01

    The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC). Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds) in a group of patients with Parkinson’s Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST). We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level. PMID:27167979

  4. Ultra-broadband achromatic imaging with diffractive photon sieves

    PubMed Central

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  5. Ultra-broadband achromatic imaging with diffractive photon sieves.

    PubMed

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  6. Metrology of achromatic diffractive features on chalcogenide lenses

    NASA Astrophysics Data System (ADS)

    Scordato, M.; Nelson, J.; Schwertz, K.; Mckenna, P.; Bagwell, J.

    2015-10-01

    Achromatic diffractive features on lenses are widely used in industry for color correction, however there is not a welldefined standard to quantify the performance of the lenses. One metric used to qualify a lens is the sag deviation from the nominal lens profile. Imperfections in the manufacturing of the diffractive feature may cause scattering and performance loss. This is not reflected in sag deviation measurements, therefore performance measurements are required. There are different quantitative approaches to measuring the performance of an achromatic diffractive lens. Diffraction efficiency, a measure of optical power throughput, is a common design metric used to define the percent drop from the modulation transfer function (MTF) metric. The line spread function (LSF) shows a layout of the intensity with linear distance and an ensquared energy specification can be implemented. The MTF is a common analysis tool for assemblies and can be applied to a single element. These functional tests will be performed and compared with diffractive lenses manufactured by different tool designs. This paper displays the results found with various instruments. Contact profilometry was used to inspect the profile of the diffractive elements, and a MTF bench was used to characterize lens performance. Included will be a discussion comparing the results of profile traces and beam profiles to expected diffraction efficiency values and the effects of manufacturing imperfections.

  7. Aptamer-Modified Temperature-Sensitive Liposomal Contrast Agent for Magnetic Resonance Imaging.

    PubMed

    Zhang, Kunchi; Liu, Min; Tong, Xiaoyan; Sun, Na; Zhou, Lu; Cao, Yi; Wang, Jine; Zhang, Hailu; Pei, Renjun

    2015-09-14

    A novel aptamer modified thermosensitive liposome was designed as an efficient magnetic resonance imaging probe. In this paper, Gd-DTPA was encapsulated into an optimized thermosensitive liposome (TSL) formulation, followed by conjugation with AS1411 for specific targeting against tumor cells that overexpress nucleolin receptors. The resulting liposomes were extensively characterized in vitro as a contrast agent. As-prepared TSLs-AS1411 had a diameter about 136.1 nm. No obvious cytotoxicity was observed from MTT assay, which illustrated that the liposomes exhibited excellent biocompatibility. Compared to the control incubation at 37 °C, the liposomes modified with AS1411 exhibited much higher T1 relaxivity in MCF-7 cells incubated at 42 °C. These data indicate that the Gd-encapsulated TSLs-AS1411 may be a promising tool in early cancer diagnosis. PMID:26212580

  8. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    PubMed

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424

  9. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese

    PubMed Central

    Fernando, Denise R.; Marshall, Alan T.; Lynch, Jonathan P.

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424

  10. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even

  11. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-01-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales. PMID:20884562

  12. Estimation of chromatic errors from broadband images for high contrast imaging: sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2016-01-01

    Many concepts have been proposed to enable direct imaging of planets around nearby stars, and which would enable spectroscopic observations of their atmospheric observations and the potential discovery of biomarkers. The main technical challenge associated with direct imaging of exoplanets is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. Usage of an internal coronagraph with an adaptive optical system for wavefront correction is one of the most mature methods and is being developed as an instrument addition to the WFIRST-AFTA space mission. In addition, such instruments as GPI and SPHERE are already being used on the ground and are yielding spectra of giant planets. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, mid-spatial frequency wavefront errors must be estimated. To date, most broadband lab demonstrations use narrowband filters to obtain an estimate of the the chromaticity of the wavefront error and this can result in usage of a large percentage of the total integration time. Previously, we have proposed a method to estimate the chromaticity of wavefront errors using only broadband images; we have demonstrated that under idealized conditions wavefront errors can be estimated from images composed of discrete wavelengths. This is achieved by using DM probes with sufficient spatially-localized chromatic diversity. Here we report on the results of a study of the performance of this method with respect to realistic broadband images including noise. Additionally, we study optimal probe patterns that enable reduction of the number of probes used and compare the integration time with narrowband and IFS estimation methods.

  13. Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization

    PubMed Central

    Baumann, Bernhard; Baumann, Stefan O.; Konegger, Thomas; Pircher, Michael; Götzinger, Erich; Schlanitz, Ferdinand; Schütze, Christopher; Sattmann, Harald; Litschauer, Marco; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K.

    2012-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT. In addition to imaging based on tissue reflectivity, PS-OCT also enables depth-resolved mapping of sample polarization properties such as phase-retardation, birefringent axis orientation, Stokes vectors, and degree of polarization uniformity (DOPU). In this study, PS-OCT was used to investigate the polarization properties of melanin. In-vitro measurements in samples with varying melanin concentrations revealed polarization scrambling, i.e. depolarization of backscattered light. Polarization scrambling in the PS-OCT images was more pronounced for higher melanin concentrations and correlated with the concentration of the melanin granules in the phantoms. Moreover, in-vivo PS-OCT was performed in the retinas of normal subjects and individuals with albinism. Unlike in the normal eye, polarization scrambling in the retinal pigment epithelium (RPE) was less pronounced or even not observable in PS-OCT images of albinos. These results indicate that the depolarizing appearance of pigmented structures like, for instance, the RPE is likely to be caused by the melanin granules contained in these cells. PMID:22808437

  14. Size, weight, and power reduction regimes in achromatic gradient-index singlets.

    PubMed

    Campbell, Sawyer D; Brocker, Donovan E; Nagar, Jogender; Werner, Douglas H

    2016-05-01

    By analyzing the limitations that achromatic gradient-index (GRIN) lens solutions in the radial and axial extremes place on lens thickness and surface curvature, a radial-axial hybrid GRIN theory is developed in order to overcome these restrictions and expose a larger solution space. With the achromatic hybrid GRIN theory, the trade-offs between thickness, curvature, and GRIN type can be directly studied in the context of size, weight, and power (SWaP) reduction. Finally, the achromatic solution space of a silicon-germanium-based material system is explored, and several designs are verified with ray tracing. PMID:27140376

  15. Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging.

    PubMed

    Aoki, Hiroyuki; Nojiri, Mayumi; Mukai, Rieko; Ito, Shinzaburo

    2015-01-01

    Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 10(10) M(-1) cm(-1). This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grüneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10(-13) M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging. PMID:25407911

  16. Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton

    PubMed Central

    Johnsen, Sönke; Marshall, N. Justin; Widder, Edith A.

    2011-01-01

    Because light in the pelagic environment is partially polarized, it has been suggested that the polarization sensitivity found in certain pelagic species may serve to enhance the contrast of their transparent zooplankton prey. We examined its potential during cruises in the Gulf of Mexico and Atlantic Ocean and at a field station on the Great Barrier Reef. First, we collected various species of transparent zooplankton and micronekton and photographed them between crossed polarizers. Many groups, particularly the cephalopods, pelagic snails, salps and ctenophores, were found to have ciliary, muscular or connective tissues with striking birefringence. In situ polarization imagery of the same species showed that, while the degree of underwater polarization was fairly high (approx. 30% in horizontal lines of sight), tissue birefringence played little to no role in increasing visibility. This is most likely due to the low radiance of the horizontal background light when compared with the downwelling irradiance. In fact, the dominant radiance and polarization contrasts are due to unpolarized downwelling light that has been scattered from the animal viewed against the darker and polarized horizontal background light. We show that relatively simple algorithms can use this negative polarization contrast to increase visibility substantially. PMID:21282169

  17. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    SciTech Connect

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Johnson, Rolland P.

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  18. A Second-Order Achromat Design Based on FODO Cell

    SciTech Connect

    Sun, Yipeng; /SLAC

    2011-08-19

    Two dipole doglegs are widely used to translate the beam axis horizontally or vertically. Quadrupoles are placed between the two consecutive dipoles to match first order dispersion and provide betatron focusing. Similarly a four dipole chicane is usually employed to form a bypass region, where the beam axis is transversely shifted first, then translated back to the original axis. In order to generate an isochronous section, quadrupoles are again needed to tune the first order transfer matrix element R{sub 56} equaling zero. Usually sextupoles are needed to correct second order dispersion in the bending plane, for both the dogleg optics and the chicane (with quad) optics. In this paper, an alternative optics design is introduced, which is based on a simple FODO cell and does not need sextupoles assistance to form a second-order achromat. It may provide a similar function of either a dogleg or a bypass, by using 2 or 4 of such combined supercells.

  19. Psychophysics, reliability, and norm values for temporal contrast sensitivity implemented on the two alternative forced choice C-Quant device.

    PubMed

    van den Berg, Thomas J T P; Franssen, Luuk; Kruijt, Bastiaan; Coppens, Joris E

    2011-08-01

    The current paper describes the design and population testing of a flicker sensitivity assessment technique corresponding to the psychophysical approach for straylight measurement. The purpose is twofold: to check the subjects' capability to perform the straylight test and as a test for retinal integrity for other purposes. The test was implemented in the Oculus C-Quant straylight meter, using homemade software (MATLAB). The geometry of the visual field lay-out was identical, as was the subjects' 2AFC task. A comparable reliability criterion ("unc") was developed. Outcome measure was logTCS (temporal contrast sensitivity). The population test was performed in science fair settings on about 400 subjects. Moreover, 2 subjects underwent extensive tests to check whether optical defects, mimicked with trial lenses and scatter filters, affected the TCS outcome. Repeated measures standard deviation was 0.11 log units for the reference population. Normal values for logTCS were around 2 (threshold 1%) with some dependence on age (range 6 to 85 years). The test outcome did not change upon a tenfold (optical) deterioration in visual acuity or straylight. The test has adequate precision for checking a subject's capability to perform straylight assessment. The unc reliability criterion ensures sufficient precision, also for assessment of retinal sensitivity loss. PMID:21895312

  20. Psychophysics, reliability, and norm values for temporal contrast sensitivity implemented on the two alternative forced choice C-Quant device

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas J. T. P.; Franssen, Luuk; Kruijt, Bastiaan; Coppens, Joris E.

    2011-08-01

    The current paper describes the design and population testing of a flicker sensitivity assessment technique corresponding to the psychophysical approach for straylight measurement. The purpose is twofold: to check the subjects' capability to perform the straylight test and as a test for retinal integrity for other purposes. The test was implemented in the Oculus C-Quant straylight meter, using homemade software (MATLAB). The geometry of the visual field lay-out was identical, as was the subjects' 2AFC task. A comparable reliability criterion (``unc'') was developed. Outcome measure was logTCS (temporal contrast sensitivity). The population test was performed in science fair settings on about 400 subjects. Moreover, 2 subjects underwent extensive tests to check whether optical defects, mimicked with trial lenses and scatter filters, affected the TCS outcome. Repeated measures standard deviation was 0.11 log units for the reference population. Normal values for logTCS were around 2 (threshold 1%) with some dependence on age (range 6 to 85 years). The test outcome did not change upon a tenfold (optical) deterioration in visual acuity or straylight. The test has adequate precision for checking a subject's capability to perform straylight assessment. The unc reliability criterion ensures sufficient precision, also for assessment of retinal sensitivity loss.

  1. Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

    PubMed Central

    Yang, Liming; Jiang, Tingbo; Fountain, Jake C.; Scully, Brian T.; Lee, Robert D.; Kemerait, Robert C.; Chen, Sixue; Guo, Baozhu

    2014-01-01

    Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. PMID:25334062

  2. Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity.

    PubMed

    Yang, Liming; Jiang, Tingbo; Fountain, Jake C; Scully, Brian T; Lee, Robert D; Kemerait, Robert C; Chen, Sixue; Guo, Baozhu

    2014-01-01

    Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. PMID:25334062

  3. A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer.

    PubMed

    Morgan, Kaye S; Modregger, Peter; Irvine, Sarah C; Rutishauser, Simon; Guzenko, Vitaliy A; Stampanoni, Marco; David, Christian

    2013-11-15

    Phase contrast x-ray imaging (PCXI) is a promising imaging modality, capable of sensitively differentiating soft tissue structures at high spatial resolution. However, high sensitivity often comes at the cost of a long exposure time or multiple exposures per image, limiting the imaging speed and possibly increasing the radiation dose. Here, we demonstrate a PCXI method that uses a single short exposure to sensitively capture sample phase information, permitting high speed x-ray movies and live animal imaging. The method illuminates a checkerboard phase grid to produce a fine grid-like intensity reference pattern at the detector, then spatially maps sample-induced distortions of this pattern to recover differential phase images of the sample. The use of a phase grid is an improvement on our previous absorption grid work in two ways. There is minimal loss in x-ray flux, permitting faster imaging, and, a very fine pattern is produced for homogenous high spatial resolution. We describe how this pattern permits retrieval of five images from a single exposure; the sample phase gradient images in the horizontal and vertical directions, a projected phase depth image, an edge-enhanced image, and a type of scattering image. Finally, we describe how the reconstruction technique can achieve subpixel distortion retrieval and study the behavior of the technique in regard to analysis technique, Talbot distance, and exposure time. PMID:24322085

  4. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  5. Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex.

    PubMed

    Grossberg, S; Raizada, R D

    2000-01-01

    Recent neurophysiological studies have shown that primary visual cortex, or V1, does more than passively process image features using the feedforward filters suggested by Hubel and Wiesel. It also uses horizontal interactions to group features preattentively into object representations, and feedback interactions to selectively attend to these groupings. All neocortical areas, including V1, are organized into layered circuits. We present a neural model showing how the layered circuits in areas V1 and V2 enable feedforward, horizontal, and feedback interactions to complete perceptual groupings over positions that do not receive contrastive visual inputs, even while attention can only modulate or prime positions that do not receive such inputs. Recent neurophysiological data about how grouping and attention occur and interact in V1 are simulated and explained, and testable predictions are made. These simulations show how attention can selectively propagate along an object grouping and protect it from competitive masking, and how contextual stimuli can enhance or suppress groupings in a contrast-sensitive manner. PMID:10788649

  6. Ultrasound-Triggered Phase Transition Sensitive Magnetic Fluorescent Nanodroplets as a Multimodal Imaging Contrast Agent in Rat and Mouse Model

    PubMed Central

    Chen, Yunchao; Luo, Binhua; Liu, Xuhan; Liu, Wei; Xu, Haibo; Yang, Xiangliang

    2013-01-01

    Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases. PMID:24391983

  7. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective

    PubMed Central

    Kyrish, Matthew; Dobbs, Jessica; Jain, Shalini; Wang, Xiao; Yu, Dihua; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In order to diagnose cancer, a sample must be removed, prepared, and examined under a microscope, which is expensive, invasive, and time consuming. Fiber optic fluorescence endomicroscopy, where an image guide is used to obtain high-resolution images of tissue in vivo, has shown promise as an alternative to conventional biopsies. However, the resolution of standard endomicroscopy is limited by the fiber bundle sampling frequency and out-of-focus light. A system is presented which incorporates a plastic, achromatic objective to increase the sampling and which provides optical sectioning via structured illumination to reject background light. An image is relayed from the sample by a fiber bundle with the custom 2.1-mm outer diameter objective lens integrated to the distal tip. The objective is corrected for the excitation and the emission wavelengths of proflavine (452 and 515 nm). It magnifies the object onto the fiber bundle to improve the system’s lateral resolution by increasing the sampling. The plastic lenses were fabricated via single-point diamond turning and assembled using a zero alignment technique. Ex vivo images of normal and neoplastic murine mammary tissues stained with proflavine are captured. The system achieves higher contrast and resolves smaller features than standard fluorescence endomicroscopy. PMID:24002190

  8. Needle endomicroscope with a plastic, achromatic objective to perform optical biopsies of breast tissue

    NASA Astrophysics Data System (ADS)

    Kyrish, Matthew; Dobbs, Jessica; Richards-Kortum, Rebecca; Tkaczyk, Tomasz

    2013-03-01

    In order to diagnose cancer in breast tissue, a sample must be removed, prepared, and examined under a microscope. To provide an alternative to conventional biopsies, an endomicroscope intended to perform optical biopsies is demonstrated. The system provides high resolution, high contrast images in real-time which could allow a diagnosis to be made during surgery without the need for tissue removal. Optical sectioning is achieved via structured illumination to reject out of focus light. An image is relayed between the sample plane and the imaging system by a coherent fiber bundle with an achromatized objective lens at the distal tip of the fiber bundle which is the diameter of a biopsy needle. The custom, plastic objective provides correction for both the excitation and emission wavelengths of proflavine (452 nm and 515 nm, respectively). It also magnifies the object onto the distal tip of the fiber bundle to increase lateral resolution. The lenses are composed of the optical plastics Zeonex E48R, PMMA, and polystyrene. The lenses are fabricated via single point diamond turning and assembled using a zero alignment technique. The lateral resolution and chromatic focal shift were measured and in vitro images of breast carcinoma cells stained with proflavine were captured. The optical biopsy system is able to achieve optical sectioning and to resolve smaller features than the current high resolution microendoscope.

  9. Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1990-01-01

    A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.

  10. What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception

    PubMed Central

    Blakeslee, Barbara; McCourt, Mark E.

    2015-01-01

    Research in lightness perception centers on understanding the prior assumptions and processing strategies the visual system uses to parse the retinal intensity distribution (the proximal stimulus) into the surface reflectance and illumination components of the scene (the distal stimulus—ground truth). It is agreed that the visual system must compare different regions of the visual image to solve this inverse problem; however, the nature of the comparisons and the mechanisms underlying them are topics of intense debate. Perceptual illusions are of value because they reveal important information about these visual processing mechanisms. We propose a framework for lightness research that resolves confusions and paradoxes in the literature, and provides insight into the mechanisms the visual system employs to tackle the inverse problem. The main idea is that much of the debate and confusion in the literature stems from the fact that lightness, defined as apparent reflectance, is underspecified and refers to three different types of judgments that are not comparable. Under stimulus conditions containing a visible illumination component, such as a shadow boundary, observers can distinguish and match three independent dimensions of achromatic experience: apparent intensity (brightness), apparent local intensity ratio (brightness-contrast), and apparent reflectance (lightness). In the absence of a visible illumination boundary, however, achromatic vision reduces to two dimensions and, depending on stimulus conditions and observer instructions, judgments of lightness are identical to judgments of brightness or brightness-contrast. Furthermore, because lightness judgments are based on different information under different conditions, they can differ greatly in their degree of difficulty and in their accuracy. This may, in part, explain the large variability in lightness constancy across studies. PMID:25954181

  11. Multispectral optical metasurfaces enabled by achromatic phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-10-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths.

  12. CIAXE: co-axial achromatic interferential coronagraph: first laboratory results

    NASA Astrophysics Data System (ADS)

    Allouche, Fatmé; Gay, Jean; Rabbia, Yves; Assus, Pierre

    2010-07-01

    In 1996, Jean Gay and Yves Rabbia presented their Achromatic Interferential Coronagraph (AIC) for detecting and imaging faint companions (ultimately exoplanets) in the neighboring of a star. As presented then, the Michleson-like Interferometer configuration of the AIC hardens its insertion into an existing (coaxial) optical train, the output beam of the AIC being delivered at right angle from the input beam. To overcome this, they reconfigured the AIC into a compact and fully axial coronagraph, the CIAXE, which main feature consists of using two thick lenses machined in the same optical material. For the CIAXE to deliver the output beam along the same axis as the input beam, the two lenses are coaxially disposed on the optical axis and are separated, at their common spherical contact surface by a thin air gap acting like a beam splitter. We have set up a laboratory experiment aiming at validating the principle of the concept. Our first step was to equalize the thicknesses of the two lenses, so as to make zero the optical path difference between both arms. For this, the (residual) value of the OPD has been evaluated and then the lenses have been re-machined so as to decrease as far as technologically possible, the thicknesses mismatch. As a second step, a micro-controlled rotation around the common curvature center of the spherical surfaces of the lenses is applied. This allows a fine tuning of the residual OPD at the required accuracy level. Are presented here test bench, steps and results.

  13. Multispectral optical metasurfaces enabled by achromatic phase transition.

    PubMed

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-01-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths. PMID:26503607

  14. Multispectral optical metasurfaces enabled by achromatic phase transition

    PubMed Central

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-01-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths. PMID:26503607

  15. Determining Spatial Summation and Its Effect on Contrast Sensitivity across the Central 20 Degrees of Visual Field

    PubMed Central

    Choi, Agnes Yiu Jeung; Nivison-Smith, Lisa; Khuu, Sieu K; Kalloniatis, Michael

    2016-01-01

    Purpose Recent studies propose that the use of target stimuli within or close to complete spatial summation reveal larger threshold elevation in ocular disease. The Humphrey Visual Field Analyzer (HFA) is used to assess visual function yet the spatial summation characteristics are unexplored for the central macular region. We therefore wanted to establish the relationship between contrast sensitivity and stimulus size (spatial summation) within the central 20° visual field using the high sampling density of the 10–2 test grid. Methods Thresholds were measured for one eye from 37 normal subjects using the HFA 10–2 test grid with all five Goldmann (G) targets (GI to GV). Subject data were converted to 50-year-old equivalent using published and calculated location-specific decade correction factors. Spatial summation curves were fitted for all data at all locations. The size of Ricco’s critical area (Ac) within which complete spatial summation operates (k = 1), and the slope of partial summation (k < 1: to characterize partial summation), was established. Results The 50-year-old age normative data were determined for all Goldmann stimulus sizes for the 10–2 HFA test grid and showed a marked change in contrast sensitivity for small test stimuli (e.g. GI) and little change in larger test stimuli (e.g. GV). Both the Ac and k values did not vary with age allowing for the application of the age correction factors. Ac and k values increased with eccentricity with GI remaining within complete spatial summation and GII was close or within complete spatial summation. GIII or larger test sizes were always outside complete spatial summation operating within various levels of partial summation. Conclusions The developed normative data now allows comparisons of data sets with high sampling density using the 10–2 grid irrespective of subject age. Test size is important when assessing ocular disease yet only GI or GII stimuli operate close to or within complete spatial

  16. Contrast sensitivity function in stereoscopic viewing of Gabor patches on a medical polarized three-dimensional stereoscopic display

    NASA Astrophysics Data System (ADS)

    Rousson, Johanna; Haar, Jérémy; Santal, Sarah; Kumcu, Asli; Platiša, Ljiljana; Piepers, Bastian; Kimpe, Tom; Philips, Wilfried

    2016-03-01

    While three-dimensional (3-D) imaging systems are entering hospitals, no study to date has explored the luminance calibration needs of 3-D stereoscopic diagnostic displays and if they differ from two-dimensional (2-D) displays. Since medical display calibration incorporates the human contrast sensitivity function (CSF), we first assessed the 2-D CSF for benchmarking and then examined the impact of two image parameters on the 3-D stereoscopic CSF: (1) five depth plane (DP) positions (between DP: -171 and DP: 2853 mm), and (2) three 3-D inclinations (0 deg, 45 deg, and 60 deg around the horizontal axis of a DP). Stimuli were stereoscopic images of a vertically oriented 2-D Gabor patch at one of seven frequencies ranging from 0.4 to 10 cycles/deg. CSFs were measured for seven to nine human observers with a staircase procedure. The results indicate that the 2-D CSF model remains valid for a 3-D stereoscopic display regardless of the amount of disparity between the stereo images. We also found that the 3-D CSF at DP≠0 does not differ from the 3-D CSF at DP=0 for DPs and disparities which allow effortless binocular fusion. Therefore, the existing 2-D medical luminance calibration algorithm remains an appropriate tool for calibrating polarized stereoscopic medical displays.

  17. Impact of scatter on double-pass image quality and contrast sensitivity measured with a single instrument.

    PubMed

    Bueno, Juan M; Pérez, Guillermo; Benito, Antonio; Artal, Pablo

    2015-12-01

    We compared objective Double-Pass (DP) image quality data with subjective visual parameters measured within the same modified instrument for different amounts of scatter. The original DP imaging channel of a clinical instrument was maintained intact and two additional channels were included, one for visual testing and another for tear film (TF) imaging by using a retro-illumination technique. Contrast sensitivity (CS) was compared with measurements of the Objective Scattering Index (OSI) obtained from DP retinal images corresponding to different scatter levels induced by pre-defined filters. OSI values were correlated with the change in CS for different spatial frequencies measured with the same instrument. Since TF and DP images were recorded at the same rate, this provided additional information about the dynamic spatial stability of the tear film. This new DP instrument has been proven to provide accuracy and repeatability, and to be suitable for clinical diagnosis, with a complete evaluation of the eye's performance by a simultaneous objective and subjective assessment under the same experimental conditions. PMID:26713198

  18. Evaluation of six channelized Hotelling observers in combination with a contrast sensitivity function to predict human observer performance

    NASA Astrophysics Data System (ADS)

    Goffi, Marco; Veldkamp, Wouter J. H.; van Engen, Ruben E.; Bouwman, Ramona W.

    2015-03-01

    Standard methods to quantify image quality (IQ) may not be adequate for clinical images since they depend on uniform backgrounds and linearity. Statistical model observers are not restricted to these limitations and might be suitable for IQ evaluation of clinical images. One of these statistical model observers is the channelized Hotelling observer (CHO), where the images are filtered by a set of channels. The aim of this study was to evaluate six different channel sets, with an additional filter to simulate the human contrast sensitivity function (CSF), in their ability to predict human observer performance. For this evaluation a two alternative forced choice experiment was performed with two types of background structures (white noise (WN) and clustered lumpy background (CLB)), 5 disk-shaped objects with different diameters and 3 different signal energies. The results show that the correlation between human and model observers have a diameter dependency for some channel sets in combination with CLBs. The addition of the CSF reduces this diameter dependency and in some cases improves the correlation coefficient between human- and model observer. For the CLB the Partial Least Squares channel set shows the highest correlation with the human observer (r2=0.71) and for WN backgrounds it was the Gabor-channel set with CSF (r2=0.72). This study showed that for some channels there is a high correlation between human and model observer, which suggests that the CHO has potential as a tool for IQ analysis of digital mammography systems.

  19. Impact of scatter on double-pass image quality and contrast sensitivity measured with a single instrument

    PubMed Central

    Bueno, Juan M.; Pérez, Guillermo; Benito, Antonio; Artal, Pablo

    2015-01-01

    We compared objective Double-Pass (DP) image quality data with subjective visual parameters measured within the same modified instrument for different amounts of scatter. The original DP imaging channel of a clinical instrument was maintained intact and two additional channels were included, one for visual testing and another for tear film (TF) imaging by using a retro-illumination technique. Contrast sensitivity (CS) was compared with measurements of the Objective Scattering Index (OSI) obtained from DP retinal images corresponding to different scatter levels induced by pre-defined filters. OSI values were correlated with the change in CS for different spatial frequencies measured with the same instrument. Since TF and DP images were recorded at the same rate, this provided additional information about the dynamic spatial stability of the tear film. This new DP instrument has been proven to provide accuracy and repeatability, and to be suitable for clinical diagnosis, with a complete evaluation of the eye’s performance by a simultaneous objective and subjective assessment under the same experimental conditions. PMID:26713198

  20. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  1. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with

  2. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  3. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex.

    PubMed Central

    Movshon, J A; Thompson, I D; Tolhurst, D J

    1978-01-01

    1. We have examined the spatial and temporal tuning properties of 238 cortical neurones, recorded using conventional techniques from acutely prepared anaesthetized cats. We determined spatial and temporal frequency tuning curves using sinusoidal grating stimuli presented to each neurone's receptive field by a digital computer on a cathode ray tube. 2. We measured tuning curves either by determining response amplitude as a function of spatial or temporal frequency, or by measuring contrast sensitivity (the inverse of the contrast of the grating that just elicited a detectable response). The two measures give very similar tuning curves in all cases. 3. We recorded from 184 neurones in area 17; of these 156 had receptive fields within 5 degrees of the area centralis. The range of preferred spatial frequency for these neurones was 0.3--3 c/deg, and their spatial frequency tuning band widths varied from 0.7 to 3.2 octaves at half-amplitude. The most common band width was roughly 1.3 octaves. Simple and complex cells in area 17 did not differ in their distributions of preferred spatial frequency, although complex cells were, on average, slightly less selective for spatial frequency than simple cells. 4. We recorded from fifty-four neurones from area 18, and performed several experiments in which we recorded from corresponding portions of both area 17 and area 18 in the same electrode penetration. Neurones in area 18 preferred spatial frequencies that were, on average, one third as high as those preferred by area 17 neurones at the same retinal eccentricity. Thus the range of preferred spatial frequency in area eighteen cells having receptive fields within 5 deg of the area centralis was between less than 0.1 and 0.5 c/deg. The distributions of optimum spatial frequency in the two areas were practically non-overlapping at eccentricities as high as 15 deg, the greatest eccentricity we examined. Neurones in area 18 were about as selective for spatial frequency as were

  4. Comparison of Blue-Yellow Opponent Color Contrast Sensitivity Function between Female Badminton Players and Non-athletes

    PubMed Central

    Jafarzadehpur, Ebrahim; Mirzajani, Ali; Hatami, Maryam; Musavian, Razieh; Abbasi, Ebrahim

    2012-01-01

    Purpose To compare the chromatic contrast sensitivity function (CSF) for the blue-yellow opponent channel (BYOC) between female badminton players and non-athlete controls. Methods We recruited 40 young females (18-25 years old) who played badminton for at least 5 consecutive years as the test group, and 30 age-matched female controls who had no history of regular physical activity. The Pattern Generator™ system was used to test the CSF for the BYOC which was performed at three spatial frequencies (SFs) of 2 cycles per degree (cpd), 5 cpd, and 25 cpd. Results Comparison of BYOC thresholds showed significantly better results in the test group for all three SFs (P<0.001). Band pass shift (better CSF in the middle SF) was seen in the test group. The control group had low pass (better CSF in the low SF). Ocular motility (heterophoria, fusional convergence and divergence at far and near distances, and near point of convergence) was better in the test group, but the inter-group difference was not significant. Conclusions The BYOC threshold results for badminton players indicated a better visual performance which may be a result of enhanced performance of the parallel processing of the parvocellular and magnocellular systems. This may be inherent and/or acquired in badminton players. In addition, badminton players appear to have developed sensory-motor programmed activities. Testing the CSF for BYOC may be useful for athlete selection in different levels and/or used as a criterion for screening players in the field of badminton. PMID:23802052

  5. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  6. Status of Studies of Achromat-based 6D Ionization Cooling Rings for Muons

    SciTech Connect

    Ding, X.; Kirk, H.; Cline, D.; Garren, A.A.; Berg, J.S.

    2011-09-04

    Six dimensional ionization cooling of muons is needed to achieve the necessary luminosity for a muon collider. If that cooling could occur over multiple turns in a closed ring, there would be significant cost savings over a single-pass cooling channel. We report on the status of a cooling ring with achromatic arcs. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring. The ring is designed with sufficient space in each superperiod for injection and extraction magnets. We describe the ring's lattice design, performance, and injection/extraction requirements.

  7. Evaluation of contrast sensitivity after single intravitreal triamcinolone injection for macular edema secondary to branch retinal vein occlusion.

    PubMed

    Aras Ogreden, Tulin; Alkin, Zeynep; Ozkaya, Abdullah; Ibrahim Demirkale, Halil; Perente, Irfan; Aras, Cengiz

    2013-01-01

    Purpose. To evaluate visual acuity (VA), contrast sensitivity (CS), and central retinal thickness (CRT) after intravitreal triamcinolone acetonide (IVT) injection for macular edema secondary to branch retinal vein occlusion (BRVO). Methods. In this prospective study, a total of 21 eyes of 21 patients were included. VA, CS, and CRT were assessed at baseline and at 1, 3, and 6 months after a single IVT injection. Results. Mean age was 64.57 ± 8.34 years. The mean baseline VA (LogMAR) increased from 1.11 ± 0.63 to 0.55 ± 0.39 (P < 0.001), 0.60 ± 0.40 (P < 0.001), and 0.78 ± 0.39 (P = 0.07) at 1, 3, and 6 months, respectively. The mean baseline CS (log CS) at 1 meter improved from 0.66 ± 0.49 to 1.11 ± 0.32 (P < 0.001), 0.99 ± 0.38 (P < 0.001), and 0.72 ± 0.37 (P = 0.8) at 1, 3, and 6 months, respectively. The mean baseline CS (log CS) at 3 meters improved from 0.34 ± 0.41 to 0.74 ± 0.41 (P < 0.001), 0.64 ± 0.44 (P = 0.036), and 0.46 ± 0.49 (P = 0.8) at 1, 3, and 6 months, respectively. The mean baseline CRT decreased from 511 ± 146 μm to 242 ± 119 μm, 277 ± 131 μm, and 402 ± 166 μm at 1, 3, and 6 months after IVT (P < 0.001 for each). Conclusion. Single IVT injection improved VA and CS and reduced CRT at 1 and 3 months of treatment. VA and CS returned to baseline levels at 6 months. PMID:24563794

  8. Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system

    NASA Astrophysics Data System (ADS)

    Bysani Krishnakumar, Sumukh; Podgorsak, Alexander R.; Setlur Nagesh, S. V.; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.; Ionita, Ciprian N.

    2016-03-01

    A small animal micro-CT system was built using an EMCCD detectors having complex pre-digitization amplification technology, high-resolution, high-sensitivity and low-noise. Noise in CBCT reconstructed images when using predigitization amplification behaves differently than commonly used detectors and warrants a detailed investigation. In this study, noise power and contrast sensitivity were estimated for the newly built system. Noise analysis was performed by scanning a water phantom. Tube voltage was lowered to minimum delivered by the tube (20 kVp and 0.5 mA) and detector gain was varied. Contrast sensitivity was analyzed by using a phantom containing different iodine contrast solutions (20% to 70%) filled in six different tubes. First, we scanned the phantom using various x-ray exposures at 40 kVp while changing the gain to maintain the background air value of the projection images constant. Next, the exposure was varied while the detector gain was maintained constant. Radial NPS plots show that noise power level increases as gain increases. Contrast sensitivity was analyzed by calculating ratio of signal-to-noise ratios (SNR) for increased gain with those of low constant gain at each exposure. The SNR value at low constant gain was always lower than SNR of high detector gain at all x-ray settings and iodine contrast. The largest increase of SNR approached 1.3 for low contrast feature for an iodine concentration of 20%. Despite an increase in noise level as gain increases, the SNR improvement shows that signal level also increases because of the unique on-chip gain of the detector.

  9. Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing.

    PubMed

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2009-09-28

    A broadband ultraviolet pulse with a spectral width of 44 nm was generated by achromatic sum-frequency mixing of an 805-nm pulse and ultrabroadband visible pulse. Angular dispersion was introduced to achieve broadband phase matching by a prism pair. The UV pulse was compressed to 13.2 fs with another prism pair, with energy of 600 nJ. PMID:19907556

  10. New Light on an Old Question: Who Invented the Achromatic Telescope?

    NASA Astrophysics Data System (ADS)

    Rudd, M. Eugene; Jaecks, Duane H.; Willach, Rolf; Sorrenson, Richard; Abrahams, Peter

    A discussion of the events leading up to the invention of the achromatic telescope, including topics on spherical aberration and Franciscus Maurolycus, the discovery of chromatic aberration, Issac Newton, John Dollond and his experiments, Samuel Klingenstierna, patent trials, and letters from Dollond and Ramsden.

  11. Achromatic and isochronous lattice design of P2DT bending section in RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok; Jeon, Dong-O.

    2015-09-01

    In RAON heavy ion accelerator, generally, the In-flight Fragmentation (IF) and Isotope Separation On-Line (ISOL) systems are employed in order to produce various isotope beams. Out of the isotope beams, the beams generated by the ISOL system are transported from the low energy linac SCL3 to the high energy driver linac SCL2. The post-accelerator to the driver linac transport (P2DT) section that consists of the charge stripper section, the 180° bending section, and the SCL2 matching section is placed between the SCL3 and the SCL2. In this P2DT section, however, the transverse and longitudinal emittance growth can aggravate the beam acceptance of the SCL2. Besides, the growth at the P2DT 180° bending section is considered a significant issue because of the unexpected achromatic effect. Therefore an achromatic and isochronous lattice design should be devised to prevent the transverse and longitudinal emittance from increasing while the multi-charge beams flow through the bending section. This study reports an improved design for the achromatic and isochronous lattice up to the second-order. After satisfying the first-order achromatic and isochronous condition by adjusting the field strength of quadrupoles with this design, the simple and efficient method will be utilized with the aim of getting the minimum number of sextupoles. The research on the collimator for the charge selection at the bending section will be also represented by using the designed lattice.

  12. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. PMID:26218648

  13. Relationship between Size Summation Properties, Contrast Sensitivity and Response Latency in the Dorsomedial and Middle Temporal Areas of the Primate Extrastriate Cortex

    PubMed Central

    Lui, Leo L.; Bourne, James A.; Rosa, Marcello G. P.

    2013-01-01

    Analysis of the physiological properties of single neurons in visual cortex has demonstrated that both the extent of their receptive fields and the latency of their responses depend on stimulus contrast. Here, we explore the question of whether there are also systematic relationships between these response properties across different cells in a neuronal population. Single unit recordings were obtained from the middle temporal (MT) and dorsomedial (DM) extrastriate areas of anaesthetized marmoset monkeys. For each cell, spatial integration properties (length and width summation, as well as the presence of end- and side-inhibition within 15° of the receptive field centre) were determined using gratings of optimal direction of motion and spatial and temporal frequencies, at 60% contrast. Following this, contrast sensitivity was assessed using gratings of near-optimal length and width. In both areas, we found a relationship between spatial integration and contrast sensitivity properties: cells that summated over smaller areas of the visual field, and cells that displayed response inhibition at larger stimulus sizes, tended to show higher contrast sensitivity. In a sample of MT neurons, we found that cells showing longer latency responses also tended to summate over larger expanses of visual space in comparison with neurons that had shorter latencies. In addition, longer-latency neurons also tended to show less obvious surround inhibition. Interestingly, all of these effects were stronger and more consistent with respect to the selectivity for stimulus width and strength of side-inhibition than for length selectivity and end-inhibition. The results are partially consistent with a hierarchical model whereby more extensive receptive fields require convergence of information from larger pools of “feedforward” afferent neurons to reach near-optimal responses. They also suggest that a common gain normalization mechanism within MT and DM is involved, the spatial extent

  14. A Broad-Band Phase-Contrast Wave-Front Sensor

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric; Wallace, J. Kent

    2005-01-01

    A broadband phase-contrast wave-front sensor has been proposed as a real-time wave-front sensor in an adaptive-optics system. The proposed sensor would offer an alternative to the Shack-Hartmann wave-front sensors now used in high-order adaptive-optics systems of some astronomical telescopes. Broadband sensing gives higher sensitivity than does narrow-band sensing, and it appears that for a given bandwidth, the sensitivity of the proposed phase-contrast sensor could exceed that of a Shack-Hartmann sensor. Relative to a Shack-Hartmann sensor, the proposed sensor may be optically and mechanically simpler. As described below, an important element of the principle of operation of a phase-contrast wave-front sensor is the imposition of a 90deg phase shift between diffracted and undiffracted parts of the same light beam. In the proposed sensor, this phase shift would be obtained by utilizing the intrinsic 90 phase shift between the transmitted and reflected beams in an ideal (thin, symmetric) beam splitter. This phase shift can be characterized as achromatic or broadband because it is 90deg at every wavelength over a broad wavelength range.

  15. Assessment of carotid plaque neovascularization by contrast-enhanced ultrasound and high sensitivity C-reactive protein test in patients with acute cerebral infarction: a comparative study.

    PubMed

    Xu, Rong; Yin, Xiaohua; Xu, Weixin; Jin, Lin; Lu, Min; Wang, Yingchun

    2016-07-01

    Vulnerable carotid plaque easily ruptures and causes cerebral infarction. Plaque inflammation and neovascularization have both been shown as important characteristics in vulnerable plaque. We assessed neovascularization within carotid plaque using contrast-enhanced ultrasound, and also assessed inflammation, using high sensitivity C-reactive protein (hs-CRP) testing, in acute cerebral infarction patients. A total of 106 patients with acute cerebral infarction and 40 controls were enrolled in the study. All subjects had been previously found to have carotid atherosclerotic plaques, and the plaques were classified as soft plaque, hard plaque, mixed plaque, and calcified plaque, using carotid artery ultrasound. Contrast-enhanced ultrasound was performed on the plaques for quantitative analysis and hs-CRP levels were measured. The results showed that plaque enhancement was present in 81.1 % of cerebral infarction patients and 40.0 % of controls. The contrast parameters for cerebral infarction patients were significantly different from controls. For cerebral infarction patients, soft plaque showed the highest enhanced percentage, 95.1 %, with contrast parameters significantly different to other types of plaque. The hs-CRP levels of enhanced cerebral infarction patients were higher than in non-enhanced patients. Correlation analysis in cerebral infarction patients showed that hs-CRP levels were closely related to the contrast parameters. Acute cerebral infarction patients showed intense contrast enhancement and inflammation in carotid plaque, and different types of plaque had various degrees of enhancement, suggesting that contrast-enhanced ultrasound and hs-CRP might be used for plaque risk stratification. PMID:27021564

  16. Contrast Sensitivity and Spherical Aberration in Eyes Implanted with AcrySof IQ and AcrySof Natural Intraocular Lens: the Results of a Meta-Analysis

    PubMed Central

    Liu, Jianping; Zhao, Jiangyue; Ma, Liwei; Liu, Guangcong; Wu, Di; Zhang, Jinsong

    2013-01-01

    Background To systematically evaluate the visual performance of aspheric AcrySof IQ and spherical AcrySof Natural intraocular lens (IOL) after cataract surgery. Methodology/Principal Findings Potential randomized controlled trials (RCTs) that involved implanting AcrySof IQ and AcrySof Natural were searched from PubMed, Web of science, EMBASE, Chinese Science and Technology Periodicals Databases and Cochrane Central Register of Controlled Trials. The methodological quality of the studies was assessed by the Jadad method. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) of best-corrected visual acuity (BCVA), contrast sensitivity and spherical aberration were pooled using a random-effects model. Seven studies were identified and analyzed to compare AcrySof IQ (236 eyes) with AcrySof Natural (232 eyes) after phacoemulsification. There was no significant difference in postoperative BCVA between AcrySof IQ and AcrySof Natural (p =0.137) after a follow up of 3 months. For contrast sensitivity, these differences reached statistical significance under photopic conditions at two spatial frequencies (3 cycles per degree (cpd), 6 cpd, 12 cpd, and 18 cpd; p =0.022, p =0.017, p = 0.065, and p=0.191, respectively) and under mesopic conditions at three spatial frequencies (3 cpd, 6 cpd, 12 cpd, and 18 cpd; p =0.007, p =0.033, p =0.030, and p =0.080, respectively). Eyes with AcrySof IQ also had statistically significant less spherical aberration than eyes with AcrySof Natural (p<0.001). Sensitivity analysis showed that the results were relatively stable and reliable. Conclusions/Significance The overall findings indicate that AcrySof IQ with a modified aspheric surface induced significantly less spherical aberration than AcrySof Natural. Contrast sensitivity in eyes with AcrySof IQ is better than that in eyes with AcrySof Natural, especially under mesopic conditions. PMID:24205001

  17. Contrasts in the Sensitivity of Community Calcification to Saturation State Variability Within Temperate and Tropical Marine Environments

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.

    2015-12-01

    Ongoing emissions of carbon dioxide (CO2) and invasion of part of this CO2 into the oceans are projected to lower the calcium carbonate saturation state. As a result, the ability of many marine organisms to calcify may be compromised, with significant impacts on ocean ecosystems throughout the Anthropocene. In laboratory manipulations, calcifying organisms have exhibited reduced calcification under elevated pCO2 conditions. However, very few experiments have observed how in situ community calcification, which incorporates complex species interactions, responds to natural variations in carbonate chemistry. Using intensive seawater sampling techniques we assess the community level sensitivity of calcification rates to natural variability in the aragonite saturation state (Ωarag) at both a tropical coral reef and temperate intertidal study site. Both sites experiences large daily variation in Ωarag during low tide due to photosynthesis, respiration, and the time at which the sites are isolated from the open ocean. On hourly timescales, we find that community level rates of calcification have only a weak dependence on variability in Ωarag at the tropical study site. At the temperate study site, although weak Ωarag sensitivity is observed during the day, nighttime community calcification rates are found to be strongly influenced by variability in Ωarag, with greater dissolution rates at lower Ωarag levels. If the short-term sensitivity of community calcification to Ωarag described here is representative of the long-term sensitivity of marine ecosystems to ocean acidification, then one would expect temperate intertidal calcifying communities to be more vulnerable than tropical coral reef calcifying communities. In particular, reductions in net community calcification, in the temperate intertidal zone may be predominately due to the nocturnal impact of ocean acidification.

  18. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-01

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses. PMID:27607727

  19. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms.

    PubMed

    Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2016-08-10

    Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices. PMID:27398793

  20. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field. PMID:27590882

  1. Segmented refraction of the crystalline lens as a prerequisite for the occurrence of monocular polyplopia, increased depth of focus, and contrast sensitivity function notches

    SciTech Connect

    Bour, L.; Apkarian, P.

    1994-11-01

    Theoretical computations of modulation transfer functions (MTF`s) of the optical system of the human eye have shown that irregular aberration consisting of a small circular segment with refractive power slightly different from the surround introduces at higher spatial frequencies ({gt}20 cpd) an enhancement of the retinal image contrast on flanks of the optimum-focus plane. When the pupil size is larger than 3 mm, enhancement is substantial; as a result, multiple foci appear at the affected, higher spatial frequencies and generate a greater depth of focus. The contrast enhancement also produces troughs on either flank of the optimum-focus plane. With slight coincident defocus ({plus_minus}0.5 diopter) of the retinal image of a sine-wave grating, notches in the MTF curves, with a contrast reduction in the intermediate frequency range of a factor of 2 to 3 and a low cutoff spatial frequency of {similar_to} 3 cycles/deg, are produced. In our theoretical study, multiple foci, monocular polyplopia, and increased depth of focus are implicated in the generation of contrast sensitivity function (CSF) notches. It is demonstrated that CSF notches of optical origin can extend to lower spatial frequencies ({lt}10 cycles/deg). As a result, before the presence of a CSF notch can be attributed to neurological abnormality, optical factors, including irregular aberrations, must be eliminated.

  2. Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity.

    PubMed

    Li, Chung-Tien; Lo, Kun-Chi; Chang, Hsin-Yun; Wu, Hsieh-Ting; Ho, Jennifer H; Yen, Ta-Jen

    2012-01-01

    In wavelength surface plasmon resonance (SPR) biosensor, the manipulation of SPR dispersion relation by Ag/Au bi-metallic film was first time implemented. Due to the enhanced resonant wavelength shift and the sharper SPR slope of using Ag/Au bi-metallic film, the illuminated color of reflection shows one order of magnitude greater contrast than conventional SPR biosensors. Such an Ag/Au bi-metallic film based color SPR biosensor (CSPRB) allows the detail bio-interactions, for example 100 nM streptavidin, to be distinguished by directly observing the color change of reflection through naked eyes rather than the analysis of spectrometer. In addition to the enhanced sensitivity and color contrast, this CSPRB also possesses a great linear detection range up to 0.0254 RIU, which leading to the application of point-of-care tests. PMID:22560104

  3. A sensitive multi-residue method for the determination of 35 micropollutants including pharmaceuticals, iodinated contrast media and pesticides in water.

    PubMed

    Valls-Cantenys, Carme; Scheurer, Marco; Iglesias, Mònica; Sacher, Frank; Brauch, Heinz-Jürgen; Salvadó, Victoria

    2016-09-01

    A sensitive, multi-residue method using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to determine a representative group of 35 analytes, including corrosion inhibitors, pesticides and pharmaceuticals such as analgesic and anti-inflammatory drugs, five iodinated contrast media, β-blockers and some of their metabolites and transformation products in water samples. Few other methods are capable of determining such a broad range of contrast media together with other analytes. We studied the parameters affecting the extraction of the target analytes, including sorbent selection and extraction conditions, their chromatographic separation (mobile phase composition and column) and detection conditions using two ionisation sources: electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI). In order to correct matrix effects, a total of 20 surrogate/internal standards were used. ESI was found to have better sensitivity than APCI. Recoveries ranging from 79 to 134 % for tap water and 66 to 144 % for surface water were obtained. Intra-day precision, calculated as relative standard deviation, was below 34 % for tap water and below 21 % for surface water, groundwater and effluent wastewater. Method quantification limits (MQL) were in the low ng L(-1) range, except for the contrast agents iomeprol, amidotrizoic acid and iohexol (22, 25.5 and 17.9 ng L(-1), respectively). Finally, the method was applied to the analysis of 56 real water samples as part of the validation procedure. All of the compounds were detected in at least some of the water samples analysed. Graphical Abstract Multi-residue method for the determination of micropollutants including pharmaceuticals, iodinated contrast media and pesticides in waters by LC-MS/MS. PMID:27382969

  4. Contrasting effects of chloride on growth, reproduction, and toxicant sensitivity in two genetically distinct strains of Hyalella azteca.

    PubMed

    Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell; McEwen, Abigail R

    2015-10-01

    The strain of Hyalella azteca (Saussure: Amphipoda) commonly used for aquatic toxicity testing in the United States has been shown to perform poorly in some standardized reconstituted waters frequently used for other test species. In 10-d and 42-d experiments, the growth and reproduction of the US laboratory strain of H. azteca was shown to vary strongly with chloride concentration in the test water, with declining performance observed below 15 mg/L to 20 mg/L. In contrast to the chloride-dependent performance of the US laboratory strain of H. azteca, growth of a genetically distinct strain of H. azteca obtained from an Environment Canada laboratory in Burlington, Ontario, Canada, was not influenced by chloride concentration. In acute toxicity tests with the US laboratory strain of H. azteca, the acute toxicity of sodium nitrate increased with decreasing chloride in a pattern similar not only to that observed for control growth, but also to previous acute toxicity testing with sodium sulfate. Subsequent testing with the Burlington strain showed no significant relationship between chloride concentration and the acute toxicity of sodium nitrate or sodium sulfate. These findings suggest that the chloride-dependent toxicity shown for the US laboratory strain may be an unusual feature of that strain and perhaps not broadly representative of aquatic organisms as a whole. PMID:26260521

  5. SU-E-I-84: MRI Relaxation Properties of a Pre-Clinical Hypoxia-Sensitive MRI Contrast Agent

    SciTech Connect

    Yee, S; Wilson, G; Chavez, F

    2014-06-01

    Purpose: A possible hypoxia-sensitive MRI agent, hexamethyldisiloxane (HMDSO), has been tried to image oxygen level in proton-based MRI (Kodibagkar et al, NMR Biomed, 2008). The induced changes of T1 (or R1) value by the HMDSO as the oxygenation level changes are the principle that the hypoxia agent is based on: the R1 increases as the oxygen level increases. However, as reported previously, the range of R1 values (0.1–0.3 s-1, corresponding to 3–10 s of T1) is not in the range where a regular MRI technique can easily detect the change. In order for this agent to be widely applied in an MRI environment, more relaxation properties of this agent, including T1 in the rotating frame (T1rho) and T2, need to be explored. Here, the relaxation properties of this agent are explored. Methods: A phantom was made with HMDSO, water and mineral oil, each of which was prepared with oxygen and nitrogen, and was imaged in a 3T MRI system. The T1 properties were explored by the inversion recovery (TR=3000ms, TE=65ms) while varying the inversion time (TI), and also by the fast-field-echo (TR=2 ms, TE=2.8ms) while varying the flip angle (FA). T1rho was explored with a 5-pulse spin-locking technique (TR=5000ms, TE=10ms, spin-lock field=500Hz) while varying the spin-lock duration. T2 was explored with multi-shot TSE (TR=2500ms) while varying TE. Results: With the variable FA and TI, the signals of HMDSO with oxygen and nitrogen change in a similar way and do not respond well by the change of oxygen level, which confirms the large T1 value of HMDSO. The T1rho and T2, however, have a better sensitivity. Conclusion: For the possible pre-clinical hypoxia MRI agent (HMDSO), the detection of T1 (or R1) changes may be more challenging than the detection of other relaxation properties, particularly T2, as the oxygen level changes.

  6. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    PubMed Central

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  7. Multifunctional Polymeric Scaffolds for Enhancement of PARACEST Contrast Sensitivity and Performance: The Effects of Random Copolymer Variations

    PubMed Central

    Wu, Yunkou; Zhao, Piyu; Kiefer, Garry E.; Sherry, A. Dean

    2010-01-01

    A DOTA (1,4,7,10-tetraazacyclododecane-N,N’,N“,N’”-tetraacetic acid) tetraamide ligand having a single acrylamide side-chain (M1) was copolymerized with either 2-methylacrylic acid (MAA), 2-(acryloylamino)-2-methyl-1-propanesulfonic acid (AMPS) or N-isopropylacrylamide (NIPAM) to create a series of linear random copolymers using classical free radical chain polymerization chemistry. The metal ion binding properties of hydrolyzed M1 were investigated by pH potentiometry and the europium (III) complexes of the resulting heteropolymers were evaluated as PARACEST imaging agents. All polymeric agents were found to possess similar intermediate-to-slow water exchange and CEST characteristics as the parent EuDOTA-tetraamide monomer. Consistent with basic multiplexing principles, the highest molecular weight polymer, Eu-DMAA 3.1, also showed the highest CEST sensitivity with a detection limit of 20 ± 2 μM. The second arylamide component gave polymers with widely different chemical characteristics and CEST properties. In particular, the Eu-DNIPAM 4.0 and Eu-DMAA 4.1 polymers displayed different solubility characteristics as a function of pH or temperature which, in turn, affected the water exchange and CEST properties of the corresponding agents. It was concluded that introduction of hydrophobic groups into the polymer backbone reduces solvent accessibility to the Eu3+ component, effectively slowing water exchange between the inner-sphere water coordination position at each Eu3+ center with bulk water. The CEST properties of the heteropolymers when dissolved in plasma suggest that the more hydrophobic characteristics of these polymers could be advantageous for in vivo applications. PMID:20838469

  8. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance.

    PubMed

    Rangel, Andrés F; Rao, Idupulapati M; Horst, Walter J

    2007-01-01

    The initial response of plants to aluminium (Al) is an inhibition of root elongation. In the present study, short and medium-term effects of Al treatment (20 muM) on root growth and Al accumulation of two common bean (Phaseolus vulgaris L.) genotypes, VAX-1 (Al-sensitive) and Quimbaya (Al-resistant), were studied. Root elongation of both genotypes was severely inhibited during the first 3-4 h of Al treatment. Thereafter, both genotypes showed gradual recovery. However, this recovery continued in genotype Quimbaya until the root elongation rate reached the level of the control (without Al) while the genotype VAX-1 was increasingly damaged by Al after 12 h of Al treatment. Short-term Al treatment (90 microM Al) to different zones of the root apex using agarose blocks corroborated the importance of the transition zone (TZ, 1-2 mm) as a main target of Al. However, Al applied to the elongation zone (EZ) also contributed to the overall inhibition of root elongation. Enhanced inhibition of root elongation during the initial 4 h of Al treatment was related to high Al accumulation in root apices in both genotypes (Quimbaya>VAX-1). Recovery from Al stress was reflected by decreasing Al contents especially in the TZ, but also in the EZ. After 24 h of Al treatment the high Al resistance of Quimbaya was reflected by much lower Al contents in the entire root apex. The results confirmed that genotypic differences in Al resistance in common bean are built up during medium-term exposure of the roots to Al. For this acquisition of Al resistance, the activation and maintenance of an Al exclusion mechanism, especially in the TZ but also in the EZ, appears to be decisive. PMID:17975208

  9. Influence of retinopathy on the achromatic and chromatic vision of patients with type 2 diabetes

    PubMed Central

    2014-01-01

    Background Luminance contrast sensitivity and colour vision are considered to have great predictive value in the evaluation of type 2 diabetic retinopathy. However, these two visual characteristics have seldom been investigated in the same group of patients. In the present study we measured contrast sensitivity and colour vision in a group of patients with type 2 diabetes and correlated the results with estimates of common metabolic markers for the disease. A subgroup of the patients had no clinical signs of retinopathy. Methods The vision of 27 patients (n = 50 eyes) with type 2 diabetes, with retinopathy (n = 20 eyes), or without retinopathy (n = 30 eyes) were evaluated using two psychophysical tests, the Farnsworth–Munsell 100 hue test (FM 100), and measurements of the luminance contrast sensitivity at 11 spatial frequencies. The results were compared with measurements obtained from an age-matched control group (n = 32), and were correlated with the level of glycated haemoglobin, glycaemic level, and time of disease onset. Signs of retinopathy were identified during the ophthalmological examinations. Results Contrast sensitivity and colour vision impairments were present at different levels in diabetes patients. Eyes with retinopathy showed more severe vision loss than eyes without retinopathy. The FM 100 test was more sensitive for separation of patients from controls. Colour vision loss had no colour axes preference. The contrast sensitivity test appeared to have some advantage in differentiating patients with retinopathy from patients without retinopathy. Conclusions Both methods can be useful to follow the visual function of diabetic patients and should be used together to discriminate patients from controls, as well as to identify early signs of retinal damage. PMID:25174264

  10. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  11. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  12. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  13. Pupil phase apodization for achromatic imaging of extra- solar planets

    NASA Astrophysics Data System (ADS)

    Yang, Weidong

    2004-09-01

    Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Difficulties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter difficulty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as f(x,y)=a[ln ((1+3)+ 2x/D)/((1+3)-2x/D) . ((1+3)+2y/D)/((1+3)-2y/D)] demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10-12 with an inner working angle down to 3.5λ/D (with a = 3 and 3 = 10-3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant; we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101 x 101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8λ/D in one quadrant. Phase-only modulation has the additional

  14. Individual differences in reward prediction error: contrasting relations between feedback-related negativity and trait measures of reward sensitivity, impulsivity and extraversion

    PubMed Central

    Cooper, Andrew J.; Duke, Éilish; Pickering, Alan D.; Smillie, Luke D.

    2014-01-01

    Medial-frontal negativity occurring ∼200–300 ms post-stimulus in response to motivationally salient stimuli, usually referred to as feedback-related negativity (FRN), appears to be at least partly modulated by dopaminergic-based reward prediction error (RPE) signaling. Previous research (e.g., Smillie et al., 2011) has shown that higher scores on a putatively dopaminergic-based personality trait, extraversion, were associated with a more pronounced difference wave contrasting unpredicted non-reward and unpredicted reward trials on an associative learning task. In the current study, we sought to extend this research by comparing how trait measures of reward sensitivity, impulsivity and extraversion related to the FRN using the same associative learning task. A sample of healthy adults (N = 38) completed a battery of personality questionnaires, before completing the associative learning task while EEG was recorded. As expected, FRN was most negative following unpredicted non-reward. A difference wave contrasting unpredicted non-reward and unpredicted reward trials was calculated. Extraversion, but not measures of impulsivity, had a significant association with this difference wave. Further, the difference wave was significantly related to a measure of anticipatory pleasure, but not consummatory pleasure. These findings provide support for the existing evidence suggesting that variation in dopaminergic functioning in brain “reward” pathways may partially underpin associations between the FRN and trait measures of extraversion and anticipatory pleasure. PMID:24808845

  15. Effect of the Administration of Alpha-Lipoic Acid on Contrast Sensitivity in Patients with Type 1 and Type 2 Diabetes

    PubMed Central

    Gębka, Anna; Raczyńska, Dorota

    2014-01-01

    The aim of this study was to estimate the effects of oral supplementation of alpha-lipoic acid (ALA) on contrast sensitivity (CS) in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). The study included 12 patients with T1DM aged 43±12 years, 48 patients with T2DM aged 59±10 years, and 20 control subjects aged 33±8 years. Patients from each studied group, including the control group, were randomly assigned to receive 300 mg of ALA orally once daily for 3 months. CS was evaluated with the Functional Acuity Contrast Test (FACT, Stereo Optical). In the group of patients with T1DM receiving ALA for 3 months CS remained stable and improved in those with T2DM. Reduction of CS in both T1DM and T2DM patients without alpha-lipoic acid supplementation was observed. In the control group on alpha-lipoic acid supplementation, CS improvement was noticed at one spatial frequency. Changes in the CS were observed, despite stable visual acuity and eye fundus image in all studied subjects. Our study demonstrated that oral administration of alpha-lipoic acid had influence on CS in both T1DM and T2DM patients. PMID:24665163

  16. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  17. RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction.

    PubMed

    Bolton, Melvin D; Ebert, Malaika K; Faino, Luigi; Rivera-Varas, Viviana; de Jonge, Ronnie; Van de Peer, Yves; Thomma, Bart P H J; Secor, Gary A

    2016-07-01

    Cercospora beticola causes Cercospora leaf spot of sugar beet. Cercospora leaf spot management measures often include application of the sterol demethylation inhibitor (DMI) class of fungicides. The reliance on DMIs and the consequent selection pressures imposed by their widespread use has led to the emergence of resistance in C. beticola populations. Insight into the molecular basis of tetraconazole resistance may lead to molecular tools to identify DMI-resistant strains for fungicide resistance management programs. Previous work has shown that expression of the gene encoding the DMI target enzyme (CYP51) is generally higher and inducible in DMI-resistant C. beticola field strains. In this study, we extended the molecular basis of DMI resistance in this pathosystem by profiling the transcriptional response of two C. beticola strains contrasting for resistance to tetraconazole. A majority of the genes in the ergosterol biosynthesis pathway were induced to similar levels in both strains with the exception of CbCyp51, which was induced several-fold higher in the DMI-resistant strain. In contrast, a secondary metabolite gene cluster was induced in the resistance strain, but repressed in the sensitive strain. Genes encoding proteins with various cell membrane fortification processes were induced in the resistance strain. Site-directed and ectopic mutants of candidate DMI-resistance genes all resulted in significantly higher EC50 values than the wild-type strain, suggesting that the cell wall and/or membrane modified as a result of the transformation process increased resistance to tetraconazole. Taken together, this study identifies important cell membrane components and provides insight into the molecular events underlying DMI resistance in C. beticola. PMID:27112724

  18. Contrast studies.

    PubMed

    Anderson, Susan M

    2006-01-01

    Contrast media plays an important role in imaging soft tissues and organs. Though contrast imaging is considered safe, radiologic technologists can improve the safety of contrast examinations by reviewing institutional safety procedures, safe practices for different methods of contrast administration and possible complications. The need for efficient communication and attention to detail during contrast procedures is essential for patient safety. PMID:16998193

  19. Application of Optical Coherence Tomography and Contrast Sensitivity Test for Observing Fundus Changes of Patients With Pregnancy-Induced Hypertension Syndrome

    PubMed Central

    Wang, Zhixue; Zou, Yuanyuan; Li, Wenying; Wang, Xueyan; Zhang, Min; Wang, Wenying

    2015-01-01

    Abstract This study was aimed to investigate the fundus changes of patients with pregnancy-induced hypertension syndrome (PIHS) using optical coherence tomography (OCT) technology and contrast sensitivity (CS) tests. Ninety-eight patients with PIHS underwent routine eye examinations including vision correction, fundus examination, OCT, and CS tests. The CS test was performed at low, medium, and high frequency, respectively. Moreover, the difference in CS tests between 2 groups was analyzed by independent-samples T test. The Kruskal–Wallis rank sum test and linear regression model were used to detect the correlation of OCT with CS, respectively. Meanwhile Satterthwaite approximate T test was adopted for pairwise comparisons after nonparametric analysis of variance. The OCT test revealed that 56.76% of the examined eyes showed shallow retinal detachment in the macula lutea and around the optic disk. The differences in CS at each spatial frequency between the case and control group were statistically significant (P < 0.01). Besides, OCT manifestations were associated with CS at each spacial frequency including 1.5, 3, 6, 12, and 18 frequency (P < 0.01). And patients with abnormal manifestations of OCT showed lower CS at each spacial frequency than those without abnormal OCT manifestations. What's more the OCT manifestation 1 showed the greatest impact on CS at each spacial frequency. The results showed that abnormal OCT manifestations were correlated with CS in PIHS. OCT and CS tests might be valuable methods in observing fundus changes for PIHS patients. PMID:26554764

  20. Achromatic flat optical components via compensation between structure and material dispersions

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems.

  1. The achromatic design of an atmospheric dispersion corrector for extremely large telescopes.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2011-08-29

    For off-zenith observations with ground-based astronomical telescopes, the effect of atmospheric dispersion relative to diffraction on image size increases with telescope diameter. Correction of atmospheric dispersion in extremely large telescopes (ELTs) might become critical. A common solution for ELTs is to use linear atmospheric dispersion correctors (ADCs). In spite of their simplicity, the intrinsic chromatic aberrations of linear ADCs could render diffraction-limited imaging impossible when used in a fast focus. The chromatic problems of the linear ADC in ELTs can be resolved by replacing the linear ADC by the achromatic ADC designs presented here, which provide diffraction-limited image quality and offer several opto-mechanical advantages over linear ADCs. PMID:21935071

  2. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  3. Visible–infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  4. Binary Star Measurements with a 17th Century, Long-Focal, Non-Achromatic Refractor

    NASA Astrophysics Data System (ADS)

    Binder, Alan

    2010-10-01

    As part of the evaluation of my long-focal, non-achromatic refractor of the type developed during the first century, i.e., the 17th century, of optical astronomy, I have observed 175 double and multiple stars. After having observed most of these binary stars visually, I decided to see if it would be possible to measure their position angles and separations. Thus, I built a micrometer and began a program to determine if - and how accurately - I could measure the characteristics of these binaries. To my great surprise, the average error of the measured position angles is only 2 degrees and that of the separations is only 1 arc-second - values that are almost a good as modern measurements. These results further indicate that these very early and relatively primitive telescopes were much better that modern astronomical historians believe.

  5. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware. PMID:19209197

  6. Achromatic flat optical components via compensation between structure and material dispersions

    PubMed Central

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  7. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface.

    PubMed

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin

    2015-10-19

    A dual-metasurface-based reflective device ("meta-mirror") has been proposed for broadband polarization manipulation, which is composed of orthogonal metallic cut-wire arrays separated from a grounded plane with different distances. The reflective phases of orthogonally linearly-polarized components can be independently adjusted by changing the dimensions of the cut-wire pairs. Benefiting from the fully released dispersion management ability in both dimensions, achromatic (i.e., ultra-broadband) polarization manipulation can be achieved. The suggested approach has been numerically verified in both microwave and optical band. Moreover, experimental characterization in microwave regime has demonstrated the broadband polarization manipulation ability within 5 - 30 GHz. The underlying physical mechanism of dispersion engineering was explained in general equivalent circuit theory and transmission line model. PMID:26480416

  8. ACHROMATIC LOW-BETA INTERACTION REGION DESIGN FOR AN ELECTRON-ION COLLIDER

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev

    2011-09-01

    An achromatic Interaction Region (IR) design concept is presented with an emphasis on its application at an electron-ion collider. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB's placed symmetrically around an interaction point (IP) allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. Special attention is paid to the difference in the electron and ion IR design requirements. We discuss geometric matching of the electron and ion IR footprints. We investigate limitations on the momentum acceptance in this IR design.

  9. ACHROMATIC EIGHT-OCTANT PHASE-MASK CORONAGRAPH USING PHOTONIC CRYSTAL

    SciTech Connect

    Murakami, Naoshi; Baba, Naoshi; Nishikawa, Jun; Yokochi, Kaito; Tamura, Motohide; Abe, Lyu

    2010-05-01

    We designed and manufactured a photonic-crystal mask which can be used for an achromatic eight-octant phase-mask (EOPM) coronagraph for direct detection of extrasolar planets. Laboratory experiments of the EOPM coronagraph were carried out using two laser light sources as a simulated star (wavelengths of 532 and 633 nm). As a result, we attained high extinction of the simulated starlight in both the wavelengths. Halo intensity levels of about 10{sup -6} and 10{sup -7} were achieved at an angular distance of 3 and 13{lambda}/D, respectively. We also discuss several issues, such as an effect of phase aberration on the coronagraphic performance, a transmittance of the proposed EOPM, and a novel two-channel coronagraphic configuration to improve system throughput.

  10. Achromatic flat optical components via compensation between structure and material dispersions.

    PubMed

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  11. Tests of achromatic phase shifters performed on the SYNAPSE test bench: a progress report

    NASA Astrophysics Data System (ADS)

    Gabor, Pavel; Schuller, Peter A.; Chazelas, Bruno; Decaudin, Michel; Labèque, Alain; Duret, Philippe; Rabbia, Yves; Launhardt, Ralf; Gay, Jean; Sodnik, Zoran; Barillot, Marc; Brachet, Frank; Laurent, Thomas; Jacquinod, Sophie; Vandormael, Denis; Loicq, Jérôme; Mawet, Dimitri; Ollivier, Marc; Léger, Alain

    2008-07-01

    The achromatic phase shifter (APS) is a component of the Bracewell nulling interferometer studied in preparation for future space missions (viz. Darwin/TPF-I) focusing on spectroscopic study of Earth-like exo-planets. Several possible designs of such an optical subsystem exist. Four approaches were selected for further study. Thales Alenia Space developed a dielectric prism APS. A focus crossing APS prototype was developed by the OCA, Nice, France. A field reversal APS prototype was prepared by the MPIA in Heidelberg, Germany. Centre Spatial de Liege develops a concept based on Fresnel's rhombs. This paper presents a progress report on the current work aiming at evaluating these prototypes on the Synapse test bench at the Institut d'Astrophysique Spatiale in Orsay, France.

  12. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization. PMID:16946775

  13. Application of Optical Coherence Tomography and Contrast Sensitivity Test for Observing Fundus Changes of Patients With Pregnancy-Induced Hypertension Syndrome.

    PubMed

    Wang, Zhixue; Zou, Yuanyuan; Li, Wenying; Wang, Xueyan; Zhang, Min; Wang, Wenying

    2015-11-01

    This study was aimed to investigate the fundus changes of patients with pregnancy-induced hypertension syndrome (PIHS) using optical coherence tomography (OCT) technology and contrast sensitivity (CS) tests.Ninety-eight patients with PIHS underwent routine eye examinations including vision correction, fundus examination, OCT, and CS tests. The CS test was performed at low, medium, and high frequency, respectively. Moreover, the difference in CS tests between 2 groups was analyzed by independent-samples T test. The Kruskal-Wallis rank sum test and linear regression model were used to detect the correlation of OCT with CS, respectively. Meanwhile Satterthwaite approximate T test was adopted for pairwise comparisons after nonparametric analysis of variance.The OCT test revealed that 56.76% of the examined eyes showed shallow retinal detachment in the macula lutea and around the optic disk. The differences in CS at each spatial frequency between the case and control group were statistically significant (P < 0.01). Besides, OCT manifestations were associated with CS at each spacial frequency including 1.5, 3, 6, 12, and 18 frequency (P < 0.01). And patients with abnormal manifestations of OCT showed lower CS at each spacial frequency than those without abnormal OCT manifestations. What's more the OCT manifestation 1 showed the greatest impact on CS at each spacial frequency.The results showed that abnormal OCT manifestations were correlated with CS in PIHS. OCT and CS tests might be valuable methods in observing fundus changes for PIHS patients. PMID:26554764

  14. The Application of a New Maximum Color Contrast Sensitivity Test to the Early Prediction of Chiasma Damage in Cases of Pituitary Adenoma: The Pilot Study

    PubMed Central

    Liutkeviciene, Rasa; Glebauskiene, Brigita; Zaliuniene, Dalia; Kriauciuniene, Loresa; Bernotas, Giedrimantas; Tamasauskas, Arimantas

    2016-01-01

    Purpose Our objective was to estimate the maximum color contrast sensitivity (MCCS) thresholds in individuals with chiasma opticum damage. Methods The pilot study tested 41 people with pituitary adenoma (PA) and 100 age- and gender-matched controls. Patients were divided into two groups according to PA size, PA ≤1 cm or PA >1 cm. A new MCCS test program was used for color discrimination. Results The mean total error score (TES) of MCCS was 1.8 in the PA ≤1 cm group (standard deviation [SD], 0.38), 3.5 in the PA >1 cm group (SD, 0.96), and 1.4 in the control group (SD, 0.31; p < 0.001). There was a positive correlation between tumor size and MCCS result (r = 0.648, p < 0.01). In the group that had PA-producing hormones, the TES was 2.5 (SD, 1.09), compared to 4.2 value in the non-functioning PA group of patients that did not have clinically significant hormone excess (SD, 3.16; p < 0.01). In patients with normal visual acuity (VA) or visual field MCCS, the TES was 3.3 (SD, 1.8), while that in patients with VA <0.00 was 4.6 (SD, 2.9). Conclusions Results of the MCCS test TES were 1.9 times better in patients with PA ≤1 cm compared to patients with PA >1 cm (p < 0.01). In PA patients with normal VA, the TES was 2.35 times worse than that of healthy persons (p < 0.01). PMID:27478357

  15. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  16. A reevaluation of achromatic spatio-temporal vision: Nonoriented filters are monocular, they adapt, and can be used for decision making at high flicker speeds

    PubMed Central

    Meese, Tim S; Baker, Daniel H

    2011-01-01

    Masking, adaptation, and summation paradigms have been used to investigate the characteristics of early spatio-temporal vision. Each has been taken to provide evidence for (i) oriented and (ii) nonoriented spatial-filtering mechanisms. However, subsequent findings suggest that the evidence for nonoriented mechanisms has been misinterpreted: those experiments might have revealed the characteristics of suppression (eg, gain control), not excitation, or merely the isotropic subunits of the oriented detecting mechanisms. To shed light on this, we used all three paradigms to focus on the ‘high-speed’ corner of spatio-temporal vision (low spatial frequency, high temporal frequency), where cross-oriented achromatic effects are greatest. We used flickering Gabor patches as targets and a 2IFC procedure for monocular, binocular, and dichoptic stimulus presentations. To account for our results, we devised a simple model involving an isotropic monocular filter-stage feeding orientation-tuned binocular filters. Both filter stages are adaptable, and their outputs are available to the decision stage following nonlinear contrast transduction. However, the monocular isotropic filters (i) adapt only to high-speed stimuli—consistent with a magnocellular subcortical substrate—and (ii) benefit decision making only for high-speed stimuli (ie, isotropic monocular outputs are available only for high-speed stimuli). According to this model, the visual processes revealed by masking, adaptation, and summation are related but not identical. PMID:23145234

  17. Monitoring the Effects of Anti-angiogenesis on the Radiation Sensitivity of Pancreatic Cancer Xenografts Using Dynamic Contrast-Enhanced Computed Tomography

    SciTech Connect

    Cao, Ning; Cao, Minsong; Chin-Sinex, Helen; Mendonca, Marc; Ko, Song-Chu; Stantz, Keith M.

    2014-02-01

    Purpose: To image the intratumor vascular physiological status of pancreatic tumors xenografts and their response to anti-angiogenic therapy using dynamic contrast-enhanced computed tomography (DCE-CT), and to identify parameters of vascular physiology associated with tumor x-ray sensitivity after anti-angiogenic therapy. Methods and Materials: Nude mice bearing human BxPC-3 pancreatic tumor xenografts were treated with 5 Gy of radiation therapy (RT), either a low dose (40 mg/kg) or a high dose (150 mg/kg) of DC101, the anti-VEGF receptor-2 anti-angiogenesis antibody, or with combination of low or high dose DC101 and 5 Gy RT (DC101-plus-RT). DCE-CT scans were longitudinally acquired over a 3-week period post-DC101 treatment. Parametric maps of tumor perfusion and fractional plasma volume (F{sub p}) were calculated and their averaged values and histogram distributions evaluated and compared to controls, from which a more homogeneous physiological window was observed 1-week post-DC101. Mice receiving a combination of DC101-plus-RT(5 Gy) were imaged baseline before receiving DC101 and 1 week after DC101 (before RT). Changes in perfusion and F{sub p} were compared with alternation in tumor growth delay for RT and DC101-plus-RT (5 Gy)-treated tumors. Results: Pretreatment with low or high doses of DC101 before RT significantly delayed tumor growth by an average 7.9 days compared to RT alone (P ≤ .01). The increase in tumor growth delay for the DC101-plus-RT-treated tumors was strongly associated with changes in tumor perfusion (ΔP>−15%) compared to RT treated tumors alone (P=.01). In addition, further analysis revealed a trend linking the tumor's increased growth delay to its tumor volume-to-DC101 dose ratio. Conclusions: DCE-CT is capable of monitoring changes in intratumor physiological parameter of tumor perfusion in response to anti-angiogenic therapy of a pancreatic human tumor xenograft that was associated with enhanced radiation response.

  18. The achromatic chessboard, a new concept of a phase shifter for nulling interferometry. V. Experimental demonstration and performance

    NASA Astrophysics Data System (ADS)

    Pickel, D.; Pelat, D.; Rouan, D.; Reess, J.-M.; Chemla, F.; Cohen, M.; Dupuis, O.

    2013-10-01

    Context. To find evidence one day of life on extra solar planets, one will have to directly detect photons of the exoplanet to obtain spectra and to look for specific spectroscopic features. One possible technique is dark fringe interferometry with several telescopes in space. This type of interferometry requires an achromatic π phase shift in one arm of an interferometer. We have already presented a concept of a quasi-achromatic phase shifter that is made of two cellular mirrors in which each cell position and phase shift is specific, so that the behavior of the null depth as a function of the wavelength is flat within a broad range. Aims: We want to experimentally validate this concept of an achromatic phase shifter and measure its performance in two different cases: a transmissive mask, which is made in bulk optics that are machined with ion etching and a reflective one, which is made by using a commercial segmented deformable mirror that is properly controlled. Methods: We assembled a dedicated optical bench, nicknamed DAMNED, to assess the concept and characterize its performance in the visible and to determine the limitations of this phase shifter. We analyze its performance by comparing the experimental results with a numerical instrument model. Results: We tested several transmissive masks and a reflective one. We reached an attenuation of about 2 × 10-3 with a white source (Δλ = 430 to 830 nm) that proved to be the actual achromatic behavior of the phase shifter, despite its modest value. Extrapolated to mid-IR, its performance would be within typical specifications of a space mission as Darwin.

  19. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  20. Introduction of Peripheral Carboxylates to Decrease the Charge on Tm(3+) DOTAM-Alkyl Complexes: Implications for Detection Sensitivity and in Vivo Toxicity of PARACEST MRI Contrast Agents.

    PubMed

    Suchý, Mojmír; Milne, Mark; Elmehriki, Adam A H; McVicar, Nevin; Li, Alex X; Bartha, Robert; Hudson, Robert H E

    2015-08-27

    A series of structurally modified Tm(3+) DOTAM-alkyl complexes as potential PARACEST MRI contrast agents has been synthesized with the aim to decrease the overall positive charge associated with these molecules and increase their biocompatibility. Two types of structural modification have been performed, an introduction of terminal carboxylate arms to the alkyl side chains and a conjugation of one of the alkyl side chains with aspartic acid. Detailed evaluation of the magnetic resonance imaging chemical exchange contrast associated with the structurally modified contrast agents has been performed. In contrast to the acutely toxic Tm(3+) DOTAM-alkyl complexes, the structurally modified compounds were found to be tolerated well during in vivo MRI studies in mice; however, only the aspartic acid modified chelates produced an amide proton-based PARACEST signal. PMID:26214576

  1. Design of a multi-bend achromat lattice for 3 GeV synchrotron light source

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2016-03-01

    We present a lattice design for a low-emittance and high-brilliance 3 GeV synchrotron light source that has been widely investigated in the world. We show the design results for a MBA (Multi-Bend Achromat) lattice with an emittance of 1.3 nm and 282.4 m circumference. Each cell has 5 bending magnets that consist of outer two with bending angle of 4.5° and inner three with bending angle of 7°. The lattice is designed to be flexible and consists of 12 straight sections in which one straight section has a length of 5.9 m. We have studied the dynamic aperture in the lattice with machine errors. It is shown that the designed low-emittance lattice provides sufficient dynamic aperture after COD correction. We present the results of variations of emittance, energy spread and dynamic aperture due to in-vacuum undulators in the straight sections. We performed particle tracking after the beam injection to investigate the efficiency of the injection scheme. We show the designed results of an injection scheme that shows the space allocation in injection section and the particle motions of injected beam. Our designed lattice provides a good optimization in terms of the emittance and brilliance as a light source for 3 GeV energy and circumference of 28 m.

  2. All-prism achromatic phase matching for tunable second-harmonic generation.

    PubMed

    Richman, B A; Bisson, S E; Trebino, R; Sidick, E; Jacobson, A

    1999-05-20

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of beta barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensation with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths. PMID:18319927

  3. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  4. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  5. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping.

    PubMed

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  6. Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging.

    PubMed

    Zhao, Xiaojin; Pan, Xiaofang; Fan, Xiaolei; Xu, Ping; Bermak, Amine; Chigrinov, Vladimir G

    2014-04-01

    In this paper, we present a liquid-crystal-polymer (LCP)-based dual-layer micro-quarter-wave-retarder (MQWR) array for active polarization image sensors. The proposed MQWRs, for the first time, enable the extraction of the incident light's circularly polarized components in the whole visible regime, which correspond to the fourth parameter of Stokes vector. Compared with the previous implementations, our proposed MQWRs feature high achromaticity, making their applications no longer limited to monochromatic illumination. In addition, the presented thin structure exhibits an overall thickness of 2.43μm, leading to greatly alleviated optical cross-talk between adjacent photo-sensing pixels. Moreover, the reported superior optical performance (e.g. minor transmittance, extinction ratio) validates our optical design and optimization of the proposed MQWRs. Furthermore, the demonstrated simple fabrication recipe offers a cost-effective solution for the monolithic integration between the proposed MQWR array and the commercial solid-state image sensors, which makes the multi-spectral full Stokes polarization imaging system on a single chip feasible. PMID:24718177

  7. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing

    PubMed Central

    Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.

    2011-01-01

    The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway. PMID:21685674

  8. Achromatic nested Kirkpatrick-Baez mirror optics for hard x-ray nanofocusing.

    SciTech Connect

    Liu, W.; Ice, G. E.; Assoufid, L.; Liu, C.; Shi, B.; Khachatryan, R.; Qian, J.; Zschack, P.; Tischler, J. Z.; Choi, J.-Y.

    2011-07-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 {micro}m by 120 {micro}m incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway.

  9. Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing.

    PubMed

    Liu, Wenjun; Ice, Gene E; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z; Choi, J Y

    2011-07-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway. PMID:21685674

  10. Achromatic Nested Kirkpatrick-Baez Mirror Optics for Hard X-ray Nanofocusing

    SciTech Connect

    Liu, Wenjun; Ice, Gene E; Assoufid, Lahsen; Liu, Chian; Shi, B.; Khachatryan, Ruben; Qian, J; Zshack, Dr Paul; Tischler, Jonathan Zachary; Choi, Jae-Young

    2011-01-01

    The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 {micro}m by 120 {micro}m incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway.

  11. Gain of a 500-fold sensitivity on an intravital MR Contrast Agent based on an endohedral Gadolinium-Cluster-Fullerene-Conjugate: A new chance in cancer diagnostics

    PubMed Central

    Braun, Klaus; Dunsch, Lothar; Pipkorn, Ruediger; Bock, Michael; Baeuerle, Tobias; Yang, Shangfeng; Waldeck, Waldemar; Wiessler, Manfred

    2010-01-01

    Among the applications of fullerene technology in health sciences the expanding field of magnetic resonance imaging (MRI) of molecular processes is most challenging. Here we present the synthesis and application of a GdxSc3-xN@C80-BioShuttle-conjugate referred to as Gd-cluster@-BioShuttle, which features high proton relaxation and, in comparison to the commonly used contrast agents, high signal enhancement at very low Gd concentrations. This modularly designed contrast agent represents a new tool for improved monitoring and evaluation of interventions at the gene transcription level. Also, a widespread monitoring to track individual cells is possible, as well as sensing of microenvironments. Furthermore, BioShuttle can also deliver constructs for transfection or active pharmaceutical ingredients, and scaffolding for incorporation with the host's body. Using the Gd-cluster@-BioShuttle as MRI contrast agent allows an improved evaluation of radio- or chemotherapy treated tissues. PMID:20567614

  12. Contrastive Lexicology.

    ERIC Educational Resources Information Center

    Hartmann, R. R. K.

    This paper deals with the relation between etymologically related words in different languages. A survey is made of seven stages in the development of contrastive lexicology. These are: prelinguistic word studies, semantics, lexicography, translation, foreign language learning, bilingualism, and finally contrastive analysis. Concerning contrastive…

  13. Stress sensitivity is associated with differential accumulation of reactive oxygen and nitrogen species in maize genotypes with contrasting levels of drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both...

  14. Focal plane wavefront sensor achromatization: The multireference self-coherent camera

    NASA Astrophysics Data System (ADS)

    Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.

    2016-04-01

    Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the

  15. Contrast Materials

    MedlinePlus

    ... or other reactions to contrast materials are rare, radiology departments are well-equipped to deal with them. ... is given. However, both the American College of Radiology (ACR) and the European Society of Urogenital Radiology ...

  16. Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast.

    PubMed

    Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R

    2006-09-15

    Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331

  17. Contrast lipocryolysis

    PubMed Central

    Pinto, Hernán; Melamed, Graciela

    2014-01-01

    Alternative crystal structures are possible for all lipids and each different crystal structure is called a polymorphic form. Inter-conversion between polymorphisms would imply the possibility of leaning crystal formation toward the most effective polymorphism for adipocyte destruction. Food industry has been tempering lipids for decades. Tempering technology applied to lipocryolysis gave birth to “contrast lipocryolysis”, which involves pre- and post-lipocryolysis fat layer heating as part of a specific tempering protocol. In this study, we evaluated the skinfold thickness of 10 subjects after a single contrast lipocryolysis session and witnessed important and fast reductions. PMID:25068088

  18. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  19. Tumor Sensitive Matching Flow: A Variational Method to Detecting and Segmenting Perihepatic and Perisplenic Ovarian Cancer Metastases on Contrast-Enhanced Abdominal CT

    PubMed Central

    Liu, Jianfei; Wang, Shijun; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M.

    2015-01-01

    Accurate automated segmentation and detection of ovarian cancer metastases may improve the diagnosis and prognosis of women with ovarian cancer. In this paper, we focus on an important subset of ovarian cancer metastases that spread to the surface of the liver and spleen. Automated ovarian cancer metastasis detection and segmentation are very challenging problems to solve. These metastases have a wide variety of shapes and intensity values similar to that of the liver, spleen and adjacent soft tissues. To address these challenges, this paper presents a variational approach, called tumor sensitive matching flow (TSMF), to detect and segment perihepatic and perisplenic ovarian cancer metastases. TSMF is an image motion field that only highlights metastasis-caused deformation on the surface of liver and spleen while dampening all other image motion between the patient image and the atlas image. It provides several benefits: 1) juxtaposing the roles of image matching and metastasis classification within a variational framework; 2) only requiring a small set of features from a few patient images to train a metastasis-likelihood function for classification; and 3) dynamically creating shape priors for geodesic active contour (GAC) to prevent inaccurate metastasis segmentation. We compared the TSMF to an organ surface partition (OSP) baseline approach. At a false positive rate of 2 per patient, the sensitivities of TSMF and OSP were 87% and 17% (p < 0.001), respectively. In a comparison of the segmentations conducted using TSMF-constrained GAC and conventional GAC, the volume overlap rates were 73±9% and 46±26% (p < 0.001) and average surface distances were 2.4±1.2mm and 7.0±6.0mm (p < 0.001), respectively. These encouraging results demonstrate that TSMF could accurately detect and segment ovarian cancer metastases. PMID:24835180

  20. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  1. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature.

    PubMed

    Morsy, Mustafa R; Almutairi, Abeer M; Gibbons, James; Yun, Song Joon; de Los Reyes, Benildo G

    2005-01-01

    Rice (Oryza sativa L.) is sensitive to chilling particularly at early stages of seedling establishment. Two closely related genes (OsLti6a, OsLti6b), which are induced by low temperature during seedling emergence were isolated from a cold tolerant temperate japonica rice cultivar. These genes are closely related to the Arabidopsis rare cold-inducible (RCI2) and barley low-temperature-inducible (BLT101) genes. Based on direct biochemical and indirect physiological evidence and similarity with a conserved protein domain in the Cluster of Orthologous Groups (COG) database (e.g., yeast PMP3), the rice genes belong to a class of low-molecular-weight hydrophobic proteins involved in maintaining the integrity of the plasma membrane during cold, dehydration and salt stress conditions. Both genes exhibit a genotype-specific expression signature characterized by early and late stress-inducible expression in tolerant and intolerant genotypes, respectively. The differences in temporal expression profiles are consistent with cultivar differences in cold-induced membrane leakiness and seedling vigor. The presence of CRT/DRE promoter cis-elements is consistent with the synchronized expression of OsLti6 genes with the C-repeat binding factor/drought responsive element-binding protein (CBF/DREB) transcriptional activator. The present results indicate that the Oslti6 genes are part of a battery of cold stress defense-related genes regulated by a common switch. PMID:15656983

  2. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    PubMed

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered. PMID:27369139

  3. Pattern specificity of contrast adaptation

    PubMed Central

    Anstis, Stuart

    2014-01-01

    Contrast adaptation is specific to precisely localised edges, so that adapting to a flickering photograph makes one less sensitive to that same photograph, but not to similar photographs. When two low-contrast photos, A and B, are transparently superimposed, then adapting to a flickering high-contrast B leaves no net afterimage, but it makes B disappear from the A+B picture, which now simply looks like A. PMID:25165518

  4. The role of egg-nest contrast in the rejection of brood parasitic eggs.

    PubMed

    Aidala, Zachary; Croston, Rebecca; Schwartz, Jessica; Tong, Lainga; Hauber, Mark E

    2015-04-15

    Hosts of avian brood parasites can avoid the reproductive costs of raising genetically unrelated offspring by rejecting parasitic eggs. The perceptual cues and controls mediating parasitic egg discrimination and ejection are well studied: hosts are thought to use differences in egg color, brightness, maculation, size and shape to discriminate between their own and foreign eggs. Most theories of brood parasitism implicitly assume that the primary criteria to which hosts attend when discriminating eggs are differences between the eggs themselves. However, this assumption is confounded by the degree to which chromatic and achromatic characteristics of the nest lining co-vary with egg coloration, so that egg-nest contrast per se might be the recognition cue driving parasitic egg detection. Here, we systematically tested whether and how egg-nest contrast itself contributes to foreign egg discrimination. In an artificial parasitism experiment, we independently manipulated egg color and nest lining color of the egg-ejector American robin (Turdus migratorius), a host of the obligate brood parasitic brown-headed cowbird (Molothrus ater). We hypothesized that the degree of contrast between foreign eggs and the nest background would affect host egg rejection behavior. We predicted that experimentally decreasing egg-nest chromatic and achromatic contrast (i.e. rendering parasitic eggs more cryptic against the nest lining) would decrease rejection rates, while increasing egg-nest contrast would increase rejection rates. In contrast to our predictions, egg-nest contrast was not a significant predictor of egg ejection patterns. Instead, egg color significantly predicted responses to parasitism. We conclude that egg-egg differences are the primary drivers of egg rejection in this system. Future studies should test for the effects of egg-nest contrast per se in predicting parasitic egg recognition in other host-parasite systems, including those hosts building enclosed nests and

  5. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  6. Polarization interferometric nulling coronagraph for high-contrast imaging.

    PubMed

    Murakami, Naoshi; Yokochi, Kaito; Nishikawa, Jun; Tamura, Motohide; Kurokawa, Takashi; Takeda, Mitsuo; Baba, Naoshi

    2010-06-01

    We propose a novel, high-contrast imager called a polarization interferometric nulling coronagraph (PINC) for direct detection of extrasolar planets. The PINC uses achromatic half-wave plates (HWPs) installed in a fully symmetric beam combiner based on polarizing beam splitters. Jones calculus suggests that a stellar halo suppression level of 10(-10) can be achieved at 5 lambda/D for a broad wavelength range from 1.6 to 2.2 microm by using Fresnel-rhomb HWPs made of BK7. Laboratory experiments on the PINC used two laser light sources (wavelengths of lambda=532 and 671 nm), and we obtained a halo suppression level of approximately 10(-6) at 5 lambda/D for both wavelengths. PMID:20517351

  7. Human contrast threshold and astronomical visibility

    NASA Astrophysics Data System (ADS)

    Crumey, Andrew

    2014-08-01

    The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g. by Schaefer. However, it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g. Blackwell's), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources, the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang, implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.

  8. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  9. Chromatic sensitivity and spatial organization of LGN neurone receptive fields in cat: cone-rod interaction

    PubMed Central

    Hammond, P.

    1972-01-01

    1. The results described are for detailed analyses of fifty-four isolated LGN units, in response to monochromatic stimuli presented against achromatic, mid-mesopic backgrounds. Forty-seven were positively identified cells from the A-laminae; the remaining seven were fibres from the optic radiation. 2. Cells are classified according to firing pattern. Phasic cells respond almost exclusively with a discharge transient. Tonic cells, by contrast, give a maintained component in addition. In general, tonic cells possess higher spontaneous firing frequencies than phasic cells and the antagonistic surrounds of their receptive fields are more potent. In other respects the two classes appear to be functionally similar. 3. All cells within the A-laminae receive input involving both rods and 556 nm cones. 4. The spatial organization of geniculate receptive fields, unlike retinal fields, is little different for cone and rod vision. In the infrequent instances where a change is apparent, it is small and can go in either direction: rod fields are then on balance slightly larger than cone fields. 5. The locus of maximum sensitivity for the receptive field surround is described by a circle, concentric with the field centre; it is invariant with respect to stimulus geometry, or changeover from cone to rod vision. 6. This result implies that the receptive field surround mechanism does not extend through the field centre. It supports the notion that the centre and surround of each geniculate cell receptive field are mediated by discrete retinal inputs. PMID:4561483

  10. Contrast Adaptation Implies Two Spatiotemporal Channels but Three Adapting Processes

    ERIC Educational Resources Information Center

    Langley, Keith; Bex, Peter J.

    2007-01-01

    The contrast gain control model of adaptation predicts that the effects of contrast adaptation correlate with contrast sensitivity. This article reports that the effects of high contrast spatiotemporal adaptors are maximum when adapting around 19 Hz, which is a factor of two or more greater than the peak in contrast sensitivity. To explain the…

  11. Perceived contrast in complex images

    PubMed Central

    Haun, Andrew M.; Peli, Eli

    2013-01-01

    To understand how different spatial frequencies contribute to the overall perceived contrast of complex, broadband photographic images, we adapted the classification image paradigm. Using natural images as stimuli, we randomly varied relative contrast amplitude at different spatial frequencies and had human subjects determine which images had higher contrast. Then, we determined how the random variations corresponded with the human judgments. We found that the overall contrast of an image is disproportionately determined by how much contrast is between 1 and 6 c/°, around the peak of the contrast sensitivity function (CSF). We then employed the basic components of contrast psychophysics modeling to show that the CSF alone is not enough to account for our results and that an increase in gain control strength toward low spatial frequencies is necessary. One important consequence of this is that contrast constancy, the apparent independence of suprathreshold perceived contrast and spatial frequency, will not hold during viewing of natural images. We also found that images with darker low-luminance regions tended to be judged as having higher overall contrast, which we interpret as the consequence of darker local backgrounds resulting in higher band-limited contrast response in the visual system. PMID:24190908

  12. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint

  13. Hybrid pupil mapping/masking systems for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Vanderbei, Robert J.

    2006-06-01

    Pupil mapping, also known as phase induced amplitude apodization or PIAA, has emerged as an interesting design concept for NASA's Terrestrial Planet Finder space telescope. However, in a previous paper it was demonstrated that diffraction effects limit the best achievable contrast to about 10 -5, which is 5 orders of magnitude short of the required level. Recent work by Olivier Guyon and his collaborators shows that a certain hybrid system can restore the contrast to the required level without degrading significantly the attractive throughput, achromaticity, and inner working angle advantages. In this paper, efficient computational tools are described that can be used to evaluate such designs. It is shown that a design similar to the one proposed by Guyon does indeed meet the contrast requirement.

  14. Polarization contrast vision

    NASA Astrophysics Data System (ADS)

    Pugh, Edward N.

    1990-05-01

    An attempt is made to establish the possibility that the geometry of certain classes of vertebrate photoreceptors results in a birefringence that allows the animals to utilize the state of polarization of light striking their retinas as a meaningful stimulus parameter. Simulate the photoreceptors as dielectric waveguides using a simple physical model, and augment this theoretical work with empirical measurements of the light guiding properties of photoreceptors in isolated pieces of retina from a green sunfish (Lepomis cyanellus). With a classical conditioning paradigm, this fish's sensitivity to light is modulated by the orientation of the plane of polarization of linearly polarized light. This functional dependence was predicted by a hypothetical antagonistic mechanism between twin cones of two orientations in the animal's retinal mosaic. Further study is planned for the nature of the stimulus to which the fish is sensitive by creating a camera that will generate images based purely upon the contrast between orthogonal polarizations at each point in space.

  15. Perception of achromatic, monochromatic, pure chromatic, and chromatic noisy images by real human-observer under threshold conditions

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Nikolay N.; Krasilnikova, Olga I.; Shelepin, Yury E.

    2000-04-01

    In the experimental verification of the ideal observer theory applicability to observation of: achromatic, monochromatic, pure chromatic and chromatic noisy images by real human- observer under threshold conditions we used the method of comparative measurements. We measured and compared the correct identification probabilities of the test objects in noisy above mentioned images by real human-observer and computer model of ideal observer. For the case when we have no full knowledge about test objects parameters we've developed the modified Zigert-Kotelnikov algorithm and appropriate model. In particular, when all image parameters are a priory known, this algorithm coincides with the ideal observer one. We formulated 3 new laws of matched filtering of exactly known color images and concluded that the probabilities of correct identification by the observer and by the computer model are in good agreement in a wide range of noise intensities. Absence of a priori information about test objects coordinates unlike test objects sizes information influences greatly on the correct identification probabilities. Our results are useful in modeling of human vision under threshold conditions. The developed model may be effectively used for estimation of picture quality impairment on the monitor screen, the diagnostic of the human visual system condition, etc.

  16. Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples.

    PubMed

    Li, Xia; Hu, Junjian; Yin, Daqiang; Hu, Xialin

    2015-06-01

    A highly sensitive method based on solid-phase extraction and ultra high performance liquid chromatography with electrospray tandem mass spectrometry has been developed for simultaneous determination of five iodinated X-ray contrast media in environmental water samples. Various solid-phase extraction cartridges have been evaluated and a combination of LiChrolute EN and ENVI-Carb solid phase extraction cartridges was selected for sample enrichment. The method was comprehensively validated on ground water, tap water, surface water, drinking water, and waste water by the conventional procedures: linearity, method detection limits, accuracy and precision, matrix effects. Good linearity (R(2) > 0.999), low detection limits (0.4-8.1 ng/L), satisfactory recoveries (55.1-109.5%) and precision (0.8-10.0% for intra-day precisions and 0.6-16.5% for inter-day precisions) were obtained for all the target compounds. Iopamidol, iohexol, and diatrizoate in some matrices were affected by matrix effects, which were slightly eased by using the isotope-labeled internal standard. The developed method was successfully applied for real samples collected in Shanghai, China, with detected concentrations up to 2200 ± 200 and 9000 ± 1000 ng/L for iohexol and iopamidol, respectively. PMID:25832295

  17. Low-Cost High-Precision PIAA Optics for High Contrast Imaging with Exo-Planet Coronagraphs

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Shaklan, Stuart B.; Pueyo, Laurent; Wilson, Daniel W.; Guyon, Olivier

    2010-01-01

    PIAA optics for high contrast imaging present challenges in manufacturing and testing due to their large surface departures from aspheric profiles at the aperture edges. With smaller form factors and consequent smaller surface deformations (<50 microns), fabrication of these mirrors with diamond turning followed by electron beam lithographic techniques becomes feasible. Though such a design reduces the system throughput to approx.50%, it still provides good performance down to 2 lambda/D inner working angle. With new achromatic focal plane mask designs, the system performance can be further improved. We report on the design, expected performance, fabrication challenges, and initial assessment of such novel PIAA optics.

  18. Edge integration in achromatic color perception and the lightness-darkness asymmetry.

    PubMed

    Rudd, Michael E

    2013-01-01

    To maintain color constancy, the human visual system must distinguish surface reflectance-based variations in wavelength and luminance from variations due to illumination. Edge integration theory proposes that this is accomplished by spatially integrating steps in luminance and color contrast that likely result from reflectance changes. Thus, a neural representation of relative reflectance within the visual scene is constructed. An anchoring rule-the largest reflectance in the neural representation appears white-is then applied to map relative lightness onto an absolute lightness scale. A large body of data on human lightness judgments is here shown to be consistent with an edge integration model in which the visual system performs a weighted sum of steps in log luminance across space. Three hypotheses are proposed regarding how weights are applied to edges. First, weights decline with distance from the target surface whose lightness is being computed. Second, larger weights are given to edges whose dark sides point towards the target. Third, edge integration is carried out along a path leading from a common background field, or surround, to the target location. The theory accounts for simultaneous contrast; quantitative lightness judgments made with classical disk-annulus, Gilchrist dome, and Gelb displays; and perceptual filling-in lightness. A cortical theory of lightness in the ventral stream of visual cortex (areas V1 → V4) is proposed to instantiate the edge integration algorithm. The neural model is shown to be capable of unifying the quantitative laws of edge integration in lightness perception with the laws governing brightness, including Stevens' power law brightness model, and makes novel predictions about the quantitative laws governing induced darkness. PMID:24370541

  19. Optical and X-Ray Observations of GRB 060526: A Complex Afterglow Consistent with an Achromatic Jet Break

    NASA Technical Reports Server (NTRS)

    Dai, X.; Halpern, J. P.; Morgan, N. D.; Armstrong, E.; Mirabal, N.; Haislip. J. B.; Reichart, D. E.; Stanek, K. Z.

    2007-01-01

    We obtained 98 R-band and 18 B, r', i' images of the optical afterglow of GRB 060526 (z = 3.21) with the MDM 1.3 m, 2.4 m, and the PROMPT telescopes at CTIO over the five nights following the burst trigger. Combining these data with other optical observations reported in GCN and the Swift XRT observations, we compare the optical and X-ray afterglow light curves of GRB 060526. Both the optical and X-ray afterglow light curves show rich features, such as flares and breaks. The densely sampled optical observations provide very good coverage at T > 10(exp 4) s. We observed a break at 2.4 x 10(exp 5) sin the optical afterglow light curve. Compared with the X-ray afterglow light curve, the break is consistent with an achromatic break supporting the beaming models of GRBs. However, the prebreak and postbreak temporal decay slopes are difficult to explain in simple afterglow models. We estimated a jet angle of theta(sub j) approx. 7deg and a prompt emission size of R(sub prompt) approx. 2 x 10(exp 14) cm. In addition, we detected several optical flares with amplitudes of (Delta)m approx. 0.2,0.6, and 0.2 mag. The X-ray afterglows detected by Swift have shown complicated decay patterns. Recently, many well-sampled optical afterglows also show decays with flares and multiple breaks. GRB 060526 provides an additional case of such a complex, well-observed optical afterglow. The accumulated well-sampled afterglows indicate that most of the optical afterglows are complex.

  20. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  1. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  2. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  3. Electronic magnification and perceived contrast of video

    PubMed Central

    Haun, Andrew; Woods, Russell L; Peli, Eli

    2012-01-01

    Electronic magnification of an image results in a decrease in its perceived contrast. The decrease in perceived contrast could be due to a perceived blur or to limited sampling of the range of contrasts in the original image. We measured the effect on perceived contrast of magnification in two contexts: either a small video was enlarged to fill a larger area, or a portion of a larger video was enlarged to fill the same area as the original. Subjects attenuated the source video contrast to match the perceived contrast of the magnified videos, with the effect increasing with magnification and decreasing with viewing distance. These effects are consistent with expectations based on both the contrast statistics of natural images and the contrast sensitivity of the human visual system. We demonstrate that local regions within videos usually have lower physical contrast than the whole, and that this difference accounts for a minor part of the perceived differences. Instead, visibility of ‘missing content’ (blur) in a video is misinterpreted as a decrease in contrast. We detail how the effects of magnification on perceived contrast can be measured while avoiding confounding factors. PMID:23483111

  4. Contrast Intravasation During Hysterosalpingography

    PubMed Central

    Bhoil, Rohit; Sood, Dinesh; Sharma, Tanupriya; Sood, Shilpa; Sharma, Jiten; Kumar, Nitesh; Ahluwalia, Ajay; Parekh, Dipen; Mistry, Kewal A.; Sood, Saurav

    2016-01-01

    Summary Hysterosalpingography is an imaging method to evaluate the endometrial and uterine morphology and fallopian tube patency. Contrast intravasation implies backflow of injected contrast into the adjoining vessels mostly the veins and may be related to factors altering endometrial vascularity and permeability. Radiologists and gynaecologists should be well acquainted with the technique of hysterosalpingography, its interpretation, and intravasation of contrast agents for safer procedure and to minimize the associated complications. PMID:27279925

  5. Stimulus Contrast and Retinogeniculate Signal Processing

    PubMed Central

    Rathbun, Daniel L.; Alitto, Henry J.; Warland, David K.; Usrey, W. Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  6. Stimulus Contrast and Retinogeniculate Signal Processing.

    PubMed

    Rathbun, Daniel L; Alitto, Henry J; Warland, David K; Usrey, W Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  7. Toward Critical Contrastive Rhetoric

    ERIC Educational Resources Information Center

    Kubota, Ryuko; Lehner, Al

    2004-01-01

    A traditional approach to contrastive rhetoric has emphasized cultural difference in rhetorical patterns among various languages. Despite its laudable pedagogical intentions to raise teachers' and students' cultural and rhetorical awareness in second language writing, traditional contrastive rhetoric has perpetuated static binaries between English…

  8. Pattern glare: the effects of contrast and color

    PubMed Central

    Monger, Laura J.; Wilkins, Arnold J.; Allen, Peter M.

    2015-01-01

    Aim: To test a theory of visual stress by investigating the inter-relationships between (1) the threshold contrast/saturation at which individuals first report discomfort when viewing colored gratings of progressively increasing contrast and decreasing saturation; (2) the choice of a colored overlay for reading; (3) any increase in reading speed when the overlay is used. Method: Ninety-five young adults, with normal color vision, reported illusions from square-wave gratings (Pattern Glare Test), chose any colored overlays that improved clarity (Intuitive Color Overlays) and read aloud randomly ordered common words (Wilkins Rate of Reading Test). This was followed by an automated choice of tints for text using various screen colors on a tablet, and a test of discomfort from patterns of progressively increasing contrast and decreasing saturation, using software developed for this study. All participants wore their optimal refractive correction throughout the procedure. Results: Fifty-eight participants chose a colored overlay and reported that it made text easier and more comfortable to read. On average, these individuals had a greater improvement in reading speed with their overlays (p = 0.003), a lower contrast threshold at which discomfort from achromatic gratings was first reported (p = 0.015), and a tendency to report more pattern glare (p = 0.052), compared to the other participants. Participants who chose both a most and least preferred tint for text using the automated procedure reported discomfort from colored gratings at a significantly higher contrast with their most preferred color compared to their least preferred color (p = 0.003). The choice of a colored tint was moderately consistent across tests. The most and least preferred colors tended to be complementary. Conclusion: Colored tints that improved reading speed reduced pattern glare both in terms of the illusion susceptibility and in terms of discomfort contrast threshold, supporting a theory of

  9. Contrast-Medium-Enhanced Digital Mammography: Contrast vs. Iodine Concentration Phantom Calibration

    SciTech Connect

    Rosado-Mendez, I.; Brandan, M. E.; Villasenor, Y.; Benitez-Bribiesca, L.

    2008-08-11

    This work deals with the application of the contrast-medium-enhanced digital subtraction mammography technique in order to calibrate the contrast level in subtracted phantom images as function of iodine concentration to perform dynamic studies of the contrast-medium uptake in the breast. Previously optimized dual-energy temporal subtraction modalities were used (a) to determine radiological parameters for a dynamic clinical study composed of 1 mask+3 post-contrast images limiting the total mean glandular dose to 2.5 mGy, and (b) to perform a contrast vs iodine concentration calibration using a custom-made phantom. Calculated exposure values were applied using a commercial full-field digital mammography unit. Contrast in subtracted phantom images (one mask and one post-CM) is linear as function of iodine concentration, although the sensitivity (contrast per iodine concentration) decreases beyond 8 mg/mL. This calibration seems to apply only to thin and normal thickness breasts.

  10. Compressive phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Maia, F.; MacDowell, A.; Marchesini, S.; Padmore, H. A.; Parkinson, D. Y.; Pien, J.; Schirotzek, A.; Yang, C.

    2010-08-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  11. Compressive Phase Contrast Tomography

    SciTech Connect

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  12. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  13. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography

    PubMed Central

    Li, Shiping; Zhong, Jingang

    2012-01-01

    The surface plasmon resonance imaging technique provides a tool that allows high-throughput analysis and real-time kinetic measurement. A simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging method is presented. The amplitude-contrast and phase-contrast images are simultaneously obtained by use of digital holography. The detection sensitivity of amplitude-contrast imaging and phase-contrast imaging can compensate for each other. Thus, the detectable sample components may cover a wider range of refractive index values for the simultaneous amplitude-contrast and phase-contrast imaging method than for the phase-contrast imaging method or amplitude-contrast imaging method. A detailed description of the theory and an experiment of monitoring the evaporation process of a drop of NaCl injection in real time are presented. In addition, the amplitude-contrast image has less coherent noise by digital holography. PMID:23243569

  14. Myopes experience greater contrast adaptation during reading.

    PubMed

    McGonigle, Colm; van der Linde, Ian; Pardhan, Shahina; Engel, Stephen A; Mallen, Edward A H; Allen, Peter M

    2016-04-01

    In this study, we investigated whether reading influences contrast adaptation differently in young adult emmetropic and myopic participants at the spatial frequencies created by text rows and character strokes. Pre-adaptation contrast sensitivity was measured for test gratings with spatial frequencies of 1cdeg(-1) and 4cdeg(-1), presented horizontally and vertically. Participants then adapted to reading text corresponding to the horizontal "row frequency" of text (1cdeg(-1)), and vertical "stroke frequency" of the characters (4cdeg(-1)) for 180s. Following this, post-adaptation contrast sensitivity was measured. Twenty young adults (10 myopes, 10 emmetropes) optimally corrected for the viewing distance participated. There was a significant reduction in logCS post-text adaptation (relative to pre-adaptation logCS) at the row frequency (1cdeg(-1) horizontal) but not at the stroke frequency (4cdeg(-1) vertical). logCS changes due to adaptation at 1cdeg(-1) horizontal were significant in both emmetropes and myopes. Comparing the two refractive groups, myopic participants showed significantly greater adaptation compared to emmetropic participants. Reading text on a screen induces contrast adaptation in young adult observers. Myopic participants were found to exhibit greater contrast adaptation than emmetropes at the spatial frequency corresponding to the text row frequency. No contrast adaptation was observed at the text stroke frequency in either participant group. The greater contrast adaptation experienced by myopes after reading warrants further investigation to better understand the relationship between near work and myopia development. PMID:26804636

  15. Quadriwave Lateral Shearing Interferometry in an Achromatic and Continuously Self-imaging Regime for Future X-ray Phase Imaging

    SciTech Connect

    J Rizzi; T Weitkamp; N Guerineau; M Idir; P Mercere; G Druart; G Vincent; P da Silva; J Primont

    2011-12-31

    We present in this Letter a type of quadriwave lateral shearing interferometer for x-ray phase imaging. This device is based on a phase chessboard, and we take advantage of the large spectrum of the source to produce interferograms with a propagation-invariant contrast. Such a grating has been created for hard x-ray interferometry and experimentally tested on a synchrotron beamline at Soleil.

  16. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Ignatyev, K.; Munro, P. R. T.; Chana, D.; Speller, R. D.; Olivo, A.

    2011-07-01

    This work analyzes the performance of the coded-aperture based x-ray phase contrast imaging approach, showing that it can be used at high x-ray energies with acceptable exposure times. Due to limitations in the used source, we show images acquired at tube voltages of up to 100 kVp, however, no intrinsic reason indicates that the method could not be extended to even higher energies. In particular, we show quantitative agreement between the contrast extracted from the experimental x-ray images and the theoretical one, determined by the behavior of the material's refractive index as a function of energy. This proves that all energies in the used spectrum contribute to the image formation, and also that there are no additional factors affecting image contrast as the x-ray energy is increased. We also discuss the method flexibility by displaying and analyzing the first set of images obtained while varying the relative displacement between coded-aperture sets, which leads to image variations to some extent similar to those observed when changing the crystal angle in analyzer-based imaging. Finally, we discuss the method's possible advantages in terms of simplification of the set-up, scalability, reduced exposure times, and complete achromaticity. We believe this would helpful in applications requiring the imaging of highly absorbing samples, e.g., material science and security inspection, and, in the way of example, we demonstrate a possible application in the latter.

  17. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  18. Renal stones on portal venous phase contrast-enhanced CT: does intravenous contrast interfere with detection?

    PubMed Central

    Dym, R. Joshua; Duncan, Dameon R.; Spektor, Michael; Cohen, Hillel W.; Scheinfeld, Meir H.

    2015-01-01

    Purpose To determine the sensitivity of portal venous phase contrast-enhanced CT for the detection of renal stones. Methods This retrospective study included 97 CT examinations of the abdomen without and with intravenous contrast, including 85 (87.6%) examinations with at least one renal stone on the “gold standard” noncontrast images, as scored by a single radiologist. Three other radiologists each independently reviewed only the contrast-enhanced images from all 97 examinations and recorded all renal stones. Reviewer sensitivity for stones was categorized by stone diameter. Reviewer sensitivity and specificity for stone disease were also calculated on a per-kidney basis. Results The 97 cases included a total of 238 stones ≥1 mm, with a mean (±SD) of 1.2 ± 1.9 stones per kidney and a stone diameter of 3.5 ± 3.0 mm. Pooling data for the three reviewers, sensitivity for all stones was 81%; sensitivity for stones ≥2, ≥3, ≥4, and ≥5 mm was 88%, 95%, 99%, and 98%, respectively. Sensitivity for stone disease on a per-kidney basis was 94% when considering all stones; when considering only stones ≥2, ≥3, and ≥4 mm, sensitivity was 96%, 99%, and 100%, respectively. Specificity for stone disease on a per-kidney basis was 98% overall, 99% when considering only stones ≥2 mm, and 100% when considering only stones ≥3 mm. Conclusion: Contrast-enhanced CT is highly sensitive for the detection of renal stones ≥3 mm in diameter and less sensitive for smaller stones. In cases where the clinical diagnosis is uncertain and performance of a CT examination is being contemplated, intravenous contrast utilization would allow assessment for stone disease while also optimizing evaluation for other conditions. PMID:24504541

  19. Gadofullerene MRI contrast agents.

    PubMed

    Bolskar, Robert D

    2008-04-01

    A promising new class of MRI contrast-enhancing agents with high relaxivities is based on gadolinium-containing metallofullerenes, which are also termed gadofullerenes. Detailed study of the water-proton relaxivity properties and intermolecular nanoclustering behavior of gadofullerene derivatives has revealed valuable information about their relaxivity mechanisms and given a deeper understanding of this new class of paramagnetic contrast agent. Here, the latest findings on water-solubilized gadofullerene materials and how these findings relate to their future applications in MRI are reviewed and discussed. PMID:18373426

  20. A Hybrid Reflective/Refractive/Diffractive Achromatic Fiber-Coupled Radiation Resistant Imaging System for Use in the Spallation Neutron Source (SNS)

    SciTech Connect

    Maxey, L Curt; Ally, Tanya R; Brunson, Aly; Garcia, Frances; Goetz, Kathleen C; Hasse, Katelyn E; McManamy, Thomas J; Shea, Thomas J; Simpson, Marc Livingstone

    2011-01-01

    A fiber-coupled imaging system for monitoring the proton beam profile on the target of the Spallation Neutron Source was developed using reflective, refractive and diffractive optics to focus an image onto a fiber optic imaging bundle. The imaging system monitors the light output from a chromium-doped aluminum oxide (Al{sub 2}0{sub 3}:Cr) scintillator on the nose of the target. Metal optics are used to relay the image to the lenses that focus the image onto the fiber. The material choices for the lenses and fiber were limited to high-purity fused silica, due to the anticipated radiation dose of 10{sup 8} R. In the first generation system (which had no diffractive elements), radiation damage to the scintillator on the nose of the target significantly broadened the normally monochromatic (694 nm) spectrum. This created the need for an achromatic design in the second generation system. This was achieved through the addition of a diffractive optic for chromatic correction. An overview of the target imaging system and its performance, with particular emphasis on the design and testing of a hybrid refractive/diffractive high-purity fused silica imaging triplet, is presented.

  1. Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.

    1984-01-01

    A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.

  2. Hadamard speckle contrast reduction

    NASA Astrophysics Data System (ADS)

    Trisnadi, Jahja I.

    2004-01-01

    The condition for a diffuser to produce the maximum speckle contrast reduction with the minimum number of distinct phase patterns is derived. A binary realization of this optimum diffuser is obtained by mapping the rows or columns of a Hadamard matrix to the phase patterns. The method is experimentally verified in the Grating Light Valve laser projection display.

  3. Phonation in Tonal Contrasts

    ERIC Educational Resources Information Center

    Kuang, Jianjing

    2013-01-01

    Phonation is used in many tonal languages, but how it should be incorporated into tonal systems is not well understood. The purpose of this dissertation thus is to examine the role of phonation in tonal contrasts, and to investigate how phonation and pitch interact in the tonal space. This dissertation presents close studies of tonal contrasts…

  4. Flashing anomalous color contrast.

    PubMed

    Pinna, Baingio; Spillmann, Lothar; Werner, John S

    2004-01-01

    A new visual phenomenon that we call flashing anomalous color contrast is described. This phenomenon arises from the interaction between a gray central disk and a chromatic annulus surrounded by black radial lines. In an array of such figures, the central gray disk no longer appears gray, but assumes a color complementary to that of the surrounding annulus. The induced color appears: (1) vivid and saturated; (2) self-luminous, not a surface property; (3) flashing with eye or stimulus movement; (4) floating out of its confines; and (5) stronger in extrafoveal than in foveal vision. The strength of the effect depends on the number, length, width, and luminance contrast of the radial lines. The results suggest that the chromatic ring bounding the inner tips of the black radial lines induces simultaneous color contrast, whereas the radial lines elicit, in conjunction with the gray disk and the ring, the flashing, vividness, and high saturation of the effect. The stimulus properties inducing the illusion suggest that flashing anomalous color contrast may be based on asynchronous interactions among multiple visual pathways. PMID:15518215

  5. NMDA receptor contributions to visual contrast coding

    PubMed Central

    Manookin, Michael B.; Weick, Michael; Stafford, Benjamin K.; Demb, Jonathan B.

    2010-01-01

    Summary In the retina, it is not well understood how visual processing depends on AMPA- and NMDA-type glutamate receptors. Here, we investigated how these receptors contribute to contrast coding in identified guinea pig ganglion cell types, in vitro. NMDA-mediated responses were negligible in ON α cells but substantial in OFF α and δ cells. OFF δ cell NMDA receptors were composed of GluN2B subunits. Using a novel deconvolution method, we determined the individual contributions of AMPA, NMDA and inhibitory currents to light responses of each cell type. OFF α and δ cells used NMDA receptors for encoding either the full contrast range (α), including near-threshold responses, or only a high range (δ). However, contrast sensitivity depended substantially on NMDA receptors only in OFF α cells. NMDA receptors contribute to visual contrast coding in a cell-type specific manner. Certain cell types generate excitatory responses using primarily AMPA receptors or disinhibition. PMID:20670835

  6. Ultrasound microbubble contrast and current clinical applications.

    PubMed

    Dindyal, Shiva; Kyriakides, Constantinos

    2011-01-01

    Ultrasound imaging is widely used worldwide principally because it is cheap, easily available and contains no exposure to ionizing radiation. The advent of microbubble ultrasound contrast has further increased the diagnostic sensitivity and specificity of this technique thus widening its clinical applications. The third generation of ultrasound contrast agents consist of sulphur hexafluoride microbubbles encased in a phospholipid shell. This review will elaborate on the pharmacology, safety profile and method of action of these agents. We also aim to discuss the ever expanding uses for contrast enhanced ultrasound in a number of clinical specialities which include the liver, kidney, prostate, sentinel node detection, vascular tree and endovascular stent surveillance. We will also discuss some of the recent patents regarding the future uses of ultrasound microbubble contrast and recent technological advances in clinical applications. PMID:21222650

  7. Contrast adaptation in the Limulus lateral eye.

    PubMed

    Valtcheva, Tchoudomira M; Passaglia, Christopher L

    2015-12-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision. PMID:26445869

  8. Chromatography: concepts and contrasts

    SciTech Connect

    Miller, J.M.

    1988-01-01

    As the author states in the Preface, this text attempts to provide a unified approach to chromatography (hence the title) by way of contrasting similarities and differences between gas chromatography (GC), column liquid chromatography (LC), and thin-layer chromatography (TLC). This book is also said to be pitched at an elementary level, suitable for most newcomers to the field (e.g., advanced undergraduates and beginning graduate students in the academic world, as well as bench-level chemists in industry).

  9. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  10. Stereopsis from contrast envelopes.

    PubMed

    Langley, K; Fleet, D J; Hibbard, P B

    1999-07-01

    We report two experiments concerning the site of the principal nonlinearity in second-order stereopsis. The first exploits the asymmetry in perceiving transparency with second-order stimuli found by Langley et al. (1998) (Proceedings of the Royal Society of London B, 265, 1837-1845) i.e. the product of a positive-valued contrast envelope and a mean-zero carrier grating can be seen transparently only when the disparities are consistent with the envelope appearing in front of the carrier. We measured the energy at the envelope frequencies that must be added in order to negate this asymmetry. We report that this amplitude can be predicted from the envelope sidebands and not from the magnitude of compressive pre-cortical nonlinearities measured by other researchers. In the second experiment, contrast threshold elevations were measured for the discrimination of envelope disparities following adaptation to sinusoidal gratings. It is reported that perception of the envelope's depth was affected most when the adapting grating was similar (in orientation and frequency) to the carrier, rather than to the contrast envelope. These results suggest that the principal nonlinearity in second-order stereopsis is cortical, occurring after orientation- and frequency-selective linear filtering. PMID:10367053

  11. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  12. Sensitivity of photoacoustic microscopy

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement. PMID:25302158

  13. Multi-contrast magnetic resonance image reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Chen, Yunmei; Zhang, Hao; Huang, Feng

    2015-03-01

    In clinical exams, multi-contrast images from conventional MRI are scanned with the same field of view (FOV) for complementary diagnostic information, such as proton density- (PD-), T1- and T2-weighted images. Their sharable information can be utilized for more robust and accurate image reconstruction. In this work, we propose a novel model and an efficient algorithm for joint image reconstruction and coil sensitivity estimation in multi-contrast partially parallel imaging (PPI) in MRI. Our algorithm restores the multi-contrast images by minimizing an energy function consisting of an L2-norm fidelity term to reduce construction errors caused by motion, a regularization term of underlying images to preserve common anatomical features by using vectorial total variation (VTV) regularizer, and updating sensitivity maps by Tikhonov smoothness based on their physical property. We present the numerical results including T1- and T2-weighted MR images recovered from partially scanned k-space data and provide the comparisons between our results and those obtained from the related existing works. Our numerical results indicate that the proposed method using vectorial TV and penalties on sensitivities can be made promising and widely used for multi-contrast multi-channel MR image reconstruction.

  14. On Establishing Underlying Tonal Contrast

    ERIC Educational Resources Information Center

    Snider, Keith

    2014-01-01

    Phonological field work is largely about establishing contrast in comparable environments. The notion of phonological contrast, however, can be confusing, particularly in its application to tone analysis. Does it mean phonemic contrast in the structuralist sense, or does it mean underlying contrast in the generative sense? Many linguists, in…

  15. Differential interference contrast tomography.

    PubMed

    Vishnyakov, Gennady; Levin, Gennady; Minaev, Vladimir; Latushko, Mikhail; Nekrasov, Nikolay; Pickalov, Valery

    2016-07-01

    We present a new approach to optical tomography of phase objects that is referred to as differential interference contrast tomography (DICT). The main feature of DICT is that the result of tomographic reconstruction is a 3D DIC image. This image is described by partial derivative of 3D refractive index distribution in one direction. The DICT setup consists of a lateral shearing phase-shifting interference microscope with low-coherent LED illumination. To create projections of the sample at various illumination angles, an angular scanning beam was used. 3D DIC tomograms of a white blood cell are presented. The comparison between the reconstructed DIC tomogram slices and the conventional DIC images of the same sample at the same depths are also represented. PMID:27367095

  16. Toward Clinically Compatible Phase-Contrast Mammography

    PubMed Central

    Scherer, Kai; Willer, Konstantin; Gromann, Lukas; Birnbacher, Lorenz; Braig, Eva; Grandl, Susanne; Sztrókay-Gaul, Anikó; Herzen, Julia; Mayr, Doris; Hellerhoff, Karin; Pfeiffer, Franz

    2015-01-01

    Phase-contrast mammography using laboratory X-ray sources is a promising approach to overcome the relatively low sensitivity and specificity of clinical, absorption-based screening. Current research is mostly centered on identifying potential diagnostic benefits arising from phase-contrast and dark-field mammography and benchmarking the latter with conventional state-of-the-art imaging methods. So far, little effort has been made to adjust this novel imaging technique to clinical needs. In this article, we address the key points for a successful implementation to a clinical routine in the near future and present the very first dose-compatible and rapid scan-time phase-contrast mammograms of both a freshly dissected, cancer-bearing mastectomy specimen and a mammographic accreditation phantom. PMID:26110618

  17. Enhancing the contrast of subcutaneous veins

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar

    1999-07-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This technique uses a near infrared light source and one or more infrared sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using an LCD vein projector. The use of an infrared transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults, both Caucasian and African-American, and it enhances veins quite well in most cases. Preliminary studies on a 9 month old girl indicate promise for pediatric use.

  18. Localized surface plasmon assisted contrast microscopy for ultrathin transparent specimens

    SciTech Connect

    Wei, Feifei; Lu, Dylan; Aguinaldo, Ryan; Ma, Yicong; Sinha, Sunil K.; Liu, Zhaowei

    2014-10-20

    We demonstrate a high contrast imaging technique, termed localized surface plasmon assisted contrast microscopy, by combining localized surface plasmon resonances (LSPR) and dark-field microscopy technique. Due to the sensitive response of LSPR to the refractive index of the surrounding media, this technique is capable of converting a small refractive index difference to a change in scattering intensity, resulting in a high-contrast, diffraction limited image of a thin unstained specimen with small, gradual refractive-index variation.

  19. Stochastic resonance in visual sensitivity.

    PubMed

    Kundu, Ajanta; Sarkar, Sandip

    2015-04-01

    It is well known from psychophysical studies that stochastic resonance, in its simplest threshold paradigm, can be used as a tool to measure the detection sensitivity to fine details in noise contaminated stimuli. In the present manuscript, we report simulation studies conducted in the similar threshold paradigm of stochastic resonance. We have estimated the contrast sensitivity in detecting noisy sine-wave stimuli, with varying area and spatial frequency, as a function of noise strength. In all the cases, the measured sensitivity attained a peak at intermediate noise strength, which indicate the occurrence of stochastic resonance. The peak sensitivity exhibited a strong dependence on area and spatial frequency of the stimulus. We show that the peak contrast sensitivity varies with spatial frequency in a nonmonotonic fashion and the qualitative nature of the sensitivity variation is in good agreement with human contrast sensitivity function. We also demonstrate that the peak sensitivity first increases and then saturates with increasing area, and this result is in line with the results of psychophysical experiments. Additionally, we also show that critical area, denoting the saturation of contrast sensitivity, decreases with spatial frequency and the associated maximum contrast sensitivity varies with spatial frequency in a manner that is consistent with the results of psychophysical experiments. In all the studies, the sensitivities were elevated via a nonlinear filtering operation called stochastic resonance. Because of this nonlinear effect, it was not guaranteed that the sensitivities, estimated at each frequency, would be in agreement with the corresponding results of psychophysical experiments; on the contrary, close agreements were observed between our results and the findings of psychophysical investigations. These observations indicate the utility of stochastic resonance in human vision and suggest that this paradigm can be useful in psychophysical studies

  20. Contrast echocardiography 1996. A review.

    PubMed Central

    Villarraga, H R; Foley, D A; Mulvagh, S L

    1996-01-01

    Remarkable advances in the field of contrast echocardiography have been made during the last decade. Interest in ultrasound contrast agents that strengthen the backscattered ultrasound signal and improve image display has stimulated further research. Echocardiographic contrast agents providing left ventricular cavity image enhancement after intravenous injection are now available. A role for contrast echocardiography in the assessment of myocardial perfusion has been established within the invasive clinical setting. With the development of newer contrast agents and new ultrasound technology, myocardial perfusion imaging using contrast echocardiography after venous injection is no longer the unattainable "holy grail," but is fast approaching clinical applicability. Images PMID:8792539

  1. Surface metrology by phase contrast

    NASA Astrophysics Data System (ADS)

    Baker, Lionel R.

    1990-08-01

    Increasing use of electrooptical imaging and detection systems in thermography high density information storage laser instrumentation and X-ray optics has led to a pressing need for machinecompatible sensors for the measurement of surface texture. This paper reviews recent advances in the use of deterministic and parametric noncontact methods for texture measurement and justifies the need for objective simple and yet precise means for displaying the microfinish of a machined surface. The design of a simple two channel phase contrast microscope is described which can be calibrated by test pieces and used as a means for optimising the process parameters involved in the generation of high quality surfaces. Typical results obtained with this technique including dynamic range and ultimate sensitivity are discussed. 1 . NEED FOR SURFACE METROLOGY Surface quality has a direct influence on product acceptability in many different industries including those concerned with optoelectronics and engineering. The influence may be cosmetic as with paint finish on a motor car body or functional for example when excessive wear rates may occur in a bearing surface with inadequate oil retention. Since perfection can never be achieved and overspecification can be costly it is clearly necessary to be able to define thresholds of acceptance in relation to different situations. Such thresholds do of course require agreed methods of measurement with traceability to national standards. The current trends in surface metrology are towards higher

  2. Pedagogical Implications of Contrastive Studies

    ERIC Educational Resources Information Center

    Marton, Waldemar

    1972-01-01

    Pessimism regarding pedagogical applications of contrastive studies, and reasons therefore, are described. Several misunderstandings believed to contribute to this pessimism, and several areas of controversy concerning uses of contrastive studies, are discussed. See FL 508 197 for availability. (RM)

  3. Phase Contrast X-ray Imaging Signatures for Security Applications

    SciTech Connect

    Miller, Erin A.; White, Timothy A.; McDonald, Benjamin S.; Seifert, Allen

    2013-02-01

    Abstract: Differential phase contrast imaging with a grating interferometer is a promising new radiographic technique providing three distinct contrast mechanisms - absorption, phase, and scatter (or dark field) - using a conventional x-ray tube source. We investigate the signatures available in these three contrast mechanisms with attention towards potential security applications. We find that the scatter mode in particular is sensitive to textured materials, enabling lowered detection limits than absorption for materials such as powders. We investigate the length scales to which our imaging system is sensitive.

  4. Recognition memory reveals just how CONTRASTIVE contrastive accenting really is

    PubMed Central

    Fraundorf, Scott H.; Watson, Duane G.; Benjamin, Aaron S.

    2010-01-01

    The effects of pitch accenting on memory were investigated in three experiments. Participants listened to short recorded discourses that contained contrast sets with two items (e.g. British scientists and French scientists); a continuation specified one item from the set. Pitch accenting on the critical word in the continuation was manipulated between non-contrastive (H* in the ToBI system) and contrastive (L+H*). On subsequent recognition memory tests, the L+H* accent increased hits to correct statements and correct rejections of the contrast item (Experiments 1–3), but did not impair memory for other parts of the discourse (Experiment 2). L+H* also did not facilitate correct rejections of lures not in the contrast set (Experiment 3), indicating that contrastive accents do not simply strengthen the representation of the target item. These results suggest comprehenders use pitch accenting to encode and update information about multiple elements in a contrast set. PMID:20835405

  5. Achromatic orbital angular momentum generator

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W.

    2014-12-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed.

  6. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  7. Inorganic nanoparticle-based contrast agents for molecular imaging

    PubMed Central

    Cho, Eun Chul; Glaus, Charles; Chen, Jingyi; Welch, Michael J.; Xia, Younan

    2010-01-01

    Inorganic nanoparticles including semiconductor quantum dots, iron oxide nanoparticles, and gold nanoparticles have been developed as contrast agents for diagnostics by molecular imaging. Compared to traditional contrast agents, nanoparticles offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size, and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multi-modal imaging. Here, we review recent advances in the development of contrast agents based on inorganic nanoparticles for molecular imaging, with a touch on contrast enhancement, surface modification, tissue targeting, clearance, and toxicity. As research efforts intensify, contrast agents based on inorganic nanoparticles that are highly sensitive, target-specific, and safe to use are expected to enter clinical applications in the near future. PMID:21074494

  8. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection.

    PubMed

    Sinharay, Sanhita; Pagel, Mark D

    2016-06-12

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  9. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  10. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  11. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  12. Neural correlates of stimulus spatial frequency-dependent contrast detection

    PubMed Central

    Meng, Jianjun; Liu, Ruilong; Wang, Ke; Hua, Tianmiao; Lu, Zhong-Lin; Xi, Minmin

    2016-01-01

    Psychophysical studies on human and non-human vertebrate species have shown that visual contrast sensitivity function (CSF) peaks at a certain stimulus spatial frequency and declines in both lower and higher spatial frequencies. The underlying neural substrate and mechanisms remain in debate. Here, we investigated the role of primary visual cortex (V1: area 17) in spatial frequency-dependent contrast detection in cats. Perceptual CSFs of three cats were measured using a two-alternative forced choice task. The responses of V1 neurons to their optimal visual stimuli in a range of luminance contrast levels (from 0 to 1.0) were recorded subsequently using in vivo extracellular single-unit recording techniques. The contrast sensitivity of each neuron was determined. The neuronal CSF for each cat was constructed from the mean contrast sensitivity of neurons with different preferred stimulus spatial frequencies. Results (1) The perceptual and neuronal CSFs of each of the three cats exhibited a similar shape with peak amplitude near 0.4 c/deg. (2) The neuronal CSF of each cat was highly correlated with its perceptual CSF. (3) V1 neurons with different preferred stimulus spatial frequencies had different contrast gains. Conclusion (1) Contrast detection of visual stimuli with different spatial frequencies may likely involve population coding of V1 neurons with different preferred stimulus spatial frequencies. (2) Difference in contrast-gain may underlie the observed contrast sensitivity variation of V1 neurons with different preferred stimulus spatial frequencies, possibly from either evolution or postnatal visual experiences. PMID:23314692

  13. Correction of contrast in projection systems by means of phase-controlled prism coatings and band-shifted twist compensators

    NASA Astrophysics Data System (ADS)

    Rosenbluth, Alan E.; Lu, Minhua; Yang, Kei H.; Ho, Kenneth; Singh, Rama N.; Nakasogi, Teruhiro

    2000-04-01

    Projectors that use LCOS lightvalves face special contrast requirements. Most configurations for reflective light valves employ tilted beam-dividing coatings that see both bright and dark polarization states. The optics must then be designed to eliminate polarization mixing at these coatings, which ordinarily arises when the S and P planes for different rays are non-parallel. We show how phase- controlled coatings can exploit the double-pass symmetry of the Plumbicon tri-prism geometry to correct this effect, reducing cross-polarized reflectivity to approximately 1E-3 when the light valve is mirror-like in black-state. Though contrast in different rays varies as a function of both ray skew component and coating angle of incidence, we show that for NA contrast is essentially equivalent to tracing a single ray. Light valves that use a normally-black TN mode exhibit a non-mirror-like phase dispersion in their black-state, complicating contrast control in the optics. Scatter depolarization at the edges of pixel electrodes is enhanced in these light valves, because the inherent twist causes the backplane polarization to be rotated out of alignment with pixel edges. We show that all of these contrast degradation mechanisms can be addressed by incorporating into the light valve a compensating layer having opposite birefringence to the black-state TN active layer. Moreover, when the compensating layer and driven layer are blue-shifted to a shorter LC thickness than would ordinarily be appropriate for the wavelength band of interest, a highly achromatic response is obtained at all gray levels.

  14. Multi-contrast photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hu, S.; Sohn, R.; Lu, Z.-H.; Soetikno, B.; Zhong, Q.; Yao, J.; Maslov, K.; Arbeit, J. M.; Wang, L. V.

    2012-02-01

    We developed multi-contrast photoacoustic microscopy (PAM) for in vivo anatomical, functional, metabolic, and molecular imaging. This technical innovation enables comprehensive understanding of the tumor microenvironment. With multi-contrast PAM, we longitudinally determined tumor vascular anatomy, blood flow, oxygen saturation of hemoglobin, and oxygen extraction fraction.

  15. Faithful Contrastive Features in Learning

    ERIC Educational Resources Information Center

    Tesar, Bruce

    2006-01-01

    This article pursues the idea of inferring aspects of phonological underlying forms directly from surface contrasts by looking at optimality theoretic linguistic systems (Prince & Smolensky, 1993/2004). The main result proves that linguistic systems satisfying certain conditions have the faithful contrastive feature property: Whenever 2 distinct…

  16. Image Contrast in Holographic Reconstructions

    ERIC Educational Resources Information Center

    Russell, B. R.

    1969-01-01

    The fundamental concepts of holography are explained using elementary wave ideas. Discusses wavefront reconstruction and contrast in hemigraphic images. The consequence of recording only the intensity at a given surface and using an oblique reference wave is shown to be an incomplete reconstruction resulting in image of low contrast. (LC)

  17. Sensitive skin.

    PubMed

    Misery, L; Loser, K; Ständer, S

    2016-02-01

    Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin. PMID:26805416

  18. Contrasting Rhetorics/Contrasting Cultures: Why Contrastive Rhetoric Needs a Better Conceptualization of Culture

    ERIC Educational Resources Information Center

    Atkinson, Dwight

    2004-01-01

    This paper deals with an underdeveloped notion in the EAP sub-discipline of contrastive rhetoric: culture. It argues that a better conceptualization of contrastive rhetoric needs to include a better conceptualization of culture. After engaging with the complex question "What is culture?" the paper moves on to consider four sets of current issues…

  19. Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy

    PubMed Central

    Chen, Yu; Huang, Shu-Wei; Zhou, Chao; Potsaid, Benjamin; Fujimoto, James G.

    2012-01-01

    Optical coherence microscopy (OCM) is a promising technology for high-resolution cellular-level imaging in human tissues. Line-scanning OCM is a new form of OCM that utilizes line-field illumination for parallel detection. In this study, we demonstrate improved detection sensitivity by using an achromatic design for line-field generation. This system operates at 830-nm wavelength with 82-nm bandwidth. The measured axial resolution is 3.9 μm in air (corresponding to ~2.9 μm in tissue), and the transverse resolutions are 2.1 μm along the line-field illumination direction and 1.7 μm perpendicular to line illumination direction. The measured sensitivity is 98 dB with 25 line averages, resulting in an imaging speed of ~2 frames/s (516 lines/s). Real-time, cellular-level imaging of scattering tissues is demonstrated using human-colon specimens. PMID:22685379

  20. Ultrasound Despeckling for Contrast Enhancement

    PubMed Central

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  1. Ultrasound despeckling for contrast enhancement.

    PubMed

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  2. Optimization of subcutaneous vein contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Deshmukh, Harshal

    2000-05-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This techniques uses a near IR light source and one or more IR sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using a n LCD video projector. The use of an IR transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults and children, both Caucasian and African-American, and it enhances veins quite well in all cases. The most difficult cases are those where significant deposits of subcutaneous fat are present which make the veins invisible under normal room illumination. Recent attempts to see through fat using different IR wavelength bands and both linearly and circularly polarized light were unsuccessful. The key to seeing through fat turns out to be a very diffuse source of RI light. Results on adult and pediatric subjects are shown with this new IR light source.

  3. MRI Contrasts in High Rank Rotating Frames

    PubMed Central

    Liimatainen, Timo; Hakkarainen, Hanne; Mangia, Silvia; Huttunen, Janne M.J.; Storino, Christine; Idiyatullin, Djaudat; Sorce, Dennis; Garwood, Michael; Michaeli, Shalom

    2014-01-01

    Purpose MRI relaxation measurements are performed in the presence of a fictitious magnetic field in the recently described technique known as RAFF (Relaxation Along a Fictitious Field). This method operates in the 2nd rotating frame (rank n = 2) by utilizing a non-adiabatic sweep of the radiofrequency effective field to generate the fictitious magnetic field. In the present study, the RAFF method is extended for generating MRI contrasts in rotating frames of ranks 1 ≤ n ≤ 5. The developed method is entitled RAFF in rotating frame of rank n (RAFFn). Methods RAFFn pulses were designed to generate fictitious fields that allow locking of magnetization in rotating frames of rank n. Contrast generated with RAFFn was studied using Bloch-McConnell formalism together with experiments on human and rat brains. Results Tolerance to B0 and B1 inhomogeneities and reduced specific absorption rate with increasing n in RAFFn were demonstrated. Simulations of exchange-induced relaxations revealed enhanced sensitivity of RAFFn to slow exchange. Consistent with such feature, an increased grey/white matter contrast was observed in human and rat brain as n increased. Conclusion RAFFn is a robust and safe rotating frame relaxation method to access slow molecular motions in vivo. PMID:24523028

  4. Small intestine contrast injection (image)

    MedlinePlus

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  5. [Allergy to radiographic contrast media].

    PubMed

    Vionnet, Julien; Petitpierre, Stéphanie; Fumeaux, Alexandre; Meuli, Reto; Spertini, Francois; Comte, Denis

    2013-04-17

    Allergy to radiographic contrast media Hypersensitivity reactions to radio-contrast media are common in the daily practice. These products are responsible for immediate (< or = 1 hour after administration) and non immediate (> 1 hour after administration) hypersensitivity reactions. A diagnostic work-up by an allergologist with skin tests and in some cases provocation tests is of value in reducing the risk of recurrent hypersensitivity reactions to iodinated contrast media. A careful selection of the patients is required because the incidence of breakthrough reactions is still concerning, even with proper premedication. Practical recommendations are presented in this article. For gadolinium-based contrast agents, data in the literature is not sufficient for suggesting guidelines. PMID:23667970

  6. Environmentally responsive MRI contrast agents

    PubMed Central

    Davies, Gemma-Louise; Kramberger, Iris; Davis, Jason J.

    2015-01-01

    Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents. PMID:24040650

  7. Contrast-controlled retinal response

    NASA Astrophysics Data System (ADS)

    Sharma, Nachieketa K.

    2015-06-01

    A beam of light stimulates the retina weakly when its entry to the pupil is gradually shifted from the centre toward the edge. For single pupil entrance point the light, irrespective of its coherence would still show the Stiles-Crawford effect with diminished visibility toward the edge of the pupil. Only when coherent light is incident from opposing points in the pupil can the effect be cancelled. This paper has attempted a theoretical computation of how the contrast in an interference pattern formed on the retina controls the retina's response in three ways; first, by completely disregarding the Stiles Crawford diminution of effective brightness for unit contrast; next, taking the traditional SCE route for zero contrast, and finally enhancing the diminution in the effective brightness by giving an opposing boost to the visibility in commensurate with a contrast intermediate between the two extremes of unity and zero.

  8. Climate Sensitivity

    SciTech Connect

    Lindzen, Richard

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  9. A brief account of nanoparticle contrast agents for photoacoustic imaging.

    PubMed

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V; Lanza, Gregory M

    2013-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  10. A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M

    2014-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  11. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  12. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  13. A theory of behavioral contrast.

    PubMed

    Killeen, Peter R

    2014-11-01

    The reinforcers that maintain target instrumental responses also reinforce other responses that compete with them for expression. This competition, and its imbalance at points of transition between different schedules of reinforcement, causes behavioral contrast. The imbalance is caused by differences in the rates at which different responses come under the control of component stimuli. A model for this theory of behavioral contrast is constructed by expanding the coupling coefficient of MPR (Killeen, 1994). The coupling coefficient gives the degree of association of a reinforcer with the target response (as opposed to other competing responses). Competing responses, often identified as interim or adjunctive or superstitious behavior, are intrinsic to reinforcement schedules, especially interval schedules. In addition to that base-rate of competition, additional competing responses may spill over from the prior component, causing initial contrast; and they may be modulated by conditioned reinforcement or punishment from stimuli associated with subsequent component change, causing terminal contrast. A formalization of these hypotheses employed (a) a hysteresis model of off-target responses giving rise to initial contrast, and (b) a competing traces model of the suppression or enhancement of ongoing competitive responses by signals of following-schedule transition. The theory was applied to transient contrast, the following schedule effect, and the component duration effect. PMID:25244535

  14. Gluten Sensitivity

    MedlinePlus

    Gluten is a protein found in wheat, rye, and barley. It is found mainly in foods but ... products like medicines, vitamins, and supplements. People with gluten sensitivity have problems with gluten. It is different ...

  15. Gluten Sensitivity

    MedlinePlus

    ... have problems with gluten. It is different from celiac disease, an immune disease in which people can't ... the symptoms of gluten sensitivity are similar to celiac disease. They include tiredness and stomachaches. It can cause ...

  16. Nanoparticle contrast agents for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gabriele, Michelle Lynn

    Optical coherence tomography (OCT) provides real-time, objective, in-vivo, optical cross-sectional representations of the retina and optic nerve. Recent innovations in image acquisition, including the incorporation of Fourier/spectral-domain detection, have improved imaging speed, sensitivity and resolution. Still, there remain specific structures within ocular OCT images, such as retinal ganglion cells (RGCs), which are of clinical interest but consistently have low contrast. This makes it difficult to differentiate between surrounding layers and structures. The objectives of this project were: (1) To establish a reliable method for OCT imaging of the healthy and diseased mouse eye in order to provide a platform for testing the utility of OCT contrast agents for ocular imaging, (2) To develop antibody-conjugated gold nanoparticles suitable for targeting specific structures and enhancing OCT image contrast in the mouse eye, and (3) To examine the localized contrast-enhancing ability and biocompatibility of gold nanoparticle contrast agents in-vivo. Our organizing hypotheses were that nanoparticles could improve contrast by modulating the intensity of backscattered light detected by OCT and that they could be directed to ocular structures of interest using antibodies specific to cellular markers. A reproducible method for imaging the mouse retina and quantifying retinal thickness was developed and this technique was then applied to a mouse model for retinal ganglion cell loss, optic nerve crush. Gold nanorods were designed specifically to augment the backscattering OCT signal at the same wavelengths of light used in current ophthalmic OCT imaging schemes (resonant wavelength lambda = 840 nm). Anti-CD90.1 (Thy1.1) antibodies were conjugated to the gold nanorods and a protocol for characterization of the success of antibody conjugation was developed. Upon injection, the gold nanorods were found to remain in the vitreous post-injection, with many consumed by an early

  17. Abnormal Contrast Responses in the Extrastriate Cortex of Blindsight Patients

    PubMed Central

    Rees, Geraint; Kennard, Christopher; Bridge, Holly

    2015-01-01

    When the human primary visual cortex (V1) is damaged, the dominant geniculo-striate pathway can no longer convey visual information to the occipital cortex. However, many patients with such damage retain some residual visual function that must rely on an alternative pathway directly to extrastriate occipital regions. This residual vision is most robust for moving stimuli, suggesting a role for motion area hMT+. However, residual vision also requires high-contrast stimuli, which is inconsistent with hMT+ sensitivity to contrast in which even low-contrast levels elicit near-maximal neural activation. We sought to investigate this discrepancy by measuring behavioral and neural responses to increasing contrast in patients with V1 damage. Eight patients underwent behavioral testing and functional magnetic resonance imaging to record contrast sensitivity in hMT+ of their damaged hemisphere, using Gabor stimuli with a spatial frequency of 1 cycle/°. The responses from hMT+ of the blind hemisphere were compared with hMT+ and V1 responses in the sighted hemisphere of patients and a group of age-matched controls. Unlike hMT+, neural responses in V1 tend to increase linearly with increasing contrast, likely reflecting a dominant parvocellular channel input. Across all patients, the responses in hMT+ of the blind hemisphere no longer showed early saturation but increased linearly with contrast. Given the spatiotemporal parameters used in this study and the known direct subcortical projections from the koniocellular layers of the lateral geniculate nucleus to hMT+, we propose that this altered contrast sensitivity in hMT+ could be consistent with input from the koniocellular pathway. PMID:26019336

  18. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  19. Contrast-enhanced refraction imaging

    NASA Astrophysics Data System (ADS)

    Hall, Christopher J.; Rogers, Keith D.; Lewis, Rob A.; Menk, Ralf Hendrik; Arfelli, Fulvia; Siu, Karen K.; Benci, A.; Kitchen, M.; Pillon, Alessandra; Rigon, Luigi; Round, Andrew J.; Hufton, Alan P.; Evans, Andrew; Pinder, Sarah E.; Evans, S.

    2004-01-01

    An attempt has been made, for the first time, to extend the capabilities of diffraction enhanced imaging (DEI) using low concentrations of a contrast agent. A phantom has been constructed to accommodate a systematic series of diluted bromine deoxyuridase (BrDU) samples in liquid form. This was imaged using a conventional DEI arrangement and at a range of energies traversing the Br K-edge. The images were analyzed to provide a quantitative measure of contrast as a function of X-ray energy and (BrDU) concentration. The results indicate that the particular experimental arrangement was not optimized to exploit the potential of this contrast enhancement and several suggestions are discussed to improve this further.

  20. Phase Contrast Imaging in Neonates

    PubMed Central

    Zhong, Kai; Ernst, Thomas; Buchthal, Steve; Speck, Oliver; Anderson, Lynn; Chang, Linda

    2011-01-01

    Magnetic resonance phase images can yield superior gray and white matter contrast compared to conventional magnitude images. However, the underlying contrast mechanisms are not yet fully understood. Previous studies have been limited to high field acquisitions in adult volunteers and patients. In this study, phase imaging in the neonatal brain is demonstrated for the first time. Compared to adults, phase differences between gray and white matter are significantly reduced but not inverted in neonates with little myelination and iron deposits in their brains. The remaining phase difference between the neonatal and adult brains may be due to different macromolecule concentration in the unmyelinated brain of the neonates and thus different frequency due to water macromolecule exchange. Additionally, the susceptibility contrast from brain myelination can be separately studied in neonates during brain development. Therefore, magnetic resonance phase imaging is suggested as a novel tool to study neonatal brain development and pathologies in neonates. PMID:21232619

  1. Polycatechol Nanoparticle MRI Contrast Agents.

    PubMed

    Li, Yiwen; Huang, Yuran; Wang, Zhao; Carniato, Fabio; Xie, Yijun; Patterson, Joseph P; Thompson, Matthew P; Andolina, Christopher M; Ditri, Treffly B; Millstone, Jill E; Figueroa, Joshua S; Rinehart, Jeffrey D; Scadeng, Miriam; Botta, Mauro; Gianneschi, Nathan C

    2016-02-01

    Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement. PMID:26681255

  2. Contrasting coloration in terrestrial mammals

    PubMed Central

    Caro, Tim

    2008-01-01

    Here I survey, collate and synthesize contrasting coloration in 5000 species of terrestrial mammals focusing on black and white pelage. After briefly reviewing alternative functional hypotheses for coloration in mammals, I examine nine colour patterns and combinations on different areas of the body and for each mammalian taxon to try to identify the most likely evolutionary drivers of contrasting coloration. Aposematism and perhaps conspecific signalling are the most consistent explanations for black and white pelage in mammals; background matching may explain white pelage. Evidence for contrasting coloration is being involved in crypsis through pattern blending, disruptive coloration or serving other functions, such as signalling dominance, lures, reducing eye glare or in temperature regulation has barely moved beyond anecdotal stages of investigation. Sexual dichromatism is limited in this taxon and its basis is unclear. Astonishingly, the functional significance of pelage coloration in most large charismatic black and white mammals that were new to science 150 years ago still remains a mystery. PMID:18990666

  3. Segment aberration effects on contrast.

    PubMed

    Crossfield, Ian J; Troy, Mitchell

    2007-07-20

    High-contrast imaging, particularly the direct detection of extrasolar planets, is a major science driver for the next generation of telescopes. This science requires the suppression of scattered starlight at extremely high levels and that telescopes be correctly designed today to meet these stringent requirements in the future. The challenge increases in systems with complicated aperture geometries such as obscured, segmented telescopes. Such systems can also require intensive modeling and simulation efforts in order to understand the trade-offs between different optical parameters. The feasibility and development of a contrast prediction tool for use in the design and systems engineering of these telescopes is described. The performance of a particular starlight suppression system on a large segmented telescope is described analytically. These analytical results and the results of a contrast predictor are then compared with the results of a full wave-optics simulation. PMID:17609697

  4. Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation

    NASA Astrophysics Data System (ADS)

    Hillis, James M.; Brainard, David H.

    2007-08-01

    Are effects of background contrast on color appearance and sensitivity controlled by the same mechanism of adaptation? We examined the effects of background color contrast on color appearance and on color-difference sensitivity under well-matched conditions. We linked the data using Fechner's hypothesis that the rate of apparent stimulus change is proportional to sensitivity and examined a family of parametric models of adaptation. Our results show that both appearance and discrimination are consistent with the same mechanism of adaptation.

  5. Contrast-guided image interpolation.

    PubMed

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications. PMID:23846469

  6. Visible Contrast Energy Metrics for Detection and Discrimination

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  7. One-stage model for color conversion.

    NASA Technical Reports Server (NTRS)

    Richards, W.

    1972-01-01

    Description of a one-stage approximation to the color-conversion model of Richards and Parks (1971). The modified model proposes three channels for color vision, each with different center-surround sensitivities. In its strongest form, the model predicts that the gain-setting control that alters the sensitivities of each channel is solely a function of achromatic contrast.

  8. Ambient illumination switches contrast preference of specific retinal processing streams

    PubMed Central

    Pearson, James T.

    2015-01-01

    Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ONpref) or negative (OFFpref) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ONpref to OFFpref and Sw3-RGCs from OFFpref to ONpref. In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels. PMID:25995351

  9. Talker information influences spectral contrast effects in speech categorization.

    PubMed

    Assgari, Ashley A; Stilp, Christian E

    2015-11-01

    Spectral contrast effects, the perceptual magnification of spectral differences between sounds, have been widely shown to influence speech categorization. However, whether talker information alters spectral contrast effects was recently debated [Laing, Liu, Lotto, and Holt, Front. Psychol. 3, 1-9 (2012)]. Here, contributions of reliable spectral properties, between-talker and within-talker variability to spectral contrast effects in vowel categorization were investigated. Listeners heard sentences in three conditions (One Talker/One Sentence, One Talker/200 Sentences, 200 Talkers/200 Sentences) followed by a target vowel (varying from /ɪ/-/ɛ/ in F1, spoken by a single talker). Low-F1 or high-F1 frequency regions in the sentences were amplified to encourage /ɛ/ or /ɪ/ responses, respectively. When sentences contained large reliable spectral peaks (+20 dB; experiment 1), all contrast effect magnitudes were comparable. Talker information did not alter contrast effects following large spectral peaks, which were likely attributed to an external source (e.g., communication channel) rather than talkers. When sentences contained modest reliable spectral peaks (+5 dB; experiment 2), contrast effects were smaller following 200 Talkers/200 Sentences compared to single-talker conditions. Constant recalibration to new talkers reduced listeners' sensitivity to modest spectral peaks, diminishing contrast effects. Results bridge conflicting reports of whether talker information influences spectral contrast effects in speech categorization. PMID:26627776

  10. The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions.

    PubMed

    Lind, Olle; Chavez, Johanna; Kelber, Almut

    2014-03-01

    Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m². We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m², as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m², spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision. PMID:24366429

  11. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  12. Contrast Analysis for Scale Differences.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; And Others

    Research on tests for scale equality have focused exclusively on an overall test statistic and have not examined procedures for identifying specific differences in multiple group designs. The present study compares four contrast analysis procedures for scale differences in the single factor four-group design: (1) Tukey HSD; (2) Kramer-Tukey; (3)…

  13. Cluster Analysis by Linear Contrasts.

    ERIC Educational Resources Information Center

    Shafto, Michael

    The purpose of this paper is to suggest a technique of cluster analysis which is similar in aim to the Interactive Intercolumnar Correlation Analysis (IICA), though different in detail. Two methods are proposed for extracting a single bipolar factor (a "contrast compenent") directly from the initial similarities matrix. The advantages of this…

  14. Thermal detection contrast of human targets

    SciTech Connect

    Arlowe, H.D.

    1992-01-01

    There is an emerging interest in using thermal IR to automatically detect human intruders over wide areas. Such a capability could provide early warning beyond the perimeter at fixed sites, and could be used for portable security around mobile military assets. Sandia National Laboratories has been working on automatic detection systems based on the thermal contrast and motion of human intruders for several years, and has found that detection is sometimes difficult, depending on solar and other environmental conditions. Solar heating can dominate human thermal radiation by 100 fold, and dynamic background temperature changes can limit detector sensitivity. This paper explains those conditions and energy transfer mechanisms that lead to difficult thermal detection. We will not cover those adverse conditions that are more widely understood and previously reported on, such as fog, smoke, rain and falling snow. This work was sponsored by the Defense Nuclear Agency. 6 Refs.

  15. Comparing and Contrasting Consensus versus Empirical Domains

    PubMed Central

    Jason, Leonard A.; Kot, Bobby; Sunnquist, Madison; Brown, Abigail; Reed, Jordan; Furst, Jacob; Newton, Julia L.; Strand, Elin Bolle; Vernon, Suzanne D.

    2015-01-01

    Background Since the publication of the CFS case definition [1], there have been a number of other criteria proposed including the Canadian Consensus Criteria [2] and the Myalgic Encephalomyelitis: International Consensus Criteria. [3] Purpose The current study compared these domains that were developed through consensus methods to one obtained through more empirical approaches using factor analysis. Methods Using data mining, we compared and contrasted fundamental features of consensus-based criteria versus empirical latent factors. In general, these approaches found the domain of Fatigue/Post-exertional malaise as best differentiating patients from controls. Results Findings indicated that the Fukuda et al. criteria had the worst sensitivity and specificity. Conclusions These outcomes might help both theorists and researchers better determine which fundamental domains to be used for the case definition. PMID:26977374

  16. Helical x-ray differential phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Qi, Zhihua; Thériault-Lauzier, Pascal; Bevins, Nicholas; Zambelli, Joseph; Li, Ke; Chen, Guang-Hong

    2011-03-01

    Helical computed tomography revolutionized the field of x-ray computed tomography two decades ago. The simultaneous translation of an image object with a standard computed tomography acquisition allows for fast volumetric scan for long image objects. X-ray phase sensitive imaging methods have been studied over the past few decades to provide new contrast mechanisms for imaging an object. A Talbot-Lau grating interferometer based differential phase contrast imaging method has recently demonstrated its potential for implementation in clinical and industrial applications. In this work, the principles of helical computed tomography are extended to differential phase contrast imaging to produce volumetric reconstructions based on fan-beam data. The method demonstrates the potential for helical differential phase contrast CT to scan long objects with relatively small detector coverage in the axial direction.

  17. High-contrast imaging testbed

    SciTech Connect

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  18. Electrofluidic systems for contrast management

    NASA Astrophysics Data System (ADS)

    Rebello, Keith J.; Maranchi, Jeffrey P.; Tiffany, Jason E.; Brown, Christopher Y.; Maisano, Adam J.; Hagedon, Matthew A.; Heikenfeld, Jason C.

    2012-06-01

    Operating in dynamic lighting conditions and in greatly varying backgrounds is challenging. Current paints and state-ofthe- art passive adaptive coatings (e.g. photochromics) are not suitable for multi- environment situations. A semi-active, low power, skin is needed that can adapt its reflective properties based on the background environment to minimize contrast through the development and incorporation of suitable pigment materials. Electrofluidic skins are a reflective display technology for electronic ink and paper applications. The technology is similar to that in E Ink but makes use of MEMS based microfluidic structures, instead of simple black and white ink microcapsules dispersed in clear oil. Electrofluidic skin's low power operation and fast switching speeds (~20 ms) are an improvement over current state-ofthe- art contrast management technologies. We report on a microfluidic display which utilizes diffuse pigment dispersion inks to change the contrast of the underlying substrate from 5.8% to 100%. Voltage is applied and an electromechanical pressure is used to pull a pigment dispersion based ink from a hydrophobic coated reservoir into a hydrophobic coated surface channel. When no voltage is applied, the Young-Laplace pressure pushes the pigment dispersion ink back down into the reservoir. This allows the pixel to switch from the on and off state by balancing the two pressures. Taking a systems engineering approach from the beginning of development has enabled the technology to be integrated into larger systems.

  19. Contrast enhancement of propagation based X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Pan, Adam; Xu, Ling; Petruccelli, Jon C.; Gupta, Rajiv; Barbastathis, George

    2014-09-01

    We demonstrate a quantitative X-ray phase contrast imaging (XPCI) technique derived from propagation dependent phase change. We assume that the absorption and phase components are correlated and solve the Transport of Intensity Equation (TIE). The experimental setup is simple compared to other XPCI techniques; the only requirements are a micro-focus X-ray source with sufficient temporal coherence and an X-ray detector of sufficient spatial resolution. This method was demonstrated in three scenarios, the first of which entails identification of an index-matched sphere. A rubber and nylon sphere were immersed in water and imaged. While the rubber sphere could be plainly seen on a radiograph, the nylon sphere was only visible in the phase reconstruction. Next, the technique was applied to differentiating liquid samples. In this scenario, three liquid samples (acetone, water, and hydrogen peroxide) were analyzed using both conventional computed tomography (CT) and phase contrast CT. While conventional CT was capable of differentiating between acetone and the other two liquids, it failed to distinguish between water and hydrogen peroxide; only phase CT was capable of differentiating all three samples. Finally, the technique was applied to CT imaging of a human artery specimen with extensive atherosclerotic plaque. This scenario demonstrated the increased sensitivity to soft tissue compared to conventional CT; it also uncovered some drawbacks of the method, which will be the target of future work. In all cases, the signal-to-noise ratio of phase contrast was greatly enhanced relative to conventional attenuation-based imaging.

  20. Spontaneous recovery of effects of contrast adaptation without awareness

    PubMed Central

    Mei, Gaoxing; Dong, Xue; Dong, Bo; Bao, Min

    2015-01-01

    Prolonged exposure to a high contrast stimulus reduces the neural sensitivity to subsequent similar patterns. Recent work has disclosed that contrast adaptation is controlled by multiple mechanisms operating over differing timescales. Adaptation to high contrast for a relatively longer period can be rapidly eliminated by adaptation to a lower contrast (or meanfield in the present study). Such rapid deadaptation presumably causes a short-term mechanism to signal for a sensitivity increase, canceling ongoing signals from long-term mechanisms. Once deadaptation ends, the short-term mechanism rapidly returns to baseline, and the slowly decaying effects in the long-term mechanisms reemerge, allowing the perceptual aftereffects to recover during continued testing. Although this spontaneous recovery effect is considered strong evidence supporting the multiple mechanisms theory, it remains controversial whether the effect is mainly driven by visual memory established during the initial longer-term adaptation period. To resolve this debate, we used a modified Continuous Flash Suppression (CFS) and visual crowding paradigms to render the adapting stimuli invisible, but still observed the spontaneous recovery phenomenon. These results exclude the possibility that spontaneous recovery found in the previous work was merely the consequence of explicit visual memory. Our findings also demonstrate that contrast adaptation, even at the unconscious processing levels, is controlled by multiple mechanisms. PMID:26483723

  1. High Contrast Imaging with the JWST NIRCAM Coronagraph

    NASA Technical Reports Server (NTRS)

    Green, Joseph J.; Beichman, Charles; Basinger, Scott A.; Horner, Scott; Meyer, Michael; Redding, David C.; Rieke, Marcia; Trauger, John T.

    2005-01-01

    Relative to ground-based telescopes, the James Webb Space Telescope (JWST) will have a substantial sensitivity advantage in the 2.2-5pm wavelength range where brown dwarfs and hot Jupiters are thought to have significant brightness enhancements. To facilitate high contrast imaging within this band, the Near-Infrared Camera (NIRCAM) will employ a Lyot coronagraph with an array of band-limited image-plane occulting spots. In this paper, we provide the science motivation for high contrast imaging with NIRCAM, comparing its expected performance to that of the Keck, Gemini and 30 m (TMT) telescopes equipped with Adaptive Optics systems of different capabilities. We then describe our design for the NIRCAM coronagraph that enables imaging over the entire sensitivity range of the instrument while providing significant operational flexibility. We describe the various design tradeoffs that were made in consideration of alignment and aberration sensitivities and present contrast performance in the presence of JWST's expected optical aberrations. Finally we show an example of a that can provide 10-5 companion sensitivity at sub-arcsecond separations.

  2. Redox- and Hypoxia-Responsive MRI Contrast Agents

    PubMed Central

    Do, Quyen N.; Ratnakar, James S.; Kovács, Zoltán

    2014-01-01

    The development of responsive or “smart” magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd3+-based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  3. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  4. Contrast variation in spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Li, Xin; Liu, Emily; Liu, Yun; Pynn, Roger; Robertson, J. L.; Shew, Chwen-Yang; Smith, Gregory Scott; Wu, Bin

    2012-01-01

    The principle of using contrast variation spin-echo small angle neutron scattering (SESANS) technique for colloidal structural investigation is discussed. Based on the calculations of several model systems, we find that the contrast variation SESANS technique is not sensitive in detecting the structural characteristics of colloidal suspensions consisting of particles with uniform scattering length density profiles. However, its capability of resolving the structural heterogeneity, at both intra- and inter-colloidal length scales, is clearly demonstrated. The prospect of using this new technique to investigate the structural information that is difficult to be probed by other ways is also explored.

  5. Gluten Sensitivity.

    PubMed

    Catassi, Carlo

    2015-01-01

    Non-celiac gluten sensitivity (NCGS) is a syndrome characterized by intestinal and extraintestinal symptoms related to the ingestion of gluten-containing food in subjects who are not affected by either celiac disease (CD) or wheat allergy (WA). The prevalence of NCGS is not clearly defined yet. Indirect evidence suggests that NCGS is slightly more common than CD, the latter affecting around 1% of the general population. NCGS has been mostly described in adults, particularly in females in the age group of 30-50 years; however, pediatric case series have also been reported. Since NCGS may be transient, gluten tolerance needs to be reassessed over time in patients with NCGS. NCGS is characterized by symptoms that usually occur soon after gluten ingestion, disappear with gluten withdrawal, and relapse following gluten challenge within hours/days. The 'classical' presentation of NCGS is a combination of irritable bowel syndrome-like symptoms, including abdominal pain, bloating, bowel habit abnormalities (either diarrhea or constipation), and systemic manifestations such as 'foggy mind', headache, fatigue, joint and muscle pain, leg or arm numbness, dermatitis (eczema or skin rash), depression, and anemia. In recent years, several studies explored the relationship between the ingestion of gluten-containing food and the appearance of neurological and psychiatric disorders/symptoms like ataxia, peripheral neuropathy, schizophrenia, autism, depression, anxiety, and hallucinations (so-called gluten psychosis). The diagnosis of NCGS should be considered in patients with persistent intestinal and/or extraintestinal complaints showing a normal result of the CD and WA serological markers on a gluten-containing diet, usually reporting worsening of symptoms after eating gluten-rich food. NCGS should not be an exclusion diagnosis only. Unfortunately, no biomarker is sensitive and specific enough for diagnostic purposes; therefore, the diagnosis of NCGS is currently based on

  6. Optical characterization of contrast agents for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Tin-Man; Toublan, Farah J.; Oldenburg, Amy; Sitafalwalla, Shoeb; Luo, Wei; Marks, Daniel L.; Suslick, Kenneth S.; Boppart, Stephen A.

    2003-07-01

    The use of contrast agents in almost every imaging modality has been known to enhance the sensitivity of detection and improve diagnostic capabilities by site-specifically labeling tissues or cells of interest. The imaging capabilities of Optical Coherence Tomography (OCT) need to be improved in order to detect early neoplastic changes in medicine and tumor biology. We introduce and characterize the optical properties of several types of optical contrast agents in OCT, namely encapsulating microspheres that incorporate materials including melanin, gold, and carbon. Micron-sized microspheres have been fabricated by state-of-the-art sonicating and ultrasound technology. The optical properties of optical contrast agents have been characterized according to their scattering and absorption coefficients and lifetimes using OCT and the oblique incidence reflectometry method. Finally, we demonstrate the use of these optical contrast agents in in vitro mice liver and analyze the contrast improvement from the OCT images. These optical contrast agents have the potential to improve the detection of in vivo pathologies in the future.

  7. Photoreceptor sectral sensitivities in terrestrial animals: adaptations for luminance and colour vision

    PubMed Central

    Osorio, D; Vorobyev, M

    2005-01-01

    This review outlines how eyes of terrestrial vertebrates and insects meet the competing requirements of coding both spatial and spectral information. There is no unique solution to this problem. Thus, mammals and honeybees use their long-wavelength receptors for both achromatic (luminance) and colour vision, whereas flies and birds probably use separate sets of photoreceptors for the two purposes. In particular, we look at spectral tuning and diversification among ‘long-wavelength’ receptors (sensitivity maxima at greater than 500 nm), which play a primary role in luminance vision. Data on spectral sensitivities and phylogeny of visual photopigments can be incorporated into theoretical models to suggest how eyes are adapted to coding natural stimuli. Models indicate, for example, that animal colour vision—involving five or fewer broadly tuned receptors—is well matched to most natural spectra. We can also predict that the particular objects of interest and signal-to-noise ratios will affect the optimal eye design. Nonetheless, it remains difficult to account for the adaptive significance of features such as co-expression of photopigments in single receptors, variation in spectral sensitivities of mammalian L-cone pigments and the diversification of long-wavelength receptors that has occurred in several terrestrial lineages. PMID:16096084

  8. Multi-contrast Photoacoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie

    Photoacoustic microscopy is a hybrid imaging modality with high spatial resolution, moderate imaging depth, excellent imaging contrast and functional imaging capability. Taking full advantage of this powerful weapon, we have investigated different anatomical, functional, flow dynamic and metabolic parameter measurements using photoacoustic microscopy. Specifically, Evans-blue dye was used to enhance photoacoustic microscopy of capillaries; label-free transverse and axial blood flow was measured based on bandwidth broadening and time shift of the photoacoustic signals; metabolic rate of oxygen was quantified in vivo from all the five parameters measured by photoacoustic microcopy; whole cross-sectional imaging of small intestine was achieved on a double-illumination photoacoustic microscopy with extended depth of focus and imaging depth; hemodynamic imaging was performed on a MEMS-mirror enhanced photoacoustic microscopy with a cross-sectional imaging rate of 400 Hz. As a maturing imaging technique, PAM is expected to find new applications in both fundamental life science and clinical practice.

  9. Model of visual contrast gain control and pattern masking

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Solomon, J. A.

    1997-01-01

    We have implemented a model of contrast gain and control in human vision that incorporates a number of key features, including a contrast sensitivity function, multiple oriented bandpass channels, accelerating nonlinearities, and a devisive inhibitory gain control pool. The parameters of this model have been optimized through a fit to the recent data that describe masking of a Gabor function by cosine and Gabor masks [J. M. Foley, "Human luminance pattern mechanisms: masking experiments require a new model," J. Opt. Soc. Am. A 11, 1710 (1994)]. The model achieves a good fit to the data. We also demonstrate how the concept of recruitment may accommodate a variant of this model in which excitatory and inhibitory paths have a common accelerating nonlinearity, but which include multiple channels tuned to different levels of contrast.

  10. Contrast-based image fusion using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Pu, Tian; Ni, GuoGiang

    2000-08-01

    We introduce a contrast-based image fusion method using the wavelet multiresolution analysis. This method includes three steps. First, the multiresolution architectures of the two original input images are obtained using the discrete wavelet transform. A new concept called directive contrast is presented. Second, the multiresolution architecture of the fused image can be achieved by selecting the corresponding subband signals of each input image based on the directive contrast. Finally, the fused image is reconstructed using the inverse wavelet transform. This algorithm is relevant to visual sensitivity and is tested by merging visual and IR images. The result shows that the fused image can integrate the details of each original image. The visual aesthetics and the computed SNRs of the fused images show that the new approaches can provide better fusion results than some previous multiresolution fusion methods.

  11. Tuberculin sensitivity.

    PubMed

    Eason, R J

    1987-06-01

    A prospective study of tuberculin sensitivity has been conducted among 3610 subjects under 20 years old in the Solomon Islands, Western Province. Mantoux positivity (greater than or equal to mm induration after 5 TU) fell from 81% during the 6 months following birth BCG vaccination to 13% for children aged 1-8 years of age among whom it was not significantly higher than the rate of 9% noted for unvaccinated subjects. Birth BCG does not, therefore, hinder the diagnostic usefulness of tuberculin testing for such children. For the study population as a whole, BCG-induced Mantoux positivity was restricted to induration under 15 mm diameter. Stronger responses were considered specific for tuberculin infection and indicated a prevalence rate that rose from 2% to 16% with age. Accelerated BCG reactions recorded among 45% of 162 tuberculin non-reactors under 8 years old indicated that the waning of tuberculin responsiveness at this time could not be equated with loss of clinical protection against tuberculosis. PMID:2441657

  12. Individual Variation in Cone Photoreceptor Density in House Sparrows: Implications for Between-Individual Differences in Visual Resolution and Chromatic Contrast

    PubMed Central

    Ensminger, Amanda L.; Fernández-Juricic, Esteban

    2014-01-01

    Between-individual variation has been documented in a wide variety of taxa, especially for behavioral characteristics; however, intra-population variation in sensory systems has not received similar attention in wild animals. We measured a key trait of the visual system, the density of retinal cone photoreceptors, in a wild population of house sparrows (Passer domesticus). We tested whether individuals differed from each other in cone densities given within-individual variation across the retina and across eyes. We further tested whether the existing variation could lead to individual differences in two aspects of perception: visual resolution and chromatic contrast. We found consistent between-individual variation in the densities of all five types of avian cones, involved in chromatic and achromatic vision. Using perceptual modeling, we found that this degree of variation translated into significant between-individual differences in visual resolution and the chromatic contrast of a plumage signal that has been associated with mate choice and agonistic interactions. However, there was no evidence for a relationship between individual visual resolution and chromatic contrast. The implication is that some birds may have the sensory potential to perform “better” in certain visual tasks, but not necessarily in both resolution and contrast simultaneously. Overall, our findings (a) highlight the need to consider multiple individuals when characterizing sensory traits of a species, and (b) provide some mechanistic basis for between-individual variation in different behaviors (i.e., animal personalities) and for testing the predictions of several widely accepted hypotheses (e.g., honest signaling). PMID:25372039

  13. Quantitative mammography contrast threshold test tool.

    PubMed

    Wagner, A J; Frey, G D

    1995-02-01

    Mammographic contrast is commonly evaluated by visualizing small objects of varying size or mass divided by projected area. These qualitative contrast determinations are commonly performed by imaging a phantom like the American College of Radiology accreditation phantom at clinical mammographic settings. However, this contrast assessment does not take into account the kVp of the machine. This work describes a quantitative mammography contrast threshold test tool which examines light object contrast on a uniform background for a contrast range of 0.32% to 1.38% at 25 kVp. For this mammography contrast threshold test tool, contrast is defined by delta I/I = loge (psi O/ psi b), where psi O is the target energy flux, and psi b is the background energy flux. Contrast threshold is defined as the lowest contrast value for which the objects are visible. Unlike traditional assessments of mammographic contrast, this measurement of contrast threshold is kVp corrected. The mammography contrast threshold test tool is constructed out of common plastics and provides a quantitative means of assessing contrast threshold for individual mammographic units and total mammographic systems. PMID:7565343

  14. Predicting contrast effects following reliable spectral properties in speech perception.

    PubMed

    Stilp, Christian E; Anderson, Paul W; Winn, Matthew B

    2015-06-01

    Vowel perception is influenced by precursor sounds that are resynthesized to shift frequency regions [Ladefoged and Broadbent (1957). J. Acoust. Soc. Am. 29(1), 98-104] or filtered to emphasize narrow [Kiefte and Kluender (2008). J. Acoust. Soc. Am. 123(1), 366-376] or broad frequency regions [Watkins (1991). J. Acoust. Soc. Am. 90(6), 2942-2955]. Spectral differences between filtered precursors and vowel targets are perceptually enhanced, producing spectral contrast effects (e.g., emphasizing spectral properties of /ɪ/ in the precursor elicited more /ɛ/ responses to an /ɪ/-/ɛ/ vowel continuum, and vice versa). Historically, precursors have been processed by high-gain filters, resulting in prominent stable long-term spectral properties. Perceptual sensitivity to subtler but equally reliable spectral properties is unknown. Here, precursor sentences were processed by filters of variable bandwidths and different gains, then followed by vowel sounds varying from /ɪ/-/ɛ/. Contrast effects were widely observed, including when filters had only 100-Hz bandwidth or +5 dB gain. Average filter power was a good predictor of the magnitudes of contrast effects, revealing a close linear correspondence between the prominence of a reliable spectral property and the size of shifts in perceptual responses. High sensitivity to subtle spectral regularities suggests contrast effects are not limited to high-power filters, and thus may be more pervasive in speech perception than previously thought. PMID:26093434

  15. Dual-frequency transducer for nonlinear contrast agent imaging.

    PubMed

    Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck

    2013-12-01

    Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging. PMID:24297028

  16. Rhythmic modulation of visual contrast discrimination triggered by action.

    PubMed

    Benedetto, Alessandro; Spinelli, Donatella; Morrone, M Concetta

    2016-05-25

    Recent evidence suggests that ongoing brain oscillations may be instrumental in binding and integrating multisensory signals. In this experiment, we investigated the temporal dynamics of visual-motor integration processes. We show that action modulates sensitivity to visual contrast discrimination in a rhythmic fashion at frequencies of about 5 Hz (in the theta range), for up to 1 s after execution of action. To understand the origin of the oscillations, we measured oscillations in contrast sensitivity at different levels of luminance, which is known to affect the endogenous brain rhythms, boosting the power of alpha-frequencies. We found that the frequency of oscillation in sensitivity increased at low luminance, probably reflecting the shift in mean endogenous brain rhythm towards higher frequencies. Importantly, both at high and at low luminance, contrast discrimination showed a rhythmic motor-induced suppression effect, with the suppression occurring earlier at low luminance. We suggest that oscillations play a key role in sensory-motor integration, and that the motor-induced suppression may reflect the first manifestation of a rhythmic oscillation. PMID:27226468

  17. Parametric mapping of contrasted ovarian transvaginal sonography.

    PubMed

    Korhonen, Katrina; Moore, Ryan; Lyshchik, Andrej; Fleischer, Arthur C

    2015-06-01

    The purpose of this study was to assess the accuracy of parametric analysis of transvaginal contrast-enhanced ultrasound (TV-CEUS) for distinguishing benign versus malignant ovarian masses. A total of 48 ovarian masses (37 benign and 11 borderline/malignant) were examined with TV-CEUS (Definity; Lantheus, North Billerica, MA; Philips iU22; Philips Medical Systems, Bothell, WA). Parametric images were created offline with a quantification software (Bracco Suisse SA, Geneva, Switzerland) with map color scales adjusted such that abnormal hemodynamics were represented by the color red and the presence of any red color could be used to differentiate benign and malignant tumors. Using these map color scales, low values of the perfusion parameter were coded in blue, and intermediate values of the perfusion parameter were coded in yellow. Additionally, for each individual color (red, blue, or yellow), a darker shade of that color indicated a higher intensity value. Our study found that the parametric mapping method was considerably more sensitive than standard region of interest (ROI) analysis for the detection of malignant tumors but was also less specific than standard ROI analysis. Parametric mapping allows for stricter cutoff criteria, as hemodynamics are visualized on a finer scale than ROI analyses, and as such, parametric maps are a useful addition to TV-CEUS analysis by allowing ROIs to be limited to areas of the highest malignant potential. PMID:26002525

  18. MMP-14 Triggered Fluorescence Contrast Agent.

    PubMed

    Nguyen, Mai-Dung; Kang, Kyung A

    2016-01-01

    Matrix metalloproteinase-14 (MMP-14) is involved in cancer invasion, metastasis, and angiogenesis. Therefore, it is considered to be a biomarker for aggressive cancer types, including some of the triple-negative breast cancer. Accurate (i.e., specific) and sensitive detection of MMP-14 can, thus, be important for the early diagnosis of and accurate prognosis for aggressive cancer, including the breast cancer caused by cell line MDA-MB 231. Fluorophore-mediated molecular sensing has been used for detecting biomarkers, for a long time. One way to increase the specificity of the sensing is designing the fluorophore to emit its fluorescence only when it encounters the biomarker of interest. When a fluorophore is placed on the surface of, or very close to a gold nanoparticle (GNP), its fluorescence is quenched. Applying this relationship between the GNP and fluorophore, we have developed a GNP-based, near-infrared fluorescent contrast agent that is highly specific for MMP-14. This agent normally emits only 14-17 % fluorescence of the free fluorophore. When the agent encounters MMP-14, its fluorescence gets fully restored, allowing MMP-14 specific optical signal emission. PMID:27526171

  19. Low resistivity, low contrast pays

    SciTech Connect

    Sneider, R.M.; Kulha, J.T. |

    1996-08-01

    Major hydrocarbon accumulations have been produced over the past 40 years in low resistivity, low contrast (LRLC) sands in the Gulf of Mexico Basin (GOM). LRLC reservoirs were commonly considered wet, tight, misidentified as a shale or overlooked, but are being re-evaluated now in other world basins, including Latin America. Seismic response, drill cuttings, cores, log response, petrophysical models, and production testing provide an integrated LRLC evaluation. Causes of LRLC pay in the GOM include: laminated clean sands with shales; silts or shaly sands; clay-coated sands; glauconitic sands; sands with interstitial dispersed clay; sands with disseminated pyrite or other conductive minerals; clay-lined burrows; clay clasts; altered volcanic/feldspathic framework grains; and very fine-grained sand with very saline water. LRLC depositional systems include: deepwater fans, with levee-channel complexes; delta front and toe deposits; shingle turbidites; and alluvial and deltaic channel fills. Geological and petrophysical models developed in the GOM for evaluation of LRLC pay are applicable in Latin America. An Archie clean sand or Waxman-Smits shaly sand model are commonly used to evaluate LRLC anomalies. Often, shaly sand models are not necessarily suited for LRLC evaluation. The Archie lithology exponent (m) and saturation exponent (n) for many LRLC reservoirs range from 1.4 to 1.85, and 1.2 to 1.8, respectively. In thinly laminated LRLC reservoirs, net sand distribution is identified with high resolution logging tools, rock examination and interval testing.

  20. Laser Image Contrast Enhancement System

    NASA Technical Reports Server (NTRS)

    Kurtz, Robert L. (Inventor); Holmes, Richard R. (Inventor); Witherow, William K. (Inventor)

    2002-01-01

    An optical image enhancement system provides improved image contrast in imaging of a target in high temperature surroundings such as a furnace. The optical system includes a source of vertically polarized light such as laser and a beam splitter for receiving the light and directing the light toward the target. A retardation plate is affixed to a target-facing surface of the beam splitter and a vertical polarizer is disposed along a common optical path with the beam splitter between the retardation plate and the target. A horizontal polarizer disposed in the common optical path, receives light passing through a surface of the beam splitter opposed to the target-facing surface. An image detector is disposed at one end of the optical path. A band pass filter having a band pass filter characteristic matching the frequency of the vertically polarized light source is disposed in the path between the horizontal polarizer and the image detector. The use of circular polarization, together with cross polarizers, enables the reflected light to be passed to the detector while blocking thermal radiation.

  1. MR contrast due to intravascular magnetic susceptibility perturbations.

    PubMed

    Boxerman, J L; Hamberg, L M; Rosen, B R; Weisskoff, R M

    1995-10-01

    A particularly powerful paradigm for functional MR imaging of microvascular hemodynamics incorporates paramagnetic materials that create significant image contrast. These include exogenous (lanthanide chelates) and endogenous (deoxygenated hemoglobin) agents for mapping cerebral blood volume and neuronal activity, respectively. Accurate interpretation of these maps requires an understanding of the biophysics of susceptibility-based image contrast. The authors developed a novel Monte Carlo model with which the authors quantified the relationship between microscopic tissue parameters, NMR imaging parameters, and susceptibility contrast in vivo. The authors found vascular permeability to water and the flow of erythrocytes to be relatively unimportant contributors to susceptibility-induced delta R2. However, pulse sequence, echo time, and concentration of contrast agent have profound effects on the vessel size dependence of delta R2. For a model vasculature containing both capillaries and venules, the authors predicted a linear volume fraction dependence for physiological volume changes based on recruitment and dilation, and a concentration dependence that is nonlinear and pulse sequence dependent. Using the model, the authors demonstrated that spin echo functional images have greater microvascular sensitivity than gradient echo images, and that the specifies of the volume fraction and concentration dependence of transverse relaxivity change should allow for robust mapping of relative blood volume. The authors also demonstrated excellent agreement between the predictions of their model and experimental data obtained from the serial injection of superparamagnetic contrast agent in a rat model. PMID:8524024

  2. Optimization of grating-based phase-contrast imaging setup

    NASA Astrophysics Data System (ADS)

    Baturin, Pavlo; Shafer, Mark

    2014-03-01

    Phase contrast imaging (PCI) technology has emerged over the last decade as a novel imaging technique capable of probing phase characteristics of an object as complimentary information to conventional absorption properties. In this work, we identified and provided a rationale for optimization of key parameters that determine the performance of a Talbot-Lau PCI system. The study used the Fresnel wave propagation theory and system geometry to predict optimal grating alignment conditions necessary for producing maximum-phase contrast. The moiré fringe pattern frequency and angular orientation produced in the X-ray detector plane were studied as functions of the gratings' axial rotation. The effect of axial displacement between source-to-phase (L) and phase-to-absorption (d) gratings, on system contrast, was discussed in detail. The L-d regions of highest contrast were identified, and the dependence of contrast on the energy of the X-ray spectrum was also studied. The predictions made in this study were tested experimentally and showed excellent agreement. The results indicated that the PCI system performance is highly sensitive to alignment. The rationale and recommendations made should serve as guidance in design, development, and optimization of Talbot-Lau PCI systems.

  3. Contrast discrimination, non-uniform patterns and change blindness.

    PubMed Central

    Scott-Brown, K C; Orbach, H S

    1998-01-01

    Change blindness--our inability to detect large changes in natural scenes when saccades, blinks and other transients interrupt visual input--seems to contradict psychophysical evidence for our exquisite sensitivity to contrast changes. Can the type of effects described as 'change blindness' be observed with simple, multi-element stimuli, amenable to psychophysical analysis? Such stimuli, composed of five mixed contrast elements, elicited a striking increase in contrast increment thresholds compared to those for an isolated element. Cue presentation prior to the stimulus substantially reduced thresholds, as for change blindness with natural scenes. On one hand, explanations for change blindness based on abstract and sketchy representations in short-term visual memory seem inappropriate for this low-level image property of contrast where there is ample evidence for exquisite performance on memory tasks. On the other hand, the highly increased thresholds for mixed contrast elements, and the decreased thresholds when a cue is present, argue against any simple early attentional or sensory explanation for change blindness. Thus, psychophysical results for very simple patterns cannot straightforwardly predict results even for the slightly more complicated patterns studied here. PMID:9872004

  4. Laser speckle contrast imaging in biomedical optics

    PubMed Central

    Boas, David A.; Dunn, Andrew K.

    2010-01-01

    First introduced in the 1980s, laser speckle contrast imaging is a powerful tool for full-field imaging of blood flow. Recently laser speckle contrast imaging has gained increased attention, in part due to its rapid adoption for blood flow studies in the brain. We review the underlying physics of speckle contrast imaging and discuss recent developments to improve the quantitative accuracy of blood flow measures. We also review applications of laser speckle contrast imaging in neuroscience, dermatology and ophthalmology. PMID:20210435

  5. Binocular contrast discrimination needs monocular multiplicative noise

    PubMed Central

    Ding, Jian; Levi, Dennis M.

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370

  6. Binocular contrast discrimination needs monocular multiplicative noise.

    PubMed

    Ding, Jian; Levi, Dennis M

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370

  7. Brightness discrimination in budgerigars (Melopsittacus undulatus).

    PubMed

    Lind, Olle; Karlsson, Sandra; Kelber, Almut

    2013-01-01

    Birds have excellent spatial acuity and colour vision compared to other vertebrates while spatial contrast sensitivity is relatively poor for unknown reasons. Contrast sensitivity describes the detection of gratings of varying spatial frequency. It is unclear whether bird brightness discrimination between large uniform fields is poor as well. Here we show that budgerigars (Melopsittacus undulatus) need a Michelson contrast of 0.09 to discriminate between large spatially separated achromatic fields in bright light conditions. This is similar to the peak contrast sensitivity of 10.2 (0.098 Michelson contrast) for achromatic grating stimuli established in earlier studies. The brightness discrimination threshold described in Weber fractions is 0.18, which is modest compared to other vertebrates. PMID:23349946

  8. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    SciTech Connect

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang; Luo, Jia

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  9. Contrast enhanced ultrasound (CEUS) in blunt abdominal trauma

    PubMed Central

    2013-01-01

    In the assessment of polytrauma patient, an accurate diagnostic study protocol with high sensitivity and specificity is necessary. Computed Tomography (CT) is the standard reference in the emergency for evaluating the patients with abdominal trauma. Ultrasonography (US) has a high sensitivity in detecting free fluid in the peritoneum, but it does not show as much sensitivity for traumatic parenchymal lesions. The use of Contrast-Enhanced Ultrasound (CEUS) improves the accuracy of the method in the diagnosis and assessment of the extent of parenchymal lesions. Although the CEUS is not feasible as a method of first level in the diagnosis and management of the polytrauma patient, it can be used in the follow-up of traumatic injuries of abdominal parenchymal organs (liver, spleen and kidneys), especially in young people or children. PMID:23902930

  10. A Contrast Analysis Approach to Change

    ERIC Educational Resources Information Center

    Furr, R. Michael

    2008-01-01

    This paper presents the foundations of contrast analysis as a method for examining change. Contrast analysis is a relatively high-powered, simple, and informative procedure for evaluating hypotheses about specific patterns of change. This paper reviews the general purpose and nature of contrast analysis, it discusses some of the advantages of…

  11. Using Contrastive Rhetoric in the ESL Classroom

    ERIC Educational Resources Information Center

    Quinn, Janet M.

    2012-01-01

    Contrastive rhetoric studies the writing of second language learners to understand how it is affected by their first language and culture. The field of contrastive rhetoric is as multidimensional as second language writing is complex. It draws on the work of contrastive analysis, anthropology, linguistics, pedagogy, culture studies, translation…

  12. Bilingual Evidence against the Principle of Contrast.

    ERIC Educational Resources Information Center

    Quay, Suzanne

    Prior research on early lexical acquisition in bilingual infants has been used by Clark (1987) to support the Principle of Contrast, which states that every two forms contrast in meaning. In this study of an English-Spanish bilingual child, it is argued that the Principle of Contrast is not applicable to bilingual acquisition in general. Daily…

  13. Compensation for red-green contrast loss in anomalous trichromats

    PubMed Central

    Boehm, A. E.; MacLeod, D. I. A.; Bosten, J. M.

    2014-01-01

    For anomalous trichromats, threshold contrasts for color differences captured by the L and M cones and their anomalous analogs are much higher than for normal trichromats. The greater spectral overlap of the cone sensitivities reduces chromatic contrast both at and above threshold. But above threshold, adaptively nonlinear processing might compensate for the chromatically impoverished photoreceptor inputs. Ratios of sensitivity for threshold variations and for color appearance along the two cardinal axes of MacLeod-Boynton chromaticity space were calculated for three groups: normals (N = 15), deuteranomals (N = 9), and protanomals (N = 5). Using a four-alternative forced choice (4AFC) task, threshold sensitivity was measured in four color-directions along the two cardinal axes. For the same participants, we reconstructed perceptual color spaces for the positions of 25 hues using multidimensional scaling (MDS). From the reconstructed color spaces we extracted “color difference ratios,” defined as ratios for the size of perceived color differences along the L/(L + M) axis relative to those along the S/(L + M) axis, analogous to “sensitivity ratios” extracted from the 4AFC task. In the 4AFC task, sensitivity ratios were 38% of normal for deuteranomals and 19% of normal for protanomals. Yet, in the MDS results, color difference ratios were 86% of normal for deuteranomals and 67% of normal for protanomals. Thus, the contraction along the L/(L + M) axis shown in the perceptual color spaces of anomalous trichromats is far smaller than predicted by their reduced sensitivity, suggesting that an adaptive adjustment of postreceptoral gain may magnify the cone signals of anomalous trichromats to exploit the range of available postreceptoral neural signals. PMID:25413625

  14. Linking fluorescence spectroscopy to the scale of spectral sensitivity: the BAM reference fluorometer

    NASA Astrophysics Data System (ADS)

    Monte, Christian; Pilz, Walter; Resch-Genger, Ute

    2005-08-01

    Providing fluorescence and fluorescence excitation spectra traceable to the scale of spectral sensitivity (responsivity) and spectral radiance at minimized uncertainty is currently limited by two factors: The uncertainty of the available transfer standards and the uncertainty of the measurement process itself. Here the requirements on a reference fluorometer enabling measurements at minimized uncertainty, its design, the simulation and the realization are presented. The fluorometer is designed with minimized chromatic and geometrical aberrations. To realize an efficient reduction of stray light and subtractive dispersion a double monochromator design was necessary. The basic element is a so-called U-type Czerny-Turner single monochromator featuring off-axis parabolas and an entrance and exit slit virtually at the same place. Thereby spherical aberration, coma and astigmatism are effectively minimized. The here employed special double monochromator design further cancels the remaining aberrations of the single monochromator. The design of the whole spectrometer was optimized with a ray tracing program. To minimize uncertainties due to the transfer standards, the reference fluorometer is exclusively traceable to the spectral sensitivity (responsivity) scale. This enables the use of transfer standards with much smaller uncertainty. Here trap detectors are employed of common design but specially calibrated for a divergent light bundle. Based on this instrument with its achromatic design and precisely known numerical apertures the determination of absolute fluorescence spectra will be addressed.

  15. Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma.

    PubMed

    Miele, Vittorio; Piccolo, Claudia Lucia; Galluzzo, Michele; Ianniello, Stefania; Sessa, Barbara; Trinci, Margherita

    2016-01-01

    Baseline ultrasound is essential in the early assessment of patients with a huge haemoperitoneum undergoing an immediate abdominal surgery; nevertheless, even with a highly experienced operator, it is not sufficient to exclude parenchymal injuries. More recently, a new ultrasound technique using second generation contrast agents, named contrast-enhanced ultrasound (CEUS) has been developed. This technique allows all the vascular phase to be performed in real time, increasing ultrasound capability to detect parenchymal injuries, enhancing some qualitative findings, such as lesion extension, margins and its relationship with capsule and vessels. CEUS has been demonstrated to be almost as sensitive as contrast-enhanced CT in the detection of traumatic injuries in patients with low-energy isolated abdominal trauma, with levels of sensitivity and specificity up to 95%. Several studies demonstrated its ability to detect lesions occurring in the liver, spleen, pancreas and kidneys and also to recognize active bleeding as hyperechoic bands appearing as round or oval spots of variable size. Its role seems to be really relevant in paediatric patients, thus avoiding a routine exposure to ionizing radiation. Nevertheless, CEUS is strongly operator dependent, and it has some limitations, such as the cost of contrast media, lack of panoramicity, the difficulty to explore some deep regions and the poor ability to detect injuries to the urinary tract. On the other hand, it is timesaving, and it has several advantages, such as its portability, the safety of contrast agent, the lack to ionizing radiation exposure and therefore its repeatability, which allows follow-up of those traumas managed conservatively, especially in cases of fertile females and paediatric patients. PMID:26607647

  16. Internal polarization limits coronagraph contrast

    NASA Astrophysics Data System (ADS)

    Breckinridge, James Bernard; Lam, Wai Sze T.; Chipman, Russell A.

    2015-08-01

    The performance of exoplanet imaging coronagraphs is limited by internal polarization. The point spread function (PSF) of these systems is determined by the details of the opto-mechanical layout selected to package the system and by the highly reflective metal thin films needed to maintain high optical system transmittance. To obtain the high contrast levels needed for terrestrial exoplanet science requires a comprehensive understanding of the vector electromagnetic wave from the source through the system. The literature contains many studies of polarization transmissivity of telescopes and instruments for the purpose of photo-polarimetry. Here we report for the first time the effects of polarization on high-performance image quality.We modeled a typical 2.4-meter Cassegrain telescope system with one 90-degree fold mirror and analyzed the system for polarization aberrations.We find: 1. The image plane irradiance distribution is the linear superposition of four PSF images: One for each of the two orthogonal polarizations and one for each of two cross-product polarization terms. 2. The PSF image is brighter by 9% for one polarization component compared to its orthogonal state. 3. The image of the PSF for orthogonal components are shifted across the focal plane with respect to each other, causing the PSF image for astronomical sources (polarized or unpolarized) to become slightly elongated (elliptical) with a centroid separation of about 0.6 masec. 4. The orthogonally polarized components of unpolarized sources contain different wavefront aberrations, which are separated by approximately 32 milliwaves. This implies that a wavefront correction system cannot optimally correct the aberrations for all polarizations simultaneously. 5. The polarization aberrations couple small parts (~1E-5) of each polarization component of the light into the orthogonal polarization to create highly distorted secondary, or “ghost” PSF image.. The radius of the spatial extent of the 90

  17. Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation

    PubMed Central

    Hillis, James M.; Brainard, David H.

    2009-01-01

    Are effects of background contrast on color appearance and sensitivity controlled by the same mechanism of adaptation? We examined the effects of background color contrast on color appearance and on color-difference sensitivity under well-matched conditions. We linked the data using Fechner’s hypothesis that the rate of apparent stimulus change is proportional to sensitivity and examined a family of parametric models of adaptation. Our results show that both appearance and discrimination are consistent with the same mechanism of adaptation. PMID:17621318

  18. The evolutionary divergence of TRPA1 channel: heat-sensitive, cold-sensitive and temperature-insensitive

    PubMed Central

    Chen, Jun

    2015-01-01

    The Transient Receptor Potential Ankyrin 1 ion channel is heat-sensitive in invertebrate and ancestral vertebrates, cold-sensitive in rodents, and temperature-insensitive in primates. This remarkable divergence in temperature sensitivity is in contrast to its role in sensing electrophilic compounds, which is conserved during animal evolution.

  19. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents.

    PubMed

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-09-22

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based "nanobubble" contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  20. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents

    PubMed Central

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-01-01

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797