Triterpene glycosides from the tubers of Anemone coronaria.
Mimaki, Yoshihiro; Watanabe, Kazuki; Matsuo, Yukiko; Sakagami, Hiroshi
2009-07-01
Six new triterpene glycosides (1-6), together with 11 known ones (7-17), have been isolated from a glycoside-enriched fraction prepared from the tubers of Anemone coronaria L. (Ranunculaceae). On the basis of extensive spectroscopic analysis, including 2D NMR data, and the results of hydrolytic cleavage, the structures of 1-6 were determined to be 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid (1), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (2), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (4), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta-hydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (5), and 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-18-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (6), respectively. Furthermore, the isolated compounds were evaluated for their cytotoxic activity against HSC-2 cells.
1H and 13C NMR spectral data of new saponins from Cordia piauhiensis.
Santos, Renata P; Silveira, Edilberto R; Uchôa, Daniel Esdras de A; Pessoa, Otília Deusdênia L; Viana, Francisco Arnaldo; Braz-Filho, Raimundo
2007-08-01
Two new bidesmoside triterpenoid saponins were isolated from stems of Cordia piauhiensis. Their structures, characterized as 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl pomolic acid 28-O-beta-D-glucopyranosyl ester (1) and 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (2), were unequivocally established after extensive NMR (1H, 13C, DEPT 135 degrees, COSY, HSQC, HMBC, TOCSY, and NOESY) studies. Copyright 2007 John Wiley & Sons, Ltd.
Characterization of two minor saponins from Cordia piauhiensis by 1H and 13C NMR spectroscopy.
Santos, Renata P; Silveira, Edilberto R; Lemos, Telma Leda G; Viana, Francisco Arnaldo; Braz-Filho, Raimundo; Pessoa, Otília Deusdênia L
2005-06-01
A careful NMR analysis with full assignment of the 1H and 13C spectral data for two minor saponins isolated from stems of Cordia piauhiensis is reported. These saponins were isolated by high-performance liquid chromatography and characterized as 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]pomolic acid 28-O-[beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (1) and 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]oleanolic acid 28-O-[beta-D-xylopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (2). Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, NOESY, gs-HMQC and gs-HMBC) NMR techniques, electrospray ionization mass spectrometry and chemical evidence. Copyright 2005 John Wiley & Sons, Ltd.
Two new triterpene saponins from the anti-inflammatory saponin fraction of Ilex pubescens root.
Wang, Jing-Rong; Zhou, Hua; Jiang, Zhi-Hong; Liu, Liang
2008-07-01
The saponin fraction from the ethanolic extracts of the root of Ilex pubescens Hook. et Arn. (Ilexaceae) was found to exhibit potent anti-inflammatory effects on carrageenan-induced paw edema in rats. Two novel triterpene saponins, pubescenosides C and D (1 and 2, resp.), together with five known saponins were isolated from this saponin fraction. The structures of 1 and 2 were elucidated as (20beta)-3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa-12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, and (20beta)-3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa- 12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, respectively, on the basis of chemical and spectroscopic data. Five known saponins isolated from the saponin fraction were identified as ilexsaponin B(1), B(2), B(3), A(1), and chikusetsusaponin IV(a).
Zhang, D; Miyase, T; Kuroyanagi, M; Umehara, K; Ueno, A
1996-04-01
Five new oleanane-type saponins, polygalasaponins XXVIII-XXXII, along with one known saponin, polygalasaponin XXIV, and one known acylated sucrose, tenuifoliside C, were isolated from the root of Polygala japonica. The structures of these new compounds were elucidated as 3-O-beta-D-glucopyranosyl pesenegenin 28-O-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamnopyranosyl (1-->2)-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl (1-->5)-beta-D-apiofuranosyl (1-->4)-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamno-pyranosyl (1-->2)-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl (1-->4)-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamnopyranosyl (1-->2)-[4-O-p-methoxycinnamoyl]-[beta-D-glucopyranosyl (1-->3)]-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-alpha-L-arabinopyranosyl (1-->3)-beta-D-xylopyranosyl (1-->4)-[beta-D-apiofuranosyl (1-->3)]-alpha-L-rhamnopyranosyl (1-->2)-[4-O-3,4,5-trimethoxycinnamoyl]-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl persenegenin 28-O-alpha-L-arabinopyranosyl (1-->3)-beta-D-xylopyranosyl (1-->4)-[beta-D-apiofuranosyl (1-->3)-alpha-L-rhamnopyranosyl (1-->2)-[4-O-p-methoxycinnamoyl]-[alpha-L-rhamnopyranosyl (1-->3)-beta-D-fucopyranosyl ester, respectively, on the basis of spectroscopic and chemical evidence.
Four new triterpenoid glycosides from the seed residue of Hippophae rhamnoides subsp. sinensis.
Chen, Chao; Gao, Wen; Cheng, Liang; Shao, Yan; Kong, De-Yun
2014-01-01
Four new triterpenoid saponins (1-4) were isolated from the seed residue of Hippophae rhamnoides subsp. sinensis, named 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosyl-13-ene-19-one-28-oic acid 28-O-β-D-glucopyranosyl ester (1), 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-D-glucopyranosyl ester (2), 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-glucopyranosyl-13-ene-19-one-28-oic acid 28-O-β-D-glucopyranosyl ester (3), and 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-glucopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-D-glucopyranosyl ester (4), and their structures were elucidated on the basis of spectroscopic and chemical methods.
[Triterpenoid saponins from flower bud of Jasminum officinale var. grandiflorum].
Zhao, Gui-Qin; Dong, Jun-Xing
2008-01-01
To study the chemical constituent bud of the flowers of Jasminum officinale var. grandiflorum. The compounds were isolated and purified by recrystallization and chromatography on silica gel and Sephadex LH - 20 column. Their structures were elucidated on the basis of physicochemical properties and spectral analysis. Six triterpenoid saponins were identified as 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-beta-D-xylopyranosyl- hederagenin-28-O-beta-D-galactopyranosyl (1 --> 6)-beta-D-galactopyranosyl ester (1), hederagenin-3-O-beta-D-glucopyranosyl (1 --> 3)-alpha-L-arabinopyranoside (2), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic-O-beta-D-glucopyranosyl ester (3), hederagenin-3-O-beta-D-xylopyranosyl (1 --> 3)-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (4), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranosyl ester (5), hederagenin-3-O-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (6). Compound 1 is a new compound. Compounds 2, 3, 4, 5, 6 were isolated from the genus Jasminum for the first time.
[Study on triterpenoid saponins in the rhizome of Anemone hofengensis].
Han, Lin-Tao; Li, Ming-Ming; Huang, Fang; Hou, An-Wei
2013-10-01
To study the triterpenoid saponins in the rhizome of Anemone hofengensis. The constituents were separated with various chromatographic techniques and their structures were elucidated by physicochemical properties and spectral data. Five compounds were isolated and identified as 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-alpha-L-arabino-pyranosyl-oleanolic acid (1), 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 2)-alpha-L-rhamnopyranosyl-oleanolic acid 28-O-alpha-L-rhamnopyranosyl-(1 --> 4) -beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranoside (2), 3-O-alpha-L-rhamnopyranosyl-(1 --> 2) [beta-D-glucopyranosyl-(1 --> 4)]-alpha-L-rhamnopyranosyl-oleanolic acid-28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-gluco-pyranoside (3), 3-O-beta-D-glucopyranosyl-(1 --> 2)-beta-D-xylopyranosyl-oleanolic acid 28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranoside (4), oleanolic acid-28-O-alpha-L-rhamnopyra-nosyl-(1 --> 4)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranoside (5). Compound 1 - 5 are isolated from this plant for the first time.
[Triterpenes and triterpene glycosides from aerial part of Paraboea glutinosa].
Wang, Xiaoqin; Peng, Yong; Xu, Lijia; Xiao, Wei; Xiao, Peigen; Liu, Yong
2009-05-01
To investigate the chemical constituents from aerial part of Paraboea glutinosa. The compounds were isolated with silica gel, Sephadex LH-20 column chromatography and their structures were elucidated by means of spectral data analysis. Five compounds were isolated and identified as 2alpha, 3beta, 19alpha, 24-tetrahydroxyurs-12-en-28-oate(24-hydroxytormentic acid,1), glucosyl-2alpha, 3beta, 19alpha, 24-tetrahydroxyurs-12-en-28-oate (24-hydroxytormentic acid ester glucoside,2), 28-O-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl-24-hydroxytormentic acid (3), beta-sitosterol (4), daucosterol (5). All these compounds were isolated from the genus Paraboea for the first time.
Three new triterpenoid saponins from the seeds of Aesculus turbinata.
Yang, Xiu-Wei; Zhao, Jing; Hattori, Masao
2008-01-01
Three new triterpenoid saponins, named isoescins VIIa (1), VIa (2), and VIIIa (3), were isolated from the seeds of Aesculus turbinata and identified by spectroscopic analysis and chemical hydrolysis. Their structures were established as 21beta-O-tigloyl-28-O-acetylprotoaescigenin 3beta-O-[beta-d-galactopyranosyl(1 --> 2)][beta-d-glucopyranosyl(1 --> 4)]-beta-d-glucopyranosiduronic acid (Isoescin VIIa, 1), 21beta-O-(2-methylbutyryl)-28-O-acetylprotoaescigenin 3beta-O-[beta-d-glucopyranosyl(1 --> 2)] [beta-d-glucopyranosyl(1 --> 4)]-beta-d-glucopyranosiduronic acid (Isoescin VIa, 2), and 21beta-O-angeloyl-28-O-acetylbarringtogenol C 3beta-O-[beta-d-glucopyranosyl(1 --> 2)] [beta-d-glucopyranosyl(1 --> 4)]-beta-d-glucopyranosiduronic acid (Isoescin VIIIa, 3).
[Studies on triterpenoid saponins in the rhizome of Anemone flaccida].
Han, Lin-Tao; Huang, Fang
2009-07-01
To study the triterpenoid saponins in the rhizome of Anemone flaccida. The constituents were separated with various chromatographic techniques and their structures were elucidated by means of physicochemical properties and the analysis of their spectral datas. Five compounds were isolated and identified as 3-O-beta-D-glucuronypyranosyl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl(1 --> 6)-beta-D-glucopyra noside (1), 3-O-beta-D-glucuronypyranosyl-oleanolic acid-28-O-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (2), 3-O-alpha-L-rhamnopyranosy (1 --> 2)-beta-D-glucopyranosyl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (3), 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyrano-syl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 -->4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (4), 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-beta-D-xylopyranosyl-oleanolic acid-28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (5). Compound 1 - 4 are isolated from this plant for the first time. Compound 1,2 are isolated from this genus for the first time.
Four new triterpene saponins from the seeds of Aesculus chinensis.
Zhao, Jing; Yang, Xiu-Wei
2003-09-01
Two pairs of new geometrically isomeric triterpenoid saponins were isolated from the seeds of Aesculus chinensis and characterized as 28-acetyl-21-tigloylprotoaescigenin 3-O-[beta-D-xylopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] [beta-D-glucopyranosiduronic acid (isoescin IIa, 1) and 28-acetyl-21-angeloylprotoaescigenin 3-O-[-beta-D-xylopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] beta-D-glucopyranosiduronic acid (isoescin IIb, 2); 28-acetyl-21-tigloylbarringtogenol C 3-O-[beta-D-galactopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] beta-D-glucopyranosiduronic acid (isoescin IIIa, 3) and 28-acetyl-21-angeloylbarringtogenol C 3-O-[beta-D-galactopyranosyl (1 --> 2)] [beta-D-glucopyranosyl (1 --> 4)] beta-D-glucopyranosiduronic acid (isoescin IIIb, 4). Their structures were established on the basis of spectroscopic and chemical evidence.
Liu, Quan-Yu; Chen, Yong-Sheng; Wang, Fei; Chen, Shi-Wu; Zhang, Yong-Hong
2014-06-01
A new steroidal ester, beta-rosaterol palmitate (1) along with ten known compounds, uvaol(2), 3-epi-ursolic acid (3), 2alpha, 3beta, 24-trihydroxyolean-12-en-28-oic acid (4), 2alpha, 3alpha, 24-trihydroxyurs-12-en-28-oic acid (5), 2alpha, 3alpha, 24-trihydroxyolean-12-en-28-oic acid (6), 2alpha, 3alpha, 24-trihydroxyolean-12-en-28-oic acid-28-O-beta-D-glucopyranosyl ester (7), (Z)-9-hexadecenoic acid (8), octacosyl alcohol (9), beta-sitosterol (10) and beta-daucosterol (11), has been isolated from the stems and leaves of Vitex trifolia. Their structures were elucidated using a combination of 1D and 2D NMR techniques (COSY, HMQC, and HMBC)and HR-ESI-MS analyses. Compounds 2-7 were isolated from this plant for the first time.
[Studies on chemical constituents from herbs of Taraxacum mongolicum].
Shi, Shu-Yun; Zhou, Chang-Xin; Xu, Yan; Tao, Qiao-Feng; Bai, Hua; Lu, Fu-Sheng; Lin, Wen-Yan; Chen, Hai-Yong; Zheng, Wei; Wang, Li-Wei; Wu, Yi-Hang; Zeng, Su; Huang, Ke-Xin; Zhao, Yu; Li, Xiao-Kun; Qu, Jia
2008-05-01
To investigate the chemical constituents of the herbs of Taraxacum mongolicum. The chemical constituents were isolated by various column chromatographic methods and their structures elucidated mainly by NMR and MS evidences. Forty-four components were obtained and identified were as artemetin (1), quercetin (2), quercetin-3', 4', 7-trime-thyl ether (3), luteolin (4), luteolin-7-O-beta-D-glucopyranoside (5), luteolin-7-O-beta-D-galactopyranoside (6), genkwanin (7), isoetin (8), hesperetin (9), genkwanin-4'-O-beta-D-lutinoside (10), hesperidin (11), quercetin-7-O-[beta-D-glucopyranosyl (1-->6) -beta-D-glucopyranoside (12), quercetin-3, 7-O-beta-D-diglucopyranoside (13), isoetin-7-O-beta-D-glucopyranosyl- 2'-O-alpha-L-arabinopyranoside (14), isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-D-glucopyranoside (15), isoetin-7- O-beta-D-glucopyranosyl-2'-O-beta-D-xyloypyranoside (16), caffeic acid (17), furulic acid (18), 3-O-caffeoylquinic acid (19), 3, 5-di-O-caffeoylquinic acid (20), 3, 4-di-O-caffeoylquinic acid (21), 4, 5-di-O-caffeoylquinic acid (22), 1-hydroxymethyl-5-hydroxy-phenyl-2-O-beta-D-glucopyranoside (23), p-hydroxybenzoic acid (24), p-coumaric acid (25), 3, 5-dihydroxylbenzoic acid (26), gallic acid (27), gallicin (28), syringic acid (29), 3, 4-dihydroxybenzoic acid (30), caffeic acid ethyl ester (31), esculetin (32), rufescidride (33), mongolicumin A [6, 9, 10-trihydroxy-benzoxanthene-1, 2-dicarboxylic acid] (34), mongolicumin B [1 l-hydroxy-2-oxo-guaia-1 (10), 3, 5-trien-8, 12-lactone] (35), isodonsesquitin A (36), taraxacin (37), sesquiterpene ketolactone (38), taraxasteryl acetate (39), phi-taraxasteryl acetate (40) and lupenol acetate (41), palmitic acid (42), beta-sitosterol (43), and stigmasterol (44). Four compounds (14, 15, 34 and 35) were new compounds, compounds 1, 3, 6-13, 20-22, 30 and 31 were isolated from this genus for the first time, while compounds 18, 23-29, 32 and 37-42 were obtained from this species for the first time.
Two new triterpenoid saponins from the leaves of Bupleurum lancifolium (Apiaceae).
Achouri, Amel; Derbré, Séverine; Medjroubi, Kamel; Laouer, Hocine; Séraphin, Denis; Akkal, Salah
2017-10-01
Chemical investigation of the leaves of Bupleurum lancifolium led to the isolation and identification of two triterpenoid saponins previously undescribed named 3-O-[α-L-rhamnopyranosyl (1 → 4)-β-D-glucopyranosyl] echinocystic acid 28-O-β-D-glucopyranosyl ester (1) and 3-O-[α-L-rhamnopyranosyl (1 → 4)-β-D-glucopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester (2) along with the two known compounds isorhamnetin 3-rutinoside (3) and rutin (4). Their structures were elucidated by different spectroscopic methods, including HRESIMS analysis as well as 1D and 2D NMR experiments.
Matsuda, H; Morikawa, T; Ueda, H; Yoshikawa, M
2001-10-01
Ursane- and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, were isolated from the aerial parts of Centella asiatica (L.) Urban cultivated in Sri Lanka together with madecassoside, asiaticoside, asiaticoside B, and sceffoleoside A. The chemical structures of centellasaponins B, C, and D were determined on the basis of chemical and physicochemical evidence to be madecassic acid 28-O-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside, madasiatic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside, and 3beta,6beta,23-trihydroxyolean-12-en-28-oic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside, respectively.
Two new triterpenoid saponins from Dianthus superbus L.
Chen, Xia; Luo, Jian-Guang; Kong, Ling-Yi
2010-06-01
Two new triterpenoid saponins (1 and 2) were isolated from the dried aerial parts of Dianthus superbus L. (Caryophyllaceae). Their structures were elucidated on the basis of spectral data to be 3-O-beta-D-glucopyranosyl olean-9(11),12-diene-23,28-dioic acid 28-O-beta-D-glucopyranoside (1) and 3-O-beta-D-glucopyranosyl olean-11,13(18)-diene-23,28-dioic acid 28-O-beta-D-glucopyranoside (2).
27-Hydroxyoleanolic acid type triterpenoid saponins from Anemone raddeana rhizome.
Fan, Li; Lu, Jin-Cai; Xue, Jiao; Gao, Song; Xu, Bei-Bei; Cao, Bai-Yi; Zhang, Jing-Jing
2010-02-01
Two new 27-hydroxyoleanolic acid type triterpenoid saponins were isolated from the rhizomes of Anemone raddeana Regel. The structures of the two compounds were elucidated as 27-hydroxyoleanolic acid 3-O-beta-D-glucopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (1) and 3-O-alpha-L-rhamnopyranosyl (1 --> 2)[beta-D-glucopyranosyl (1 --> 4)]-alpha-L-arabinopyranosyl-27-hydroxyoleanolic acid 28-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranoside (2) on the basis of chemical and spectral evidence.
Yan, Sensen; Lin, Haijun; Huang, Huilian; Yang, Min; Xu, Bohui; Chen, Guangtong
2018-05-29
Biotransformation of oleanolic acid (OA) by Circinella muscae AS 3.2695 was investigated. Nine hydroxylated and glycosylated metabolites (1-9) were obtained. Their structures were elucidated as 3β,7β-dihydroxyolean-12-en-28-oic acid (1), 3β,7β,21β-trihydroxyolean-12-en-28-oic acid (2), 3β,7α,21β-trihydroxyolean-12-en- 28-oic acid (3), 3β,7β,15α-trihydroxyolean-12-en-28-oic acid (4), 7β,15α-dihydroxy- 3-oxo-olean-12-en-28-oic acid (5), 7β-hydroxy-3-oxo-olean-12-en-28-oic acid (6), oleanolic acid-28-O-β-D-glucopyranosyl ester (7), 3β,21β-dihydroxyolean-12-en-28- oic acid-28-O-β-D-glucopyranosyl ester (8), and 3β,7β,15α-trihydroxyolean-12-en- 28-oic acid-28-O-β-D-glucopyranosyl ester (9) by spectroscopic analysis. Among them, compounds 4 and 9 were new compounds. In addition, anti-inflammatory activities were assayed and evaluated for the isolated metabolites. Most of the metabolites exhibited significant inhibitory activities on lipopolysaccharides-induced NO production in RAW 264.7 cells.
Perera, Wilmer H; Ghiviriga, Ion; Rodenburg, Douglas L; Alves, Kamilla; Bowling, John J; Avula, Bharathi; Khan, Ikhlas A; McChesney, James D
2017-03-01
Two diterpene glycosides were isolated from a commercial Stevia rebaudiana leaf extract. One was found to be 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid-(2-O-β-d-xylopyranosyl-3-O-β-d-glucopyranosyl- β-d-glucopyranosyl) ester (rebaudioside T), whereas the other was determined to be 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid-(6-O-α-l-arabinopyranosyl-β-d-glucopyranosyl) ester (rebaudioside U). In addition, five C-19 sugar free derivatives were prepared and identified as follows: 13-[(2-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)]oxy]kaur-16-en-19-oic acid (dulcoside A 1 ); 13-[(2-O-β-d-xylopyranosy-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]kaur-16-en-19-oic acid; 13-[(2-O-β-d-xylopyranosyl-β-d-glucopyranosyl-)oxy]kaur-16-en-19-oic acid; 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-xylopyranosyl-)oxy]kaur-16-en-19-oic acid (rebaudioside R 1 ) and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]kaur-16-en-19-oic acid, respectively. Chemical structures were determined by NMR experiments. HPLC analyses were also useful to differentiate different steviol-C13 sugar substituent patterns by elution position. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure elucidation of two triterpenoid saponins from rhizome of Anemone raddeana Regel.
Lu, Jincai; Xu, Beibei; Gao, Song; Fan, Li; Zhang, Hongfen; Liu, Runxiang; Kodama, Hiroyuki
2009-09-01
Two new 27-hydroxy-oleanolic acid type triterpenoid saponins, raddeanoside 20 (1) and raddeanoside 21(2) were isolated from the rhizome of Anemone raddeana Regel. The structures of the two compounds were elucidated as 27-hydroxy-oleanolic acid 3-O-alpha-L-rhamnopyranosyl(1-->2) [beta-D-glucopyranosyl (1-->4)]-alpha-L-arabinopyranoside (1) and 3-O-alpha-L-rhamnopyranosyl (1-->2)-alpha-L-arabinopyranosyl-27-hydroxy-oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranoside (2) on the basis of chemical and spectral evidence.
Inagaki, M; Shibai, M; Isobe, R; Higuchi, R
2001-12-01
Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.
Sesquiterpenoids and phenolics from roots of Taraxacum udum.
Michalska, Klaudia; Marciniuk, Jolanta; Kisiel, Wanda
2010-07-01
From roots of Taraxacum udum, two new and four known sesquiterpene lactones were isolated, together with five known phenolic compounds. The new compounds were characterized as 11beta, 13-dihydrotaraxinic acid and taraxinic acid 6-O-acetyl-beta-glucopyranosyl ester by spectroscopic methods, especially 1D and 2D NMR, and by comparison with structurally related compounds. The plant material was shown to be a good source of taraxinic acid derivatives. Copyright 2009 Elsevier B.V. All rights reserved.
Two new triterpenoid saponins from rhizome of Anemone amurensis.
Lv, Chong-Ning; Fan, Li; Wang, Jing; Qin, Ru-Lan; Xu, Tan-Ye; Lei, Tian-Li; Lu, Jin-Cai
2015-01-01
Two new triterpenoid saponins were isolated from the 70% ethanol extract of the rhizome of Anemone amurensis, they are oleanolic acid 28-O-β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (1) and 23,27-dihydroxy oleanolic acid 3-O-α-l-arabinopyranoside (2). The structures of 1 and 2 were elucidated on the basis of chemical and spectral analysis, including 1D and 2D NMR data and HR-ESI-MS. Compounds 1 and 2 were tested for cytotoxicities against three human cancer cell lines (A549, Hep-G2, and MCF-7). Compound 1 showed potent cytotoxicity with IC50 values of 34.76, 41.17, and 28.92 μM, respectively, while compound 2 with IC50>100 μM.
Three new triterpenoid saponins from Dianthus superbus.
Luo, Jian-Guang; Chen, Xia; Kong, Ling-Yi
2011-01-01
Three new triterpenoid saponins (1-3) were isolated from the dried aerial parts of Dianthus superbus L. (Caryophyllaceae). Their structures were established as 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-6-O-((3S)-3-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (1), 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-glucopyranosyl(1→3)][β-D-6-O-((3S)-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (2), 3-O-α-L-arabinopyranosyl-3β,16α-dihydroxyolean-12-en-23,28-dioic acid 28-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside (3), on the basis of various spectroscopic analyses and chemical degradations.
Antiinflammatory triterpenoid saponins from the seeds of Aesculus chinensis.
Wei, Feng; Ma, Lin-Yun; Jin, Wen-Tao; Ma, Shuang-Cheng; Han, Guo-Zhu; Khan, Ikhlas Ahmad; Lin, Rui-Chao
2004-10-01
Phytochemical study of the ethanol extract of the seeds of Aesculus chinensis led to the isolation of a new triterpenoid saponin (6), together with five known triterpenoid saponins (1-5). The structure of the new compound was elucidated on the basis of spectral data to be 21,28-di-O-acetylprotoaescigenin-3-O-[beta-D-glucopyranosyl(1-2)][beta-D-glucopyranosyl(1-4)]-beta-D-glucopyranosiduronic acid (aesculiside A, 6). The antiinflammatory activities of the four main saponins (1-4) were compared with those of total saponin extracts, and single saponins showed more potent activity than total saponin extracts in mice.
Sesquiterpene lactones from Taraxacum obovatum.
Michalska, Klaudia; Kisiel, Wanda
2003-02-01
Two new guaianolide glucosides, deacetylmatricarin 8-O-beta-glucopyranoside and 11beta-hydroxyleukodin 11-O-beta-glucopyranoside, were isolated from roots of Taraxacum obovatum, along with four known sesquiterpene lactones, deacetylmatricarin, sonchuside A, taraxinic acid beta-glucopyranosyl ester and its 11beta,13-dihydro derivative. Their structures were established by spectral methods.
[Chemical constituents contained in seeds of Notopterygium franchetii].
Zhang, Yanxia; Jiang, Shunyuan; Xu, Kaijie; Shi, Haili; Zhou, Yi; Deng, Wenlong; Ding, Lisheng; Peng, Shulin
2012-04-01
To study the chemical constituents from the seeds of Notopterygium franchetii. Ethanol extracts of seeds N. franchetii were separated and purified by such methods as normal and reversed phase column chromatographies and thin-layer chromatography and structurally elucidated by MS and NMR evidences. Twenty nine compounds were separated, they were isoimperatorin (1), [3-sitosterol (2), phellopterin (3), bergapten (4), N-tetra, hexa, octacosanoylanthranilic acid (5-7), daucosterol (8), oxypeucedanin hydrate (9), umbelliferone (10), demethylfuropinnarin (11), (2S, 3S, 4R, 8E)-2-[(2'R)- 2'-hydroxydoco, trico, tetraco, entaco, hexaco sanosylamino] -octadecene-1, 3, 4-triol (12-16), (-)-oxypeucedanin (17), diosmetin (18), bergaptol-O-beta-D-glucopyranoside (19), nodakenin (20), 1'-O-beta-D-glucopyranosyl-(2R, 3S)-3-hydroxynodakenetin (21), uracil (22), decuroside V (23), 8-O-beta-D-glucopyranosyl-5-hydroxypsoralen (24), 8-O-beta-D-glucopyranosyl-5-methoxylpsoralen (25), diosmin (26), alaschanioside C (27), kynurenic acid (28) and mannitol (29). All of these compounds were separated from the seeds of N. franchetii for the first time. Of them, 18, 22, 26 and 29 were firstly obtained from genus Notopterygium.
Dastmalchi, Keyvan; Wang, Isabel; Stark, Ruth E
2016-11-01
The need for safe, effective preservatives is a prominent issue in the food and drug industries, reflecting demand for natural alternatives to synthetic chemicals viewed as harmful to consumers and the environment. Thus, this study determined the identities and scavenging capacities of antioxidant metabolites produced as a response to potato tuber wounding, using activity-guided fractionation of polar extracts from a Yukon Gold cultivar that had previously exhibited exceptionally high radical-scavenging activity. Activity-guided fractionation using the ABTS(+) radical scavenging assay and LC-MS with TOF-MS for compositional analysis of the most potent antioxidant fractions yielded identification of nine constituents: coumaroylputrescine; feruloylquinic acid; isoferuloylputrescine; ferulic acid; 22,25-dimethoxy-3-[[2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-methyl-β-d-glucopyranosyl)-β-d-glucopyranosyl]oxy]-(3β)-lanost-9(11)-en-24-one; 4-(2Z)-2-decen-1-yl-5-[1-(4-hydroxyphenyl)decyl]-1,2-benzenediol; 8-[(2E)-3,7-dimethyl-2,6-octadien-1-yl]-5-hydroxy-2,8-dimethyl-6-(3-methyl-2-buten-1-yl)-2H-1-benzopyran-4,7(3H,8H)-dione; 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-20-[(6-O-β-d-xylopyranosyl-β-d-glucopyranosyl)oxy]-dammar-24-en-19-al; (3β)-28-oxo-28-(phenylmethoxy)oleanan-3-yl 2-O-β-d-galactopyranosyl-3-O-(phenylmethyl)-, butyl ester β-d-glucopyranosiduronic acid. A positive correlation was observed between the scavenging activities and the polarities of the active fractions. The antioxidant capacities of the fractions were also characterised by monitoring the activity throughout a 45-minute assay period. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dastmalchi, Keyvan; Wang, Isabel; Stark, Ruth E.
2016-01-01
The need for safe, effective preservatives is a prominent issue in the food and drug industries, reflecting demand for natural alternatives to synthetic chemicals viewed as harmful to consumers and the environment. Thus, this study determined the identities and scavenging capacities of antioxidant metabolites produced as a response to potato tuber wounding, using activity-guided fractionation of polar extracts from a Yukon Gold cultivar that had previously exhibited exceptionally high radical-scavenging activity. Activity-guided fractionation using the ABTS•+ radical scavenging assay and LC-MS with TOF-MS for compositional analysis of the most potent antioxidant fractions yielded identification of nine constituents: coumaroylputrescine; feruloylquinic acid; isoferuloylputrescine; ferulic acid; 22,25-dimethoxy-3-[[2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-methyl-β-D-glucopyranosyl)-β-D-glucopyranosyl]oxy]-(3β)-lanost-9(11)-en-24-one; 4-(2Z)-2-decen-1-yl-5-[1-(4-hydroxyphenyl)decyl]-1,2-benzenediol; 8-[(2E)-3,7-dimethyl-2,6-octadien-1-yl]-5-hydroxy-2,8-dimethyl-6-(3-methyl-2-buten-1-yl)-2H-1-benzopyran-4,7(3H,8H)-dione; 3-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-20-[(6-O-β-D-xylopyranosyl-β-D-glucopyranosyl)oxy]-dammar-24-en-19-al; (3β)-28-oxo-28-(phenylmethoxy)oleanan-3-yl 2-O-β-D-galactopyranosyl-3-O-(phenylmethyl)-, butyl ester β-D-glucopyranosiduronic acid. A positive correlation was observed between the scavenging activities and the polarities of the active fractions. The antioxidant capacities of the fractions were also characterised by monitoring the activity throughout a 45-minute assay period. PMID:27211673
[Studies on chemical constituents from rhizome of Anemone flaccida].
Zhang, Lan-tian; Takaishi, Yoshihisa; Zhang, Yan-wen; Duan, Hong-quan
2008-07-01
To study the chemical constituents from Anemone flaccida. Chemical constituents were isolated by repeated column chromatography (silica gel, Toyopearl HW-40C and preparative HPLC). The structures were elucidated on the basis of spectral data analysis. Twelve triterpenes were isolated and their structures were identified as follow: oleanolic acid (1), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranoside (2), eleutheroside K (3), oleanolic acid 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranoside (4), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-alpha-L-arabinofurnoside (5), oleanolic acid 3-O-beta-D-glccuronopyranose (6), oleanolic acid 3-O-beta-D-glccuronopyranose methyl ester (7), oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranosyl (8), oleanolic acid 3-O-beta-D-glccuronopyranose 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (9), oleanolic acid 3-O-beta-D-glccopyranosyl methyl ester 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (10), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (11), oleanolic acid 3-O-alpha-L-rh-amnopyranosyl-(1-->2)-alpha-L-arabinopyrnosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (12). compounds 5-8, 10, 12 were isolated from this plant for the first time. Compounds 2, 5 and 11 showed positive anti-tumor activities.
Saponins from Albizia lebbeck.
Pal, B C; Achari, B; Yoshikawa, K; Arihara, S
1995-03-01
Three main saponins named albiziasaponins A, B, and C were isolated from the barks of Albizia lebbeck. Their structures were established through spectral analyses as acacic acid lactone 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- beta-D-glucopyranoside, 3-O-beta-D-glucopyranosyl-(1-->2)-O-[alpha-L-arabinopyranosyl-(1-- >6)]- beta-D-glucopyranoside and 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- O- [beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranoside.
New triterpenoid saponins from Leontice smirnowii.
Tabatadze, Nino; Bun, Sok-Siya; Tabidze, Badri; Mshvildadze, Vakhtang; Dekanosidze, Genri; Ollivier, Evelyne; Elias, Riad
2010-10-01
Three new triterpene saponins, leonticins I (1), J (2) and L (3) were isolated from the tubers of Leontice smirnowii. On the basis of spectroscopic methods, including 2D NMR experiments (DEPT, gs-COSY, gs-HMQC, gs-HMBC and gs-HSQC-TOCSY), mass spectrometry (HR-ESI-MS) and chemical degradation, the structures of the new compounds were elucidated as 3-O-β-D-glucopyranosyl-(1 → 3)-[β-D-xylopyranosyl-1 → 2)]-α-L-arabinopyranosyl-28-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl]-3β-hydroxy-30-norolean-12,20(29)-dien-28-oic acid (1), 3-O-[β-D-xylopyranosyl-(1 → 3)-β-D-galactopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-arabinopyranosyl]-28-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl]-3β-hydroxy-30-norolean-12,20(29)-dien-28-oic acid (2) and 3-O-[β-D-xylopyranosyl-(1 → 3)-β-D-galactopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)]-[β-D-xylopyranosyl-(1 → 2)]-α-L-arabinopyranosyl]-28-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl]-3β-hydroxy-30-norolean-12,20(29)-dien-28-oic acid (3), respectively. The aglycone 3β-hydroxy-30-norolean-12,20(29)-dien-28-oic acid was observed for the first time in Leontice species. Copyright © 2010 Elsevier B.V. All rights reserved.
Two new triterpenoid saponins from Gymnema sylvestre.
Zhu, Xu-Min; Xie, Ping; Di, Ying-Tong; Peng, Shu-Lin; Ding, Li-Sheng; Wang, Ming-Kui
2008-05-01
Two new oleanane-type triterpenoid saponins, gymnemoside-W1 and W2, together with seven known compounds were isolated from the leaves of Gymnema sylvestre R. Br. By means of spectral and chemical analysis, the structures of the new compounds were elucidated as 16 beta-hydroxyl olean-12-en-3-O-[beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside(1) and 16 beta,21 beta,28-trihydroxyl-olean-12-ene-3-O-glucoronopyranoside (2). The EtOH/H(2)O extracts of this plant were shown to be able to inhibit glucose absorption in rats.
Minor diterpene glycosides from the leaves of Stevia rebaudiana.
Ibrahim, Mohamed A; Rodenburg, Douglas L; Alves, Kamilla; Fronczek, Frank R; McChesney, James D; Wu, Chongming; Nettles, Brian J; Venkataraman, Sylesh K; Jaksch, Frank
2014-05-23
Two new diterpene glycosides in addition to five known glycosides have been isolated from a commercial extract of the leaves of Stevia rebaudiana. Compound 1 (rebaudioside KA) was shown to be 13-[(O-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid 2-O-β-d-glucopyranosyl-β-d-glucopyranosyl ester and compound 2, 12-α-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester. Five additional known compounds were identified, rebaudioside E, rebaudioside M, rebaudioside N, rebaudioside O, and stevioside, respectively. Enzymatic hydrolysis of stevioside afforded the known ent-kaurane aglycone 13-hydroxy-ent-kaur-16-en-19-oic acid (steviol) (3). The isolated metabolite 1 possesses the ent-kaurane aglycone steviol (3), while compound 2 represents the first example of the isomeric diterpene 12-α-hydroxy-ent-kaur-16-en-19-oic acid existing as a glycoside in S. rebaudiana. The structures of the isolated metabolites 1 and 2 were determined based on comprehensive 1D- and 2D-NMR (COSY, HSQC, and HMBC) studies. A high-quality crystal of compound 3 has formed, which allowed the acquisition of X-ray diffraction data that confirmed its structure. The structural similarities between the new metabolites and the commercially available stevioside sweeteners suggest the newly isolated metabolites should be examined for their organoleptic properties. Accordingly rebaudiosides E, M, N, O, and KA have been isolated in greater than gram quantities.
New pregnane and steroidal glycosides from Tribulus terrestris L.
Liu, Tao; Chen, Gang; Yi, Guo-Qing; Xu, Jian-Kun; Zhang, Tian-Long; Hua, Hui-Ming; Pei, Yue-Hu
2010-03-01
Three new steroidal saponins were isolated from the fruits of Tribulus terrestris L. Their structures were elucidated by spectroscopic and chemical analysis as 16beta-(4'-methyl-5'-O-beta-D-glucopyranosyl-pentanoxy)-5alpha-pregn-3beta-ol-12,20-dione-3-O-beta-D-glucopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 4)-beta-D-galactopyranoside (1), 2alpha,3beta-dihydroxy-5alpha-pregn-16-en-20-one 3-O-beta-D-glucopyranosyl-(1 --> 4)-beta-D-galactopyranoside (2) and 26-O-beta-D-glucopyranosyl-(25R)-5alpha-furostan-20(22)-en-2alpha,3beta,26-triol-3-O-beta-D-glucopyranosyl-(1 --> 4)-beta-D-galactopyranoside (3).
Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria.
Cioffi, Giuseppina; Morales Escobar, Luis; Braca, Alessandra; De Tommasi, Nunziatina
2003-08-01
Four chalcone glycosides (1-4), including three new natural products, and three flavanones (5-7) were isolated from the methanol extract of stem bark of Maclura tinctoria. The new compounds have been characterized as 4'-O-beta-D-(2' '-p-coumaroyl)glucopyranosyl-4,2',3'-trihydroxychalcone (1), 4'-O-beta-D-(2' '-p-coumaroyl-6' '-acetyl)glucopyranosyl-4,2',3'-trihydroxychalcone (2), and 3'-(3-methyl-2-butenyl)-4'-O-beta-D-glucopyranosyl-4,2'-dihydroxychalcone (3); the known derivatives were elucidated as 4'-O-beta-D-(2' '-acetyl-6' '-cinnamoyl)glucopyranosyl-4,2',3'-trihydroxychalcone (4), eriodictyol 7-O-beta-D-glucopyranoside (5), naringenin (6), and naringenin 4'-O-beta-D-glucopyranoside (7). Their structures were determined by 1D and 2D NMR and ESIMS. The antioxidant activity of all the isolated compounds was determined by measuring free-radical-scavenging effects using two different assays, namely, the Trolox Equivalent Antioxidant Capacity (TEAC) assay and the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay). The results showed that compound 3 was the most active in both antioxidant assays.
Cardenolide glycosides from seeds of Corchorus olitorius.
Nakamura, T; Goda, Y; Sakai, S; Kondo, K; Akiyama, H; Toyoda, M
1998-12-01
Three new cardenolide glycosides were isolated from the seeds of Corchorus olitorius L. On the basis of chemical and spectroscopic evidence, their structures were established as cannogenol 3-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-boivinopyranoside, periplogenin 3-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-digitoxopyranoside and digitoxigenin 3-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl-(1-->4)-O-beta - D-digitoxopyranoside.
Ingasaponin, a complex triterpenoid saponin with immunological adjuvant activity from Inga laurina.
Cruz, Maria de Fátima Simão Jucá; Pereira, Gabriela Moysés; Ribeiro, Marcela Gonçalves; da Silva, Ari Miranda; Tinoco, Luzineide Wanderley; da Silva, Bernadete Pereira; Parente, José Paz
2016-02-01
As part of our search of bioactive saponins from Brazilian plants, phytochemical study of the seeds of Inga laurina led to the isolation of a new complex triterpenoid saponin, named ingasaponin. It is the first saponin isolated from a species of Inga genus. It was isolated by using chromatographic methods and its structural elucidation was performed using detailed analyses of (1)H and (13)C NMR spectra including 2D-NMR spectroscopic techniques and chemical conversions. Its structure was established as 21-[[(2E,6S)-6-[[6-deoxy-4-O-[(2E,6S)-6-[(β-D-glucopyranosyl)oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]-[(β-D-glucopyranosyl)oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]-[(β-D-glucopyranosyl)oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]-[(β-D-glucopyranosyl)oxy]-2-(hydroxymethyl)-6-methyl-1-oxo-2,7-octadienyl]oxy]-16-hydroxy-3-[[O-β-D-xylopyranosyl-(1 → 2)-O-α-L-arabinopyranosyl-(1 → 6)-2-(acetylamino)-2-deoxy-β-D-glucopyranosyl]oxy]-(3β,16α,21β)-olean-12-en-28-oic acid O-α-L-arabinofuranosyl-(1 → 4)-O-[β-D-glucopyranosyl-(1 → 3)]-O-6-deoxy-α-L-mannopyranosyl-(1 → 2)-β-D-glucopyranosyl ester (1). The hemolytic potential of 1 was evaluated using in vitro assays, and its adjuvant activity on the cellular immune response against ovalbumin antigen was investigated using in vivo models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Noté, Olivier Placide; Ngo Mbing, Joséphine; Kilhoffer, Marie-Claude; Pegnyemb, Dieudonné Emmanuel; Lobstein, Annelise
2018-02-19
One new acacic acid-type saponin, named lebbeckoside C (1), was isolated from the stem barks of Albizia lebbeck. Its structure was established on the basis of extensive analysis of 1D and 2D NMR ( 1 H, 13 C NMR, DEPT, COSY, TOCSY, ROESY, HSQC and HMBC) experiments, HRESIMS studies, and by chemical evidence as 3-O-[β-d-xylopyranosyl-(l→2)-β-d-fucopyranosyl-(1→6)-[β-d-glucopyranosyl(1→2)]-β-d-glucopyranosyl]-21-O-{(2E,6S)-6-O-{4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-β-d-quinovopyranosyl}-2,6-dimethylocta-2,7-dienoyl}acacic acid 28 O-[β-d-quinovopyranosyl-(l→3)-[α-l-arabinofuranosyl-(l→4)]-α-l-rhamnopyranosyl-(l→2)-β-d-glucopyranosyl] ester. The isolated saponin (1) displayed significant cytotoxic activity against the human glioblastoma cell line U-87 MG and TG1 stem-like glioma cells isolated from a patient tumor with IC 50 values of 1.69 and 1.44 μM, respectively.
Zhu, Cunsheng; Peng, Wenjie; Li, Yuwen; Han, Xiuwen; Yu, Biao
2006-06-12
3-O-(beta-D-xylopyranosyl-(1-->2)-beta-D-glucopyranosyl)-3'-O-(beta-D-glucopyranosyl)tamarixetin, the putative flavonal glycoside named aescuflavoside A, isolated from the seeds of Aesculus chinensis, is synthesized via regioselective glycosylation of 7-O-benzyltamarixetin with glycosyl bromides under phase-transfer-catalyzed conditions.
Two new triterpenoid glycosides isolated from Aesculus assamica GRIFF.
Liu, Hongwei; Zhang, Xue; Gao, Hao; Wang, Nali; Jin, Sanlin; Cai, Bin; Yao, Xinsheng; Cai, Guoping
2005-10-01
Phytochemical study of the ethanol extract of the seeds of Aesculus assamica led to the isolation of two new triterpenoid saponins. The structure of the new compounds were elucidated on the basis of spectral data to be 28-O-acetyl-21-O-(4-O-angeloyl)-6-deoxy-beta-glucopyranosyl-3-O-[beta-glucopyranosyl(1-2)-O-[beta-glucopyranosyl(1-4)]-beta-glucuronopyranosyl]protoaescigenin (1), and 21-O-(4-O-angeloyl)-6-deoxy-beta-glucopyranosyl-3-O-[beta-glucopyranosyl(1-2)-O-[beta-glucopyranosyl(1-4)]-beta-glucuronopyranosyl]protoaescigenin (2). Their in vitro bioactivity against plant pathogenic fungus Pyricularia oryzae and cytotoxicity against K562 and HCT-15 cell lines were evaluated.
Two new furostanol saponins from Tribulus terrestris.
Xu, Ya-Juan; Xu, Tun-Hai; Zhou, Hai-Ou; Li, Bo; Xie, Sheng-Xu; Si, Yun-Shan; Liu, Yue; Liu, Tong-Hua; Xu, Dong-Ming
2010-05-01
Two new furostanol saponins were isolated from the fruits of Tribulus terrestris L. Their structures were established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furost-20(22)-en-3beta,26-diol-3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-beta-D-galactopyranoside (1) and 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furost-20(22)-en-12-one-3beta,26-diol-3-O-beta-D-galactopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 4)-beta-D-galactopyranoside (2) on the basis of spectroscopic data as well as chemical evidence.
Synthesis of ent-kaurane diterpene monoglycosides.
Chaturvedula, Venkata Sai Prakash; Klucik, Josef; Upreti, Mani; Prakash, Indra
2011-10-03
Synthesis of two ent-kaurane diterpene glycosides, steviol 19-O-β-D-glucopyranosiduronic acid (steviol glucuronide, 5), and 13-hydroxy ent-kaur-16-en-19-oic acid-β-D-glucopyranosyl ester (7) has been achieved from a common starting material, steviol, using phase transfer catalyst. Also, synthesis of an additional 17-nor-ent-kaurane glycoside, namely 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester (10) was performed using the starting material isosteviol and similar synthetic methodology. Synthesis of all three steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR as well as mass spectral (MS) data.
Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species.
Milella, Luigi; Bader, Ammar; De Tommasi, Nunziatina; Russo, Daniela; Braca, Alessandra
2014-10-01
The aim of this study was to investigate the secondary metabolites content of Scorzonera papposa DC., an edible plant eaten in the desert region of Jordan and to assess its antioxidant and free radical-scavenging activity. By using this bioassay-oriented approach nine compounds, including the new natural compounds (6-trans-p-coumaroyl)-3-O-β-D-glucopyranosyl-2-deoxy-D-riburonic acid (1), (6-cis-p-coumaroyl)-3-O-β-D-glucopyranosyl-2-deoxy-D-riburonic acid (2a), (6-trans-p-coumaroyl)-3-O-β-D-glucopyranosyl-2-deoxy-D-riburonic acid methyl ester (3), and (6-trans-p-coumaroyl)-3-O-β-D-glucopyranosyl-(5-acetyl)-2-deoxy-D-riburonic acid (4), having the rare deoxy-D-riburonic acid moiety, were isolated. Their structures were elucidated by UV, MS, (1)H and (13)C NMR and 2D NMR. The antioxidant activity of the S. papposa pure compounds and of related derivatives isolated from another Scorzonera species (S. judaica Eig.) was also tested. The Relative Antioxidant Capacity Index (RACI) was applied as an integrated method to compare the antioxidant activities obtained using different chemical methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Zhen; Lu, Yan-Hua; Feng, Xu; Zou, Ying-Xin; Diao, Zhuo; Chu, Zhi-Yong
2017-07-01
The pentacyclic triterpenoid hederagenin (1) was subjected to biotransformation by Cunninghamella echinulate CGMCC 3.2000, Mucor subtilissimus CGMCC 3.2454 and Pseudomonas oleovorans CGMCC 1.1641. Three metabolites were obtained. On the basis of nuclear magnetic resonance and high-resolution mass spectral analyses, their structures were characterized as 3β, 23-dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester (2), 3β, 15α, 23-trihydroxyolean-12-en-28-oic acid (3), 1β, 3β, 23-trihydroxyolean-12-en-28-oic acid (4), and metabolite (3) was a new compound. This was the first report on the biotransformation of hederagenin.
Triterpenoid glycosides from Bacopa monnieri.
Sivaramakrishna, Chillara; Rao, Chirravuri V; Trimurtulu, Golakoti; Vanisree, Mulabagal; Subbaraju, Gottumukkala V
2005-12-01
Two triterpenoid glycosides have been isolated along with 10 known saponins from Bacopa monnieri. Structures of the compounds have been elucidated as 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl] jujubogenin (1) and 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl] pseudojujubogenin (2) by high resolution NMR spectral data and chemical correlations. Further, the chemical compositions of bacosides A and B have been delineated.
Triterpenoid saponins from the root of Anemone tomentosa.
Wang, Yi; Kang, Wei; Hong, Liang-jian; Hai, Wen-li; Wang, Xiao-yang; Tang, Hai-feng; Tian, Xiang-rong
2013-01-01
Three new triterpenoid saponins, tomentoside A (1), B (2) and C (3), along with four known saponins (4-7) were isolated from the root of Anemone tomentosa. The structures of the new compounds were elucidated as 3-O-β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (1), 3-O-β-D-ribopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (2) and 3-O-β-D-galactopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (3) on the basis of chemical and spectral evidence. In the oligosaccharide chains of compound 3, the characteristic D-galactose residue is a rare structural feature and secondly encountered among triterpenoid saponins from Anemone.
Electrospray ionization mass spectrometry of mixtures of triterpene glycosides with L-phenylalanine
NASA Astrophysics Data System (ADS)
Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.; Borisenko, S. N.
2011-09-01
Electrospray-ionization mass spectrometry (ESI-MS) was used to investigate for the first time the molecular complexation of L-phenylalanine with hederagenin 3-O- α- L-rhamnopyranosyl-(1 → 2)-O- α- L-arabinopyranoside ( α-hederin) and its 28-O- α- L-rhamnopyranosyl-(1 → 4)-O-β- D-glucopyranosyl-(1 → 6)-O-β- D-glucopyranosyl ester (hederasaponin C). The glycoside/ L-phenylalanine complexes with a 1:1 molar ratio turned out to be most stable. The structures of the glycosides and L-phenylalanine have been concluded to have an impact on the complexation process.
Anti-inflammatory and quinone reductase inducing compounds from fermented noni exudates
USDA-ARS?s Scientific Manuscript database
A new fatty acid ester disaccharide, 2-O-(ß-D-glucopyranosyl)-1-O- (2E,4Z,7Z)-deca-2,4,7-trienoyl-ß-D-glucopyranose (1), a new ascorbic acid derivative, 2-caffeyl-3-ketohexulofuranosonic acid '-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (5), were isolated along with thirteen k...
Chemical constituents and biological activities of Dianthus elegans var. elegans.
Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla
2018-06-01
Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.
Glycosides from Bougainvillea glabra.
Simon, András; Tóth, Gábor; Duddeck, Helmut; Soliman, Hesham S M; Mahmoud, Ibrahim I; Samir, Hanan
2006-01-01
Three glycosides were isolated from Bougainvillea glabra and their structures were determined by extensive use of 1D and 2D NMR spectroscopy ((1)H and (13)C). First compound was identical to momordin IIc (quinoside D) [beta-D-glucopyranosyl 3-O-[beta-D-xylopyranosyl-(1 --> 3)-O-(beta-D-glucopyranosyluronic acid)] oleanolate], second compound was quercetin 3-O-alpha-L-(rhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopy-ranosyl(1 --> 2)]-beta-D-galactopyranoside and third compound was its derivative quercetin 3-O-alpha-L-(4-caffeoylrhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopyranosyl (1 --> 2)]-beta-D-galactopyranoside, a new natural product.
Bokor, Éva; Szilágyi, Enikő; Docsa, Tibor; Gergely, Pál; Somsák, László
2013-11-15
Microwave assisted condensation of O-perbenzoylated C-(β-d-glucopyranosyl)formic acid with 1,2-diaminobenzenes in the presence of triphenylphosphite gave the corresponding O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in moderate yields. O-Perbenzoylated C-(β-d-glucopyranosyl)formamide and -thioformamide were transformed into the corresponding ethyl C-(β-d-glucopyranosyl)formimidate and -thioformimidate, respectively, by Et3O·BF4. Treatment of the formimidate with 1,2-diaminobenzenes afforded O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in good to excellent yields. Similar reaction of the thioformimidate gave these compounds in lower yields. The O-benzoyl protecting groups were removed by the Zemplén protocol. These test compounds were assayed against rabbit muscle glycogen phosphorylase (GP) b, the prototype of liver GP, the rate limiting enzyme of glycogen degradation. The best inhibitors were 2-(β-d-glucopyranosyl)-4-methyl-benzimidazole (Ki=2.8μM) and 2-(β-d-glucopyranosyl)-naphtho[2,3-d]imidazole (Ki=2.1μM) exhibiting a ∼3-4 times stronger binding than the unsubstituted parent compound. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potent antitrypanosomal triterpenoid saponins from Mussaenda luteola
USDA-ARS?s Scientific Manuscript database
Five new triterpenoid saponins, heinsiagenin A 3-O-[a-L-rhamnopyranosyl-(1->2)-Beta-D-glucopyranosyl-(1->2)]-B-D-glucopyranoside (1), heinsiagenin A 3-O-[a-L-rhamnopyranosyl-(1->2)-B-D-glucopyranosyl- (1->2)]-[B-D-glucopyranosyl-(1-4)]-B-D-glucopyranoside (2). 2a-hydroxyheinsiagenin A 3-o-[a-L-rhamn...
A new aurone and two rare metabolites from the leaves of Diospyros melanoxylon.
Mallavadhani, Uppuluri V; Mahapatra, Anita
2005-01-01
A new aurone, 4,6-dihydroxy-2-[alpha,alpha-(4-hydroxyphenyl)hydroxy]methylene-3(2H)-benzofuranone (2) and two rare metabolites viz. selin-4(15)-en-1beta,11-diol (5) and 5,7-dihydroxy-3-O-beta-D-glucopyranosyl-l''' --> 6''glucopyranoside-2-{4-hydroxyphenyl}-4H-benzopyran-4-one (6) in addition to the known protocatechuic acid methyl ester (1), quercitin (3) and gallic acid (4) were isolated from the methanol extract of Diospyros melanoxylon leaves. The structures were elucidated by a combination of chemical and spectroscopic analysis. Interestingly, compound 2 was found to exist in both E- and Z-isomeric forms in a 15:85 ratio. The present isolation of compounds 2 and 5 assumes taxonomic significance as aurones and sesquiterpenes have not yet been reported from the Diospyros genus, consisting of more than 350 identified species.
Agoston, Károly; Dékány, Gyula; Lundt, Inge
2009-05-26
Four novel disaccharides of glycosylated 1,5-anhydro-D-ketoses have been prepared: 1,5-anhydro-4-O-beta-D-glucopyranosyl-D-fructose, 1,5-anhydro-4-O-beta-D-galactopyranosyl-D-fructose, 1,5-anhydro-4-O-beta-D-glucopyranosyl-D-tagatose, and 1,5-anhydro-4-O-beta-D-galactopyranosyl-D-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-beta-D-fructopyranose, was prepared from D-fructose and was converted into the D-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.
Two new steroidal saponins from Tribulus terrestris L.
Liu, Tao; Lu, Xuan; Wu, Biao; Chen, Gang; Hua, Hui-Ming; Pei, Yue-Hu
2010-01-01
Two new steroidal saponins were isolated from the fruits of Tribulus terrestris L. Their structures were elucidated by spectroscopic and chemical analysis as (23S,24R,25R)-5alpha-spirostane-3beta,23,24-triol-3-O-{alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-beta-D-galactopyranoside} (1) and (23S,24R,25S)-5alpha-spirostane-3beta,23,24-triol-3-O-{alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-beta-D-galactopyranoside} (2).
A new furostanol glycoside from Tribulus terrestris.
Xu, Yajuan; Liu, Yonghong; Xu, Tunhai; Xie, Shengxu; Si, Yunshan; Liu, Yue; Zhou, Haiou; Liu, Tonghua; Xu, Dongming
2010-01-27
Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furostane-20(22)-en-12-one-3beta, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (1) on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.
Six new C21 steroidal glycosides from Asclepias curassavica L.
Li, Jun-Zhu; Liu, Hai-Yang; Lin, Yi-Ju; Hao, Xiao-Jiang; Ni, Wei; Chen, Chang-Xiang
2008-07-01
Six new C(21) steroidal glycosides, named curassavosides A-F (3-8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (4), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (5), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-d-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (8), respectively. All compounds (1-8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.
Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae).
Mariani, Cristina; Braca, Alessandra; Vitalini, Sara; De Tommasi, Nunziatina; Visioli, Francesco; Fico, Gelsomina
2008-03-01
In this paper, we report studies on morphological, phytochemical, and biological aspects of a population belonging to Aconitum anthora L. Two compounds, quercetin 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (1) and kaempferol 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (2), together with two known flavonol glycosides (3-4) were isolated and identified from A. anthora. The antioxidant activity of the four identified flavonoids was screened by three in vitro tests.
Bacoside A3--a triterpenoid saponin from Bacopa monniera.
Rastogi, S; Pal, R; KulshreshthaDK
1994-05-01
A new triterpenoid saponin, bacoside A3, a constituent of bacosides the saponin mixture of Bacopa monniera, was isolated and characterized. Its structure was established as 3-beta-[O-beta-D-glucopyranosyl(1-->3)-O- [alpha-L-arabinofuranosyl(1-->2) ]O-beta-D-glucopyranosyl)oxy]jujubogenin by chemical and spectral analyses. The cis-isomer of ebelin lactone was also obtained as one of the artefacts of the aglycone and its structure revised.
Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.
Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi
2016-05-01
Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Chemical constituents from Piper wallichii.
Shi, Yan-Ni; Yang, Lian; Zhao, Jin-Hua; Shi, Yi-Ming; Qu, Yan; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Li, Xing-Cong; Xu, Min; Zhang, Ying-Jun
2015-01-01
Fifteen known compounds including four triterpenoids (1-4), one sterol (5), one diketopiperazine alkaloid (6) and nine phenolics (7-15) were isolated from the stems of Piper wallichii. Their structures were elucidated by means of spectroscopic analysis, and acidic hydrolysis in case of the 2-oxo-3β,19α,23-trihydroxyurs-12-en-28-oic acid β-D-glucopyranosyl ester (1). The structure of compound 1 was fully assigned by 1D and 2D NMR experiments for the first time. All isolates were tested for their antibacterial, antifungal, anti-inflammatory and antiplatelet aggregation bioactivities.
Zapata, A; Martín-Lomas, M
1992-10-09
Glycosylation of (+/- )-1-O-benzyl-2,3:5,6-di-O-isopropylidene-myo-inositol (4) with 6-O-acetyl-4-O-allyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranosyl trichloroacetimidate (6) gave the 4-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)- myo-inositol derivative (9) as a mixture of diastereoisomers which could be resolved by chromatography. Likewise alpha-glycosylation of 4 with 6-O-acetyl-2-azido-3-O-benzoyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-beta- D- galactopyranosyl)-D-glucopyranosyl trichloroacetimidate (10) gave the corresponding pseudotrisaccharide derivative 16 as a mixture of diastereomers which could be resolved partially by chromatography. alpha-Glycosylation of enantiomerically pure 2,3:5,6- (18) and 2,3:4,5-di-O-isopropylidene-1-O-menthoxycarbonyl-myo-inositol (19) with 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-glucopyranosyl trichloroacetimidate (20) gave the pseudodisaccharide derivatives 21 and 22, respectively. Likewise, alpha-glycosylation of 18 with 10 afforded a pseudotrisaccharide derivative (23).
[Studies on the chemical constituents of the stems of Piper betle].
Yin, Yan; Huang, Xiang-Zhong; Wang, Jiong; Dai, Jian-Hui; Liang, Hui; Dai, Yun
2009-06-01
To study the chemical constituents from the stems of Piper betle. Various chromatographic techniques were used to isolate and purify the constituents. The structures of these compounds were elucidated on the basis of spectral analysis. Nine compounds were isolated from the petroleum ester and ethyl acetate soluble fractions of the 70% acetone extract and their structures were identified as 6beta-hydroxystigmast-4-en-3-one (1), beta-sitosterol (2), stigmasterol (3), oleanolic acid (4), 23-hydroxyursan-12-en-28-oic acid (5), beta-sitosterol-3-O-beta-D-glucoside-6'-O-palmitate (6), beta-daucosterol (7), (2S) -4'-hydroxy- 2,3-dihydroflavonone-7-O-beta-D-glucoside (8) and alpha-ethyl glucoside (9). Among these compounds, 1, 3 -9 are isolated from this plant for the first time.
[Studies on the flavonoids from Dendranthema lavandulifolium].
Shen, Y X; Quan, L H; Guan, L; Chen, J M
1997-06-01
From the whole plant of Dendranthema lavandulifolium, two flavonoides (I, II) and two flavone glycosides (III, IV) were isolated. They were identified as luteolin (I), apigenin (II), 5-hydroxy-4'-methoxy-flavone-7-O-alpha-L-rhamnopyranosyl(1-->6)-beta- D-glucopyranosyl (acaciin III) and 5-hydroxy-4'-methoxy-flavone-7-O-alpha-L-rhamnopyranosyl (1-->6) [2-O-acetyl-beta-D-glucopyranosyl(1-->2)]-beta-D-glucopyranoside (IV) by means of IR, UV, 1H-NMR, 13C-NMR, EI-MS, HRFAB, etc. Among these four compounds, I, II were isolated for the first time from this plant, IV is a new compound.
Cytotoxic triterpenoid saponins from the fruits of Aesculus pavia L.
Zhang, Zhizhen; Li, Shiyou
2007-08-01
Continued chemical investigation on the fruits of North American Aesculus pavia L. resulted in the isolation and identification of 13 polyhydroxyoleanene pentacyclic triterpenoid saponins, named aesculiosides IIe-IIk (1-7), and IIIa-IIIf (8-13), together with 18 known compounds: aesculiosides Ia-Ie (14-18), IIa-IId (19-22), IVa-IVc (23-25), 3-O-[beta-D-galactopyranosyl(1-->2)]-alpha-L-arabinofuranosyl(1-->3)-beta-D-glucuronopyranosyl-21,22-O-diangeloyl-3beta,15 alpha,16 alpha,21 beta,22 alpha,28-hexahydroxyolean-12-ene (26), 3-O-[beta-D-glucopyranosyl(1-->2)]-alpha-L-arabinofuranosyl(1-->3)-beta-D-glucuronopyranosyl-21,22-O-diangeloyl-3beta,16 alpha,21 beta,22 alpha,24 beta,28-hexahydroxyolean-12-ene (27), 3-O-[beta-D-galactopyranosyl(1-->2)]-alpha-L-arabinofuranosyl(1-->3)-beta-D-glucuronopyranosyl-21,22-O-diangeloyl-3beta,16 alpha,21 beta,22 alpha,28-pentahydroxyolean-12-ene (28), R(1)-barrigenol (29), scopolin (30), and 5-methoxyscopolin (31). The structures of these compounds were elucidated by spectroscopic and chemical analyses. Compounds 14-22 and 26-28 were tested in vitro for their activity against 59 cell lines from nine different human cancers including leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast. It was found that compounds with two-acyl groups at C-21 and C-22 had cytotoxic activity for all cell lines tested with GI(50) 0.175-8.71 microM, while compounds without acyl groups at C-21 and C-22 had weak or no cytotoxic activity. These results suggest that the acyl groups at C-21 and C-22 are essential for their activity.
ERIC Educational Resources Information Center
Adesoye, Olumuyiwa G.; Mills, Isaac N.; Temelkoff, David P.; Jackson, John A.; Norris, Peter
2012-01-01
Stereospecific S[subscript N]2 conversion of configurationally pure acetobromoglucose (2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide) to the corresponding beta-D-glucopyranosyl azide is a useful exercise in the advanced organic undergraduate teaching laboratory. The procedure is safe and suitable for small-scale implementation, and firm…
Two new triterpenoid saponins from rhizome of Anemone raddeana Regel.
Fan, Li; Lu, Jincai; Wang, Jing; Cheng, Weiming; Yao, Yan; Liu, Runxiang; Zhang, Hongfen
2010-01-01
Two new 27-hydroxyoleanolic acid-type triterpenoid saponins, raddeanoside Ra (1) and raddeanoside Rb (2), were isolated from the rhizome of Anemone raddeana Regel. The structures of the two compounds were elucidated to be 27-hydroxyoleanolic acid 3-O-beta-D: -glucopyranosyl-(1 --> 4)-alpha-L: -arabinopyranoside (1) and 27-hydroxyoleanolic acid 3-O-alpha-L: -arabinopyranosyl-(1 --> 3)-alpha-L: -rhamnopyranosyl-(1 --> 2)-alpha- L: -arabinopyranoside (2) on the basis of chemical and spectral evidence.
Song, Guanglei; Du, Qizhen
2010-09-17
Polysaccharides from a crude extract of Auricularia polytricha were separated by high-speed countercurrent chromatography (HSCCC). The separation was performed with an aqueous two-phase system of PEG1000-K2HPO4-KH2PO4-H2O (0.5:1.25:1.25:7.0, w/w). The crude sample (2.0 g) was successfully separated into three polysaccharide components of AAPS-1 (192 mg), AAPS-2 (137 mg), and AAPS-3 (98 mg) with molecular weights of 162, 259, and 483 kDa, respectively. These compounds were tested for growth inhibition of transplanted S180 sarcoma in mice. AAPS-2 had an inhibition rate of 40.4%. The structure of AAPS-2 was elucidated from partial hydrolysis, periodate oxidation, acetylation, methylation analysis, and NMR spectroscopy (1H, 13C). These results showed AAPS-2 is a polysaccharide with a backbone of (1-->3)-linked-beta-d-glucopyranosyl and (1-->3, 6)-linked-beta-D-glucopyranosyl residues in a 2:1 ratio, and has one terminal (1-->)-beta-D-glucopyranosyl at the O-6 position of (1-->3, 6)-linked-beta-D-glucopyranosyl of the main chain. 2010 Elsevier B.V. All rights reserved.
Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee
2016-06-24
A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.
Vasconcelos, Ana Flora D; Monteiro, Nilson K; Dekker, Robert F H; Barbosa, Aneli M; Carbonero, Elaine R; Silveira, Joana L M; Sassaki, Guilherme L; da Silva, Roberto; de Lourdes Corradi da Silva, Maria
2008-09-22
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.
Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain.
Chen, Quan Cheng; Zhang, Wei Yun; Youn, Uijoung; Kim, Hongjin; Lee, IkSoo; Jung, Hyun-Ju; Na, MinKyun; Min, Byung-Sun; Bae, KiHwan
2009-04-01
The iridoid glycosides, genipin 1-O-beta-D-isomaltoside (1) and genipin 1,10-di-O-beta-D-glucopyranoside (2), together with six known iridoid glycosides, genipin 1-O-beta-D-gentiobioside (3), geniposide (4), scandoside methyl ester (5), deacetylasperulosidic acid methyl ester (6), 6-O-methyldeacetylasperulosidic acid methyl ester (7), and gardenoside (8) were isolated from an EtOH extract of Gardeniae Fructus. The structures and relative stereochemistries of the metabolites were elucidated on the basis of 1D- and 2D-NMR spectroscopic techniques, high-resolution mass spectrometry, and chemical evidence. Geniposide (4), one of the main compounds of Gardeniae Fructus, was tested for treatment of ankle sprain using an ankle sprain model in rats. From the second to fifth day, the geniposide (4) (100mg/ml) treated group exhibited significant differences (p<0.01) with approximately 21-34% reduction in swelling ratio compared with those of the vehicle treated control group. This indicated the potential effect of geniposide (4) for the treatment of disorders such as ankle sprain.
Two new flavonol glycosides from Gymnema sylvestre and Euphorbia ebracteolata.
Liu, Xin; Ye, Wencai; Yu, Biao; Zhao, Shouxun; Wu, Houming; Che, Chuntao
2004-03-15
Two new flavonol glycosides, namely kaempferol 3-O-beta-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside (1) and quercetin 3-O-6"-(3-hydroxyl-3-methylglutaryl)-beta-D-glucopyranoside (2), have been isolated from the aerial parts of Gymnema sylvestre and Euphorbia ebracteolata, respectively. Their structures were determined on the basis of chemical and spectroscopic methods.
Chemical constituents from Tribulus terrestris and screening of their antioxidant activity.
Hammoda, Hala M; Ghazy, Nabila M; Harraz, Fathalla M; Radwan, Mohamed M; ElSohly, Mahmoud A; Abdallah, Ingy I
2013-08-01
Two oligosaccharides (1,2) and a stereoisomer of di-p-coumaroylquinic acid (3) were isolated from the aerial parts of Tribulus terrestris along with five known compounds (4-8). The structures of the compounds were established as O-β-D-fructofuranosyl-(2→6)-α-D-glucopyranosyl-(1→6)-β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranosyl-(6→2)-β-D-fructofuranoside (1), O-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside (2), 4,5-di-p-cis-coumaroylquinic acid (3) by different spectroscopic methods including 1D NMR ((1)H, (13)C and DEPT) and 2D NMR (COSY, TOCSY, HMQC and HMBC) experiments as well as ESI-MS analysis. This is the first report for the complete NMR spectral data of the known 4,5-di-p-trans-coumaroylquinic acid (4). The antioxidant activity represented as DPPH free radical scavenging activity was investigated revealing that the di-p-coumaroylquinic acid derivatives possess potent antioxidant activity so considered the major constituents contributing to the antioxidant effect of the plant. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical constituents from the stems of Gymnema sylvestre.
Liu, Yue; Xu, Tun-Hai; Zhang, Man-Qi; Li, Xue; Xu, Ya-Juan; Jiang, Hong-Yu; Liu, Tong-Hua; Xu, Dong-Ming
2014-04-01
To study the chemical constituents of stems of Gymnema sylvestre (Retz.) Schult. Chromatographic techniques using silica gel, C18 reversed phase silica gel, and prep-HPLC were used. The structures were elucidated on the basis of MS and spectroscopic analysis (1D and 2D NMR), as well as chemical methods. Seven compounds were isolated and their structures were elucidated as conduritol A (1), stigmasterol (2), lupeol (3), stigmasterol-3-O-β-D-glucoside (4), the sodium salt of 22α-hydroxy-longispinogenin-3-O-β-D-glucopyranosyl-(1→3)-β-D-glu-curono-pyranosyl-28-O-α-L-rhamnopyranoside (5), oleanolic acid-3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (6), and the sodium salt of 22α-hydroxy-longispinogenin 3-O-β-D-glucuronopyranosyl-28-O-α-L-rhamnopyranoside (7). The inhibition activities of compounds 1, 5-7 on non-enzymatic glycation of protein in vitro were evaluated. Compound 7 is a new triterpenoid saponin. It was shown that compounds 1, 5-7 have weak inhibition activities for non-enzymatic glycation of protein in vitro. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Ganesh, Mani; Mohankumar, Murugan
2017-09-01
Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.
A novel glycoside from Acanthus hirsutus (Acanthaceae).
Capanlar, Seval; Böke, Nazli; Yaşa, Ihsan; Kirmizigül, Süheyla
2010-04-01
A novel glycoside, hirsutusoide (1), characterized as 2-(o-hydroxyphenyl)-2-hydroxyethenyl-O-beta-glucopyranoside, was isolated from the endemic Acanthus hirsutus Boiss. In addition to compound 1, three known glycosides, luteolin-7-O-beta-D-glucuronide (2), beta-sitosterol-3-O-beta-D-glucopyranoside (3) and (2R)-2-O-beta-D-glucopyranosyl-2H-1,4-benzoxazin-3(4H)-one (4), were also isolated. Compound 2 was the first report from this genus. Antimicrobial and antioxidant activity of the extracts and the novel compound were investigated by determining MIC (microg/mL) and IC50 (microg/mL) values, respectively.
Flavonoid glycosides and limonoids from Citrus molasses.
Kuroyanagi, Masanori; Ishii, Hiromi; Kawahara, Nobuo; Sugimoto, Hiroyuki; Yamada, Hideo; Okihara, Kiyoshi; Shirota, Osamu
2008-01-01
Molasses of tangerine orange (Citrus unshiu Markovich) is obtained as a waste product in the course of tangerine orange juice production. This molasses is expected to be a useful source of organic compounds such as flavonoids and limonoids. To elucidate a use for this molasses waste, we isolated and identified its organic constituents. Two new flavanonol glycosides were isolated from tangerine orange molasses, along with several flavonoids such as hesperidine, narirutin, eriodictyol, 3',4',5,6,7,8-hexamethoxy-3-O-beta-D-glucopyranosyloxyflavone, and 3',4',5,6,7,8-hexamethoxy- 3-beta-D-[4-O-(3-hydroxy-3-methylglutaloyl)]-glucopyranosyloxyflavone, and limonoids such as limonin, nomilin, and cyclic peptide, citrusin III. The structures of the new flavanonol glycosides were determined as (2R,3R)-7-O-(6-O-alpha-L-rahmnopyranosyl-beta-D-glucopyranosyl)-aromadendrin and 7-O-(6-O-alpha-L-rahmnopyranosyl-beta-D-glucopyranosyl)-3,3',5,7-tetrahydroxy-4'-methoxyflavanone by means of spectral analyses using (1)H-NMR, (13)C-NMR, and 2D-NMR. Of these compounds, flavanone glycoside, hesperidin and narirutin were isolated as the main constituents. Thus, molasses is a promising source of flavonoid glycosides.
Biologically active cannabinoids from high-potency Cannabis sativa.
Radwan, Mohamed M; Elsohly, Mahmoud A; Slade, Desmond; Ahmed, Safwat A; Khan, Ikhlas A; Ross, Samir A
2009-05-22
Nine new cannabinoids (1-9) were isolated from a high-potency variety of Cannabis sativa. Their structures were identified as (+/-)-4-acetoxycannabichromene (1), (+/-)-3''-hydroxy-Delta((4'',5''))-cannabichromene (2), (-)-7-hydroxycannabichromane (3), (-)-7R-cannabicoumarononic acid A (4), 5-acetyl-4-hydroxycannabigerol (5), 4-acetoxy-2-geranyl-5-hydroxy-3-n-pentylphenol (6), 8-hydroxycannabinol (7), 8-hydroxycannabinolic acid A (8), and 2-geranyl-5-hydroxy-3-n-pentyl-1,4-benzoquinone (9) through 1D and 2D NMR spectroscopy, GC-MS, and HRESIMS. The known sterol beta-sitosterol-3-O-beta-d-glucopyranosyl-6'-acetate was isolated for the first time from cannabis. Compounds 6 and 7 displayed significant antibacterial and antifungal activities, respectively, while 5 displayed strong antileishmanial activity.
Mukhopadhyay, Balaram; Field, Robert A
2006-07-24
The glycone part of the flavonoid triglycoside, kaempferol 3-O-beta-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside, has been synthesized in good yield and stereoselectivity using N-iodosuccinimide and HClO4-silica promoted glycosylations of thioglycoside donors.
A new inositol triester from Taraxacum mongolicum.
Liu, Jifeng; Zhang, Nenling; Liu, Mengqi
2014-01-01
One new inositol triester, 4,5,6-tri-O-p-hydroxyphenylacetyl-chiro-inositol (1), was isolated from the ethanolic extract of Taraxacum mongolicum, along with two known compounds, 11β,13-dihydrotaraxinic acid (2) and taraxinic acid β-d-glucopyranosyl ester (3). The isolates were tested for their anti-hepatitis B virus (HBV) activities; 11β,13-dihydrotaraxinic acid (2) exhibited an IC50 value of 0.91 mM inhibiting the secretion of the HBV surface antigen and an IC50 value of 0.34 mM inhibiting the secretion of the HBV e antigen using HBV transfected Hep G2.2.15 cell line.
Konishi, Masa-aki; Fukuoka, Tokuma; Shimane, Yasuhiro; Mori, Kozue; Nagano, Yuriko; Ohta, Yukari; Kitamoto, Dai; Hatada, Yuji
2011-01-01
To explore a novel glycolipid, we performed biochemical reactions using a recombinant α-glucosidase from Geobacillus sp. which shows excellent transglycosylation reaction to hydroxyl groups in a variety of compounds. Two different glycolipids (GL-1 and GL-2) were prepared from ricinoleic acid using a recombinant α-glucosidase from Geobacillus sp. The molecular structure of GL-1 was confirmed as 12-O-α-D-glucopyranosyl-9-hexadecenoic acid by 1D and 2D NMR analyses. According to MALDI-TOF/MS, GL-1 and GL-2 showed single major peaks at m/z 483.82 and 645.97, respectively. The peaks corresponded to the [M + Na](+) ions of the glycolipids. GL-2 was estimated as 12-O-α-D-glucopyranosyl-(4'-O-α-glucopyranosyl)-9-hexadecenoic acid. Light polarization microscopy revealed that GL-2 easily formed self-assembled vesicles in aqueous solution.
A new withanolide glycoside from physalis peruviana
Ahmad; Malik; Afza; Yasmin
1999-03-01
A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations.
[Chemical constituents from roots of Platycodon grandiflorum].
Li, Ling-Jun; Liu, Zhen-Hua; Chen, Yun; Tian, Jing-Kui
2006-09-01
To study the chemical constituents from roots of Platycodon grandiflorum. Column chromatography (silica gel, macroporous resin, sephadex LH - 20 and the preparative RP - HPLC were used to isolate the constituents. Their structures were elucidated by physical and spectral data. Eight compounds were isolated and identified as tangeritin (1), 3-O-beta-D-glucopyranosylplatycodigenin methyl ester (2), 3-O-beta-D-glucopyranosylplaticogenic acid A lactone (3), 3-O-beta-D-glucopyranosylplatycodigenin (4), deapio-platyconic acid A lactone (5), deapio-platycodin-D (6), platycoside-G1 (7) and platycoside-E (8). Compounds 1,3 and 5 were isolated from this plant for the first time.
Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc
2017-01-01
Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.
New fatty acid and acyl glycoside from the aerial parts of Phyllanthus fraternus Webster.
Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed
2016-01-01
Phyllanthus fraternus Webster (Euphorbiaceae) is used to treat dyspepsia, indigestion, jaundice, dysentery, diabetes, influenza, kidney stones, urinary tract diseases, vaginitis, and skin eruptions in traditional systems of medicine. The methanol extract of aerial parts of P. fraternus was obtained by soxhlation method. Isolation of compounds was done by silica gel column chromatography. Analytical thin layer chromatography was used to check the homogeneity of eluted fractions. The structures of isolated compounds were established on the basis of spectral studies and chemical reactions. Phytochemical investigation of a methanolic extract of the aerial parts yielded a new fatty acid characterized as cis-n-octacos-17-enoic acid (5) and a new acyl tetraglycoside formulated as n-dodecanoyl-O-β-D-glucopyranosyl-(2'→1'')-O-β-D-glucopyranosyl-(2''→1''')-O-β-D-glucopyranosyl-(2'''→1'''')-O-β-D-glucopyranoside (7) along with known compounds 1-pentacosanol (1), β-sitosteryl oleate (2), β-sitosteryl linoleate (3), stigmasterol (4) and palmityl glucuronoside (6).
Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A
2007-12-27
A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells.
Triterpene constituents from the seedling of Aronia melanocarpa.
Yu, M; Li, X; Zhao, C-C; Xu, J; Zhang, P
2007-01-01
Two new triterpene saponins, 16-O-acetyl-21-O-angeloyltheasapogenol A 3-O-[beta-D-galactopyranosyl(1 --> 2)][beta-D-xylopyranosyl(1 --> 2)-alpha-L-arabinopyranosyl (1 --> 3)]-beta-D-glucopyranosiduronic acid (1) and 16,28-O-diacetyl-21-O-tigloyltheasapogenol A 3-O-[beta-D-galactopyranosyl(1 --> 2)][beta-D-xylopyranosyl(1 --> 2)-alpha-L-arabinopyranosyl (1 --> 3)]-beta-D-glucopyranosiduronic acid (2), together with four known triterpenenes, have been isolated from the dried seedling of Aronia melanocarpa, and their structures established by spectroscopic and chemical evidence.
Hydroxyester disaccharides from fruits of cape gooseberry (Physalis peruviana).
Mayorga, Humberto; Duque, Carmenza; Knapp, Holger; Winterhalter, Peter
2002-02-01
The 3-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside of ethyl 3-hydroxyoctanoate and the diastereomeric 3-O-alpha-L-arabinopyranosyl-(1-->6)-beta-D-glucopyranosides of (3R) and (3S)-butyl 3-hydroxybutanoate, respectively, were isolated by chromatographic methods from fruits of cape gooseberry (Physalis peruviana) harvested in Colombia. Their structures were identified by ESI-MS/MS and NMR spectroscopy. The three glycoconjugates can be considered as immediate precursors of ethyl 3-hydroxyoctanoate and butyl 3-hydroxybutanoate, which are important aroma volatiles found in the fruit.
Two new lignan glycosides from the seeds of Cuscuta chinensis.
He, Xiang-Hui; Yang, Wen-Zhi; Meng, A-Hui; He, Wen-Ni; Guo, De-An; Ye, Min
2010-11-01
Two new lignan glycosides, 2'-hydroxyl asarinin 2'-O-β-D-glucopyranoside (cuscutoside C, 1) and 2'-hydroxyl asarinin 2'-O-β-D-apiofuranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (cuscutoside D, 2), were isolated from the seeds of Cuscuta chinensis Lam., along with six known compounds, 2'-hydroxyl asarinin 2'-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (3), 2'-hydroxyl asarinin 2'-O-β-D-apiofuranosyl-(1 → 2)-β-D-glucopyranoside (cuscutoside A, 4), kaempferol 3,7-di-O-β-D-glucopyranoside (5), 5-caffeoyl quinic acid (6), 4-caffeoyl quinic acid (7), and cinnamic acid (8). Their structures were elucidated on the basis of spectroscopic analyses including HR-ESI-MS, ESI-MS/MS, (1)H and (13)C NMR, HSQC, HMBC, and TOCSY.
Jardón-Delgado, Angel; Magos-Guerrero, Gil Alfonso; Martínez-Vázquez, Mariano
2014-01-01
A new cucurbitane-type triterpene, 20, 21, 22, 23, 24, 25, 26, 27-octanorcucurbita-5-ene-3, 11, 16-trione (1), named kinoin D, was isolated from the roots of the medicinal plant Ibervillea sonorae, (wereque). The structure of 1 was established on the basis of extensive NMR and MS studies. In addition, the known kinoins B (3) and C (5) were isolated, as were 16alpha-20,25-trihydroxy-3alpha-(2-O-alpha-L-rhamnopyranosiyl-D-glucopyranosyloxy)-(10alpha)-cucurbit-5-en-11,22-dione (6), (22S)-16alpha,22-diacetoxy-20,25-dihydroxy-3alpha-[3,4,6-tri-O-acetyl-2-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl)-beta-glucopyranosyl]-(10alpha)-cucurbita-5,23t-dien-11-one (7) and 16alpha-acetoxy-20,25-dihydroxy-3alpha-[3,4,6-tri-O-acetyl-2-O-(2,3,4,-tri-O-acetyl-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl]-(10alpha)-cucurbita-5-ene-11,22-dione (8). Compound 1 exhibited anti-inflammatory activity in TPA-induced edema in mice.
[Studies on chemical constituents from leaves of Vaccinium bracteatum].
Li, Zeng-Liang; Zhang, Lin; Tian, Jing-Kui; Zhou, Wen-Ming
2008-09-01
To investigate the chemical constituents from the leaves of Vaccinium bracteatum. Many column chromatographic techniques were used for the isolation and separation of chemical constituents. Their structures were elucidated on the basis of spectral analysis and chemical evidences. Twelve compounds were isolated from the plant, and they were identified as chrysoeriol (1), scopoletin (2), trans-p-hydroxycinnamic acid (3), trans-p-hydroxycinnamic acid ethyl ester (4), cafeic acid ethyl ester (5), beta-sitosterol (6), iuteolin (7), quercetin (8), esculetin (9), cafeic acid (10), isolariciresinol-9-O-beta-D-xyloside (11), 10-O-trans-p-coumaroylsandoside (12). Compounds 4, 5, 11, 12 were isolated from the genus Vaccinium for the first time, and compounds 1, 2, 9, 10 were isolated from this plant for the first time.
de Lourdes Corradi da Silva, Maria; Fukuda, Eliane K; Vasconcelos, Ana Flora D; Dekker, Robert F H; Matias, Andreza C; Monteiro, Nilson K; Cardoso, Marilsa S; Barbosa, Aneli M; Silveira, Joana L M; Sassaki, Guilherme L; Carbonero, Elaine R
2008-03-17
Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chromatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and 13C NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q1A that was a beta-(1-->6)-D-glucan with the following structure: [Formula: see text] The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: K1P (insoluble) that comprised a beta-(1-->3)-D-glucan with beta-D-glucose branches at C-6 with the structure: [Formula: see text] and K1SA (soluble) consisting of a backbone chain of alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues: [Formula: see text
Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme
NASA Technical Reports Server (NTRS)
Leznicki, A. J.; Bandurski, R. S.
1988-01-01
The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.
Fry, S C
1982-01-01
1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed. PMID:7115300
[Two new glycosides from Erigeron breviscapus (Vant.) Hand.-Mazz].
Zhang, W D; Chen, W S; Wang, Y H; Liu, W Y; Kong, D Y; Li, H T
2001-10-01
To study the chemical constituents from the upground part of Erigeron breviscapus. The compounds were separated and purified by column chromatography with silica gel, and identified by IR, MS, NMR and 2D-NMR. Two new compounds were isolated and identified as 5,4'-dihydroxy flavonod-7-O-beta-D-pyranglycuronate buthyl ester(VI) and 3,5-dimethoxy benzene carbonic acid-4-O-beta-D-pyranglucose(VII). Compounds VI and VII were new compounds.
Ochieng, Charles O; Manguro, Lawrence A O; Owuor, Philip O; Akala, Hosea
2013-05-15
A bioassay guided isolation of potential antimalarial molecules from the stem bark of Caesalpinia volkensii Harms (Fabaceae) achieved three new 11-oxocassane-type diterpenoids named voulkensin C (1), D (2) and E (3) together with one steroid glycoside named 3-O-[β-glucopyranosyl(1→2)-O-β-xylopyranosyl]-stigmasterol (4) and seven other known compounds including stigmasterol (5), β-sitosterol (6), oleanolic acid (7), 3-β-acetoxyolean-12-en-28-methyl ester (8), voucap-5-ol (9), caesadekarin C (10), deoxycaesaldekarin C (11). The structures of the new compounds were determined on the basis of extensive spectroscopic data (IR, MS, (1)H and (13)C NMR and 2D NMR) analyses. The polar extracts revealed moderate to good antiplasmodial activities against chloquine-sensitive (D6) and -resistant strains (W2) of Plasmodium falciparum. Whereas the pure isolates exhibited limited to moderate antiplasmodial activities with compound 4 showing the highest antiplasmodial activities (IC50 values of 4.44±0.88 and 2.74±1.10μM against D6 and W2 strains, respectively). These results suggest a possible contribution of phytochemicals from C. volkensii stem bark towards inhibition of plasmodial parasites' growth hence potential antimalarial. Copyright © 2013 Elsevier Ltd. All rights reserved.
Steroidal saponins from Tribulus terrestris.
Kang, Li-Ping; Wu, Ke-Lei; Yu, He-Shui; Pang, Xu; Liu, Jie; Han, Li-Feng; Zhang, Jie; Zhao, Yang; Xiong, Cheng-Qi; Song, Xin-Bo; Liu, Chao; Cong, Yu-Wen; Ma, Bai-Ping
2014-11-01
Sixteen steroidal saponins, including seven previously unreported compounds, were isolated from Tribulus terrestris. The structures of the saponins were established using 1D and 2D NMR spectroscopy, mass spectrometry, and chemical methods. They were identified as: 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-2α,3β,22α,26-tetrol-12-one (terrestrinin C), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin D), 26-O-β-d-glucopyranosyl-(25S)-furost-4-en-22α,26-diol-3,6,12-trione (terrestrinin E), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol-12-one (terrestrinin F), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-12β,22α,26-triol-3-one (terrestrinin G), 26-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin H), and 24-O-β-d-glucopyranosyl-(25S)-5α-spirostan-3β,24β-diol-12-one-3-O-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside (terrestrinin I). The isolated compounds were evaluated for their platelet aggregation activities. Three of the known saponins exhibited strong effects on the induction of platelet aggregation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phenylpropanoid derivatives from edible canna, Canna edulis.
Yun, Young Sook; Satake, Motoyoshi; Katsuki, Shigeki; Kunugi, Akira
2004-07-01
Two phenylpropanoid sucrose esters were isolated from dry rhizomes of Canna edulis Ker Gawl., along with a known phenylpropanoid sucrose ester and four known phenylpropanoids. On the basis of analysis of spectroscopic data and chemical evidence, these two phenylpropanoid sucrose esters were shown to be 3-O-p-coumaroyl-6-O-feruloyl-beta-D-fructofuranosyl 6-O-acetyl-alpha-D-glucopyranoside and 3,6-di-O-p-coumaroyl-beta-D-fructofuranosyl 6-O-acetyl-alpha-D-glucopyranoside.
Enzymatic synthesis of novel quercetin sialyllactoside derivatives.
Darsandhari, Sumangala; Bae, Jae Yoon; Shrestha, Biplav; Yamaguchi, Tokutaro; Jung, Hye Jin; Han, Jang Mi; Rha, Chan-Su; Pandey, Ramesh Prasad; Sohng, Jae Kyung
2018-06-06
Quercetin and its derivatives are important flavonols that show diverse biological activity, such as antioxidant, anticarcinogenic, anti-inflammatory, and antiviral activities. Adding different substituents to quercetin may change the biochemical activity and bioavailability of molecules, when compared to the aglycone. Here, we have synthesised two novel derivatives of quercetin, quercetin-3-O-β-d-glucopyranosyl, 4''-O-d-galactopyranosyl 3'''-O-α-N-acetyl neuraminic acid i.e. 3'-sialyllactosyl quercetin (3'SL-Q) and quercetin-3-O-β-d-glucopyranosyl, 4''-O-β-d-galactopyranosyl 6'''-O-α-N-acetyl neuraminic acid i.e. 6'-sialyllactosyl quercetin (6'SL-Q) with the use of glycosyltransferases and sialyltransferases enzymes. These derivatives of quercetin were characterised by high-resolution quadrupole-time-of-flight electrospray ionisation mass spectrometry (HR-QTOF-ESI/MS) and 1 H and 13 C nuclear magnetic resonance (NMR) analyses.
[Studies on chemical constituents from herbs of Botrychium lanuginosum].
Wang, Dong; Liu, Xiao-qiu; Yao, Chun-suo; Fang, Wei-shuo
2008-11-01
To study the chemical constituents of Botrychium lanuginosum. Various chromatographic techniques were used to isolate and purify the constituents. The structures were elucidated by chemical evidence and spectroscopic methods. Ten compounds were isolated from the 95% ethanol extract of the herb of B. lanuginosum and their structures were elucidated as 30-nor-21beta-hopan-22-one (1), beta-sitosterol (2), luteolin (3), thunberginol A (4), apigenin (5), (6'-O-palmitoyl)-sitosterol-3-O-beta-D-glucoside (6), daucosterol (7), 1-O-beta-D-glucopyranosyl-(2S, 3R, 4E, 8Z)-2-[(2R-hydroxy hexadecanoyl) amino]-4, 8-octadecadiene-1, 3-diol (8), luteolin-7-O-glucoside (9), sucrose (10). Compounds 1-10 were isolated from this genus for the first time.
Flavonoids in the leaves of Asclepias incarnata L.
Sikorska, Maria
2003-01-01
Seven flavonoid compounds: quercelin 3-O-beta-galactopyranoside, 3-O-beta-glucopyranoside, 3-O-arabinoside, 3-O-beta-glucopyranosyl (1-->2)-beta-galactopyranoside, 3-O-beta-xylopyranosyl (1-->2)-beta-galactopyranoside, 3-O-alpha-rhamnopyranosyl (1-->2)-beta-galactopyranoside and kaempferol 3-beta-glucopyranoside were isolated and identified from the leaves of Asclepias incarnata, L. (Asclepiadaceae).
Physocalycoside, a new phenylethanoid glycoside from Phlomis physocalyx Hub.-Mor.
Ersöz, Tayfun; Alipieva, Kalina Iv; Yalçin, Funda Nuray; Akbay, Pinar; Handjieva, Nedjalka; Dönmez, Ali A; Popov, Simeon; Caliş, Ihsan
2003-01-01
A new phenylethanoid tetraglycoside, physocalycoside (2), was isolated from the aerial parts of Phlomis physocalyx. Its structure was identified as 3-hydroxy-4-methoxy-beta-phenylethoxy-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)]-4-O-feruloyl-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside, on the basis of spectroscopic evidence. In addition, one known iridoid glucoside, lamiide (1) and five known phenylethanoid glycosides, wiedemannioside C (3), verbascoside (= acteoside) (4), leucosceptoside A (5), martynoside (6), and forsythoside B (7) were also characterized. Compounds 2-7 demonstrated radical scavenging properties towards the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.
Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin
2012-01-01
A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.
Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts.
Marzouk, Mohamed S; Moharram, Fatma A; El Dib, Rabab A; El-Shenawy, Siham M; Tawfike, Ahmed F
2009-04-07
Two new flavonol glycosides, myricetin 4'-O-alpha-L-rhamnopyranoside (1) and quercetin 3'-O-alpha-L-rhamnopyranoside (2), together with a novel biflavonol compound, speciin (3), as well as eleven phenolic metabolites, namely myricitrin (4), europetin 3-O-alpha-L-(1)C(4)-rhamnopyranoside (5), quercitrin (6), hyperin (7), rhamnetin 3-O-beta-galacto-pyranoside (8), caffeic acid (9), caffeic acid methyl ester (10), chlorogenic acid (11), chlorogenic acid methyl ester (12), gallic acid (13) and gallic acid methyl ester (14), were identified from the 80 % methanol extract of the aerial parts (leaves and stems) of Oenothera speciosa Nutt. (Onagraceae). In addition myricetin (15), quercetin (16) and ellagic acid (17) were identified from the chloroform extract. The structures were established depending on their chemical and physical analyses (UV, HR-ESIMS, 1D and 2D NMR). It was found that 80 % aqueous methanol extract of O. speciosa is non-toxic to mice up to 5 g kg(-1)b wt. The investigated extract exhibited significant antihyperglycaemic and anti-inflammatory activities in a dose dependant manner. Also, the 80 % methanol extract, myricitrin(4) and hyperin(7) showed potent antioxidant activity in vitro using 1,1-diphenyl 2-picryl hydrazyl (DPPH) radical assay.
Furostanol saponins from the fruits of Tribulus terrestris.
Chen, Gang; Su, Lan; Feng, Sheng-Guang; Lu, Xuan; Wang, Haifeng; Pei, Yue-Hu
2013-01-01
Two new steroidal saponins were isolated from the fruits of Tribulus terrestris. Their structures were assigned by spectroscopic analysis and colour reaction as 26-O-β-D-glucopyranosyl-(25R)-5α-furostane-12-one-3β,22α,26-triol-3-O-β-D-glucopyranosyl(1 → 4)-β-D-galactopyranoside (1); 26-O-β- D-glucopyranosyl-25(R)-5α-furostan-12-one-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 4)]-β-D-galactopyranoside (2).
Hua, Yanling; Sansenya, Sompong; Saetang, Chiraporn; Wakuta, Shinji; Ketudat Cairns, James R
2013-09-01
In order to identify a rice gibberellin ester β-D-glucosidase, gibberellin A4 β-D-glucosyl ester (GA4-GE) was synthesized and used to screen rice β-glucosidases. Os3BGlu6 was found to have the highest hydrolysis activity to GA4-GE among five recombinantly expressed rice glycoside hydrolase family GH1 enzymes from different phylogenic clusters. The kinetic parameters of Os3BGlu6 and its mutants E178Q, E178A, E394D, E394Q and M251N for hydrolysis of p-nitrophenyl β-D-glucopyranoside (pNPGlc) and GA4-GE confirmed the roles of the catalytic acid/base and nucleophile for hydrolysis of both substrates and suggested M251 contributes to binding hydrophobic aglycones. The activities of the Os3BGlu6 E178Q and E178A acid/base mutants were rescued by azide, which they transglucosylate to produce β-D-glucopyranosyl azide, in a pH-dependent manner, while acetate also rescued Os3BGlu6 E178A at low pH. High concentrations of sodium azide (200-400 mM) inhibited Os3BGlu6 E178Q but not Os3BGlu6 E178A. The structures of Os3BGlu6 E178Q crystallized with either GA4-GE or pNPGlc had a native α-D-glucosyl moiety covalently linked to the catalytic nucleophile, E394, which showed the hydrogen bonding to the 2-hydroxyl in the covalent intermediate. These data suggest that a GH1 β-glucosidase uses the same retaining catalytic mechanism to hydrolyze 1-O-acyl glucose ester and glucoside. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kowalczyk, S.; Bandurski, R. S.
1990-01-01
The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-beta-D-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzyme-catalyzed hydrolysis of 4-O and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.
Species-specific glucosylation of DIMBOA in larvae of the rice Armyworm.
Sasai, Hiroaki; Ishida, Masahiro; Murakami, Kenjiro; Tadokoro, Naoko; Ishihara, Atsushi; Nishida, Ritsuo; Mori, Naoki
2009-06-01
DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one] is a benzoxazinoid (Bx), part of the chemical defense system of graminaceous plants such as maize, wheat, and rye. When Bombyx mori larvae were fed artificial diets containing DIMBOA, they died in three days. In contrast, Mythimna separata larvae, a serious pest of rice, maize, sorghum, wheat etc., grew well on the same diets. Three kinds of glucosides [1-(2-hydroxy-4-methoxyphenylamino)-1-deoxy-beta-glucopyranoside-1,2-carbamate (methoxy glucoside carbamate), 2-O-beta-glucopyranosyl-4-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA-2-O-Glc), and 2-O-beta-glucopyranosyl-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (HMBOA-2-O-Glc)] were identified by LC-MS and NMR analyses from the frass of M. separata that had been fed on a DIMBOA-containing diet. Furthermore, the incubation of DIMBOA with a midgut tissue suspension of M. separata in the presence of UDP-D-glucose generated DIMBOA-2-O-Glc. These findings strongly suggest that glucosylation by UDP-glucosyltransferase(s) was important for detoxification to circumvent the defenses of host plants against M. separata larvae.
Yamada, Koji; Tanabe, Kaoru; Miyamoto, Tomofumi; Kusumoto, Toshihide; Inagaki, Masanori; Higuchi, Ryuichi
2008-05-01
A new monomethylated ganglioside, DSG-A (3), was obtained, together with four known gangliosides, compounds (1, 2, 4, 5), from the lipid fraction of the chloroform/methanol extract of the ovary of the sea urchin Diadema setosum. The structures of the new ganglioside was determined on the basis of chemical and spectroscopic evidence to be 1-O-[9-O-methyl-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moiety of 3 was composed of C18-phytosphingosine base, and 2-hydroxy and nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor, in which compound 3 showed the most potent activity.
Santos, Gabriel F Dos; Takahashi, Jacqueline A
2017-01-01
The in vitro metabolism of a widespread natural product, trachyloban-19-oic acid (1), by the fungal species Mucor plumbeus was studied in a sucrose-yeast liquid medium. Two products were isolated, and their structures were determined by spectroscopic means as 7β-hydroxytrachyloban-19-oic acid (5) and trachyloban-19-O-β-D-glucopyranosyl ester (6). To the best of our knowledge, compound 6 is herein reported by the first time in the literature. These compounds were assayed for acetylcholinesterase inhibition along with some related compounds. Compound 6 showed the highest acetylcholinesterase inhibitory activity at 10000 µg/mL among the tested compounds, a result (92.89%) comparable to the activity of the positive control, galanthamine (94.21%). Therefore, biotransformation of the natural product 1 by M. plumbeus produced a novel compound with potential as a new lead to develop anti-Alzheimer medicines.
[Study on the chemical constituents from Clematis brevicaudata].
Yang, Ai-Mei; Du, Jing; Miao, Zhong-Huan; Yuan, Hui-Jun
2009-10-01
To study the chemical constituents from Clematis brevicaudata. The compounds were isolated by column chromatography and their structures were elucidated through spectroscopic analysis (NMR). Eight compounds were isolated and identified as: palmitic acid (1), 1-docosanol (2), pentacosanoic acid-2', 3'-dihydroxypropyl ester (3), beta-sitosterol (4), daucosterol (5), a mixture of the trans-p-coumarate of the n-alkanols (6), 3,4-dihydroxy-trans coumatate ethyl ester (7), syringaresinol-O-D-glucopyranoside (8). All these compounds are obtained from Clematis brevicaudata for the first time.
A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides.
Sultana, Nasim; Afolayan, A J
2007-08-01
Arctotis arctotoides is a perennial herb used medicinally for the treatment of various ailments in the Eastern Cape, South Africa. Different extracts of the plant were investigated for their antimicrobial constituents. This led to the isolation and identification of a new daucosterol derivative 3-O-[beta-D-(6'-nonadeanoate)glucopyranosyl]-beta-sitosterol and seven known compounds namely: serratagenic acid, stigmasterol, daucosterol, zaluzanin D, dehydrocostuslactone, nepetin, and pedalitin. The structures of the compounds were elucidated on the basis of spectral analysis, including homo and hetero nuclear correlation NMR experiments (COSY, NOESY, HMQC, HMBC) and mass spectra as well as by comparison with available data in the literature. The compounds exhibited antibacterial activity except stigmasterol, daucosterol and dehydrocostuslactone. Nepetin was the most active against Bacillus subtilis and Staphylococcus aureus with the minimum inhibitory concentrations of 4 microg mL( - 1) and 31 microg mL( - 1), respectively, while others exhibited moderate activity.
Kikuzaki, Hiroe; Kayano, Shin-ichi; Fukutsuka, Naoko; Aoki, Asuka; Kasamatsu, Kumi; Yamasaki, Yuka; Mitani, Takahiko; Nakatani, Nobuji
2004-01-28
Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.
Three New Sesquiterpene Glycosides from the Rhizomes of Trillium tschonoskii.
Yang, Jie; Yang, Yin-Jun; Sun, Xin-Guang; Zhang, Jie; Zhao, Yang; Wang, Bei; Ding, Qian-Zhi; Guo, Bao-Lin; Ma, Bai-Ping
2017-08-02
Three new sesquiterpene glycosides, possessing a rare aglycone with a sulfonyl between C-1 and C-15 positions, named 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 1 ), 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 2 ), and 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-6'- O -acetyl-(1→4)- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 3 ), respectively, were isolated from the rhizomes of Trillium tschonoskii . Their structures were established on the basis of spectroscopic data, including HR-ESI-MS, IR, 1D and 2D NMR. The cytotoxic properties of the three compounds were investigated using human hepatic L02 cells.
Zhang, Xinxin; Liang, Jinru; Zhang, Yongmin; Liu, Jianli; Sun, Wenji; Ito, Yoichiro
2015-01-01
Steroid saponins from Dioscorea zingiberensis C.H.Wright were separated for the first time using two chromatographic methods for comparison: counter-current chromatography (CCC) coupled with evaporative light scattering detector (ELSD) and preparative reversed phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet detector. Ethyl acetate-n-butanol-methanol-water (4:1:2:4, v/v) was chosen as the two-phase solvent system for CCC, while the acetonitrile-water (25:75 for the first step and15:85 for the second step, v/v) was used as the mobile phase in the preparative RP-HPLC. The following five steroid saponins were purified by theses two chromatographic methods, in one-step operation by CCC and by two-step operation in preparative RP-HPLC: 1) 26-O-β-D- glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 26-triol-3-O-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (compound A), 2) 26-O-β-D-glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 4) 26-triol-3-O-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (compound B), 3) 26-O-β-D-glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside (compound C), 4) 26-O-β-D-glucopyranosyl-(25R)-furost-5, 20(22)-diene-3β, 26-diol-3-O-{α-L-rhamnopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→2)]}-β-D-glucopyranoside (compound D) and 5) 26-O-β-D-glucopyranosyl-(25R)-furost-5, 20(22)-diene-3β, 26-diol-3-O-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosy-(1→2)]-β-D-glucopyranoside (compound E). The purities of these five steroid saponins separated by both methods were over 95%, and structural identification of these compounds was performed by ESI-MS, and 13C NMR. Comparison of these two established approaches revealed that CCC required a longer separation time but with less solvent consumption, whereas preparative RP-HPLC gave a shorter separation time but with higher solvent consumption. These results demonstrated that either of these two methods of different separation mechanism is feasible, economical and efficient for rapid preparative isolation and purification of steroid saponins from Dioscorea zingiberensis C.H.Wright. PMID:26726306
Zhang, Xinxin; Liang, Jinru; Zhang, Yongmin; Liu, Jianli; Sun, Wenji; Ito, Yoichiro
2015-03-01
Steroid saponins from Dioscorea zingiberensis C.H.Wright were separated for the first time using two chromatographic methods for comparison: counter-current chromatography (CCC) coupled with evaporative light scattering detector (ELSD) and preparative reversed phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet detector. Ethyl acetate-n-butanol-methanol-water (4:1:2:4, v/v) was chosen as the two-phase solvent system for CCC, while the acetonitrile-water (25:75 for the first step and15:85 for the second step, v/v) was used as the mobile phase in the preparative RP-HPLC. The following five steroid saponins were purified by theses two chromatographic methods, in one-step operation by CCC and by two-step operation in preparative RP-HPLC: 1) 26-O-β-D- glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 26-triol-3-O-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside ( compound A ), 2) 26-O-β-D-glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 4) 26-triol-3-O-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside ( compound B ), 3) 26-O-β-D-glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside ( compound C ), 4) 26-O-β-D-glucopyranosyl-(25R)-furost-5, 20(22)-diene-3β, 26-diol-3-O-{α-L-rhamnopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→2)]}-β-D-glucopyranoside ( compound D ) and 5) 26-O-β-D-glucopyranosyl-(25R)-furost-5, 20(22)-diene-3β, 26-diol-3-O-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosy-(1→2)]-β-D-glucopyranoside ( compound E ). The purities of these five steroid saponins separated by both methods were over 95%, and structural identification of these compounds was performed by ESI-MS, and 13 C NMR. Comparison of these two established approaches revealed that CCC required a longer separation time but with less solvent consumption, whereas preparative RP-HPLC gave a shorter separation time but with higher solvent consumption. These results demonstrated that either of these two methods of different separation mechanism is feasible, economical and efficient for rapid preparative isolation and purification of steroid saponins from Dioscorea zingiberensis C.H.Wright.
New steroidal glycosides from Tribulus terrestris L.
Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu
2012-01-01
Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments.
Venditti, Alessandro; Lattanzi, Claudia; Ornano, Luigi; Maggi, Filippo; Sanna, Cinzia; Ballero, Mauro; Alvino, Antonello; Serafini, Mauro; Bianco, Armandodoriano
2016-01-01
In this study, we reported the analysis of the medium polarity fraction obtained from an accession of Helichrysum microphyllum subsp. tyrrhenicum from La Maddalena Island. Besides several compounds already evidenced in this species and related genera, i.e. micropyrone (1), arzanol (2), helipyrone (3), acetyl-bitalin derivatives (4, 5), gnaphaliol (6), caffeic acid (7), ursolic acid (8), 7-O-β-(D-glucopyranosyl)-5-methoxy-1(3H)-isobenzofuranone (9), gnaphaliol-9-O-β-D-glucopyranoside (11) and gnaphaliol-3-O-β-D-glucopyranoside (12), the presence of a new glycosidic phthalide, 6-O-β-(D-glucopyranosyl)-4-methoxy-1(3H)-benzofuranone (10), was evidenced for the first time, which resulted in a structural isomer of compound (9). The occurrence of this new benzofuranone derivative is an additional evidence of the deep intraspecific variability expressed by this species, which was also stated for the non-volatile components, and may be a distinctive trait of the population growing on La Maddalena Island.
Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata.
Lunga, Paul K; Qin, Xu-Jie; Yang, Xing W; Kuiate, Jules-Roger; Du, Zhi Z; Gatsing, Donatien
2014-10-02
Paullinia pinnata L. (Sapindaceae) is an African woody vine, which is widely used in traditional medicine for the treatment of human malaria, erectile dysfunction and bacterial infections. A phytochemical investigation of its methanol leaf and stem extracts led to the isolation of seven compounds which were evaluated for their antimicrobial properties. The extracts were fractionated and compounds were isolated by chromatographic methods. Their structures were elucidated from their spectroscopic data in conjunction with those reported in literature. The antimicrobial activities of the crude extracts, fractions and compounds were evaluated against bacteria, yeasts and dermatophytes using the broth micro-dilution technique. Seven compounds: 2-O-methyl-L-chiro-inositol (1), β-sitosterol (2), friedelin (3), 3β-(β-D-Glucopyranosyloxy) stigmast-5-ene (4), (3β)-3-O-(2'-Acetamido-2'-deoxy-β-D-glucopyranosyl) oleanolic acid (5), (3β,16α-hydroxy)-3-O-(2'-Acetamido-2'-deoxy-β-D-glucopyranosyl) echinocystic acid (6) and (3β)-3-O-[β-D-glucopyranosyl-(1″-3')-2'-acetamido-2'-deoxy-β-D-galactopyranosyl]oleanolic acid (7) were isolated. Compounds 5 and 7 showed the best antibacterial and anti-yeast activities respectively (MIC value range of 0.78-6.25 and 1.56-6.25 μg/ml), while 6 exhibited the best anti-dermatophytic activity (MIC value range of 6.25-25 μg/ml). The results of the present findings could be considered interesting, taking into account the global disease burden of these susceptible microorganisms, in conjunction with the search for alternative and complementary medicines.
Sun, Yichun; Li, Baimei; Lin, Xiaoting; Xue, Juan; Wang, Zhibin; Zhang, Hongwei; Jiang, Hai; Wang, Qiuhong; Kuang, Haixue
2017-05-01
Aralia elata leaves are known to have several biological activities, including anti-arrythmia, antitumor, anti-inflammatory, anti-fatigue, antimicrobial and antiviral effects. Our previous study found that triterpenoid saponins from the leaves of A. elata had antitumor effects. Quantification of the triterpenoids is important for the quality control of A. elata leaves. To establish high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD) for the simultaneous determination of four major triterpenoid saponins, including Aralia-saponin IV, Aralia-saponin VI, 3-O-β-d- glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl oleanolic acid 28-O-β-d-glucopyranoside (Aralia-saponin TTP)and Aralia-saponin V. The separation was carried out on a Dikma Diamonsil C 18 column (4.6 mm × 250 mm, 5 μm) efficiently with gradient elution consisting of acetonitrile and water. All calibration curves showed good linear regression (R 2 > 0.9996) within the ranges of tested concentrations. This validated method was applied to determine the contents of the four major triterpenoid saponins in 53 samples from different regions of northeast China. Hierarchical clustering analysis was first used to classify and differentiate Aralia elata leaves. The method developed was successfully applied to analyse four major triterpenoid saponins in Aralia elata leaves which is helpful for quality control of the herb. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Sun, Yichun; Xue, Juan; Li, Baimei; Lin, Xiaoting; Wang, Zhibin; Jiang, Hai; Zhang, Hongwei; Wang, Qiuhong; Kuang, Haixue
2016-11-01
A rapid, sensitive, and reliable analytical ultra performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of Aralia-saponin IV, 3-O-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl oleanolic acid 28-O-β-d-glucopyranoside, Aralia-saponin A and Aralia-saponin B after the oral administration of total saponin of Aralia elata leaves in rat plasma. Plasma samples were pretreated by protein precipitation with methanol. The analysis was performed on an ACQUITY UPLC HSS T3 column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source with negative ionization mode. Under the experimental conditions, the calibration curves of four analytes had good linearity values (r > 0.991). The intra- and inter-day precision values of the four analytes were ≤ 11.6%, and the accuracy was between -6.2 and 4.2%.The extraction recoveries of four triterpenoid saponins were in the range of 84.06-91.66% (RSD < 10.5%), and all values of the matrix effect were more than 90.30%. The developed analytical method was successfully applied to pharmacokinetic study on simultaneous determination of the four triterpenoid saponins in rat plasma after oral administration of total saponin of Aralia elata leaves, which helps guiding clinical usage of Aralia elata leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Otsubo, N; Ishida, H; Kiso, M
2001-01-15
Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.
Kantsadi, Anastassia L; Bokor, Éva; Kun, Sándor; Stravodimos, George A; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Juhász-Tóth, Éva; Szakács, Andrea; Batta, Gyula; Docsa, Tibor; Gergely, Pál; Somsák, László
2016-11-10
C-β-d-Glucopyranosyl pyrrole derivatives were prepared in the reactions of pyrrole, 2-, and 3-aryl-pyrroles with O-peracetylated β-d-glucopyranosyl trichloroacetimidate, while 2-(β-d-glucopyranosyl) indole was obtained by a cross coupling of O-perbenzylated β-d-glucopyranosyl acetylene with N-tosyl-2-iodoaniline followed by spontaneous ring closure. An improved synthesis of O-perbenzoylated 2-(β-d-glucopyranosyl) imidazoles was achieved by reacting C-glucopyranosyl formimidates with α-aminoketones. The deprotected compounds were assayed with isoforms of glycogen phosphorylase (GP) to show no activity of the pyrroles against rabbit muscle GPb. The imidazoles proved to be the best known glucose derived inhibitors of not only the muscle enzymes (both a and b) but also of the pharmacologically relevant human liver GPa (Ki = 156 and 26 nM for the 4(5)-phenyl and -(2-naphthyl) derivatives, respectively). An X-ray crystallographic study of the rmGPb-imidazole complexes revealed structural features of the strong binding, and also allowed to explain the absence of inhibition for the pyrrole derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Enhanced profiling of flavonol glycosides in the fruits of sea buckthorn (Hippophae rhamnoides).
Fang, Rui; Veitch, Nigel C; Kite, Geoffrey C; Porter, Elaine A; Simmonds, Monique S J
2013-04-24
Use of enhanced LC-MS/MS methods to identify common glycosyl groups of flavonoid glycosides enabled better characterization of the flavonoids in fruits of sea buckthorn (Hippophae rhamnoides). The saccharide moieties of 48 flavonol O-glycosides detected in a methanol extract were identified by these methods. Several of the flavonol glycosides were acylated, two of which were isolated and found to be new compounds. Their structures were determined using spectroscopic and chemical methods as isorhamnetin 3-O-(6-O-E-sinapoyl-β-D-glucopyranosyl)-(1→2)-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (24) and isorhamnetin 3-O-(6-O-E-feruloyl-β-D-glucopyranosyl)-(1→2)-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (30). Analysis of the acylated glycosyl groups of 24 and 30 by serial mass spectrometry provided evidence to suggest the acylation position of 11 other minor flavonol glycosides acylated with hydroxycinnamic or hydroxybenzoic acids. The nitric oxide scavenging activities of 24 and 30 were compared with those of other flavonoids and with ascorbic acid and the potassium salt of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (carboxy-PTIO).
Alternansucrase acceptor reactions with D-tagatose and L-glucose.
Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A
2005-02-07
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.
Chen, Chu; Xu, Xue-Min; Chen, Yang; Yu, Meng-Yao; Wen, Fei-Yan; Zhang, Hao
2013-12-01
A novel acylated flavonol glycoside: isorhamnetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (1), together with two known acylated flavonol glycosides: quercetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (2) and kaempferol (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (3) were isolated from the n-butanol fraction of sea buckthorn (Hippophae rhamnoides ssp. sinensis) berries for the first time by chromatographic methods, and their structures were elucidated using UV, MS, (1)H and (13)C NMR, and 2D NMR. Compounds 1-3 showed good scavenging activities, with respective IC50 values of 8.91, 4.26 and 30.90 μM toward the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical; respective Trolox equivalent antioxidant capacities of 2.89, 4.04 and 2.44 μM μM(-1) toward 2,2'-azino-bis-3-ethyl-benzothiazoline-6-sulphonate (ABTS) radical. The quantitative analysis of the isolated acylated flavonol glycosides was performed by HPLC-DAD method. The contents of compounds 1-3 were in the range of 12.2-31.4, 4.0-25.3, 7.5-59.7 mg/100 g dried berries and 9.1-34.5, 75.1-182.1, 29.2-113.4 mg/100 g dried leaves, respectively. Copyright © 2013. Published by Elsevier Ltd.
Leaf flavonoids of Albizia lebbeck.
el-Mousallamy, A M
1998-06-01
Two new tri-O-glycoside flavonols: kaempferol and quercetin 3-O-alpha-rhamnopyranosyl(1-->6)-beta-glucopyranosyl(1-->6)-beta- galactopyranosides, were identified from the leaves of Albizia lebbeck. Structures were established by conventional methods of analysis and confirmed by ESI-MS, 1H and 13C-NMR spectral analysis.
New developments and prospective applications for beta (1,3) glucans.
Laroche, Celine; Michaud, Philippe
2007-01-01
Publications and patents relative to newly observed functions of beta-(1,3)-D-glucans have notably increased in the last few years with the exploitation of their biological activities. The term beta-(1,3)-D-glucans includes a very large number of polysaccharides from bacterial, fungal and vegetable sources. Their structures have a common backbone of beta-(1,3) linked glucopyranosyl residues but the polysaccharidic chain can be beta-(1,6) branched with glucose or integrate some beta-(1,4) linked glucopyranosyl residues in the main chain. Except for the curdlan, a bacterial linear beta-(1,3)-D-glucans, and for the scleroglucan produced by Sclerotium rolfsii, the main drawback limiting the development of these polysaccharides is the lack of efficient processes for their extraction and purification and their cost. However new applications in agronomy, foods, cosmetic and therapeutic could in a next future accentuate the effort of research for their development. So this review focuses on these beta-(1,3)-D-glucans with the objective to detail the strategies employed for their extraction and the relation structure-functions identified when they induce biological activities.
Lang, Roman; Fromme, Tobias; Beusch, Anja; Lang, Tatjana; Klingenspor, Martin; Hofmann, Thomas
2014-08-01
Capsules, powders and tablets containing raw coffee extract are advertised to the consumer as antioxidant rich dietary supplements as part of a healthy diet. We isolated carboxyatractyligenin (4), 2-O-β-d-glucopyranosyl carboxyatractyligenin (6) and 3'-O-β-d-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-d-glucopyranoside (8) from green coffee and found strong inhibitory effects on phosphorylating respiration in isolated mitochondria similar to the effects of the known phytotoxin carboxyatractyloside. LC-MS/MS analysis of commercial green coffee based dietary supplements revealed the occurrence of carboxyatractyligenin, 3'-O-β-d-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-d-glucopyranoside, and 2-O-β-d-glucopyranosyl carboxyatractyligenin in concentrations up to 4.0, 5.7, and 41.6μmol/g, respectively. These data might help to gain first insight into potential physiological side-effects of green coffee containing dietary supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yong J.; Galoforo, S.S.; Berns, C.M.
We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatmentmore » with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.« less
Aristolic Acid Derivatives from the Bark of Antidesma ghaesembilla.
Schäfer, Sibylle; Schwaiger, Stefan; Stuppner, Hermann
2017-08-01
Antidesma ghaesembilla is an important medicinal and food plant in many Asian countries. Ten substances could be isolated from the dichloromethane and methanol extract: sitostenone ( 3 ), daucosterol ( 4 ), chavibetol ( 5 ), asperphenamate ( 6 ), protocatechuic acid ( 7 ), vanillic acid-4- O - β -D-glucoside ( 8 ), 1- O - β -D-glucopyranosyl-3- O -methyl-phloroglucinol ( 9 ), and aristolic acid II-8- O - β -D-glucoside ( 10 ), and two new aristolic acid derivatives, 10-amino-5,7-dimethoxy-aristolic acid II (= 6-amino-9,11-dimethoxyphenanthro[3,4- d ]-1,3-dioxole-5-carboxylic acid; 1 ) and 5,7-dimethoxy-aristolochic acid II (= 9,11-dimethoxy-6-nitrophenantro[3,4- d ]-1,3-dioxole-5-carboxylic acid; 2 ). Exposure to humans of some of these compounds is associated with a severe disease today known as aristolochic acid nephropathy. Therefore, the traditional usage of this plant has to be reconsidered carefully. Georg Thieme Verlag KG Stuttgart · New York.
Two new chalcone glycosides from the stems of Entada phaseoloides.
Zhao, Zhong-xiang; Jin, Jing; Lin, Chao-zhan; Zhu, Chen-chen; Liu, Yi-ming; Lin, Ai-hua; Liu, Ying-xiang; Zhang, Li; Luo, Hua-feng
2011-10-01
Two new chalcone glycosides 4'-O-(6″-O-galloyl-β-d-glucopyranosyl)-2',4-dihydroxychalcone (1) and 4'-O-(6″-O-galloyl-β-d-glucopyranosyl)-2'-hydroxy-4-methoxychalcone (2) together with one known chalcone glycoside 4'-O-β-d-glucopyranosyl-2'-hydroxy-4-methoxychalcone (3) were isolated from the stems of Entada phaseoloides. The structures of the new compounds were elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC, (1)H-(1)H COSY, and chemical evidences. This is the first report of chalcone-type compounds isolated from the genus Entada. Copyright © 2011 Elsevier B.V. All rights reserved.
Ren, Yina; Xu, Xiaobao; Zhang, Qianlan; Lu, Yongzhuang; Li, Ximin; Zhang, Lin; Tian, Jingkui
2017-02-01
One new oleanolic acid triterpenoid saponin, 3-O-β-D-glucopyranosyl olean-11, 13(18)-diene-23,28-dioic acid, (hereafter referred to as DS-1) was isolated from the traditional Chinese medicinal plant Dianthus superbus (D. superbus). DS-1 plays an important role in the bioactivity of D. superbus. Thus, a sensitive, reliable and accurate reversed-phased liquid chromatography with tandem mass spectrometry (LC-MS/MS) in negative ion mode was developed and validated for the quantification and pharmacokinetic study of DS-1 in rats plasma. The pharmacokinetic profile showed that DS-1 was rapidly absorbed and eliminated in plasma, indicating that significant accumulation of the compound in biological specimen is unlikely. In addition, poor absorption into systemic circulation was observed after oral administration of DS-1, resulting in low absolute bioavailability (0.92 %).
Digestion by fungal glycanases of arabinoxylans with different feruloylated side-chains.
Wende, G; Fry, S C
1997-07-01
Alcohol-insoluble residues (AIRs) from Festuca and Zea cell cultures contained 7.4 and 35 nmol esterified ferulate mg-1, respectively. Driselase solubilised 79% of the feruloylated material from both AIRs. Of the feruloyl esters solubilised from Festuca and Zea AIRs, 72 and 56% respectively were small enough to be mobile on paper chromatography. The major feruloylated product of Zea AIR was the known 5-O-feruloyl-alpha-L-Araf-(1-->3)-beta-D-Xylp-(1-->4)- D-Xyl (Fer-Ara-Xyl-Xyl). In contrast, the smallest major feruloylated product of Festuca AIR was a feruloyl pentasaccharide (3) containing 3 Xyl, 1 Ara and 1 non-pentose residue (NPR). The Ara and two of the three Xyl groups of 3 were resistant to NaIO4. Mild acid hydrolysis of 3 gave xylobiose, a feruloyl trisaccharide and beta-D-Xylp-(1-->2)-(5-O-feruloyl)-L-Ara. Compound 3 was therefore NPR-(1-->3)-beta-D-Xylp-(1-->2)-(5-O-feruloyl)-alpha-L-Ar af-(1-->3)-beta-D-Xylp-(1-->4)-D-Xyl. We conclude that the complex feruloyl oligosaccharide side-chains of Festuca arabinoxylan do not protect the polysaccharide against hydrolysis by the fungal glycanases present in Driselase.
Paviosides A-H, eight new oleane type saponins from Aesculus pavia with cytotoxic activity.
Lanzotti, Virginia; Termolino, Pasquale; Dolci, Marcello; Curir, Paolo
2012-05-15
A phytochemical analysis of Aesculus pavia has led to the isolation of eight novel triterpenoid saponins, based on oleane type skeleton and named paviosides A-H (1a, 1b-4a, 4b). On the basis of chemical, and 2D NMR and mass spectrometry data, the structures of the new compounds were elucidated as 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-d-glucopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (1a), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-glucopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (1b), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-galactopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (2a), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-galactopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (2b), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (3a), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-d-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (3b), 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl protoaescigenin (4a), and 3-O-[β-D-xylopyranosyl (1 → 2)] [-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl protoaescigenin (4b). The compounds showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines. Among them, paviosides E-H (3a, 3b and 4a, 4b) showed higher activity with values ranging from 2.1 to 3.6 μg/mL. Structure-activity relationship studies indicated the positive effect on the activity of xylose unit in the place of glucose, while a little detrimental effect is observed when glucose is substituted by galactose. The aglycone structure and the presence of a tigloyl or an angeloyl group at C-21 do not affect significantly the inhibitory activity on both tested cell lines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhong, Ruijian; Guo, Qing; Zhou, Guoping; Fu, Huizheng; Wan, Kaihua
2015-04-01
Three new labdane-type diterpene glycosides, 15,18-di-O-β-d-glucopyranosyl-13(E)-ent-labda-7(8),13(14)-diene-3β,15,18-triol (1), 15,18-di-O-β-d-glucopyranosyl-13(E)-ent-labda-8(9),13(14)-diene-3β,15,18-triol (2), and 15-O-β-d-apiofuranosyl-(1→2)-β-d-glucopyranosyl-18-O-β-d-glucopyranosyl-13(E)-ent-labda-8(9),13(14)-diene-3β,15,18-triol (3), were isolated from the fruits of Rubus chingii. Their structures were elucidated on the basis of spectroscopic data and chemical methods. The cytotoxic activities of compounds 1-3 were evaluated against five human tumor cell lines (HCT-8, BGC-823, A549, and A2780). Compounds 3 showed cytotoxic activity against A549 with an IC50 value of 2.32μM. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
In Vitro Schistosomicidal Activity of Some Brazilian Cerrado Species and Their Isolated Compounds
Cunha, Nayanne Larissa; Uchôa, Camila Jacintho de Mendonça; Cintra, Lucas Silva; de Souza, Herbert Cristian; Peixoto, Juliana Andrade; Silva, Claudia Peres; Magalhães, Lizandra Guidi; Gimenez, Valéria Maria Meleiro; Groppo, Milton; Rodrigues, Vanderlei; da Silva Filho, Ademar Alves; Andrade e Silva, Márcio Luís; Cunha, Wilson Roberto; Pauletti, Patrícia Mendonça; Januário, Ana Helena
2012-01-01
Miconia langsdorffii Cogn. (Melastomataceae), Roupala montana Aubl. (Proteaceae), Struthanthus syringifolius (Mart.) (Loranthaceae), and Schefflera vinosa (Cham. & Schltdl.) Frodin (Araliaceae) are plant species from the Brazilian Cerrado whose schistosomicidal potential has not yet been described. The crude extracts, fractions, the triterpenes betulin, oleanolic acid, ursolic acid and the flavonoids quercetin 3-O-β-D-rhamnoside, quercetin 3-O-β-D-glucoside, quercetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside and isorhamnetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside were evaluated in vitro against Schistosoma mansoni adult worms and the bioactive n-hexane fractions of the mentioned species were also analyzed by GC-MS. Betulin was able to cause worm death percentage values of 25% after 120 h (at 100 μM), and 25% and 50% after 24 and 120 h (at 200 μM), respectively; besides the flavonoid quercetin 3-O-β-D-rhamnoside promoted 25% of death of the parasites at 100 μM. Farther the flavonoids quercetin 3-O-β-D-glucoside and quercetin 3-O-β-D-rhamnoside at 100 μM exhibited significantly reduction in motor activity, 75% and 87.5%, respectively. Biological results indicated that crude extracts of R. montana, S. vinosa, and M. langsdorffii and some n-hexane and EtOAc fractions of this species were able to induce worm death to some extent. The results suggest that lupane-type triterpenes and flavonoid monoglycosides should be considered for further antiparasites studies. PMID:22924053
Amakura, Yoshiaki; Yoshimura, Morio; Morimoto, Sara; Yoshida, Takashi; Tada, Atsuko; Ito, Yusai; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi
2016-01-01
Gentian root extract is used as a bitter food additive in Japan. We investigated the constituents of this extract to acquire the chemical data needed for standardized specifications. Fourteen known compounds were isolated in addition to a mixture of gentisin and isogentisin: anofinic acid, 2-methoxyanofinic acid, furan-2-carboxylic acid, 5-hydroxymethyl-2-furfural, 2,3-dihydroxybenzoic acid, isovitexin, gentiopicroside, loganic acid, sweroside, vanillic acid, gentisin 7-O-primeveroside, isogentisin 3-O-primeveroside, 6'-O-glucosylgentiopicroside, and swertiajaposide D. Moreover, a new compound, loganic acid 7-(2'-hydroxy-3'-O-β-D-glucopyranosyl)benzoate (1), was also isolated. HPLC was used to analyze gentiopicroside and amarogentin, defined as the main constituents of gentian root extract in the List of Existing Food Additives in Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egli, Martin; Pallan, Pradeep S.; Pattanayek, Rekha
An experimental rationalization of the structure type encountered in DNA and RNA by systematically investigating the chemical and physical properties of alternative nucleic acids has identified systems with a variety of sugar-phosphate backbones that are capable of Watson-Crick base pairing and in some cases cross-pairing with the natural nucleic acids. The earliest among the model systems tested to date, (4{prime} {yields} 6{prime})-linked oligo(2{prime},3{prime}-dideoxy-{beta}-d-glucopyranosyl)nucleotides or homo-DNA, shows stable self-pairing, but the pairing rules for the four natural bases are not the same as those in DNA. However, a complete interpretation and understanding of the properties of the hexapyranosyl (4{prime} {yields} 6{prime})more » family of nucleic acids has been impeded until now by the lack of detailed 3D-structural data. We have determined the crystal structure of a homo-DNA octamer. It reveals a weakly twisted right-handed duplex with a strong inclination between the hexose-phosphate backbones and base-pair axes, and highly irregular values for helical rise and twist at individual base steps. The structure allows a rationalization of the inability of allo-, altro-, and glucopyranosyl-based oligonucleotides to form stable pairing systems.« less
Dawid, Corinna; Hofmann, Thomas
2014-02-15
A sensitive HPLC-MS/MS method was developed enabling the simultaneous quantification of bitter-tasting mono- and bidesmosidic saponins in fresh and processed asparagus (Asparagus officinalis L.). Based on quantitative data and bitter taste recognition thresholds, dose-over-threshold factors were determined for the first time to determine the bitter impact of the individual saponins. Although 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl]-(25R/S)-spirost-5-ene-3β-ol was found based on dose-over-threshold factors to be the predominant bitter saponin in raw asparagus spears, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25R)-22-hydroxyfurost-5-ene-3β,26-diol, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25S)-22-hydroxyfurost-5-ene-3β,26-diol, and (25R)- and (25S)-furost-5-en-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside were found as key bitter contributors after cooking. Interestingly, the monodesmosidic saponins 5a/b were demonstrated for the first time to be the major contributor to the bitter taste of fresh asparagus spears, while the bidesmosides 1a/b and 2a/b may be considered the primary determinants for the bitter taste of cooked asparagus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enteridinines A and B from slime mold Enteridium lycoperdon.
Rezanka, Tomás; Dvoráková, Radmila; Hanus, Lumír O; Dembitsky, Valery M
2004-02-01
Two novel deoxysugar esters, named enteridinines A and B, were isolated from the slime mold Enteridium lycoperdon. Their structures, including the absolute configurations of the hydroxyl and methyl groups, were determined by means of extensive spectroscopic data such as UV, IR, MS, 1D and 2D NMR spectra. Enteridinines A and B have unique structures containing 1,7-dioxaspiro[5.5]undecanes with an O-beta-D-mycarosyl-(1-->4)-beta-D-olivosyl and an O-beta-L-olivomycosyl-(1-->4)-beta-D-amicetosyl-(1-->4)-beta-L-digitoxosyl unit, respectively, and showed growth inhibitory activities against Gram positive bacteria.
Sesquiterpenoids from roots of Taraxacum laevigatum and Taraxacum disseminatum.
Zielińiska, K; Kisiel, W
2000-08-01
Chromatographic separation of ethanolic root extracts of Taraxacum laevigatum and Taraxacum disseminatum afforded a total of eight germacrane- and eudesmane-type sesquiterpenoids. including new compounds, 1beta,3beta,6alpha-trihydroxy-4alpha( 15)-dihydrocostic acid methyl ester and its 1-O-beta-glucopyranoside. Their structures were established by spectroscopic analyses. In addition, the structure of 4alpha(15), 11beta(13)-tetrahydroridentin B-1-O-beta-glucopyranoside was elucidated by extensive NMR studies.
Synthesis of [18F]-labelled Maltose Derivatives as PET Tracers for Imaging Bacterial Infection
Namavari, Mohammad; Gowrishankar, Gayatri; Hoehne, Aileen; Jouannot, Erwan; Gambhir, Sanjiv S
2015-01-01
Purpose To develop novel positron emission tomography (PET) agents for visualization and therapy monitoring of bacterial infections. Procedures It is known that maltose and maltodextrins are energy sources for bacteria. Hence, 18F-labelled maltose derivatives could be a valuable tool for imaging bacterial infections. We have developed methods to synthesize 4-O-(α-D-glucopyranosyl)-6-deoxy-6-[18F]fluoro-D-glucopyranoside (6-[18F]fluoromaltose) and 4-O-(α-D-glucopyranosyl)-1-deoxy-1-[18F]fluoro-D-glucopyranoside (1-[18F]fluoromaltose) as bacterial infection PET imaging agents. 6-[18F]fluoromaltose was prepared from precursor 1,2,3-tri-O-acetyl-4-O-(2′,3′,-di-O-acetyl-4′,6′-benzylidene-α-D-glucopyranosyl)-6-deoxy-6-nosyl-D-glucopranoside (5). The synthesis involved the radio-fluorination of 5 followed by acidic and basic hydrolysis to give 6-[18F]fluoromaltose. In an analogous procedure, 1-[18F]fluoromaltose was synthesized from 2,3, 6-tri-O-acetyl-4-O-(2′,3′,4′,6-tetra-O-acetyl-α-D-glucopyranosyl)-1-deoxy-1-O-triflyl-D-glucopranoside (9). Stability of 6-[18F]fluoromaltose in phosphate-buffered saline (PBS) and human and mouse serum at 37 °C was determined. Escherichia coli uptake of 6-[18F]fluoromaltose was examined. Results A reliable synthesis of 1- and 6-[18F]fluoromaltose has been accomplished with 4–6 and 5–8 % radiochemical yields, respectively (decay-corrected with 95 % radiochemical purity). 6-[18F]fluoromaltose was sufficiently stable over the time span needed for PET studies (~96 % intact compound after 1-h and ~65 % after 2-h incubation in serum). Bacterial uptake experiments indicated that E. coli transports 6-[18F]fluoromaltose. Competition assays showed that the uptake of 6-[18F]fluoromaltose was completely blocked by co-incubation with 1 mM of the natural substrate maltose. Conclusion We have successfully synthesized 1- and 6-[18F]fluoromaltose via direct fluorination of appropriate protected maltose precursors. Bacterial uptake experiments in E. coli and stability studies suggest a possible application of 6-[18F]fluoromaltose as a new PET imaging agent for visualization and monitoring of bacterial infections. PMID:25277604
Quantitation and structural determination of glucosylceramides contained in sake lees.
Takahashi, Koshiro; Izumi, Kazuki; Nakahata, Eriko; Hirata, Miyo; Sawada, Kazutaka; Tsuge, Keisuke; Nagao, Koji; Kitagaki, Hiroshi
2014-01-01
Sake lees are solid parts filtered from the mash of sake, the traditional rice wine of Japan, which is brewed with Aspergillus oryzae and Saccharomyces cerevisiae. The moisture-holding activity of sake lees has long been recognized in Japan. However, the constituent responsible for this activity has not been elucidated. In this study, we first determined the structure of the glucosylceramides contained in sake lees. The glucosylceramides contained in sake lees were N-2'-hydroxyoctadecanoyl-l-O-β-D-glucopyranosyl-9-methyl-4,8-sphingadienine (d19:2/C18:0h), N-2'-hydroxyoctadecanoyl-l-O-β-D-glucopyranosyl-4,8-sphingadienine (d18:2/C18:0h), N-2'-hydroxyicosanoyl-l-O-β-D-glucopyranosyl-4,8-sphingadienine (d18:2/C20:0h) and N-2'-hydroxyicosanoyl-l-O-β-D-glucopyranosyl-4,8-sphingadienine (d18:2/C22:0h), which corresponded to those of A. oryzae and rice. The glucosylceramide produced by A. oryzae constituted the most abundant species (43% of the total glucosylceramide) in the sake lees. These results will be of value in the utilization of sake lees for cosmetics and functional foods.
Vieira, R P; Mulloy, B; Mourão, P A
1991-07-25
The structure of a unique focose-branched chondroitin sulfate isolated from the body wall of a sea cucumber was examined in detail. This glycosaminoglycan contains side chain disaccharide units of sulfated fucopyranosyl units linked to approximately one-half of the glucuronic acid moieties through the O-3 position of the acid. The intact polysaccharide is totally resistant to chondroitinase degradation, whereas, after defucosylation, it is partially degraded by the enzyme. However, only after an additional step of desulfation, the chondroitin from sea cucumber is almost totally degraded by chondroitinase AC or ABC. This result, together with the methylation and NMR studies of the native and chemically modified polysaccharide, suggest that besides the fucose branches, the sea cucumber chondroitin sulfate contains sulfate esters at position O-3 of the beta-D-glucuronic acid units. Furthermore, the proteoglycan from the sea cucumber chondroitin sulfate is recognized by anti-Leu-7 monoclonal antibody, which specifically recognizes 3-sulfoglucuronic acid residues. In analogy with the fucose branched units, the 3-O-sulfo-beta-D-glucuronosyl residues are resistant to chondroitinase degradation. Regarding the position of the glycosidic linkage and site of sulfation in the fucose branches, our results suggest high heterogeneity. Tentatively, it is possible to suggest the preponderance of disaccharide units formed by 3,4-di-O-sulfo-alpha-L-fucopyranosyl units glycosidically linked through position 1----2 to 4-O-sulfo-alpha-L-fucopyranose. Finally, the presence of unusual 4/6-disulfated disaccharide units, together with the common 6-sulfated and non-sulfated units, was detected in the chondroitin sulfate core of this polysaccharide.
[Study on the chemical constituents from Cyathea spinulosa].
Jiang, Jian-Shuang; Zhan, Zhi-Lai; Feng, Zi-Ming; Yang, Ya-Nan; Zhang, Pei-Cheng
2012-04-01
To study the chemical constituents from Cyathea spinulosa. Compounds were isolated by chromatographic techniques. Their structures were elucidated by spectral methods. Eight compounds were isolated from the ethanol extract of Cyathea spinulosa and identified as stigmast-4-ene-3,6-dione (1), stigmast-3,6-dione (2), ergosterol (3), protocatechuic aldehyde (4), 1-O-beta-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2-hydroxyoctadecanoyl) amido]-4,8- octadecadiene-1,3-diol (5), (2S,3S, 4R)-2-[(2'R) -2'-hydroxytetracosanoylamino]-1,3,4-octadecanetriol (6), beta-sitosterol (7), daucosterol (8). Compounds 1-6 are isolated from this plant for the first time.
An antitumor promoter from Moringa oleifera Lam.
Guevara, A P; Vargas, C; Sakurai, H; Fujiwara, Y; Hashimoto, K; Maoka, T; Kozuka, M; Ito, Y; Tokuda, H; Nishino, H
1999-04-06
In the course of studies on the isolation of bioactive compounds from Philippine plants, the seeds of Moringa oleifera Lam. were examined and from the ethanol extract were isolated the new O-ethyl-4-(alpha-L-rhamnosyloxy)benzyl carbamate (1) together with seven known compounds, 4(alpha-L-rhamnosyloxy)-benzyl isothiocyanate (2), niazimicin (3), niazirin (4), beta-sitosterol (5), glycerol-1-(9-octadecanoate) (6), 3-O-(6'-O-oleoyl-beta-D-glucopyranosyl)-beta-sitosterol (7), and beta-sitosterol-3-O-beta-D-glucopyranoside (8). Four of the isolates (2, 3, 7, and 8), which were obtained in relatively good yields, were tested for their potential antitumor promoting activity using an in vitro assay which tested their inhibitory effects on Epstein-Barr virus-early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). All the tested compounds showed inhibitory activity against EBV-EA activation, with compounds 2, 3 and 8 having shown very significant activities. Based on the in vitro results, niazimicin (3) was further subjected to in vivo test and found to have potent antitumor promoting activity in the two-stage carcinogenesis in mouse skin using 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as tumor promoter. From these results, niazimicin (3) is proposed to be a potent chemo-preventive agent in chemical carcinogenesis. Copyright 1999 Elsevier Science B.V.
Yang, Wen-zhi; Ye, Min; Qiao, Xue; Liu, Chun-fang; Miao, Wen-juan; Bo, Tao; Tao, Hai-yan; Guo, De-an
2012-08-20
To discover new natural compounds from herbal medicines tends to be more and more difficult. In this paper, a strategy integrating orthogonal column chromatography and liquid chromatography/mass spectrometry (LC/MS) analysis was proposed, and was applied for rapid discovery of new ginsenosides from Panax ginseng (PG), Panax quinquefolium (PQ), and Panax notoginseng (PN). The ginsenosides extracts were fractionated by MCI gel×silica gel orthogonal column chromatography. The fractions were then separated on a C(18) HPLC column, eluted with a three-component mobile phase (CH(3)CN/CH(3)OH/3mM CH(3)COONH(4)H(2)O), and detected by electrospray ionization tandem mass spectrometry. The structures of unknown ginsenosides were elucidated by analyzing negative and positive ion mass spectra, which provided complementary information on the sapogenins and oligosaccharide chains, respectively. A total of 623 comprising 437 potential new ginsenosides were characterized from the ethanol extracts of PG, PQ and PN. New acylations, diversified saccharide chains and C-17 side chains constituted novelty of the newly identified ginsenosides. An interpretation guideline was proposed for structural characterization of unknown ginsenosides by LC/MS. To confirm reliability of this strategy, two targeted unknown trace ginsenosides were obtained in pure form by LC/MS-guided isolation. Based on extensive NMR spectroscopic analysis and other techniques, they were identified as 3-O-[6-O-(E)-butenoyl-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl]-20(S)-protopanaxadiol-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (named ginsenoside IV) and 3-O-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl-3β,12β,20(S),24(R)-tetra hydroxy-dammar-25-ene-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (ginsenoside V), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our understanding on ginsenosides of Panax species, and the proposed strategy was proved efficient and reliable in the discovery of new minor compounds from herbal extracts. Copyright © 2012 Elsevier B.V. All rights reserved.
[Study on the chemical constituents in Pouzolzia zeylanica].
Fu, Ming; Niu, You-Ya; Yu, Juan; Kong, Qing-Tong
2012-11-01
To study the chemical constituents of Pouzolzia zeylanica. Many chromatography means were used in separation and purification, and the structures of all compounds were identified by the means of spectroscopic analysis and physicochemical properties. 14 compounds were elucidated as: beta-sitosterol (1), daucosterol (2), oleanolic acid (3), epicatechin (4), alpha-amyrin (5), eugenyl-beta-rutinoside (6), 2alpha, 3alpha, 19alpha-trihydroxyurs-12-en-28-oic (7), scopolin (8), scutellarein-7-O-alpha-L-rhamnoside (9), scopoletin (10), quercetin (11), quercetin-3-O-beta-D-glucoside (12), apigenin (13), 2alpha-hydroxyursolic acid (14). All compounds are obtained from this plant for the first time.
Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters
Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert
1998-01-01
Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.
Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters
Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.
1998-09-15
Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.
Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.
Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J
1987-01-01
The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212
Torgov, Vladimir; Danilov, Leonid; Utkina, Natalia; Veselovsky, Vladimir; Brockhausen, Inka
2017-12-01
Two new phenoxyundecyl diphosphate sugars were synthesized for the first time: P 1 -(11-phenoxyundecyl)-P 2 - (2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P 1 -(11-phenoxyundecyl)-P 2 -(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate to study the third step of biosynthesis of the repeating units of O-antigenic polysaccharides in Pseudomonas aeruginosa and E.coli O104 respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase.
Kim, C H; Marquez, V E; Mao, D T; Haines, D R; McCormack, J J
1986-08-01
One of the problems encountered in the use of tetrahydrouridine (THU, 2) and saturated 2-oxo-1,3-diazepine nucleosides as orally administered cytidine deaminase (CDA) inhibitors is their acid instability. Under acid conditions these compounds are rapidly converted into inactive ribopyranoside forms. A solution this problem was sought by functionalizing the acid-stable but less potent CDA inhibitor 1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (1) with the hope of increasing its potency to the level achieved with THU. The selection of the hydroxymethyl substituent at C-4, which led to the synthesis of 4-(hydroxymethyl)-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (10), 3,4-dihydro-4-(hydroxymethyl)-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (7), and 3,4,5,6-tetrahydro-4-(dihydroxymethyl)-1-beta-D-ribofuranosyl-2(1H)-p yrimidinone (28) was based on the transition-state (TS) concept. The key intermediate precursor, 4-[(benzoyloxy)methyl]-1-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-2(H) -pyrimidinone (24), was obtained via the classical Hilbert-Johnson reaction between 2-methoxy-4-[(benzoyloxy)methyl]pyrimidine (20) and 2,3,5-tri-O-benzoyl-1-D-ribofuranosyl bromide (21). Deprotection of 24 afforded compound 10, while its sodium borohydride reduction products afforded compounds 7 and 28 after removal of the blocking groups. Syntheses of 3,4-dihydro-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (9) and 3,6-dihydro-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (8), which lack the hydroxymethyl substituent, was accomplished in a similar fashion. The new compounds bearing the hydroxymethyl substituent were more acid stable than THU, and their CDA inhibitory potency, expressed in terms of Ki values, spanned from 10(-4) to 10(-7) M in a manner consistent with the TS theory. Compound 7, in particular, was superior to its parent 1 and equipotent to THU (Ki = 4 X 10(-7) M) when examined against mouse kidney CDA. The superior acid stability of this compound coupled to its potent inhibitory properties against CDA should provide a means of testing oral combinations of rapidly deaminated drugs, viz. ara-C, without the complications associated with the acid instability of THU.
Estevez, José M; Ciancia, Marina; Cerezo, Alberto S
2004-10-20
The galactans extracted with hot water from Kappaphycus alvarezii, after previous extraction at room temperature, are mainly composed of kappa-carrageenans (approximately 74%) and micro-carrageenans (approximately 3%). However, a significant percentage of these galactans (at least 14%) is composed of sulfated agarans and, possibly, agaran-type sulfated DL-hybrid galactans. These agarans are partially substituted on C-2 or C-4 or disubstituted on both positions of the beta-D-galactose units and on C-3 or C-2 and C-3 of the alpha-L-galactose residues with sulfate groups or single stubs of beta-D-xylopyranose, D-glucopyranose, and galactose or with D-glucopyranosyl-(1-->4)-D-glucopyranose side chains. Significant quantities of 2-O-methyl- and 3-O-methyl-L-galactose units are also present. A great tendency to retain Ca2+ and Mg2+, in spite of massive treatments with Na+ and K+ salts, was observed. The complexation between agarans and agarans-kappa-carrageenans through divalent cations and the possible zipper-type carbohydrate-carbohydrate interactions would be two complementary mechanisms of interactions.
Flavan and procyanidin glycosides from the bark of blackjack oak
Young-Soo Bae; Johann F.W. Burger; Jan P. Steynberg; Daniel Ferreira; Richard W. Hemingway
1994-01-01
The bark of blackjack oak contains (+)-catechin, (-)-epicatechin, (+)-3-O-[β-D-glucopyranosyl]-catechin, catechin-(4α→8}-catechin, epicatechin-(4β→8}-catechin as well as the novel 3-0-[β-D-glucopyranosyl]-catechin-(4α→8)-catechin and 3-0...
Seeka, Chonticha; Sutthivaiyakit, Pakawadee; Youkwan, Juthamanee; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe; Sutthivaiyakit, Somyote
2016-07-01
Sixteen compounds including dihydroxy prenylfuranocoumarins/3-hydroxy-3-methylglutaric acid conjugates and dihydroxy prenylfuranocoumarins/3-hydroxy-3-methylglutaric acid/1-O-flavonyl-β-d-glucopyranoside conjugates, together with other dihydroxyprenylfuranocoumarins conjugates, were isolated from the ethyl acetate extract of the fruit peels of Citrus hystrix. Some of the isolates were evaluated for their cholinesterase inhibitory activity, but only one compound possessing a 3-O-β-d-glucopyranosyl-3,5,7,4'-tetrahydroxy-6,8,3'-trimethoxyflavonol nucleus in the prenylfuranocoumarin-HMGA conjugate showed strong activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
do Vale, Ademir E; David, Jorge M; dos Santos, Edlene O; David, Juceni P; e Silva, Lidercia C R C; Bahia, Marcus V; Brandão, Hugo N
2012-04-01
This work reports isolation of an unusual lignan with a bicyclic [2.2.2] octene skeleton, named rufescenolide (1), from stems of Cordia rufescens, along with β-sitosterol, stigmasterol, syringaldehyde, 3-β-O-D-glucopyranosyl-sitosterol, methyl caffeate, 4-methoxy-protocatechuic acid and methyl rosmarinate. Structural characterizations employed IR spectroscopic, ESIHRMS and mono and dimensional NMR spectroscopy. Copyright © 2011 Elsevier Ltd. All rights reserved.
Benning, C; Huang, Z H; Gage, D A
1995-02-20
Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.
Sakuma; Sakai; Itooka; Miyaura
2000-09-22
Arylboronic acids underwent the conjugate 1,4-addition to alpha, beta-unsaturated esters to give beta-aryl esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the presence of 3 mol % of Rh(acac)(C(2)H(4))(2) and (S)-binap at 100 degrees C. The rhodium/(S)-binap complex provided (R)-3-phenylbutanoate in the addition of phenylboronic acid to benzyl crotonate. The effects on the enantioselectivity of chiral phosphine ligands, rhodium precursors, and substituents on alpha,beta-unsaturated esters are discussed, as well as the mechanistic aspect of the catalytic cycle.
Huang, Yanfei; Han, Yatao; Chen, Keli; Huang, Bisheng; Liu, Yuan
2015-12-01
Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high-speed counter-current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n-butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin-3-O-β-d-glucopyrannosy-(1→6)-β-d-glucopyranoside (compound 1, 60 mg), quercetin 3-O-[2'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 2, 40 mg), quercetin 3-O-[3'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 3, 11 mg), and quercetin 3-O-[6'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 4, 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high-speed counter-current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald
2005-01-21
Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.
Lin, San-Qing; Zhou, Zhong-Liu; Li, Chun-Yan
2018-01-01
Cyprotuoside C (1) and cyprotuoside D (2), two new cycloartane glycosides were isolated from the ethanol extract of the rhizomes of Cyperus rotundus. Their structures were identified as 24R-9,10-seco-cycloartan-1(10),9(11)-dien-3β,7β,24,25-tetraol 3-O-β-D-xylopyranosyl-(1→4)-[α-L-arabinopyranosyl-(1→6)]-β-D-glucopyranosyl-25-O-β-D-glucuronide (1) and 9,10-seco-cycloartan-1(10),9(11),23(24)-trien-3β,7β,25-triol 3-O-β-D-xylopyranosyl-(1→4)-{α-L-arabinopyranosyl-(1→6)-[α-L-rhamnopyranosyl-(1→2)]}-β-D-glucopyranosyl-25-O-β-D-glucuronide (2) by spectroscopic methods.
Wee, May S M; Matia-Merino, Lara; Carnachan, Susan M; Sims, Ian M; Goh, Kelvin K T
2014-09-01
A shear-thickening water-soluble polysaccharide was purified from mucilage extracted from the fronds of the New Zealand black tree fern (Cyathea medullaris or 'mamaku' in Māori) and its structure characterised. Constituent sugar analysis by three complementary methods, combined with linkage analysis (of carboxyl reduced samples) and 1H and 13C nuclear magnetic resonance spectroscopy (NMR) revealed a glucuronomannan comprising a backbone of 4-linked methylesterified glucopyranosyl uronic acid and 2-linked mannopyranosyl residues, branched at O-3 of 45% and at both O-3 and O-4 of 53% of the mannopyranosyl residues with side chains likely comprising terminal xylopyranosyl, terminal galactopyranosyl, non-methylesterified terminal glucopyranosyl uronic acid and 3-linked glucopyranosyl uronic acid residues. The weight-average molecular weight of the purified polysaccharide was ∼1.9×10(6) Da as determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS). The distinctive rheological properties of this polysaccharide are discussed in relation to its structure. Copyright © 2014 Elsevier B.V. All rights reserved.
Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Saud, Guillermo; Caligari, Peter D S; Schmeda-Hirschmann, Guillermo
2005-11-02
Three E-cinnamic acid glycosides, tryptophan, and cyanidin-3-O-beta-D-glucopyranoside were isolated from ripe fruits of the Chilean strawberry Fragaria chiloensis ssp. chiloensis. 1-O-E-Cinnamoyl-beta-D-xylopyranoside, 1-O-E-cinnamoyl-beta-D-rhamnopyranoside, and 1-O-E-cinnamoyl-alpha-xylofuranosyl-(1-->6)-beta-D-glucopyranose are reported for the first time. The cinnamic acid glycosides and aromatic compound patterns in F. chiloensis fruits were determined by high-performance liquid chromatography (HPLC). HPLC analyses of extracts showed that cyanidin-3-O-beta-D-glucopyranoside and free ellagic acid are present in achenes while the E-cinnamoyl derivatives and tryptophan were identified only in the thalamus. The free radical scavenging effect of the fruit extract can be associated with the anthocyanin content.
Allelopathic potential of Citrus junos fruit waste from food processing industry.
Kato-Noguchi, Hisashi; Tanaka, Yukitoshi
2004-09-01
The allelopathic potential of Citrus junos fruit waste after juice extraction was investigated. Aqueous methanol extracts of peel, inside and seeds separated from the fruit waste inhibited the growth of the roots and shoots of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), crabgrass (Digitaria sanguinalis L.), lettuce (Lactuca sativa L.), timothy (Pheleum pratense L.), and ryegrass (Lolium multiflorum Lam.). The inhibitory activity of the peel extract was greatest and followed by that of the inside and seed extracts in all bioassays. Significant reductions in the root and shoot growth were observed as the extract concentration was increased. The concentrations of abscisic acid-beta-d-glucopyranosyl ester (ABA-GE) in peel, inside and seeds separated from the C. junos fruit waste were determined, since ABA-GE was found to be one of the main growth inhibitors in C. junos fruit. The concentration was greatest in the peel, followed by the inside and seeds; there was a good correspondence between these concentrations and the inhibitory activities of the extracts. This suggests that ABA-GE may also be involved in the growth inhibitory effect of C. junos waste. These results suggested that C. junos waste may possess allelopathic potential, and the waste may be potentially useful for weed management. Copyright 2004 Elsevier Ltd.
Structural elucidation of a heteroglycan from the fruiting bodies of Agaricus blazei Murill.
Liu, Jicheng; Zhang, Chunjing; Wang, Yajun; Yu, Haitao; Liu, Han; Wang, Liping; Yang, Xiuzhen; Liu, Zhecheng; Wen, Xianchun; Sun, Yongxu; Yu, Chunlei; Liu, Lei
2011-11-01
One water-soluble polysaccharide (ABP-W1) was purified from the fruiting bodies of Agaricus blazei by DEAE Sepharose Fast Flow and Sepharose 6 Fast Flow column chromatography. Its molecular weight was about 3.9×10(2) kDa as determined by high-performance size-exclusion chromatography (HPSEC). The structural feature of ABP-W1 was investigated by a combination of chemical and instrumental analysis, including partial hydrolysis with acid, periodate oxidation-Smith degradation, acetylation, methylation analysis and nuclear magnetic resonance spectroscopy (NMR (1)H, (13)C). The results revealed that ABP-W1 had a backbone consisting of (1→6)-linked-α-D-galactopyranosyl and (1→2,6)-linked-α-D-glucopyranosyl, which was branched with one single terminal (1→)-α-D-glucopyranosyl at the O-2 position of (1→2,6)-linked-α-D-glucopyranosyl along the main chain in the ratio of 1:1:1. The observation of the complex-formation between ABP-W1 and Congo Red indicated that ABP-W1 probably existed in a triple-strand helical conformation in water. Based on the data obtained, ABP-W1 was composed of a repeating unit with a structure as below: [structure: see text]. Copyright © 2011 Elsevier B.V. All rights reserved.
Five new cyotoxic steroidal glycosides from the fruits of Solanum torvum.
Li, Jinsheng; Zhang, Lu; Huang, Cheng; Guo, Fujiang; Li, Yiming
2014-03-01
The fruits of Solanum torvum Swartz, commonly known as Turkey berry, are edible and commonly used as a vegetable in the South Indian population's diet and as an essential ingredient in Thai cuisine. Five new steroidal glycosides together with five known ones were isolated from the fruits of S. torvum Swartz. Based on chemical and spectral evidence, the five new compounds were identified to be 25(S)-26-O-β-D-glucopyranosyl-5α-furost-22(20)-en-3β,6α,26-triol-6-O-[α-L-rhamnopyranosyl-(1→3)-O-β-D-quinovopyranoside] (1), 25(S)-26-O-β-D-glucopyranosyl-5α-furost-22(20)-en-3-one-6α,26-diol-6-O-[α-L-rhamnopyranosyl-(1→3)-O-β-D-quinovopyranoside] (2), 25(S)-26-O-β-D-glucopyranosyl-5α-furost-22(20)-en-3β,6α,26-triol-6-O-β-D-quinovopyranoside (3), 5α-pregn-16-en-20-one-3β,6α-diol-6-O-[α-L-rhamnopyranosyl-(1→3)-β-D-quinovopyranoside] (4), and 5α-pregn-16-en-3,20-dione-6α-ol-6-O-[α-L-rhamnopyranosyl-(1→3)-β-D-quinovopyranoside] (5). These new compounds were assayed for cytotoxicities in vitro, and 1 to 4 showed cyotoxic activity against the human melanoma cell line A375, with IC50 values of 30 μM to 260 μM. Copyright © 2014 Elsevier B.V. All rights reserved.
The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin.
Mikami, B; Hehre, E J; Sato, M; Katsube, Y; Hirose, M; Morita, Y; Sacchettini, J C
1993-07-13
New crystallographic findings are presented which offer a deeper understanding of the structure and functioning of beta-amylase, the first known exo-type starch-hydrolyzing enzyme. A refined three-dimensional structure of soybean beta-amylase, complexed with the inhibitor alpha-cyclodextrin, has been determined at 2.0-A resolution with a conventional R-value of 17.5%. The model contains 491 amino acid residues, 319 water molecules, 1 sulfate ion, and 1 alpha-cyclodextrin molecule. The protein consists of a core with an (alpha/beta)8 supersecondary structure, plus a smaller globular region formed by long loops (L3, L4, and L5) extending from beta-strands beta 3, beta 4, and beta 5. Between the two regions is a cleft that opens into a pocket whose floor contains the postulated catalytic center near the carboxyl group of Glu 186. The annular alpha-cyclodextrin binds in (and partly projects from) the cleft with its glucosyl O-2/O-3 face abutting the (alpha/beta)8 side and with its alpha-D(1 --> 4) glucosidic linkage progression running clockwise as viewed from that side. The ligand does not bind deeply enough to interact with the carboxyl group of Glu 186. Rather, it occupies most of the cleft entrance, strongly suggesting that alpha-cyclodextrin inhibits catalysis by blocking substrate access to the more deeply located reaction center. Of the various alpha-cyclodextrin interactions with protein residues in loops L4, L5, L6, and L7, most notable is the shallow inclusion complex formed with Leu 383 (in L7, on the core side of the cleft) through contacts of its methyl groups with the C-3 atoms of four of the ligand's D-glucopyranosyl residues. All six residues of the bound alpha-cyclodextrin are of 4C1 conformation and are joined by alpha-1,4 linkages with similar torsional angles to form a nearly symmetrical torus as reported for crystalline inclusion complexes with alpha-cyclodextrin. We envision a significant role for the methyl groups of Leu 383 at the cleft entrance with respect to the productive binding of the outer chains of starch.
Zheng, Xiao-Ke; Cao, Yan-Gang; Ke, Ying-Ying; Zhang, Yan-Li; Li, Fang; Gong, Jian-Hong; Zhao, Xuan; Kuang, Hai-Xue; Feng, Wei-Sheng
2017-03-01
A flavanone C-glycoside, steppogenin-5'-C-β-D-glucopyranoside, six prenylated 2-arylbenzofuran derivatives, moracin O-3″-O-β-D-glucopyranoside, moracin O-3'-O-β-D-xylopyranoside, moracin P-2″-O-β-D-glucopyranoside, moracin P-3'-O-β-D-glucopyranoside, moracin P-3'-O-α-L-arabinopyranoside and moracin P-3'-O-[β-D-glucopyranosyl-(1 → 2)]-α-L-arabinopyranoside, two phenolic acids, 2,4-dihydroxy-5-(4-hydroxybenzyl) benzoic acid and 2,4-dihydroxy-5-(3,4-dihydroxybenzyl) benzoic acid, as well as three known compounds, moracinoside C, moracin O, and moracin P were isolated from the root bark of Morus alba L. Their structures were ascertained on the basis of spectroscopic evidence. The protective effects of the compounds against doxorubicin-induced cardiomyopathy in H9c2 cells was investigated in vitro. Of all of the isolated compounds, moracin P-3'-O-β-D-glucopyranoside, moracin O and moracin P had a strong protective influence against doxorubicin-induced cell death with EC 50 values of 9.5 ± 2.6, 4.5 ± 1.3, and 8.8 ± 2.4 μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
[n-Butyl Alcohol-soluble Chemical Constituents of Psidium guajava Leaves].
Chen, Gang; Wan, Kai-hua; Fu, Hui-zheng; Yan, Qing-wei
2015-03-01
To study the chemical constituents of the leaves of Psidium guajava. The chemical constituents were isolated by column chromatography on silica gel, Sephadex LH-20 and MPLC. Their chemical structures were elucidated on the basis of special analysis. Seven compounds were isolated from n-butyl alcohol fraction, whose structures were elucidated as morin-3-O-α-L-arabopyranoside (1), morin-3-O-α-L-iyxopyranoside (2), 2,6-dihydroxy-4-O-β-D-glucopyranosyl-benzophenone (3), casuarictin (4),2,6-dihydroxy-3,5-dimethyl-4-O-(6"-O-galloyl-β-D-glucopyranosyl)-benzophenone(5), globulusin A(6), and kaempferol-3-O-β-D-(6"-galloyl) galactopyranoside (7). Compounds 3 and 5 ~ 7 are isolated from this plant for the first time.
Xie, Shuanglu; Shi, Yuanyuan; Wang, Yixiang; Wu, Chunyong; Liu, Wenyuan; Feng, Feng; Xie, Ning
2013-01-01
Uncaria rhynchophylla (UR) is a species of Uncaria that is distributed mainly in China and Japan. In this study, the chemical constituents, including alkaloids, flavonoids, and quinic acids, in UR have been systematically identified and quantified by a developed method of high-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight mass spectrometry (Q-TOF-MS). Tetracyclic monoterpenoid oxindole alkaloids (TMOAs) are characteristic compounds in this herb, and their fragmentations in Q-TOF-MS have been investigated. Diagnostic fragmentation ions (DFIs) were first delineated for isorhynchophylline-type (7S, C20-ethyl) and corynoxeine-type (7R, C20-vinyl) TMOAs, and these were used for identification of these alkaloids in UR. In this study, a total of 29 compounds, comprising 18 alkaloids, six flavonoids, and five quinic acids, were identified. Among them, there are four novel TMOAs, named as 22-O-β-glucopyranosyl isorhynchophyllic acid (10), 22-O-β-glucopyranosyl rhynchophyllic acid (11), 9-hydroxy isocorynoxeine (16), and 9-hydroxy corynoxeine (20), which have not been reported previously. Furthermore, eight marker compounds, namely chlorogenic acid (3), catechin (8), epicatechin (9), isocorynoxeine (24), rhynchophylline (25), isorhynchophylline (27), vincoside lactam (28), and corynoxeine (29), have been simultaneously quantified. The developed method has been validated and successfully applied to analyze three samples of UR from Jiangxi Province. The contents of the marker compounds have been detected and compared. Copyright © 2013 Elsevier B.V. All rights reserved.
New Complexity-Building Reactions of Alpha-Keto Esters
NASA Astrophysics Data System (ADS)
Bartlett, Samuel L.
I. Introduction: Importance of Asymmetric Catalysis and the Reactivity Patterns of alpha-Keto Esters. II. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile alpha-Keto Esters. Enantioconvergent arylation reactions of boronic acids and racemic ?-stereogenic alpha-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(I) complex and provide a wide array of beta-stereogenic tertiary aryl glycolate derivatives with high levels of diastereo- and enantioselectivity. Racemization studies employing a series of sterically differentiated tertiary amines suggest that the steric nature of the amine base additive exerts a significant influence on the rate of substrate racemization. III. Palladium-Catalyzed beta-Arylation of alpha-Keto Esters . A catalyst system derived from commercially available Pd2(dba) 3 and PtBu3 has been applied to the coupling of alpha-keto ester enolates and aryl bromides. The reaction provides access to an array of beta-stereogenic alpha-keto ester derivatives. When the air stable ligand precursor PtBu 3˙HBF4 is employed, the reaction can be carried out without use of a glovebox. The derived products are of broad interest given the prevalence of the alpha-keto acid substructure in biologically important molecules. IV. Catalytic Enantioselective [3+2] Cycloaddition of alpha-Keto Ester Enolates and Nitrile Oxides. An enantioselective [3+2] cycloaddition reaction between nitrile oxides and transiently generated enolates of alpha-keto esters has been developed. The catalyst system was found to be compatible with in situ nitrile oxide generation conditions. A versatile array of nitrile oxides and alpha-keto esters could participate in the cycloaddition, providing novel 5-hydroxy-2-isoxazolines in high chemical yield with high levels of diastereo- and enantioselectivity. Notably, the optimal reaction conditions circumvented concurrent reaction via O-imidoylation and hetero-[3+2] pathways.
Kurouchi, Hiroaki; Sugimoto, Hiromichi; Otani, Yuko; Ohwada, Tomohiko
2010-01-20
The chemical features, such as substrate stability, product distribution, and substrate generality, and the reaction mechanism of Brønsted superacid-catalyzed cyclization reactions of aromatic ring-containing acetoacetates (beta-ketoesters) were examined in detail. While two types of carbonyl cyclization are possible, i.e., keto cyclization and ester cyclization, the former was found to take place exclusively. The reaction constitutes an efficient method to synthesize indene and 3,4-dihydronapthalene derivatives. Acid-base titration monitored with (13)C NMR spectroscopy showed that the acetoacetates are fully O(1),O(3)-diprotonated at H(0) = -11. While the five-membered ring cyclization of the arylacetoacetates proceeded slowly at H(0) = -11, a linear increase in the rate of the cyclization was found with increasing acidity in the high acidity region of H(0) = -11.8 to -13.3. Therefore, the O(1),O(3)-diprotonated acetoacetates exhibited some cyclizing reactivity, but they are not the reactive intermediates responsible for the acceleration of the cyclization in the high acidity region. The reactive cationic species might be formed by further protonation (or protosolvation) of the O(1),O(3)-diprotonated acetoacetates; i.e., they may be tricationic species. Thermochemical data on the acid-catalyzed cyclization of the arylacetoacetates showed that the activation energy is decreased significantly as compared with that of the related acid-catalyzed cyclization reaction of a compound bearing a single functional group, such as a ketone. These findings indicate that intervention of the trication contributes to the activation of the cyclization of arylacetoacetates in strong acid, and the electron-withdrawing nature of the O-protonated ester functionality significantly increases the electrophilicity of the ketone moiety.
One new diphenylmethane glycoside from the leaves of Psidium guajava L.
Shu, Ji-Cheng; Chou, Gui-Xin; Wang, Zheng-Tao
2012-11-01
To investigate the chemical constituents of Psidium guajava L, the EtOH/H(2)O extract of the fresh leaves was subjected to various chromatography. One diphenylmethane, one benzophenone, and eight flavonoids were isolated and elucidated as 2,6-dihydroxy-3-formaldehyde-5-methyl-4-O-(6″-O-galloyl-β-D-glucopyranosyl)-diphenylmethane (1), 2,6-dihydroxy-3,5-dimethyl-4-O-(6″-O-galloyl-β-D-glucopyranosyl)-benzophenone (2), kaempferol (3), quercetin (4), quercitrin (5), isoquercitrin (6), guaijaverin (7), avicularin (8), hyperoside (9), reynoutrin (10) by spectroscopic methods, including 1D and 2D NMR and HR-ESI-MS spectrometry as well as by comparison with published data. Compounds 5 and 10 are obtained from P. guajava for the first time, and compound 1 is a new diphenylmethane compound.
NASA Technical Reports Server (NTRS)
Leznicki, A. J.; Bandurski, R. S.
1988-01-01
The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.
Yoon, Mi-Young; Choi, Nam Hee; Min, Byung Sun; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Han, Seong-Sook; Cha, Byeongjin; Kim, Jin-Cheol
2011-11-23
Two new pregnane glycosides, kidjoranine 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-α-L-cymaropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1→4)-α-L-diginopyranosyl-(1 → 4)-β-D-cymaropyranoside (5) and caudatin 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-α-L-cymaropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-α-L-diginopyranosyl-(1 → 4)-β-D-cymaropyranoside (6), were isolated from the roots of Cynanchum wilfordii along with four known compounds (1-4). The antifungal activities of the six compounds against barley powdery mildew caused by Blumeria graminis f. sp. hordei were compared to the antifungal activity of polyoxin B. The caudatin glycosides (1, 4, and 6) showed stronger antifungal activities than polyoxin B, whereas kidjoranine glycosides (2, 3, and 5) had weaker activities than polyoxin B. A wettable powder-type formulation (C. wilfordii-WP20) of the ethyl acetate extract from C. wilfordii roots prohibited the development of barley powdery mildew much more effectively than the commercial fungicide polyoxin B-WP10. In addition, C. wilfordii-WP20 effectively controlled strawberry powdery mildew caused by Sphaerotheca humuli under greenhouse conditions. Thus, the crude extract containing the pregnane glycosides can be used as a botanical fungicide for the environmentally benign control of powdery mildews.
Shao, Yanyan; Qiao, Liansheng; Wu, Lingfang; Sun, Xuefei; Zhu, Dan; Yang, Guanghui; Zhang, Xiaoxue; Mao, Xin; Chen, Wenjing; Liang, Wenyi; Zhang, Yanling; Zhang, Lanzhen
2016-05-21
Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5) and (3β,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3β,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds.
[Chemical constituents of Swertia angustifolia].
He, Kang; Cao, Tuan-wu; Wang, Hong-ling; Geng, Chang-an; Zhang, Xue-mei; Chen, Ji-jun
2015-09-01
This present work is to study the chemical constituents of Swertia angustifolia. The whole plants of air-dried Swertia angustifolia was extracted with 90% EtOH. The water extract was suspended in H2O and extracted with petroleum ether, EtOAc and nBuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR). Fourteen compounds were isolated and characterized as 1, 8-dihydroxy-3, 7-dimethoxyxanthone (1), 1, 8-dihydroxy-3, 5, 7-trimethoxyxanthone (2), 7-hydroxy-3, 8-dimethoxyxanthone-1-O-β-D-glucopyranoside (3), 8-0-[β-D-xylopyranosyl-(1-6) -β-D-glucopyranosyl] -1, 7-dihydroxy-3-methoxyxanthone (4), (+) -syringaresinol (5), ferulic acid (6), trans-coniferyl aldehyde (7), sinapaldehyde (8), trans-coniferyl alcohol (9), 3, 4-dihydroxybenzoic acid (10), 2-hydroxybenzoic acid (11), isophthalic acid (12), 2-furoic acid (13), and 2-methyl-4(3H)-quinazolinone(14). Compounds 2-14 were obtained from this plant for the first time.
Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.
Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun
2015-05-01
To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.
Hu, Ting; Jiang, Chenbo; Huang, Qilin; Sun, Fengyuan
2016-05-20
An exopolysaccharide (EPS) was fractionated from fermentation media of a Cordyceps sinensis fungus (Cs-HK1) by ethanol precipitation at 2/5 volume ratio of ethanol/media. Its structural characteristics were elucidated by FT-IR, GC, GC-MS, 1D and 2D NMR combined with periodate oxidation, Smith degradation, partial acid hydrolysis, and methylation analysis. Furthermore, the immunomodulatory activity of EPS was evaluated by the model of cyclophosphamide-induced immunosuppression. The results from monosaccharide composition and partial acid hydrolysis indicated that EPS almost consisted of glucose excluding a trace amount of mannose. GC-MS and NMR analysis further confirmed EPS had a linear backbone of (1→3)-β-D-glucopyranosyl residues with a single (1→6)-β-D-glucopyranosyl side-branching unit for every three β-D-glucopyranosyl residues, showing a comb-like β-D-glucan with short and intensive branches, which was responsible for high viscosity. Moreover, EPS could significantly enhance immune organs and stimulate the release of major cytokines TNF-α and INF-γ, suggesting that EPS exhibited protective effect in immunocompromised mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Host-guest complex formation in cyclotrikis-(1-->6).
Cescutti, P; Utille, J P; Rizzo, R
2000-11-17
The possibility that cyclotrikis-(1-->6)-[alpha-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl] (CGM6) forms inclusion complexes, like cycloamyloses (cyclodextrins), was investigated by means of electrospray mass spectrometry and fluorescence spectroscopy. The complexing ability of both 1-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS), which were already used with cyclodextrins, was investigated. The former showed very little or no tendency to be complexed by CGM6, while the latter produced detectable adducts with CGM6. Fixed 90 degree angle light scattering experiments supported the findings obtained by molecular modelling calculations, which indicated a polar character for the CGM6 internal cavity. CGM6-TNS complexes were probably formed throughout interaction of the polar regions of the two molecules.
Witherup, K M; McLaughlin, J L; Judd, R L; Ziegler, M H; Medon, P J; Keller, W J
1995-08-01
Bioactivity-directed fractionation, using brine shrimp lethality and murine hypoglycemia, of an ethanol extract prepared from Tillandsia usneoides, led to the isolation of four apparently bioactive compounds from the water-soluble fraction. The compounds were identified as citric acid, succinic acid, 3-hydroxy-3-methylglutaric acid (HMG), and 3,6,3',5'-tetramethoxy-5,7,4'-trihydroxyflavone-7-O-beta-D-g lucoside. The brine shrimp lethality of the acids was simply due to acidity; however, HMG elicited significant hypoglycemic responses in fasting normal mice. Ethyl and methyl esters of citric acid were prepared and tested in the murine hypoglycemic assay. Five of the predominant sugars were identified by tlc. Free thymidine was also isolated. Further evaluation of HMG and other potential inhibitors of HMG CoA lyase, in the treatment of symptoms of diabetes mellitus, is suggested.
A new ursane triterpene from Monochaetum vulcanicum that inhibits DNA polymerase beta lyase.
Chaturvedula, V S Prakash; Gao, Zhijie; Jones, Shannon H; Feng, Xizhi; Hecht, Sidney M; Kingston, David G I
2004-05-01
Bioassay-directed fractionation of a butanone extract of Monochaetum vulcanicum resulted in the isolation of a new triterpene (1) and four known compounds, ursolic acid (2), 2alpha-hydroxyursolic acid (3), 3-(p-coumaroyl)ursolic acid (4), and beta-sitosteryl-beta-d-galactoside (5). The structure of the new compound 1 was established as 3beta-acetoxy-2alpha-hydroxyurs-12-en-28-oic acid on the basis of extensive 1D and 2D NMR spectroscopic interpretation and chemical derivatization. Compounds 1-3 and 5 exhibited polymerase beta lyase activity.
One new galloyl glycoside from fresh leaves of Psidium guajava L.
Shu, Ji-cheng; Chou, Gui-xin; Wang, Zheng-tao
2010-03-01
To investigate the chemical constituents of Psidium Guajava L, the EtOH/H2O extract of the fresh leaves was subjected to various chromatography. Five constituents with galloyl moiety were isolated and elucidated as 1-O-(1, 2-propanediol)-6-O-galloyl-beta-D-glucopyranoside (1), gallic acid (2), ellagic acid (3), ellagic acid-4-O-beta-D-glucopyranoside (4) and quercetin-3-O-(6"-galloyl) beta-D-galactopyranoside (5) by spectroscopic methods, including 2D NMR and HR-ESI-MS spectrometry as well as by comparison with published data. Compounds 4 and 5 were obtained from P. guajava for the first time, and compound 1 is a new polyhydroxyl compound.
Peng, Yan; Zheng, Jianxian; Huang, Riming; Wang, Yifei; Xu, Tunhai; Zhou, Xuefeng; Liu, Qiuying; Zeng, Fanli; Ju, Huaiqiang; Yang, Xianwen; Liu, Yonghong
2010-06-01
A new polyhydroxy sterol ester, (25S)-5alpha-cholestane-3beta,6alpha,7alpha,8,15alpha,16beta-hexahydroxyl-26-O-14'Z-eicosenoate (1), together with seven known steroid derivatives (2-8), were isolated from the EtOH extract of the whole body of China Sea starfish Asterina pectinifera. The structure of 1 was determined by using extensive spectra analysis (IR, 1D and 2D NMR, and MS), chemical degradation, and comparison with the known compound (25S)-5alpha-cholestane-3beta,6alpha,7alpha,8,15alpha,16beta,26-heptol (2). All the isolates were evaluated for their antiviral activity against herpes simplex virus type 1 (HSV-1) and their cytotoxicity against human liver carcinoma HepG2 cell line in vitro. Compounds 3-6, and 8 exhibited antiviral activity against HSV-1 virus with the minimal inhibitory concentration (MIC) values of 0.2, 0.05, 0.2, 0.22, and 0.07 microM, respectively. While compounds 4 and 5 exhibited cytotoxicity against HepG2 cells with IC(50) values of 0.2 and 1.6 microM, respectively.
Munafo, John P; Gianfagna, Thomas J
2011-02-09
The bulbs of the Easter lily ( Lilium longiflorum Thunb.) are regularly consumed in Asia as both food and medicine, and the beautiful white flowers are appreciated worldwide as an attractive ornamental. The Easter lily is a rich source of steroidal glycosides, a group of compounds that may be responsible for some of the traditional medicinal uses of lilies. Since the appearance of recent reports on the role steroidal glycosides in animal and human health, there is increasing interest in the concentration of these natural products in plant-derived foods. A LC-MS/MS method performed in multiple reaction monitoring (MRM) mode was used for the quantitative analysis of two steroidal glycoalkaloids and three furostanol saponins, in the different organs of L. longiflorum. The highest concentrations of the total five steroidal glycosides were 12.02 ± 0.36, 10.09 ± 0.23, and 9.36 ± 0.27 mg/g dry weight in flower buds, lower stems, and leaves, respectively. The highest concentrations of the two steroidal glycoalkaloids were 8.49 ± 0.3, 6.91 ± 0.22, and 5.83 ± 0.15 mg/g dry weight in flower buds, leaves, and bulbs, respectively. In contrast, the highest concentrations of the three furostanol saponins were 4.87 ± 0.13, 4.37 ± 0.07, and 3.53 ± 0.06 mg/g dry weight in lower stems, fleshy roots, and flower buds, respectively. The steroidal glycoalkaloids were detected in higher concentrations as compared to the furostanol saponins in all of the plant organs except the roots. The ratio of the steroidal glycoalkaloids to furostanol saponins was higher in the plant organs exposed to light and decreased in proportion from the aboveground organs to the underground organs. Additionally, histological staining of bulb scales revealed differential furostanol accumulation in the basal plate, bulb scale epidermal cells, and vascular bundles, with little or no staining in the mesophyll of the bulb scale. An understanding of the distribution of steroidal glycosides in the different organs of L. longiflorum is the first step in developing insight into the role these compounds play in plant biology and chemical ecology and aids in the development of extraction and purification methodologies for food, health, and industrial applications. In the present study, (22R,25R)-spirosol-5-en-3β-yl O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside, (22R,25R)-spirosol-5-en-3β-yl O-α-l-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside, (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside, (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→3)-β-d-glucopyranoside, and (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-xylopyranosyl-(1→3)-β-d-glucopyranoside were quantified in the different organs of L. longiflorum for the first time.
Nakagawa, Atsushi; Steiniger, Frank; Richter, Walter; Koschella, Andreas; Heinze, Thomas; Kamitakahara, Hiroshi
2012-08-28
This article provides detailed insight into the thermoresponsive gelation mechanism of industrially produced methylcellulose (MC), highlighting the importance of diblock structure with a hydrophobic sequence of 2,3,6-tri-O-methyl-glucopyranosyl units for this physicochemical property. We show herein, for the first time, that well-defined diblock MC self-assembles thermoresponsively into ribbonlike nanostructures in water. A cryogenic transmission electron microscopy (cryo-TEM) technique was used to detect the ribbonlike nanostructures formed by the diblock copolymers consisting of hydrophilic glucosyl or cellobiosyl and hydrophobic 2,3,6-tri-O-methyl-cellulosyl blocks, methyl β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 1 (G-236MC, DP(n) = 10.7, DS = 2.65), and methyl β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 2 (GG-236MC, DP(n) = 28.2, DS = 2.75). Rheological measurements revealed that the gel strength of a dispersion of GG-236MC (2, 2.0 wt %) in water at 70 °C was 3.0 times stronger than that of commercial MC SM-8000, although the molecular weight of GG-236MC (2) having M(w) = 8 × 10(3) g/mol was 50 times smaller than that of SM-8000 having M(w) = 4 × 10(5) g/mol. Cryo-TEM observation suggested that the hydrogel formation of the diblock copolymers could be attributed to the entanglement of ribbonlike nanostructures self-assembled by the diblock copolymers in water. The cryo-TEM micrograph of GG-236MC (2) at 5 °C showed rectangularly shaped nanostructures having a thickness from 11 to 24 nm, although G-236MC (1) at 20 °C showed no distinct self-assembled nanostructures. The ribbonlike nanostructures of GG-236MC (2) having a length ranging from 91 to 864 nm and a thickness from 8.5 to 27.1 nm were detected above 20 °C. Small-angle X-ray scattering measurements suggested that the ribbonlike nanostructures of GG-236MC (2) consisted of a bilayer structure with a width of ca. 40 nm. It was likely that GG-236MC (2) molecules were oriented perpendicularly to the long axis of the ribbonlike nanostructure. In addition, wide-angle X-ray scattering measurements revealed that GG-236MC (2) in its hydrogel formed the same crystalline regions as 2,3,6-tri-O-methylcellulose. The influence of the DP of diblock MC with a DS of around 2.7 on the gelation behavior will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehnl, T.K.; Koch, U.; Heller, W.
Microsomal preparations from carrot (Daucus carota L.) cell suspension cultures catalyze the formation of trans-5-O-caffeoyl-D-quinate (chlorogenate) from trans-5-O-(4-coumaroyl)-D-quinate. trans-5-O-(4-Coumaroyl)shikimate is converted to about the same extent to trans-5-O-caffeoylshikimate. trans-4-O-(4-Coumaroyl)-D-quinate, trans-3-O-(4-coumaroyl)-D-quinate, trans-4-coumarate, and cis-5-O-(4-coumaroyl)-D-quinate do not act as substrates. The reaction is strictly dependent on molecular oxygen and on NADPH as reducing cofactor. NADH and ascorbic acid cannot substitute for NADPH. Cytochrome c, Tetcyclacis, and carbon monoxide inhibit the reaction suggesting a cytochrome P-450-dependent mixed-function monooxygenase. Competition experiments as well as induction and inhibition phenomena indicate that there is only one enzyme species which is responsible for the hydroxylation of themore » 5-O-(4-coumaric) esters of both D-quinate and shikimate. The activity of this enzyme is greatly increased by in vivo irradiation of the cells with blue/uv light. We conclude that the biosynthesis of the predominant caffeic acid conjugates in carrot cells occurs via the corresponding 4-coumaric acid esters. Thus, in this system, 5-O-(4-coumaroyl)-D-quinate can be seen as the final intermediate in the chlorogenic acid pathway.« less
[Studies on ethyl acetate soluble constituents of Huanglian Jiedutang].
Ma, Zhao-Tang; Yang, Xiu-Wei
2008-09-01
To study the ethyl acetate soluble constituents from the water extractive of Huanglian Jiedutang decoction, which are composed of Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gardeniae, and provide substances foundation for its pharmacokinetic and pharmacodynamic investigation. The chemical constituents were isolated by various column chromatographic methods and structurally elucidated by NMR and MS techniques. Thirty-five compounds were isolated, among which twenty compounds have been identified as beta-sitosterol (1), oroxylin A (2), wogonin (3), ursolic acid (4), skullcapflavone I (5), tenaxin I (6), skullcapflavone II (7), limonin (8), 5, 2'-dihydroxy-6, 7, 8, 3'-tetramethoxyflavone (9), chrysin (12), baicalein (17), tenaxin II (19), 5, 7, 2'-trihydroxy-6, 8-dimethoxyflavone (21), shihulimonin A (22), 6, 2'-dihydroxy-5, 7, 8, 6'-tetramethoxyflavone (26), viscidulin II (28), 5, 7, 4'-trihydroxy-8-methoxyflavone (29), 5, 7, 2', 6'-tetrahydroxyflavone (30), wogonin-7-O-beta-D-glucuronide methyl ester (31) and daucosterol (34). On the basis of reported results of the chemical constituents of Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gardeniae, it was estimated that all flavonoid compounds rised from the Radix Scutellariae, and compounds 8 and 22 rised from Cortex Phellodendri. Compound 22 was identified in the Cortex Phellodendri for the first time.
Cycloartane glycosides from leaves of Oxyanthus pallidus.
Tigoufack, Ignas Bertrand Nzedong; Ngnokam, David; Tapondjou, Leon Azefack; Harakat, Dominique; Voutquenne, Laurence
2010-12-01
From the MeOH extract of leaves of Oxyanthus pallidus, three cycloartane glycosides, named pallidiosides A-C, were isolated together with two known compounds, oleanolic acid and 3-O-β-D-glucopyranosyl-β-sitosterol. The structures of pallidiosides A-C were assigned on the basis of spectral studies and comparison with published literature data. The known compounds were identified by means of Co TLC and confirmed by their physical constants. Copyright © 2010 Elsevier Ltd. All rights reserved.
Eicher, S D; Wesley, I V; Sharma, V K; Johnson, T R
2010-03-01
The objectives were to ascertain whether a yeast cell-wall derivative that was 1.8% beta-glucan in combination with ascorbyl-2-polyphosphate could improve innate immunity and mediate transportation stress in neonatal calves, and to compare the 1.8% beta-glucan yeast cell-wall derivative with a more purified yeast cell-wall derivative (70% beta-glucan). Treatments were 1) an unsupplemented control (CNT); 2) 113 g of a 1.8% (approximately 2%) beta-glucan derivative of yeast cell walls plus 250 mg of l-ascorbic acid phosphate (BG2); or 3) 150 mg of a purified beta-glucan fraction from yeast cell walls (approximately 70% beta-glucan) plus 250 mg/feeding of l-ascorbic acid phosphate (BG70). Calves (n = 39) were transported for 4 h, placed in outdoor hutches, and randomly assigned to treatments. Treatments (mixed with a milk replacer) were individually fed twice daily for 28 d. Calves were offered calf starter, free choice, throughout the study. Weekly starter intake and BW were measured, and fecal samples were collected for Salmonella Typhimurium and Escherichia coli O157:H7 PCR analysis. Blood was collected immediately before transport (d 0) and on d 3, 7, 10, 14, 21, and 28 after transport. Starter intake and DMI were less (P < 0.05) at d 28 for the BG2 and BG70 treatments compared with the CNT treatment. Hematocrit percentages increased (P = 0.002) throughout the experiment. White blood cell counts (treatment x time interaction, P = 0.066) were less for the calves supplemented with BG70 than for those supplemented with BG2 (P = 0.01) or for CNT calves (P = 0.04) on d 28. Granulocyte counts changed (P = 0.04) throughout the experiment. A trend (P = 0.077) for a treatment x time interaction was detected for peripheral blood mononuclear cell counts (PBMC). Counts of PBMC were greater (P = 0.006) for the BG2 treatment compared with the CNT treatment on d 3. Calves given the BG70 supplement had fewer PBMC than those given the BG2 supplement on d 21 (P = 0.03) and 28 (P = 0.05). Fibrinogen concentrations were affected only by time (P = 0.002). Time effects were detected for phagocytosis (P = 0.005), oxidative burst (P < 0.001), expression of cluster of differentiation 18 (P = 0.001), and increased cluster of differentiation 18 (P = 0.006). Phagocytosis was less (P = 0.05) for calves in the BG70 group than for those in the CNT group. Percentage of calves positive for E. coli O157:H7 was greatest (P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rock, C.D.; Zeevaart, J.A.D.
Previous {sup 18}O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of ({sup 18}O)ABA with the label incorporated in the 1{prime}-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage (1989) Plant Physiol 91: 1594-1601). It was proposed that exchange of {sup 18}O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1{prime}-4{prime}-trans-ABA-diol (ABA-trans-diol) from {sup 18}O-labeled apple fruit tissue and measured the extent and position of {sup 18}O incorporation by tandemmore » mass spectrometry. {sup 18}O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of {sup 18}O in the carbonyl of ABA-aldehyde can be the cause of loss of {sup 18}O from the side chain of ({sup 18}O)ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde {yields} ABA {yields} ABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to {beta}-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed.« less
[Studies on chemical constituents of leaves of Psidium guajava].
Fu, Huizheng; Luo, Yongming; Zhang, Dongming
2009-03-01
To study the chemical constituents of the leaves of Psidium guajava. The chemical constituents were isolated by column chromatography on silica gel, Sephadex LH-20 and MPLC. Their structures were elucidated on the basis of spectral analysis. Nine compounds were isolated from this plant, and the structure of them were identified as ursolic acid (1), 2alpha-hydroxyursolic acid (2), 2alpha-hydroxyoleanolic acid (3), morin-3-O-alpha-L-arabopyranoside (4), quercetin (5), hyperin (6), myricetin-3-O-beta-D-glucoside (7), quercetin-3-O-beta-D-glucuronopyranoside (8), 1-O-galloyl-beta-D-glucose (9). Compounds 3, 7-9 were isolated from this plant for the first time.
[Chemical constituents from Neo-Taraxacum siphonathum].
Shi, Shuyun; Zhou, Honghao; Zhang, Yuping; Huang, Kelong; Liu, Suqin
2009-04-01
To study the chemical constituents from the antioxidant fraction of Neo-Taraxacum siphonathum. Various chromatographic techniques were used to isolate and purify the constituents. The structures were elucidated on the basis of chemical evidence and spectral analysis. Ten compounds were isolated and identified from Neo-T. siphonathum, caffeic acid (1), chlorogenic acid (2), quercetin (3), luteolin (4), quercetin-3-O-beta-D-glucopyranoside (5), quercetin-3-O-alpha-D-arabinofuranoside (6), quercetin-3-O-alpha-D-arabinopyranoside (7), luteolin-7-O-beta-D-glucopyranoside (8), beta-sitosterol (9) and daucosterol (10). Compounds 1-10 were isolated from this plant for the first time.
Grison, Claire M; Renard, Brice-Loïc; Grison, Claude
2014-02-01
2-Keto-3-deoxy-D-erythro-hexonic acid (KDG) is the key intermediate metabolite of the Entner Doudoroff (ED) pathway. A simple, efficient and stereoselective synthesis of KDG isopropyl ester is described in five steps from 2,3-O-isopropylidene-D-threitol with an overall yield of 47%. KDG isopropyl ester is studied as an attractive marker of a functional Entner Doudoroff pathway. KDG isopropyl ester is used to promote growth of ammonium producing bacterial strains, showing interesting features in the remediation of heavy-metal polluted soils. Copyright © 2013 Elsevier Inc. All rights reserved.
Chenopodium bonus-henricus L. - A source of hepatoprotective flavonoids.
Kokanova-Nedialkova, Zlatina; Nedialkov, Paraskev; Kondeva-Burdina, Magdalena; Simeonova, Rumyana; Tzankova, Virginia; Aluani, Denitsa
2017-04-01
Three new flavonoid glycosides (7-9) named patuletin-3-O-(5″'-О-Е-feruloyl)-β-d-apiofuranosyl(1→2)[β-d-glucopyranosyl (1→6)]-β-d-glucopyranoside (7), spinacetin-3-O-(5″'-О-Е-feruloyl)-β-d-apiofuranosyl (1→2)[β-d-glucopyranosyl(1→6)]-β-d-glucopyranoside (8) and 6-methoxykaempferol-3-O-(5″'-О-Е-feruloyl)-β-d-apiofuranosyl(1→2)[β-d-glucopyranosyl (1→6)]-β-d-glucopyranoside (9) together with six known flavonoid glycosides of patuletin, spinacetin and 6-methoxykaempferol (1-6) were isolated from the aerial parts of C. bonus-henricus and identified with spectroscopic methods (1D and 2D NMR, UV, IR, HRESIMS). The MeOH extract exerts hepatoprotective and antioxidant activities comparable to those of flavonoid complex silymarin in in vitro (60μg/mL) and in vivo (100mg/kg/daily for 7days) models of hepatotoxicity, induced by CCl 4 . Flavonoids (1-9) (100μM), compared to silybin, significantly reduced the cellular damage caused by CCl 4 in rat hepatocytes, preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. High concentrations of compounds (1-9) showed marginal or no cytotoxicity on HepG2 cell line. The experiment data suggest that the glycosides of 6-methoxykaempferol, spinacetin and patuletin are a promising and safe class of hepatoprotective agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jinzhao; Zeng, Su; Wang, Danhua; Hu, Gongyun
2009-05-01
A simple pre-column derivatization-high performance liquid chromatographic (HPLC) method was established for the determination of optical purity of alpha-phenylethylamine. The enantiomers of alpha-phenylethylamine were derivatized with 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate (GITC). The resulted diastereoisomers were separated on an Agilent Zorbax C18 column (250 mm x 4.6 mm, 5 microm) with a mobile phase of methanol-phosphate buffer (1.36 g/L aqueous solution of potassium dihydrogen phosphate, adjusted to pH 3.0 with concentrated phosphoric acid) (58:42, v/v). The flow rate was set at 1.0 mL/min and the detection wavelength was set at 241 nm. The method was linear from 0.15 - 15.0 mg/L for both enantiomers. The limit of detection and the limit of quantification were 0.05 mg/L and 0.15 mg/L, respectively. The relative standard deviations (RSDs) of inter- and intra-day determination were below 0.5%. The method is easy to handle, accurate, and suitable for the quality control of the optical purity of alpha-phenylethylamine.
Comparison of Antioxidant Constituents of Agriophyllum squarrosum Seed with Conventional Crop Seeds.
Xu, Hai-Yan; Zheng, Hua-Chuan; Zhang, Hui-Wen; Zhang, Jin-Yu; Ma, Chao-Mei
2018-06-05
Twelve chemical constituents were identified from the Agriophyllum squarrosum seed (ASS). ASS contained large amounts of flavonoids, which were more concentrated in the seed coat. ASS-coat (1 g) contained 335.7 μg flavonoids of rutin equivalent, which was similar to the flavonoid content in soybean (351.2 μg/g), and greater than that in millet, wheat, rice, peanut, and corn. By LC-MS analysis, the major constituents in ASS were 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D- glucopyranosyl]-7- O-(β-D-glucopyranosyl)-quercetin (1), rutin (4), quercetin-3-O-β-D- apiosyl(1→2)-[α-L-rhamnosyl(l→6)]-β-D-glucoside (2), isorhamnetin-3-O-rutinoside (5), and allantoin (3), compared with isoflavonoids-genistin (16), daidzin (14), and glycitin (18) in soybean. Among constituents in ASS, compounds 1, 2, 4, protocatechuic acid (8), isoquercitrin (11), and luteolin-6-C-glucoside (12) potently scavenged DPPH radicals and intracellular ROS; strongly protected against peroxyl radical-induced DNA scission; and upregulated Nrf2, phosphorylated p38, phosphorylated JNK, and Bcl-2 in HepG2 cells. These results indicate that ASS is rich in antioxidant constituents that can enrich the varieties of food flavonoids, with significant beneficial implications for those who suffer from oxidative stress-related conditions. This study found that A. squarrosum seed contains large amounts of antioxidative flavonoids and compared its chemical constituents with those of conventional foods. These results should increase the interest in planting the sand-fixing A. squarrosum on a large scale, thus preventing desertification and providing valuable foods. © 2018 Institute of Food Technologists®.
Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.
Siegfried, C M; Doisy, E A; Elliott, W H
1975-01-24
The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.
Growth inhibitory effect of shelf life extending agents on Bacillus subtilis IAM 1026.
Mitsuboshi, Saori; Obitsu, Rie; Muramatsu, Kanako; Furube, Kentaro; Yoshitake, Shigehiro; Kiuchi, Kan
2007-06-01
Natural shelf life extending agents and sugar fatty acid esters that might inhibit the growth of B. subtilis IAM 1026 were screened, and the effective agents were as follows: beta-thujaplicin (Hinokitiol) and chitosan, inhibited the growth of IAM 1026 at a concentration of 0.001% ; epsilon-polylysine and M-1695 (a sugar fatty acid ester) at 0.005%; citrus seed extract, thiamin lauryl sulfate, and grapefruit seed extract at 0.01%; CT-1695 and L-1695 (sugar fatty acid esters) at 0.05%; pectin digests and SM-800 (a sugar fatty acid ester) at 0.5%; water pepper seed extract and the sugar fatty acid esters SM-1000 and CE-1695 at 1.0%. The growth inhibitory effects of the agents in custard cream were not necessarily similar to those in liquid culture. The agent that showed the highest inhibitory effect in custard cream was 0.3% beta-thujaplicin, followed by 0.3% epsilon-polylysine.
[Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].
Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying
2011-08-01
To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.
Lee, Ji Suk; Yoo, Hunseung; Suh, Young Ger; Jung, Jae Kyung; Kim, Jinwoong
2008-10-01
A systematic structure-activity relationship of 3beta-hydroxy-27- P- E-coumaroyloxyurs-12-en-28-oic acid ( 7), a triterpene ester isolated from UNCARIA RHYNCHOPHYLLA as a phospholipase Cgamma1 inhibitor, was undertaken with a view toward elucidating its chemical mode of action on PLCgamma1. Related derivatives and analogues of 7 were synthesized and their inhibitory activities against PLCgamma1 were evaluated IN VITRO. The results indicate that 3-OH and 27-esterification may be essential, and that 28-COOH and the 2' double bond appear to be important for activity. Furthermore, the compound possessing a P-coumaroyloxy at position 27 rather than at the 3 and 28 positions shows the greatest inhibitory activity against PLCgamma1. Therefore, this inhibitor will be providing a chemical lead for the further development of cancer chemopreventive or cancer chemotherapeutic agents that have lower toxicity against normal tissues.
New Constituents from Gymnocarpos decander.
Bechlem, Houria; Mencherini, Teresa; Bouheroum, Mohamed; Benayache, Samir; Cotugno, Roberta; Braca, Alessandra; De Tommasi, Nunziatina
2017-10-01
The phytochemical investigation of Gymnocarpos decander aerial parts extract afforded two new saponins, 3- O - β -D-glucuronopyranosyl-2 β ,3 β ,16 α ,23-tetrahydroxyolean-12-en-28- O - β -D-apiofuranosyl-(1 → 3)- β -D-xylopyranosyl-(1 → 4)- α -L-rhamnopyranosyl-(1 → 2)- α -L-arabinopyranosyl ester ( 1 ), 3- O - β -D-glucuronopyranosyl-2 β ,3 β ,16 α -trihydroxyolean-12-en-28- O -α-L-rhamnopyranosyl-(1 → 3)- β -D-xylopyranosyl-(1 → 4)- α -L-rhamnopyranosyl-(1 → 2)- α -L-arabinopyranosyl ester ( 2 ), and three new flavonol glycosides, isorhamnetin 3- O -2''''- O -acetyl- β -D-xylopyranosyl-(1 → 6)-[ β -D-apiofuranosyl-(1 → 2)]- β -D-glucopyranoside ( 3 ), isorhamnetin 3- O -2‴- O -acetyl- β -D-xylopyranosyl-(1 → 6)- β -D-glucopyranoside ( 4 ), and quercetin 3- O -2‴- O -acetyl- β -D-xylopyranosyl-(1 → 6)- β -D-glucopyranoside ( 5 ), together with three known compounds. Their structures were determined by spectroscopic methods including 1D and 2D NMR analysis and high-resolution mass spectrometry. The new isolates were investigated for their potential cytotoxic activity on three cancer cell lines. Compounds 1 and 2 showed moderate antiproliferative activity. Georg Thieme Verlag KG Stuttgart · New York.
Two new flavones from Tridax procumbens Linn.
Xu, Runsheng; Zhang, Jing; Yuan, Ke
2010-09-09
Two new flavones, 8,3'-dihydroxy-3,7,4'-trimethoxy-6-O-β-D-glucopyranosyl flavone (1) and 6,8,3'-trihydroxy-3,7,4'-trimethoxyflavone (2) were isolated from Tridax procumbens Linn., together with the four known compounds puerarin (3), esculetin (4), oleanolic acid (5) and betulinic acid (6). The structures of the two new flavones were elucidated based on chemical analysis and spectral methods (IR, 1D and 2D NMR, ESI-MS, HR-ESI-MS). The antioxidant activity of the two new flavones were evaluated by two methods, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays, and the data showed that compounds 1 and 2 have certain antioxidant activity, with the antioxidant activity of compound 2 being stronger than that of compound 1.
(-)-3 beta,4 beta-epoxyvalerenic acid from Valeriana officinalis.
Dharmaratne, H Ranjith; Nanayakkara, N P; Khan, Ikhlas A
2002-07-01
Chemical investigation of the root extract of Valeriana officinalis afforded a new bicyclic sesquiterpene acid, (-)-3 beta,4 beta-epoxyvalerenic acid together with valerenic acid and hexadecanoic acid. The structure of the new compound was elucidated by spectroscopic data and confirmed by partial synthesis of its methyl ester from valerenic acid. Methyl (-)-3 alpha,4 alpha-epoxyvalerenate was obtained as a minor product from the above reaction.
A below-ground herbivore shapes root defensive chemistry in natural plant populations
Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias
2016-01-01
Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228
Ali-Osman, F; Giblin, J; Berger, M; Murphy, M J; Rosenblum, M L
1985-09-01
Although the antitumor effects of chloroethylnitrosoureas have been shown to be due primarily to DNA-DNA cross-linking by the alkylating moieties of these agents, the basis of the often accompanying bone marrow toxicity has been more controversial. We report on the relative bone marrow toxicity of four model nitrosoureas with different alkylating and carbamoylating activities: 1,3-bis(2-chloroethyl)-1-nitrosourea; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea; chlorozotozin, (2-[3-(2-chloroethyl)-3 -nitrosoureido]-2-deoxy-D-glucopyranose); and -3-(beta-D-glucopyranosyl)-1-nitrosourea. Inhibitions of DNA, RNA, and protein synthesis in murine bone marrow cells and of colony growth of myeloid precursor cells (granulocyte-macrophage colony-forming units) were used as in vitro end points of myelotoxicity. Further, we determined the antiglioma activity of the four nitrosoureas on two human gliomas in a clonogenic tumor cell assay and studied the effect of the non-nitrosourea carbamoylators potassium cyanate, chloroethyl isocyanate, cyclohexyl isocyanate, ethyl isocyanate, and ethyl isothiocyanate on granulocyte-macrophage colony-forming units. The results show that, at equivalent drug exposures, clonogenic glioma cell kill was significant and comparative for 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea, and chlorozotocin; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea showed little activity. In contrast, granulocyte-macrophage colony-forming unit toxicity was low with chlorozotocin and 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea and very high with 1,3-bis(2-chloroethyl)-1-nitrosourea and 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea. Of the isocyanates, bone marrow toxicity was highest with chloroethyl isocyanate and cyclohexyl isocyanate, intermediate with ethyl isocyanate, and lowest with KOCN and ethyl isothiocyanate. Our results indicate that (a) bifunctional alkylation is essential for antiglioma activity of nitrosoureas and (b) myelosuppression is at least partly linked with carbamoylation but that structural entities in the carbamoylating isocyanate rather than a quantitative degree of carbamoylation determine the degree of potential myelotoxicity.
Staples, C A; Murphy, S R; McLaughlin, J E; Leung, H W; Cascieri, T C; Farr, C H
2000-01-01
Acrylic acid, methyl acrylate, ethyl acrylate, and butyl acrylate are commercially important and widely used materials. This paper reports the results of a series of fate and aquatic toxicity studies. The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (t1/2 < 1 day). Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic MATC for acrylic acid with Daphnia magna was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.
Fernandes, Caio P.; Corrêa, Arthur L.; Lobo, Jonathas F. R.; Caramel, Otávio P.; de Almeida, Fernanda B.; Castro, Elaine S.; Souza, Kauê F. C. S.; Burth, Patrícia; Amorim, Lidia M. F.; Santos, Marcelo G.; Ferreira, José Luiz P.; Falcão, Deborah Q.; Carvalho, José C. T.; Rocha, Leandro
2013-01-01
Manilkara subsericea (Mart.) Dubard (Sapotaceae) is popularly known in Brazil as “guracica.” Studies with Manilkara spp indicated the presence of triterpenes, saponins, and flavonoids. Several activities have been attributed to Manilkara spp such as antimicrobial, antiparasitic and antitumoral, which indicates the great biological potential of this genus. In all, 87.19% of the hexanic extract from fruits relative composition were evaluated, in which 72.81% were beta- and alpha-amyrin esters, suggesting that they may be chemical markers for M. subsericea. Hexadecanoic acid, hexadecanoic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, and octadecanoic acid ethyl ester were also identified. Ethanolic crude extracts from leaves, stems, and hexanic extract from fruits exhibited antimicrobial activity against Staphylococcus aureus ATCC25923. These extracts had high IC50 values against Vero cells, demonstrating weak cytotoxicity. This is the first time, to our knowledge, that beta- and alpha-amyrin caproates and caprylates are described for Manilkara subsericea. PMID:23509702
Liang, Min-Yi; Chen, Yongsheng; Banwell, Martin G; Wang, Yong; Lan, Ping
2018-04-18
Sugar fatty acid esters are nonionic surfactants that are widely exploited in the food and cosmetics industries, as well as in the oral care and medical supply fields. Accordingly, new methods for their selective synthesis and the "tuning" of their emulsifying properties are of considerable interest. Herein we report simple and irreversible enzymatic esterifications of d-glucose with seven fatty acid vinyl esters. The foaming and emulsifying effects of the resulting 6- O-acylglucose esters were then evaluated. In accord with expectations, when the length of the alkyl side chain associated with the 6- O-acylglucose esters increases, then their hydrophilic-lipophilic balance (HLB) values decrease, while the stabilities of the derived emulsions improve. In order to maintain good foaming properties, alkyl side chains of at least 9 to 11 carbons in length are required. In the first such assays on 6- O-acylglucose esters, most of those described herein are shown to be nontoxic to the HepG2, MCF-7, LNacp, SW549, and LO-2 cell lines.
Kim, D H; Hong, S W; Kim, B T; Bae, E A; Park, H Y; Han, M J
2000-04-01
The relationship between the metabolites of glycyrrhizin (18beta-glycyrrhetinic acid-3-O-beta-D-glucuronopyranosyl-(1-->2)-beta-D-glucuronide, GL) and their biological activities was investigated. By human intestinal microflora, GL was metabolized to 18beta-glycyrrhetinic acid (GA) as a main product and to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.
Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1
Leznicki, Antoni J.; Bandurski, Robert S.
1988-01-01
The synthesis of indole-3-acetyl-1-O-β-d-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as ρ-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid, and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439
Li, Baorui; Terazono, Yusuke; Hirasaki, Naoto; Tatemichi, Yuki; Kinoshita, Emiko; Obata, Akio; Matsui, Toshiro
2018-02-14
We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p < 0.05) suppressed the expression of glucose transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.
Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert
1999-01-01
A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.
Nyanzi, Richard; Awouafack, Maurice D; Steenkamp, Paul; Jooste, Piet J; Eloff, Jacobus N
2014-12-01
This study investigated the anti-Candida activity of methanol extracts from freeze-dried probiotic cells and the isolation of some constituents in the extracts. The MIC values of the probiotic methanol cell extracts against Candida albicans ranged between 1.25 and 5mg/ml after 48 h of incubation. However, Lactococcus latics subsp. lactis strain X and Lactobacillus casei strain B extracts had an MIC of 10mg/ml after 48 h of incubation. The extracts had fungistatic rather than fungicidal activity. These extracts had a much higher antifungal activity than antifungal compounds isolated from the growth medium by many other authors. This indicates that probiotics may also release antifungal compounds in their cells that could contribute to a therapeutic effect. Lactic acid (1) and 6-O-(α-D-glucopyranosyl)-1,6-di-O-pentadecanoyl-α-D-glucopyranose a novel fatty acid derivative (2) were isolated from methanol probiotic extracts and the structure of these compounds were elucidated using NMR (1 and 2D) and mass spectrometry (MS). Copyright © 2014 Elsevier Ltd. All rights reserved.
Anticancer and antioxidant tannins from Pimenta dioica leaves.
Marzouk, Mohamed S A; Moharram, Fatma A; Mohamed, Mona A; Gamal-Eldeen, Amira M; Aboutabl, Elsayed A
2007-01-01
Two galloylglucosides, 6-hydroxy-eugenol 4-O-(6'-O-galloyl)-beta-D-4C1-glucopyranoside (4) and 3-(4-hydroxy-3-methoxyphenyl)-propane-1,2-diol-2-O-(2',6'-di-O-galloyl)-beta-D -4C1-glucopyranoside (7), and two C-glycosidic tannins, vascalaginone (10) and grandininol (14), together with fourteen known metabolites, gallic acid (1), methyl gallate (2), nilocitin (3), 1-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-(alpha/beta)-D-glucopyranose (5), 4,6-(S)-hexahydroxydiphenoyl-(alpha/beta)-D-glucopyranose (6), 3,4,6-valoneoyl-(alpha/beta)-D-glucopyranose (8), pedunculagin (9), casuariin (11), castalagin (12), vascalagin (13), casuarinin (15), grandinin (16), methyl-flavogallonate (17) and ellagic acid (18), were identified from the leaves of Pimenta dioica (Merr.) L. (Myrtaceae) on the basis of their chemical and physicochemical analysis (UV, HRESI-MS, 1D and 2D NMR). It was found that 9 is the most cytotoxic compound against solid tumour cancer cells, the most potent scavenger against the artificial radical DPPH and physiological radicals including ROO*, OH*, and O2-*, and strongly inhibited the NO generation and induced the proliferation of T-lymphocytes and macrophages. On the other hand, 3 was the strongest NO inhibitor and 16 the highest stimulator for the proliferation of T-lymphocytes, while 10 was the most active inducer of macrophage proliferation.
[Studies on chemical components of Lobelia chinensis].
Jiang, Yanyan; Shi, Renbing; Liu, Bin; Wang, Qiuying; Dai, Ying
2009-02-01
To study on the chemical constituents of Lobelia chinensis. The coloumn chromatographic techniques were applied to isolate constituents, and their structures were elucidated by means of spectral data analysis. Sixteen compounds were isolated and identified as daucosterol (1), diosmetin (2), apigenin (3), chrysoeriol (4), loteolin (5), hesperidin (6), loteolin-7-O-beta-D-glucoside (7), apigenin-7-O-beta-D-glucoside (8), linarin (9), diosmin(10), 5,7-dimethoxy-8- hydroxycoumarin (11), palmitinic acid (12), lacceroic acid (13), stearic acid (14), beta-sitosterol (15), daucosterol (16). All of these compouds were obtained from L. chinensis for the first time.
[Chemical constituents from whole plants of Aconitum tanguticum (III)].
Li, Yan-Rong; Li, Chun; Wang, Zhi-Min; Yang, Li-Xin
2014-04-01
Nineteen compounds were isolated from the whole plants of Aconitum tanguticum by various of chromatographic techniques and their structures were determined through spectral analysis (1D, 2D-NMR and MS) and comparison with the literature data. These compounds were identified as 5-hydroxymethy furfural (1), 5-acetoxymethyl furfural (2), pyrrolezanthine [5-hydroxymethyl-1-[2-(4-hydroxyphenyl) -ethyl] -1H-pyrrole-2-carbaldehyde] (3), lichiol B (4), phthalic acid dibutyl ester (5), 3, 4-dihydroxy phenylethanol (6), 3, 4-dihydroxy phenylethanol glucoside (7), salidroside (8), p-hydroxy phenylethanol (9), p-hydroxybenzoie acid glucoside (10), p-hydroxybenzoic acid (11), gastrodin (12), 1-(3, 4-dimethoxyphenyl) -1, 2-ethanediol (13), p-hydroxy benzaldehyde (14), p-hydroxy acetophenone (15), 3, 4-dihydroxy phenyl ethyl acetate (16), syringic aldehyde (17), ethyl beta-D-fructopyranoside (18), and p-hydroxybenzoic acid methyl ester (19). Compounds 3 and 4 were isolated from the Ranunculaceae family for the first time, and compounds 2, 6 and 9-19 were isolated from the Aconitum genus for the first time, and compounds 1 and 5 were isolated from the species for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulin, R.; Poirier, D.; Merand, Y.
1989-06-05
Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids.more » DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor (3H)delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids.« less
Enantioselective analysis of chiral anteiso fatty acids in the polar and neutral lipids of food.
Hauff, Simone; Hottinger, Georg; Vetter, Walter
2010-04-01
Anteiso fatty acids (aFA) are substituted with a methyl group on the antepenultimate carbon of the straight acyl chain. This feature leads to a stereogenic center. The 12-methyltetradecanoic acid (a15:0) and the 14-methylhexadecanoic acid (a17:0) are the most common aFA found in food, although they occur only in very small quantities. In this study we used gas chromatography in combination with a chiral stationary phase to determine the enantiomeric distribution of both a15:0 and a17:0 in the neutral and polar lipids of aquatic food samples and cheese. The best suited column was selected out of four custom-made combinations of heptakis(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin (beta-TBDM) with different amount and polarity of an achiral polysiloxane. After separation of polar and neutral lipids of the food samples by solid phase extraction, fatty acid methyl esters were prepared and the fatty acid methyl esters were fractionated by reversed phase high performance liquid chromatography. Measurements of fractions high in aFA by enantioselective GC/MS in the selected ion monitoring mode verified the dominance of the (S)-enantiomers of a15:0 and a17:0 in both lipid fractions. However (R)-enantiomers were detectable in all samples. The relative proportion of the (R)-enantiomers was up to fivefold higher in the polar lipids than in the neutral lipids. The higher proportions in the polar lipids indicate that microorganisms might be involved in the formation of (R)-aFA.
Further acylated flavonol bisdesmosides from Sinocrassula indica.
Xie, Hai-Hui; Yoshikawa, Masayuki
2013-01-01
Further investigation on the whole herbs of Sinocrassula indica (Crassulaceae) led to the isolation of four new acylated flavonol bisdesmosides, sinocrassosides A₁₃, B₆, B₇, and D₄, together with kaempferol 3-O-β-D-(6-O-acetyl)glucopyranosyl-7-O-α-L-rhamnopyranoside. Their structures were established by spectral and chemical methods.
Manir, Md Maniruzzaman; Kim, Jeong Kee; Lee, Byeong-Gon; Moon, Surk-Sik
2012-04-01
Four new quercetin acylglycosides, designated camelliquercetisides A-D, quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (17), quercetin 3-O-[2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (18), quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-d-glucoside (19), and quercetin 3-O-[2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (20), together with caffeine and known catechins, and flavonoids (1-16) were isolated from the leaves of Camellia sinensis. Their structures were determined by spectroscopic (1D and 2D NMR, IR, and HR-TOF-MS) and chemical methods. The catechins and flavonoidal glycosides exhibited yeast alcohol dehydrogenase (ADH) inhibitory activities in the range of IC(50) 8.0-70.3μM, and radical scavenging activities in the range of IC(50) 1.5-43.8 μM, measured by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Studies on the chemical constituents of Phlomis younghusbandii].
Gao, Yong-li; Lin, Rui-chao; Wang, Gang-li; Zhao, Han-ru; Gao, Yuan; Ciren, Bianha
2007-10-01
To study the chemical constituents of Phlomis younghusbandii. Compounds were isolated from the ethanolic extract by silica gel column chromatography, and their structures were identified by physical and chemical evidences and spectral methods. Eight compounds were isolated and identified respectively as 8-acetylshanzhiside methyl ester (1), shanzhiside methyl ester (2), phlomiol (3), 2-butoxy-2-(hydroxymthyl) tetrahydro-2H-3,4,5-pyrantriol (4), sesamoside (5), pulchelloside-I (6), luteolin-7-O-beta-D-glucopyranoside (7) and daucosterol (8). All the compounds were isolated from the plant for the first time.
Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.
The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement withmore » theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).« less
Hopwood, J J
1979-03-01
Radioactive disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and 2-sulfo-L-iduronate 2-sulfatase have been prepared from heparin by deaminative cleavage followed by reduction with NaBT4. Six disaccharides were isolated from this reaction mixture and identified. Acid hydrolysis of the major disaccharide, O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate (IdAs--Ms), produced 48% of O-(alpha-L-idopyranosyluronic acid)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate) (IdA--Ms) and 25% of O-(alpha-L-idopyranosyluronic acid)-(1 linked to 4)-2,5-anhydro-D-mannitol-l-t. The most-sensitive substrate for determining alpha-L-iduronidase activity was IdA--Ms which, when incubated with leucocyte and skin-fibroblast homogenates prepared from patients having a deficiency of alpha-L-iduronidase (Mucopolysaccharidosis Type I; MPS-I), was hydrolysed to yield 2,5-anhydro-D-mannitol-l-t 6-sulfate at a rate 50-times less than that found for normal control-preparations. Similarly, O-(beta-D-glucopyranosyluronic acid)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate) was degraded by whole-cell homogenates prepared from beta-D-glucuronidase-deficient (Mucopolysaccharidosis, Type VII) fibroblasts, to yield 2,5-anhydro-D-mannitol-l-t 5-sulfate at a rate 60-times less that that found for MPS-I and normal control-preparations. IdAs--Ms was degraded by 2-sulfo-L-iduronate 2-sulfatase at a rate more than 45-times greater than that found for O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 linked to 4)-2,5-anhydro-D-mannitol-l-t. C-6 Sulfation of the anhydro-D-mannitol-l-t residue is an important structural determinant in the mechanism of action of both alpha-L-iduronidase and 2-sulfo-L-iduronate 2-sulfatase on disaccharide substrates.
Quílez, Joan; Rafecas, Magda; Brufau, Gemma; García-Lorda, Pilar; Megías, Isabel; Bulló, Mònica; Ruiz, Joan A; Salas-Salvadó, Jordi
2003-10-01
The hypocholesterolemic effects of phytosterols have not been evaluated in bakery products, and the addition of liposoluble antioxidants to the carrier has never been tested. We investigated the effects of consuming croissants and magdalenas (Spanish muffins) enriched with sterol esters, alpha-tocopherol and beta-carotene on plasma lipid and fat-soluble antioxidant concentrations in normocholesterolemic, habitual consumers of bakery products following their usual diet and lifestyle. Using a randomized, double-blind, placebo-controlled design, the control (C) group (n = 29) received two pieces daily (standard croissant and muffin) and the sterol ester (SE) group (n = 28), the same products with sterol esters added (3.2 g/d) for 8 wk. Total and LDL cholesterol (LDL-C) decreased in the SE group by 0.24 mmol/L (P < 0.01) and 0.26 mmol/L (P < 0.005), respectively, whereas these variables did not change in the control group. The total difference in total and LDL-C changes between groups was 0.38 mmol/L (8.9%) and 0.36 mmol/L (14.7%), respectively (P < 0.001). Within-group changes in HDL cholesterol, triacylglycerol or lipoprotein(a) concentrations did not differ. Similarly, within-group changes over time in plasma tocopherol and carotenoid concentrations did not differ between groups. Our findings suggest that bakery products are excellent carriers for phytosterols, and their consumption is associated with a decrease in total and LDL-C concentrations, with no changes in alpha-tocopherol and beta-carotene. The ability of bakery products to include sufficient quantities of beta-carotene to compensate for a potential deficiency, and the fact that their efficacy was not associated with the time of day at which they were consumed, are interesting findings.
Polyhydroxylated spirostanol saponins from the tubers of Dioscorea polygonoides.
Osorio, Jaime Niño; Mosquera Martinez, Oscar M; Correa Navarro, Yaned M; Watanabe, Kazuki; Sakagami, Hiroshi; Mimaki, Yoshihiro
2005-07-01
Three new polyhydroxylated spirostanol saponins (1-3) were isolated from the tubers of Dioscorea polygonoides. The structures of these new compounds were determined on the basis of extensive spectroscopic analysis and the results of acid or enzymatic hydrolysis as (23S,24R,25S)-23,24-dihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (1), (23S,25R)-12alpha,17alpha,23-trihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (2), and (23S,25R)-14alpha,17alpha,23-trihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (3), respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen
2014-11-15
In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd,more » 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series of water-soluble acidic 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]n·2Cl{sub n}·3nH{sub 2}O have been converted to their 2D and 3D lanthanides, which are active for the catalytic conversion of ester hydrolysis. - Highlights: • Novel acidic propanediaminetetraacetato lanthanides. • Water-soluble 1D coordination polymers. • Acidic conditions are suitable for the isolations of lanthanide complexes in different structures. • 1 and 5 show good catalytic activity to ester hydrolysis. • Europium coordination polymers 13 and 20 give visible fluorescence.« less
Yamauchi, Kosei; Mitsunaga, Tohru; Inagaki, Mizuho; Suzuki, Tohru
2015-03-01
4'-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside (3C4'GQ), first isolated from Helminthostachys zeylanica root extract, was synthesized as a compound that stimulates intracellular melanogenesis. 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) were synthesized as compounds that enhance extracellular melanin formation. The formation of dendrites and the expression of EBP50-PDZ interactor of 64 kDa (EPI64) relating to melanin transportation were investigated using B16 melanoma cells treated with 3C4'GQ, 3MQ, or 34'7TMQ in order to understand the mechanism underlying the observed activities. The influence of 3C4'GQ on the increase of intracellular melanin contents enhanced the expression of EPI64, exhibited no dendrite elongation activity, and inhibited melanin transportation. On the other hand, the increase of extracellular melanin content by 3MQ and 34'7TMQ inhibited the expression of EPI64 and formed elongated cells to stimulate melanin transportation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sesquiterpene glucosides from anti-leukotriene B4 release fraction of Taraxacum officinale.
Kashiwada, Y; Takanaka, K; Tsukada, H; Miwa, Y; Taga, T; Tanaka, S; Ikeshiro, Y
2001-01-01
Chemical examination of the MeOH extract of the root of Taraxacum officinale, which exhibited inhibitory activity on the formation of leukotriene B4 from activated human neutrophils, has resulted in the isolation of 14-O-beta-D-glucosyl-11,13-dihydro-taraxinic acid (1) and 14-O-beta-D-glucosyl-taraxinic acid (2). The absolute stereostructure of 1 has been established by X-ray chrystallographic examination.
Denmark, Scott E; Chung, Won-Jin
2008-06-20
A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.
Chalcones and other constituents of Dorstenia prorepens and Dorstenia zenkeri.
Abegaz, Berhanu M; Ngadjui, Bonaventure T; Dongo, Etienne; Ngameni, Bathelemy; Nindi, Mathew N; Bezabih, Merhatibeb
2002-04-01
The twigs of Dorstenia prorepens furnished the digeranylated chalcone, 5,3'-(3,7-dimethyl-2,6-octadienyl)-3,4, 2',4'-tetrahydroxychalcone while Dorstenia zenkeri yielded the 3',4'-(3-hydroxy-2,2-dimethyldihydropyrano)-4,2'-dihydroxychalcone and a bichalcone. 4-Hydroxylonchocarpin was found in both plants. D. prorepens also yielded the known compounds: psoralen, bergapten, beta-sitosterol and its D-glucopyranosyl derivative. D. zenkeri yielded p-hydroxybenzaldehyde, dorsmanin A, 4,2',4'-trihydroxychalcone and 4,2',4'-trihydroxy-3'-prenylchalcone. Structures of the new compounds were established by UV, IR, MS and 2-D NMR analysis.
Granica, Sebastian; Piwowarski, Jakub P; Randazzo, Antonio; Schneider, Peter; Żyżyńska-Granica, Barbara; Zidorn, Christian
2015-09-01
A phytochemical investigation of Tragopogon tommasinii Sch.Bip. (Asteraceae, Cichorieae) yielded a total of 21 natural products, two simple phenolic acids (4-hydroxybenzoic acid and p-coumaric acid), four caffeic acid derivatives (chlorogenic acid, 3-O-caffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, and 4,5-O-dicaffeoylquinic acid), six flavonoids (luteolin, luteolin 7-O-glucoside, vitexin, orientin, quercetin 3-O-glucoside, and isorhamnetin 3-O-glucoside), three simple bibenzyls [2-carboxyl-5-hydroxy-3-methoxy-4'-β-glucopyranosyl-oxybibenzyl, 3-caffeoyl-(9→5)-β-apiosyl-(1→6)-β-glucopyranosyloxy-5,4'-dihydroxy-3'-methoxybibenzyl, 3-caffeoyl-(9→5)-β-apiosyl-(1→6)-β-glucopyranosyloxy-4'-dihydroxy-5,3'-dimethoxybibenzyl], three phtalides [3-(4-β-glucopyranosyloxybenzyl)-7-hydroxy-5-methoxyphtalide, 7-β-glucopyranosyloxy-(S)-3-(4-hydroxybenzyl)-5-methoxyphtalide, and 7-(1→6)-α-rhamnosyl-β-glucopyranosyloxy-(S)-3-(4-hydroxybenzyl)-5-methoxyphtalide], two cannabispiradienone derivatives [3-O-β-glucopyranosyldemethoxycannabispiradienone and 3-caffeoyl-(9→5)-β-apiosyl-(1→6)-β-glucopyranosyloxydemethoxycannabispiradienone], and tetra-N-coumaroyl spermine. The three bibenzyls, the latter two benzylphthalides, and both cannabispiradienone derivatives represent new natural compounds and all compounds, except the caffeic acid derivatives and the flavonoids were new for T. tommasinii. The structures were established by HR mass spectrometry, extensive 1D and 2D NMR spectroscopy, and CD spectroscopy. Moreover, the potential anti-inflammatory activities of the new compounds were assayed using human neutrophils and their production of IL-1b, IL-8, TNF-α and MMP-9 as well as the expression of TLR-4, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kowalska, Iwona; Pecio, Lukasz; Ciesla, Lukasz; Oleszek, Wieslaw; Stochmal, Anna
2014-11-19
Fourteen phenolic compounds (flavonoids and phenolic acids) were isolated and 19 were identified in the aerial parts of Triticum aestivum L. The structures of these compounds were established on the basis of the data obtained by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) techniques. T. aestivum L. was found to be rich in flavones, especially in luteolin derivatives. Three of the isolated compounds, including luteolin 6-C-[6Glc″-O-E-caffeoyl-β-D-glucopyranosyl(1″→2)-β-glucopyranoside], luteolin 6-C-[5Rib″-O-E-feruoyl-β-D-ribofuranosyl(1″→2)-β-glucopyranoside], and 3',4',5'-O-trimethyltricetin 7-O-[β-D-glucuropyranosyl(1″→2)-β-D-glucopyranoside], have been reported for the first time in the plant kingdom. The amount of individual phenolics, in winter wheat, was also determined. Additionally, the free radical scavenging potential of the isolated compounds was tested in a simple and rapid thin-layer chromatography-2,2-diphenyl-1-picrylhydrazyl radical test (TLC-DPPH•) with image processing.
A below-ground herbivore shapes root defensive chemistry in natural plant populations.
Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias
2016-03-30
Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).
Constituents of antibacterial extract of Caesalpinia paraguariensis Burk.
Woldemichael, Girma M; Singh, Maya P; Maiese, William M; Timmermann, Barbara N
2003-01-01
The Argentinean legume Caesalpinia paraguariensis Burk. (Fabaceae) was selected for further fractionation work based on the strong antimicrobial activity of its CH2Cl2-MeOH (1:1 v/v) extract against a host of clinically significant microorganisms, including antibiotic resistant strains. 1D and 2D NMR enabled the identification of the novel benzoxecin derivative caesalpinol along with the known compounds bilobetin, stigma-5-en-3-O-beta-6'-stearoylglucopyranoside, stigma-5-en-3-beta-6'-palmitoylglucopyranoside, stigma-5-en-3-beta-glucopyranoside, oleanolic acid, 3-O-(E)-hydroxycinnamoyl oleanolic acid, betulinic acid, 3-O-(E)-hydroxycinnamoyl betulinic acid, and lupeol from the active fractions. Oleanolic acid was found active against Bacillus subtilis and both methicillin-sensitive and -resistant Staphylococcus aureus with MICs of 8 (17.5 microM), 8 and 64 (140 microM) microg/ml, respectively. The rest of the compounds, however, did not show activity.
Novel syn intramolecular pathway in base-catalyzed 1,2-elimination reactions of beta-acetoxy esters.
Mohrig, Jerry R; Carlson, Hans K; Coughlin, Jane M; Hofmeister, Gretchen E; McMartin, Lea A; Rowley, Elizabeth G; Trimmer, Elizabeth E; Wild, Andrew J; Schultz, Steve C
2007-02-02
As part of a comprehensive investigation of electronic effects on the stereochemistry of base-catalyzed 1,2-elimination reactions, we observed a new syn intramolecular pathway in the elimination of acetic acid from beta-acetoxy esters and thioesters. 1H and 2H NMR investigation of reactions using stereospecifically labeled tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanoate (1) and its (2R*,3S*) diastereomer (2) shows that 23 +/- 2% syn elimination occurs. The elimination reactions were catalyzed with KOH or (CH3)4NOH in ethanol/water under rigorously non-ion-pairing conditions. By contrast, the more sterically hindered beta-trimethylacetoxy ester produces only 6 +/- 1% syn elimination. These data strongly support an intramolecular (Ei) syn path for elimination of acetic acid, most likely through the oxyanion produced by nucleophilic attack at the carbonyl carbon of the beta-acetoxy group. The analogous thioesters, S-tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanethioate (3) and its (2R*,3S*) diastereomer (4), showed 18 +/- 2% syn elimination, whereas the beta-trimethylacetoxy substrate gave 5 +/- 1% syn elimination. The more acidic thioester substrates do not produce an increased amount of syn stereoselectivity even though their elimination reactions are at the E1cb interface.
Qian, Shan; Chen, Quan Long; Guan, Jin Long; Wu, Yong; Wang, Zhou Yu
2014-01-01
First, Raddeanin A, a cytotoxic oleanane-type triterpenoid saponin isolated from Anemone raddeana REGEL, was synthesized. Stepwise glycosylation was adopted in the synthesis from oleanolic acid, employing arabinosyl, glucosyl and rhamnosyl trichloroacetimidate as donors. The chemical structure of Raddeanin A was confirmed by means of (1)H-NMR, (13)C-NMR, IR, MS and elemental analysis, which elucidated the structure to be 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside oleanolic acid. Biological activity tests showed that in the range of low concentrations, Raddeanin A displayed moderate inhibitory activity against histone deacetylases (HDACs), indicating that the HDACs' inhibitory activity of Raddeanin A may contribute to its cytotoxicity.
Zhang, Ji-Wen; Li, Sheng-Kun; Wu, Wen-Jun
2009-01-08
The essential oils of the aerial parts of Ocimum basilicum Linn.var. pilosum (Willd.) Benth., an endemic medicinal plant growing in China, was obtained by hydrodistillation and analysed by GC-MS. Fifteen compounds, representing 74.19% of the total oil were identified. The main components were as follows: linalool (29.68%), (Z)-cinnamic acid methyl ester (21.49%), cyclohexene (4.41%), alpha- cadinol (3.99%), 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane (2.27%), 3,5-pyridine-dicarboxylic acid, 2,6-dimethyl-diethyl ester (2.01%), beta-cubebene (1.97%), guaia-1(10),11-diene (1.58%), cadinene (1.41%) (E)-cinnamic acid methyl ester (1.36%) and beta-guaiene (1.30%). The essential oils showed significant antifungal activity against some plant pathogenic fungi.
Potent microbial and tyrosinase inhibitors from stem bark of Bauhinia rufescens (Fabaceae).
Muhammad, Aminu; Sirat, Hasnah Mohd
2013-10-01
The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).
Kato, Merii; Tanase, Tomoaki; Mikuriya, Masahiro
2006-04-03
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.
Lie Ken Jie, M S; Pasha, M K; Ahmad, F
1996-10-01
Methyl ricinoleate (1) was treated with bromine and the dibromo derivative (2) was reacted with ethanolic KOH under ultrasonic irradiation to give 12-hydroxy-octadec-9-ynoic acid upon acidification with dil. HCI. The latter compound was methylated with BF3/methanol to give methyl 12-hydroxy-octadec-9-ynoate (3). Compound 3 was treated with methanesulfonyl chloride in the presence of triethylamine in CH2Cl2 to give methyl 12-mesyloxy-octadec-9-ynoate (4). Reaction of methyl 12-mesyloxy-octadec-9-ynoate with aqueous KOH under ultrasonic irradiation (20 kHz) gave (11E)-octadecen-9-ynoic acid (5, santalbic acid, 40%) and (11Z)-octadecen-9-ynoic acid (6, 60%) on acidification with dil. HCI. These isomers were separated by urea fractionation. The 13C nuclear magnetic resonance (NMR) spectroscopic properties of the methyl ester and the triacylglycerol (TAG) esters of these enynoic fatty acid isomers were studied. The carbon shifts of the unsaturated carbon nuclei of the methyl ester of the E-isomer were unambiguously assigned as 88.547 (C-9), 79.287 (C-10), 109.760 (C-11), and 143.450 (C-12) ppm, while the unsaturated carbon shifts of the (Z)-enynoate isomer appeared at 94.277 (C-9), 77.561 (C-10), 109.297 (C-11), and 142.668 (C-12) ppm. In the 13C NMR spectral analysis of the TAG molecules of type AAA containing either the (Z)- or (E)-enyne fatty acid, the C-1 to C-6 carbon atoms on the alpha- and beta-acyl positions were differentiated. The unsaturated carbon atoms in the alpha- and beta-acyl chains were also resolved into two signals except that of the C-11 olefinic carbon. Sandal (Santalum album) wood seed oil (a source of santalbic acid) was separated by silica chromatography into three fractions. The least polar fraction (7.2 wt%) contained TAG which had a random distribution of saturated and unsaturated fatty acids, of which oleic acid (69%) was the predominant component. The second fraction (3.8 wt%) contained santalbic acid (58%) and oleic acid (28%) together with some other normal fatty acids. Santalbic acid in this fraction was found in both the alpha- and beta-acyl positions of the glycerol "backbone." The most polar fraction (89 wt%) consisted of TAG containing santalbic acid only. The distribution of the various fatty acids on the glycerol "backbone" was supported by the results from the 13C NMR spectroscopic analysis.
Huber, Meret; Triebwasser-Freese, Daniella; Reichelt, Michael; Heiling, Sven; Paetz, Christian; Chandran, Jima N; Bartram, Stefan; Schneider, Bernd; Gershenzon, Jonathan; Erb, Matthias
2015-07-01
The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparative study on cytogenetic damage induced by homo-aza-steroidal esters in human lymphocytes.
Mourelatos, D; Papageorgiou, A; Boutis, L; Catsoulacos, P
1995-02-01
The effect of P[N,N-bis(2-chloroethyl)amino]phenylacetate esters of 3 beta-hydroxy-N-methyl-17 alpha-aza-D-homo-5 alpha-androstan-17-one (compound 3) and 3 beta-hydroxy-17 alpha-aza-D-homo-5 alpha-androstane (compound 2) on sister-chromatid exchange (SCE) frequencies and on human lymphocytes proliferation kinetics was studied. The results are compared with those of the P[N,N-bis(2-chloroethyl)amino]phenylacetate esters of 3 beta-hydroxy-17 alpha-aza-D-homo-5 alpha-androstan-17-one (compound 1). All compounds were found to be active in inducing markedly increased SCE rates and cell division delays. A correlation between potency for SCE induction, effectiveness in cell division delay and previously established antitumour activity of these compounds was observed.
Phosphatidylkojibiosyl Diglyceride: metabolism and function as an anchor in bacterial cell membrane.
Pieringer, R A
1975-07-01
The recently discovered phosphoglycolipid, phosphatidylkojibiosyl diglyceride (PKD), was first observed as a biosynthetic by-product of glycosyl diglyceride metabolism in Streptococcus faecalis (faecium) ATCC 9790. Its structure is 1, 2-diacyl-3-O-alpha-Dglucopyranosyl-6'-O-phosphoryl- [1'', 2''-diacyl-3''-O-sn-glycerol]-alpha-D-glucopyranosyl)-sn-glycerol. The biosynthesis of phosphatidyl-kojibiosyl diglyceride occurs by a novel transphosphatidylation reaction in which a phosphatidyl glycerol to the primary alcohol function at the 6 position of the internal glucose of kojibiosyl diglyceride. The reaction is catalyzed by a membrane-derived enzyme. Phosphatidyl-kojibiosyl diglyceride is bound covalently through a phosphodiester bond to the polyglycerol phosphate moiety of membrane lipoteichoic acid from S. faecalis. Phosphatidylkojibiosyl diglyceride has four nonpolar long chain fatty acyl groups and appears to have the necessary physico-chemical properties to anchor the long hydrophilic glycerol phosphate polymer of lipoteichoic acid to the hydrophobic enviroment of the membrane of S. faecalis and probably other gram-positive bacteria as well.
Zhang, Wenli; Betel, Doron; Schachter, Harry
2002-01-01
A TBLASTN search with human UDP-GlcNAc:alpha-3-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101) as a probe identified human and mouse Unigenes encoding a protein similar to human GnT I (34% identity over 340 amino acids). The recombinant protein converted Man(alpha1-6)[Man(alpha1-3)]Man(beta1-)O-octyl to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl, the reaction catalysed by GnT I. The enzyme also added GlcNAc to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl (the substrate for beta-1,2-N-acetylglucosaminyltransferase II), Man(alpha1-)O-benzyl [with K(m) values of approximately 0.3 and >30 mM for UDP-GlcNAc and Man(alpha1-)O-benzyl respectively] and the glycopeptide CYA[Man(alpha1-)O-T]AV (K(m) approximately 12 mM). The product formed with Man(alpha1-)O-benzyl was identified as GlcNAc(beta1-2)Man(alpha1-)O-benzyl by proton NMR spectroscopy. The enzyme was named UDP-GlcNAc:alpha-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I.2 (GnT I.2). The human gene mapped to chromosome 1. Northern-blot analysis showed a 3.3 kb message with a wide tissue distribution. The cDNA has a 1980 bp open reading frame encoding a 660 amino acid protein with a type-2 domain structure typical of glycosyltransferases. Man(beta1-)O-octyl, Man(beta1-)O-p-nitrophenyl and GlcNAc(beta1-2)Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-4)GlcNAc(beta1-4)GlcNAc(beta1-)O-Asn were not acceptors, indicating that GnT I.2 is specific for alpha-linked terminal Man and does not have N-acetylglucosaminyltransferase III, IV, V, VII or VIII activities. CYA[Man(alpha1-)O-T]AV was between three and seven times more effective as an acceptor than the other substrates, suggesting that GnT I.2 may be responsible for the synthesis of the GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moiety on alpha-dystroglycan and other O-mannosylated proteins. PMID:11742540
Kun, Sándor; Begum, Jaida; Kyriakis, Efthimios; Stamati, Evgenia C V; Barkas, Thomas A; Szennyes, Eszter; Bokor, Éva; Szabó, Katalin E; Stravodimos, George A; Sipos, Ádám; Docsa, Tibor; Gergely, Pál; Moffatt, Colin; Patraskaki, Myrto S; Kokolaki, Maria C; Gkerdi, Alkistis; Skamnaki, Vassiliki T; Leonidas, Demetres D; Somsák, László; Hayes, Joseph M
2018-03-10
3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with K i 's < 10 μM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-β-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(β-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(β-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low μM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Phenolic compounds from Nymphaea odorata.
Zhang, Zhizhen; ElSohly, Hala N; Li, Xing-Cong; Khan, Shabana I; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L; Burandt, Charles; Walker, Larry A
2003-04-01
Assay-guided fractionation of the ethanol extract of Nymphaea odorata resulted in the identification of two lignans, one new (1) and one known (2), together with six known flavonol glycosides (3-8). The structures of 1-8 were established by spectroscopic analysis as nymphaeoside A (1), icariside E(4) (2), kaempferol 3-O-alpha-l-rhamnopyranoside (afzelin, 3), quercetin 3-O-alpha-l-rhamnopyranoside (4), myricetin 3-O-alpha-l-rhamnopyranoside (myricitrin, 5), quercetin 3-O-(6' '-O-acetyl)-beta-d-galactopyranoside (6), myricetin 3-O-beta-d-galactopyranoside (7), and myricetin 3-O-(6' '-O-acetyl)-beta-d-galactopyranoside (8). Compounds 3, 4, and 7 showed marginal inhibitory effect against fatty acid synthase with IC(50) values of 45, 50, and 25 microg/mL, respectively.
NASA Astrophysics Data System (ADS)
Witkowski, Bartłomiej; Gierczak, Tomasz
2017-04-01
Composition of the secondary organic aerosol (SOA) generated during ozonolysis of limonene was investigated with liquid chromatography coupled to the negative electrospray ionization (ESI), quadrupole tandem mass spectrometry (MS/MS) as well as high resolution Time-of-Flight mass spectrometry. Aerosol was generated in the flow-tube reactor. HR-MS/MS analysis allowed for proposing structures for the several up-to-date unknown limonene oxidation products. In addition to the low MW limonene oxidation products, significant quantities of oligomers characterized by elemental compositions: C19H30O5, C18H28O6, C19H28O7, C19H30O7 and C20H34O9 were detected in the SOA samples. It was concluded that these compounds are most likely esters, aldol reaction products and/or hemiacetals. In addition to detailed study of the limonene oxidation products, the reaction time as well as initial ozone concentration impact on the limonene SOA composition was investigated. The relative intensities of the two esters of the limonic acid and 7-hydroxy limononic acid increased as a result of lowering the initial ozone concentration and shortening the reaction time, indicating that esterification may be an important oligomerization pathway during limonene SOA formation.
Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian
2013-07-01
In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate.
Ono, N; Hirayama, F; Arima, H; Uekama, K
2001-01-01
The competitive inclusion complexations in the ternary phenacetin/competitors/beta-cyclodextrin (beta-CyD) systems were investigated by the solubility method, where m-bromobenzoic acid (m-BBA) and o-toluic acid (o-TA) were used as competitors. The solubility changes of the drug and competitors as a function of beta-CyD concentration in the ternary systems were formulated using their stability constants and intrinsic solubilities. The decrease in solubility of phenacetin by the addition of competitors could be quantitatively simulated by the formulation, when both drug and competitor give A(L) type solubility diagrams. On the other hand, when one of the guests gives a B(S) type solubility diagram, its solubility change was clearly reflected in that of the another guest, i.e., phenacetin gave an A(L) type solubility diagram in the binary phenacetin/beta-CyD system and o-TA gave a B(S) type diagram in the binary o-TA/beta-CyD system, but in the ternary phenacetin/o-TA/beta-CyD system, a new plateau region appeared in the original A(L) type diagram of phenacetin. This was explained by the solubilization theory of Higuchi and Connors. The solubility analysis of the ternary drug/competitor/CyD systems may be particularly useful for determination of the stability constant of a drug whose physicochemical and spectroscopic analyses are difficult, because they can be calculated by monitoring the solubility change of a competitor, without monitoring that of a drug. Furthermore, the present results suggest that attention should be paid to the type of the phase solubility diagram, as well as the magnitude of the stability constant and the solubility of the complex, for a rational formulation design of CyD complexes.
Two new glycosides from the fruits of Morinda citrifolia L.
Hu, Ming-Xu; Zhang, Hong-Cai; Wang, Yu; Liu, Shu-Min; Liu, Li
2012-10-26
To study the chemical constituents of the fruits of noni (Morinda citrifolia L.), and find novel compounds, an n-butanol extract of the ethanol soluble fraction was subjected to repeated silica gel and ODS column chromatography and HPLC. Two new glycosides were isolated and their structures elucidated by NMR and HRFAB-MS spectrometry as (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-β-D-glucopyranosyl-β-D-glucopyranoside and amyl-1-O-β-D-apio-furanosyl-1,6-O-β-D-glucopyranoside, respectively.
A new triglycosyl flavonoid isolated from leaf juice of Kalanchoe gastonis-bonnieri (Crassulaceae).
Costa, Sônia Soares; Corrêa, Maria Fernanda Paresqui; Casanova, Livia Marques
2015-03-01
Kalanchoe gastonis-bonnieri R. Hamet & H. Perrier (Crassulaceae) is a succulent species empirically used as a vaginal contraceptive as well as to heal genitourinary infections. A phytochemical study of leaf juice prepared from specimens collected in the flowering season resulted in the isolation of the new flavonoid quercetin 3-O-α-rhamnopyranoside-7-O-β-D-glucopyranosyl-(1-->3)-α-L-rhamnopyranoside, as well as the already known 6-C-β-D-glucopyranosyl- 8-C-β-D-glucopyranosylapigenin (vicenin-2). The NMR spectra of this flavonoid at room temperature exhibited broad and duplicated signals, suggesting the existence of rotameric conformers, which was confirmed by coalescence of the signals at 40°C. The structural elucidation was based on 1H and 13C NMR (HMQC and HMBC) analyses and MS data. This is the first report of a C-glycosyl flavonoid (vicenin-2) in the Crassulaceae family. Additionally, this is the first study in which atropoisomerism has been shown for vicenin-2.
Theuwissen, Elke; Mensink, Ronald P
2007-03-01
Intake of food products rich in water-soluble fiber beta-glucan and products enriched with plant stanol esters lower serum cholesterol. Combining 2 functional food ingredients into one food product may achieve additional reductions of serum cholesterol. Our objective was to investigate the effects of a simultaneous intake of beta-glucan plus plant stanol esters on lipid metabolism in mildly hypercholesterolemic volunteers. In a randomized, controlled, 3-period crossover study, 40 mildly hypercholesterolemic men and women received muesli in random order twice a day for 4 wk, which provided, in total, 5 g control fiber from wheat (control muesli), 5 g oat beta-glucan (beta-glucan muesli), or 5 g oat beta-glucan plus 1.5 g plant stanols (combination muesli). beta-Glucan muesli decreased serum LDL cholesterol by 5.0% compared with control muesli (P = 0.013). Combination muesli reduced LDL cholesterol by 9.6% compared with control muesli (P < 0.001), and by 4.4% compared with beta-glucan muesli (P = 0.036). Serum HDL cholesterol and triacylglycerol concentrations did not differ after the 3 treatments. Compared with control muesli, beta-glucan muesli increased bile acid synthesis (P = 0.043) and decreased cholesterol absorption (P = 0.011). Addition of plant stanols did not influence bile acid synthesis but decreased cholesterol absorption (P < 0.001) and raised cholesterol synthesis (P = 0.016) compared with control muesli, and the plant stanols decreased cholesterol absorption compared with beta-glucan muesli (P = 0.004). The combination muesli decreased serum concentrations of sitostanol compared with control muesli (P = 0.010). Plasma concentrations of lipid-soluble antioxidants did not differ after the 3 treatments. beta-Glucan muesli effectively lowered serum LDL cholesterol concentrations. The addition of plant stanol esters to beta-glucan-enriched muesli further lowered serum LDL cholesterol, although effects were slightly less than predicted.
A new ethylene glycol triterpenoid from the leaves of Psidium guajava.
Begum, Sabira; Ali, Syed Nawazish; Hassan, Syed Imran; Siddiqui, Bina S
2007-07-10
One new pentacyclic triterpenoid psidiumoic acid (5) along with four known compounds beta-sitosterol (1), obtusol (2), oleanolic acid (3), and ursolic acid (4) have been isolated from the leaves of Psidium guajava. The new constituent 5 has been characterized as 2 alpha-glycolyl-3beta-hydroxyolean-12-en-28-oic acid through 2D NMR techniques. This is the first report of isolation of compound 2 from the genus Psidium.
Studies on chemical modification of cold agglutinin from the snail Achatina fulica.
Sarkar, M; Mitra, D; Sen, A K
1987-01-01
The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867
[Non-alkaloid components from Sophora flavescens].
Zhang, Chi; Ma, Yue; Gao, Hui-Min; Liu, Xiao-Qian; Chen, Liang-Mian; Zhang, Qi-Wei; Wang, Zhi-Min; Li, An-Ping
2013-10-01
Five compounds were obtained from the stems and leaves of Sophora flavescens Ait. and ten compounds were obtained from the roots of S. flavescens by various chromatography methods including silica gel column chromatography and preparative HPLC. Their structures were identified on the basis of spectroscopic methods including 1H-NMR, 13C-NMR and ESI-MS, as corchionoside C (1), syringing (2), 2'-deoxythymidin (3), coniferin (4), benzyl O-beta-D-glucopyranoside (5), piscidic acid (6), trifolirhizin (7), kurarinone (8), trifolirhizin-6'-monoacetate (9), sophoraflavanone G (10), isoxanthohumol (11), noranhydroicaritin (12), 4'-methoxyisoflavone-7-O-beta-D-apiofuranosyl-(1 --> 6)-beta-D-glucopyranoside (13), kushenol O (14) and 6"-beta-D-xylopyranosylgenistin (15). Compounds 1-6 were isolated from the Sophora genus for the first time.
Flavonoids and terpenoids from Luma gayana (Barn.) Burret.
Wächter, G A; Wangmaneerat, A; Caple, K M; Montenegro, G; Timmermann, B N
1999-12-01
The flavonoids 5-hydroxy-7-methoxyflavanone, 6,8-dimethyl-5,7-dihydroxyflavanone and 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, a mixture of alkyl esters of p-coumaric acid, the triterpenoids oleanolic acid and maslinic acid, the monoterpenoid 1 alpha,2 beta,4 beta-trihydroxy-p-menthane, the sesquiterpenoid clovandiol and beta-sitosterol were isolated from the aerial parts of Luma gayana (Barn.) Burret. This is the first report on the chemistry of this species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Haijuan; Zunzhe Shu; Niu Yunyin, E-mail: niuyy@zzu.edu.cn
2012-06-15
Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is themore » first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D net containing {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} 1D chain and DIE ligands. These compounds had definite catalytic activities on the acetaldehyde oxidation.« less
Li, Xiong; Zhang, Yufeng; Zeng, Xing; Yang, Liu; Deng, Yuanhui
2011-09-15
In this study, a fast and reliable method based on an ultra-high-pressure liquid chromatography coupled with photodiode-array detection (PDA) and a linear ion trap high-resolution mass spectrometer (LTQ-Orbitrap XL) has been developed for the identification of bioactive constituents in the whole plant of Sarcandra glabra and its related four preparations. By accurate mass measurements within 5 ppm error for each molecular ion and subsequent fragment ions in routine analysis, 50 compounds, including organic acids, caffeoyl derivatives, flavonoids, coumarins and terpenoids, were identified or tentatively characterized. Among them, 6,7,8-trihydroxycoumarin-O-rhamnopyranoside (17), (2R)-naringenin-6-C-B-D-glucopyranosyl-(6→1)-apiose (25) and (2S)-naringenin-6-C-B-D-glucopyranosyl-(6→1)-apiose (27) were tentatively identified as new compounds. Besides, 21 of these compounds were coexisting in four preparations of Sarcandra glabra. Fragmentation behaviors of the four major categories of compounds were also investigated. This established UPLC-PDA/ESI-MS(n) method was reliable and effective for the separation and identification of the major constituents and would be the basis for quality control of Sarcandra glabra and its related preparations. Copyright © 2011 John Wiley & Sons, Ltd.
Akihisa, Toshihiro; Tochizawa, Shun; Takahashi, Nami; Yamamoto, Ayako; Zhang, Jie; Kikuchi, Takashi; Fukatsu, Makoto; Tokuda, Harukuni; Suzuki, Nobutaka
2012-06-01
Five new saccharide fatty acid esters, named nonioside P (3), nonioside Q (4), nonioside R (8), nonioside S (10), and nonioside T (14), and one new succinic acid ester, butyl 2-hydroxysuccinate (=4-butoxy-3-hydroxy-4-oxobutanoic acid) (31), were isolated, along with 26 known compounds, including eight saccharide fatty acid esters, 1, 2, 5, 6, 7, 9, 12, and 13, three hemiterpene glycosides, 15, 17, and 18, six iridoid glycosides, 21-25, and 27, and nine other compounds, 20, 28, 29, and 32-37, from a MeOH extract of the fruit of Morinda citrifolia (noni). Upon evaluation of these and five other glycosidic compounds, 11, 16, 19, 26, and 30, from M. citrifolia fruit extract for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), most of the saccharide fatty acid esters, hemiterpene glycosides, and iridoid glycosides showed inhibitory effects with no or almost no toxicity to the cells. These compounds were further evaluated with respect to their cytotoxic activities against two human cancer cell lines (HL-60 and AZ521) and their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Yang, Xue-Dong; Tang, Xu-Yan; Sang, Lin
2012-11-01
To establish a method for rapid identification of micro-constituents in monoammonium glycyrrhizinate by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry. HPLC preparative chromatograph was adopted for determining the optimal method for high-pressure solid phase extraction under optimal conditions. 5C18-MS-II column (20.0 mm x 20.0 mm) was used as the extraction column, with 35% acetonitrile-acetic acid solution (pH 2. 20) as eluent at the speed of 16 mL x min(-1). The sample size was 0.5 mL, and the extraction cycle was 4.5 min. Then, extract liquid was analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) after being concentrated by 100 times. Under the optimal condition of high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry, 10 components were rapidly identified from monoammonium glycyrrhizinate raw materials. Among them, the chemical structures of six micro-constituents were identified as 3-O-[beta-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-0-beta-D-apiopyranosylglycyrrhetic/3-O- [P-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-O-beta-D-arabinopyranosylglycyrrhetic, glycyrrhizic saponin F3, 22-hydroxyglycyrrhizin/18alpha-glycyrrhizic saponin G2, 3-O-[beta-D-rhamnopyranosyl]-24-hydroxyglycyrrhizin, glycyrrhizic saponin J2, and glycyrrhizic saponin B2 by MS(n) spectra analysis and reference to literatures. Four main chemical components were identified as glycyrrhizic saponin G2, 18beta-glycyrrhizic acid, uralglycyrrhizic saponin B and 18alpha-glycyrrhizic acid by liquid chromatography, MS(n) and ultraviolet spectra information and comparison with reference substances. The method can be used to identify chemical constituents in monoammonium glycyrrhizinate quickly and effectively, without any reference substance, which provides basis for quality control and safe application of monoammonium glycyrrhizinate-related products.
NASA Astrophysics Data System (ADS)
Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.
2016-08-01
Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.
Ngameni, Barthelemy; Ngadjui, Bonaventure T; Folefoc, Gabriel N; Watchueng, Jean; Abegaz, Berhanu M
2004-02-01
The twigs of Dorstenia barteri var. subtriangularis yielded three diprenylated chalcones: (-)-3-(3,3-dimethylallyl)-5'-(2-hydroxy-3-methylbut-3-enyl)-4,2',4'-trihydroxychalcone, (+)-3-(3,3-dimethylallyl)-4',5'-[2'''-(1-hydroxy-1-methylethyl)-dihydrofurano]-4,2'-dihydroxychalcone and 3,4-(6",6"-dimethyldihydropyrano)-4',5'-[2''',-(1-hydroxy-1-methylethyl)-dihydrofurano]-2'-hydroxychalcone for which the names bartericins A, B and C, respectively, are proposed. Stipulin, beta-sitosterol and its 3-beta-D-glucopyranosyl derivative were also isolated. The structures of these secondary metabolites were determined on the basis of spectroscopic analysis, especially, NMR spectra in conjunction with 2D experiments, COSY, HMQC and HMBC. The structural relationship of bartericins B and C was further established by the chemical cyclization of one to the other.
Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition
NASA Astrophysics Data System (ADS)
Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.
2006-12-01
Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.
Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.
Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki
2018-03-01
This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sungsanpin, a lasso peptide from a deep-sea streptomycete.
Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan
2013-05-24
Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.
NASA Astrophysics Data System (ADS)
Roehrs, Susanne; Ruebner-Heuermann, Anja; Hartwich, G.; Scheer, H.; Moser, Joerg G.
1996-01-01
Pheophorbide a ethyl ester, pyropheophorbide a ethyl ester, and bacteriopheophorbide ethyl ester were substituted in 31-position with tert.butyl phenoxy or tert.butyl benzoic acid ester groups resp. in order to enhance affinity to (beta) -cyclodextrin dimers which form inclusion complexes with these photosensitizing drugs. This is a first step to construct inert transport complexes in order to photosensitize specifically cancer cells.
Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan
USDA-ARS?s Scientific Manuscript database
Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...
Kabel, Mirjam A.; Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Abbas, Charles A.; de Bont, Jan A. M.; Morrison, Mark; Cann, Isaac K. O.; Mackie, Roderick I.
2011-01-01
We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOSFA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOSFA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23 likely gives it the ability to hydrolyze substituents on the xylan backbone and enhances its capacity to efficiently degrade hemicellulose. PMID:21742923
Owariensisone: a new iridolactone from the whole plant of Brillantaisia owariensis P. Beauv.
Foning Tebou, Perrin Lanversin; Mabou, Florence Déclaire; Ngnokam, David; Harakat, Dominique; Voutquenne-Nazabadioko, Laurence
2016-07-01
From the whole plant of Brillantaisia owariensis P. Beauv, a new iridolactone, owariensisone (1) together with six known compounds (nepetin-7-O-glucoside, choline, sucrose, mannitol, xylitol, 1-O-palmitoyl-2-eicosanoyl-3-O-(6-amino-6-deoxy)-β-d-glucopyranosyl-glycerol) were isolated. Structures of these compounds were established by direct interpretation of their spectral data, mainly HR-TOFESIMS, 1-D NMR ((1)H and (13)C) and 2-D NMR ((1)H-(1)H COSY, HSQC, HMBC, NOESY, TOCSY and DOCSY) and by comparison with the literature.
Liu, Yu; Fan, Zhi; Zhang, Heng-Yi; Yang, Ying-Wei; Ding, Fei; Liu, Shuang-Xi; Wu, Xue; Wada, Takehiko; Inoue, Yoshihisa
2003-10-31
A series of 6-O-(p-substituted phenyl)-modified beta-cyclodextrin derivatives, i.e., 6-O-(4-bromophenyl)-beta-CD (1), 6-O-(4-nitrophenyl)-beta-CD (2), 6-O-(4-formylphenyl)-beta-CD (3), 6-phenylselenyl-6-deoxy-beta-CD (4), and 6-O-(4-hydroxybenzoyl)-beta-CD (5), were synthesized, and their inclusion complexation behavior in aqueous solution and self-assembling behavior in the solid state were comparatively studied by NMR spectroscopy, microcalorimetry, crystallography, and scanning tunneling microscopy. Interestingly, (seleno)ethers 1-4 and ester 5 displayed distinctly different self-assembling behavior in the solid state, affording a successively threading head-to-tail polymeric helical structure for the (seleno)ethers or a mutually penetrating tail-to-tail dimeric columnar channel structure for the ester. Combining the present and previous structures reported for the relevant beta-CD derivatives, we further deduce that the pivot heteroatom, through which the aromatic substituent is tethered to beta-CD, plays a critical role in determining the helix structure, endowing the 2-fold and 4-fold axes to the N/O- and S/Se-pivoted beta-CD aggregates, respectively. This means that one can control the self-assembling orientation, alignment, and helicity in the solid state by finely tuning the pivot atom and the tether length. Further NMR and calorimetric studies on the self-assembling behavior in aqueous solution revealed that the dimerization step is the key to the formation of linear polymeric supramolecular architecture, which is driven by favorable entropic contributions.
Grigoryan, Hasmik A; Hambardzumyan, Artur A; Mkrtchyan, Marina V; Topuzyan, Vigen O; Halebyan, Ghukas P; Asatryan, Ruben S
2008-01-10
Our goal was to design, synthesize, and evaluate new cholinesterase inhibitors. Fourteen dehydroamino acids esterified to choline and to its ternary analog were synthesized by a new method that gave a yield of 84-93%. The potency of the amino acid ester derivatives was tested by measuring K(i) values for inhibition of human red cell acetylcholinesterase and human plasma butyrylcholinesterase. The most potent compound was a choline ester of dehydrophenylalanine where the amine group of the amino acid was derivatized with a benzoyl group containing a methoxy in the 2-position, CH(3)O(C(6)H(4))CONHC(CHC(6)H(5))COOCH(2)CH(2)N(+)(CH(3))(3). This compound was a strong inhibitor of both human acetylcholinesterase and human butyrylcholinesterase, with K(i) values of 10 microM and 0.08 microM, respectively. These K(i) values are comparable to that of Rivastigmine. Docking of the most potent compound into the active site of human butyrylcholinesterase showed that the lowest energy model had two benzene rings oriented towards Trp 82 and Tyr 332 whereas the positively charged nitrogen group was stabilized by Trp 231. This orientation placed the ester group 3.89 A from the active site Ser 198, a distance too far for covalent bonding, explaining why the esters are inhibitors rather than substrates. This class of anticholinesterase agents has the potential for therapeutic utility in the treatment of disorders of the cholinergic system.
Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula
2009-01-15
Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.
Two new compounds from an endophytic fungus Pestalotiopsis heterocornis.
Xing, Jian-Guang; Deng, Hui-Ying; Luo, Du-Qiang
2011-12-01
Two new compounds, 7-hydroxy-5-methoxy-4,6-dimethyl-7-O-α-L-rhamnosyl-phthalide and 7-hydroxy-5-methoxy-4,6-dimethyl-7-O-β-D-glucopyranosyl-phthalide, along with one known and related metabolite 7-hydroxy-5-methoxy-4,6-dimethylphthalide were isolated from the EtOAc extract of fermentation broth of an endophytic fungus Pestalotiopsis heterocornis. The structures of these compounds were elucidated on the basis of spectroscopic methods (UV, IR, HR-ESI-MS, 1D NMR, and 2D NMR).
Synthesis of 3-aminopropyl β-(1 → 6)-d-glucotetraoside and its biotinylated derivative.
Yashunsky, Dmitry V; Karelin, Alexander A; Tsvetkov, Yury E; Nifantiev, Nikolay E
2018-01-02
3-Aminopropyl β-(1 → 6)-d-glucotetraoside has been synthesized from 3-benzyloxycarbonylaminopropanol and 6-O-acetyl-2,3,4-tri-O-benzoyl-d-glucopyranosyl trichloroacetimidate by successive attachment of one monosaccharide unit in total yield of 22%. Free aminopropyl glycoside was converted into a biotin derivative that can be used for controlled immobilization of the oligosaccharide on streptavidin-coated ELISA plates and for tracing carbohydrate binding molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cytotoxic principles from the formosan milkweed, Asclepias curassavica.
Roy, Michael C; Chang, Fang-Rong; Huang, Hsiao-Chu; Chiang, Michael Y-N; Wu, Yang-Chang
2005-10-01
A series of cardenolides and related compounds have been isolated from the aerial parts and roots of the ornamental milkweed, Asclepias curassavica. Their structures were determined by spectroscopic and chemical methods. Among them, three derivatives of calactinic acid methyl ester (13-15), 19-nor-16 alpha-acetoxy-10 beta-hydroxyasclepin (16), 20 beta,21-dihydroxypregna-4,6-dien-3-one (19), and 3,4-seco-urs-20(30)-en-3-oic acid (22) are new compounds. The relative configuration of calactinic acid methyl ester (12) has been confirmed by X-ray diffraction analysis on its derivative 13. Most of the cardenolides obtained showed pronounced cytotoxicity against four cancer cell lines (IC(50) 0.01 to 2.0 microg/mL).
Komaniecka, Iwona; Choma, Adam; Mazur, Andrzej; Duda, Katarzyna A.; Lindner, Buko; Schwudke, Dominik; Holst, Otto
2014-01-01
The chemical structures of the unusual hopanoid-containing lipid A samples of the lipopolysaccharides (LPS) from three strains of Bradyrhizobium (slow-growing rhizobia) have been established. They differed considerably from other Gram-negative bacteria in regards to the backbone structure, the number of ester-linked long chain hydroxylated fatty acids, as well as the presence of a tertiary residue that consisted of at least one molecule of carboxyl-bacteriohopanediol or its 2-methyl derivative. The structural details of this type of lipid A were established using one- and two-dimensional NMR spectroscopy, chemical composition analyses, and mass spectrometry techniques (electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry and MALDI-TOF-MS). In these lipid A samples the glucosamine disaccharide characteristic for enterobacterial lipid A was replaced by a 2,3-diamino-2,3-dideoxy-d-glucopyranosyl-(GlcpN3N) disaccharide, deprived of phosphate residues, and substituted by an α-d-Manp-(1→6)-α-d-Manp disaccharide substituting C-4′ of the non-reducing (distal) GlcpN3N, and one residue of galacturonic acid (d-GalpA) α-(1→1)-linked to the reducing (proximal) amino sugar residue. Amide-linked 12:0(3-OH) and 14:0(3-OH) were identified. Some hydroxy groups of these fatty acids were further esterified by long (ω-1)-hydroxylated fatty acids comprising 26–34 carbon atoms. As confirmed by mass spectrometry techniques, these long chain fatty acids could form two or three acyloxyacyl residues. The triterpenoid derivatives were identified as 34-carboxyl-bacteriohopane-32,33-diol and 34-carboxyl-2β-methyl-bacteriohopane-32,33-diol and were covalently linked to the (ω-1)-hydroxy group of very long chain fatty acid in bradyrhizobial lipid A. Bradyrhizobium japonicum possessed lipid A species with two hopanoid residues. PMID:25371196
Hydrolyzable tannins and related polyphenols from Eucalyptus globulus.
Hou, A J; Liu, Y Z; Yang, H; Lin, Z W; Sun, H D
2000-01-01
Eucaglobulin (1), a new complex of gallotannin and monoterpene, was isolated from the leaves of Eucaloptus globulus. Its structure was elucidated on the basis of spectral data. Four known hydrolyzable tannins [tellimagrandin I (2), eucalbanin C (3), 2-O-digalloyl-1,3,4-tri-O-galloyl-beta-D-glucose (4), 6-O-digalloyl-1,2,3-tri-O-galloyl-beta-D-glucose (5)], as well as gallic acid (6) and (+)-catechin (7), were also isolated. The antibacterial effects of some of these compounds were examined.
Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L
1990-06-01
The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.
Frölich, Cordula; Ober, Dietrich; Hartmann, Thomas
2007-04-01
Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either before or after this modification are converted into their O(9)-esters by esterification with one of the stereoisomers of 2,3-dihydroxy-2-isopropylbutyric acid, the unique necic acid of PAs of the lycopsamine type. Secondly, the necine O(9)-esters may be further diversified by O(7)- and/or O(3')-acylation.
Munafo, John P; Gianfagna, Thomas J
2015-05-20
The Easter lily (Lilium longiflorum Thunb.) is esteemed worldwide as an attractive ornamental plant, and the flower buds and bulbs are used for both culinary and medicinal purposes in many parts of the world. L. longiflorum contains significant amounts of phenylpropanoid glycerol glucosides, a group of compounds that may contribute to plant pathogen defense, ultraviolet/high-intensity visible light (UV/high light) protection, and the purported medicinal uses of lilies. To define the natural distribution of these compounds within the plant, a liquid chromatography-mass spectrometry (LC-MS) method performed in selected ion monitoring (SIM) mode was employed for the quantitative analysis of five phenylpropanoid glycerol glucosides, namely, (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosylglycerol, 1; (2R)-1-O-β-D-glucopyranosyl-2-O-p-coumaroylglycerol, 2; (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosylglycerol, 3; (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 4; and (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 5, in the different organs of L. longiflorum. The p-coumaroyl-based 3 and its acetylated derivative 5 were determined to be the most abundant of the phenylpropanoid glycerol glucosides found in Easter lily bulbs, at 776.3 ± 8.4 and 650.7 ± 32.6 μg/g dry weight, respectively. The acetylated p-coumaroyl- and caffeoyl-based derivatives, 5 and 4, accumulated to the highest concentration in the closed flower buds, at 4925.2 ± 512.8 and 3216.8 ± 406.4 μg/g dry weight, respectively. Compound 4, followed by 5 and 1, proved to be the most abundant in the mature flowers, occurring at 6006.2 ± 625.8, 2160.3 ± 556.5, and 1535.8 ± 174.1 μg/g dry weight, respectively. Total concentrations of the phenylpropanoid glycerol glucosides were 10-100-fold higher in the above-ground plant organs as compared to the bulbs and fleshy roots. Two of the five compounds, 1 and 2, were identified in L. longiflorum for the first time. The quantitative analysis of phenylpropanoid glycerol glucosides in the different plant organs of L. longiflorum will establish the direction of investigations aimed at defining how these compounds function in the physiology and chemical ecology of the plant and also as a starting point for determining their possible effects on human health, which has not been investigated.
Signorella, S; Lafarga, R; Daier, V; Sala, L F
2000-02-11
The reduction of CrVI by alpha-D-glucose and beta-D-glucose was studied in dimethyl sulfoxide in the presence of pyridinium p-toluensulfonate, a medium where mutarotation is slower than the redox reaction. The two anomers reduce CrVI by formation of an intermediate CrVI ester precursor of the slow redox step. The equilibrium constant for the formation of the intermediate chromic ester and the rate of the redox steps are different for each anomer. alpha-D-Glucose forms the CrVI-Glc ester with a higher equilibrium constant than beta-D-glucose, but the electron transfer within this complex is slower than for the beta anomer. The difference is attributed to the better chelating ability of the 1,2-cis-diolate moiety of the alpha anomer. The CrV species, generated in the reaction mixture, reacts with the two anomers at a rate comparable with that of CrVI. The EPR spectra show that the alpha anomer forms several linkage isomers of the five-coordinate CrV bis-chelate, while beta-D-glucose affords a mixture of six-coordinate CrV monochelate and five-coordinate CrV bis-chelate. The conversion of the CrV mono- to bis-chelate is discussed in terms of the ability of the 1,2-cis- versus 1,2-trans-diolate moieties of the glucose anomers to bind CrV.
Oh, So Young; Youn, So Youn; Park, Myeong Soo; Baek, Nam In; Ji, Geun Eog
2018-02-07
The prebiotic effects of GOS (galactooligosaccharides) are known to depend on the glycosidic linkages, degree of polymerization (DP), and the monosaccharide composition. In this study, a novel form of α-GOS with a potentially improved prebiotic effect was synthesized using bifidobacterial α-galactosidase (α-Gal) purified from recombinant Escherichia coli. The carbohydrate produced was identified as α-d-galactopyranosyl-(1→6)-O-α-d-glucopyranosyl-(1→2)-[α-d-galactopyranosyl-(1→6)-O-β-d-fructofuranoside] and was termed stachyobifiose. Among 17 nonprobiotics, 16 nonprobiotics showed lower growth on stachyobifiose than β-GOS. In contrast, among the 16 probiotics, 6 probiotics showed higher growth on stachyobifiose than β-GOS. When compared with raffinose, stachyobifiose was used less by nonprobiotics than raffinose. Moreover, compared with stachyose, stachyobifiose was used less by Escherichia coli, Enterobacter cloacae, and Clostridium butyricum. The average amounts of total short-chain fatty acids (SCFA) produced were in the order of stachyobifiose > stachyose > raffinose > β-GOS. Taken together, stachyobifiose is expected to contribute to beneficial changes of gut microbiota.
Inert Reassessment Document for PEG Fatty Acid Esters
The tolerance reassessment decision document and action memorandum for the PEG fatty acid ester date September 28, 2005, included two tolerance exemptions (under 40 CFR 180.910 and $) CFR 180.930, respectively)
Carotenoids in Fish. XXXII. Content of carotenoids in eggs utilized in the form of caviar.
Czeczuga, B
1982-01-01
The author has investigated the carotenoids in the eggs utilized in form of caviar of 4 species of fishes. By means of columnar and thin-layer chromatography, the following carotenoids were found to be present: beta-carotene, beta-cryptoxanthin, echinenone, canthaxanthin, lutein, tunaxanthin, isozeaxanthin, zeaxanthin, salmoxanthin, adobixanthin, adonixanthin ester, astaxanthin and astaxanthin ester. The total carotenoid varied from 0.229 (Th. chlacogramma) to 1.669 microgram/g fresh weight (O. nerka).
Evaluation of certain food additives and contaminants.
2011-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The Committee also evaluated the risk posed by two food contaminants, with the aim of deriving tolerable intakes where appropriate and advising on risk management options for the purpose of public health protection. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives and contaminants. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for certain food additives (aluminium-containing food additives, Benzoe Tonkinensis, glycerol ester of gum rosin, glycerol ester of tall oil rosin, glycerol ester of wood rosin, octenyl succinic acid modified gum arabic, polydimethyl siloxane, Ponceau 4R, pullulan, pullulanase from Bacillus deromificans expressed in Bacillus licheniformis, Quinoline Yellow and Sunset Yellow FCF) and two food contaminants (cyanogenic glycosides and fumonisins). Specifications for the following food additives were revised: aluminium lakes of colouring matters; beta-apo-8'-carotenal; beta-apo-8'-carotenoic acid ethyl ester; beta-carotene, synthetic; hydroxypropyl methyl cellulose; magnesium silicate, synthetic; modified starches; nitrous oxide; sodium carboxymethyl cellulose; and sucrose monoesters of lauric, palmitic or stearic acid. Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of the food additives and contaminants considered.
Chemical Modification of Cellulose Esters for Oral Drug Delivery
NASA Astrophysics Data System (ADS)
Meng, Xiangtao
Polymer functional groups have critical impacts upon physical, chemical and mechanical properties, and thus affect the specific applications of the polymer. Functionalization of cellulose esters and ethers has been under extensive investigation for applications including drug delivery, cosmetics, food ingredients, and automobile coating. In oral delivery of poorly water-soluble drugs, amorphous solid dispersion (ASD) formulations have been used, prepared by forming miscible blends of polymers and drugs to inhibit crystallization and enhance bioavailability of the drug. The Edgar and Taylor groups have revealed that some cellulose o-carboxyalkanoates were highly effective as ASD polymers, with the pendant carboxylic acid groups providing both specific polymer-drug interactions and pHtriggered release through swelling of the ionized polymer matrix. While a variety of functional groups such as hydroxyl and amide groups are also of interest, cellulose functionalization has relied heavily on classical methods such as esterification and etherification for appending functional groups. These methods, although they have been very useful, are limited in two respects. First, they typically employ harsh reaction conditions. Secondly, each synthetic pathway is only applicable for one or a narrow group of functionalities due to restrictions imposed by the required reaction conditions. To this end, there is a great impetus to identify novel reactions in cellulose modification that are mild, efficient and ideally modular. In the initial effort to design and synthesize cellulose esters for oral drug delivery, we developed several new methods in cellulose functionalization, which can overcome drawbacks of conventional synthetic pathways, provide novel cellulose derivatives that are otherwise inaccessible, and present a platform for structure-property relationship study. Cellulose o-hydroxyalkanoates were previously difficult to access as the hydroxyl groups, if not protected, react with carboxylic acid/carbonyl during a typical esterification reaction or ring opening of lactones, producing cellulose-g-polyester and homopolyester. We demonstrated the viability of chemoselective olefin hydroboration-oxidation in the synthesis of cellulose o-hydroxyesters in the presence of ester groups. Cellulose esters with terminally olefinic side chains were transformed to the target products by two-step, one-pot hydroborationoxidation reactions, using 9-borabicyclo[3.3.1]nonane (9-BBN) as hydroboration agent, followed by oxidizing the organoborane intermediate to a primary alcohol using mildly alkaline H2O2. The use of 9-BBN as hydroboration agent and sodium acetate as base catalyst in oxidation successfully avoided cleavage of ester linkages by borane reduction and base catalyzed hydrolysis. With the impetus of modular and efficient synthesis, we introduced olefin crossmetathesis (CM) in polysaccharide functionalization. Using Grubbs type catalyst, cellulose esters with terminally olefinic side chains were reacted with various CM partners including acrylic acid, acrylates and acrylamides to afford families of functionalized cellulose esters. Molar excesses of CM partners were used in order to suppress potential crosslinking caused by self-metathesis between terminally olefinic side chains. Amide CM partners can chelate with the ruthenium catalyst and cause low conversions in conventional solvents such as THF. While the inherent reactivity toward CM and tendency of acrylamides to chelate Ru is influenced by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides. We observed that the CM products are prone to crosslinking during storage, and found that the crosslinking is likely caused by free radical abstraction of gamma-hydrogen of the alpha,beta-unsaturation and subsequent recombination. We further demonstrated successful hydrogenation of these alpha,beta-unsaturated acids, esters, and amides, thereby eliminating the potential for radical-induced crosslinking during storage. The alpha,beta-unsaturation on CM products can cause crosslinking due to gamma-H abstraction and recombination if not reduced immediately after reaction. Instead of eliminating the double bond by hydrogenation, we described a method to make use of these reactive conjugated olefins by post-CM thiol-Michael addition. Under amine catalysis, different CM products and thiols were combined and reacted. Using proper thiols and catalyst, complete conversion can be achieved under mild reaction conditions. The combination of the two modular reactions creates versatile access to multi-functionalized cellulose derivatives. Compared with conventional reactions, these reactions enable click or click-like conjugation of functional groups onto cellulose backbone. The modular profile of the reactions enables clean and informative structure-property relationship studies for ASD. These approaches also provide opportunities for the synthesis of chemically and architecturally diverse cellulosic polymers that are otherwise difficult to access, opening doors for many other applications such as antimicrobial, antifouling, in vivo drug delivery, and bioconjugation. We believe that the cellulose functionalization approaches we pioneered can be expanded to the modification of other polysaccharides and polymers, and that these reactions will become useful tools in the toolbox of polymer/polysaccharide chemists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan
2011-10-10
The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids {sup 28}QPVIV{sup 32}, highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a {beta}-hexamer structure. In this study we report that alteration of the {beta}-hexamer structure by mutating {sup 28}QPVIV{sup 32} to {sup 28}AAAAA{sup 32} had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNasemore » and assembly phenotypes distinguished virions assembled with CP subunits having {beta}-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.« less
Triterpene saponin hemi-biosynthesis of a leaf beetle's (Platyphora kollari) defensive secretion
NASA Astrophysics Data System (ADS)
Ghostin, Jean; Habib-Jiwan, Jean-Louis; Rozenberg, Raoul; Daloze, Désiré; Pasteels, Jacques M.; Braekman, Jean-Claude
2007-07-01
The adults of the leaf beetle Platyphora kollari (Chrysomelidae) are able to metabolise the oleanane triterpene β-amyrin (1) into the glycoside 3-O-β-
Inferring High-Confidence Human Protein-Protein Interactions
2012-01-01
comprised proteins that had the same specific func- tion or were subunits of the same protein complex, such as branched chain keto acid E1 alpha (BCKDHA...and branched chain keto acid E1 beta (BCKDHB) [3,29], and dynein cytoplasmic 2 intermediate chain 1 (D2LIC) and dynein cytoplasmic 2 heavy chain 1...474.3 28.0 1337.0 BCKDHA 5 Branched chain keto acid dehydro. E1, alpha BCKDHB 4 Branched chain keto acid dehydro. E1, beta 4 471.4 29.0 1337.5 ARTN 2
A new ferulic acid ester from Rhodiola wallichiana var. cholaensis (Crassulaceae).
Song, Yaling; Zhou, Jianming; Wang, Xuejing; Xie, Xue; Zhao, Yiwu; Ni, Fuyong; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei
2018-01-01
A new ferulic acid ester, 6-feruloyloxyhexanoic acid (1), was isolated along with 10 known ones (2-11), from the concentrated water extract of Rhodiola wallichiana var. cholaensis. Their chemical structures were elucidated on the basis of extensive spectroscopic methods including Two-dimensional nuclear magnetic resonance (2D NMR) experiments. Compound 3 was isolated from this plant for the first time. The protective effects against H 2 O 2 -induced myocardial cell injury in cultured H9c2 cells were also evaluated. Compounds 1, 5 and 7-11 provided significant protective effects on H 2 O 2 -induced H9c2 cells injury at the concentration of 25 μg/mL. And the protective effects of compound 1 was also investigated by the oxygen-glucose deprivation/reperfusion (OGD/R) tests.
Isolation, Solubility, and Characterization of D-Mannitol Esters of 4-Methoxybenzeneboronic Acid.
Lopalco, Antonio; Marinaro, William A; Day, Victor W; Stella, Valentino J
2017-02-01
The purpose of this study was to determine the aqueous solubility of a model phenyl boronic acid, 4-methoxybenzeneboronic acid, as a function of pH both in the absence and in the presence of varying D-mannitol concentration. Solid isolated D-mannitol esters were characterized by differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray studies, and the boronic acid-to-D-mannitol ratio was quantified by HPLC. Hydrolysis of the monoester was studied using UV spectral differences between the monoester and the parent boronic acid. Two D-mannitol esters of 4-methoxybenzeneboronic acid were isolated. The triboronate ester was very insoluble whereas a symmetrical monoboronate monohydrate was also less soluble than the parent. Both esters were crystalline. The monoboronate monohydrate was, however, more soluble than the parent at alkaline pH values due to its lower pKa value (6.53) compared to the parent acid (9.41). Hydrolysis of the monoboronate was extremely fast when even small amount of water was added to dry acetonitrile solutions of the ester. The hydrolysis was buffer concentration dependent and apparent pH sensitive with hydrolysis accelerated by acid. Implications affecting the formulation of future boronic acid drugs are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Chinta, Satya Prabhakar; Goller, Stephan; Uhl, Gabriele; Schulz, Stefan
2016-09-01
The analysis of cuticular extracts from the kleptoparasitic spider Argyrodes elevatus revealed the presence of unusual esters, new for arthropods. These novel compounds proved to be methyl-branched long-chain fatty acid esters with methyl branches located either close or remote from the internally located ester group. The GC/MS analysis of the prosoma lipid blend from the male cuticle contained one major component, undecyl 2-methyltridecanoate (1). In contrast, four major wax-type esters, 2-methylundecyl 2,8-dimethylundecanoate (2), 2,8-dimethylundecyl 2,8-dimethylundecanoate (3), heptadecyl 4-methylheptanoate (4), and 14-methylheptadecyl 4-methylheptanoate (5), were identified in the lipid blend of female prosomata. Structure assignments were based on mass spectra, gas chromatographic retention indices, and microderivatization. Unambiguous proof of postulated structures was ensured by an independent synthesis of all five esters. Preferentially, odd-numbered carbon chains pointed to a distinct biosynthetic pathway, different from that of common fatty acids, because one or two C 3 starter units are incorporated during the biosynthesis of all acid and alcohol building blocks present in the five esters. The striking sexual dimorphism together with the unique biosynthesis points to a function of the esters in chemical communication of the spiders, although no behavioral data are currently available to test this assumption. © 2016 Wiley-VHCA AG, Zürich.
USDA-ARS?s Scientific Manuscript database
Twelve different amino acids were each substituted for Threonine-654 in a cloned glucansucrase from Leuconostoc mesenteroides NRRL B-1118 (DSR-I). The native enzyme produces a water-insoluble glucan containing approximately 44 mol% 1,3-disubstituted a-D-glucopyranosyl units and 29 mol% 1,6-disubstit...
Koyama, Yuka; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Takeda, Yoshio
2010-04-01
From a 1-BuOH-soluble fraction of a MeOH extract of the leaves of Microtropis japonica, collected in the Okinawa islands, six ent-labdane glucosides, named microtropiosides A-F, were isolated together with one known acyclic sesquiterpene glucoside. Their structures were elucidated by a combination of spectroscopic analyses, and their absolute configurations determined by application of the beta-D-glucopyranosylation-induced shift-trend rule in (13)C NMR spectroscopy and the modified Mosher's method. Copyright 2010 Elsevier Ltd. All rights reserved.
[Determination of rhynchophylline and isorhynchophylline in Uncaria rhynchophylla by HPLC].
Yang, Xiu-Juan; Hong, Yan-Long; Wu, Fei; Ruan, Ke-Feng; Feng, Yi
2013-03-01
To explore an HPLC method for determination of rhnchophylline and isorhnchophylline in Uncaria rhnchophylla. An HPLC method has been developed for determination of rhnchophylline and isorhnchophylline. The transformation of rhnchophylline and isorhnchophylline after heating was also studied by HPLC-ESI-MS. Good linearities of rhynchophylline and isorhynchophylline were 0.064-5.100, 0.064-5.110 mg, respectively. The average recoveries were from 87.51% to 88.83% for rhynchophylline and from 107.9% to 113.9% for isorhynchophylline. The recoveries of rhynchophylline and isorhnchophylline reference solutions after extraction were 12.60% and 40.00% in the reflux extraction procedure, respectively. While in the ultrasonic extraction procedure, the average recoveries of rhynchophylline and isorhynchophylline was from 99.48% to 103.2% and from 97.00% to 99.59%, resepectively. The recoveries of rhynchophylline and isorhnchophylline reference solutions after extraction were 47.08% and 51.03%, respectively. The unqualified recovery could be elucidated by HPLC-ESI-MS analysis, indicating that trhynchophylline could be transformed mostly into isorhynchophylline and a little amount of unkown composition, while isorhynchophylline could be transformed into rhynchophylline isocorynoxeine, corynoxeine and 22-O-beta-D-glucopyranosyl isocorynoxeinic acid during the extraction procedure. Ultrasonic extraction procedure was more sutble for HPLC determination of the content of rhynchophylline and isorhynchophylline in U. rhnchophylla, however, the recovery problems should be paid attention to when it comes to the determination.
Syamsuddin, Y; Murat, M N; Hameed, B H
2016-08-01
The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
A precursor to the beta-pyranosides of 3-amino-3,6-dideoxy-D-mannose (mycosamine).
Alais, J; David, S
1992-06-04
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)
Structural confirmation of oligosaccharides newly isolated from sugar beet molasses.
Abe, Tatsuya; Horiuchi, Kenichi; Kikuchi, Hiroto; Aritsuka, Tsutomu; Takata, Yusuke; Fukushi, Eri; Fukushi, Yukiharu; Kawabata, Jun; Ueno, Keiji; Onodera, Shuichi; Shiomi, Norio
2012-08-27
Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC) and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS), and nuclear magnetic resonance (NMR) measurements. The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named β-planteose), α-D-galactopyranosyl-(1- > 1)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named1-planteose), α-D-glucopyranosyl-(1- > 6)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (theanderose), and β-D-glucopyranosyl-(1- > 3)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (laminaribiofructose). 1-planteose and laminaribiofructose were isolated from natural sources for the first time.
Effects of Fatty Acid Addition to Oil-in-water Emulsions Stabilized with Sucrose Fatty Acid Ester.
Watanabe, Takamasa; Kawai, Takahiro; Nonomura, Yoshimune
2018-03-01
Adding fatty acids to an oil-in-water (O/W) emulsion changes the stability of the emulsion. In this study, we prepared a series of O/W emulsions consisting of oil (triolein/fatty acid mixture), water and a range of surfactants (sucrose fatty acid esters) with varying hydrophilic-lipophilic balance (HLB) in order to determine the effects of alkyl chain length and the degree of unsaturation of the fatty acid molecules on the stability of the emulsions. As a result, sucrose fatty acid esters with HLB = 5-7 were suitable for obtaining O/W emulsions. In addition, the creaming phenomenon was inhibited for 30 days or more when fatty acids having a linear saturated alkyl chain with 14 or more carbon atoms were added. These findings are useful for designing stable O/W emulsions for food and cosmetic products.
A novel dimeric flavonol glycoside from Cynanchum acutum subsp. sibiricum.
Yuan, Si-Wen; Dai, Wei; Pan, Xin-Hui; Lu, Yan; Chen, Dao-Feng; Wang, Qi
2018-06-11
A novel dimeric flavonol glycoside, Cynanflavoside A (1), together with six analogues, kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (5), kaempferol-3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (6), and quercetin-3-O-galactoside (7) were isolated from the n-butyl alcohol extract of Cynanchum acutum subsp. sibiricum. Their structures were determined spectroscopically and compared with previously reported spectral data. All compounds were evaluated for their anti-complementary activity in vitro, and only compound 5 exhibited anti-complement effects with CH 50 value of 0.33 mM.
Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered waste water byproducts.
Kapusta, Ireneusz; Janda, Bogdan; Szajwaj, Barbara; Stochmal, Anna; Piacente, Sonia; Pizza, Cosimo; Franceschi, Federico; Franz, Chlodwig; Oleszek, Wieslaw
2007-10-17
Horse chestnut extracts are widely used in pharmacy and cosmetic industries. The main active constituents are saponins of oleane type, but seeds of horse chestnut also contain flavonoids, being glycosides of quercetin and kaempferol. Their contribution to the overall activity of the extracts was not clear. In the present work, the main flavonoids from horse chestnut seeds were isolated and their structures established with spectral methods. Seven glycosides were isolated, out of which six ( 2, 3, 4, 7, 11, 13) were previously reported and one ( 9) was identified as a new tamarixetin 3- O- [beta- d-glucopyranosyl(1-->3)]- O-beta- d-xylopyranosyl-(1-->2)- O-beta- d-glucopyranoside. The structures of three additional compounds 1, 10, and 12, not previously reported, were deduced on the basis of their LC-ESI/MS/MS fragmentation characteristics. A new ultraperformance liquid chromatographic (UPLC) method has been developed for profiling and quantitation of horse chestnut flavonoids. The method allowed good separation over 4.5 min. Thirteen compounds could be identified in the profile, out of which di- and triglycoisdes of quercetin and kaempferol were the dominant forms and their acylated forms occurred in just trace amounts. The total concentration of flavonoids in the powdered horse chestnut seed was 0.88% of dry matter. The alcohol extract contained 3.46%, and after purification on C18 solid phase, this concentration increased to 9.40% of dry matter. The flavonoid profile and their content were also measured in the horse chestnut wastewater obtained as byproduct in industrial processing of horse chestnut seeds. The total flavonoid concentration in the powder obtained after evaporation of water was 2.58%, while after purification on solid phase, this increased to 11.23% dry matter. It was concluded that flavonoids are present in a horse chestnut extract in a relatively high amount and have the potential to contribute to the overall activity of these extracts. Industrial horse chestnut wastewater can be used to obtain quercetine and kaempferol glycosides for cosmetic, nutraceutical, and food supplement industries.
Ferré, J; Real, M D; Ménsua, J L; Jacobson, K B
1985-06-25
An unknown fluorescent metabolite has been isolated from heads of eye-color mutants of Drosophila melanogaster. Only a few mutations cause it to accumulate, viz. cardinal (cd), dark red brown (drb), Henna-recessive (Hnr), purple (pr), Punch2 (Pu2), Punch-Grape (PuGr), and scarlet (st). After purification by ion-exchange chromatography, the spectroscopic, chemical, and enzymatic analyses revealed that it is a novel quinoline derivative: xanthurenic acid 8-O-beta-D-glucoside. Feeding experiments suggest that this glucoside is synthesized from 3-hydroxykynurenine and that free xanthurenic acid is not a precursor. The results from the analysis for its occurrence in double mutants, together with the fact that xanthurenic acid 8-glucoside share the same precursor as xanthurenic acid and xanthommatin, suggest that xanthurenic acid 8-glucoside formation is closely related to the regulation of the last step in the biosynthesis of xanthommatin.
Thurnhofer, Saskia; Vetter, Walter
2006-05-03
Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.
Bartlett, K; Hovik, R; Eaton, S; Watmough, N J; Osmundsen, H
1990-01-01
1. 14C-labelled fatty acyl-CoA esters resulting from beta-oxidation of [U-14C]hexadecanoate by peroxisomal fractions isolated from rats treated with clofibrate showed the presence of the full range of saturated intermediates down to acetyl-CoA. 2. The pattern of intermediates generated was fairly constant. At low concentrations of [U-14C]hexadecanoate (50 microM), decanoyl-CoA was present in lowest amounts. At higher concentrations of [U-14C]hexadecanoate (greater than 100 microM), all intermediates of chain length shorter than 12 carbon atoms (except acetyl-CoA) were present at similar low concentrations; the process of beta-oxidation now resembling chain-shortening of hexadecanoate by two cycles of beta-oxidation. 3. In the absence of an NAD(+)-regenerating system [pyruvate and lactate dehydrogenase (EC 1.1.1.28)] 2-enoyl- and 3-hydroxyacyl-CoA esters were generated, suggesting that re-oxidation of NADH is essential for optimal rates of peroxisomal beta-oxidation in vitro. 4. At high concentrations of [U-14C]hexadecanoate (greater than 100 microM), 3-oxohexadecanoyl-CoA was produced, suggesting that thiolase (acetyl-CoA acetyltransferase; EC 2.3.1.9) can become rate-limiting for peroxisomal beta-oxidation. Images Fig. 2. Fig. 3. Fig. 4. PMID:2396977
Luyen, Bui Thi Thuy; Tai, Bui Huu; Thao, Nguyen Phuong; Yang, Seo Young; Cuong, Nguyen Manh; Kwon, Young In; Jang, Hae Dong; Kim, Young Ho
2014-09-01
Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-D-xylopyranosyl (1→6)-O-β-D-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-D-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-D-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3'-O-β-D-glucopyranoside (7), isopropyl O-β-D-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-D-glucopyranoside (10), isoheptanol 2(S)-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher's method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60±1.74% to 11.97±3.30%) and antioxidant activities under the tested conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A new triterpenoid saponin from Gymnema sylvestre.
Zhang, Man-Qi; Liu, Yue; Xie, Sheng-Xu; Xu, Tun-Hai; Liu, Tong-Hua; Xu, Ya-Juan; Xu, Dong-Ming
2012-01-01
Besides four known compounds, a new triterpenoid saponin was isolated from the stems of Gymnema sylvestre. The structure of the new triterpenoid saponin was established as 3β,16β,22α-trihydroxy-olean-12-ene 3-O-β-D-xylopyranosyl-(1 → 6)-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (1) on the basis of 1D and 2D NMR techniques, including COSY, HMBC, HMQC, and NOESY correlations. Four known compounds 2, 3, 4, and 5 were identified on the basis of spectroscopic data.
Che, Chi-Ming; Zhang, Jun-Long; Zhang, Rui; Huang, Jie-Sheng; Lai, Tat-Shing; Tsui, Wai-Man; Zhou, Xiang-Ge; Zhou, Zhong-Yuan; Zhu, Nianyong; Chang, Chi Kwong
2005-11-18
beta-Halogenated dioxoruthenium(VI) porphyrin complexes [Ru(VI)(F(28)-tpp)O(2)] [F(28)-tpp=2,3,7,8,12,13, 17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(VI)(beta-Br(8)-tmp)O(2)] [beta-Br(8)-tmp=2,3,7,8,12,13,17,18-octabromo-5,10,15,20- tetrakis(2,4,6-trimethylphenyl)porphyrinato(2-)] were prepared from reactions of [Ru(II)(por)(CO)] [por=porphyrinato(2-)] with m-chloroperoxybenzoic acid in CH(2)Cl(2). Reactions of [Ru(VI)(por)O(2)] with excess PPh(3) in CH(2)Cl(2) gave [Ru(II)(F(20)-tpp)(PPh(3))(2)] [F(20)-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(II)(F(28)-tpp)(PPh(3))(2)]. The structures of [Ru(II)(por)(CO)(H(2)O)] and [Ru(II)(por)(PPh(3))(2)] (por=F(20)-tpp, F(28)-tpp) were determined by X-ray crystallography, revealing the effect of beta-fluorination of the porphyrin ligand on the coordination of axial ligands to ruthenium atom. The X-ray crystal structure of [Ru(VI)(F(20)-tpp)O(2)] shows a Ru=O bond length of 1.718(3) A. Electrochemical reduction of [Ru(VI)(por)O(2)] (Ru(VI) to Ru(V)) is irreversible or quasi-reversible, with the E(p,c)(Ru(VI/V)) spanning -0.31 to -1.15 V versus Cp(2)Fe(+/0). Kinetic studies were performed for the reactions of various [Ru(VI)(por)O(2)], including [Ru(VI)(F(28)-tpp)O(2)] and [Ru(VI)(beta-Br(8)-tmp)O(2)], with para-substituted styrenes p-X-C(6)H(4)CH=CH(2) (X=H, F, Cl, Me, MeO), cis- and trans-beta-methylstyrene, cyclohexene, norbornene, ethylbenzene, cumene, 9,10-dihydroanthracene, xanthene, and fluorene. The second-order rate constants (k(2)) obtained for the hydrocarbon oxidations by [Ru(VI)(F(28)-tpp)O(2)] are up to 28-fold larger than by [Ru(VI)(F(20)-tpp)O(2)]. Dual-parameter Hammett correlation implies that the styrene oxidation by [Ru(VI)(F(28)-tpp)O(2)] should involve rate-limiting generation of a benzylic radical intermediate, and the spin delocalization effect is more important than the polar effect. The k(2) values for the oxidation of styrene and ethylbenzene by [Ru(VI)(por)O(2)] increase with E(p,c)(Ru(VI/V)), and there is a linear correlation between log k(2) and E(p,c)(Ru(VI/V)). The small slope (approximately 2 V(-1)) of the log k(2) versus E(p,c)(Ru(VI/V)) plot suggests that the extent of charge transfer is small in the rate-determining step of the hydrocarbon oxidations. The rate constants correlate well with the C-H bond dissociation energies, in favor of a hydrogen-atom abstraction mechanism.
New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45.
Eltamany, Enas E; Abdelmohsen, Usama Ramadan; Ibrahim, Amany K; Hassanean, Hashim A; Hentschel, Ute; Ahmed, Safwat A
2014-11-01
Microluside A [4 (19-para-hydroxy benzoyloxy-O-β-D-cellobiosyl), 5 (30-para-hydroxy benzoyloxy-O-β-D-glucopyranosyl) xanthone (1)] is a unique O-glycosylated disubstituted xanthone isolated from the broth culture of Micrococcus sp. EG45 cultivated from the Red Sea sponge Spheciospongia vagabunda. The structure of microluside A was determined by 1D- and 2D-NMR techniques as well as high resolution tandem mass spectrometry. The antimicrobial activity evaluation showed that 1 exhibited antibacterial potential against Enterococcus faecalis JH212 and Staphylococcus aureus NCTC 8325 with MIC values of 10 and 13 μM, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Silipo, Alba; Molinaro, Antonio; Cescutti, Paola; Bedini, Emiliano; Rizzo, Roberto; Parrilli, Michelangelo; Lanzetta, Rosa
2005-05-01
Burkholderia cepacia, a Gram-negative bacterium ubiquitous in the environment, is a plant pathogen causing soft rot of onions. This microorganism has recently emerged as a life-threatening multiresistant pathogen in cystic fibrosis patients. An important virulence factor of B. cepacia is the lipopolysaccharide (LPS) fraction. Clinical isolates and environmental strains possess LPS of high inflammatory nature, which induces a high level production of cytokines. For the first time, the complete structure of the lipid A components isolated from the lipopolysaccharide fraction of a clinical strain of B. cepacia is described. The structural studies carried out by selective chemical degradations, MS, and NMR spectroscopy revealed multiple species differing in the acylation and in the phosphorylation patterns. The highest mass species was identified as a penta-acylated tetrasaccharide backbone containing two phosphoryl-arabinosamine residues in addition to the archetypal glucosamine disaccharide [Arap4N-l-beta-1-P-4-beta-D-GlcpN-(1-6)-alpha-D-GlcpN-1-P-1-beta-L-Arap4N]. Lipid A fatty acids substitution was also deduced, with two 3-hydroxytetradecanoic acids 14:0 (3-OH) in ester linkage, and two 3-hydroxyhexadecanoic acids 16:0 (3-OH) in amide linkage, one of which was substituted by a secondary 14:0 residue at its C-3. Other lipid A species present in the mixture and exhibiting lower molecular weight lacked one or both beta-L-Arap4N residues.
A new fatty aldol ester from the aerial part of Mimosa invisa (Mimosaceae).
Nana, Frederic; Sandjo, Louis Pergaud; Keumedjio, Felix; Kuete, Victor; Ngadjui, Bonaventure Tchaleu
2012-01-01
A new aldol ester named 17-O-triacontanoylheptadecanal (1) was isolated from the aerial part of Mimosa invisa (Mimosaceae) together with eight known compounds identified as β-sitosterol (2), α-amyrine (3), lupeol (4), 4'-O-methylepinumisoflavone (5), alpinumisoflavone (6), betulinic acid (7), 3-O-β-D-glucopyranoside of sitosterol (8) and epirobinetinidol (9). The structures of compounds were determined on the basis of NMR and mass spectrometry data as well as by comparing the data reported in the literatures. The antimicrobial activities of the crude extract and compounds 1 and 9 were investigated against seven microbial species. The natural products showed moderate activities compared to that of the crude extract.
Carbohydrates as a source of energy and matter for the origin of life
NASA Technical Reports Server (NTRS)
Weber, A. L.
1991-01-01
Recently, we proposed a new model of early glycolysis in which the oxidation of glyceraldehyde self-hemiacetals yielded energy rich polyglyceric acid instead of energy rich thioesters. In this model, polyglyceric acid not only acts as an energy source for phosphoanhydride synthesis, but also as an autocatalyst that can replicate the sequence of D and L residues in its structure. We began our investigation of this new hypothesis - the triose model - by developing a thermal method for the racemization-free synthesis of polyglyceric acid. The hydrolytic stability and the role of chirality in interactions of polyglyceric acid were studied using this thermal polymer. Next, we established that the 2- and 3-glycerol esters of polyglyceric acid are energy rich by measuring the Gibbs free energy change of hydrolysis of the 2- and 3-glycerol esters of 2 and 3-O-L glyceroyl-glyceric acid methyl ester - a model of polyglyceric acid. Recently, we discovered that glyceraldehyde is bound and oxidized to glyceric acid on the surface of ferric hydroxide and that soluble ferric ion catalyzes the rearrangement of glyceraldehyde to lactic acid. We are exploring the possibility that these reactions could yield polyglyceric acid and polylactic acid under plausible prebiotic conditions.
New steroidal saponin and antiulcer activity from Solanum paniculatum L.
Vieira Júnior, Gerardo Magela; da Rocha, Cláudia Quintino; de Souza Rodrigues, Tamires; Hiruma-Lima, Clélia Akiko; Vilegas, Wagner
2015-11-01
Solanum paniculatum L. (Solanaceae) is a plant species widespread throughout tropical America, especially in the Brazilian Savanna region. It is used in Brazil for culinary purposes and in folk medicine to treat liver and gastric dysfunctions, as well as hangovers. Fractionation of the ethanolic extracts (70%) from aerial parts (leaves and twigs) of S. paniculatum led to the isolation of the two new saponins (22R, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylopyranosyl-(1" → 3"')-O-[β-D-quinovopyranosyl(1″' → 2')]-O-[α-L-rhamnopyranosyl(1" → 3')]-O-β-D-quinovopyranoside (1) and diosgenin 3-O-β-D-glucopyranosyl(1" → 6')-O-β-D-glucopyranoside (2) together with four know compounds: caffeic acid (3), diosgenin β-D-glucopyranoside (4), rutin (5), and quercetin 3-O-α-L-rhamnopyranosyl (1"' → 6 ″)-O-β-D-galactopyranoside (6). The structures of these compounds were elucidated by extensive use of 1D and 2D NMR experiments along with HRESIMS analyses. Different doses (31.25-500 mg/kg) of ethanolic extract of leaves from S. paniculatum were evaluated against gastric ulcer induced by ethanol in rats. The lower dose of extract able to promote antiulcer effect was 125 mg/kg. The treatment with S. paniculatum by oral route was able to decrease gastric lesion area and also reduced levels of myeloperoxidase (MPO) in the gastric mucosa. Our results reveal for the first time, steroidal saponins from S. paniculatum and the antiulcer effect of this species at this lower dose. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián
2005-02-23
Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.
Phenolic antioxidants from green tea produced from Camellia taliensis.
Gao, Da-Fang; Zhang, Ying-Jun; Yang, Chong-Ren; Chen, Ke-Ke; Jiang, Hong-Jian
2008-08-27
The chemical constituents of green tea prepared from the leaves of Camellia taliensis (W. W. Smith) Melchior (Theaceae) were investigated for the first time. Of these, 19 phenolic compounds including 8 hydrolyzable tannins (1-8), 6 catechin derivatives (9-14), 3 quinic acid aromatic esters (15-17), and 2 simple phenolics (18, 19) were identified, along with caffeine (20). Their antioxidant activities were evaluated by DPPH radical scavenging and tyrosinase inhibitory assays. Moreover, the chemical composition was compared with that in the cultivated tea plant, C. sinensis var. assamica, by HPLC analysis. It was noted that C. taliensis has similar chemical features with the cultivated tea plant; that is, both of them contain rich flavan-3-ols and caffeine. In addition, there are abundant hydrolyzable tannins as specific characteristic constituents contained in the leaves of C. taliensis. Therein, 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucopyranose (8), as a major compound in C. taliensis, showed remarkable antioxidant activity. The results suggested that C. taliensis could be a valuable plant resource for the production of tea.
Assessment of chemical and sensory quality of sugarcane alcoholic fermented beverage.
Resende Oliveira, Érica; Caliari, Márcio; Soares Soares Júnior, Manoel; Ribeiro Oliveira, Aryane; Cristina Marques Duarte, Renata; Valério de Barros Vilas Boas, Eduardo
2018-01-01
This study aimed to verify the technological feasibility, chemical quality and sensory acceptance of alcoholic fermented beverage obtained from sugarcane juice. A completely randomized design was applied. Sugar and alcohol content, phenolic (HPLC-MS) and volatile (GS-MS) compounds, pH, density, dry matter and acidity of the fermented beverage of sugarcane were quantified, as well as the acceptance of the product was carried out. The complete fermentation of sugarcane lasted 7 days, and it was obtained an alcohol content of 8.0% v/v. Titrable acidity of the beverage was of 67.31 meq L -1 , pH 4.03, soluble solids of 5 °Brix, reducing sugar of 0.07 g glucose 100 g -1 , density of 0.991 g cm -3 , reduced dry matter of 14.15 g L -1 , sulfates lower than 0.7 g K 2 SO 4 L -1 . Various phenolic compounds, among which, gallic acid (10.97%), catechin (1.73%), chlorogenic acid (3.52%), caffeic acid (1.49%), vanillic acid (0.28%), p -coumaric acid (0.24%), ferulic acid (6.63%), m -coumaric acid (0.36%), and o -coumaric acid (0.04%). Amongst aromatic compounds, were found mainly esters with fruity aromas (ethyl ester hexanoic acid and ethyl ester octanoic acid). The sugarcane juice can be commercialized as an alternative wine, as it presented adequate features to an alcoholic fermented beverage and was sensory accepted by consumers.
Psychotria viridis: Chemical constituents from leaves and biological properties.
Soares, Débora B S; Duarte, Lucienir P; Cavalcanti, André D; Silva, Fernando C; Braga, Ariadne D; Lopes, Miriam T P; Takahashi, Jacqueline A; Vieira-Filho, Sidney A
2017-01-01
The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT) and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY) and spectrometric (CG-MS and LCMS-ESI-ITTOF) methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.
Cannabinoid ester constituents from high-potency Cannabis sativa.
Ahmed, Safwat A; Ross, Samir A; Slade, Desmond; Radwan, Mohamed M; Zulfiqar, Fazila; Matsumoto, Rae R; Xu, Yan-Tong; Viard, Eddy; Speth, Robert C; Karamyan, Vardan T; ElSohly, M A
2008-04-01
Eleven new cannabinoid esters, together with three known cannabinoid acids and Delta9-tetrahydrocannabinol ( Delta9-THC ), were isolated from a high-potency variety of Cannabis sativa. The structures were determined by extensive spectroscopic analyses to be beta-fenchyl Delta9-tetrahydrocannabinolate ( 1), epi-bornyl Delta9-tetrahydrocannabinolate ( 2), alpha-terpenyl Delta9-tetrahydrocannabinolate ( 3), 4-terpenyl Delta 9-tetrahydrocannabinolate ( 4), alpha-cadinyl Delta9-tetrahydrocannabinolate ( 5), gamma-eudesmyl Delta9-tetrahydrocannabinolate ( 6), gamma-eudesmyl cannabigerolate ( 7), 4-terpenyl cannabinolate ( 8), bornyl Delta9-tetrahydrocannabinolate ( 9), alpha-fenchyl Delta9-tetrahydrocannabinolate ( 10), alpha-cadinyl cannabigerolate ( 11), Delta9-tetrahydrocannabinol ( Delta9-THC ), Delta9-tetrahydrocannabinolic acid A ( Delta9-THCA ), cannabinolic acid A ( CBNA), and cannabigerolic acid ( CBGA). Compound 8 showed moderate antimicrobial activity against Candida albicans ATCC 90028 with an IC 50 value of 8.5 microg/mL. The isolated acids and the ester-containing fractions showed low affinity to the CB-1 receptor. [corrected
Triterpenoid saponins from the roots of Acanthophyllum gypsophiloides Regel
Khatuntseva, Elena A; Men’shov, Vladimir M; Shashkov, Alexander S; Tsvetkov, Yury E; Stepanenko, Rodion N; Vlasenko, Raymonda Ya; Shults, Elvira E; Tolstikov, Genrikh A; Tolstikova, Tatjana G; Baev, Dimitri S; Kaledin, Vasiliy A; Popova, Nelli A; Nikolin, Valeriy P; Laktionov, Pavel P; Cherepanova, Anna V; Kulakovskaya, Tatiana V; Kulakovskaya, Ekaterina V
2012-01-01
Summary Two new triterpenoid saponins 1 and 2 were isolated from the methanol extract of the roots of Acanthophyllum gypsophiloides Regel. These saponins have quillaic acid or gypsogenin moieties as an aglycon, and both bear similar sets of two oligosaccharide chains, which are 3-O-linked to the triterpenoid part trisaccharide α-L-Arap-(1→3)-[α-D-Galp-(1→2)]-β-D-GlcpA and pentasaccharide β-D-Xylp-(1→3)-β-D-Xylp-(1→3)-α-L-Rhap-(1→2)-[β-D-Quip-(1→4)]-β-D-Fucp connected through an ester linkage to C-28. The structures of the obtained saponins were elucidated by a combination of mass spectrometry and 2D NMR spectroscopy. A study of acute toxicity, hemolytic, anti-inflammatory, immunoadjuvant and antifungal activity was carried out. Both saponins 1 and 2 were shown to exhibit immunoadjuvant properties within the vaccine composition with keyhole limpet hemocyanin-based immunogen. The availability of saponins 1 and 2 as individual pure compounds from the extract of the roots of A. gypsophiloides makes it a prospective source of immunoactive agents. PMID:23015825
Amino acidis derived from Titan tholins
NASA Technical Reports Server (NTRS)
Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat
1986-01-01
The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.
Reactive carriers of immobilized compounds.
Coupek, J; Labský, J; Kálal, J; Turková, J; Valentová, O
1977-04-12
Sphericanl macroporous reactive carriers capable of forming covalent bonds with amino acids and proteins were prepared by the suspension copolymerization of 2-hydroxyethyl methacrylate, ethylene dimethacrylate and p-nitrophenyl esters of methacrylic acid and methacryloyl derivatives of glycine, beta-alanine and epsilon-aminocaproic acid. The effect of the spacer length, pH and the type of the buffer used, concentration of reactive groups in the copolymer, concentration of the ligand and the participation of the hydrolytic and aminolytic reaction of p-nitrophenyl functional groups in the attachment of glycine, D,L-phenylalanine and serumalbumin was studied. Macroporous copolymers containing reactive functional groups can be used as active enzyme carriers, if their activity is not blocked by the presence of p-nitrophenol split off in the attachment reaction.
Petrović, Marinko; Debeljak, Zeljko; Blazević, Nikola
2005-09-15
The gas chromatography (GC) method for enantioseparation of well-known non-steroidal anti-inflammatory drugs ibuprofen, fenoprofen and ketoprofen methyl esters mixture was developed. Best enantioseparation was performed on capillary column with heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-beta-cyclodextrin stationary phase and hydrogen used as a carrier gas. Initial temperature, program rate and carrier pressure were optimized to obtain best resolution between enantiomers.
Onyango, Evans O; Fu, Liangfeng; Cao, Martine; Liby, Karen T; Sporn, Michael B; Gribble, Gordon W
2014-01-15
2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO, 2) was condensed with various amino acid methyl esters at the C-28 carboxylic acid. The new amide conjugates were evaluated for their inhibition of nitric oxide (NO) production in RAW264.7 cells stimulated with interferon-γ (IFNγ). Of these new compounds, CDDO conjugates with alanine, valine, and serine are nearly equipotent to CDDO-ethyl amide (4), a triterpenoid with promising biological activity in numerous disease models. Some of these conjugates also induce the in vitro expression of heme oxygenase-1, and inhibit the proliferation of Panc-1343 pancreatic cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Glucuronoyl esterase--novel carbohydrate esterase produced by Schizophyllum commune.
Spániková, Silvia; Biely, Peter
2006-08-21
The cellulolytic system of the wood-rotting fungus Schizophyllum commune contains an esterase that hydrolyzes methyl ester of 4-O-methyl-d-glucuronic acid. The enzyme, called glucuronoyl esterase, was purified to electrophoretic homogeneity from a cellulose-spent culture fluid. Its substrate specificity was examined on a number of substrates of other carbohydrate esterases such as acetylxylan esterase, feruloyl esterase and pectin methylesterase. The glucuronoyl esterase attacks exclusively the esters of MeGlcA. The methyl ester of free or glycosidically linked MeGlcA was not hydrolysed by other carbohydrate esterases. The results suggest that we have discovered a new type of carbohydrate esterase that might be involved in disruption of ester linkages connecting hemicellulose and lignin in plant cell walls.
Berkowitz, D B; McFadden, J M; Sloss, M K
2000-05-19
A generalizable synthesis of higher L-alpha-vinyl amino acids is presented. The strategy pursued here involves the introduction of the amino acid side chain via the alkylation of a chiral, vinylglycine-derived dianionic dienolate, bearing the (-)-8-(beta-naphthyl)menthyl (d'Angelo) auxiliary. A model is presented that postulates a favored "exo-entended" conformation for this dienolate, leading to C(alpha)-alkylation at the si face. The model invokes internal amidate chelation to control ester enolate geometry and soft-soft interactions between the polarizable beta-naphthyl ring of the auxiliary and the extended pi-system of the dienolate to shield the re face. Heats of formation for four conformers of this dianion were calculated for their semiempirical optimized geometries (PM3). The results support the notion that in these vinylglycine-derived dianionic dienolates, "exo" conformations are considerable lower in energy than their "endo" counterparts, with the "exo-entended" conformation being most favorable. In fact, the d'Angelo auxiliary gives a greater degree of acyclic stereocontrol in this system when compared with the (-)-8-phenylmenthyl (Corey) and trans-2-(beta-naphthyl)cyclohexyl auxiliaries, using isobutyl iodide and benzyl bromide as model electrophiles. These dianions are generated from the corresponding dehydrobutyrine esters via sequential deprotonation with LDA and n-BuLi (2 equiv). When alkylations are carried out at -78 degrees C in THF-HMPA, they proceed in 65-81% yields, with both regiocontrol (deconjugative alpha-alkylation is preferred over gamma-alkylation) and a great degree of acyclic stereocontrol [91:9 to >/=98:2 diastereomeric ratios (10 examples)]. The auxiliary may be recovered in high yield (generally 90%) using a modification of Gassman's "anhydrous hydroxide" conditions, in which considerably higher temperatures are employed. Among the side chains introduced directly are those of butyrine, leucine, ornithine, phenylalanine, aspartate, valine, and norvaline. The lysine side chain is elaborated via a 4-step sequence from the alkylation product obtained with 1-chloro-4-iodobutane as electrophile. Importantly, to our knowledge, this work represents the first asymmetric synthesis of L-alpha-vinyl analogues of m-tyrosine, ornithine, and lysine, known time-dependent inhibitors for amino acid decarboxylases.
Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je
2016-01-01
Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. PMID:27076746
Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je
2016-01-01
Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
Some structural studies on the galactose-containing polysaccharide from bovine placenta.
Pontarolo, R; Duarte, J H; Feijó, M A
1993-01-01
Polysaccharides were extracted from 8-month-old placenta with aqueous HgCl2. The protein-free material was purified by selective precipitation with Cetavlon in the presence of sodium borate at pH 8.5 and was homogeneous on molecular-sieve chromatography, electrophoresis, and on treatment with Concanavalin A. The preparation contained galactose and glucose as principal monosaccharides with 5 per cent of hexosamines. Methylation studies suggested that D-gluco and D-galactopyranosyl units may be constituents of glucan and galactan respectively which form a molecular aggregate that does not dissociate during the fractionation procedures. After treatment of the fraction with beta-amylase, the proportion of glucose in the polysaccharide diminished, indicating the presence of (1-->4)-linked alpha-D-glucopyranosyl residues. Also, when the fraction was treated with a crude protease having glucosidase activity a residual alpha-D-galactopyranan was isolated and found to contain non-reducing end-groups (30.0 per cent), 3-O-(39.5 per cent) and 3,6-di-O-substituted (30.5 per cent) units. The structure of the galactan was not modified according to methylation data, on removal of the glucosyl component. The polysaccharide fraction (pH 8.5 Cetavlon), isolated from bovine placenta, thus contains a glycogen-like material associated with a galactan as molecular aggregate. This galactan has not been previously recognized in bovine placenta and its occurrence in this organ supports the hypothesis that galactose-containing polysaccharides are involved in foetal development.
[Chemical constituents of leaves of Psidium guajava].
Shao, Meng; Wang, Ying; Jian, Yu-Qing; Sun, Xue-Gang; Huang, Xiao-Jun; Zhang, Xiao-Qi; Ye, Wen-Cai
2014-03-01
To study the chemical constituents of the 95% ethanol extract of Psidium guajava. Compounds were separated by using a combination of various chromatographic methods including silica gel, D101 macroporous resin, ODS, Sephadex LH-20 and preparative HPLC. Their structures were elucidated by physicochemical properties and spectral data Eighteen compounds were isolated and identified as (+) -globulol (1), clovane-2beta, 9alpha-diol (2), 2beta-acetoxyclovan-9alpha-ol (3), (+) -caryolane-1 ,9beta-diol (4), ent-T-muurolol (5), clov-2-ene-9alpha-ol (6), isophytol (7), tamarixetin (8), gossypetin (9), quercetin (10), kaempferol (11), guajaverin (12), avicularin (13), chrysin 6-C-glucoside (14), 3'-O-methyl-3, 4-methylenedioxyellagic acid 4'-O-beta-D-glucopyranoside (15), p-hydroxy-benzoic acid (16), guavinoside A (17) and guavinoside B (18). Compounds 2-9 and 14-16 were isolated from this plant for the first time. The ethanol extract showed 61.3% inhibition against the proliferation of colon cancer cell line SW480.
[Chemical constituents of Changium smyrnioides].
Ren, Dong-chun; Qian, Shi-hui; Yang, Nian-yun; Xie, Ning; Duan, Jin-ao
2008-01-01
To study chemical constituents of Changium smyrnioides Wolff. The chemical components were isolated and purified by silica gel column and recrystallization. The chemical structures were elucidated on the basis of physico-chemical properties and spectral data. Ten compounds were isolated and identified as lignoceric acid (1), beta-sitosterol (2), stigmasterol (3), 5-hydroxy-8-methoxypsoralen (4), glycerylmonopalmitate (5), L-pyroglutamic acid (6), succinic acid (7), vanillic acid-4-O-beta-D-glucopyranoside (8 ), vanillic acid (9), daucosterol (10). Compounds 1, 4, 5, 6, 8 and 9 are obtained from the plant for the first time.
Gökçinar, Elif; Klapötke, Thomas M; Kramer, Michael P
2010-08-26
The enthalpies of formation for solid ionic nitrosonium oxalate, [NO](2)[O(2)C-CO(2)], nitronium oxalate, [NO(2)](2)[O(2)C-CO(2)], as well as covalent bis(nitroso)oxalic acid, ON-O(2)C-CO(2)-NO, and oxalic acid dinitrate ester, O(2)N-O(2)C-CO(2)-NO(2), were calculated using the complete basis set (CBS-4M) method of Petersson and coworkers to obtain very accurate energies. For the nitrosonium species, the ionic form ([NO](2)[O(2)C-CO(2)]) was identified as the more stable isomer, whereas for the nitrosonium compound, the covalently bound dinitrate ester (O(2)N-O(2)C-CO(2)-NO(2)) was found to be more stable. The combustion parameters with respect to possible use as ingredients in solid rocket motors for both stable species were calculated using the EXPLO5 and the ICT code. The performance of an aluminized formulation with covalently bound dinitrate ester (O(2)N-O(2)C-CO(2)-NO(2)) was shown to be comparable to that of ammonium perchlorate/aluminum. This makes oxalic acid dinitrate ester a potentially interesting perchlorate-free and environmentally benign oxidizer for solid rocket propulsion.
[Chemical constituents from leaves of Paulownia fortunei].
Li, Xiao-Qiang; Wu, Jing-Lian; Cao, Fei-Hua; Li, Chong
2008-06-01
To study the chemical constituents of leaves of Paulownia fortunei (Seem.) Hemsl. The constituents were isolated by column chromatography and their structures were elucidated through spectroscopic analysis. The compounds were identified as mimulone (I), apigenin (II), luteolin (III), 2alpha, 3beta, 19beta-trihydroxyurs-28-O-beta-D-galactonopyranos ylester (anserinoside, IV), 3alpha-hydroxyl-ursolicacid (V), ursolicacid (VI), daucosterol (VII), beta-sitosterol (VIII). The compounds I - V are obtained from leaves of Paulownia fortunei (Seem.) Hemsl for the first time.
Korsrud, G O; Conacher, H B; Jarvis, G A; Beare-Rogers, J L
1977-02-01
The beta-oxidation of long chain fatty acids was investigated in a preparation of rat heart mitochondria. The acyl-CoA esters of the cis and trans isomers of delta9-hexadecenoic, delta9-octadecenoic, delta11-eicosenoic, and delta13-docosenoic acids were prepared. Rates of the acyl-CoA reaction were determined with an extract from rat heart mitochondria. The apparent Michaelis constant (Km) and maximum velocity (Vmax) were calculated for each substrate. In general, apparent Vmax values decreased with increasing chain length of the monoenoic substrates. Reduced activity of acyl-CoA dehydrogenase with long chain acyl-CoA esters could have contributed to accumulation of lipids in hearts of rats fed diets containing long chain fatty acids.
Gonçalves, Alan G; Ducatti, Diogo R B; Duarte, M Eugênia R; Noseda, Miguel D
2002-11-29
The water-soluble acid agaran isolated from Acanthophora spicifera (Rhodophyta) was submitted to alkaline treatment for the complete cyclization of alpha-L-Galp 6-sulfate to 3,6-An-alpha-L-Galp units. The modified agaran was then partially depolymerized using partial reductive hydrolysis. The resulting oligosaccharide mixture was fractionated by adsorption and ion-exchange chromatography. Fractions were purified by gel-filtration chromatography and studied by ESIMS and NMR spectroscopy, including 1D 1H, 13C, DEPT and 2D 1H, 1H COSY, TOCSY and 1H, 13C HMQC procedures. The following neutral, pyruvylated, sulfated and sulfated/pyruvylated disaccharide alditols were obtained: beta-D-Galp-(1-->4)-3,6-An-L-GalOH; 4,6-O-(1-carboxyethylidene)-beta-D-Galp-(1-->4)-3,6-An-L-GalOH; beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH and 4,6-O-(1-carboxyethylidene)-beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH.
Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains.
Gangoiti, M V; Puertas, A I; Hamet, M F; Peruzzo, P J; Llamas, M G; Medrano, M; Prieto, A; Dueñas, M T; Abraham, A G
2017-08-15
Lactobacillus plantarum CIDCA 8327 is an exopolysaccharide (EPS)-producer strain isolated from kefir with promising properties for the development of functional foods. The aim of the present study was to characterize the structure of the EPS synthesized by this strain grown in skim milk or semidefined medium (SDM). Additionally, genes involved in EPS synthesis were detected by PCR. L. plantarum produces an EPS with a molecular weight of 10 4 Da in both media. When grown in SDM produce an heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose meanwhile the EPS produced in milk was composed exclusively of glucose indicating the influence of the sugar source. FTIR spectra of this EPS showed signals attributable to an α-glucan. Both by 1 H NMR and methylation analysis it was possible to determine that this polysaccharide is a branched α-(1→4)-d-glucan composed of 80% linear α-(1→4)-d-glucopyranosyl units and 19% (1→4)-d-glucopyranosyl units substituted at O-3 by single α-d-glucopyranosil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fayos, Joaquín; Bellés, José María; López-Gresa, M Pilar; Primo, Jaime; Conejero, Vicente
2006-01-01
Tomato plants infected with the citrus exocortis viroid exhibited strongly elevated levels of a compound identified as 2,5-dihydroxybenzoic acid (gentisic acid, GA) 5-O-beta-D-xylopyranoside. The compound accumulated early in leaves expressing mild symptoms from both citrus exocortis viroid-infected tomato, and prunus necrotic ringspot virus-infected cucumber plants, and progressively accumulated concomitant with symptom development. The work presented here demonstrates that GA, mainly associated with systemic infections in compatible plant-pathogen interactions [Bellés, J.M., Garro, R., Fayos, J., Navarro, P., Primo, J., Conejero, V., 1999. Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Mol. Plant-Microbe Interact. 12, 227-235], is conjugated to xylose. Notably, this result contrasts with those previously found in other plant-pathogen interactions in which phenolics analogues of GA as benzoic or salicylic acids, are conjugated to glucose.
Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S
2015-01-01
Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers.
Li, Yushan; Ohizumi, Yasushi
2004-07-01
20 medicinal plants of Paraguay and 3 medicinal plants of Thailand were examined on nerve growth factor (NGF)-potentiating activities in PC12D cells. The trail results demonstrated that the methanol extracts of four plants, Verbena littoralis, Scoparia dulcis, Artemisia absinthium and Garcinia xanthochymus, markedly enhanced the neurite outgrowth induced by NGF from PC12D cells. Furthermore, utilizing the bioactivity-guided separation we successfully isolated 32, 4 and 5 constituents from V. littoralis, S. dulcis and G. xanthochymus, respectively, including nine iridoid and iridoid glucosides (1-9), two dihydrochalcone dimers (10 and 11), two flavonoids and three flavonoid glycosides (12-16), two sterols (17 and 18), ten triterpenoids (19-28), five xanthones (29-33), one naphthoquinone (34), one benzenepropanamide (35), four phenylethanoid glycosides (36-39) and two other compounds (40 and 41). Among which, 15 compounds (1-4, 10-11, 14-18, 29-31 and 34) were new natural products. The results of pharmacological trails verified that littoralisone (1), gelsemiol (5), 7a-hydroxysemperoside aglucone (6), verbenachalcone (10), littorachalcone (11), stigmast-5-ene 3beta,7alpha,22alpha-triol (18), ursolic acid (19), 3beta-hydroxyurs-11-en-28,13beta-olide (24), oleanolic acid (25), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (26), 1,4,5,6-tetrahydroxy-7,8-di(3-methylbut-2-enyl)xanthone (29), 1,2,6-trihydroxy-5-methoxy-7-(3-methylbut-2-enyl)xanthone (30), 1,3,5,6-tetrahydroxy-4,7,8-tri(3-methyl-2-butenyl)xanthone (31), 12b-hydroxy-des-D-garcigerrin A (32), garciniaxanthone E (33) and (4R)-4,9-dihydroxy-8-methoxy-alpha-lapachone (34) elicited marked enhancement of NGF-mediated neurite outgrowth in PC12D cells. These substances may contribute to the basic study and the medicinal development for the neurodegenerative disorder.
Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.
Scollar, M P; Sigal, G; Klibanov, A M
1985-03-01
Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.
Chemical constituents from Tillandsia recurvata.
de Queiroga, Marcos Aurélio; de Andrade, Lucimara Mariano; Florêncio, Karina Chagas; de Fátima Agra, Maria; da Silva, Marcelo Sobral; Barbosa-Filho, José Maria; da-Cunha, Emidio Vasconcelos Leitão
2004-06-01
The CHCl3 extract of Tillandsia recurvata yielded 5,3'-dihydroxy-6,7,8,4'-tetramethoxyflavanone (1), 1,3-di-O-cinnamoyl-glycerol (2) and ethyl ester of caffeic acid. Their structures were elucidated by means of spectroscopic methods such as mass spectroscopy and 1 and 2D-NMR. Copyright 2004 Elsevier B.V.
Carvalho de Souza, Adriana; van Remoortere, Alexandra; Hokke, Cornelis H; Deelder, André M; Vliegenthart, Johannes F G; Kamerling, Johannis P
2005-09-01
The immunogenic O-glycan of circulating anodic antigen (CAA) is a high-molecular-mass polysaccharide with the unique -->6)-[beta-D-GlcpA-(1-->3)]-beta-D-GalpNAc-(1--> repeating unit. To obtain information at the molecular level about the specificity of monoclonal antibodies against CAA, the immunoreactivity of two series of bovine serum albumin-coupled synthetic oligosaccharides related to the CAA O-glycan was monitored using ELISA and surface plasmon resonance spectroscopy. The importance of the axial hydroxyl group of beta-D-GalpNAc for antibody binding was investigated using the following series of analogues: beta-D-GlcpA-(1-->3)-beta-D-GlcpNAc-(1-->O); beta-D-GlcpNAc-(1-->6)-[beta-D-GlcpA-(1-->3)]-beta-D-GlcpNAc-(1-->O); and beta-D-GlcpA-(1-->3)-beta-D-GlcpNAc-(1-->6)-[beta-D-GlcpA-(1-->3)]-beta-D-GlcpNAc-(1-->O). In the second series of analogues, beta-D-Glcp6S-(1-->3)-beta-D-GalpNAc-(1-->O), beta-D-GalpNAc-(1-->6)-[beta-D-Glcp6S-(1-->3)]-beta-D-GalpNAc-(1-->O), and beta-D-Glcp6S-(1-->3)-beta-D-Gal-pNAc-(1-->6)-[beta-D-Glcp6S-(1-->3)]-beta-D-GalpNAc-(1-->O), the native beta-D-GlcpA moiety was replaced by beta-D-Glcp6S to evaluate the influence of the nature of the charge on antibody recognition. Comparison of the immunoreactivity of these series with that measured for conjugates containing corresponding synthetic CAA fragments showed that the antibody binding levels can be correlated to the antibody specificity to CAA fragments. For the most reactive antibodies, the structural changes chosen (beta-D-GalpNAc replaced by beta-D-GlcpNAc, and beta-D-GlcpA replaced by beta-D-Glcp6S) completely eradicated the binding.
Underhill, L. E. W.; Wetter, L. R.
1969-01-01
The biosynthesis of the mustard oil glucoside, benzylglucosinolate, was studied in Tropaeolum majus L. A number of labeled compounds were administered to plant shoots and the incorporation of tracer into benzylglucosinolate, isolated as the crystalline tetramethyl-ammonium salt, was measured. In order of decreasing efficiency of conversion into benzyl-glucosinolate the compounds fed were S-(β-d-glucopyranosyl)phenylacetothiohydroximic acid (desulfobenzylglucosinolate), sodium phenylacetothiohydroximate, dl-phenylalanine, d-glucose, and sodium-d-1-glucopyranosyl mercaptide (1-thioglucose). The results are consistent with the hypothesis that the thioglucosyl group of benzylglucosinolate is derived by glucosylation of phenylacetothiohydroximate and not from 1-thioglucose. The results also suggest that benzylglucosinolate is formed by sulfation of desulfobenzylglucosinolate as the final step in its biosynthesis. A method for the isolation of a number of glucosinolates (mustard oil glucosides) is described which utilizes anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. Potassium allylglucosinolate, tetramethylammonium benzylglucosinolate, potassium 2-hydroxy-2-phenylethylglucosinolate and potassium 2-phenylethylglucosinolate were obtained on recrystallization of the glucosinolate fraction eluted from the column. PMID:16657104
Antioxidant flavonol glycosides from Schinus molle.
Marzouk, Mohamed S; Moharram, Fatma A; Haggag, Eman G; Ibrahim, Magda T; Badary, Osama A
2006-03-01
Chromatographic separation of aqueous MeOH extract of the leaves of Schinus molle L. has yielded two new acylated quercetin glycosides, named isoquercitrin 6''-O-p-hydroxybenzoate (12) and 2''-O-alpha-L-rhamnopyranosyl-hyperin 6''-O-gallate (13), together with 12 known polyphenolic metabolites for the first time from this species, namely gallic acid (1), methyl gallate (2), chlorogenic acid (3), 2''-alpha-L-rhamnopyranosyl-hyperin (4), quercetin 3-O-beta-D-neohesperidoside (5), miquelianin (6), quercetin 3-O-beta-D-galacturonopyranoside (7), isoquercitrin (8), hyperin (9), isoquercitrin 6''-gallate (10), hyperin 6''-O-gallate (11) and (+)-catechin (14). Their structures were established on the basis of chromatographic properties, chemical, spectroscopic (UV, 1H, 13C NMR) and ESI-MS (positive and negative modes) analyses. Compounds 4-9 and 11 exhibited moderate to strong radical scavenging properties on lipid peroxidation, hydroxyl radical and superoxide anion generations with the highest activities shown by 6 and 7 in comparison with that of quercetin as a positive control in vitro. Copyright 2006 John Wiley & Sons, Ltd.
Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp. strain 1.15.
Cescutti, P; Toffanin, R; Pollesello, P; Sutherland, I W
1999-01-31
Pseudomonas strain 1.15 was isolated from a freshwater biofilm and shown to produce considerable amounts of an acidic polysaccharide which was investigated by methylation analysis, NMR spectroscopy and ionspray mass spectrometry (ISMS). The polysaccharide was depolymerised by a bacteriophage-associated endoglucosidase and by autohydrolysis, and the resulting oligosaccharides were investigated by NMR spectroscopy and mass spectrometry. The resulting data showed that the parent repeating unit of the 1.15 exopolysaccharide (EPS) is a branched hexasaccharide. The main chain is constituted of the trisaccharide -->4)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-beta-D-Glcp- (1--> and the side chain alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3)-alpha-D-Galp-(1-->is linked to O-3 of the first Fuc residue. The terminal non-reducing Gal carries a 1-carboxyethylidene acetal in the R configuration at the positions 4 and 6. Of the four different O-acetyl groups present in non-stoichiometric amounts, two were established to be on O-2 of the 3-linked Gal and on O-2 of the 4-linked Fuc.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., carrier Lactic acid Solvent Lactic acid, 2-ethylhexyl ester (CAS Reg. No. 6283-86-9) Solvent Lactic acid, 2-ethylhexyl ester, (2S)- (CAS Reg. No. 186817-80-1) Solvent Lactic acid, n-propyl ester, (S); (CAS... agent Thiosulfuric acid, disodium salt, pentahydrate. (CAS Reg. No. 10102-17-7) Do. d-Alpha tocopherol...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., carrier Lactic acid Solvent Lactic acid, 2-ethylhexyl ester (CAS Reg. No. 6283-86-9) Solvent Lactic acid, 2-ethylhexyl ester, (2S)- (CAS Reg. No. 186817-80-1) Solvent Lactic acid, n-propyl ester, (S); (CAS... coating agent Petroleum wax, conforming to 21 CFR 172.886(d) Coating agent Phosphoric acid Buffer...
[HPLC investigation of antioxidant components in Solidago herba].
Apáti, Pál; Houghton, Peter J; Kéry, Agnes
2004-01-01
Representatives of Solidago species have been used in European phytotheraphy for centuries as a component of urological and antiphlogistical remedies. Solidago canadensis L. (Asteraceae) contains a wide range of active ingredients, such as flavonoids, saponins, hydroxycinnamates and mineral elements, which are responsible for its characteristic anti-inflammatory, spasmolytic and diuretic properties. Quality control of collected Solidaginis herba were performed according to the instructions of the X. German Pharmacopoea, while different LC-MS technologies were applied to evaluate the exact phenoloid composition. Three flavonol aglycons (quercetin, kaempferol and isorhamnetin) connected to several sugar components (glucose, rhamnose, galactose and rutinose), caffeoylquinic acid and a caffeoyl-shikimic acid glycoside were identified in the samples. Quercetin-3-O-beta-glucoside (isoquercitrin), quercetin-3-O-beta-galactoside (hyperoside), quercetin-3-O-beta-rhamnoside (quercitrin), quercetin-3-O-beta-rutinoside (rutin), kaempferol-3-O-beta-rhamnoside (afzelin), kaempferol-3-O-beta-rutinoside (nicotiflorin), caffeoil-quinic acid (chlorogenic acid) were identified in sample "A", while the presence of quercetin, quercetin-3-O-beta-glucoside (isoquercitrin), quercetin-3-/6"-O-acetyl-/-beta-glucopiranoside, quercetin-3-O-beta-rutinoside (rutin), kaempferol, kaempferol-3-O-beta-glucoside (astragalin), kaempferol-3-/6"-O-acetyl-/-beta-glucopiranoside, isorhamnetin, isorhamnetin-3-/6"-O-acetyl-/-beta-glucopiranoside, isorhamnetin-3-O-beta-rutinoside (narcissin), caffeoil-quinic acid (chlorogenic acid), caffeoil-shikimic acid-glucoside (dattelic acid-glucoside) were confirmed in sample "B". According to the occurrence of acetyl-glycosides and the diversity of sugar component of flavonoid glycosides Solidaginis herba samples chemotaxonomically were classified into different varieties. Incidence of acetyl-glycosidic flavonoids and absence of flavonoid galactosides and rhamnosides in the sample "B" together give support for the taxonomic recognition of varietases Solidago canadensis L. var. canadensis and var. scabra. Sample "A" was identified as Solidago canadensis L. var. canadensis, while sample "B" has proved to be belong to variety Solidago canadensis L. var. scabra. Due to the same flavonoid aglycons and the large amounts of flavonol glycosides occurring in each drug, phytochemical characteristics of investigated samples proved to be very similar.
Chemistry of anti-AIDS and anticancer compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S.
1992-01-01
Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less
A new C-Glycosylflavone from Encyclia michuacana
NASA Astrophysics Data System (ADS)
Tovar-Gijón, Claudia E.; Hernández-Carlos, Beatriz; Burgueño-Tapia, Eleuterio; Cedillo-Portugal, Ernestina; Joseph-Nathan, Pedro
2006-02-01
The methanol extracts from Encyclia michuacana tubercles yielded the new 8- C-(6-deoxy-β- D-glucopyranosyl)apigenin ( 1) together with known 1-(3'-hydroxy-5'-methoxyphenyl)-2-(4″-hydroxy-5″-methoxyphenyl)ethane ( 2) and 2-(4-hydroxybenzyl)malic acid ( 3). The new structure was elucidated using spectroscopic methods, mainly 1D and 2D NMR. The β-anomer for 1 was supported by comparison of the experimental 1H- 1H coupling constant values with those generated employing a generalized Karplus-type relationship using dihedral angles extracted from DFT calculations.
Enzymic glucosylation of phenols
Hopkinson, Shirley M.; Pridham, J. B.
1967-01-01
1. A transglucosylase fraction has been obtained from the mycelium of Aspergillus niger. 2. The preparation will transfer α-d-glucopyranosyl residues from maltose and other α-d-glucopyranosides to phenolic and alcoholic hydroxyl groups and to carboxylic acid groups. 3. α-Isomaltosides and α-maltosides are formed when resorcinol and catechol are used as acceptors. 4. pH precipitation and DEAE-cellulose chromatography were used to resolve the activity into two fractions. The properties, in particular polyol inhibition, of one of these fractions have been examined in detail. PMID:5584008
Watkins, Oliver C; Joyce, Nigel I; Gould, Nick; Perry, Nigel B
2018-04-27
Some honeys contain the neurotoxin tutin (1) plus hyenanchin (2), 2-(β-d-glucopyranosyl)tutin (3), and 2-[6'-(α-d-glucopyranosyl)-β-d-glucopyranosyl]tutin (4). These honeys are made by bees collecting honeydew from passionvine hoppers feeding on the sap of tutu plants ( Coriaria spp.). We report a LC-MS study showing that all these picrotoxanes are of plant, not insect, origin. Hyenanchin was barely detectable and the diglucoside was not detectable in C. arborea leaves, but tutu phloem sap contained all four compounds at concentrations up to the highest found in honeydew. It is proposed that the diglucoside may function as a transport form of tutin, analogous to sucrose transport in phloem.
Code of Federal Regulations, 2011 CFR
2011-07-01
... as specified in § 721.72 (a), (b), (c), (d), (f), (g)(3)(ii), (g)(4)(i), and (g)(5). The following...) (15 months). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4....125 (a), (b), (c), (f), (g), (h), (i), and (k) are applicable to manufacturers, importers, and...
Lu, Yuyun; Chua, Jian-Yong; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan
2017-01-15
This work evaluated for the first time the chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Compared with the control (yeast only, 5.70% v/v ethanol produced), samples co-inoculated with T. delbrueckii and O. oeni PN4 improved ethanol production (6.06% v/v), which was significantly higher than samples co-inoculated with Viniflora (4.78% v/v) or Enoferm Beta (5.01% v/v). Wines co-fermented with the respective latter two oenococci contained excessive levels of ethyl acetate (>80mg/L) that were likely to affect negatively wine aroma. In addition, they led to significantly higher acetic and lactic acid production relative to PN4. O. oeni PN4 seemed to be the most suitable strain to co-inoculate with T. delbrueckii for simultaneous alcoholic and malolactic fermentation in durian wine by contributing moderately increased concentrations of higher alcohols, acetate esters and ethyl esters that would have positive sensory impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hua, Yanling; Ekkhara, Watsamon; Sansenya, Sompong; Srisomsap, Chantragan; Roytrakul, Sittiruk; Saburi, Wataru; Takeda, Ryosuke; Matsuura, Hideyuki; Mori, Haruhide; Ketudat Cairns, James R
2015-10-01
Gibberellin 1-O-β-d-glucose ester hydrolysis activity has been detected in rice seedling extracts, but no enzyme responsible for this activity has ever been purified and identified. Therefore, gibberellin A4 glucosyl ester (GA4-GE) β-d-glucosidase activity was purified from ten-day rice seedling stems and leaves. The family 1 glycoside hydrolase Os4BGlu13 was identified in the final purification fraction. The Os4BGlu13 cDNA was amplified from rice seedlings and expressed as an N-terminal thioredoxin-tagged fusion protein in Escherichia coli. The purified recombinant Os4BGlu13 protein (rOs4BGlu13) had an optimum pH of 4.5, for hydrolysis of p-nitrophenyl β-d-glucopyranoside (pNPGlc), which was the best substrate identified, with a kcat/Km of 637 mM(-1) s(-1). rOs4BGlu13 hydrolyzed helicin best among natural glycosides tested (kcat/Km of 74.4 mM(-1) s(-1)). Os4BGlu13 was previously designated tuberonic acid glucoside (TAG) β-glucosidase (TAGG), and here the kcat/Km of rOsBGlu13 for TAG was 6.68 mM(-1) s(-1), while that for GA4-GE was 3.63 mM(-1) s(-1) and for salicylic acid glucoside (SAG) is 0.88 mM(-1) s(-1). rOs4BGlu13 also hydrolyzed oligosaccharides, with preference for short β-(1 → 3)-linked over β-(1 → 4)-linked glucooligosaccharides. The enzymatic data suggests that Os4BGlu13 may contribute to TAG, SAG, oligosaccharide and GA4-GE hydrolysis in the rice plant, although helicin or a similar compound may be its primary target. Copyright © 2015 Elsevier Inc. All rights reserved.
Yang, Hui-Min; Yin, Zhi-Qi; Zhao, Meng-Ge; Jiang, Cui-Hua; Zhang, Jian; Pan, Ke
2018-04-18
Six undescribed pentacyclic triterpenoids including four triterpenoid aglycones, 1β,2a,3β,23-tetrahydroxyurs-12-en-28-ursolic acid, 2a,3a,6β,19α,23-pentahydroxyurs-12-en-28-ursolic acid, 2α,3α,20β,23-tetrahydroxyurs-12-en-28-ursolic acid and 1β,2a,3β,23-tetrahydroxyurs-12,20(30)-dien-28-ursolic acid, and two triterpenoid glucosides, 2a,3a,23-trihydroxy-12,20(30)-dien-28-ursolic acid 28-O-β-d-glucopyranoside and 1-oxo-3β,23-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranoside, along with 5 known triterpenoids were isolated from a CH 3 Cl-soluble extract of the leaves of Cyclocarya paliurus. Their structures were established on the basis of chemical and spectroscopic approaches. These compounds were assessed for their antioxidant effects on FFA-induced hepatic steatosis in HepG2 cells. The results revealed that three saponins and two aglycones markedly increased SOD activity and reduced MDA level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three new fatty acid esters from the mushroom Boletus pseudocalopus.
Kim, Ki Hyun; Choi, Sang Un; Lee, Kang Ro
2012-06-01
A bioassay-guided fractionation and chemical investigation of a MeOH extract of the Korean wild mushroom Boletus pseudocalopus resulted in the identification of three new fatty acid esters, named calopusins A-C (1-3), along with two known fatty acid methyl esters (4-5). These new compounds are structurally unique fatty acid esters with a 2,3-butanediol moiety. Their structures were elucidated through 1D- and 2D-NMR spectroscopic data and GC-MS analysis as well as a modified Mosher's method. The new compounds 1-3 showed significant inhibitory activity against the proliferation of the tested cancer cell lines with IC(50) values in the range 2.77-12.51 μM.
Ichikawa, Hiroshi; Yoshida, Norimasa; Takano, Hiroshisa; Ishikawa, Takeshi; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Murase, Hironobu; Yoshikawa, Toshikazu
2003-01-01
The aim of the present study was to investigate the antioxidative effects of water-soluble vitamin E derivative, 2-(alpha-D-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), on ischemia-reperfusion (I/R) -induced gastric mucosal injury in rats. Gastric ischemia was induced by applying a small clamp to the celiac artery and reoxygenation was produced by removal of the clamp. The area of gastric mucosal erosion, the concentration of thiobarbituric acid-reactive substances, and the myeloperoxidase activity in gastric mucosa significantly increased in I/R groups compared with those of sham-operated groups. These increases were significantly inhibited by pretreatment with TMG. The contents of both mucosal TNF-alpha and CINC-2beta in I/R groups were also increased compared with the levels of those in sham-operated groups. These increases of the inflammatory cytokines were significantly inhibited by the treatment with TMG. It is concluded that TMG inhibited lipid peroxidation and reduced development of the gastric mucosal inflammation induced by I/R in rats.
[Studies on chemical constituents of Valeriana officinalis].
Jiang, Xia; Zhang, Jian-chao; Liu, Yan-wen; Fang, Yin
2007-11-01
From Valeriana officinalis L., 4 compounds were isolated and identified by various spectral analysis and chemical conversion, as valerenic acid, beta-sitosterol, ursolic acid, 4, 4', 8, 8'-tetrahydroxy-3, 3'-dimethoxyl-dibenzyl-ditetrahydrofuran and caryophyllene acide,valerane, naphthalene, linoleic acid, ethyl ester, myrtenyl acetate were identified by GC-MS. Ursolic acid and 4, 4', 8, 8'-tetrahydroxy-3, 3'-dimethoxyl-dibenzyl-ditetrahydrofuran were discovered in this plant for the first time.
Total synthesis and stereochemical assignment of the salicylate antitumor macrolide lobatamide C(1).
Shen, Ruichao; Lin, Cheng Ting; Porco, John A
2002-05-22
The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C is reported. The synthesis involves Cu(I)-mediated enamide formation and Na(2)CO(3)-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Macrolactonization was accomplished using a Mitsunobu protocol. The stereochemical assignment of lobatamide C was achieved by Mosher ester analysis and comparison with prepared stereoisomers.
NASA Technical Reports Server (NTRS)
Roeber, Dana; Achari, Aniruddha; Manavalan, Partha; Edmunds, Tim; Scott, David L.
2003-01-01
Acid beta-glucocerebrosidase (N-acylsphingosyl-1-O-beta-D-glucoside:glucohydrolase) is a lysosomal glycoprotein that catalyzes the hydrolysis of the glycolipid glucocerebroside to glucose and ceramide. Inadequate levels of this enzyme underly the pathophysiology of Gaucher's disease. Cerezyme (Genzyme Corporation, Cambridge, MA, USA) is a partially deglycosylated form of recombinant human acid beta-glucocerebrosidase that is used in the treatment of Gaucher patients. Although acid beta-glucocerebrosidase belongs to a large family of glycosidases, relatively little is known regarding its structural biology. Here, the crystallization and the initial diffraction analysis of Cerezyme are reported. The crystals are C-centered orthorhombic, with unit-cell parameters a = 285.0, b = 110.2, c = 91.7 A. A 99.9% complete data set has been collected to 2.75 A with an R(sym) of 8.8%.
NASA Technical Reports Server (NTRS)
Roeber, Dana F.; Achari, Aniruddha; Manavalan, Partha; Edmunds, Tim; Scott, David L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Acid beta-glucocerebrosidase (N-acylsphingosyl - O - beta-D - glucoside:glucohydrolase) is a lysosomal glycoprotein that catalyzes the hydrolysis of the glycolipid glucocerebroside to glucose and ceramide. Inadequate levels of this enzyme underly the pathophysiology of Gaucher's disease. Cerezyme(R) (Genzyme Corporation, Cambridge, MA) is a partially deglycosylated form of recombinant human acid beta-glucocerebrosidase that is commercially available for the treatment of Gaucher patients. Although acid beta-glucocerebrosidase belongs to a large family of glycosidases, relatively little is known regarding its structural biology. We report the crystallization and the initial diffraction analysis of Cerezyme(R). The crystals are C-centered orthorhombic, with unit-cell parameters of a = 285.0 A, b = 110.2 A, and c = 91.7 A. A 99.9 A complete data set has been collected to 2.75 A with an R(sub sym) of 8.8 %.
A 13C NMR study of the structure of four cinnamic acids and their methyl esters
NASA Astrophysics Data System (ADS)
Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.
2001-09-01
The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.
Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent
Gao, Yanjie; Wei, Yifo; Wang, Yuqing; Gao, Fang; Chen, Zhigang
2017-01-01
Lycium barbarum has been used in China for more than 2,000 years as a traditional medicinal herb and food supplement. Lycium barbarum contains abundant Lycium barbarum polysaccharides (LBPs), betaine, phenolics, carotenoids (zeaxanthin and β-carotene), cerebroside, 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), β-sitosterol, flavonoids and vitamins (in particular, riboflavin, thiamine, and ascorbic acid). LBPs are the primary active components of Lycium barbarum. In this review, we discuss the pharmacological activities of LBPs and other major components. They have been reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage. Thus, the basic scientific evidence for anti-aging effects of LBPs is already available. However, additional studies are needed to understand mechanisms by which LBPs mediate anti-aging properties. Novel findings from such studies would likely pave the way for the clinical application of traditional chinese medicine Lycium barbarum in modern evidence-based medicine. PMID:29344416
Optical isomer separation of potential analgesic drug candidates by using capillary electrophoresis.
Ferrara, G; Santagati, N A; Aturki, Z; Fanali, S
1999-09-01
Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic potential analgesic drug diastereoisomer candidates 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[(2'-methoxycarbonyl-2'-phenylc yclopropyl)methyl]-2,6-methano-3-benzazocin-8-ol (MPCB) and 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[[2'-methoxycarbonyl-2'(4-chloroph enyl)cyclopropyl]methyl]-2,6-methano-3-benzazocin-8-ol (CCB) was achieved. Among the cyclodextrins tested (hydroxypropyl-, carboxymethyl- and sulfobutyl-beta-cyclodextrin (HP-beta-CD, CM-beta-CD and SBE-beta-CD)) SBE-beta-CD was found to be the most effective complexing agent, allowing good optical isomer separation. Resolution was also influenced by the CD concentration, pH of the buffer and presence of organic modifier in the background electrolyte. The optimum experimental conditions for the separation of studied analgesic drugs were found using 25 mM borate buffer at pH 9 containing 40 mM of SBE-beta-CD and 20% v/v of methanol. Using the above-mentioned background electrolyte, it was also possible to separate, in the same run, the enantiomers of normetazocine (NMZ) as well as the optical isomers of (+/-)-cis-2-chloromethyl-1-phenyl cyclopropancarboxylic acid methyl ester (PCE) or (+/-)-cis-2-chloromethyl-1-(4-chlorophenyl)cyclopropancarboxylic acid methyl ester (CPCE) reagents used in the synthesis of the studied analgesic drugs).
[Studies on chemical constituents from roots of Craibiodendron henryi].
Huang, Xiang-Zhong; Liu, Yue; Yu, Shi-Shan; Hu, You-Cai; Qu, Jing
2007-04-01
To study the chemical constituents from the roots of Craibiodendron henryi. Various chromatographic techniques were used to isolate and purify the constituents. The structures were elucidated by chemical evidence and spectral methods. Twelve compounds were isolated from the ethyl acetate soluble fraction of the 95% ethanolic extract and their struc- tures were elucidated as quercetin (1), quercetin-3-O-rhamnicoside (2), quercetin-3-O-arabinofuranoside (3), (-)-epicatechin (4), proanthocyanidin A-2 (5), procyanidin B-2 (6), (-)-isolariciresinol-2a-O-beta-D-xylopyranoside (7), lyoniside (8), sitoster-yl-3beta-glucoside-6'-O-palmitate (9), beta-sitosterol (10), daucosterol (11) and octacosanoic acid (12). Compounds 1-12 were isolated from this plant for the first time.
Ponzano, Stefano; Berteotti, Anna; Petracca, Rita; Vitale, Romina; Mengatto, Luisa; Bandiera, Tiziano; Cavalli, Andrea; Piomelli, Daniele; Bertozzi, Fabio; Bottegoni, Giovanni
2014-12-11
N-(2-Oxo-3-oxetanyl)carbamic acid esters have recently been reported to be noncompetitive inhibitors of the N-acylethanolamine acid amidase (NAAA) potentially useful for the treatment of pain and inflammation. In the present study, we further explored the structure-activity relationships of the carbamic acid ester side chain of 2-methyl-4-oxo-3-oxetanylcarbamic acid ester derivatives. Additional favorable features in the design of potent NAAA inhibitors have been found together with the identification of a single digit nanomolar inhibitor. In addition, we devised a 3D QSAR using the atomic property field method. The model turned out to be able to account for the structural variability and was prospectively validated by designing, synthesizing, and testing novel inhibitors. The fairly good agreement between predictions and experimental potency values points to this 3D QSAR model as the first example of quantitative structure-activity relationships in the field of NAAA inhibitors.
Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.
1991-01-01
1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210
Kato, Merii; Sah, Ajay Kumar; Tanase, Tomoaki; Mikuriya, Masahiro
2006-08-21
Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta-D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.
On the specificity and mode of action of a xylanase from Trametes hirsuta (Wulf.) Pilát.
Kubacková, M; Karácsonyi, S; Bilisics, L; Toman, R
1979-11-01
The mode of action of the extracellular endo-(1 leads to 4)-beta-D-xylanase produced by Trametes hirsuta on a (4-0-methyl-D-glucurono)-D-xylan and a modified, essentially neutral D-xylan from white willow (Salix alba L.) has been studied. Xylotetraose and xylohexaose, together with aldotetraouronic and aldohexaouronic acids, were the main products. The acidic oligosaccharides had a 4-O-methyl-D-glucopyranosyluronic acid group attached to the non-reducing D-xylosyl end-group. The action pattern of the xylanase corresponds to that of a typical endo-enzyme that acts more readily in the middle of chain, and the specific region of its action appears to involve five D-xylosyl residues. The products of the enzymic treatment of the D-xylan have revealed a regular distribution of the 4-O-methyl-D-glucopyranosyluronic acid groups attached to the D-xylan backbone.
Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis.
Viskupicova, Jana; Danihelova, Martina; Majekova, Magdalena; Liptaj, Tibor; Sturdik, Ernest
2012-12-01
We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.
Yi, Chae S.; Gao, Ruili
2009-01-01
The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. Strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH2Cl2 led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was found to be strongly inhibited by PCy3. The coupling reaction of both PhCO2H/PhC≡CD and PhCO2D/PhC≡CH led to the extensive deuterium incorporation on the vinyl positions of the enol ester products. An opposite Hammett value was observed when the correlation of a series of para-substituted p-X-C6H4CO2H (X = OMe, CH3, H, CF3, CN) with phenylacetylene was examined in CDCl3 (ρ = +0.30) and THF (ρ = −0.68). Catalytically relevant Ru-carboxylate and –vinylidene-carboxylate complexes, (PCy3)2(CO)(Cl)Ru(κ2-O2CC6H4-p-OMe) and (PCy3)2(CO)(Cl)RuC(=CHPh)O2CC6H4-p-OMe, were isolated, and the structure of both complexes was completely established by X-ray crystallography. A detailed mechanism of the coupling reaction involving a rate-limiting C-O bond formation step was proposed on the basis of these kinetic and structural studies. The regioselective formation of the gem-enol ester products in CH2Cl2 was rationalized by a direct migratory insertion of the terminal alkyne via a Ru-carboxylate species, whereas the stereoselective formation of (Z)-enol ester products in THF was explained by invoking a Ru-vinylidene species. PMID:20161379
Stark, Timo; Lang, Roman; Keller, Daniela; Hensel, Andreas; Hofmann, Thomas
2008-10-01
Besides flavan-3-ols, a family of N-phenylpropenoyl-L-amino acids (NPAs) has been recently identified as polyphenol/amino acid conjugates in the seeds of Theobroma cacao as well as in a variety of herbal drugs. Stimulated by reports on their biological activity, the purpose of this study was to investigate if these amides are absorbed by healthy volunteers after administration of a cocoa drink. For the first time, 12 NPAs were quantified in human urine by means of a stable isotope dilution analysis with LC-MS/MS (MRM) detection. A maximum amount was found in the urine taken 2 h after the cocoa consumption. The highest absolute amount of NPAs excreted with the urine was found for N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid (5), but the highest recovery rate (57.3 and 22.8%), that means the percentage amount of ingested amides excreted with the urine, were determined for N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid (6) and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine (13). In order to gain first insights into the NPA metabolism in vivo, urine samples were analyzed by LC-MS/MS before and after beta-glucuronidase/sulfatase treatment. As independent of the enzyme treatment the same NPA amounts were found in urine, there is strong evidence that these amides are metabolized neither via their O-glucuronides nor their O-sulfates. In order to screen for caffeic acid O-glucuronides as potential NPA metabolites, urine samples were screened by means of LC-MS/MS for caffeic acid 3-O-beta-D-glucuronide and 4-O-beta-D-glucuronide. But not even trace amounts of one of these glucuronides were detectable, thus excluding them as major NPA metabolites and underlining the importance of future investigations on a potential O-methylation or reduction of the N-phenylpropenoyl moiety in NPAs.
Zheng, Zhenjia; Wang, Xiao; Liu, Pengli; Li, Meng; Dong, Hongjing; Qiao, Xuguang
2018-02-15
Burdock roots are healthy dietary supplements and a kind of famous traditional Chinese medicine, which contains large amounts of caffeoylquinic acid derivatives. However, little research has been reported on the preparative separation of these compounds from burdock roots. In the present study, a combinative method of HSCCC and semi-preparative HPLC was developed for the semi-preparative separation of caffeoylquinic acid derivatives from the burdock roots. The ethyl acetate extract of burdock roots was first fractionated by MCI macroporous resin chromatography and give three fractions (Fr. 1-3) from the elution of 40% methanol. Then, these three fractions (120 mg) were separately subjected to HSCCC for purification with the solvent system composed of petroleum ether-ethyl acetate-methanol-water at different volume ratios, and the mixtures were further purified by semi-preparative HPLC. As a result, a total of eight known caffeoylquinic acid derivatives including 3- O -caffeoylquinic acid (32.7 mg, 95.7%), 1,5- O - dicaffeoylquinic acid (4.3 mg, 97.2%), 3- O -caffeoylquinic acid methyl ester (12.1 mg, 93.2%), 1,3- O -dicaffeoylquinic acid (42.9 mg, 91.1%), 1,5- O -dicaffeoyl-3- O -(4-maloyl)-quinic acid (4.3 mg, 84.5%), 4,5- O -dicaffeoylquinic acid (5.3 mg, 95.5%), 1,5- O -dicaffeoyl-3- O -succinylquinic acid (8.7 mg, 93.4%), and 1,5- O -dicaffeoyl-4- O -succinylquinic acid (1.7 mg, 91.8%), and two new compounds were obtained. The new compounds were 1,4- O -dicaffeoyl-3-succinyl methyl ester quinic acid (14.6 mg, 96.1%) and 1,5- O -dicaffeoyl-3- O -succinyl methyl ester quinic acid (3.1 mg, 92.6%), respectively. The research indicated that the combination of HSCCC and semi-preparative HPLC is a highly efficient approach for preparative separation of the instability and bioactive caffeoylquinic acid derivatives from natural products.
Synthesis of TMP-ester biolubricant basestock from palm stearin fatty acids
NASA Astrophysics Data System (ADS)
Fadzel, Fatimatuzzahraa Mohd; Salimon, Jumat; Derawi, Darfizzi
2018-04-01
A potential biolubricant; TMP-ester was produced via esterification of fatty acids (FA) from palm stearin (PS) with trimethylolpropane (TMP). The synthesis was conducted at four conditions; temperature, time, molar ratio of FA:TMP and H2SO4 as catalyst (by percent based on the weight of FA and TMP) that are 150 °C, 2 hours, 4:1 and 1% of H2SO4 respectively. The composition of ester produced was determined using gas chromatography (GC-FID). The presence of ester group was confirmed by the means of FTIR by the existence of strong carboxyl band of ester, v(C=O) at 1746cm-1 and 1H and 13C NMR spectroscopy shows the chemical shift, δ of ester, C=O at 2.27-2.31 ppm and 173.45 ppm accordingly. From the esterification reaction, 95% product of TMP-ester was formed. The thermal and oxidative stability of TMP-ester is 200°C.
Solid Propellant Reclamation Study
1982-11-01
8217 Jovember 1982 > D J J Authors: M. P. Coover L. W. Poulter Thiokol Corporation Wasatch Division P. O. Box 524 Brigham City, Utah 84202 TWR-31084...William R. and Thun, Wayne E.. . 12 2.1.1.2 Mclntosh, M. J. et al 20 1.3 Sinclair, J. E. et al 27 1.4 Tomna, A. S 28 1.5 Tompa, A. S., French, D . M...Technology 81 2 Nitrate Ester Extraction Process 85 3 Nitramine/Inorganic Oxidizer Extraction Process 96 4 Process Definition 103 5 Process Model 108
Tall oil precursors and turpentine in black and white spruce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, A.H.; Diehl, M.A.; Rowe, J.W.
1980-01-01
The heartwood of Picea mariana contained resin acids (1) 14, fatty acids (11) 2, esters 10, nonsaponifiables 13, and phenolic compounds 61%, whereas P. glauca contained (1) 12, (11) 1, esters 42, nonsaponifiables 13, and phenolic compounds 32%. The (1) consisted primarily of palustric, isopimaric, abietic,and dehydroabietic acids, and fatty acids were mainly oleic, linoleic, and 5,9,12-octadecatrienoic acids. Turpentine obtained from these species was primarily a mixture of alpha- and beta-pinene. Paraquat (111) treatment induced up to a 7-fold increase in the content of oleoresin of these species, but visual indications of lightwood were not observed. The components of turpentinemore » and Et/sub 2/0 extractives after (111) treatment were similar to those before treatment.« less
Nishio, Kazuki; Nakazawa, Masami; Nakamoto, Masatoshi; Okazawa, Atsushi; Kanaya, Shigehiko; Arita, Masanori
2016-01-01
Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena. PMID:27669566
Selenium-mediated synthesis of biaryls through rearrangement.
Shahzad, Sohail A; Vivant, Clotilde; Wirth, Thomas
2010-03-19
A new cyclization of beta-keto ester substituted stilbene derivatives using selenium electrophiles in the presence of Lewis acids is described. Substituted naphthols are obtained through cyclization and subsequent 1,2-rearrangement of aryl groups under very mild reaction conditions.
Sinterable Ceramic Powders from Laser-Heated Gases.
1988-02-01
ether . carboxylic acid. and aldehyde clases: water is also included.Acrigto William and Goodman.’ a single crystalline sili- The single-crstalline...represent commonly available organic families, Including aliphatic and aromatic hydrocarbons, chlorides, ethers , ketones , esters, alcohols, aldehydes...Hydrocarbons Ketone Amine Chlorides Low-alcohols 8f . Ether Ester - _Aldehyde Ether Ketones High-alcohols 04 Carboxylic Ester I acid Ether o . Nitrile
Ezzat, Shahira Mohammed; Abdel Motaal, Amira; El Awdan, Sally Abdel Wanees
2017-12-01
Balanites aegyptiaca Del. (Zygophyllaceae) fruits are well-known antidiabetic drug in Egyptian folk medicine. Nevertheless, its mechanism of action is still unclear. Searching for the possible mechanisms of action of the plant and identification of its bioactive compounds. A bio-guided protocol based on the evaluation of α-glucosidase (AG) and aldose reductase (AR) inhibitory activities was adopted to isolate the biologically active compounds from the methanol extract (MeEx). An in vivo antidiabetic study was conducted for the active extract, fraction and compound using streptozotocin-induced diabetic male albino Wistar rats at two dose levels (100 and 200 mg/kg.b/wt) for 2 weeks. Three compounds were isolated and identified: a sterol, (1) stigmasterol-3-O-β-d-glucopyranoside; a pregnane glucoside, (2) pregn-5-ene-3β,16β,20(R)-trio1-3-O-β-d-glucopyranoside; a furostanol saponin, (3) 26-(O-β-d-glucopyranosyl)-22-O-methylfurost-5-ene-3β,26-diol-3-O-β-d-glucopyranosyl-(1 → 4)-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside. Only compound 3 possessed significant AG and AR inhibitory activities (IC 50 = 3.12 ± 0.17 and 1.04 ± 0.02 μg/mL, respectively), while compounds 1 and 2 were inactive. The in vivo antidiabetic study revealed that MeEx and furostanol saponin 3 possessed significant activities at a dose of 200 mg/kg through reducing the fasting plasma glucose level by 46.14% and 51.39%, respectively, as well as reducing the total cholesterol by 24.44% and 31.90%, respectively. Compound 3 also caused increment in insulin and C-peptide levels by 63.56% and 65%, respectively. We presented a scientific base for using Balanites aegyptiaca, and shed the light on one of its saponins, as an antidiabetic agent in fasting and postprandial hyperglycaemia along with the improvement of diabetic complications.
Shirahata, Tatsuya; Nagai, Takayuki; Hirata, Nozomu; Yokoyama, Masaki; Katsumi, Tatsuya; Konishi, Naruki; Nishino, Takashi; Makino, Kazuishi; Yamada, Haruki; Kaji, Eisuke; Kiyohara, Hiroaki; Kobayashi, Yoshinori
2017-03-15
A series of new simplified oleanolic acid saponins with a glycosyl ester moiety at C28, were efficiently prepared. Furthermore, the effect of nasal administration of the synthetic oleanolic acid saponins on the nasal anti-influenza virus antibody titer against secondary nasal inoculation of the influenza split vaccine was examined. The result revealed cinnamoyl saponin as a suitable candidate vaccine adjuvant. Copyright © 2016. Published by Elsevier Ltd.
Phenylethanoid glycosides from Phlomis integrifolia Hub.-Mor.
Saracoglu, Iclal; Varel, Mehtap; Hada, Junko; Hada, Noriyasu; Takeda, Tadahiro; Donmez, Ali A; Calis, Ihsan
2003-01-01
Two new phenylethanoid glycosides integrifoliosides A (2) and B (3), along with a known phenylethanoid glycoside alyssonoside (1) and a flavone glucoside chrysoeriol-7-O-beta-D-glucopyranoside (4) were isolated from the aerial parts of Phlomis integrifolia. The structures of the new compounds were identified as 3,4-dihydroxy-beta-phenylethoxy-O-beta-D-apiofuranosyl-(1 --> 4)-alpha-L-rhamnopyranosyl-(1 --> 3)-4-O-feruloyl-beta-D-glucopyranoside (2) and 3-hydroxy-4-methoxy-beta-phenylethoxy-O-beta-D-apiofuranosyl-(1 --> 4)-alpha-L-rhamnopyranosyl-(1 --> 3)-4-O-feruloyl-beta-D-glucopyranoside (3), on the basis of spectroscopic (UV, IR, 1D- and 2D-NMR, and HR-FABMS) methods.
Sun, Ying-ying; Wang, Hui; Guo, Gan-lin; Pu, Yin-fang; Yan, Bin-lun; Wang, Chang-hai
2016-01-01
Ten compounds (1~10) were successfully isolated from green algae Ulva prolifera through the combination of silica gel column chromatography, Sephadex LH-20 column chromatography and repeated preparative thin-layer chromatography. These ten compounds showed antialgal activity against red tide microalgae. Among them, compounds 3, 6, and 7 showed stronger antialgal activity against red tide microalgae. Furthermore, their structure was identified on the basis of spectroscopic data. There are three glycoglycerolipids: 1-O-octadecanoic acid-3-O-β-D-galactopyranosyl glycerol (2), 1-O-palmitoyl-3-O-β-D-galactopyranosyl glycerol (4), and 1-O-palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol (5); two monoglycerides: glycerol monopalmitate (1), 9-hexadecenoic acid, 2,3-dihydroxypropyl ester (3); two terpenoids: loliolide (6) and lsololiolide (7); one lipid-soluble pigments: zeaxanthin (8); one sterol: cholest-5-en-3-ol (9); and one alkaloid: pyrrolopiperazine-2,5-dione (10). These compounds were isolated from U. prolifera for the first time, and compounds 2, 3, 5, and 8 were isolated from marine macroalgae for the first time.
Parker, R A; Kariya, T; Grisar, J M; Petrow, V
1977-06-01
5-(Tetradecyloxy)-2-furancarboxylic acid (91, RMI 14514) was found to lower blood lipids and to inhibit fatty acid synthesis with minimal effects on liver weight and liver fat content. This fatty acid-like compound represents a new class of hypolipidemic agent; it is effective in rats and monkeys. The compound resulted from discovery of hypolipidemic activity in certain beta-keto esters, postulation and confirmation of the corresponding benzoic acids as active metabolites, and systematic exploration of the structure--activity relationships.
Luo, Jianfei; Wang, Yuan; Tang, Shuishui; Liang, Jianwen; Lin, Weitie; Luo, Lixin
2013-01-01
The biological control of cyanobacterial harmful algal blooms (cyanoHABs) is important to promote human health, environmental protection, and economic growth. Active algicidal compounds and algicidal mechanisms should be identified and investigated to control cyanoHABs. In this study, the algicidal actinobacterium Streptomyces sp. L74 was isolated from the soil of a nearby pond which located in the center lake of Guanghzou Higher Education Mega Center. Results showed that the algicidal activities of cyanoHABs are mainly achieved via an indirect attack by producing algicidal compounds. All active algicidal compounds are hydrophilic substances that are heat and pH stable. In the present study, an active compound (B3) was isolated and purified by high-performance liquid chromatography and identified as a type of triterpenoid saponin (2-hydroxy-12-oleanene-3, 28-O-D-glucopyranosyl) with a molecular formula of C42H70O13 as determined by infrared spectrometry, electrospray ionization mass spectrometry, and nuclear magnetic resonance. Active algicidal compounds from Streptomyces sp. L74 were shown to disrupt the antioxidant systems of Microcystis aeruginosa cells. PMID:24098501
Luo, Jianfei; Wang, Yuan; Tang, Shuishui; Liang, Jianwen; Lin, Weitie; Luo, Lixin
2013-01-01
The biological control of cyanobacterial harmful algal blooms (cyanoHABs) is important to promote human health, environmental protection, and economic growth. Active algicidal compounds and algicidal mechanisms should be identified and investigated to control cyanoHABs. In this study, the algicidal actinobacterium Streptomyces sp. L74 was isolated from the soil of a nearby pond which located in the center lake of Guanghzou Higher Education Mega Center. Results showed that the algicidal activities of cyanoHABs are mainly achieved via an indirect attack by producing algicidal compounds. All active algicidal compounds are hydrophilic substances that are heat and pH stable. In the present study, an active compound (B3) was isolated and purified by high-performance liquid chromatography and identified as a type of triterpenoid saponin (2-hydroxy-12-oleanene-3, 28-O-D-glucopyranosyl) with a molecular formula of C42H70O13 as determined by infrared spectrometry, electrospray ionization mass spectrometry, and nuclear magnetic resonance. Active algicidal compounds from Streptomyces sp. L74 were shown to disrupt the antioxidant systems of Microcystis aeruginosa cells.
New isoflavone glycosides from the stems of Dalbergia vietnamensis.
Loan, Pham Thanh; Le Anh, Hoang Tuan; Cuc, Nguyen Thi; Yen, Duong Thi Hai; Hang, Dan Thi Thuy; Ha, Tran Minh; Nhiem, Nguyen Xuan; Van Du, Nguyen; Thai, Tran Huy; Van Minh, Chau; Van Kiem, Phan
2014-06-01
Two new isoflavone glycosides, dalspinosin 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (1) and caviunin 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (2), and two known compounds, caviunin 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (3) and caviunin (4) were isolated from the stems of Dalbergia vietnamensis. Their structures were determined by the combination of spectroscopic and chemical methods, including 1D- and 2D-NMR spectroscopy, as well as by comparing with the NMR data reported in the literature.
NASA Astrophysics Data System (ADS)
Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong
2016-09-01
Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.
Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong
2016-01-01
Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990
ESR study of electron reactions with esters and triglycerides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla, M.D.; Morehouse, K.M.; Swarts, S.
1981-04-02
Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by ..beta.. scission: RC(O/sup -/)OR' ..-->.. RCO/sub 2//sup -/ + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an ..cap alpha..-carbon site, R'.+ R''CH/sub 2/CO/sub 2/R' ..-->.. R''CHCO/sub 2/R', or in the case of ethyl formate from the formate hydrogen, CH/sub 3/CH/sub 2/.+ HCO/sub 2/C/sub 2/H/sub 5/ ..-->.. C/sub 2/H/sub 6/ +.CO/sub 2/C/submore » 2/H/sub 5/. Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH/sub 2/CH(Ac)CH/sub 2/(Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the ..cap alpha..-carbon radical, .CH/sub 2/CO/sub 2/R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the ..cap alpha.. carbon in the propionate side groups producing CH/sub 3/CHCO/sub 2/R. Studies of a ..gamma..-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to ..gamma..-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis.« less
[Studies on chemical constituents of Taxillus sutchuenenisis].
Chen, Jiang-tao; Feng, Feng
2007-11-01
To study the chemical constituents of Taxillus sutchuenenisis (Lecomte) Danser. Chromatography and spectrum analysis were employed to isolated and elucidate the chemical constituents in the plant. 9 compounds were isolated and identified as quercetin (I), quervetin 3-O-beta-D-galactoside (II), isoquercitrin (III), quercitrin (IV), rutin (V), gallic acid (VI), ferulic acid (VII), beta-sitosterol (VIII), daucosterol (IX), respectively. Compounds III-IX are isolated from this plant for the first time. The work provide evidence for the exploitation and utilization of this plant resouce.
[Chemical Constituents from Melissa officinalis Leaves].
Ji, Zi-yang; Yang, Yan-xia; Zhuang, Fang-fang; Yan, Fu-lin; Wang, Chang-hong
2015-03-01
To investigate the chemical constituents of Melissa officinalis leaves. The chemical constituents were separated by silica gel column chromatography and their structures were determined by spectroscopic experiments. 13 compounds were isolated and identified as protocatechuyl aldehyde(1), serratagenic acid(2), vanillin(3), 2α,3β-dihydroxy-urs-12-en-28-oic acid(4), ursolic acid(5), oleanolic acid(6), daucosterol(7),2α,3β,23,29-tetrahydroxyolean-12-en-28-oic acid-29-O-β-D-gluco- pyranoside(8), luteolin(9) rosmarinic acid(10), luteolin-7-O-β-D-glucoside (11), β-stitosterol(12) and palmitic acid(13). Compounds 1 ~ 8 are separated from this plant for the first time and compounds 1-4 and 8 are isolated from this genus for the first time.
Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho
2015-01-01
In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF. PMID:26586997
Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho
2015-11-01
In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF.
Rezanka, Tomás; Nedbalová, Linda; Sigler, Karel; Cepák, Vladislav
2008-01-01
A method is described for the identification of astaxanthin glucoside esters from snow alga Chlamydomonas nivalis by means of liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The method is based on the use of preparative HPLC and subsequent identification of astaxanthin diglucoside diesters by microbore LC-MS/APCI. The combination of these two techniques was used to identify more than 100 molecular species. The astaxanthin diglucoside diester, i.e. (all-E)-[di-(6-O-oleoyl-beta-D-glucopyranosyloxy)]-astaxanthin, was also synthesized to unambiguously confirm its structure.
Kumar, Vikas; Anwar, Firoz; Verma, Amita; Mujeeb, Mohd
2015-06-01
The aim and objective of the present investigation was to evaluate the antiarthritic and antioxidant effect of umbelliferon-α-D-glucopyranosyl-(2I→1II)-α-D-glucopyranoside (UFD) in chemically induced arthritic rats. The different doses of the UFD were tested against the turpentine oil (TO), formaldehyde induced acute arthritis and complete fruend's adjuvant (CFA) induced chronic arthritis in Wistar rats. Arthritic assessment and body weight was measured at regular interval till 28 days. On day 28, all the groups animals were anaesthetized, blood were collected from the puncturing the ratro orbital and estimated the hematological parameters. The animals were sacrificed; synovial tissue was extracted and estimated the malonaldehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD). The different doses of the UFD showed the protective effect against turpentine oil, formaldehyde induced acute arthritis and CFA induced chronic arthritis at dose dependent manner. Acute model of arthritis such as TOand formaldehyde induced inflammation due to releasing of the inflammatory mediators; significantly inhibited by the UFD at dose dependent manner. CFA induced arthritic rats treated with the different doses of the UFD showed the inhibitory effect on the delayed increase in joint diameter as seen in arthritic control group rats. UFD significantly improved the arthritic index, body weight and confirmed the antiarthritic effect. UFD showed the effect on the hematological parameter such as improved the level of the RBC, Hb and decline the level of the EBC, ESR and confirmed the immune suppressive effect. UFD significantly improved the level of the endogenous antioxidant and confirmed the antioxidant effect. This present investigation suggests that the UFD has prominent antiarthritic impact which can be endorsed to its antiarthritic and antioxidant effects.
NASA Technical Reports Server (NTRS)
Lewer, P.; Bandurski, R. S. (Principal Investigator)
1987-01-01
An improved synthesis of 7-hydroxy-2-oxoindolin-3-ylacetic acid via the base-induced condensation reaction between oxalate esters and 7-benzyloxyindolin-2-one is described. 7-Benzyloxyindolin-2-one was prepared in four steps and 50% overall yield from 3-hydroxy-2-nitrotoluene. The yield of the title compound from 7-benzyloxyindolin-2-one was 56%. This route was used to prepare 7-hydroxy-2-oxoindolin-3-yl[13C2]acetic acid in 30% yield from [13C2]oxalic acid dihydrate. The method could not be extended to the preparation of the corresponding [14C2]-compound. However, an enzyme preparation from Zea mays roots catalysed the conversion of carrier-free [5-n-3H]indol-3-ylacetic acid with a specific activity of 16.7 Ci mmol-1 to a mixture of 7-hydroxy-2-oxo[5-n-3H]indolin-3-ylacetic acid and its [5-n-3H]-7-O-glucoside in ca. 3 and 40% radiochemical yield respectively. The glucoside was converted into the 7-hydroxy compound in 80% yield by means of beta-glucosidase.
d'Errico, Clotilde; Jørgensen, Jonas O; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard
2015-05-01
Lignin-carbohydrate complexes (LCCs) are believed to influence the recalcitrance of lignocellulosic plant material preventing optimal utilization of biomass in e.g. forestry, feed and biofuel applications. The recently emerged carbohydrate esterase (CE) 15 family of glucuronoyl esterases (GEs) has been proposed to degrade ester LCC bonds between glucuronic acids in xylans and lignin alcohols thereby potentially improving delignification of lignocellulosic biomass when applied in conjunction with other cellulases, hemicellulases and oxidoreductases. Herein, we report the synthesis of four new GE model substrates comprising α- and ɣ-arylalkyl esters representative of the lignin part of naturally occurring ester LCCs as well as the cloning and purification of a novel GE from Cerrena unicolor (CuGE). Together with a known GE from Schizophyllum commune (ScGE), CuGE was biochemically characterized by means of Michaelis-Menten kinetics with respect to substrate specificity using the synthesized compounds. For both enzymes, a strong preference for 4-O-methyl glucuronoyl esters rather than unsubstituted glucuronoyl esters was observed. Moreover, we found that α-arylalkyl esters of methyl α-D-glucuronic acid are more easily cleaved by GEs than their corresponding ɣ-arylalkyl esters. Furthermore, our results suggest a preference of CuGE for glucuronoyl esters of bulky alcohols supporting the suggested biological action of GEs on LCCs. The synthesis of relevant GE model substrates presented here may provide a valuable tool for the screening, selection and development of industrially relevant GEs for delignification of biomass. © 2014 Wiley Periodicals, Inc.
Kim, Ju-Sung; Kwon, Yong-Soo; Sa, Yeo-Jin; Kim, Myong-Jo
2011-01-12
This study was performed to evaluate the antioxidant and α-glucosidase inhibitory effects from the extract, fractions, and isolated compounds of sea buckthorn leaves. Six compounds, kaempferol-3-O-β-D-(6''-O-coumaryl) glycoside, 1-feruloyl-β-D-glucopyranoside, isorhamnetin-3-O-glucoside, quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside, and isorhamnetin-3-O-rutinoside, were isolated from sea buckthorn leaf extracts. The butanol fraction (EC(50) = 1.81 μg/mL) along with quercetin 3-O-β-D-glucopyranoside (EC(50) = 1.86 μg/mL) had a higher DPPH radical-scavenging activity and showed stronger reducing power (OD(700) = 1.83 and 1.78, respectively). The butanol fraction (477 mg GAE/g) contained the highest amount of phenolic compounds and also the most powerful α-glucosidase inhibitory effect (86%) at 5 μg/mL. The results indicate that sea buckthorn leaf extracts could potentially be used for food additives and the development of useful natural compounds.
Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes
Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio
2016-01-01
Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104
[Chemical constituents from involatile moiety of Pogostemon cablin].
Huang, Liejun; Mu, Shuzhen; Zhang, Jianxin; Deng, Bin; Song, Zhiqin; Hao, Xiaojiang
2009-02-01
To study the chemical constituents of involatile moiety of Pogostemon cablin. Compounds were isolated and purified by repeated column chromatography, and their structures were elucidated by spectroscopic analysis. Nine compounds have been isolated and identified: epifriedelinol (1), 5-hydroxymethol-2-furfural (2), succinic acid (3), beta-sitosterol (4), daucosterol (5), crenatoside (6), 3'''-O-methylcrenatoside (7), isocrenatoside (8), and apigenin-7-O-beta-D-(6"-p-coumaryl)-glucoside (9). Compounds 2, 3, 6-8 were isolated from Pogostemon genus for the first time.
Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan
2017-05-01
Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jain, R K; Piskorz, C F; Matta, K L
1995-10-02
Allyl 2-acetamido-4,6-O-(4-methoxybenzylidene)-2-deoxy-alpha-D-galact opy ranoside (1) was condensed with either 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (2) or 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (14) in the presence of mercuric cyanide. Selective substitution with methyl, sulfo or both at desired positions, followed by the removal of protecting groups, afforded allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-methyl-alpha -D- galactopyranoside (5), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy-6- O-methyl-alpha-D-galactopyranoside (10), allyl O-(beta-D-galactopyranosyl)-(1-->3)-2-acetamido-2-deoxy-6-O-sulfo-alpha- D- galactopyranoside sodium salt (13), allyl O-(6-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (17) and allyl O-(3-O-sulfo-beta-D-galactopyranosyl sodium salt)-(1-->3)-2-acetamido-2-deoxy- alpha-D-galactopyranoside (22). The structures of compounds 5, 10, 13, 17 and 22 were established by 13C NMR and FAB mass spectroscopy.
Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V
1996-01-01
We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143
Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V
1996-02-01
We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.
Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan
2016-08-01
In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. Copyright © 2016 Elsevier B.V. All rights reserved.
Two new flavanone glycosides of Jasminum lanceolarium and their anti-oxidant activities.
Sun, Jia-Ming; Yang, Jun-Shan; Zhang, Hui
2007-03-01
Two new flavanone glucosides, (2S)-5,7,3',5'-tetrahydroxy-flavanone 7-O-beta-D-allopyranoside (1) and (2S)-5,7,3',5'-tetrahydroxy-flavanone 7-O-beta-D-glucopyranosie (2) were isolated from the stems and leaves of Jasminum lanceolarium, along with five known compounds: Betulinaldehyde (3), betulinic acid (4), betulin (5), syringin (6) and Liriodendrin (7). Their structures were determined on the basis of spectroscopic and chemical methods. The isolated compounds were screened for their in vitro antioxidant activity through DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay. Compounds 2 demonstrated significant radical scavenging activity.
Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes
2012-01-01
UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274
NASA Technical Reports Server (NTRS)
Nonhebel, H. M.; Bandurski, R. S.
1984-01-01
Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.
ERIC Educational Resources Information Center
Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.
2005-01-01
The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…
Code of Federal Regulations, 2012 CFR
2012-07-01
... subject to reporting. (1) The chemical substance generically identified as carbopolycyclicol azo-al-kyl-a-mino-al-kyl-car-bo-mon-o-cyc-lic ester, halogen acid salt (PMN P-88-1682) is subject to reporting under...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subject to reporting. (1) The chemical substance generically identified as carbopolycyclicol azo-al-kyl-a-mino-al-kyl-car-bo-mon-o-cyc-lic ester, halogen acid salt (PMN P-88-1682) is subject to reporting under...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subject to reporting. (1) The chemical substance generically identified as carbopolycyclicol azo-al-kyl-a-mino-al-kyl-car-bo-mon-o-cyc-lic ester, halogen acid salt (PMN P-88-1682) is subject to reporting under...
Code of Federal Regulations, 2011 CFR
2011-07-01
... subject to reporting. (1) The chemical substance generically identified as carbopolycyclicol azo-al-kyl-a-mino-al-kyl-car-bo-mon-o-cyc-lic ester, halogen acid salt (PMN P-88-1682) is subject to reporting under...
Racovita, Radu C; Jetter, Reinhard
2016-10-01
The present study presents comprehensive chemical analyses of cuticular wax mixtures of the bamboo Phyllostachys aurea. The epicuticular and intracuticular waxes were sampled selectively from the adaxial side of leaves on young and old plants and investigated by gas chromatography-mass spectrometry and flame ionization detection. The epi- and intracuticular layers on young and old leaves had wax loads ranging from 1.7 μg/cm(2) to 1.9 μg/cm(2). Typical very-long-chain aliphatic wax constituents were found with characteristic chain length patterns, including alkyl esters (primarily C48), alkanes (primarily C29), fatty acids (primarily C28 and C16), primary alcohols (primarily C28) and aldehydes (primarily C30). Alicyclic wax components were identified as tocopherols and triterpenoids, including substantial amounts of triterpenoid esters. Alkyl esters, alkanes, fatty acids and aldehydes were found in greater amounts in the epicuticular layer, while primary alcohols and most terpenoids accumulated more in the intracuticular wax. Alkyl esters occurred as mixtures of metamers, combining C20 alcohol with various acids into shorter ester homologs (C36C40), and a wide range of alcohols with C22 and C24 acids into longer esters (C42C52). Primary amides were identified, with a characteristic chain length profile peaking at C30. The amides were present exclusively in the epicuticular layer and thus at or near the surface, where they may affect plant-herbivore or plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Weng Larsen, S; Engelbrecht Thomsen, A E; Rinvar, E; Friis, G J; Larsen, C
2001-03-23
The rate constants for transfer of a homologous series of nicotinic acid esters from oil vehicles to aqueous buffer phases were determined using a rotating dialysis cell. The chemical stability of butyl nicotinate has been investigated at 60 degrees C over pH range 0.5--10. Maximum stability occurs at pH 4--5 and an inflection point was seen around the pK(a). For the nicotinic acid esters, a linear correlation was established between the first-order rate constant related to attainment of equilibrium, k(obs) and the apparent partition coefficient, P(app): log k(obs)=-0.83log P(app)+0.26 (k(obs) in h(-1), n=9). For hexyl nicotinate with a true partition coefficient of 4 it was possible to determine k(obs) by decreasing pH in the aqueous release medium to 2.05. Thus, under the latter experimental conditions estimation of the relative release rates for the esters were performed. The ratio between the specific rate constant k(ow), related to the transport from oil vehicle to aqueous phase, for ethyl and hexyl nicotinate was 139. The hydrophobic substituent constant for a methylene group, pi(CH(2)), was determined for nicotinic acid esters in different oil/buffer partitioning systems to 0.54--0.58. Addition of hydroxypropyl-beta-cyclodextrin to the aqueous release medium did not enhance the transport rate of the esters from the oil phase.
Koga, Kenjiro; Takarada, Nobuo; Takada, Kanji
2010-02-01
Our goal was to develop safe and stable multilayer emulsions capable of enhancing intestinal absorption of biopharmaceutics classification system (BCS) class III drugs. First, w/o emulsions were prepared using calcein as a model BCS class III compound and condensed ricinoleic acid tetraglycerin ester as a hydrophobic emulsifier. Then water-in-oil-in-water (w/o/w) emulsions were prepared with shirasu porous glass (SPG) membranes. Particle size analyses and calcein leakage from oil droplets in w/o/w emulsions led us to select stearic acid hexaglycerin esters (HS-11) and Gelucire 44/14 as hydrophilic emulsifiers. Analyses of the absorption-enhancing effects of w/o/w emulsions on intestinal calcein absorption in rats showed that calcein bioavailability after intraduodenal (i.d.) administration of HS-11 or Gelucire 44/14+polyvinyl alcohol (PVA) w/o/w emulsions prepared with 0.1-microm pore-sized SPGs was significantly higher than that of the calcein control. However, serum calcein concentration vs. time profiles after i.d. administration of w/o/w emulsions prepared with 1.1-microm and 30-microm pore-sized SPGs and an emulsion prepared with a calcein-containing outer water phase were comparable to control profiles. These results suggested that HS-11 or Gelucire 44/14+PVA are safe outer water phase additives and that 0.1-microm pore-sized SPGs are important for preparing w/o/w emulsions that enhanced intestinal calcein absorption. Copyright (c) 2009 Elsevier B.V. All rights reserved.
[Microspeciation of amphoteric molecules of unusual acid-base properties].
Kóczián, Kristóf
2007-01-01
The phisico-chemical properties of bio- and drug molecules greatly influence their interactions in the body and strongly effect the mechanism of drug action. Among these properties, macroscopic and site-specific protonation constants are of crucial importance. Latter one is the tool to calculate the relative concentration of the various microspecies in the compartments of the body at different pH values, and also, it is the versatile parameter to improve the pharmacokinetic properties of a new molecule in a particular family of drugs. In the present thesis work, the microspeciation of three molecules of great pharmaceutical importance and unusual acid-base properties, were carried out. The microconstants of tenoxicam, the non-steroidal anti-inflammatory drug, were described, introducing a novel deductive method using Hammett constants. For this purpose, a total of 8 tenoxicam and piroxicam derivatives were synthesised. To the best of our knowledge, the log k(N)O microconstant of tenoxicam obtained thus is the lowest enolate basicity value, which, however, can be well explained by the effects of the intramolecular environment. The developed evaluation procedure is suitable for microconstant determination of compounds in other molecule families. Besides, prodrug-type compounds and analogues similar to the structures of selective COX-2 isoenzyme inhibitors were synthesised. The other two molecules studied, the 6-aminopenicillanic acid and 7-cephalosporanic acid, the core molecules of the two most important beta-lactam antibiotic-types were derivatised and investigated by 1D and 2D NMR techniques. The NMR-pH titration on the parent compounds and their ester derivatives, combined with in situ pH-measurements allowed the microspeciation of these easily decomposing molecules. One of the protonation constant of 7-ACA (log kN(O) = 4.12), to the best of our knowledge, is the least non-aromatic basic amino-site among the natural compounds.
Chemical constituents of Cordia latifolia and their nematicidal activity.
Begum, Sabira; Perwaiz, Sobiya; Siddiqui, Bina S; Khan, Shazia; Fayyaz, Shahina; Ramzan, Musarrat
2011-05-01
Following nematicidal activity-guided isolation studies on the fruits, bark, and leaves of Cordia latifolia, two new constituents, cordinoic acid (=11-oxours-12-ene-23,28-dioic acid; 1) and cordicilin (=2-{[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3-[4-hydroxy-3-(stearoyloxy)phenyl]propanoic acid; 2) were isolated from the stem and leaves, respectively, together with nine known compounds, namely cordioic and cordifolic acid from the stem bark, latifolicin A-D and rosmarinic acid from the fruits, and cordinol and cordicinol from the leaves. Their structures were determined by means of spectroscopic analyses including 1D- and 2D-NMR techniques. The nematicidal activities of these constituents were determined against the root-knot nematode Meloidogyne incognita. Hundred percent mortality was caused by all of these after 72 h at a 0.125% concentration. Compound 1 and cordioic acid were most active and caused 100% mortality after 24 h at a 0.50% concentration. Furthermore, compound 2, the ester of rosemarinic acid, was found to be more active than the free acid. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Yang, Heejung; Kim, Hye Seong; Jeong, Eun Ju; Khiev, Piseth; Chin, Young-Won; Sung, Sang Hyun
2013-10-01
Juvenile hormone III (JH III) is a larval metamorphosis-regulating hormone present in most insect species. JH III was first isolated from the plant, Cyperus iria L., but the presence of JH III has not been reported in other plant species. In the present study, proof of the existence of JH III and its analogues from Cananga latifolia was established. From an aqueous MeOH extract of C. latifolia stem bark, six compounds were isolated along with nine known compounds. These were identified by using spectroscopic analyses as: (2E,6E,10R)-11-butoxy-10-hydroxy-3,7,11-trimethyldodeca-2,6-dienoic acid methyl ester, (2E,6E)-3,7,11-trimethyl-10-oxododeca-2,6-dienoic acid methyl ester, (2E)-3-methyl-5-[(1S,2R,6R)-1,2,6-trimethyl-3-oxocyclohexyl]-pent-2-enoic acid methyl ester, 1β-hydroxy-3-oxo-4β, 5α,7α-H-eudesmane 11-O-α-l-rhamnopyranoside, 4-epi-aubergenone 11-O-2',3'-di-O-acetyl-α-l-rhamnopyranoside and 4-epi-aubergenone 11-O-2',4'-di-O-acetyl-α-l-rhamnopyranoside. Three of the previously known compounds, (2E,6E,10R)-10-hydroxy-3,7,11-trimethyldodeca-2,6,11-trienoaic acid methyl ester, (2E,6E,10R)-10,11-dihydroxy-3,7,11-trimethyldodeca-2,6-dienoic acid and (2E,6S)-3-methyl-6-hydroxy-6-[(2R,5R)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl]-hex-2-enoaic acid methyl ester have now been found in a plant species. Ultra performance liquid chromatography-quadruple time-of-flight mass spectroscopy (UPLC-QTOF/MS) analysis of the chemical constituents of C. latifolia showed that several were predominant in the sub-fractions of a C. latifolia stem bark extract. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dielectric Properties and Electrodynamic Process of Natural Ester-Based Insulating Nanofluid
NASA Astrophysics Data System (ADS)
Zou, Ping; Li, Jian; Sun, Cai-Xin; Zhang, Zhao-Tao; Liao, Rui-Jin
Natural ester is currently used as an insulating oil and coolant for medium-power transformers. The biodegradability of insulating natural ester makes it a preferable insulation liquid to mineral oils. In this work, Fe3O4 nanoparticles were used along with oleic acid to improve the performance of insulating natural ester. The micro-morphology of Fe3O4 nanoparticles before and after surface modification was observed through transmission electron microscopy. Attenuated total reflection-Fourier transform infrared spectroscopy, thermal gravimetric analysis, and differential thermal analysis were employed to investigate functional groups and their thermal stability on the surface-modified Fe3O4 nanoparticles. Basic dielectric properties of natural ester-based insulating nanofluid were measured. The electrodynamic process in the natural ester-based insulating nanofluid is also presented.
Dosta, Pere; Segovia, Nathaly; Cascante, Anna; Ramos, Victor; Borrós, Salvador
2015-07-01
Here we present an extended family of pBAEs that incorporate terminal oligopeptide moieties synthesized from both positive and negative amino acids. Polymer formulations of mixtures of negative and positive oligopeptide-modified pBAEs are capable of condensing siRNA into discrete nanoparticles. We have demonstrated that efficient delivery of nucleic acids in a cell-type dependent manner can be achieved by careful control of the pBAE formulation. In addition, our approach of adding differently charged oligopeptides to the termini of poly(β-amino ester)s is of great interest for the design of tailored complexes having specific features, such as tuneable zeta potential. We anticipate that this surface charge tunability may be a powerful strategy to control unwanted electrostatic interactions, while preserving high silencing efficiency and reduced toxicity. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Secondary metabolites from endemic species Iris adriatica Trinajstić ex Mitić (Iridaceae).
Bukvički, Danka; Novaković, Miroslav; Ab Ghani, Nurunajah; Marin, Petar D; Asakawa, Yoshinori
2018-08-01
This manuscript describes the first detailed chemical investigation of endemic species Iris adriatica, including isolation and structure elucidation. Chemical analyses of the rhizome CH 2 Cl 2 /MeOH (2:1) extract revealed fourteen secondary metabolites, mainly isoflavonoids. Among isoflavonoids, two groups have been found: nigricin-type and tectorigenin-type. Dominant group of the isolated compounds has been nigricin-type isoflavones: nigricin, nigricin-4'-(1-O-β-D-glucopyranoside) and nigricin-4'-(1-O-β-D-glucopyranosyl (1-6)-β-D-glucopyranoside) with 2.5, 10 and 1% of the total extract, respectively. Irisxanthone - xanthone C-glucoside, β-sitosterol, benzophenone and one of its derivatives have also been found. Nigricin-type isoflavonoids and irisxanthone can be considered as possible chemotaxonomic markers for I. adriatica. 5,3',5'-Trimethoxy-6,7-methylenedioxyisoflavone-4'-(1-O-β-D-glucopyranoside) and benzophenone have been isolated from Iris species for the first time.
A concise and practical stereoselective synthesis of ipragliflozin L-proline
Ma, Shuai; Liu, Zhenren; Pan, Jing; Zhang, Shunli
2017-01-01
A concise and practical stereoselective synthesis of ipragliflozin L-proline was presented starting from 2-[(5-iodo-2-fluorophenyl)methyl]-1-benzothiophene and 2,3,4,6-tetra-O-pivaloyl-α-D-glucopyranosyl bromide without catalyst via iodine–lithium–zinc exchange. The overall yield was 52% in three steps and the product purity was excellent. Two key diastereomers were prepared with efficient and direct access to the α-C-arylglucoside. PMID:28684985
Chemical composition of the leaf and stem essential oil of Adenophorae Radix
NASA Astrophysics Data System (ADS)
Lan, Weijie; Lin, Shang; Li, Xindan; Zhang, Qing; Qin, Wen
2017-03-01
The chemical composition of the essential oil extracted from leaves and stems of Adenophorae Radix was determined for the first time in this study. Twenty-six compounds were identified by gas chromatography coupled to mass spectrometry (GC-MS). n-Hexadecanoic acid (29.14%), 9,12-octadecadienoic acid (Z,Z)- (17.22%), hexadecanoic acid, methyl ester(8.98%), 9-octadecenoic acid, methyl ester, (E)- (7.03%), 9,12-octadecadienoic acid (Z,Z)-, methyl ester (5.93%), phytol (5.50%), and estradiol (4.43%) were measured as the major compounds in stem oil. The leaf essential oil was dominated by n-hexadecanoic acid (50.78%), 9-octadecenoic acid, methyl ester, (E)- (9.04%), phytol (8.47%), d-mannitol (5.81%), 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (4.31%), hexadecanoic acid, methyl ester (2.19%) and 9,12-octadecadienoic acid (Z,Z)-(1.7%). The leaves yield was 0.12% (v/w) and the stems yield showed only 0.073% (v/w). The results might provide reference basis for further exploration of its application value.
Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa
2018-04-01
In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.
Metkus, T S; Timpone, J; Leaf, D; Bidwell Goetz, M; Harris, W S; Brown, T T
2013-10-01
Cardiovascular disease and osteoporosis are common in HIV-infected patients and residual systemic inflammation is thought to contribute to both of these disorders. We performed a randomized placebo-controlled trial of omega-3-acid (O3A) ethyl esters in HIV-infected patients with hypertriglyceridaemia, hypothesizing that O3A would decrease serum levels of triglycerides, markers of systemic inflammation, and markers of bone turnover. HIV-infected patients (n = 48 recruited at three sites) with CD4 count >200 cells/μL, suppressed viral load, and triglycerides >200 mg/dL were randomized to placebo or 3.6 g/d of O3A. Fasting lipid profiles and markers of inflammation and bone turnover were assessed at baseline and after 8 weeks of treatment. Baseline HIV status, lipid profile, bone metabolism and cardiovascular risk factors were similar between the groups. Inflammatory markers were similar between the treatment groups at baseline, except for interleukin (IL)-6 and tumour necrosis factor (TNF)-α, which were higher in the O3A group. The concentration of triglycerides in patients receiving O3A decreased by a median (interquartile range (IQR)) of -34 (-149, 9.5) mg/dL vs. a median increase of 46.5 (-51, 123) mg/dL in the placebo group (P = 0.01). The median percentage change in IL-6 was greater in the O3A group compared with the placebo group [-39% (-63, 12%) vs. 29% (10, 177%), respectively; P = 0.006]. Similar results were observed for TNF-α, but not other inflammatory or bone turnover markers. O3A ethyl esters decreased the concentrations of triglycerides, IL-6 and TNF-α in patients with well-controlled HIV infection and hypertriglyceridaemia. Larger studies are required to confirm these findings and investigate their clinical significance. © 2013 British HIV Association.
Huijghebaert, S M; Hofmann, A F
1986-07-01
The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial cultures from healthy volunteers also hydrolyzed cholyl-L-valine and cholyl-D-valine more slowly than cholylglycine, suggesting that cholylglycine hydrolase from Clostridium perfringens has a substrate specificity similar to that of the deconjugating enzymes of the fecal flora. The results indicate that modification of the position of the amide bond, introduction of steric hindrance near the amide bond, or loss of a negative charge on the terminal group of the amino acid moiety of the bile acid conjugate greatly reduces the rate of bacterial deconjugation in vitro when compared to that of the naturally occurring glycine and taurine conjugates.
Saied, Sumayya; Shah, Shazia; Ali, Zulfiqar; Khan, Ajmal; Marasini, Bishnu P; Choudhary, Muhammad Iqbal
2011-08-01
Phytochemical investigation of the aerial parts of Cichorium intybus L. resulted in the isolation and identification of two new natural metabolites, 2,6-di[but-3(E)-en-2-onyl]naphthalene (1), and 3,3',4,4'-tetrahydroxychalcone (2), along with nine known compounds. Their structures were determined by spectroscopic techniques including 1D and 2D NMR. The known compounds were identified as scopoletin (3), 4-hydroxyphenylacetic acid (4), 3-hydroxy-4-methoxybenzoic acid (5), 4,4'-dihydroxychalcone (6), 6,7-dihydroxycoumarine (7), 1-triacontanol (8), lupeol (9), beta-sitosterol (10), and beta-sitosterol-3-O-beta-glucopyranoside (11). Compounds 4-6 and 8 are reported for the first time from C. intybus. Compounds 2 and 3 showed weak inhibitory activities against urease and alpha-chymotrypsin enzymes, respectively.
Feruloyl esterases from Schizophyllum commune to treat food industry side-streams.
Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G
2016-11-01
Agro-industrial side-streams are abundant and renewable resources of hydroxycinnamic acids with potential applications as antioxidants and preservatives in the food, health, cosmetic, and pharmaceutical industries. Feruloyl esterases (FAEs) from Schizophyllum commune were functionally expressed in Pichia pastoris with extracellular activities of 6000UL(-1). The recombinant enzymes, ScFaeD1 and ScFaeD2, released ferulic acid from destarched wheat bran and sugar beet pectin. Overnight incubation of coffee pulp released caffeic (>60%), ferulic (>80%) and p-coumaric acid (100%) indicating applicability for the valorization of food processing wastes and enhanced biomass degradation. Based on substrate specificity profiling and the release of diferulates from destarched wheat bran, the recombinant FAEs were characterized as type D FAEs. ScFaeD1 and ScFaeD2 preferably hydrolyzed feruloylated saccharides with ferulic acid esterified to the O-5 position of arabinose residues and showed an unprecedented ability to hydrolyze benzoic acid esters. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Varma, Vikram
A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen for study. The Shigella flexneri Y O-antigen is a linear polysaccharide that is composed of rhamnose units linked alpha- scL-(1 to 3) and alpha- scL-(1 to 2), interspersed by N-acetyl-beta - scD-glucosamine (beta- scD -GlcpNAc) to form a periodic repeating unit ABCD. &rm A&rm B&rm C&rm Dcr [{-alpha}{-}L {-}Rha{it p}-(1to2){ -alpha}{-}L{-}Rha{it p}{-}(1to3){-alpha} {-}L{-}Rha{it p}{ -}(1to3){-}beta{-}D {-}Glc{it p}NAc{-}(1 to2){-}]_{it n}A heptasaccharide corresponding to the fragment (ABCDA^'B ^'C^' ) of the Shigella flexneri Y polysaccharide has been investigated. The conformational properties of all of the oligosaccharides have been studied using molecular dynamics simulations. Interproton distances derived from ROESY spectra are used to determine the starting conformations of the oligosaccharides used in the dynamics calculations, and dynamics simulations are computed with proton pairs constrained to the ROESY -derived distances, as well as with the constraints removed. These dynamics trajectories are used to calculate ROESY buildup curves with CROSREL, a program that treats cross relaxation by means of a full matrix relaxation approach. The calculated buildup curves compare favorably with the experimental buildup curves. The study demonstrates that molecular dynamics, in conjunction with NMR spectroscopy, can be a useful tool in the understanding of the conformational behavior of oligosaccharides in solution. The results provide a model for antigen topology that can be used to infer some of the critical features of antibody-antigen interactions.
Schramm, Simon; Huang, Guozheng; Gunesch, Sandra; Lang, Florian; Roa, Judit; Högger, Petra; Sabaté, Raimon; Maher, Pamela; Decker, Michael
2018-02-25
A series of neuroprotective hybrid compounds was synthesized by conjugation of the flavonolignan silibinin with natural phenolic acids, such as ferulic, cinnamic and syringic acid. Selective 7-O-esterfication without protection groups was achieved by applying the respective acyl chlorides. Sixteen compounds were obtained and SARs were established by evaluating antioxidative properties in the physicochemical FRAP assay, as well as in a cell-based neuroprotection assay using murine hippocampal HT-22 cells. Despite weak activities in the FRAP assay, esters of the α,β-unsaturated acids showed pronounced overadditive effects at low concentrations greatly exceeding the effects of equimolar mixtures of silibinin and the respective acids in the neuroprotection assay. Cinnamic and ferulic acid esters (5a and 6a) also showed overadditive effects regarding inhibition of microglial activation, PC12 cell differentiation, in vitro ischemia as well as anti-aggregating abilities against Aβ42 peptide and τ protein. Remarkably, the esters of ferulic acid with silybin A and silybin B (11a and 11b) showed a moderate but significant difference in both neuroprotection and in their anti-aggregating capacities. The results demonstrate that non-toxic natural antioxidants can be regioselectively connected as esters with medium-term stability exhibiting very pronounced overadditive effects in a portfolio of biological assays. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
[Studies on the chemical constituents from the bark of Choerospondias axillaries].
Li, Sheng-Hua; Wu, Xian-Jin; Zheng, Yao; Jiang, Chong-Liang
2009-10-01
To study the chemical constituents of Choerospondias axillaries. All compounds were isolated and purified by normal column chromatograph, paper thin layer chromatograph and sephadex chromatograph, the chemical strucures were mainly elucidated by ESI-MS and NMR spectra. seven compouds were isolated from the Choerospondias axillaries and as following: beta-sitostero (I), hexadecanoic acid (II), correctitude fourty-two alkyl acid (III), daucosterol (IV), quercetin (V), rutinum (VI), lueolin-3'-O-beta-D-glucopyranoside (VII). Compounds II, III, V, VII are isolated from this plant for the first time.
Parida, Pravat Kumar; Sau, Abhijit; Ghosh, Tamashree; Jana, Kuladip; Biswas, Kaushik; Raha, Sanghamitra; Misra, Anup Kumar
2014-08-15
A series of glycosyl triazol linked 18β-glycyrrhetinic acid (GA) derivatives have been synthesized using 1,3-dipolar cycloaddition reaction of per-O-acetylated glycosyl azide derivatives (4a-h) with propargyl ester of 18β-glycyrrhetinic acid (GA) (2 and 3) following the concept of 'Click chemistry'. The synthesized triazole derivatives were de-O-acetylated to furnish compounds (7a-h and 8a-c) with free hydroxyl groups in the carbohydrate moieties, which were evaluated for their anticancer potential against human cervical cancer cells (HeLa) and normal kidney epithelial (NKE) cells. GA (1), compound 7d, compound 7g and compound 8c showed promising anticancer activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, M T; Ahmed, T; Friedman, M E
1989-01-01
Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.
Guidotti, A; Forchetti, C M; Corda, M G; Konkel, D; Bennett, C D; Costa, E
1983-01-01
A brain polypeptide termed diazepam-binding inhibitor (DBI) and thought to be chemically and functionally related to the endogenous effector of the benzodiazepine recognition site was purified to homogeneity. This peptide gives a single band of protein on NaDodSO4 and acidic urea gel electrophoresis. A single UV-absorbing peak was obtained by HPLC using three different columns and solvent systems. DBI has a molecular mass of approximately equal to 11,000 daltons. Carboxyl-terminus analysis shows that tyrosine is the only residue while the amino-terminus was blocked. Cyanogen bromide treatment of DBI yields three polypeptide fragments, and the sequences of two of them have been determined for a total of 45 amino acids. DBI is a competitive inhibitor for the binding of [3H]diazepam, [3H]flunitrazepam, beta-[3H]carboline propyl esters, and 3H-labeled Ro 15-1788. The Ki for [3H]-diazepam and beta-[3H]carboline binding were 4 and 1 microM, respectively. Doses of DBI that inhibited [3H]diazepam binding by greater than 50% fail to change [3H]etorphine, gamma-amino[3H]butyric acid, [3H]-quinuclidinyl benzilate, [3H]dihydroalprenolol, [3H]adenosine, and [3H]imipramine binding tested at their respective Kd values. DBI injected intraventricularly at doses of 5-10 nmol completely reversed the anticonflict action of diazepam on unpunished drinking and, similar to the anxiety-inducing beta-carboline derivative FG 7142 (beta-carboline-3-carboxylic acid methyl ester), facilitated the shock-induced suppression of drinking by lowering the threshold for this response. Images PMID:6304714
Dinand, E; Excoffier, G; Liénart, Y; Vignon, M R
1997-01-01
Water extraction of semi-retted flax (Linum usitatissimum L.) fiber bundles yielded a mixture of pectic oligosaccharides and two acidic rhamnogalacturonide tetrasaccharides that were separated by size-exclusion chromatography. One- and two-dimensional nuclear magnetic resonance studies and fast atom bombardment-mass spectrometry experiments indicated that the two tetrasaccharides have a common primary structure, i.e. alpha-D-delta GalpA(1-->2)-alpha-L- Rhap(1-->4)-alpha-D-GalpA-(1-->2)-L-alpha,beta-Rhap, with a rhamnopyranose as terminal reducing end, and a 4-deoxy-beta-L-threo-hex-4-enopyranosiduronic acid at the nonreducing end. However, the two tetrasaccharides differ by an acetyl group located at the O-3 position of the internal galacturonic acid residue. These two tetrasaccharides induce the activation of D-glycohydrolases of Rubus fructicosus L. cells or protoplasts within minutes. PMID:9342877
Gylling, Helena; Hallikainen, Maarit; Nissinen, Markku J; Miettinen, Tatu A
2010-02-01
Intake of 2-3 g/d of plant stanols as esters lowers LDL cholesterol level, but there is no information about the efficacy and safety of a respective very high daily intake. We studied the effects of 8.8 g/d of plant stanols as esters on serum lipids and safety variables in subjects with mild to moderate hypercholesterolemia. In a randomized, double-blind, placebo-controlled study the intervention (n=25) and control (n=24) groups consumed spread and drink enriched or not with plant stanol esters for 10 weeks. Plant stanols reduced serum total and LDL cholesterol concentrations by 12.8 and 17.3% from baseline and by 12.0 and 17.1% from controls (P<0.01 for all). Liver enzymes, markers of hemolysis, and blood cells were unchanged. Serum vitamins A, D, and gamma-tocopherol concentrations, and the ratios of alpha-tocopherol to cholesterol were unchanged. Serum beta-carotene concentrations decreased significantly from baseline and were different from controls even when adjusted for cholesterol. Serum alpha-carotene concentration and alpha-carotene/cholesterol ratio were not different from controls. High intake of plant stanols reduced LDL cholesterol values without any other side effects than reduction of serum beta-carotene concentration. However, the end product, serum vitamin A levels, were unchanged. The results suggest that plant stanol ester intake can be increased to induce a greater cholesterol lowering effect. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.
2000-07-14
Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety ofmore » applications such as scavenging of heavy metals.« less
Investigation of liquid wax components of Egyptian jojoba seeds.
El-Mallah, Mohammed Hassan; El-Shami, Safinaz Mohammed
2009-01-01
Egyptian jojoba seeds newly cultivated in Ismailia desert in Egypt promoted us to determine its lipid components. Fatty alcohols, fatty acids, wax esters and sterols patterns were determined by capillary GLC whereas, tocopherols profile, isopropenoid alcohols and sterylglycosides were determined by HPLC. The Egyptian seeds are rich in wax esters (55 %) with fatty alcohols C20:1 and C22:1 as major components and amounted to 43.0 % and 45.6 % respectively followed by C24:1 and C18:1(9.6 % and 1.3 % respectively). The fatty acids profile showed that C20:1 is the major constituent (60 %) followed by C18:1 and C22:1 (14.5 and 11.8 % respectively) whereas C24:1 was present at low concentration amounted to 1.6 %. In addition, the Egyptian jojoba wax contained C18:2 fatty acid at a level of 8.7 %. Wax esters composition showed that the local wax had C42 and C40 esters as major components amounted to 51.1 and 30.1 % respectively. Also, it had C44 and C38 at reasonable amounts (10.0 and 6.3 % respectively). Whereas C36 and C46 were present at lower concentrations amounted to 1.4 and 1.1 respectively. The sterols analysis showed the presence of campe-, stigma-, beta-sito-, and isofuco- sterol amounting to 18.4 %, 6.9 %, 68.7 %, and 6.0 % respectively. The tocopherols pattern revealed that the local seed wax contained gamma-tocopherol as major constituent (79.2 %) followed by alpha-tocopherol (20.3 %). beta-tocopherol as well as delta-tocopherol were found as minor constituents. The isopropenoid alcohols and the sterylglycosides (free and acylated) were not detected. The wax is proposed to be used in oleo chemistry and cosmetics.
NASA Astrophysics Data System (ADS)
Qiang, Liming; Cao, Shuxia; Zhao, Xiaoyang; Mao, Xiangju; Guo, Yanchun; Liao, Xincheng; Zhao, Yufen
2007-10-01
The fragmentation patterns of N-diisopropyloxyphosphoryl-l-[alpha]-Ala (DIPP-l-[alpha]-Ala), N-diisopropyloxyphosphoryl-d-[alpha]-Ala (DIPP-d-[alpha]-Ala), N-diisopropyloxyphosphoryl-[beta]-Ala (DIPP-[beta]-Ala) and N-diisopropyloxyphosphoryl-[gamma]-amino butyric acid (DIPP-[gamma]-Aba) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). DIPP-d-[alpha]-Ala showed the same fragmentation pathways as DIPP-l-[alpha]-Ala. In the fragmentation of protonated DIPP-[beta]-Ala, the characteristic fragment ion [M + H - 2C3H6 - H2O - CH2CO]+ appeared and could be used to distinguish [beta]-Ala from l-[alpha]-Ala and d-[alpha]-Ala through tandem mass spectra, even though they possess the same molecular weight. In the fragmentation of protonated DIPP-[gamma]-Aba, the break of PN bond occurred and an interesting protonated lactam ion with five-membered ring was generated. Furthermore, in the MS3 spectrum of [M + Na - 2C3H6]+ ion of DIPP-[gamma]-Aba, a strong intensity of unique fragment ion, namely lactam-sodium adduct with five-membered ring, was observed, which could be considered as a mark for [gamma]-amino acids. The stepwise fragmentations of their [M + Na]+ ions and [M - H]- ions showed that they all underwent a PN to PO bond migration through a five-membered or six-membered or even seven-membered ring transition state, respectively, which supported the great affinity of hydroxyl for phosphoryl group.
Shpatov, Alexander V; Popov, Sergey A; Salnikova, Olga I; Kukina, Tatyana P; Shmidt, Emma N; Um, Byung Hun
2017-02-01
Lipophilic extractive metabolites in different parts of the shoot system (needles and defoliated twigs) of Korean pine, Pinus koraiensis, and Siberian pine, Pinus sibirica, were studied by GC/MS. Korean pine needles comprised mainly bornyl p-coumarate, heterocyclic 15-O-functionalized labdane type acids (lambertianic acid), 10-nonacosanol, sterols and their esters. While Siberian pine needles contained less bornyl p-coumarate, lambertianic acid, sterols and their esters, but were richer in other 15-O-functionalized labdane type acids. The major components of the twig extract of P. koraiensis were lambertianic acid, abietane and isopimarane type acids, cembrane type alcohols, 8-O-functionalized labdanoids, sterols, sterol esters, and acylglycerols. The same extract of P. sibirica differed in larger amounts of other 15-O-functionalized labdane type acids and pinolenic acid glycerides, but in less quantities of cembranoids and 8-O-functionalized labdanoids. The labdane type pinusolic acid was detected for the first time in Korean pine. P. koraiensis was found to be unique in the genus for an ability to synthesize phyllocladane diterpenoids. The content of bound Δ 5 -unsaturated polymethylene-interrupted fatty acids in the twig extracts of the both pines was similar or superior to that in their seed oil. Among the pines' metabolites tested isocembrol was strongest in inhibition of both α-glucosidase (IC 50 2.9 μg/ml) and NO production in activated macrophages (IC 50 3.6 μg/ml). © 2017 Wiley-VHCA AG, Zurich, Switzerland.
van Loo, Bert; Schober, Markus; Valkov, Eugene; Heberlein, Magdalena; Bornberg-Bauer, Erich; Faber, Kurt; Hyvönen, Marko; Hollfelder, Florian
2018-03-30
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (k cat /K M =4.8×10 3 s -1 M -1 ) as well as arylsulfate 4-nitrophenyl sulfate (k cat /K M =12s -1 M -1 ). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H 2 18 O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H
2016-05-24
Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.
Fatty acid methyl esters with two vicinal alkylthio side chains and their NMR characterization
USDA-ARS?s Scientific Manuscript database
The addition reaction of dimethyl disulfide (DMDS) to double bonds in alkenes and monounsaturated fatty acid esters in the presence of iodine or other catalysts to give bis(methylthio) derivatives has largely served analytical purposes in mass spectrometry with scattered reports on the addition of o...
Huang, Gang-Liang; Liu, Man-Xi; Mei, Xin-Ya
2004-06-01
We describe a approach for the synthesis of a mixture of 3,4-epoxybutyl (1-->3)-beta-D-oligoglucosides. The particular (1-->3)-beta-D-glucan isolated from the cell walls of Saccharomyces cerevisiae was recovered from the aqueous medium as water-insoluble particles by the spray drying (GS) method, and it was characterized by FTIR spectroscopy. The acid-solubilized (1-->3)-beta-D-oligoglucosides were prepared by partial acid hydrolysis of glucan particles, which were qualitatively analyzed by fluorophore-assisted carbohydrate electrophoresis (FACE). The peracetylated 3-butenyl (1-->3)-beta-D-oligoglucosides were synthesized by treating peracetylated (1-->3)-beta-D-oligoglucosides with the 3-butenyl alcohols and a Lewis acid (SnCl4) catalyst. Epoxidation of the peracetylated 3-butenyl oligoglucosides took place with m-chloroperoxybenzoic acid (m-CPBA). NaOMe in dry methanol was used for the deacetylation of the blocked derivatives, to give the 3,4-epoxybutyl (1-->3)-beta-D-oligoglucoside mixture in an overall yield of 21%. The sample was analyzed by positive-ion electrospray ionization mass spectrometry (ESIMS). In a 3,4-epoxybutyl (1-->3)-beta-D-oligoglucoside-binding (1-->3)-beta-D-glucanase assay, we found that the (1-->3)-beta-D-glucanase was obviously inactivated by the 3,4-epoxybutyl (1-->3)-beta-D-oligoglucosides. At the same time, we found the 3,4-epoxybutyl (1-->3)-beta-D-oligoglucoside mixture was more active as compared to the underivatized oligoglucoside mixture in eliciting phytoalexin accumulation in tobacco cotyledon tissue. Furthermore, it could be kept for a longer time than a (1-->3)-beta-D-oligoglucoside mixture, which indicated it is much more stable than (1-->3)-beta-D-oligoglucosides. Copyright 2004 Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...
Olutoye, M A; Hameed, B H
2011-06-01
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bolton, C. H.; Hough, L.; Khan, M. Y.
1966-01-01
1. The isolation, characterization and properties of two by-products in the preparation of 2-acetamido-3,4,6-tri-O- acetyl-2-deoxy-β-d-glucopyranosylamine are described. They are bis(2-acetamido-2-deoxy-d-glucopyranosyl)amines. 2. An independent synthesis of the bis-glycopyranosylamines is reported and conditions are given for their preparation in high yield. 3. Further improvements are given for the synthesis of 2-acetamido-1-N-(β-l- aspartyl)-2-deoxy-β-d-glucopyranosylamine and the α-l-aspartyl isomer. 4. The synthesis of 2-acetamido-1-N-acetyl-2-deoxy-β-d-glucopyranosylamine is described. PMID:5971780
Dang, Zhao; Qian, Keduo; Ho, Phong; Zhu, Lei; Lee, Kuo-Hsiung; Huang, Li; Chen, Chin-Ho
2012-08-15
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wolfram, Ratna Kancana; Heller, Lucie; Csuk, René
2018-05-25
Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Commercial Approval Plan for Synthetic Jet Fuel from Hydrotreated Fats and Oils
2009-02-18
driven by their experience, some of it very negative, with the other more well known organic oil derived fuel, BioDiesel. BioDiesel is methyl ester of...the fatty acid ( FAME ) that comes from the triglycerides that compose the organic oil. The HRJ SPKs are deoxygenated materials that are processed in...SwRI Cu PE506 * Semi-Quant Survey ICP/MS * Organic Elements C:H D5291 * N D4629 * S D5453 * Acid Number D3242 * Carbonyls, alcohols, esters , phenols
Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong
2016-02-01
Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.
Van Stipdonk, Michael J; Kerstetter, Dale R; Leavitt, Christopher M; Groenewold, Gary S; Steill, Jeffrey; Oomens, Jos
2008-06-14
Wavelength-selective infrared multiple-photon photodissociation (WS-IRMPD) was used to study isotopically-labeled ions generated by McLafferty rearrangement of nicotinyl-glycine-tert-butyl ester and betaine-glycine-tert-butyl ester. The tert-butyl esters were incubated in a mixture of D(2)O and CH(3)OD to induce solution-phase hydrogen-deuterium exchange and then converted to gas-phase ions using electrospray ionization. McLafferty rearrangement was used to generate the free-acid forms of the respective model peptides through transfer of an H atom and elimination of butene. The specific aim was to use vibrational spectra generated by WS-IRMPD to determine whether the H atom remains at the acid group, or migrates to one or more of the other exchangeable sites. Comparison of the IRMPD results in the region from 1200-1900 cm(-1) to theoretical spectra for different isotopically-labeled isomers clearly shows that the H atom is situated at the C-terminal acid group and migration to amide positions is negligible on the time scale of the experiment. The results of this study suggest that use of the McLafferty rearrangement for peptide esters could be an effective approach for generation of H-atom isotope tracers, in situ, for subsequent investigation of intramolecular proton migration during peptide fragmentation studies.
Ben Ammar, Rebai; Miyamoto, Tomofumi; Chekir-Ghedira, Leila; Ghedira, Kamel; Lacaille-Dubois, Marie-Aleth
2018-03-13
From the butanolic and the ethyl acetate extracts of Rhamnus alaternus L root bark and leaves, three new anthraquinone glycosides, alaternosides A-C (1,4,6,8 tetrahydroxy-3 methyl anthraquinone 1-O-ß-D-glucopyranosyl-4,6-di-O-α-L-rhamnopyranoside (1); 1,2,6,8 tetrahydroxy-3 methyl anthraquinone 8-O-ß-D-glucopyranoside (2) and 1, 6 dihydroxy-3 methyl 6 [2'-Me (heptoxy)] anthraquinone (3)) were isolated and elucidated together with the two known anthraquinone glycosides, Physcion-8-O-rutinoside (4) and emodin-6-O-α-L-rhamnoside (5) as well as with the known kaempferol-7-methylether (6), β-sitosterol (7) and β-sitosterol-3-O-glycoside (8). Their chemical structures were elucidated using spectroscopic methods (1D-, 2D-NMR and FAB-MS). Free radical scavenging activity of the isolated compounds was evaluated by their ability to scavenge DPPH . free radicals. Compounds (3), (4) and (6) showed the highest activity with IC 50 values of 9.46, 27.68 and 2.35 μg/mL, respectively.
Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki
2014-01-01
Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028
New 5-O-caffeoylquinic acid derivatives in fruit of the wild eggplant relative Solanum viarum
USDA-ARS?s Scientific Manuscript database
Fruit of cultivated eggplant (Solanum melongena) and several wild relatives (S. aethiopicum, S. macrocarpon, S. anguivi, and S. incanum) have a high content of hydroxycinnamic acid (HCA) conjugates. Typically, caffeoylquinic acid esters predominate, and in particular chlorogenic acid [5-O-(E)-caffeo...
[Glycosides from flowers of Jasminum officinale L. var. grandiflorum].
Zhao, Gui-qin; Xia, Jing-jing; Dong, Jun-xing
2007-10-01
To study the chemical constituents of the flower of Jasminum officinale L. var. grandiflorum. The compounds were isolated and purified by re-crystallization and chromatography on silica gel and Sephadex LH-20 column. Their structures were elucidated on the physicochemical properties and spectral analysis. Seven glycosides were identified as kaempferol-3-O-alpha-L-rhamnopyranosyl (1-->3)-[alpha-L-rhamnopyranosyl (1-->6)]-beta-D-galactopyranoside (I), kaempferol-3-O-rutinoside (II), 7-ketologanin (III), oleoside-11-methyl ester (IV), 7-glucosyl-l1-methyl oleoside (V), ligstroside (VI), oleuropein (VII). Compound I is a new compound. Compounds III and V were isolated from the family of Jasminum for the first time and compounds II, IV and VI were isolated from Jasminum officinale L. var. grandiflorum for the first time.
Granado-Lorencio, F; Herrero-Barbudo, C; Blanco-Navarro, I; Pérez-Sacristán, B
2010-06-01
Our aim was to assess the suitability of ultra-high performance liquid chromatography (UHPLC) for the simultaneous determination of biomarkers of vitamins A (retinol, retinyl esters), E (alpha- and gamma-tocopherol), D (25-OH-vitamin D), and the major carotenoids in human serum to be used in clinical practice. UHPLC analysis was performed on HSS T3 column (2.1 x 100 mm; 1.8 microm) using gradient elution and UV-VIS detection. The system allows the simultaneous determination of retinol, retinyl palmitate, 25-OH-vitamin D, alpha- and gamma-tocopherol, lutein plus zeaxanthin, alpha-carotene, beta-carotene, alpha- and beta-cryptoxanthin and lycopene. The method showed a good linearity over the physiological range with an adequate accuracy in samples from quality control programs. Suitability of the method in clinical practice was tested by analyzing samples (n = 286) from patients. In conclusion, UHPLC constitutes a reliable approach for nutrient/biomarker profiling allowing the rapid, simultaneous and low-cost determination of vitamins A, E, and D (including vitamers and ester forms) and the major carotenoids in clinical practice.
Isolation and characterization of beta- and gamma-caseins from horse milk.
Visser, S; Jenness, R; Mullin, R J
1982-01-01
Three groups of casein components were isolated from horse milk. Group I is almost insoluble at acid and neutral pH, and is rather heterogeneous on alkaline gels with or without sodium dodecyl sulphate. Group II shows strong similarity to beta-casein from other species, as concluded from its amino acid composition and its N- and C-terminal sequences. This group consists of five electrophoretically distinguishable forms, all containing ester phosphate groups but no carbohydrate. Group III is composed of C-terminal fragments of the beta-like (group II) fraction and probably arises from the action of a plasmin-like enzyme present in horse milk. It does not contain phosphate or carbohydrate. Homology of this group with bovine gamma-caseins is demonstrated. Both beta- and gamma-like caseins are more soluble at 4 degrees C than at room temperature. Images Fig. 1. Fig. 3. Fig. 5. PMID:6213224
Khattab, Ahmed F; Abdel Megied, Ahmed E S; Pedersen, Erik B
2003-01-01
Condensation of the silylated pyrimidines 5a-c with methyl 2-deoxy-3,5-di-O-toluoyl-D-pentofuranoside 6, using trimethylsilyltriflate as catalyst gave anomeric mixtures of 2'-deoxynucleosides 7a-c, the pure alpha- and beta-anomers were separated and deprotected with sodium methoxide in methanol to give 1-(2'-deoxy-alpha-D-pentafuranosyl)-4-hydroxy-5-substituted-6(1H)-pyrimidinones 10a,b and 13a and their corresponding beta-anomers 11a,b and 13b.
Habibi, Emran; Sadat-Ebrahimi, Seyed Esmaeel; Mousazadeh, Saeed Ali; Amanzadeh, Yaghoub
2015-01-01
The purpose of this study was to elucidate the chemical properties of the n-hexane, chloroform, and ethyl acetate extracts of the fruiting body of the medicinal mushroom Trametes versicolor. The study led to the isolation of 5 sterols, 2 triterpene derivatives, 1 hydroquinone-derived aromatic compound, and, finally, 1 cerebroside and 1 triglyceride derivative. These compounds were identified for first time in T. versicolor and were named as follows: 4-isobutoxyphenyl palmitate (5), N-D-2'-hydroxyheptanoic-1-O-β-D-glucopyranosyl-9-methyl-4,8-sphinga-dienine(cerebroside) (6), 3β-linoleyloxyergosta-7,22-diene (7), 3β-linoleyloxyergosta-7-ene (8), and betulinic acid (9). Other compounds elucidated in our study were ergosterol (1), ergosterol peroxide (2), trilinolein (3), ergosta-7, 22-dien-3β-ol (4), and betuline (10). These compounds were obtained via column or thin-layer chromatography before being identified by nuclear magnetic resonance spectroscopic analyses and infrared data. In addition, the beneficial pharmacological effects of the compounds are described here.
NASA Astrophysics Data System (ADS)
Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.
2013-12-01
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimer esters. A total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimer esters was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a~factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimer esters correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimer esters. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.
LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES
Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...
Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.
Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi
2004-04-01
Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells.
Strynadka, N C; James, M N
1991-07-20
A structure of the trisaccharide 2-acetamido-2-deoxy-D-muramic acid-beta (1----4)-2-acetamido-2-deoxy-D-glucose-beta (1----4)-2-acetamido-2-deoxy-D-muramic acid (NAM-NAG-NAM), bound to subsites B, C and D in the active-site cleft of hen egg-white lysozyme has been determined and refined at 1.5 A resolution. The resulting atomic co-ordinates indicate that the NAM residue in site D is distorted from the full 4C1 chair conformation to one in which the ring atoms C-1, C-2, O-5 and C-5 are approximately coplanar, and the hydroxymethyl group is positioned axially (a conformation best described as a sofa). This finding supports the original proposals that suggested the ground-state conformation of the sugar bound in site D is strained to one that more closely resembles the geometry required for the oxocarbonium-ion transition state, the next step along the reaction pathway. Additionally, detailed analysis at 1.5 A resolution of the environments of the catalytic residues Glu35 and Asp52 provides new information on the properties that may allow lysozyme to promote the stabilization of an unusually long-lived oxocarbonium-ion transition state. Intermolecular interactions between the N-acetylmuramic acid residue in site D and the lysozyme molecule that contribute to the saccharide ring distortion include: close packing of the O-3' lactyl group with a hydrogen-bonded "platform" of enzyme residues (Asp52, Asn46, Asn59, Ser50 and Asp48), a close contact between the hydroxymethyl group of ring D and the 2'-acetamido group of ring C and a strong hydrogen-bonded interaction between the NH group of Val109 and O-6 of ring D that stabilizes the observed quasi-axial orientation of the -CH2OH group. Additionally, the structure of this complex shows a strong hydrogen bond between the carboxyl group of Glu35 and the beta-anomeric hydroxyl group of the NAM residue in site D. The hydrogen-bonded environment of Asp52 in the native enzyme and in the complex coupled with the very unfavorable direction of approach of the potential carboxylate nucleophile makes it most unlikely that there is a covalent glycosylenzyme intermediate on the hydrolysis pathway of hen egg-white lysozyme.
Jin, Lu; Xue, Ying; Zhang, Hui; Kim, Chan Kyung; Xie, Dai Qian; Yan, Guo Sen
2008-05-15
The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law.
Xingfeng, Guo; Daijie, Wang; Wenjuan, Duan; Jinhua, Du; Xiao, Wang
2010-01-01
Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high-speed counter-current chromatography (HSCCC). Following an initial clean-up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC-PAD, ESI-MS, (1)H-NMR and (13)C-NMR. The separation was performed using a two-phase solvent system composed of ethyl acetate-methanol-water-acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow-rate of 1.0 mL/min in the head-to-tail elution mode. Ultimately, 5.0 mg syringetin-3-O-beta-d-glucoside, 6.5 mg quercetin-3-O-beta-d-glucoside, 12.8 mg isorhamnetin-3-O-beta-d-glucoside and 32.5 mg kaempferol-3-O-beta-d-glucoside were obtained from 125 mg crude sample. The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. (c) 2009 John Wiley & Sons, Ltd.
Kantsadi, Anastassia L; Parmenopoulou, Vanessa; Bakalov, Dimitar N; Snelgrove, Laura; Stravodimos, George A; Chatzileontiadou, Demetra S M; Manta, Stella; Panagiotopoulou, Angeliki; Hayes, Joseph M; Komiotis, Dimitri; Leonidas, Demetres D
2015-01-01
Glycogen phosphorylase (GP), a validated target for the development of anti-hyperglycaemic agents, has been targeted for the design of novel glycopyranosylamine inhibitors. Exploiting the two most potent inhibitors from our previous study of N-acyl-β-D-glucopyranosylamines (Parmenopoulou et al., Bioorg. Med. Chem. 2014, 22, 4810), we have extended the linking group to -NHCONHCO- between the glucose moiety and the aliphatic/aromatic substituent in the GP catalytic site β-cavity. The N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors were synthesized and their efficiency assessed by biochemical methods, revealing inhibition constant values of 4.95 µM and 2.53 µM. Crystal structures of GP in complex with these inhibitors were determined and analyzed, providing data for further structure based design efforts. A novel Linear Response - Molecular Mechanics Coulomb Surface Area (LR-MM-CBSA) method has been developed which relates predicted and experimental binding free energies for a training set of N-acyl-N´-(β-D-glucopyranosyl) urea ligands with a correlation coefficient R(2) of 0.89 and leave-one-out cross-validation (LOO-cv) Q(2) statistic of 0.79. The method has significant applications to direct future lead optimization studies, where ligand entropy loss on binding is revealed as a key factor to be considered. ADMET property predictions revealed that apart from potential permeability issues, the synthesized N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors have drug-like potential without any toxicity warnings.
1985-01-01
of actin protein xg relative centrifugal force glorin N-propionyl- Y -L-glutawyl-L-ornithine- S- lactam ethyl ester [3 H]FA [7,9,3’,5 ’-3H]folic acid...solubilize the pellet and radioactivity was measured on a LKB Rack Beta scintillation counter. cAMP Binding to Whole Cells. This assay followed the well...inserts, pre-filled with 4ml of Unisolve I scintillant, and radioactivity measured on a LKB Rack Beta scintillation counter. Controls included: a) no
Joshi, Khem Raj; Devkota, Hari Prasad; Watanabe, Takashi; Yahara, Shoji
2014-01-01
Eleven phenolic compounds, quercetin (1), quercetin 3-O-β-d-galactopyranoside (2), quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside (3), quercetin 3-O-(6″-O-caffeoyl)-β-d-galactopyranoside (4), quercetin 3-O-β-d-glucopyranoside (5), rutin (6) quercetin 3-O-α-l-arabinopyranoside (7), quercetin 3-O-α-l-arabinofuranoside (8), protocatechulic acid (9), gallic acid (10) and chlorogenic acid (11), were isolated from the flowers of Aconogonon molle, a Nepalese medicinal plant. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from flowers, and five compounds (4, 5, 8, 9 and 11) were isolated for the first time from A. molle. All of these isolated compounds were evaluated for their in vitro antioxidant activity by using the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method. Quercetin (1), quercetin glycosides (2-8) and gallic acid (10) exhibited potent antioxidant activity.
Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha
2014-01-01
Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198
Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha
2014-11-06
Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.
Kondo, Miwako; MacKinnon, Shawna L; Craft, Cheryl C; Matchett, Michael D; Hurta, Robert A R; Neto, Catherine C
2011-03-30
Ursolic acid and its cis- and trans-3-O-p-hydroxycinnamoyl esters have been identified as constituents of American cranberries (Vaccinium macrocarpon), which inhibit tumor cell proliferation. Since the compounds may contribute to berry anticancer properties, their content in cranberries, selected cranberry products, and three other Vaccinium species (V. oxycoccus, V. vitis-idaea and V. angustifolium) was determined by liquid chromatography-mass spectroscopy. The ability of these compounds to inhibit growth in a panel of tumor cell lines and inhibit matrix metalloproteinase (MMP) activity associated with tumor invasion and metastasis was determined in DU145 prostate tumor cells. The highest content of ursolic acid and esters was found in V. macrocarpon berries (0.460-1.090 g ursolic acid and 0.040-0.160 g each ester kg(-1) fresh weight). V. vitis-idaea and V. angustifolium contained ursolic acid (0.230-0.260 g kg(-1) ), but the esters were not detected. V. oxycoccus was lowest (0.129 g ursolic acid and esters per kg). Ursolic acid content was highest in cranberry products prepared from whole fruit. Ursolic acid and its esters inhibited tumor cell growth at micromolar concentrations, and inhibited MMP-2 and MMP-9 activity at concentrations below those previously reported for cranberry polyphenolics. Cranberries (V. macrocarpon) were the best source of ursolic acid and its esters among the fruit and products tested. These compounds may limit prostate carcinogenesis through matrix metalloproteinase inhibition. Copyright © 2011 Society of Chemical Industry.
Hamburg, A; Puvanesarajah, V; Burnett, T J; Barnekow, D E; Premkumar, N D; Smith, G A
2001-01-01
The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) applied foliarly as the 2-ethylhexyl ester (EHE) to wheat and potatoes, to the soil as the dimethylamine (DMA) salt under apple tree canopies, and preplant as the free acid for wheat, lettuce, and radish was studied to evaluate metabolic pathways. Crop fractions analyzed for (14)C residues included wheat forage, straw, and grain; potato vine and tubers; and apple fruit. The primary metabolic pathway for foliar application in wheat is ester hydrolysis followed by the formation of base-labile 2,4-D conjugates. A less significant pathway for 2,4-D in wheat was ring hydroxylation to give NIH-shift products 2,5-dichloro-4-hydroxyphenoxyacetic acid (4-OH-2,5-D), 4-OH-2,3-D, and 5-OH-2,4-D both free and as acid-labile conjugates. The primary metabolic pathway in potato was again ester hydrolysis. 2,4-D acid was further transformed to 4-chlorophenoxyacetic acid and 4-OH-2,5-D. For the soil applications, (14)C residues in the crops were low, and characterization of the (14)C residues indicated association with or incorporation into the biochemical matrix of the tissue. The degradative pathways observed in wheat are similar to those characterized in other intact plant studies but differ from those in studies in wheat cell suspension culture in that no amino acid conjugates were observed.
Olutoye, M A; Hameed, B H
2011-02-01
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.
Oxidizing action of purine N-oxide esters.
Stöhrer, G; Salemnick, G
1975-01-01
A technique involving O-acetylation of purine N-oxide derivatives in buffered aqueous solutions has permitted studies of the reactivity of many compounds for which the O-acetyl derivatives are not otherwise available. The oxidizing properties of a variety of N-acetoxypurines have been measured through their ability to oxidize iodide ion ot iodine, a reaction which is representative of a more general oxidizing ability. Those esters that oxidize iodide ion also catalyze the autoxidation of sulfite, a property characteristic of radicals. The same esters also oxidize cysteine to cysteic acid and tryptophan, tyrosine, and uric acid to yet uncharacterized products. Their oxidizing reactivity was compared with the ability of the same esters to react as electrophiles in another assay that measured the rate of formation of pyridine substitution products. The sulfate ester of 3-hydroxyxanthine has been synthesized. Its reactivity is qualitatively the same as that of 3-acetoxyxanthine but proceeds at a higher rate. Syntheses of S-(8-xanthyl)-N-acetylcysteine, 8-(2-hydroxyethylthio)xanthine, and 1-methyl-8-mehtylmercaptoguanine are also described.
Fang, Sai; Chen, Lei; Yu, Miao; Cheng, Bao; Lin, Yongsheng; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung; Gu, Qiong; Xu, Jun
2015-01-01
Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. Particularly, compound 5o showed potent cytotoxic activity (IC50 = 0.50 – 3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that 5o induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADME properties were also calculated in silico, and compound 5o showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound 5o is a promising compound as an antitumor agent. PMID:25800703
Escaron, Anne L; Tanumihardjo, Sherry A
2010-02-01
The mechanism responsible for the metabolism of vitamin A during hypervitaminosis is largely unknown. This study investigated hepatic (13)C-retinol uptake in hypervitaminotic A rhesus monkeys. We hypothesized that individual retinyl esters would be enriched in (13)C after a physiologic dose of (13)C(2)-retinyl acetate, thus suggesting de novo in vivo hepatic retinol esterification. Male rhesus macaques (n = 16; 11.8 +/- 2.9 y) each received 3.5 micromol 14, 15-(13)C(2)-retinyl acetate. Blood was drawn at baseline and 5 h and 2, 4, 7, 14, 21, and 28 d after administration. Liver biopsies were collected 7 d before and 2 d after dose administration (n = 4) and at 7, 14, and 28 d after dose administration (n = 4 per time point). (13)C enrichments of retinol and retinyl esters HPLC-purified from liver samples were measured by using gas chromatography-combustion-isotope ratio mass spectrometry. (13)C enrichment of total vitamin A and individual retinyl esters were significantly greater 2 d after dose administration compared with baseline levels. In contrast, the concentration of isolated retinyl esters did not always increase 2 d after treatment. Given that the liver biopsy site differed between monkeys, these data suggest that the accumulation of hepatic retinyl esters is a dynamic process that is better represented by combining analytical techniques. This sensitive methodology can be used to characterize vitamin A trafficking after physiologic doses of (13)C-retinol. In this nonhuman primate model of hypervitaminosis A, hepatic retinyl esters continued to accumulate with high liver stores.
Escaron, Anne L; Tanumihardjo, Sherry A
2010-01-01
The mechanism responsible for the metabolism of vitamin A during hypervitaminosis is largely unknown. This study investigated hepatic 13C-retinol uptake in hypervitaminotic A rhesus monkeys. We hypothesized that individual retinyl esters would be enriched in 13C after a physiologic dose of 13C2-retinyl acetate, thus suggesting de novo in vivo hepatic retinol esterification. Male rhesus macaques (n = 16; 11.8 ± 2.9 y) each received 3.5 µmol 14, 15-13C2-retinyl acetate. Blood was drawn at baseline and 5 h and 2, 4, 7, 14, 21, and 28 d after administration. Liver biopsies were collected 7 d before and 2 d after dose administration (n = 4) and at 7, 14, and 28 d after dose administration (n = 4 per time point). 13C enrichments of retinol and retinyl esters HPLC-purified from liver samples were measured by using gas chromatography–combustion–isotope ratio mass spectrometry. 13C enrichment of total vitamin A and individual retinyl esters were significantly greater 2 d after dose administration compared with baseline levels. In contrast, the concentration of isolated retinyl esters did not always increase 2 d after treatment. Given that the liver biopsy site differed between monkeys, these data suggest that the accumulation of hepatic retinyl esters is a dynamic process that is better represented by combining analytical techniques. This sensitive methodology can be used to characterize vitamin A trafficking after physiologic doses of 13C-retinol. In this nonhuman primate model of hypervitaminosis A, hepatic retinyl esters continued to accumulate with high liver stores. PMID:20158952
Costello, P J; Siebert, T E; Solomon, M R; Bartowsky, E J
2013-03-01
To assess the abilities of commercial wine lactic acid bacteria (LAB) to synthesize potentially flavour active fatty acid ethyl esters and determine mechanisms involved in their production. Oenococcus oeni AWRI B551 produced significant levels of ethyl hexanoate and ethyl octanoate following growth in an ethanolic test medium, and ester formation generally increased with increasing pH (4.5 > 3.5), anaerobiosis and precursor supplementation. Cell-free extracts of commercial O. oeni strains and Lactobacillus plantarum AWRI B740 were also tested for ester-synthesizing capabilities in a phosphate buffer via: (i) acyl coenzyme A: alcohol acyltransferase (AcoAAAT) activity and (ii) reverse esterase activity. For both ester-synthesizing activities, strain-dependent variation was observed, with AcoAAAT activity generally greater than reverse esterase. Reverse esterase in O. oeni AWRI B551 also esterified 1-propanol to produce propyl octanoate, and deuterated substrates ([(2)H(6)]ethanol and [(2)H(15)]octanoic acid) to produce the fully deuterated ester, [(2)H(5)]ethyl [(2)H(15)]octanoate. Wine LAB exhibit ethyl ester-synthesizing capability and possess two different ester-synthesizing activities, one of which is associated with an acyl coenzyme A: alcohol acyltransferase. This study demonstrates that wine LAB exhibit enzyme activities that can augment the ethyl ester content of wine. This knowledge will facilitate greater control over the impacts of malolactic fermentation on the fruity sensory properties and quality of wine. © 2012 Australian Wine Research Institute © 2012 The Society for Applied Microbiology.
Cysteine analogues potentiate glucose-induced insulin release in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammon, H.P.; Hehl, K.H.; Enz, G.
1986-12-01
In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhancemore » insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.« less
β-Glucuronidase-coupled assays of glucuronoyl esterases.
Fraňová, Lucia; Puchart, Vladimír; Biely, Peter
2016-10-01
Glucuronoyl esterases (GEs) are microbial enzymes with potential to cleave the ester bonds between lignin alcohols and xylan-bound 4-O-methyl-d-glucuronic acid in plant cell walls. This activity renders GEs attractive research targets for biotechnological applications. One of the factors impeding the progress in GE research is the lack of suitable substrates. In this work, we report a facile preparation of methyl esters of chromogenic 4-nitrophenyl and 5-bromo-4-chloro-3-indolyl β-D-glucuronides for qualitative and quantitative GE assay coupled with β-glucuronidase as the auxiliary enzyme. The indolyl derivative affording a blue indigo-type product is suitable for rapid and sensitive assay of GE in commercial preparations as well as for high throughput screening of microorganisms and genomic and metagenomic libraries. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural modifications of human beta 2 microglobulin treated with oxygen-derived radicals.
Capeillere-Blandin, C; Delaveau, T; Descamps-Latscha, B
1991-01-01
Treatment of human beta 2 microglobulin (beta 2m) with defined oxygen-derived species generated by treatment with gamma-radiation was studied. As assessed by SDS/PAGE, the hydroxyl radicals (.OH) caused the disappearance of the protein band at 12 kDa that represents beta 2m, and cross-linked the protein into protein bands stable to both SDS and reducing conditions. However, when .OH was generated under oxygen in equimolar combination with the superoxide anion radical (O2.-), the high-molecular-mass protein products were less represented, and fragmented derivatives were not obviously detectable. Exposure to .OH alone, or to .OH + O2.- in the presence of O2, induced the formation of beta 2m protein derivatives with a more acidic net electrical charge than the parent molecule. In contrast, O2.- alone had virtually no effect on molecular mass or pI. Changes in u.v. fluorescence during .OH attack indicated changes in conformation, as confirmed by c.d. spectrometry. A high concentration of radicals caused the disappearance of the beta-pleated sheet structure and the formation of a random coil structure. Loss of tryptophan and significant production of dityrosine (2,2'-biphenol type) were noted, exhibiting a clear dose-dependence with .OH alone or with .OH + O2.-. The combination of .OH + O2.- induced a pattern of changes similar to that with .OH alone, but more extensive for c.d. and tryptophan oxidation (2 Trp/beta 2m molecule), and more limited for dityrosine formation. Lower levels of these oxidative agents caused the reproducible formation of species at 18 and 25 kDa which were recognized by antibodies against native beta 2m. These findings provide a model for the protein pattern observed in beta 2m amyloidosis described in the literature. Images Fig. 4. Fig. 5. PMID:1649598
Gailly, C; Sandra, P; Verzele, M; Cocito, C
1982-06-15
The cell wall of leprosy-derived corynebacteria (a group of 'diphtheroids' isolated from human leprosy lesions and patients' blood) was previously shown to contain, in addition to peptidoglycan and arabinogalactan, mycolic acids. These alpha-branched beta-hydroxy fatty acids were attributed to the corynomycolic group, according to their RF in monodimensional thin-layer chromatography. In the present work, mycolic acids from leprosy-derived and reference corynebacteria have been fractionated by monodimensional and bidimensional thin-layer chromatography and by gas chromatography. Pyrolyzed mycolic acids have been analyzed on conventional packed columns, whereas intact methyl esters of mycolic acids with free and silylated beta-hydroxyl group have been analyzed on capillary columns, and their structure has been established by mass spectrometry. In all leprosy-derived corynebacteria, some 20 components containing 24-36 carbon atoms and 0-4 double bonds were obtained. The three major groups had 32, 34 and 36 carbons, and the frequency of unsaturated versus saturated chains increased proportionally to the molecular weight. For comparison, the main components of a reference corynebacterium. Corynebacterium diphtheriae PW8, had 30 and 32 carbons, and their hydrocarbon chains were essentially saturated. This work confirms the relative chemical homogeneity of different leprosy-derived corynebacteria and describes some peculiar traits in the chemical structure of this group of organisms. In addition, it shows the complexity of the mycolic acid fraction of corynebacterial cell wall and suggests that the mycolic acid pattern is a sort of fingerprint of each bacterial strain grown under standard conditions. Finally, the fractionation of intact corynomycolic acid methyl esters with free or silylated beta-hydroxyl group by capillary gas chromatography proved to be the best analytical procedure at present available for resolving this complex mixture of corynomycolate isomers. Structural determination of silylated samples by mass spectrometry is preferred because they have more diagnostic fragments.
Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki
2017-01-01
A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.
Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B
2001-06-01
Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.
Hata, Takeshi; Bannai, Rie; Otsuki, Mamoru; Urabe, Hirokazu
2010-03-05
When gamma,delta-epoxy-alpha,beta-unsaturated esters or amides were treated with 2 equiv of Grignard reagents in the presence of 10-24 mol % FeCl(2), regio- and stereoselective substitution of the epoxide moiety with the Grignard reagent occurred to give exclusively delta-hydroxy-gamma-alkyl or aryl-alpha,beta-unsaturated esters or amides in good yields.
Xue, Cuihua; Jog, Sonali P; Murthy, Pushpalatha; Liu, Haiying
2006-09-01
Two facile, convenient, and versatile synthetic approaches are used to covalently attach carbohydrate residues to conjugated poly(p-phenylene)s (PPPs) for highly water-soluble PPPs bearing alpha-mannopyranosyl and beta-glucopyranosyl pendants (polymers A and B), which highly fluoresce in phosphate buffer (pH 7.0). The post-polymerization functionalization approach is to treat bromo-bearing PPP (polymer 1) with 1-thiolethyl-alpha-D-mannose tetraacetate or 1-thiol-beta-D-glucose tetraacetate in THF solution in the presence of K(2)CO(3) at room temperature through formation of thioether bridges, affording polymer 2a or 2b. The prepolymerization functionalization approach is to polymerize a well-defined sugar-carrying monomer, affording polymer 2a. Polymers 2a and 2b were deacetylated under Zemplén conditions in methanol and methylene chloride containing sodium methoxide, affording polymers A and B, respectively. The multivalent display of carbohydrates on the fluorescent conjugated glycopolymer overcomes the characteristic low binding affinity of the individual carbohydrates to their receptor proteins. Titration of concanavalin A (Con A) to alpha-mannose-bearing polymer A resulted in significant fluorescent quenching of the polymer with Stern-Volmer quenching constant of 4.5 x 10(7). Incubation of polymer A with Escherichia coli (E. coli) lead to formation of fluorescently stained bacterial clusters. Beta-glucose-bearing polymer B displayed no response to Con A and E. coli.
Gupta, Anurag; Leong, David Tai; Bai, Hui Fen; Singh, Shiv Brat; Lim, Thiam-Chye; Hutmacher, Dietmar Werner
2007-10-12
This study investigated the effects of various components [vitamin D3 (VD3), beta-glycerophosphate (BGP), and ascorbic acid (AA)] on the potential of human adipose-derived progenitor cells (ADPCs) to transdifferentiate into osteoblast-like cells. ADPCs were induced under four different supplement groups: (1) VD3+BGP+AA, (2) VD3 alone, (3) BGP+AA, and (4) no VD3, BGP or AA. Mineralization studies and presence of bone matrix-related proteins by immunostaining showed that the Group 1 ADPCs showed their ability to undergo osteoblastic differentiation. Further evaluation was made by estimation of levels of RUNX-2 and TAZ genes. Group 1 ADPCs showed the consistent expression of RUNX-2 and TAZ levels over the study period of 28days. The study showed good correlation among various parameters evaluated to conclude that ADPCs could be an alternative source for generating osteoblast-like cells.
Hixson, Josh L; Hayasaka, Yoji; Curtin, Christopher D; Sefton, Mark A; Taylor, Dennis K
2016-12-14
Synthesized p-coumaroyl and feruloyl l-tartrate esters were submitted to Brettanomyces bruxellensis strains AWRI 1499, AWRI 1608, and AWRI 1613 to assess their role as precursors to ethylphenols in wine. No evolution of ethylphenols was observed. Additionally, p-coumaroyl and feruloyl glucose were synthesized and submitted to B. bruxellensis AWRI 1499, which yielded both 4-ethylphenol and 4-ethylguaiacol. Unexpected chemical transformations of the hydroxycinnamoyl glucose esters during preparation were investigated to prevent these in subsequent synthetic attempts. Photoisomerization gave an isomeric mixture containing the trans-esters and undesired cis-esters, and acyl migration resulted in a mixture of the desired 1-O-β-ester and two additional migrated forms, the 2-O-α- and 6-O-α-esters. Theoretical studies indicated that the photoisomerization was facilitated by deprotonation of the phenol, and acyl migration is favored during acidic, nonaqueous handling. Preliminary LC-MS/MS studies observed the migrated hydroxycinnamoyl glucose esters in wine and allowed for identification of feruloyl glucose in red wine for the first time.
Méndez, S P; González, E B; Sanz-Medel, A
2001-05-01
Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast. Copyright 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin
2017-07-01
In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.
SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY
The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...
Marco-Contelles, J; Pozuelo, C; de Opazo, E
2001-06-15
We report the synthesis, free-radical cyclization of precursors 1,2,7-trideoxy-7-iodo-3,4:5,6-di-O-isopropylidene-D-gluco-hept-1-enitol (1), methyl 7-O-acetyl-6-O-benzyl-8-bromo-2,3,8-trideoxy-4,5-O-isopropylidene-D-gluco-oct-2-enonate (2) and 5-O-acetyl-4-O-benzyl-6-bromo-6-deoxy-2,3-O-isopropylidene-D-glucose-O-benzyloxime (3), readily prepared from D-glucose, and some selected transformations of the carbocycles obtained from these intermediates. In compound 1 we have installed a terminal double bond and an iodide as radical acceptor and leaving group, respectively. Compounds 2 and 3 are epsilon-bromo aldehydes substituted with alpha,beta-unsaturated ester and oxime ether functions as radical traps, respectively. The tributyltin hydride mediated ring closure of these radical precursors have afforded a series of interesting, diverse and highly functionalized carbocycles which can be considered useful building blocks for the synthesis of branched-chain cyclitols, aminocyclitols and aminoconduritols. In these processes, a good chemical yield and high stereoselectivity has been found in the newly formed stereocenters. Particularly interesting has been the finding that the stereochemical outcome of the free-radical cyclization is independent of the ratio of isomers (E or Z) in oxime ether 3. These results show the power and the state of art of this strategy for the stereocontrolled synthesis of enantiomerically pure inositols from carbohydrates.
Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee
2004-04-01
Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.