Science.gov

Sample records for acid aa dopamine

  1. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Thiagarajan, Soundappan; Tsai, Tsung-Hsuan; Chen, Shen-Ming

    2009-04-15

    A glassy carbon electrode (GCE) has been modified by electrochemical oxidation in mild acidic media (0.1 mol l(-1) H(2)SO(4)) and could be applied for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Oxidized GCE shows a single redox couple (E(0)'=-2.5 mV) which is based on the formation functional groups during the electrochemical pretreatment process. Proposed GCE successfully decreases the over potentials for the oxidation process of these species (AA, DA and UA) comparing with bare GCE. The oxidized GCE has its own simplicity, stability, high sensitivity and possesses the potential for simultaneous determination of AA, DA and UA. PMID:19162467

  2. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Du, Jiao; Yue, Ruirui; Ren, Fangfang; Yao, Zhangquan; Jiang, Fengxing; Yang, Ping; Du, Yukou

    2014-03-15

    A novel and sensitive carbon fiber electrode (CFE) modified by graphene flowers was prepared and used to simultaneously determine ascorbic acid (AA), dopamine (DA) and uric acid (UA). SEM images showed that beautiful and layer-petal graphene flowers homogeneously bloomed on the surface of CFE. Moreover, sharp and obvious oxidation peaks were found at the obtained electrode when compared with CFE and glassy carbon electrode (GCE) for the oxidation of AA, DA and UA. Also, the linear calibration plots for AA, DA and UA were observed, respectively, in the ranges of 45.4-1489.23 μM, 0.7-45.21 μM and 3.78-183.87 μM in the individual detection of each component. By simultaneously changing the concentrations of AA, DA and UA, their oxidation peaks appeared at -0.05 V, 0.16 V and 2.6 V, and the good linear responses ranges were 73.52-2305.53 μM, 1.36-125.69 μM and 3.98-371.49 μM, respectively. In addition, the obtained electrode showed satisfactory results when applied to the determination of AA, DA and UA in urine and serum samples. PMID:24140872

  3. Ascorbic acid (AA) metabolism in protection against radiation damage

    SciTech Connect

    Rose, R.C.; Koch, M.J.

    1986-03-05

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with /sup 14/C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the /sup 14/C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of < 3 minutes compared with nonirradiated samples (t/sub 1/2/ > 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of /sup 14/C-AFR disproportionate, with the net effect of /sup 14/C-dehydroascorbic acid formation from /sup 14/C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23/sup 0/C in the presence of 15 ..mu..M /sup 14/C-AA. Samples of supernatant maintained at 100/sup 0/C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues.

  4. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid.

    PubMed

    Ghanbari, Kh; Hajheidari, N

    2015-03-15

    Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO-CuxO-PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO-CuxO-PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO-PPy/GCE, and ZnO-PPy/GCE, ZnO-CuxO-PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO-CuxO-PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA-DA and DA-UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise=3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples. PMID:25576954

  5. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    PubMed Central

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  6. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid.

    PubMed

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  7. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  8. Direct dopamine D2-receptor-mediated modulation of arachidonic acid release in transfected CHO cells without the concomitant administration of a Ca2+-mobilizing agent

    PubMed Central

    Nilsson, Christer L; Hellstrand, Monika; Ekman, Agneta; Eriksson, Elias

    1998-01-01

    In CHO cells transfected with the rat dopamine D2 receptor (long isoform), administration of dopamine per se elicited a concentration-dependent increase in arachidonic acid (AA) release. The maximal effect was 197% of controls (EC50=25 nM). The partial D2 receptor agonist, (−)-(3-hydroxyphenyl)-N-n-propylpiperidine [(−)-3-PPP], also induced AA release, but with somewhat lower efficacy (maximal effect: 165%; EC50=91 nM). The AA-releasing effect of dopamine was counteracted by pertussis toxin, by the inhibitor of intracellular Ca2+ release, 8-(N N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), by excluding calcium from the medium, by the phospholipase A2 (PLA2) inhibitor, quinacrine, and by long-term pretreatment with the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, it was antagonized by the D2 antagonists, raclopride and (−)-sulpiride–but not by (+)-sulpiride–and absent in sham-transfected CHO cells devoid of D2 receptors. The results obtained contrast to the previous notion that dopamine and other D2 receptor agonists require the concomitant administration of calcium-mobilizing agents such as ATP, ionophore A-23187 (calcimycin), thrombin, and TRH, to influence AA release from various cell lines. PMID:9756380

  9. Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode.

    PubMed

    Veera Manohara Reddy, Y; Prabhakara Rao, V; Vijaya Bhaskar Reddy, A; Lavanya, M; Venu, M; Lavanya, M; Madhavi, G

    2015-12-01

    In this paper, we have fabricated a modified carbon paste electrode (CPE) by electropolymerisation of spands reagent (SR) onto surface of CPE using cyclic voltammetry (CV). The developed electrode was abbreviated as poly(SR)/CPE and the surface morphology of the modified electrode was studied by using scanning electron microscopy (SEM). The developed electrode showed higher electrocatalytic properties towards the detection of dopamine (DA) in 0.1M phosphate buffer solution (PBS) at pH7.0. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at poly(SR)/CPE. The poly(SR)/CPE was successfully used as a sensor for the selective determination of DA in presence of ascorbic acid (AA) and uric acid (UA) without any interference. The poly(SR)/CPE showed a good detection limit of 0.7 μM over the linear dynamic range of 1.6 μM to 16 μM, which is extremely lower than the reported methods. The prepared poly(SR)/CPE exhibited good stability, high sensitivity, better reproducibility, low detection limit towards the determination of DA. The developed method was also applied for the determination of DA in real samples. PMID:26354279

  10. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites.

    PubMed

    Jiang, Jingjing; Du, Xuezhong

    2014-10-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing. PMID:25137352

  11. A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid

    PubMed Central

    Rand, Emily; Periyakaruppan, Adaikkappan; Tanaka, Zuki; Zhang, David; Marsh, Michael P.; Andrews, Russell J.; Lee, Kendall H.; Chen, Bin; Meyyappan, M.; Koehne, Jessica E.

    2013-01-01

    A biosensor based on an array of vertically aligned carbon nanofibers (CNFs) grown by plasma enhanced chemical vapor deposition is found to be effective for the simultaneous detection of dopamine (DA) and serotonin (5-HT) in the presence of excess ascorbic acid (AA). The CNF electrode outperforms the conventional glassy carbon electrode (GCE) for both selectivity and sensitivity. Using differential pulse voltammetry (DPV), three distinct peaks are seen for the CNF electrode at 0.13 V, 0.45 V, and 0.70 V for the ternary mixture of AA, DA, and 5-HT. In contrast, the analytes are indistinguishable in a mixture using a GCE. For the CNF electrode, the detection limits are 50 nM for DA and 250 nM for 5-HT. PMID:23228495

  12. A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid.

    PubMed

    Rand, Emily; Periyakaruppan, Adaikkappan; Tanaka, Zuki; Zhang, David A; Marsh, Michael P; Andrews, Russell J; Lee, Kendall H; Chen, Bin; Meyyappan, M; Koehne, Jessica E

    2013-04-15

    A biosensor based on an array of vertically aligned carbon nanofibers (CNFs) grown by plasma enhanced chemical vapor deposition is found to be effective for the simultaneous detection of dopamine (DA) and serotonin (5-HT) in the presence of excess ascorbic acid (AA). The CNF electrode outperforms the conventional glassy carbon electrode (GCE) for both selectivity and sensitivity. Using differential pulse voltammetry (DPV), three distinct peaks are seen for the CNF electrode at 0.13 V, 0.45 V, and 0.70 V for the ternary mixture of AA, DA, and 5-HT. In contrast, the analytes are indistinguishable in a mixture using a GCE. For the CNF electrode, the detection limits are 50 nM for DA and 250 nM for 5-HT. PMID:23228495

  13. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  14. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy.

    PubMed

    Zhao, Dianyun; Yu, Guolong; Tian, Kunlong; Xu, Caixia

    2016-08-15

    In current work highly sensitive and stable electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is constructed based on the hierarchical nanoporous (HNP) PtTi alloy. The HNP-PtTi alloy is simply fabricated by two-step dealloying process, characterized by the bimodal ligament/pore size distributions and interconnected hollow channels. The HNP structure with the advantages of large surface area, excellent structure stability, and rich pore channels is used for facilitating the electron conductivity and the mass transfer. Combined with the dual effects of the bimodal nanoporous architecture and the excellent electrocatalytic activity of PtTi alloy, the constructed sensor exhibits high electrochemical sensing activity with wide linear responses from 0.2 to 1mM, 0.004 to 0.5mM, and 0.1 to 1mM for simultaneous detection of AA, DA, and UA, respectively. In addition, HNP-PtTi alloy also shows long-term sensing stability towards the AA, DA, and UA detection and behaves as a good anti-interference towards NaCl, KCl, FeCl3, CuCl2, AlCl3, glucose, and H2O2. The HNP-PtTi alloy manifests intriguing application potential as the candidate for the application of the electrochemical sensor for simultaneous detection of AA, DA, and UA. PMID:27058442

  15. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  16. Polymeric nanoparticle of copper(II)-4,4‧-dicyanamidobiphenyl ligand: Synthetic, spectral and structural aspect; application to electrochemical sensing of dopamine and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Chiniforoshan, Hossein; Ensafi, Ali A.; Heydari-Bafrooei, Esmaeil; Khalesi, Sara Bahmanpour; Tabrizi, Leila

    2015-08-01

    In this research, new polymer of 4,4‧-dicyanamidobiphenyl (bpH2)-Cu(II) complex, [Cu(bp)(H2O)2]n, has been synthesized and characterized by FT-IR, UV-vis spectroscopy and elemental analysis. The spherical morphology of Cu nanoparticles was confirmed by scanning electron microscopy (SEM) image and the transmission electron microscopy (TEM) image showed that the particle size dimensions of Cu nanoparticles were about 80 nm. Thermal gravimetric analysis (TGA) results indicated that this polymer was thermally stable. Hence, the prepared polymer was used as a modifier for the electrochemical determination of dopamine (DA) and ascorbic acid (AA). Compared to the bare carbon paste electrode (CPE) and multiwall carbon paste electrode (CNTPE), bpCu modified CPE (bpCu-CPE) exhibits much higher electrocatalytic activities toward the oxidation of dopamine and ascorbic acid with an increase in peak currents and a decrease in oxidation overpotentials. The effects of scan rate, concentration and pH were also studied. Differential pulse voltammetry results show that DA and AA could be detected selectively and sensitively at bpCu-CPE with peak-to-peak separation of 200 mV. Relative standard deviations for AA and DA determinations were less than 2.5%, and the linear response ranges of the electrode were 0.05-30.0 μmol L-1 for AA and DA, respectively. The calculated detection limits were 0.02 and 0.04 μmol L-1 (S/N = 3) for AA and DA, respectively. In addition, the presented method was successfully applied for the simultaneous determination of DA and AA in urine and blood samples with reliable recovery.

  17. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA).

    PubMed

    Kuipers, Remko S; Luxwolda, Martine F; Janneke Dijck-Brouwer, D A; Muskiet, Frits A J

    2011-11-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from 'biomagnification' into 'bioattenuation' occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. PMID:21561751

  18. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Du, Xuezhong

    2014-09-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the

  19. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode.

    PubMed

    Li, Yaya; Du, Jie; Yang, Jiandong; Liu, Dong; Lu, Xiaoquan

    2012-09-01

    Single-walled carbon nanotubes (SWCNTs) fabricated by sodium dodecyl sulfate (SDS) (f-SWCNTs) modified glassy carbon electrodes (f-SWCNTs/GCE) for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The f-SWCNTs/GCE displayed very good electrochemical catalytic activities with respect to GCE. The oxidation over-potentials of DA and UA decreased dramatically, and their oxidation peak currents increased significantly at f-SWCNTs/GCE compared to those obtained at the bare GCE. Simultaneously, the oxidation peak currents of AA decreased accordingly. The f-SWCNTs/GCE not only divide the overlapping voltammetric responses of them into individual voltammetric peaks, but also totally eliminate the interference from AA and distinguish DA from UA. The catalytic peak currents obtained from square-wave voltammetry increased linearly with increasing DA concentrations in the range of 5.0×10(-6) to 1.0×10(-4)M with a detection limit of 2.0×10(-8)M (S/N=3). The method was also successfully applied for determination of DA and showed good recovery in some biological fluids. PMID:22580482

  20. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Afraz, Ahmadreza; Rafati, Amir Abbas; Najafi, Mojgan

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. PMID:25280680

  1. Roles of G-protein beta gamma, arachidonic acid, and phosphorylation inconvergent activation of an S-like potassium conductance by dopamine, Ala-Pro-Gly-Trp-NH2, and Phe-Met-Arg-Phe-NH2.

    PubMed

    van Tol-Steye, H; Lodder, J C; Mansvelder, H D; Planta, R J; van Heerikhuizen, H; Kits, K S

    1999-05-15

    Dopamine and the neuropeptides Ala-Pro-Gly-Trp-NH2 (APGWamide or APGWa) and Phe-Met-Arg-Phe-NH2 (FMRFamide or FMRFa) all activate an S-like potassium channel in the light green cells of the mollusc Lymnaea stagnalis, neuroendocrine cells that release insulin-related peptides. We studied the signaling pathways underlying the responses, the role of the G-protein betagamma subunit, and the interference by phosphorylation pathways. All responses are blocked by an inhibitor of arachidonic acid (AA) release, 4-bromophenacylbromide, and by inhibitors of lipoxygenases (nordihydroguaiaretic acid and AA-861) but not by indomethacin, a cyclooxygenase inhibitor. AA and phospholipase A2 (PLA2) induced currents with similar I-V characteristics and potassium selectivity as dopamine, APGWa, and FMRFa. PLA2 occluded the response to FMRFa. We conclude that convergence of the actions of dopamine, APGWa, and FMRFa onto the S-like channel occurs at or upstream of the level of AA and that formation of lipoxygenase metabolites of AA is necessary to activate the channel. Injection of a synthetic peptide, which interferes with G-protein betagamma subunits, inhibited the agonist-induced potassium current. This suggests that betagamma subunits mediate the response, possibly by directly coupling to a phospholipase. Finally, the responses to dopamine, APGWa, and FMRFa were inhibited by activation of PKA and PKC, suggesting that the responses are counteracted by PKA- and PKC-dependent phosphorylation. The PLA2-activated potassium current was inhibited by 8-chlorophenylthio-cAMP but not by 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA did inhibit the potassium current induced by irreversible activation of the G-protein using GTP-gamma-S. Thus, it appears that PKA targets a site downstream of AA formation, e.g., the potassium channel, whereas PKC acts at the active G-protein or the phospholipase. PMID:10234006

  2. The novel adenosine A2A antagonist Lu AA47070 reverses the motor and motivational effects produced by dopamine D2 receptor blockade.

    PubMed

    Collins, Lyndsey E; Sager, Thomas N; Sams, Anette G; Pennarola, Adam; Port, Russell G; Shahriari, Mona; Salamone, John D

    2012-01-01

    Dopamine D2 and adenosine A(2A) receptors interact to regulate aspects of motor and motivational function, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of parkinsonism and depression. The present experiments were performed to characterize the effects of Lu AA47070, which is a phosphonooxymethylene prodrug of a potent and selective adenosine A(2A) receptor antagonist, for its ability to reverse the motor and motivational effects of D2 antagonism. In the first group of studies, Lu AA47070 (3.75-30 mg/kg IP) was assessed for its ability to reverse the effects of the D2 receptor antagonist pimozide (1.0 mg/kg IP) using several measures of motor impairment, including catalepsy, locomotion, and tremulous jaw movements, which is a rodent model of parkinsonian tremor. Lu AA47070 produced a significant reversal of the effects of pimozide on all three measures of parkinsonian motor impairment. In addition, Lu AA47070 was able to reverse the effects of a low dose of the D2 antagonist haloperidol on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. The ability of Lu AA47070 to reverse the effects of D2 receptor blockade suggests that this compound could have potential utility as a treatment for parkinsonism, and for some of the motivational symptoms of depression. PMID:22037410

  3. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.

    PubMed

    Oh, Jeong-Wook; Yoon, Yeo Woon; Heo, Jihye; Yu, Joonhee; Kim, Hasuck; Kim, Tae Hyun

    2016-01-15

    Negatively charged multi-walled carbon nanotubes (MWCNTs) were prepared using simple sonication technique with non-toxic citric acid (CA) for the electrochemical detection of dopamine (DA). CA/MWCNTs were placed on glassy carbon (GC) electrodes by drop-casting method and then electrochemical determinations of DA were performed in the presence of highly concentrated ascorbic acid (AA). For the comparison of the charge effect on MWCNTs surface, positively charged polyethyleneimine (PEI)/MWCNT/GC electrode and pristine MWCNT/GC electrode were also prepared. Contrary to conventional GC electrode, all three types of MWCNT modified electrodes (CA/MWCNT/GC, PEI/MWCNT/GC, and pristine MWCNT/GC) can discriminate ~μM of DA from 1mM AA using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) due to the inherent electrocatalytic effect of MWCNTs. Compared to positively charged PEI/MWCNT/GC and pristine MWCNT/GC electrodes, negatively charged CA/MWCNT/GC electrode remarkably enhanced the electrochemical sensitivity and selectivity of DA, showing the linear relationship between DPV signal and DA concentration in the range of 10-1000nM even in the presence of ~10(5) times concentrated AA, which is attributed to the synergistic effect of the electrostatic interaction between cationic DA molecules and negatively charged MWCNTs and the inherent electrocatalytic property of MWCNT. As a result, the limit of detection (LOD) of DA for CA/MWCNT/GC electrode was 4.2nM, which is 5.2 and 16.5 times better than those for MWCNT/GC electrode and PEI/MWCNT/GC electrode even in the presence of 1mM AA. This LOD value for DA at CA/MWCNT/GC electrode is one of the lowest values compared to the previous reports and is low enough for the early diagnosis of neurological disorder in the presence of physiological AA concentration (~0.5mM). In addition, the high selectivity and sensitivity of DA at CA/MWCNT/GC electrode were well kept even in the presence of both 1mM AA and 10μM uric acid

  4. Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes.

    PubMed

    Quan, Do Phuc; Tuyen, Do Phuc; Lam, Tran Dai; Tram, Phan Thi Ngoc; Binh, Nguyen Hai; Viet, Pham Hung

    2011-12-01

    A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required. The later modified electrode exhibits superior electrocatalytic activity towards AA, DA and UA thanks to synergic effect of NF/SWCNT (combining unique properties of SWCNT such as high specific surface area, electrocatalytic and adsorptive properties, with the cation selectivity of NF). On the surface of NF/SWCNT/PMT/GCE AA, DA, UA were oxidized respectively at distinguishable potentials of 0.15, 0.37 and 0.53 V (vs. Ag/AgCl), to form well-defined and sharp peaks, making possible simultaneous determination of each compound. Also, it has several advantages, such as simple preparation method, high sensitivity, low detection limit and excellent reproducibility. Thus, the proposed NF/SWCNT/PMT/GCE could be advantageously employed for the determination of DA in real pharmaceutical formulations. PMID:21907551

  5. Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode.

    PubMed

    Yu, Yanyan; Chen, Zuanguang; Zhang, Beibei; Li, Xinchun; Pan, Jianbin

    2013-08-15

    In this work, a facile electrochemical sensor based on poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) and graphite was fabricated. The composite electrode exhibited excellent selectivity and sensitivity towards uric acid (UA), owing to the electrocatalytic effect of graphene nanosheets and the electrostatic attractions between PDDA-G and UA. The anodic peak current of UA obtained by cyclic voltammetry (CV) increased over 10-fold compared with bare carbon paste electrode (CPE). And the reversibility of the oxidation process was improved significantly. Differential pulse voltammetry (DPV) was used to determine UA in the presence of ascorbic acid (AA) and dopamine (DA). It was found that all of oxidation peaks of three species could be well resolved, and the peak current of UA was much stronger than the other two components. More importantly, considerable-amount of AA and DA showed negligible interference to UA assay. The calibration curve for UA ranged from 0.5 to 20 μmol L(-1) with a correlation coefficient of 0.9934. The constructed sensor has been employed to quantitatively determine UA in urine samples. PMID:23708533

  6. Carbon nanotubes incorporated with sol-gel derived La(OH)3 nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite.

    PubMed

    Zhang, Yu; Yuan, Ruo; Chai, Yaqin; Zhong, Xia; Zhong, Huaan

    2012-12-01

    A novel material, sol-gel derived La(OH)(3) nanorods (La(OH)(3)NRs) with excellent film forming ability was prepared, and it was first designed to incorporate with carbon nanotubes (CNTs) to modify glassy carbon electrode (GCE) to simultaneously voltammetric determine ascorbic acid (AA), dopamine (DA), uric acid (UA), and nitrite (NO(2)(-)). Cyclic voltammetry (CV), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were employed to characterize the sensor. Under optimal conditions, the linear response range for AA, DA, UA, and NO(2)(-) were 0.5 μmol L(-1) to 1.46 mmol L(-1), 50 nmol L(-1) to 35.36 μmol L(-1), 50 nmol L(-1) to 0.79 mmol L(-1), and 0.55 μmol L(-1) to 0.72 mmol L(-1), respectively and the detection limits were 1.67 μmol L(-1), 1.67 nmol L(-1), 1.67 nmol L(-1), and 0.18 μmol L(-1). The sensor demonstrated well stability, high selectivity and sensitivity. More importance, this material can be extended to construct other electrochemical sensors by the immobilization of enzymes and antibodies. PMID:22766296

  7. Nanostructure Modified Microelectrode for Electrochemical Detection of Dopamine with Ascorbic Acid and Uric Acid.

    PubMed

    Kim, Kyeong-Jun; Choi, Jin-Ha; Pyo, Su-Hyun; Yun, Kwang-Seok; Lee, Ji-Young; Choi, Jeong-Woo; Oh, Byung-Keun

    2016-03-01

    Dopamine (DA) is one kind of neurotransmitter in central nervous system which is indicator of neural disease. For this reason, determination of DA concentration in central nervous system is very important for early diagnosis of neural disease. In this study, we designed micro electrode array and fabricated by MEMS technology. Furthermore, we fabricated 3-D conducting nanostructure on electrode surface for enhanced sensitivity and selectivity due to increased surface area. Compared with macro and normal micro electrode, the 3-D nanostructure modified micro electrode shows better electrical performance. These surface modified pin type electrode was applied to detect low concentration of DA and successfully detect various concentration of DA from 100 μM to 1 μM with linear relationship in the presence of ascorbic acid and uric acid. From these results, our newly designed electrode shows possibility to be applied as brain biosensor for neural disease diagnosis such as Parkinson's diseases. PMID:27455760

  8. Enhanced Extracellular Glutamate and Dopamine in the Ventral Pallidum of Alcohol-Preferring AA and Alcohol-Avoiding ANA Rats after Morphine

    PubMed Central

    Kemppainen, Heidi; Nurmi, Harri; Raivio, Noora; Kiianmaa, Kalervo

    2015-01-01

    The purpose of the present study was to investigate the role of ventral pallidal opioidergic mechanisms in the control of ethanol intake by studying the effects of acute administration of morphine on the levels of GABA, glutamate, and dopamine in the ventral pallidum. The study was conducted using the alcohol-preferring Alko Alcohol (AA) and alcohol-avoiding Alko Non-Alcohol (ANA) rat lines that have well-documented differences in their voluntary ethanol intake and brain opioidergic systems. Therefore, examination of neurobiological differences between the lines is supposed to help to identify the neuronal mechanisms underlying ethanol intake, since selection pressure is assumed gradually to lead to enrichment of alleles promoting high or low ethanol intake, respectively. The effects of an acute dose of morphine (1 or 10 mg/kg s.c.) on the extracellular levels of GABA and glutamate in the ventral pallidum were monitored with in vivo microdialysis. The concentrations of GABA and glutamate in the dialyzates were determined with a high performance liquid chromatography system using fluorescent detection, while electrochemical detection was used for dopamine. The levels of glutamate in the rats injected with morphine 1 mg/kg were significantly above the levels found in the controls and in the rats receiving morphine 10 mg/kg. Morphine 10 mg/kg also increased the levels of dopamine. Morphine could not, however, modify the levels of GABA. The rat lines did not differ in any of the effects of morphine. The data suggest that the glutamatergic and dopaminergic systems in the ventral pallidum may mediate some effects of morphine. Since there were no differences between the AA and ANA lines, the basic hypothesis underlying the use of the genetic animal model suggests that the effects of morphine detected probably do not underlie the different intake of ethanol by the lines and contribute to the control of ethanol intake in these animals. PMID:25653621

  9. Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid.

    PubMed

    Medeiros, Roberta A; Matos, Roberto; Benchikh, Abdelkader; Saidani, Boualem; Debiemme-Chouvy, Catherine; Deslouis, Claude; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2013-10-01

    Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L(-1) for DA and 1.05 μmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 μmol L(-1) and 0.968 μmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis. PMID:24050667

  10. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

    PubMed Central

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-01-01

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples. PMID:26184200

  11. D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine.

    PubMed

    Betts, Jill F; Schweimer, Judith V; Burnham, Katherine E; Burnet, Philip W J; Sharp, Trevor; Harrison, Paul J

    2014-01-01

    D-amino acid oxidase (DAO, DAAO) degrades the NMDA receptor co-agonist D-serine, modulating D-serine levels and thence NMDA receptor function. DAO inhibitors are under development as a therapy for schizophrenia, a disorder involving both NMDA receptor and dopaminergic dysfunction. However, a direct role for DAO in dopamine regulation has not been demonstrated. Here, we address this question in two ways. First, using in situ hybridization and immunohistochemistry, we show that DAO mRNA and immunoreactivity are present in the ventral tegmental area (VTA) of the rat, in tyrosine hydroxylase (TH)-positive and -negative neurons, and in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Second, we show that injection into the VTA of sodium benzoate, a DAO inhibitor, increases frontal cortex extracellular dopamine, as measured by in vivo microdialysis and high performance liquid chromatography. Combining sodium benzoate and D-serine did not enhance this effect, and injection of D-serine alone affected dopamine metabolites but not dopamine. These data show that DAO is expressed in the VTA, and suggest that it impacts on the mesocortical dopamine system. The mechanism by which the observed effects occur, and the implications of these findings for schizophrenia therapy, require further study. PMID:24822045

  12. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine.

    PubMed

    Chen, Xianlan; Zhang, Guowei; Shi, Ling; Pan, Shanqing; Liu, Wei; Pan, Hiabo

    2016-08-01

    The formation of nitrogen-doped (N-doped) graphene uses hydrothermal method with urea as reducing agent and nitrogen source. The surface elemental composition of the catalyst was analyzed through XPS, which showed a high content of a total N species (7.12at.%), indicative of the effective N-doping, present in the form of pyridinic N, pyrrolic N and graphitic N groups. Moreover, Au nanoparticles deposited on ZnO nanocrystals surface, forming Au/ZnO hybrid nanocatalysts, undergo a super-hydrophobic to super-hydrophilic conversion. Herein, we present Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene sheets through sonication technique of the Au/ZnO/N-doped graphene hybrid nanostructures. The as-prepared Au/ZnO/N-doped graphene hybrid nanostructure modified glassy carbon electrode (Au/ZnO/N-doped graphene/GCE) was first employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The oxidation over-potentials of AA, DA and AC decreased dramatically, and their oxidation peak currents increased significantly at Au/ZnO/N-doped graphene/GCE compared to those obtained at the N-doped graphene/GCE and bare CCE. The peak separations between AA and DA, DA and AC, and AC and AA are large up to 195, 198 and 393mV, respectively. The calibration curves for AA, DA and AC were obtained in the range of 30.00-13.00×10(3), 2.00-0.18×10(3) and 5.00-3.10×10(3)μM, respectively. The detection limits (S/N=3) were 5.00, 0.40 and 0.80μM for AA, DA and AC, respectively. PMID:27157730

  13. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet.

    PubMed

    Liu, Meiling; Chen, Qiong; Lai, Cailang; Zhang, Youyu; Deng, Jianhui; Li, Haitao; Yao, Shouzhuo

    2013-10-15

    A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) was fabricated by a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet. The platform was constructed by coating a newly synthesized phenylethynyl ferrocene thiolate (Fc-SAc) modified Fe₃O₄@Au NPs coupling with graphene sheet/chitosan (GS-chitosan) on a glassy carbon electrode (GCE) surface. The Fe₃O₄@Au-S-Fc/GS-chitosan modified GCE exhibits a synergistic catalytic and amplification effect toward AA, DA, UA and AC oxidation. The oxidation peak currents of the four compounds on the electrode were linearly dependent on AA, DA, UA and AC concentrations in the ranges of 4-400 μM, 0.5-50 μM, 1-300 μM and 0.3-250 μM in the individual detection of each component, respectively. By simultaneously changing the concentrations of AA, DA, UA and AC, their electrochemical oxidation peaks appeared at -0.03, 0.15, 0.24 and 0.35 V, and good linear current responses were obtained in the concentration ranges of 6-350, 0.5-50, 1-90 and 0.4-32 μM with the detection limits of 1, 0.1, 0.2 and 0.05 μM (S/N=3), respectively. PMID:23651571

  14. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation

    PubMed Central

    Sung, Yun-Min; Wilkins, Angela D.; Rodriguez, Gustavo J.; Wensel, Theodore G.; Lichtarge, Olivier

    2016-01-01

    The structural basis of allosteric signaling in G protein-coupled receptors (GPCRs) is important in guiding design of therapeutics and understanding phenotypic consequences of genetic variation. The Evolutionary Trace (ET) algorithm previously proved effective in redesigning receptors to mimic the ligand specificities of functionally distinct homologs. We now expand ET to consider mutual information, with validation in GPCR structure and dopamine D2 receptor (D2R) function. The new algorithm, called ET-MIp, identifies evolutionarily relevant patterns of amino acid covariations. The improved predictions of structural proximity and D2R mutagenesis demonstrate that ET-MIp predicts functional interactions between residue pairs, particularly potency and efficacy of activation by dopamine. Remarkably, although most of the residue pairs chosen for mutagenesis are neither in the binding pocket nor in contact with each other, many exhibited functional interactions, implying at-a-distance coupling. The functional interaction between the coupled pairs correlated best with the evolutionary coupling potential derived from dopamine receptor sequences rather than with broader sets of GPCR sequences. These data suggest that the allosteric communication responsible for dopamine responses is resolved by ET-MIp and best discerned within a short evolutionary distance. Most double mutants restored dopamine response to wild-type levels, also suggesting that tight regulation of the response to dopamine drove the coevolution and intramolecular communications between coupled residues. Our approach provides a general tool to identify evolutionary covariation patterns in small sets of close sequence homologs and to translate them into functional linkages between residues. PMID:26979958

  15. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation.

    PubMed

    Sung, Yun-Min; Wilkins, Angela D; Rodriguez, Gustavo J; Wensel, Theodore G; Lichtarge, Olivier

    2016-03-29

    The structural basis of allosteric signaling in G protein-coupled receptors (GPCRs) is important in guiding design of therapeutics and understanding phenotypic consequences of genetic variation. The Evolutionary Trace (ET) algorithm previously proved effective in redesigning receptors to mimic the ligand specificities of functionally distinct homologs. We now expand ET to consider mutual information, with validation in GPCR structure and dopamine D2 receptor (D2R) function. The new algorithm, called ET-MIp, identifies evolutionarily relevant patterns of amino acid covariations. The improved predictions of structural proximity and D2R mutagenesis demonstrate that ET-MIp predicts functional interactions between residue pairs, particularly potency and efficacy of activation by dopamine. Remarkably, although most of the residue pairs chosen for mutagenesis are neither in the binding pocket nor in contact with each other, many exhibited functional interactions, implying at-a-distance coupling. The functional interaction between the coupled pairs correlated best with the evolutionary coupling potential derived from dopamine receptor sequences rather than with broader sets of GPCR sequences. These data suggest that the allosteric communication responsible for dopamine responses is resolved by ET-MIp and best discerned within a short evolutionary distance. Most double mutants restored dopamine response to wild-type levels, also suggesting that tight regulation of the response to dopamine drove the coevolution and intramolecular communications between coupled residues. Our approach provides a general tool to identify evolutionary covariation patterns in small sets of close sequence homologs and to translate them into functional linkages between residues. PMID:26979958

  16. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    PubMed

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  17. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  18. Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid.

    PubMed

    Ghanbari, Kh; Moloudi, M

    2016-11-01

    A novel sensor was fabricated by electrochemical deposition of ZnO flower-like/polyaniline nanofiber/reduced graphene oxide nanocomposite (ZnO/PANI/RGO) on glassy carbon electrode (GCE) for direct detection of dopamine (DA) and uric acid (UA) in the presence of fixed concentration of ascorbic acid (AA). Surface morphology and characterization of the modified electrodes were confirmed by field emission scanning microscopy (FE-SEM), X-ray diffraction (XRD), Raman and FT-IR spectroscopies. For individual detection, the linear responses were in the two concentration ranges of 0.001-1 μM and 1-1000 μM with detection limit 0.8 nM (S/N = 3) for DA, and also 0.1-100 μM and 100-1000 μM with detection limit 0.042 μM (S/N = 3) for UA. Simultaneous determination of these species in their mixture solution showed the linear responses in the two concentration ranges of 0.1-90 μM and 90-1000 μM with detection limit 0.017 μM (S/N = 3) for DA and also showed two linear range of 0.5-90 μM and 100-1000 μM with detection limit 0.12 μM (S/N = 3) for UA, with coexistence of 1000 μM AA. The applicability of sensor for the analysis of DA, and UA in dopamine injection solution, human serum and human urine samples was successfully demonstrated. PMID:27555438

  19. Acute dopamine depletion with branched chain amino acids decreases auditory top-down event-related potentials in healthy subjects.

    PubMed

    Neuhaus, Andres H; Goldberg, Terry E; Hassoun, Youssef; Bates, John A; Nassauer, Katharine W; Sevy, Serge; Opgen-Rhein, Carolin; Malhotra, Anil K

    2009-06-01

    Cerebral dopamine homeostasis has been implicated in a wide range of cognitive processes and is of great pathophysiological importance in schizophrenia. A novel approach to study cognitive effects of dopamine is to deplete its cerebral levels with branched chain amino acids (BCAAs) that acutely lower dopamine precursor amino acid availability. Here, we studied the effects of acute dopamine depletion on early and late attentive cortical processing. Auditory event-related potential (ERP) components N2 and P3 were investigated using high-density electroencephalography in 22 healthy male subjects after receiving BCAAs or placebo in a randomized, double-blind, placebo-controlled crossover design. Total free serum prolactin was also determined as a surrogate marker of cerebral dopamine depletion. Acute dopamine depletion increased free plasma prolactin and significantly reduced prefrontal ERP components N2 and P3. Subcomponent analysis of N2 revealed a significant attenuation of early attentive N2b over prefrontal scalp sites. As a proof of concept, these results strongly suggest that BCAAs are acting on basic information processing. Dopaminergic neurotransmission seems to be involved in auditory top-down processing as indexed by prefrontal N2 and P3 reductions during dopamine depletion. In healthy subjects, intact early cortical top-down processing can be acutely dysregulated by ingestion of BCAAs. We discuss the potential impact of these findings on schizophrenia research. PMID:19356906

  20. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  1. Striatal interaction among dopamine, glutamate and ascorbate.

    PubMed

    Morales, Ingrid; Fuentes, Angel; Ballaz, Santiago; Obeso, Jose A; Rodriguez, Manuel

    2012-12-01

    Despite evidence suggesting the interaction among glutamate (GLU), dopamine (DA) and ascorbic acid (AA) in the striatum, their actions are often studied separately. Microdialysis was used here to quantify the extracellular interaction among GLU-DA-AA in the striatum of rats, an interaction which was compared with those studied in the substantia nigra (SN). Perfusion of GLU by reverse microdialysis increased DA and decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the extracellular medium of the striatum, but increased both DA and DOPAC in the SN. The increase of extracellular DA-concentration induced by the local DA-perfusion decreased the extracellular level of GLU and glutamine, an effect that, as suggested by the GLU and glutamine increase observed after the haloperidol administration, probably involves the D2 dopamine receptor. Local administration of AA increased the extracellular DA, decreased DOPAC and had no effect on GLU and glutamine. Present data suggest that, in the striatum, GLU-release inhibits DA-uptake, DA-release inhibits GLU-release, and AA-release prevents DA-oxidation increasing its extracellular diffusion. These effects were different in the SN where GLU probably promoted the DA-release instead of inhibiting the DA-uptake as presumably occurred in the striatum. Present data denote a marked GLU-DA-AA interaction in the striatum, which might be relevant for the pharmacological control of basal ganglia disorders. PMID:22959966

  2. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    PubMed

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  3. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    PubMed Central

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  4. Simultaneous Measurement and Quantitation of 4-Hydroxyphenylacetic acid and Dopamine with Fast-Scan Cyclic Voltammetry

    PubMed Central

    Shin, Mimi; Kaplan, Sam V.; Raider, Kayla D.; Johnson, Michael A.

    2015-01-01

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenylacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of −0.4 V to +1.3 V to −0.4 V at 600 V/s, repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores. PMID:25785694

  5. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  6. Three amino acids in the D2 dopamine receptor regulate selective ligand function and affinity

    PubMed Central

    Cummings, David F.; Ericksen, Spencer S.; Schetz, John A.

    2016-01-01

    The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype-selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120-fold) for the D4 subtype of dopamine receptor were tested on wild-type and mutant D2 receptors. Five of the selective ligands were observed to have 21-fold to 293-fold increases in D2 receptor affinity when three non-conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3-{[4-(4-iodophenyl) piperazin-1-yl]methyl}-1H-pyrrolo[2,3-b]pyridine (L-750,667) and 1-[4-iodobenzyl]-4-[N-(3-isopropoxy-2-pyridinyl)-N-methyl]-aminopiperidine (RBI-257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild-type receptor, concentrations of L-750,667 or RBI-257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild-type D2 receptor. In contrast to RBI-257 which is an antagonist at all receptors, L-750,667 is a partial agonist at the wild-type D2 but an antagonist at both the mutant D2 and wild-type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non-conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermolecular steric contacts between the ligands and receptors. Consistent with the experimental data, this model illustrates the interactions between a variety of subtype

  7. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots

    PubMed Central

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson’s disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM. PMID:26347250

  8. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots.

    PubMed

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson's disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM. PMID:26347250

  9. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency

    PubMed Central

    Bondi, Corina O.; Taha, Ameer Y.; Tock, Jody L.; Totah, Nelson K.; Cheon, Yewon; Torres, Gonzalo E.; Rapoport, Stanley I.; Moghaddam, Bita

    2013-01-01

    Background Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at-risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition, in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs), has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence may be the critical age range for the negative impact of diet as an environmental insult. Methods A rat model involving consecutive generations of n-3 PUFA deficiency was developed based on the assumption that dietary trends toward decreased consumption of these fats began four-five decades ago when the parents of current adolescents were born. Behavioral performance in a wide range of tasks, as well as markers of dopamine-related neurotransmission was compared in adolescents and adults fed n-3 PUFA adequate and deficient diets. Results In adolescents, dietary n-3 PUFA deficiency across consecutive generations produced a modality-selective and task-dependent impairment in cognitive and motivated behavior distinct from the deficits observed in adults. While this dietary deficiency affected expression of dopamine-related proteins in both age groups, in adolescents, but not adults, there was an increase in tyrosine hydroxylase expression that was selective to the dorsal striatum. Conclusions These data support a nutritional contribution to optimal cognitive and affective functioning in adolescents. Furthermore, they suggest that n-3 PUFA deficiency disrupts adolescent behaviors through enhanced dorsal striatal dopamine availability. PMID:23890734

  10. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. PMID:25839414

  11. [Interactions between dopamine receptor and NMDA/type A γ-aminobutyric acid receptors].

    PubMed

    Chen, Hui-Ying; Wei, Ting-Jia; Weng, Jing-Jin; Qin, Jiang-Yuan; Huang, Xi; Su, Ji-Ping

    2016-04-25

    Type A γ-aminobutyric acid receptors (GABAAR) and N-methyl-D-aspartate receptors (NMDAR) are the major inhibitory and excitatory receptors in the central nervous system, respectively. Co-expression of the receptors in the synapse may lead to functional influence between receptors, namely receptor interaction. The interactions between GABAAR and NMDAR can be either positive or negative. However, the mechanisms of interaction between the two receptors remain poorly understood, and potential mechanisms include (1) through a second messenger; (2) by receptors trafficking; (3) by direct interaction; (4) by a third receptor-mediation. Dopamine is the most abundant catecholamine neurotransmitter in the brain, and its receptors, dopamine receptors (DR) can activate multiple signaling pathways. Earlier studies on the interaction between DR and GABAAR/NMDAR have shown some underlying mechanisms, suggesting that DR could mediate the interaction between GABAAR and NMDAR. This paper summarized some recent progresses in the studies of the interaction between DR and NMDAR/GABAAR, providing a further understanding on the interaction between NMDAR and GABAAR mediated by DR. PMID:27108906

  12. Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles.

    PubMed

    Mahshid, Sara; Li, Chengcheng; Mahshid, Sahar Sadat; Askari, Masoud; Dolati, Abolghasem; Yang, Lixia; Luo, Shenglian; Cai, Qingyun

    2011-06-01

    A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results. PMID:21494708

  13. Altering behavioral responses and dopamine transporter protein with antisense peptide nucleic acids.

    PubMed

    Tyler-McMahon, B M; Stewart, J A; Jackson, J; Bitner, M D; Fauq, A; McCormick, D J; Richelson, E

    2001-10-01

    The dopamine transporter (DAT) plays a role in locomotion and is an obligatory target for amphetamines. We designed and synthesized an antisense peptide nucleic acid (PNA) to rat DAT to examine the effect of this antisense molecule on locomotion and on responsiveness to amphetamines. Rats were injected intraperitoneally daily for 9 days with either saline, an antisense DAT PNA, a scrambled DAT PNA, or a mismatch DAT PNA. On days 7 and 9 after initial motility measurements were taken, the animals were challenged with 10 mg/kg of amphetamine and scored for motility. On day 7, there was no significant difference between the baseline levels of activity of any of the groups or their responses to amphetamine. On day 9, the antisense PNA-treated rats showed a statistically significant increase in their resting motility (P < 0.01). When these rats were challenged with amphetamine, motility of the saline-, scrambled PNA-, and mismatch PNA-treated animals showed increases of 31-, 36-, and 20-fold, respectively, while the antisense PNA-treated animals showed increases of only 3.4-fold (P < 0.01). ELISA results revealed a 32% decrease in striatal DAT in antisense PNA-treated rats compared with the saline, scrambled PNA, and mismatch PNA controls (P < 0.001). These results extend our previous findings that brain proteins can be knocked down in a specific manner by antisense molecules administered extracranially. Additionally, these results suggest some novel approaches for the treatment of diseases dependent upon the function of the dopamine transporter. PMID:11543728

  14. Reassessment of the Role of Aromatic Amino Acid Hydroxylases and the Effect of Infection by Toxoplasma gondii on Host Dopamine

    PubMed Central

    Wang, Zi T.; Harmon, Steve; O'Malley, Karen L.

    2014-01-01

    Toxoplasma gondii infection has been described previously to cause infected mice to lose their fear of cat urine. This behavioral manipulation has been proposed to involve alterations of host dopamine pathways due to parasite-encoded aromatic amino acid hydroxylases. Here, we report successful knockout and complementation of the aromatic amino acid hydroxylase AAH2 gene, with no observable phenotype in parasite growth or differentiation in vitro and in vivo. Additionally, expression levels of the two aromatic amino acid hydroxylases were negligible both in tachyzoites and in bradyzoites. Finally, we were unable to confirm previously described effects of parasite infection on host dopamine either in vitro or in vivo, even when AAH2 was overexpressed using the BAG1 promoter. Together, these data indicate that AAH enzymes in the parasite do not cause global or regional alterations of dopamine in the host brain, although they may affect this pathway locally. Additionally, our findings suggest alternative roles for the AHH enzymes in T. gondii, since AAH1 is essential for growth in nondopaminergic cells. PMID:25547791

  15. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine.

    PubMed

    Zhang, Xin; Wei, Youli; Ding, Yaping

    2014-07-01

    A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10(-8) to 1.2 × 10(-4) M with a detection limit (S/N=3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media. PMID:24952626

  16. The mood stabilizer valproic acid opposes the effects of dopamine on circadian rhythms.

    PubMed

    Landgraf, Dominic; Joiner, William J; McCarthy, Michael J; Kiessling, Silke; Barandas, Rita; Young, Jared W; Cermakian, Nicolas; Welsh, David K

    2016-08-01

    Endogenous circadian (∼24 h) clocks regulate key physiological and cognitive processes via rhythmic expression of clock genes. The main circadian pacemaker is the hypothalamic suprachiasmatic nucleus (SCN). Mood disorders, including bipolar disorder (BD), are commonly associated with disturbed circadian rhythms. Dopamine (DA) contributes to mania in BD and has direct impact on clock gene expression. Therefore, we hypothesized that high levels of DA during episodes of mania contribute to disturbed circadian rhythms in BD. The mood stabilizer valproic acid (VPA) also affects circadian rhythms. Thus, we further hypothesized that VPA normalizes circadian disturbances caused by elevated levels of DA. To test these hypotheses, we examined locomotor rhythms and circadian gene cycling in mice with reduced expression of the dopamine transporter (DAT-KD mice), which results in elevated DA levels and mania-like behavior. We found that elevated DA signaling lengthened the circadian period of behavioral rhythms in DAT-KD mice and clock gene expression rhythms in SCN explants. In contrast, we found that VPA shortened circadian period of behavioral rhythms in DAT-KD mice and clock gene expression rhythms in SCN explants, hippocampal cell lines, and human fibroblasts from BD patients. Thus, DA and VPA have opposing effects on circadian period. To test whether the impact of VPA on circadian rhythms contributes to its behavioral effects, we fed VPA to DAT-deficient Drosophila with and without functioning circadian clocks. Consistent with our hypothesis, we found that VPA had potent activity-suppressing effects in hyperactive DAT-deficient flies with intact circadian clocks. However, these effects were attenuated in DAT-deficient flies in which circadian clocks were disrupted, suggesting that VPA functions partly through the circadian clock to suppress activity. Here, we provide in vivo and in vitro evidence across species that elevated DA signaling lengthens the circadian

  17. Synergism and Rules of the new Combination drug Yiqijiedu Formulae (YQJD) on Ischemic Stroke based on amino acids (AAs) metabolism

    PubMed Central

    Gao, Jian; Chen, Chang; Chen, Jian-Xin; Wen, Li-Mei; Yang, Geng-Liang; Duan, Fei-Peng; Huang, Zhi-Ying; Li, De-Feng; Yu, Ding-Rong; Yang, Hong-Jun; Li, Shao-Jing

    2014-01-01

    The use of combination drugs is considered to be a promising strategy to control complex diseases such as ischemic stroke. The detection of metabolites has been used as a versatile tool to reveal the potential mechanism of diverse diseases. In this study, the levels of 12 endogenous AAs were simultaneously determined quantitatively in the MCAO rat brain using RRLC-QQQ method. Seven AAs were chosen as the potential biomarkers, and using PLS-DA analysis, the effects of the new combination drug YQJD, which is composed of ginsenosides, berberine, and jasminoidin, on those 7 AAs were evaluated. Four AAs, glutamic acid, homocysteine, methionine, and tryptophan, which changed significantly in the YQJD-treated groups compared to the vehicle groups (P < 0.05), were identified and designated as the AAs to use to further explore the synergism of YQJD. The result of a PCA showed that the combination of these three drugs exhibits the strongest synergistic effect compared to other combination groups and that ginsenosides might play a pivotal role, especially when combined with jasminoidin. We successfully explored the synergetic mechanism of multi-component and provided a new method for evaluating the integrated effects of combination drugs in the treatment of complex diseases. PMID:24889025

  18. Graphene decorated microelectrodes for simultaneous detection of ascorbic, dopamine, and folic acids by means of chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.

    2015-09-01

    In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.

  19. Quinolinic acid lesion of nucleus accumbens reduces D sub 1 but not D sub 2 dopamine receptors: An autoradiographic study

    SciTech Connect

    Filloux, F.; Richards, T.J.; Huff, G.F. ); Wamsley, J.K. )

    1991-01-01

    Information concerning the cellular localization of dopamine receptor subtypes in the nucleus accumbens (NAcc) was obtained using receptor autoradiographic analysis. Unilateral, stereotaxic injection of the axonsparing neurotoxin, quinolinic acid, into the NAcc resulted in a prominent loss of dopamine D{sub 1} receptors (as labeled by ({sup 3}H)SCH 23390). Contrarily, no appreciable decrement in D{sub 2} receptors (labeled by ({sup 3}H)raclopride) could be identified within the same region of the NAcc. The findings support the view that accumbens D{sub 1} receptors are located postsynaptically on neurons or their processes, while D{sub 2} receptors within this nucleus are primarily located on afferent terminals.

  20. Valproic acid potentiates both typical and atypical antipsychotic-induced prefrontal cortical dopamine release.

    PubMed

    Ichikawa, Junji; Chung, Young-Chul; Dai, Jin; Meltzer, Herbert Y

    2005-08-01

    Antipsychotic drugs (APD)s and anticonvulsant mood-stabilizers are now frequently used in combination with one another in treating both schizophrenia and bipolar disorder. We have recently reported that the atypical APDs, e.g. clozapine and risperidone, as well as the anticonvulsant mood-stabilizers, valproic acid (VPA), zonisamide, and carbamazepine, but not the typical APD haloperidol, increase dopamine (DA) release in rat medial prefrontal cortex (mPFC). The increased DA release was partially (atypical APDs) or completely (mood-stabilizers) blocked by the serotonin (5-HT)1A receptor antagonist WAY100635. Diminished prefrontal cortical DA activity may contribute to cognitive impairment in virtually all the patients with schizophrenia and, perhaps, bipolar disorder. Thus, the enhanced release of cortical DA by these agents may be beneficial in this regard. It is, therefore, of considerable interest to determine whether combined administration of these agents augments prefrontal cortical DA release, and if so, whether the increase is dependent upon 5-HT1A receptor activation. VPA (50 mg/kg), which was insufficient by itself to increase prefrontal cortical DA release, potentiated the ability of clozapine (20 mg/kg) and risperidone (1 mg/kg) to increase DA release in the mPFC, but not in the nucleus accumbens (NAC). VPA (50 mg/kg) also potentiated haloperidol (0.5 mg/kg)-induced DA release in the mPFC; this increase was completely abolished by WAY100635 (0.2 mg/kg). These results suggest that, in combination with VPA, both typical and atypical APDs produce greater increases in prefrontal cortical DA release than either type of drug alone via a mechanism dependent upon 5-HT(1A) receptor activation. Furthermore, they provide a strong rationale for testing for possible clinical synergism of an APD and anticonvulsant mood-stabilizer in improving the cognitive deficits present in patients with schizophrenia and bipolar disorder. PMID:16061211

  1. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease. PMID:26830512

  2. Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption.

    PubMed

    Huang, Renliang; Liu, Xia; Ye, Huijun; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2015-11-10

    A versatile, convenient, and cost-effective method that can be used for grafting antifouling materials onto different surfaces is highly desirable in many applications. Here, we report the one-step fabrication of antifouling surfaces via the polymerization of dopamine and the simultaneous deposition of anionic hyaluronic acid (HA) on Au substrates. The water contact angle of the Au surfaces decreased from 84.9° to 24.8° after the attachment of a highly uniform polydopamine (PDA)/HA hybrid film. The results of surface plasmon resonance analysis showed that the Au-PDA/HA surfaces adsorbed proteins from solutions of bovine serum albumin, lysozyme, β-lactoglobulin, fibrinogen, and soybean milk in ultralow or low amounts (4.8-31.7 ng/cm(2)). The hydrophilicity and good antifouling performance of the PDA/HA surfaces is attributable to the HA chains that probably attached onto their upper surface via hydrogen bonding between PDA and HA. At the same time, the electrostatic repulsion between PDA and HA probably prevents the aggregation of PDA, resulting in the formation of a highly uniform PDA/HA hybrid film with the HA chains (with a stretched structure) on the upper surface. We also developed a simple method for removing this PDA/HA film and recycling the Au substrates by using an aqueous solution of NaOH as the hydrolyzing agent. The Au surface remained undamaged, and a PDA/HA film could be redeposited on the surface, with the surface exhibiting good antifouling performance even after 10 such cycles. Finally, it was found that this grafting method is applicable to other substrates, including epoxy resins, polystyrene, glass, and steel, owing to the strong adhesion of PDA with these substrates. PMID:26488547

  3. Effect of total hepatectomy and administration of branched-chain amino acids on regional norepinephrine, dopamine, and amino acids in rat brain.

    PubMed Central

    Herlin, P M; James, J H; Nachbauer, C A; Fischer, J E

    1983-01-01

    In rats after total hepatectomy, the effect of infusing glucose alone or combined with branched-chain amino acids on amino acid concentrations in plasma and cerebral cortex and on catecholamine levels in eight different regions of the brain was studied. Infusion of branched-chain amino acids reduced the accumulation of tryptophan, phenylalanine, and tyrosine in plasma, while in cerebral cortex, the concentrations of phenylalanine and tyrosine were normalized and that of tryptophan was reduced greatly. In rats with hepatectomy and glucose infusion alone, norepinephrine levels were decreased in seven of eight brain regions with the exception of striatum, while dopamine was reduced significantly in striatum only. Infusion of branched-chain amino acids resulted in higher norepinephrine in cortex, mesencephalon, and hypothalamus and higher striatal dopamine 18 hours after hepatectomy. Thus, infusing branched-chain amino acids and reducing the accumulation of various neutral amino acids in brain may partially prevent the loss of norepinephrine from brain after total hepatectomy. PMID:6870374

  4. Cognition, dopamine and bioactive lipids in schizophrenia

    PubMed Central

    Condray, Ruth; Yao, Jeffrey K.

    2011-01-01

    Schizophrenia is a remarkably complex disorder with a multitude of behavioral and biological perturbations. Cognitive deficits are a core feature of this disorder, and involve abnormalities across multiple domains, including memory, attention, and perception. The complexity of this debilitating illness has led to a view that the key to unraveling its pathophysiology lies in deconstructing the clinically-defined syndrome into pathophysiologically distinct intermediate phenotypes. Accumulating evidence suggests that one of these intermediate phenotypes may involve phospholipid signaling abnormalities, particularly in relation to arachidonic acid (AA). Our data show relationships between levels of AA and performance on tests of cognition for schizophrenia patients, with defects in AA signaling associated with deficits in cognition. Moreover, dopamine may moderate these relationships between AA and cognition. Taken together, cognitive deficits, dopaminergic neurotransmission, and bioactive lipids have emerged as related features of schizophrenia. Existing treatment options for cognitive deficits in schizophrenia do not specifically target lipid-derived signaling pathways; understanding these processes could inform efforts to identify novel targets for treatment innovation. PMID:21196378

  5. Evaluation of Tetrahydrobiopterin Therapy with Large Neutral Amino Acid Supplementation in Phenylketonuria: Effects on Potential Peripheral Biomarkers, Melatonin and Dopamine, for Brain Monoamine Neurotransmitters

    PubMed Central

    Yano, Shoji; Moseley, Kathryn; Fu, Xiaowei; Azen, Colleen

    2016-01-01

    Background Phenylketonuria (PKU) is due to a defective hepatic enzyme, phenylalanine (Phe) hydroxylase. Transport of the precursor amino acids from blood into the brain for serotonin and dopamine synthesis is reported to be inhibited by high blood Phe concentrations. Deficiencies of serotonin and dopamine are involved in neurocognitive dysfunction in PKU. Objective (1) To evaluate the effects of sapropterin (BH4) and concurrent use of large neutral amino acids (LNAA) on the peripheral biomarkers, melatonin and dopamine with the hypothesis they reflect brain serotonin and dopamine metabolism. (2) To evaluate synergistic effects with BH4 and LNAA. (3) To determine the effects of blood Phe concentrations on the peripheral biomarkers concentrations. Methods Nine adults with PKU completed our study consisting of four 4-week phases: (1) LNAA supplementation, (2) Washout, (3) BH4 therapy, and (4) LNAA with BH4 therapy. An overnight protocol measured plasma amino acids, serum melatonin, and 6-sulfatoxymelatonin and dopamine in first void urine after each phase. Results (1) Three out of nine subjects responded to BH4. A significant increase of serum melatonin levels was observed in BH4 responders with decreased blood Phe concentration. No significant change in melatonin, dopamine or Phe levels was observed with BH4 in the subjects as a whole. (2) Synergistic effects with BH4 and LNAA were observed in serum melatonin in BH4 responders. (3) The relationship between serum melatonin and Phe showed a significant negative slope (p = 0.0005) with a trend toward differing slopes among individual subjects (p = 0.066). There was also a negative association overall between blood Phe and urine 6-sulfatoxymelatonin and dopamine (P = 0.040 and 0.047). Conclusion Blood Phe concentrations affected peripheral monoamine neurotransmitter biomarker concentrations differently in each individual with PKU. Melatonin levels increased with BH4 therapy only when blood Phe decreased. Monitoring

  6. Ascorbic acid and striatal transport of (/sup 3/H)1-methyl-4-phenylpyridine (MPP/sup +/) and (/sup 3/H)dopamine

    SciTech Connect

    Debler, E.A.; Hashim, A.; Lajtha, A.; Sershen, H.

    1988-01-01

    The inhibition of uptake of (/sup 3/H)dopamine and (/sup 3/H)1-methyl-4-phenylpyridine (MPP/sup +/) was examined in mouse striatal synaptosomal preparations. Kinetic analysis indicated that ascorbic acid is a noncompetitive inhibitor of (/sup 3/H)MPP/sup +/ uptake. No inhibition of (/sup 3/H)dopamine uptake is observed. The dopamine uptake blockers, GBR-12909, cocaine, and mazindol strongly inhibit (IC/sub 50/ < 1 ..mu..M) both (/sup 3/H)dopamine and (/sup 3/H)MPP/sup +/ transport. Nicotine, its metabolites, and other tobacco alkaloids are weak inhibitors except 4-phenylpyridine and lobeline, which are moderate inhibitors of both (/sup 3/H)dopamine and (/sup 3/H)MPP/sup +/ uptake. These similarities in potencies are in agreement with the suggestion that (/sup 3/H)MPP/sup +/ and (/sup 3/H) are transported by the same carrier. The differences observed in the alteration of dopaminergic transport and mazindol binding by ascorbic acid suggest that ascorbic acid's effects on (/sup 3/H)MPP/sup +/ transport are related to translocation and/or dissociation processes occurring subsequent to the initial binding event.

  7. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    PubMed

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. PMID:20022733

  8. Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid) for electrochemical sensing of melamine.

    PubMed

    Zhang, Rongli; Xu, Sheng; Zhu, Ye; Zhao, Wei; Luo, Jing; Liu, Xiaoya; Tang, Dingxing

    2016-11-15

    A voltammetric sensor for melamine (MEL) was prepared from molecularly imprinted nanohybrids (MINBs). A dopamine modified poly-γ-glutamic acid copolymer (γ-PGA-DA) and MEL were self-assembled into MEL/γ-PGA-DA nanoparticles (NPs) in aqueous solution via weak interactions, followed by adding an aqueous AgNO3 solution into the mixture. The Ag(+) was adsorbed in the MEL/γ-PGA-DA NPs and spontaneously reduced to Ag NPs by the dopamine moieties of γ-PGA-DA, forming Ag/MEL/γ-PGA-DA MINBs, which were then cast on a gold electrode to form a MINBs film. The MEL was removed by electrolysis via catalysis of Ag NPs at a constant potential of 1.4V in phosphate buffer saline solution, to obtain a voltammetric sensor for MEL. The sensor responded linearly to MEL in the concentration range of 5×10(-18) to 5×10(-7)molL(-1). Compared to other published molecularly imprinted polymer sensors for sensing MEL, the prepared MINBs sensor had much wider detection range with lower detection limit. PMID:27196255

  9. Effect of adding amino acids residues in N- and C-terminus of Vip3Aa16 (L121I) toxin.

    PubMed

    Sellami, Sameh; Cherif, Marwa; Jamoussi, Kaïs

    2016-06-01

    To study the importance of N- and C-terminus of Bacillus thuringiensis Vip3Aa16 (L121I) toxin (88 kDa), a number of mutants were generated. The addition of two (2R: RS) or eleven (11R: RSRPGHHHHHH) amino acid residues at the Vip3Aa16 (L121I) C-terminus allowed to an unappropriated folding illustrated by the abundant presence of the 62 kDa proteolytic form. The produced Vip3Aa16 (L121I) full length form was less detected when increasing the number of amino acids residues in the C-terminus. Bioassays demonstrated that the growth of the lepidopteran Ephestia kuehniella was slightly affected by Vip3Aa16 (L121I)-2R and not affected by Vip3Aa16 (L121I)-11R. Additionally, the fusion at the Vip3Aa16 (L121I) N-terminus of 39 amino acids harboring the E. coli OmpA leader peptide and the His-tag sequence allowed to the increase of protease sensitivity of Vip3Aa16 (L121I) full length form, as only the 62 kDa proteolysis form was detected. Remarkably, this fused protein produced in Escherichia coli (E. coli) was biologically inactive toward Ephestia kuehniella larvae. Thus, the N-terminus of the protein is required to the accomplishment of the insecticidal activity of Vip3 proteins. This report serves as guideline for the study of Vip3Aa16 (L121I) protein stability and activity. PMID:26876111

  10. How Imaging Glutamate, γ-Aminobutyric Acid, and Dopamine Can Inform the Clinical Treatment of Alcohol Dependence and Withdrawal.

    PubMed

    Hillmer, Ansel T; Mason, Graeme F; Fucito, Lisa M; O'Malley, Stephanie S; Cosgrove, Kelly P

    2015-12-01

    Neuroimaging studies have dramatically advanced our understanding of the neurochemical basis of alcohol dependence, a major public health issue. In this paper, we review the research generated from neurochemical specific imaging modalities including magnetic resonance spectroscopy, positron emission tomography, and single-photon emission computed tomography in studies of alcohol dependence and withdrawal. We focus on studies interrogating γ-aminobutyric acid (GABA), glutamate, and dopamine, as these are prominent neurotransmitter systems implicated in alcohol dependence. Highlighted findings include diminished dopaminergic functioning and modulation of the GABA system by tobacco smoking during alcohol withdrawal. Then, we consider how these findings impact the clinical treatment of alcohol dependence and discuss directions for future experiments to address existing gaps in the literature, for example, sex differences and smoking comorbidity. These and other considerations provide opportunities to build upon the current neurochemistry imaging literature of alcohol dependence and withdrawal, which may usher in improved therapeutic and relapse prevention strategies. PMID:26510169

  11. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element.

    PubMed

    Li, Jian; Zhang, Ning; Sun, Qingqing; Bai, Zhanming; Zheng, Jianbin

    2016-10-01

    A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL(-1) with a detection limit of 0.018μmolL(-1). The prepared sensor was also applied to detect DA in real samples with a satisfactory result. PMID:27474321

  12. Ascorbic acid does not modulate stimulated dopamine release: in vivo voltammetric data in the rat.

    PubMed

    Stamford, J A; Kruk, Z L; Millar, J

    1985-10-10

    Electrical stimulation of the nigrostriatal pathway released dopamine (DA) in the striatum of the anaesthetized rat. The level of DA released by 10-s stimulus trains was measured by high-speed cyclic voltammetry. Metoclopramide (10 mg/kg) increased DA release by approximately 20%. Apomorphine (1.76 mg/kg) caused a approximately 40% decrease in release which was blocked by metoclopramide. Ascorbate (1.76 g/kg) had no effect on stimulated DA release. Furthermore, pretreatment of rats with ascorbate trebled the striatal extracellular ascorbate level, but failed to modify the effects of metoclopramide and apomorphine on DA release. We conclude that ascorbate has no effect on the presynaptic autoreceptors that modulate striatal DA release in vivo. PMID:2999651

  13. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    PubMed

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. PMID:27612722

  14. Effect of Dietary L-ascorbic Acid (L-AA) on Production Performance, Egg Quality Traits and Fertility in Japanese Quail (Coturnix japonica) at Low Ambient Temperature.

    PubMed

    Shit, N; Singh, R P; Sastry, K V H; Agarwal, R; Singh, R; Pandey, N K; Mohan, J

    2012-07-01

    Environmental stress boosts the levels of stress hormones and accelerates energy expenditure which subsequently imbalance the body's homeostasis. L-ascorbic acid (L-AA) has been recognized to mitigate the negative impact of environmental stress on production performances in birds. The present investigation was carried out to elucidate the effect of different dietary levels of L-AA on production performance, egg quality traits and fertility in Japanese quail at low ambient temperature. Sixty matured females (15 wks) were equally divided into three groups (20/group) based on the different dietary levels of L-AA (0, 250 and 500 ppm) and coupled with an equal number of males (1:1) obtained from the same hatch. They were managed in uniform husbandry conditions without restriction of feed and water at 14 h photo-schedule. Except for feed efficiency, body weight change, feed consumption and hen-day egg production were recorded highest in 500 ppm L-AA supplemented groups. Among the all egg quality traits studied, only specific gravity, shell weight and thickness differed significantly (p<0.05) in the present study. Fertility was improved significantly (p<0.01) to a dose dependent manner of L-AA. The findings of the present study concluded that dietary L-AA can be a caring management practice at least in part to alleviate the adverse effect of cold induced stress on production performance in Japanese quail. PMID:25049657

  15. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  16. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  17. Protective Effects of Valproic Acid on the Nigrostriatal Dopamine System in an MPTP Mouse Model of Parkinson’s Disease

    PubMed Central

    Kidd, Sarah K.; Schneider, Jay S.

    2011-01-01

    The use of animal models (including the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) mouse model) to mimic dopaminergic (DAergic) cell loss and striatal DA depletion, as seen in Parkinson’s disease (PD), has implicated a multitude of factors that might be associated with DAergic cell death in PD including excitotoxicity, inflammation, and oxidative stress. All of these factors have been shown to be reduced by administration of histone deacetylase (HDAC) inhibitors (HDACis) resulting in some degree of neuroprotection in various models of neurodegenerative disease including in Huntington’s disease and amyotrophic lateral sclerosis. However, there is limited information of effects of HDACis in PD models. We have previously shown HDACis to be partially protective against 1-methyl-4-phenylpyridinium (MPP+) mediated cell loss in vitro. The present study was conducted to extend these findings to an in vivo PD model. The HDACi valproic acid (VPA) was co-administered with MPTP for 5 days to male FVBn mice and continued for an additional 2 weeks, throughout the period of active neurodegeneration associated with MPTP-mediated DAergic cell loss. VPA was able to partially prevent striatal dopamine depletion and almost completely protect against substantia nigra DAergic cell loss. These results suggest that VPA may be a potential disease modifying therapy for PD. PMID:21846494

  18. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson's disease: a pharmacoinformatics study.

    PubMed

    Mirza, Muhammad Usman; Mirza, A Hammad; Ghori, Noor-Ul-Huda; Ferdous, Saba

    2015-01-01

    Parkinson's disease (PD) is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD. PMID:25565772

  19. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson’s disease: a pharmacoinformatics study

    PubMed Central

    Mirza, Muhammad Usman; Mirza, A Hammad; Ghori, Noor-Ul-Huda; Ferdous, Saba

    2015-01-01

    Parkinson’s disease (PD) is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD. PMID:25565772

  20. Decreased striatal dopamine release underlies increased expression of long-term synaptic potentiation at corticostriatal synapses 24 hours after 3-nitropropionic acid induced chemical hypoxia

    PubMed Central

    Akopian, Garnik; Crawford, Cynthia; Beal, M. Flint; Cappelletti, Maurand; Jakowec, Michael W.; Petzinger, Giselle M.; Zheng, Ling; Gheorghe, Stacey L.; Reichel, Carmela M.; Chow, Robert; Walsh, John P

    2008-01-01

    The striatum is particularly sensitive to the irreversible inhibitor of succinate dehyrdrogenase 3-nitropropionic acid (3-NP). In the present study we examined early changes in behavior and dopamine and glutamate synaptic physiology created by a single systemic injection of 3-NP in Fischer 344 rats. Hind limb dystonia was seen 2 hours after 3-NP injections and rats performed poorly on balance beam and rota-rod motor tests 24 hours later. Systemic 3-NP increased NMDA receptor-dependent long-term potentiation (LTP) at corticostriatal synapses over the same time period. The 3-NP induced corticostriatal LTP was not due to increased NMDA receptor number or function, since 3-NP did not change MK-801 binding or NMDA/AMPA receptor current ratios. The LTP seen 24 hours after 3-NP was D1 receptor-dependent and reversed by exogenous addition of dopamine or a D2 receptor agonist to brain slices. High performance liquid chromatography and fast scan cyclic voltammetry revealed a decrease in dopamine content and release in rats injected 24 hours earlier with 3-NP, and much like the enhanced LTP, dopamine changes were reversed by 48 hours. Tyrosine hydroxylase expression was not changed and there was no evidence of striatal cell loss at 24–48 hours after 3-NP exposure. Sprague-Dawley rats showed similar physiological responses to systemic 3-NP, albeit with reduced sensitivity. Thus, 3-NP causes significant changes in motor behavior marked by parallel changes in striatal dopamine release and corticostriatal synaptic plasticity. PMID:18799690

  1. Renal functional reserve in pigs: renal haemodynamics, renal tubular function and salt and water homeostatic hormones during amino acid and dopamine stimulation.

    PubMed

    Poulsen, E U; Frøkiaer, J; Jørgensen, T M; Pedersen, E B; Rehling, M

    1997-01-01

    The purpose of the study was to evaluate renal functional reserve [RFR is the difference between glomerular filtration rate (GFR) at rest and maximal GFR after stimulation] in a controlled study in normal pigs. Our basic hypothesis was that a decreased RFR may be used as an early indicator of renal deterioration, i.e. a test to disclose significant obstruction as opposed to simple dilatation in hydronephrosis. During various forms of stimulation (amino acids, captopril and dopamine), we measured changes in GFR, renal plasma flow (RPF), tubular reabsorption of sodium and water, net uptake from plasma to the kidney of three salt and water homeostatic hormones (angiotensin II, aldosterone and atrial natriuretic peptide) and of glucagon, which is thought to play a key role as mediator of the GFR increase during amino acid infusion. We found the largest GFR increase during combined infusion of amino acids and dopamine (+13%), but compared with a non-stimulated control group, the GFR increase was statistically non-significant. RPF increased by 57% during stimulation with amino acids plus dopamine (P < 0.001), while tubular reabsorption of sodium and water, and renal uptake of angiotensin II, aldosterone and atrial natriuretic peptide showed no significant differences between control and stimulation groups. The renal uptake of glucagon increased significantly during amino acid stimulation with no concomitant GFR increase. We conclude that in this experimental, non-obstructed model, RFR is a very insensitive measure, which cannot be used to discriminate between obstruction and simple dilatation in hydronephrosis. Further, our study does not support the hypothesis that glucagon is involved in GFR changes after amino acids. PMID:9015658

  2. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia. PMID:26966009

  3. Multifunctional Coating Based on Hyaluronic Acid and Dopamine Conjugate for Potential Application on Surface Modification of Cardiovascular Implanted Devices.

    PubMed

    Wu, Feng; Li, Jingan; Zhang, Kun; He, Zikun; Yang, Ping; Zou, Dan; Huang, Nan

    2016-01-13

    Surface modification by conjugating biomolecules has been widely proved to enhance biocompatibility of cardiovascular implanted devices. Here, we aimed at developing a multifunctional surface that not only provides good hemocompatibility but also functions well in inducing desirable vascular cell-material interaction. In the present work, the multicoatings of hyaluronic acid (HA) and dopamine (PDA) were prepared onto 316L stainless steel (316L SS) via chemical conjugation (Michael addition, Schiff base reaction, and electrostatic adsorption). The results of platelet adhesion and activation and the whole blood tests indicated that the HA/PDA coatings obtained better hemocompatibility compared with the bare 316L SS and HA or PDA immobilized on 316L SS. The HA/PDA coatings also inhibited the proliferation of smooth muscle cells and adhesion/activation of macrophages effectively, whereas not all the HA/PDA coatings improved surface endothelialization rapidly and the effects of the multifunctional coatings on endothelial cell growth depend on the HA amounts (1.0, 2.0, and 5.0 mg/mL, labeled as PDA-HA-1, PDA-HA-2, and PDA-HA-5 respectively). Herein the PDA-HA-1 and PDA-HA-2 coatings were found to improve endothelial cell adhesion and proliferation significantly. The tissue compatibility of the HA/PDA coatings also depends on the HA amounts, and the PDA-HA-2 coating was proved to cause milder in vivo tissue response. Additionally, the mechanism of the HA molecular weight change and in vivo tissue response was also explored. These results effectively suggested that the HA/PDA coating might be promising when serving as a cardiovascular implanted device coating. PMID:26654689

  4. POSTTRANSLATIONAL MODIFICATION OF GLUTAMIC ACID DECARBOXYLASE 67 BY INTERMITTENT HYPOXIA: Evidence for the involvement of dopamine D1 receptor signaling$

    PubMed Central

    Raghuraman, Gayatri; Prabhakar, Nanduri R.; Kumar, Ganesh K.

    2010-01-01

    Intermittent hypoxia (IH) associated with sleep apnea leads to cardio-respiratory morbidities. Previous studies have shown that IH alters the synthesis of neurotransmitters including catecholamines and neuropeptides in brainstem regions associated with regulation of cardio-respiratory functions. GABA, a major inhibitory neurotransmitter in the central nervous system, has been implicated in cardio-respiratory control. GABA synthesis is primarily catalyzed by glutamic acid decarboxylase (GAD). Here, we tested the hypothesis that IH like its effect on other transmitters also alters GABA synthesis. The impact of IH on GABA synthesis was investigated in pheochromocytoma 12 (PC12) cells, a neuronal cell line which is known to express active form of GAD67 in the cytosolic fraction and also assessed the underlying mechanisms contributing to IH-evoked response. Exposure of cell cultures to IH decreased GAD67 activity and GABA level. IH-evoked decrease in GAD67 activity was due to increased cAMP - protein kinase A (PKA) - dependent phosphorylation of GAD67, but not as a result of changes in either GAD67 mRNA or protein expression. PKA inhibitor restored GAD67 activity and GABA levels in IH treated cells. PC12 cells express dopamine 1 receptor (D1R), a G-protein coupled receptor whose activation increased adenylyl cyclase (AC) activity. Treatment with either D1R antagonist or AC inhibitor reversed IH-evoked GAD67 inhibition. Silencing D1R expression with siRNA reversed cAMP elevation and GAD67 inhibition by IH. These results provide evidence for the role of D1R-cAMP-PKA signaling in IH mediated inhibition of GAD67 via protein phosphorylation resulting in down regulation of GABA synthesis. PMID:20969567

  5. Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma

    PubMed Central

    Fyk-Kolodziej, Bozena E.; Shimano, Takashi; Gafoor, Dana; Mirza, Najab; Griffith, Ronald D.; Gong, Tzy-Wen; Holt, Avril Genene

    2015-01-01

    Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA) in the IC following cochlear trauma has been previously reported (Tong et al., 2005). In the current study the possibility of co-localization of TH with AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN) and inferior colliculus (IC) to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after 2 months while in the IC the reduction in TH was observed at both 3 days and 2 months following ablation. Furthermore, in the CN, glycine transporter 2 (GLYT2) and the GABA transporter (GABAtp) were also significantly reduced only after 2 months. However, in the IC, DA receptor 1 (DRDA1), vesicular glutamate transporters 2 and 3 (VGLUT2, VGLUT3), GABAtp and GAD67 were reduced in expression both at the 3 days and 2 months time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GLYT2 and VGLUT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons. PMID:26257610

  6. Influence of ascorbic acid (AA) on iron (Fe) utilization in copper (Cu) deficient male and female rats

    SciTech Connect

    Johnson, M.A. )

    1989-02-09

    Interactions between Cu status (-Cu: 1.0 mg Cu/kg diet or +Cu: 5.8 mg Cu/kg diet) and AA (0 or 1% of the diet) were compared in male and female weanling rats. Food intakes were controlled so that final body weights were similar on day 23 when rats were killed. On day 17 rats were given an oral dose of 4 uCi of Fe-59 and feces were collected for 5 days. Heart weights (g/100 g body weight) were increased in both male and female -Cu rats. Among -Cu rats, AA increased heart weight by 25% in females but by only 6% in males. Similarly, among -Cu rats AA increased liver weight (g/100 g body weight) by 16% in females but not at all in males. Hematocrits (%) were similar among +Cu rats but were decreased in -Cu rats to a greater in male than in female rats. However, among -Cu rats AA decreased hematocrits from 34.1 to 26.4% in females but from only 30.0 to 26.8% in males. Compared to -Cu rats, +Cu rats apparently absorbed 2-times more Fe-59 and retained 2.5- times more absorbed Fe-59 in their whole blood. Among -Cu rats, AA decreased the absorption of Fe-59 and whole blood Fe-59 to a greater extent in female than in male rats. These results suggest that female rats may be somewhat more sensitive to the adverse effects of AA during Cu deficiency than are male rats.

  7. Effects of sufentanil on the release and metabolism of dopamine and ascorbic acid and glutamate release in the striatum of freely moving rats.

    PubMed

    Serra, Pier Andrea; Susini, Giuseppe; Rocchitta, Gaia; Migheli, Rossana; Dessanti, Giuseppina; Miele, Egidio; Desole, Maria Speranza; Miele, Maddalena

    2003-06-19

    The effects of either intraperitoneally (i.p.) or intrastriatally administered sufentanil on the release and metabolism of dopamine (DA) in the rat striatum were evaluated using in vivo microdialysis. Dialysate concentrations of DA and its acidic metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were increased following i.p. administration of either clinical anesthetic (20 microg/kg) or clinical analgesic (1 microg/kg) sufentanil doses. In addition, sufentanil also increased uric acid concentrations. In contrast, dialysate ascorbic acid and glutamate concentrations were unaffected. Intrastriatal infusion of sufentanil (250 nM) induced only a short lasting decrease in dialysate DA. Subcutaneous naloxone (1.0 mg/kg) abolished sufentanil-induced increases in dialysate DA, DOPAC+HVA and uric acid; however, naloxone (0.1 mM) failed to affect these increases when infused intrastriatally. These results demonstrate that sufentanil, at clinical doses, increases striatal DA release and oxidative metabolism of both DA and xanthine acting at extrastriatal sites with a mu-receptor-mediated mechanism. PMID:12781909

  8. An amino acid residue in the second extracellular loop determines the agonist-dependent tolerance property of the human D3 dopamine receptor.

    PubMed

    Gil-Mast, Sara; Kortagere, Sandhya; Kota, Kokila; Kuzhikandathil, Eldo V

    2013-06-19

    The D3 dopamine receptor is a therapeutic target for treating various nervous system disorders such as schizophrenia, Parkinson's disease, depression, and addictive behaviors. The crystal structure of the D3 receptor bound to an antagonist was recently described; however, the structural features that contribute to agonist-induced conformational changes and signaling properties are not well understood. We have previously described the conformation-dependent tolerance and slow response termination (SRT) signaling properties of the D3 receptor and identified the C147 residue in the second intracellular loop (IL2) of the D3 receptor as important for the tolerance property. Interestingly, while IL2 and the C147 residue, in particular, were important for dopamine- and quinpirole-induced tolerance, this residue did not affect the severe tolerance induced by the high affinity, D3 receptor-selective agonist, PD128907. Here, we used D2/D3 receptor chimeras and site-specific D3 receptor mutants to identify another residue, D187, in the second extracellular loop (EC2) of the human D3 receptor that mediates the tolerance property induced by PD128907, quinpirole, pramipexole, and dopamine. Molecular dynamics simulations confirmed the distinct conformation adopted by D3 receptor during tolerance and suggested that in the tolerant D3 receptor the D187 residue in EC2 forms a salt bridge with the H354 residue in EC3. Indeed, site-directed mutation of the H354 residue resulted in loss of PD1287907-induced tolerance. The mapping of specific amino acid residues that contribute to agonist-dependent conformation changes and D3 receptor signaling properties refines the agonist-bound D3 receptor pharmacophore model which will help develop novel D3 receptor agonists. PMID:23477444

  9. EB1 Levels Are Elevated in Ascorbic Acid (AA)-stimulated Osteoblasts and Mediate Cell-Cell Adhesion-induced Osteoblast Differentiation*

    PubMed Central

    Pustylnik, Sofia; Fiorino, Cara; Nabavi, Noushin; Zappitelli, Tanya; da Silva, Rosa; Aubin, Jane E.; Harrison, Rene E.

    2013-01-01

    Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation. PMID:23740245

  10. A “Genome-to-Lead” Approach for Insecticide Discovery: Pharmacological Characterization and Screening of Aedes aegypti D1-like Dopamine Receptors

    PubMed Central

    Avramova, Larisa V.; Garland-Kuntz, Elisabeth E.; Giraldo-Calderón, Gloria I.; Brust, Tarsis F.; Watts, Val J.; Hill, Catherine A.

    2012-01-01

    Background Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. Methodology/Principal Findings We describe a “genome-to-lead” approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D1-like (Gαs-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC50 = 5.8±1.5 nM) and norepinephrine (EC50 = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as “hits,” and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D1 dopamine receptor (hD1) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective

  11. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine.

    PubMed

    Yang, Wufeng; Zhang, Xiazhi; Wu, Keke; Liu, Xiaoyan; Jiao, Yanpeng; Zhou, Changren

    2016-12-01

    A simple but straightforward approach was reported to prepare fiber mats modified with fibronectin (Fn) protein for endothelial cells activity study. Based on the self-polymerization and strong adhesion feature of dopamine, poly L-Lactic acid (PLLA) fibers mat was modified via simply immersing them into dopamine solution for 16h. Subsequently, Fn was immobilized onto the fiber mats surface by the coupling reactive polydopamine (PDA) layer and Fn. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to determine the chemical compositions of fiber mats surface, which confirmed the successful immobilization of PDA and Fn molecules on the fiber surface. Scanning electronic microscopy (SEM) was used to observe the surface morphology changes after modification with PDA and Fn. The data of water contact angle showed that the hydrophilicity of the fiber mats was improved after surface modification. The data of in vitro cell culture proved that the PDA and Fn modified surface significantly enhanced the adhesion, proliferation and cell activity of endothelial cells on the fiber mats. And the release of tumor necrosis factor-α (TNF-α) by endothelial cells on the modified surface was suppressed compared to that on culture plate and PLLA film at 2 and 4days, while the secretion of interleukin-1β (IL-1β) was increased compared to that on culture plate and PLLA film at 2days. PMID:27612725

  12. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy.

    PubMed

    Pan, Chang-Jiang; Hou, Yu; Wang, Ya-Nan; Gao, Fei; Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren

    2016-10-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  13. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection.

    PubMed

    De Benedetto, Giuseppe Egidio; Fico, Daniela; Pennetta, Antonio; Malitesta, Cosimino; Nicolardi, Giuseppe; Lofrumento, Dario Domenico; De Nuccio, Francesco; La Pesa, Velia

    2014-09-01

    A fast and simple isocratic high-performance liquid chromatography method for the determination of 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE), dopamine (DA), and serotonin (5-HT) in homogenate samples of mouse striatum employing the direct fluorescence of the neurotransmitters is described. The method has been optimized and validated. The analytes were separated in 15min on a reversed-phase column (C18) with acetate buffer (pH 4.0, 12mM)-methanol (86:14, v/v) as mobile phase; the flow rate was 1ml/min. The fluorescence measurements were carried out at 320nm with excitation at 279nm. The calibration curve for DA was linear up to about 2.5μg/ml, with a coefficient of determination (r(2)) of 0.9995 with a lower limit of quantification of 0.031μg/ml. Since the procedure does not involve sample pre-purification or derivatisation, the recovery ranged from 97% to 102% and relative standard deviation (RSD) was better than 2.9%, the use of the internal standard is not mandatory, further simplifying the method. Similar performance was obtained for the other analytes. As a result, thanks to its simplicity, rapidity and adequate working range, the method can be used for the determination of 3,4-dihydroxyphenylacetic acid, dopamine, norepinephrine and serotonin in animal tissues. An experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson-like disease has been used to demonstrate the method is fit-for-purpose. PMID:24971521

  14. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. PMID:25445491

  15. Pramipexole, a dopamine D2 autoreceptor agonist, decreases the extracellular concentration of dopamine in vivo.

    PubMed

    Carter, A J; Müller, R E

    1991-07-23

    Pramipexole (SND 919) is a dopamine D2 autoreceptor agonist which is structurally related to talipexole (B-HT 920), a potential antipsychotic agent. The aim of this study was to investigate the effects of pramipexole on the extracellular concentration of dopamine in vivo. Dopamine and its metabolites, 3,4-dihydrophenylacetic acid and homovanillic acid, were measured in the anterior striatum of freely moving rats by microdialysis and high-performance liquid chromatography with electrochemical detection. Pramipexole (30 and 100 micrograms/kg) caused long-lasting decreases in the extracellular concentrations of dopamine and its metabolites. Talipexole (30 micrograms/kg) produced similar effects. Sulpiride (5 mg/kg), a selective dopamine D2 antagonist, caused a transient increase in the concentration of dopamine and long-lasting increases in the concentrations of its metabolites; it also reversed the effects of pramipexole. SCH-23390 (100 micrograms/kg), a selective dopamine D1 receptor antagonist, caused a transient increase in the concentration of dopamine but did not affect the concentrations of the metabolites. SCH-23390 failed to reverse the effects of pramipexole. These results indicate that pramipexole reduces the extracellular concentrations of dopamine and its metabolites in vivo through a reversible interaction with the dopamine D2 receptor. PMID:1685123

  16. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  17. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  18. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  19. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  20. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  1. Synthesis of 3beta-(4-[18F]fluoromethylphenyl)- and 3beta-(2-[18F] fluoromethylphenyl)tropane-2beta-carboxylic acid methyl esters: new ligands for mapping brain dopamine transporter with positron emission tomography.

    PubMed

    Petric, A; Barrio, J R; Namavari, M; Huang, S C; Satyamurthy, N

    1999-07-01

    The synthesis of two new dopamine transporter ligands, 3beta-(4-fluoromethylphenyl)tropane-2beta-carboxylic acid methyl ester and 3beta-(2-fluoromethylphenyl)tropane-2beta-carboxylic acid methyl ester, and their spectral characterization are described. The precursors for these ligands were prepared by TiCl4 catalyzed chloromethylation of 3beta-phenyltropane-2beta-carboxylic acid methyl ester followed by separation of the isomeric product mixture of 2- and 4-chloromethylphenyltropane derivatives. Reaction of the chloromethyl analogs with no-carrier-added [18F]fluoride ion followed by high performance liquid chromatography purification provided the corresponding [18F]fluoromethyltropanes, in good radiochemical yields, useful for imaging the brain dopamine transporter system in vivo with positron emission tomography. PMID:10473191

  2. Levodopa Reverses Cytokine-Induced Reductions in Striatal Dopamine Release

    PubMed Central

    Hernandez, Carla R.; Miller, Andrew H.

    2015-01-01

    Background: Studies using neuroimaging and in vivo microdialysis in humans and nonhuman primates indicate that inflammatory cytokines such as interferon-alpha reduce dopamine release in the ventral striatum in association with depressive symptoms including anhedonia and psychomotor slowing. Methods: Herein, we examined whether reduced striatal dopamine release in rhesus monkeys chronically treated with interferon-alpha can be restored by administration of the dopamine precursor levodopa via reverse in vivo microdialysis. Results: Levodopa completely reversed interferon-alpha–induced reductions in striatal dopamine release. No changes were found in the 3,4-dihydroxyphenylacetic acid to dopamine ratio, which increases when unpackaged dopamine is metabolized via monoamine oxidase. Conclusions: These findings suggest that inflammatory cytokines reduce the availability of dopamine precursors without affecting end-product synthesis or vesicular packaging and/or release and provide the foundation for future studies investigating therapeutic strategies that facilitate availability of dopamine precursors to improve depressive symptoms in patient populations with increased inflammation. PMID:25638816

  3. An efficient optical-electrochemical dual probe for highly sensitive recognition of dopamine based on terbium complex functionalized reduced graphene oxide.

    PubMed

    Zhou, Zhan; Wang, Qianming

    2014-05-01

    A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA). PMID:24622695

  4. Novel core etching technique of gold nanoparticles for colorimetric dopamine detection.

    PubMed

    Lee, Ho-Cheng; Chen, Tzu-Heng; Tseng, Wei-Lung; Lin, Che-Hsin

    2012-11-21

    This study develops a novel and high performance colorimetric probe for dopamine (DA) detection. Aqueous-phase gold nanoparticles (AuNPs) extracted with 4-(dimethylamino)pyridine (DMAP) from toluene solvent are used as the reaction probes. The original AuNPs of diameter around 13 nm separate into 2-5 nm sizes when dopamine (DA) is added, resulting in the color change of the AuNP solution from red to blackish green. Transmission electron microscopy (TEM) observations and dynamic light scattering (DLS) tests show that the AuNPs break into their smaller sizes right after addition of DA. The results confirm that the DMAP capped AuNPs are etched by the DA molecules due to the strong affinity between DA and AuNPs, thus causing a blue shift in the absorption spectrum. The concentration of DA is quantitatively monitored by using a UV-Vis spectrometer with a limit of detection (LOD) as low as 5 nM. In addition, the results also show that the methods developed appear to have no significant problems in detecting DA in the sample even with the presence of (10 mM) common interferents such as ascorbic acid (AA), homovanillic acid (HVA), catechol (CA) and glutathione (GSH). The developed AuNP etching protocol for dopamine detection provides a novel and versatile approach for rapid biosensing applications. PMID:23016153

  5. Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): Synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Nowesser, Nourhan; Al-Hussaini, A. S.; Zoromba, Mohamed Shafick

    2016-02-01

    The copolymer of anthranilic acid and o-aminophenol (AA-co-OAP) was synthesized and characterized by IR, UV-Vis. and thermal analyses (TGA). Linear chain mode was suggested for the pure (AA-co-OAP). The effect of inclusion of MnCl2, CoCl2, NiCl2, CuCl2 and FeCl3 on the spectral, thermal and optical properties of AA-co-OAP has been studied. Octahedral stereochemistry was suggested for Fe, Mn and Ni doped AA-co-OAP, while tetrahedral and square-planar geometries were suggested for Co and Cu doped AA-co-OAP, respectively. Fe doped AA-co-OAP has been used as a precursor for α-Fe2O3 nanoparticles by thermal decomposition route at 800 °C. The obtained hematite has been characterized by XRD and TEM. The average size of the prepared nanoparticles was estimated as 34 nm. The optical band gap of the synthesized hematite nanoparticles was measured and compared with the bulk.

  6. Central control of penile erection: a re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats.

    PubMed

    Melis, Maria Rosaria; Argiolas, Antonio

    2011-01-01

    Oxytocin is a potent inducer of penile erection when injected into the central nervous system. In male rats, the most sensitive brain area for the pro-erectile effect of oxytocin is the paraventricular nucleus of the hypothalamus. This nucleus and surrounding regions contain the cell bodies of all oxytocinergic neurons projecting to extra-hypothalamic brain areas and the spinal cord. This review shows that oxytocin induces penile erection also when injected in some of these areas (e.g., ventral tegmental area, ventral subiculum of the hippocampus, posteromedial cortical nucleus of the amygdala and thoraco-lumbar spinal cord). Microinjection studies combined with intra-cerebral microdialysis and double immuno-fluorescence studies suggest that oxytocin in these areas activates directly or indirectly (mainly through glutamic acid) mesolimbic dopaminergic neurons. Dopamine released in the nucleus accumbens in turn activates neural pathways leading to the activation of incerto-hypothalamic dopaminergic neurons in the paraventricular nucleus. This activates not only oxytocinergic neurons projecting to the spinal cord and mediating penile erection, but also those projecting to the above extra-hypothalamic areas, modulating directly or indirectly (through glutamic acid) the activity of mesolimbic dopaminergic neurons controlling motivation and reward. Together these neural pathways may constitute a complex hypothetical circuit, which plays a role not only in the consummatory phase of sexual activity (erectile function and copulation), but also in the motivational and rewarding aspects of the anticipatory phase of sexual behaviour. PMID:21050872

  7. A Bacoside containing Bacopa monnieri extract reduces both morphine hyperactivity plus the elevated striatal dopamine and serotonin turnover.

    PubMed

    Rauf, Khalid; Subhan, Fazal; Sewell, Robert D E

    2012-05-01

    Bacopa monnieri (BM) has been used in Ayurvedic medicine as a nootropic, anxiolytic, antiepileptic and antidepressant. An n-butanol extract of the plant (nBt-ext BM) was analysed and found to contain Bacoside A (Bacoside A3, Bacopaside II and Bacopasaponin C). The effects of the BM extract were then studied on morphine-induced hyperactivity as well as dopamine and serotonin turnover in the striatum since these parameters have a role in opioid sensitivity and dependence. Mice were pretreated with saline or nBt-ext BM (5, 10 and 15 mg/kg, orally), 60 min before morphine administration and locomotor activity was subsequently recorded. Immediately after testing, striatal tissues were analysed for dopamine (DA), serotonin (5HT) and their metabolites using HPLC coupled with electrochemical detection. The results indicated that nBt-ext BM significantly (p < 0.001) decreased locomotor activity in both the saline and morphine treated groups. Additionally, nBt-ext BM significantly lowered morphine-induced dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-H1AA) upsurges in the striatum but failed to affect DA, 5-HT and their metabolites in the saline treated group. These findings suggest that nBt-ext BM has an antidopaminergic/serotonergic effect and may have potential beneficial effects in the treatment of morphine dependence. PMID:22105846

  8. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays

    NASA Astrophysics Data System (ADS)

    Fang, Ting; Verma, Vishal; Bates, Josephine T.; Abrams, Joseph; Klein, Mitchel; Strickland, Matthew J.; Sarnat, Stefanie E.; Chang, Howard H.; Mulholland, James A.; Tolbert, Paige E.; Russell, Armistead G.; Weber, Rodney J.

    2016-03-01

    The ability of certain components of particulate matter to induce oxidative stress through the generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and report here the development of a similar semi-automated system for the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed for a host of aerosol species, along with AA and DTT activities. We present a detailed contrast in findings from these two assays. Water-soluble AA activity was higher in summer and fall than in winter, with highest levels near heavily trafficked highways, whereas DTT activity was higher in winter compared to summer and fall and more spatially homogeneous. AA activity was nearly exclusively correlated with water-soluble Cu (r = 0.70-0.94 at most sites), whereas DTT activity was correlated with organic and metal species. Source apportionment models, positive matrix factorization (PMF) and a chemical mass balance method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from traffic emissions and secondary processes (e.g., organic aerosol oxidation or metals mobilization by secondary acids) to both AA and DTT activities in urban Atlanta. In contrast, biomass burning was a large source for DTT activity, but insignificant for AA. AA activity was not correlated with PM2.5 mass, while DTT activity co-varied strongly with mass (r = 0.49-0.86 across sites and seasons). Various linear models were developed to estimate AA and DTT activities for the central Atlanta Jefferson Street site, based on the CMB-E sources. The models were then used to estimate daily

  9. Oxidative potential of ambient water-soluble PM2.5 measured by Dithiothreitol (DTT) and Ascorbic Acid (AA) assays in the southeastern United States: contrasts in sources and health associations

    NASA Astrophysics Data System (ADS)

    Fang, T.; Verma, V.; Bates, J. T.; Abrams, J.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.; Weber, R. J.

    2015-11-01

    The ability of certain components of particulate matter to induce oxidative stress through catalytic generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and have recently developed a similar semi-automated system using the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed using both assays. We found that water-soluble DTT activity on a per air volume basis was more spatially uniform than water-soluble AA activity. DTT activity was higher in winter than in summer/fall, whereas AA activity was higher in summer/fall compared to winter, with highest levels near highly trafficked highways. DTT activity was correlated with organic and metal species, whereas AA activity was correlated with water-soluble metals (especially water-soluble Cu, r=0.70-0.91 at most sites). Source apportionment models, Positive Matrix Factorization (PMF) and a Chemical Mass Balance Method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from secondary processes (e.g., organic aerosol oxidation or metal mobilization by formation of an aqueous particle with secondary acids) and traffic emissions to both DTT and AA activities in urban Atlanta. Biomass burning was a large source for DTT activity, but insignificant for AA. DTT activity was well correlated with PM2.5 mass (r=0.49-0.86 across sites/seasons), while AA activity did not co-vary strongly with mass. A linear model was developed to estimate DTT and AA activities for the central Atlanta Jefferson Street site, based on the CMB-E sources that are statistically significant with positive

  10. High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid

    NASA Astrophysics Data System (ADS)

    Lin, Mouhong; Huang, Haoliang; Liu, Yingju; Liang, Canjian; Fei, Shidong; Chen, Xiaofen; Ni, Chunlin

    2013-02-01

    Multiwalled carbon nanotubes (MWCNT) were homogeneously covered with a bio-functional polydopamine (PDOP) by a simple dip-coating approach in mild basic solution. Then, uniformly dispersed and highly loaded platinum nanoparticles (PtNPs) were deposited on MWCNT@PDOP by a mild reductant, and were characterized by transmission electron microscopy and x-ray photoelectron spectroscopy. Afterwards, this nanocomposite was modified on the glass carbon electrode and applied to simultaneously determine dopamine (DA) and uric acid (UA) by differential pulse voltammetry (DPV). Results showed that a linear electro-oxidation response was found for DA and UA in the range of 0.25-20 μM and 0.3-13 μM with the detection limit (S/N = 3) of 0.08 μM and 0.12 μM, respectively. In addition, the detection sensitivities for DA and UA by DPV were 1.03 μA μM-1 and 2.09 μA μM-1, respectively, which were much higher than those from a cyclic voltammogram. Finally, the reproducibility and stability of the nanocomposite were also evaluated, demonstrating that such MWCNT@PDOP@PtNPs can be a promising candidate for advanced electrode material in electrochemical sensing and other electrocatalytic applications.

  11. Acute and Long-Term Response of Dopamine Nigrostriatal Synapses to a Single Low Dose Episode of 3-Nitropropionic Acid-Mediated Chemical Hypoxia

    PubMed Central

    Crawford, Cynthia A.; Akopian, Garnik; Ring, Justin; Jakowec, Michael W.; Petzinger, Giselle M.; Andersen, Julie K.; Vittozzi-Wong, Philip; Wang, Kristie; Farley, Cristal M.; Charntikov, Sergios; Mitroi, Danut; Beal, M. Flint; Chow, Robert; Walsh, John P.

    2010-01-01

    The goal of the present investigation was to determine the persistence of striatal dopaminergic dysfunction after a mild chemically-induced hypoxic event in Fisher 344 rats. To this end, we gave a single injection of the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP; 16.5 mg/kg, i.p.) to 2 month old male F344 rats and measured various indices of striatal dopaminergic functioning and lipid peroxidation over a 3 month span. Separate groups of rats were used to measure rod walking, evoked dopamine (DA) release, DA content, MDA accumulation, DA receptor binding, and tyrosine hydroxylase activity. The results showed that 3-NP exposure reduced most measures of DA functioning including motoric ability, DA release, and D2 receptor densities for 1 to 3 months post drug administration. Interestingly, DA content was reduced 1 week after 3-NP exposure, but rose to 147% of control values 1 month after 3-NP treatment. MDA accumulation, a measure of lipid peroxidation activity, was increased 24 hr and 1 month after 3-NP treatment. 3-NP did not affect tyrosine hydroxylase activity, suggesting that alterations in DA functioning were not the result of nigrostriatal terminal loss. These data demonstrate that a brief mild hypoxic episode caused by 3-NP exposure has long-term detrimental effects on the functioning of the nigrostriatal DA system. PMID:20730800

  12. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    NASA Astrophysics Data System (ADS)

    Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti-24Nb-2Zr (TNZ) alloy. Zeta potential oscillated between -2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI)5). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI)5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI)5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI)5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  13. Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes.

    PubMed

    Si, Peng; Chen, Hailan; Kannan, Palanisamy; Kim, Dong-Hwan

    2011-12-21

    A novel method is developed to fabricate the polypyrrole (PPy) and graphene thin films on electrodes by electrochemical polymerization of pyrrole with graphene oxide (GO) as a dopant, followed by electrochemical reduction of GO in the composite film. The composite of PPy and electrochemically reduced graphene oxide (eRGO)-modified electrode is highly sensitive and selective toward the detection of dopamine (DA) in the presence of high concentrations of ascorbic acid (AA) and uric acid (UA). The sensing performance of the PPy/eRGO-modified electrode is investigated by differential pulse voltammetry (DPV), revealing a linear range of 0.1-150 μM with a detection limit of 23 nM (S/N = 3). The practical application of the PPy/eRGO-modified electrode is successfully demonstrated for DA determination in human blood serum. PMID:22010122

  14. Multi-walled carbon nanotube/poly(glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals.

    PubMed

    Thomas, Tony; Mascarenhas, Ronald J; Swamy, B E Kumara; Martis, Praveen; Mekhalif, Zineb; Sherigara, B S

    2013-10-01

    A modified carbon paste electrode (CPE) for the selective detection of dopamine (DA) in presence of large excess of ascorbic acid (AA) and uric acid (UA) at physiological pH has been fabricated by bulk modification of CPE with multi-walled carbon nanotubes (MWCNTs) followed by electropolymerization of glycine (Gly). The surface morphology is compared using SEM images. The presence of nitrogen was confirmed by the energy dispersion X-ray spectroscopy (EDS) indicating the polymerization of Gly on the surface of the modified electrode. The impedance study indicates a better charge transfer kinetics for DA at CPE modified with MWCNT/polyglycine electrode. The presence of MWCNTs in carbon paste matrix triggers the extent of electropolymerization of Gly and imparts more selectivity towards DA by electrochemically not sensing AA below a concentration of 3.1×10(-4)M. Due to the exclusion of the signal for AA, the interference of AA in the determination of DA is totally ruled out by DPV method which is used for its detection at lower concentrations. Large peak separation, good sensitivity, reproducibility and stability allow this modified electrode to analyze DA individually and simultaneously along with AA and UA. Detection limit of DA was determined from differential pulse voltammetric (DPV) study and found to be 1.2×10(-8)M with a linear dynamic range of 5.0×10(-7)M to 4.0×10(-5)M. The practical analytical application of this electrode was demonstrated by measurement of DA content in dopamine hydrochloride injection and human blood serum. PMID:23770784

  15. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  16. USEPA METHOD STUDY 37 - SW-846 METHOD 3050, ACID DIGESTION OF SEDIMENTS, SLUDGES AND SOILS BY AA-DIRECT ASPIRATION

    EPA Science Inventory

    An interlaboratory collaborative study was conducted to determine the precision and accuracy of Method 3050 for the analysis of 23 elements in sediments, sludqes and soils. Method 3050 is entitled, "Acid Digestion of Sediments, Sludges and Soils." It includes instructions for qua...

  17. Simultaneous voltammetric determination for DA, AA and NO₂⁻ based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform.

    PubMed

    Zhang, Yu; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Zhong, Xia; Zhong, Huaan

    2011-05-15

    In the present work, graphene sheets (GS) and multiwall carbon nanotubes (MWCNTs) were dispersed in the mixed solution of cyclodextrin (CD) and cyclodextrin prepolymer (pre-CD) and were used as modifier to fabricate chemical modified electrode to simultaneous detect dopamine (DA), ascorbic acid (AA) and nitrite (NO2(-)). CD cross-linked pre-CD (CDP) displays excellent film forming ability, which made the electrode stable. Comparing with CDP-GS, CDP-MWCNTs and CDP-GS-MWCNTs modified electrodes, the CDP-GS-MWCNTs displays higher catalytic activity and selectivity toward the oxidation of DA, AA and NO2(-), revealing that MWCNTs effectively inhibited the stacking of individual GS and enhanced the utilization of GS based composites. The host-guest chemical reaction ability of CD and π-π stacking interaction between detected molecules and GS-MWCNTs surface were considered as the main reasons of the successfully simultaneous detection of DA, AA and NO2(-). Cyclic voltammetry (CV), scanning electron microscopy (SEM) and different pulse voltammetry (DPV) were employed to characterize the biosensor. The linear response range for AA, DA and NO2(-) were 5 μM-0.48 mM, 0.15-21.65 μM and 5 μM-6.75 mM, respectively and the detection limits were 1.65 μM, 0.05 μM and 1.65 μM. PMID:21497078

  18. Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples.

    PubMed

    Meenakshi, S; Devi, S; Pandian, K; Devendiran, R; Selvaraj, M

    2016-12-01

    Sunlight assisted reduction of silver ions were accomplished for the synthesis of silver nanoparticles incorporated within the mesoporous silicate framework of zeolite Y. The zeolite-Y and AgNP/Zeo-Y were characterized by field emission scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption BET isotherm and X-ray diffraction techniques. The incorporation of silver nanoparticles within the porous framework was further confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. An enhanced electrocatalytic oxidation of biologically important molecules like dopamine and uric acid using AgNP/Zeo-Y modified glassy carbon electrode has been developed. A simultaneous oxidation of DA and UA peaks were obtained at +0.31V and +0.43V (vs. Ag/AgCl) using AgNP/Zeo-Y/GCE under the optimum experimental condition. A well-resolved peak potential window (~120mV) for the oxidation of both DA and UA were observed at AgNP/Zeo-Y/GCE system. The calibration curves for DA and UA were obtained within the dynamic linear range of 0.02×10(-6) to 0.18×10(-6)M (R(2)=0.9899) and 0.05×10(-6) to 0.7×10(-6)M (R(2)=0.9996) and the detection limits were found to be 1.6×10(-8)M and 2.51×10(-8)M by using differential pulse voltammetry (DPV) method. The proposed method was successfully applied for the determination of both DA and UA in human urine samples with a related standard deviation was <3%, and n=5 using the standard addition method. PMID:27612692

  19. A facile one-pot synthesis of carbon nitride dots-reduced graphene oxide nanocomposites for simultaneous enhanced detecting of dopamine and uric acid.

    PubMed

    Yang, Ziyin; Zheng, Xiaohui; Li, Zhi; Zheng, Jianbin

    2016-08-01

    In this study, we described the facile synthesis of carbon nitride dots-reduced graphene oxide nanocomposites (CNDs-rGO) and their application for the enhanced electrochemical determination of dopamine (DA) and uric acid (UA). CNDs-rGO were synthesized for the first time through a green and facile one-step approach, carried out by hydrothermal heat-treatment of an aqueous solution containing GO and chitosan without introduction of other reducing agents or surface modifier. Then, the morphology and composition of CNDs-rGO nanocomposites were characterized by transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. TEM observations revealed that CNDs with a size of about 5.0 nm were homogeneously and densely distributed on the surface of rGO. Electrochemical investigations indicated that CNDs-rGO nanocomposites exhibited an excellent performance toward DA and UA. The linear range for DA was estimated to be from 80 nM to 227 μM with a sensitivity of 154.3 μA mM(-1) cm(-2) and a low detection limit of 0.03 μM. Meanwhile, the linear range for UA was estimated to be from 80 nM to 328 μM with a high sensitivity of 178.1 μA mM(-1) cm(-2) and a low detection limit of 0.05 μM. Therefore, CNDs-rGO nanocomposites showed great application potential for constructing electrochemical sensors for the detection of DA and UA. PMID:27284588

  20. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate. PMID:23129181

  1. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    PubMed

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients. PMID:12451130

  2. Dopamine: the rewarding years

    PubMed Central

    Marsden, Charles A

    2006-01-01

    Dopamine has moved from being an insignificant intermediary in the formation of noradrenaline in 1957 to its present-day position as a major neurotransmitter in the brain. This neurotransmitter is involved in the control of movement and Parkinson's disease, the neurobiology and symptoms of schizophrenia and attention deficit hyperactivity disorder. It is also considered an essential element in the brain reward system and in the action of many drugs of abuse. This evolution reflects the ability of several famous names in neuropharmacology, neurology and psychiatry to apply new techniques to ask and answer the right questions. There is now excellent knowledge about the metabolism of dopamine, dopamine receptor systems and the structural organisation of dopamine pathways in the brain. Less is known about the function of the different receptors and how the various dopamine pathways are organised to produce normal behaviour, which exhibits disruption in the disease states mentioned. In particular, we have very limited information as to why and how the dopamine system dies or becomes abnormal in Parkinson's disease or a neurodevelopmental disorder such as schizophrenia. Dopamine neurones account for less than 1% of the total neuronal population of the brain, but have a profound effect on function. The future challenge is to understand how dopamine is involved in the integration of information to produce a relevant response rather than to study dopamine in isolation from other transmission systems. This integrated approach should lead to greater understanding and improved treatment of diseases involving dopamine. PMID:16402097

  3. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. PMID:26249577

  4. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.

    PubMed

    Lin, Chi-Chang; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs. PMID:26478309

  5. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  6. Protective effects of ascorbic acid against the genetic and epigenetic alterations induced by 3,5-dimethylaminophenol in AA8 cells.

    PubMed

    Chao, Ming-Wei; Erkekoglu, Pınar; Tseng, Chia-Yi; Ye, Wenjie; Trudel, Laura J; Skipper, Paul L; Tannenbaum, Steven R; Wogan, Gerald N

    2015-05-01

    Exposure to monocyclic aromatic alkylanilines (MAAs), namely 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and 3-ethylaniline (3-EA), was significantly and independently associated with bladder cancer incidence. 3,5-DMAP (3,5-dimethylaminophenol), a metabolite of 3,5-DMA, was shown to induce an imbalance in cytotoxicity cellular antioxidant/oxidant status, and DNA damage in mammalian cell lines. This study was designed to evaluate the protective effect of ascorbic acid (Asc) against the cytotoxicity, reactive oxygen species (ROS) production, genotoxicity and epigenetic changes induced by 3,5-DMAP in AA8 Chinese Hamster Ovary (CHO) cells. In different cellular fractions, 3,5-DMAP caused alterations in the enzyme activities orchestrating a cellular antioxidant balance, decreases in reduced glutathione levels and a cellular redox ratio as well as increases in lipid peroxidation and protein oxidation. We also suggest that the cellular stress caused by this particular alkylaniline leads to both genetic (Aprt mutagenesis) and epigenetic changes in histones 3 and 4 (H3 and H4). This may further cause molecular events triggering different pathological conditions and eventually cancer. In both cytoplasm and nucleus, Asc provided increases in 3,5-DMAP-reduced glutathione levels and cellular redox ratio and decreases in the lipid peroxidation and protein oxidation. Asc was also found to be protective against the genotoxic and epigenetic effects initiated by 3,5-DMAP. In addition, Asc supplied protection against the cell cycle (G1 phase) arrest induced by this particular alkylaniline metabolite. PMID:25178734

  7. In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode

    NASA Astrophysics Data System (ADS)

    Shalini, Jayakumar; Sankaran, Kamatchi Jothiramalingam; Dong, Chung-Li; Lee, Chi-Young; Tai, Nyan-Hwa; Lin, I.-Nan

    2013-01-01

    Significant difference was observed for the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA) mixture using nitrogen incorporated diamond nanowire (DNW) film electrodes grown by microwave plasma enhanced chemical vapor deposition. For the simultaneous sensing of ternary mixtures of DA, AA, and UA, well-separated voltammetric peaks are obtained using DNW film electrodes in differential pulse voltammetry (DPV) measurements. Remarkable signals in cyclic voltammetry responses to DA, AA and UA (three well defined voltammetric peaks at potentials around 235, 30, 367 mV for DA, AA and UA respectively) and prominent enhancement of the voltammetric sensitivity are observed at the DNW electrodes. In comparison to the DPV results of graphite, glassy carbon and boron doped diamond electrodes, the high electrochemical potential difference is achieved via the use of the DNW film electrodes which is essential for distinguishing the aforementioned analytes. The enhancement in EC properties is accounted for by increase in sp2 content, new C-N bonds at the diamond grains, and increase in the electrical conductivity at the grain boundary, as revealed by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure measurements. Consequently, the DNW film electrodes provide a clear and efficient way for the selective detection of DA in the presence of AA and UA.Significant difference was observed for the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA) mixture using nitrogen incorporated diamond nanowire (DNW) film electrodes grown by microwave plasma enhanced chemical vapor deposition. For the simultaneous sensing of ternary mixtures of DA, AA, and UA, well-separated voltammetric peaks are obtained using DNW film electrodes in differential pulse voltammetry (DPV) measurements. Remarkable signals in cyclic voltammetry responses to DA, AA and UA (three well defined voltammetric peaks at potentials around 235

  8. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    PubMed Central

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  9. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers.

    PubMed

    Kim, Su-Jin; Cho, Yu Kyung; Lee, Chongmok; Kim, Myung Hwa; Lee, Youngmi

    2016-03-15

    This paper reports that the high electrocatalytic activity of RuO2 nanowires grown on electrospun TiO2 nanofibers for the oxidation of l-ascorbic acid (AA); and the application of these materials for direct selective sensing of AA in complex samples. Compared to bare glassy carbon (GC) electrode, RuO2 nanowires on TiO2 nanofibers-loaded GC electrode facilitates the oxidation of AA most drastically among the tested species: AA, 4-acetamidophenol (AP), dopamine (DA), uric acid (UA), and glucose. The amperometric response of RuO2 nanowires on TiO2 nanofibers at the applied potential of 0.018 V (vs. SCE) exhibits high sensitivity (268.2 ± 3.7 μAmM(-1)cm(-2), n=5), low detection limit (<1.8 μM), great linearity, reasonable stability, and exclusive selectivity over AP, DA, glucose and UA at their physiological levels. In differential pulse voltammetry, it is verified that the potential resolution of RuO2 nanowires on TiO2 nanofibers is able to differentiate AA, DA, UA, and AP one from the others. In addition, as prepared RuO2 nanowires on TiO2 nanofibers are successfully applied for direct and selective AA measurements in commercial vitamin samples and for the real-time direct analysis of AA generated from living rat liver tissue in vitro. PMID:26569445

  10. Comparison between the AA/EPA ratio in depressed and non depressed elderly females: omega-3 fatty acid supplementation correlates with improved symptoms but does not change immunological parameters

    PubMed Central

    2012-01-01

    Background Depression is one of the most frequently missed diagnoses in elderly people, with obvious negative effects on quality of life. Various studies have shown that long chain omega-3 polyunsaturated fatty acids (n-3 PUFA) may be useful in its management. Our objective was to evaluate whether a supplement containing n-3 PUFA improves depressive symptoms in depressed elderly patients, and whether the blood fatty acid pattern is correlated with these changes. Methods The severity of depressive symptoms according to the Geriatric Depression Scale (GDS), blood fatty acid composition and erythrocyte phospholipids were analyzed in 46 depressed females aged 66-95y, diagnosed with depression according to DSMIV, within the context of a randomized, double-blind, placebo-controlled trial. 22 depressed females were included in the intervention group (2.5 g/day of n-3 PUFA for 8 weeks), and 24 in the placebo group. We also measured immunological parameters (CD2, CD3, CD4, CD8, CD16, CD19 and cytokines (IL-5, IL-15). Results The mean GDS score and AA/EPA ratio, in whole blood and RBC membrane phospholipids, were significantly lower after 2 months supplementation with n-3 PUFA. A significant correlation between the amelioration of GDS and the AA/EPA ratio with some immunological parameters, such as CD2, CD19, CD4, CD16 and the ratio CD4/CD8, was also found. Nevertheless, omega-3 supplementation did not significantly improve the studied immunological functions. Conclusions n-3 PUFA supplementation ameliorates symptoms in elderly depression. The n-3 PUFA status may be monitored by means of the determination of whole blood AA/EPA ratio. PMID:23046564

  11. DNA aptamer-based fiber optic biosensor for selective and label-free detection of dopamine

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Bayat, A. H.; Haghparast, A.

    2015-09-01

    Dopamine (DA) analysis is complicated by the interference from other electrochemically active endogenous compounds present in the brain, including DA precursors and metabolites and other neurotransmitters (NT). Here we report a simple, sensitive and selective optical fiber biosensor for the detection of DA in the presence of other NT. It is composed of a 57-mer dopamine-binding aptamer (DBA) as recognition element and nonadiabatic tapered optical fiber (NATOF) as probe. Upon the addition of DA, the conformation of DBA would change from a random coil structure to a rigid tertiary structure like a pocket. The conformational change of DBA lead to the refractive index (RI) change around the tapered fiber surface. Specific recognition of DA by the aptamer allowed a selective optical detection of DA within the physiologically relevant 500 nM to 10 μM range. Some common interferents such as epinephrine (EP) and ascorbic acid (AA) showed no or just a little interference in the determination of DA.

  12. Cu(II)-catalyzed reactions in ternary [Cu(AA)(AA - H)]+ complexes (AA = Gly, Ala, Val, Leu, Ile, t-Leu, Phe).

    PubMed

    Wang, Ping; Ohanessian, Gilles; Wesdemiotis, Chrys

    2009-01-01

    The unimolecular chemistry of [Cu(II)AA(AA - H)](+) complexes, composed of an intact and a deprotonated amino acid (AA) ligand, have been probed in the gas phase by tandem and multistage mass spectrometry in an electrospray ionization quadrupole ion trap mass spectrometer. The amino acids examined include Gly, Ala, Val, Leu, Ile, t-Leu and Phe. Upon collisionally-activated dissociation (CAD), the [Cu(II)AA(AA - H)](+) complexes undergo decarboxylation with simultaneous reduction of Cu(II) to Cu(I); during this process, a radical site is created at the alpha-carbon of the decarboxylated ligand (H(2)N(1) - (*)C(alpha)H - C(beta)H(2) - R; R = side chain substituent). The radical site is able to move along the backbone of the decarboxylated amino acid to form two new radicals (HN(1)(*) - C(alpha)H(2) - C(beta)H(2) - R and H(2)N(1) - C(alpha)H(2) - (*)C(beta)H - R). From the complexes of Gly and t-Leu, only C(alpha) and N(1) radicals can be formed. The whole radical ligand can be lost to form [Cu(I)AA](+) from these three isomeric radicals. Alternatively, further radical induced dissociations can take place along the backbone of the decarboxylated amino acid ligand to yield [Cu(II)AA(AA - 2H - CO(2))](+), [Cu(I)AA((*)NH(2))](+), [Cu(I)AA(HN = C(alpha)H(2))](+), or [Cu(I)AA(H(2)N - C(alpha)H = C(beta)H - R'](+) (R' = partial side chain substituent). The sodiated copper complexes, [Cu(II)(AA - H + Na)(AA - H)](+), show the same fragmentation patterns as their non-sodiated counterparts; sodium ion is retained on the intact amino acid ligand and is not involved in the CAD pathways. The amino groups of both AA units, the carbonyl group of the intact amino acid, and the deprotonated hydroxyl oxygen coordinate Cu(II) in square-planar fashion. Ab initio calculations indicate that the metal ion facilitates hydrogen atom shuttling between the N(1), C(alpha) and C(beta) atoms of the decarboxylated amino acid ligand. The dissociations of the decarboxylated radical ions unveil

  13. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    PubMed

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. PMID:26928903

  14. Catecholamines up Integrates Dopamine Synthesis and Synaptic Trafficking

    PubMed Central

    Wang, Zhe; Ferdousy, Faiza; Lawal, Hakeem; Huang, Zhinong; Daigle, J. Gavin; Izevbaye, Iyare; Doherty, Olugbenga; Thomas, Jerrad; Stathakis, Dean G; O’Donnell, Janis M.

    2011-01-01

    The highly reactive nature of dopamine renders dopaminergic neurons vulnerable to oxidative damage. We recently demonstrated that loss-of-function mutations in the Drosophila gene Catecholamines up (Catsup) elevate dopamine pools but, paradoxically, also confer resistance to paraquat, an herbicide that induces oxidative stress-mediated toxicity in dopaminergic neurons. We now report a novel association of the membrane protein, Catsup, with GTP cyclohydrolase rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis and tyrosine hydroxylase, rate-limiting enzyme for dopamine biosynthesis, which requires BH4 as a cofactor. Loss-of-function Catsup mutations cause dominant hyperactivation of both enzymes. Elevated dopamine levels in Catsup mutants coincide with several distinct characteristics, including hypermobility, minimal basal levels of 3,4-Dihydroxy-Phenylacetic Acid, an oxidative metabolite of dopamine, and resistance to the Vesicular Monoamine Transporter inhibitor, reserpine, suggesting that excess dopamine is synaptically active and that Catsup functions in the regulation of synaptic vesicle loading and release of dopamine. We conclude that Catsup regulates and links the dopamine synthesis and transport networks. PMID:21985068

  15. Human prostaglandin H synthase (hPHS)-1- and hPHS-2-dependent bioactivation, oxidative macromolecular damage, and cytotoxicity of dopamine, its precursor, and its metabolites.

    PubMed

    Ramkissoon, Annmarie; Wells, Peter G

    2011-01-15

    The dopamine (DA) precursor l-dihydroxyphenylalanine (L-DOPA) and metabolites dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine may serve as substrates for prostaglandin H synthase (PHS)-catalyzed bioactivation to free radical intermediates. We used CHO-K1 cells expressing human (h) PHS-1 or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. hPHS-1- and hPHS-2-expressing cells incubated with DA, L-DOPA, DOPAC, or HVA exhibited increased cytotoxicity compared to untransfected cells, and cytotoxicity was increased further by exogenous arachidonic acid (AA), which increased hPHS activity. Preincubation with catalase, which detoxifies reactive oxygen species, or acetylsalicylic acid, an inhibitor of hPHS-1 and -2, reduced the cytotoxicity caused by DA, L-DOPA, DOPAC, and HVA in hPHS-1 and -2 cells both with and without AA. Protein oxidation was increased in hPHS-1 and -2 cells exposed to DA or L-DOPA and further increased by AA addition. DNA oxidation was enhanced earlier and at lower substrate concentrations than protein oxidation in both hPHS-1 and -2 cells by DA, L-DOPA, DOPAC, and HVA and further enhanced by AA addition. hPHS-2 cells seemed more susceptible than hPHS-1 cells, whereas untransfected CHO-K1 cells were less susceptible. Thus, isozyme-specific, hPHS-dependent oxidative damage and cytotoxicity caused by neurotransmitters, their precursors, and their metabolites may contribute to neurodegeneration associated with aging. PMID:21078384

  16. Effect of allicin (diallyl disulfide-oxide) on prostaglandin endoperoxide H/sub 2/ (PGH/sub 2/) and arachidonic acid (AA) metabolism and platelet aggregation

    SciTech Connect

    Mayeux, P.R.; Agrawal, K.C.; King, B.T.; Kadowitz, P.J.; McNamara, D.B.

    1986-03-01

    The authors report here the effects of pure allicin (the antibacterial component of GO), synthesized from diallyl disulfide and hydrogen peroxide, on human platelet aggregation, PGH/sub 2/ metabolism in microsomes of bovine lung (BL) and bovine coronary artery (BCA), homogenates of human platelet (HP), and on AA metabolism in HP. Allicin at 16 ..mu..g/ml to 160 ..mu..g/ml produced concentration-dependent inhibition of platelet aggregation to 1.6 mM AA and 2.8 ..mu..M U 46619, a stable analog of PGH/sub 2/ and a TXA/sub 2/ minic. BL (200 ..mu..g protein), BCA (10 ..mu..g protein), and HP (1500 ..mu..g protein) were incubated with 10 ..mu..M (/sup 14/C) PGH/sub 2/ +/- allicin. HP (1500 ..mu..g protein) were incubated with 20 ..mu..M (/sup 14/C) AA +/- allicin. Products were separated by TLC and quantified by radiochromatographic scan. Allicin in the concentration range of 10-/sup 6/M-10-/sup 3/M induced no change in the formation of prostacyclin by BL and BCA or of TXA/sub 2/ by BL and HP. These data suggest that the platelet antiaggregatory action of allicin is not due to inhibition of cyclooxygenase or TXA/sub 2/ synthetase in the human platelet, but may be related to interactions at the TXA/sub 2/ receptor or on cyclic nucleotide levels.

  17. The lateral mesopontine tegmentum regulates both tonic and phasic activity of VTA dopamine neurons

    PubMed Central

    Chen, Li

    2013-01-01

    Anatomic studies have demonstrated that the mesolimbic dopamine system receives a substantial afferent input from a variety of regions ranging from the prefrontal cortex through to the brain stem. However, how these afferents regulate dopamine neuron activity is still largely unknown. The mesopontine tegmentum provides a significant input to ventral tegmental area (VTA) dopamine neurons, and it has been demonstrated that discrete subdivisions within this region differentially alter dopamine neuron activity. Thus the laterodorsal tegmental nucleus provides a tonic input essential for maintaining burst firing of dopamine neurons, whereas the pedunculopontine tegmental (PPTg) nucleus regulates a transition from single-spike firing to burst firing. In contrast, the recently identified rostromedial tegmental nucleus provides an inhibitory input to the VTA and decreases spontaneous dopamine neuron activity. Here, we demonstrate that an area adjacent to the PPTg regulates both population activity as well as burst firing of VTA dopamine neurons. Specifically, N-methyl-d-aspartic acid (NMDA) activation of the lateral mesopontine tegmentum produces an increase in the number of spontaneously active dopamine neurons and an increase in the average percentage of burst firing of dopamine neurons. This increase in neuronal activity was correlated with extracellular dopamine efflux in the nucleus accumbens, as measured by in vivo microdialysis. Taken together, we provide further evidence that the mesopontine tegmentum regulates discrete dopamine neuron activity states that are relevant for the understanding of dopamine system function in both normal and disease states. PMID:24004527

  18. Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine.

    PubMed

    Mercante, Luiza A; Pavinatto, Adriana; Iwaki, Leonardo E O; Scagion, Vanessa P; Zucolotto, Valtencir; Oliveira, Osvaldo N; Mattoso, Luiz H C; Correa, Daniel S

    2015-03-01

    The use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly. Differential pulse voltammetry was employed with indium tin oxide (ITO) electrodes coated with the functionalized nanofibers for the selective electrochemical detection of dopamine (DA), with no interference from uric acid (UA) and ascorbic acid (AA) that are normally present in biological fluids. The response was linear for a DA concentration range from 1 to 70 μmol L(-1), with detection limit of 0.15 μmol L(-1) (S/N = 3). The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and biosensors. PMID:25644325

  19. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine.

    PubMed

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan; Chen, Jianhua; Hu, Shirong; Hao, Aiyou

    2015-01-01

    Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA. PMID:25467470

  20. Section AA Pre2004 Fire, Section AA 2009, Section AA, South ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section A-A Pre-2004 Fire, Section A-A 2009, Section A-A, South Elevation - Boston & Maine Railroad, Berlin Branch Bridge #148.81, Formerly spanning Moose Brook at former Boston & Maine Railroad, Gorham, Coos County, NH

  1. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    SciTech Connect

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  2. The AAS Workforce Survey

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Norman, D. J.; Evans, N. R.; Ivie, R.

    2014-01-01

    The AAS Demographics Committee, on behalf of the AAS, was tasked with initiating a biennial survey to improve the Society's ability to serve its members and to inform the community about changes in the community's demographics. A survey, based in part on similar surveys for other scientific societies, was developed in the summer of 2012 and was publicly launched in January 2013. The survey randomly targeted 2500 astronomers who are members of the AAS. The survey was closed 4 months later (April 2013). The response rate was excellent - 63% (1583 people) completed the survey. I will summarize the results from this survey, highlighting key results and plans for their broad dissemination.

  3. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  4. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine.

    PubMed

    Ban, Rui; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2015-02-21

    A novel luminescence probe based on mono-6-amino-β-cyclodextrin (NH2-β-CD) functionalised gold nanoclusters (β-CD-AuNC) was designed for dopamine (DA) detection. The NH2-β-CD molecules were conjugated onto the surface of 11-mercaptoundecanoic acid capped AuNCs (11-MUA-AuNC) via a carbodiimide coupling reaction. The integrity of the β-CD cavities was preserved on the surface of AuNCs and they retained their capability for molecular DA host-guest recognition. DA could be captured by the β-CD cavities to form an inclusion complex in which the oxidised DA could quench the fluorescence of the β-CD-AuNC probe by electron transfer. The probe could be used to quantify DA in the range of 5-1000 nM with a detection limit of 2 nM. This sensitivity was 1-2 orders of magnitude higher than that in previously reported methods. Interference by both ascorbic acid (AA) and uric acid (UA) was not observed. Therefore, the β-CD-AuNC probe could be directly used to determine the DA content in biological samples without further separation. This strategy was successfully applied to a DA assay in spiked human serum samples and it exhibited remarkable accuracy, sensitivity and selectivity. PMID:25563509

  5. Preparation and Electrochemical Characterization of a Carbon Ceramic Electrode Modified with Ferrocenecarboxylic Acid

    PubMed Central

    Skeika, Tatiane; Zuconelli, Cristiane R.; Fujiwara, Sergio T.; Pessoa, Christiana A.

    2011-01-01

    The present paper describes the characterization of a carbon ceramic electrode modified with ferrocenecarboxylic acid (designated as CCE/Fc) by electrochemical techniques and its detection ability for dopamine. From cyclic voltammetric experiments, it was observed that the CCE/Fc presented a redox pair at Epa = 405 mV and Epc = 335 mV (ΔE = 70 mV), related to the ferrocene/ferrocenium process. Studies showed a considerably increase in the redox currents at the same oxidation potential of ferrocene (Epa = 414 mV vs. Ag/AgCl) in the presence of dopamine (DA), differently from those observed when using only the unmodified CCE, in which the anodic peak increase was considerably lower. From SWV experiments, it was observed that the AA (ascorbic acid) oxidation at CCE/Fc occurred in a different potential than the DA oxidation (with a peak separation of approximately 200 mV). Moreover, CCE/Fc did not respond to different AA concentrations, indicating that it is possible to determine DA without the AA interference with this electrode. PMID:22319356

  6. AAS 227: Welcome!

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Greetings from the 227th American Astronomical Society meeting in Kissimmee, Florida! This week, along with several fellow authors from astrobites, Iwill bewritingupdates on selectedevents at themeeting and posting at the end of each day. You can follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.If youre an author or referee (or plan to be!) and youre here at the meeting, consider joining us at our Author and Referee Workshop on Wednesday in the Tallahassee room, where well be sharingsome of the exciting new features of the AAS journals. You can drop intoeither of the two-hour sessions(10 AM 12 PM or 1 PM 3 PM), and there will be afree buffet lunch at noon.Heres the agenda:Morning SessionTopic Speaker10:00 am 10:05 amIntroductionsJulie Steffen10:05 am 10:35 amChanges at AAS Journals; How to Be a Successful AAS AuthorEthan Vishniac10:35 am 11:00 amThe Peer Review ProcessButler Burton11:00 am 11:15 amAAS Nova: Sharing AAS Authors Research with the Broader CommunitySusanna Kohler11:15 am 11:30 amFixing Software and Instrumentation Publishing: New Paper Styles in AAS JournalsChris Lintott11:30 am 11:45 amMaking Article Writing Easier with the New AASTeX v6.0Greg Schwarz11:45 am 12:00 pmBringing JavaScript and Interactivity to Your AAS Journal FiguresGus MuenchLunch SessionTopic Speaker12:00 pm 12:15 pmUnified Astronomy ThesaurusKatie Frey12:15 pm 12:30 pmAAS/ADS ORCID Integration ToolAlberto Accomazzi12:30 pm 12:45 pmWorldWide Telescope and Video AbstractsJosh Peek12:45 pm 01:00 pmArizona Astronomical Data Hub (AADH)Bryan HeidornAfternoon SessionTopic Speaker01:00 pm 01:05 pmIntroductionsJulie Steffen01:05 pm 01:35 pmChanges at AAS Journals; How to Be a Successful AAS AuthorEthan Vishniac01:35 pm 02:00 pmThe Peer Review ProcessButler Burton02:00 pm 02:15 pmAAS Nova: Sharing AAS Authors Research with the Broader CommunitySusanna Kohler02:15 pm 02:30 pm

  7. AAS 228: Welcome!

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Greetings from the 228th American Astronomical Society meeting in San Diego, California! This week, along with a team of fellow authorsfrom astrobites, Iwill bewritingupdates on selectedevents at themeeting and posting twiceeach day. You can follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.If youre at the meeting, come stop by the AAS booth (Booth #211-213) to learn about the newly-announced partnership between AAS and astrobites and pick up some swag.And dont forget to visit the IOP booth in the Exhibit Hall (Booth #223) to learn more about the new corridors for AAS Journals and to pick up a badge pin to representyour corridor!

  8. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals.

    PubMed

    Daberkow, D P; Brown, H D; Bunner, K D; Kraniotis, S A; Doellman, M A; Ragozzino, M E; Garris, P A; Roitman, M F

    2013-01-01

    Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  9. Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds.

    PubMed

    Gorczyński, Adam; Pakulski, Dawid; Szymańska, Martyna; Kubicki, Maciej; Bułat, Kornela; Łuczak, Teresa; Patroniak, Violetta

    2016-03-01

    Facile and efficient template synthesis of new manganese(II) complex [Mn2(H2L)2](ClO4)2 (1) and its crystal structure are reported. Self-assembly leads to the formation of dinuclear, phenoxo-bridged closed species via exploitation of both binding subunits of the in situ formed new Schiff-base ligand. Gold electrode modified with self-assembled monolayers (SAMs) composed of synthesized complex 1 was applied as a voltammetric sensor for quantitative determination of dopamine (DA) in the presence of ascorbic (AA) and uric acids (UA). The linear relationship between the current response of dopamine at the potential of peak maximum and the concentration was found over a wide analyte concentration range (R(2)≥0.993, 1×10(-10)-8.5×10(-4)M) with a very good sensitivity (4.11Acm(-2)M(-1) at dE/dt=0.1Vs(-1)), high detection limit (6.8×10(-9)M) and excellent reproducibility. It has been proven that current peaks of dopamine, ascorbic and uric acids were clearly separated from each other, thus enabling selective detection of these compounds coexisting in a mixture. PMID:26717851

  10. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. PMID:26608248

  11. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake

    PubMed Central

    Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-01-01

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND. PMID:27250920

  12. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake.

    PubMed

    Yuan, Yaxia; Quizon, Pamela M; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-01-01

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND. PMID:27250920

  13. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats.

    PubMed

    Castillo-Gómez, Esther; Varea, Emilio; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan

    2016-01-01

    Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found. PMID:27110404

  14. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats

    PubMed Central

    Castillo-Gómez, Esther; Varea, Emilio; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan

    2016-01-01

    Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found. PMID:27110404

  15. Deamination of newly-formed dopamine in rat renal tissues.

    PubMed Central

    Fernandes, M. H.; Pestana, M.; Soares-da-Silva, P.

    1991-01-01

    1. The present study has examined the formation of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) in slices of the rat renal cortex and the renal medulla loaded with exogenous L-beta-3,4-dihydroxyphenylalanine (L-DOPA). The effects of pargyline and of two selective inhibitors of monoamine oxidase (MAO) types A and B, respectively Ro 41-1049 and Ro 19-6327, on the deamination of newly-synthesized dopamine in kidney slices incubated with exogenous L-DOPA were also tested. The assay of L-DOPA, dopamine, noradrenaline and DOPAC was performed by means of h.p.l.c. with electrochemical detection. 2. Incubation of renal slices with exogenous L-DOPA resulted in a concentration-dependent accumulation of dopamine and DOPAC; the tissue levels of newly-formed dopamine and DOPAC in slices of the renal medulla were 6-8% of those in cortical slices. 3. Pargyline (0.1 mM) produced a marked decrease (84% reduction) in the formation of DOPAC in kidney slices loaded with 1.0 mM L-DOPA; this effect was accompanied by a 17% increase in the accumulation of dopamine. Similar effects were obtained at higher concentrations of pargyline (0.5 and 1.0 mM). At 5.0 and 10.0 mM pargyline, a marked decrease (46 and 76% reduction) in the accumulation of newly-formed dopamine was observed. 4. The accumulation of dopamine and DOPAC was found to be time-dependent in experiments in which tissues were incubated with 5 and 10 microM L-DOPA for 5, 10, 20 and 30 min. Pargyline (0.1 mM) produced an increase in the accumulation of dopamine at all incubation periods and decreased the formation of DOPAC.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1364853

  16. Formation and occurrence of dopamine-derived betacyanins.

    PubMed

    Kobayashi, N; Schmidt, J; Wray, V; Schliemann, W

    2001-03-01

    In light of the fact that the main betaxanthin (miraxanthin V) and the major betacyanin (2-descarboxy-betanidin) in hairy root cultures of yellow beet (Beta vulgaris L.) are both dopamine-derived, the occurrence of similar structures for the minor betacyanins was also suggested. By HPLC comparison with the betacyanins obtained by dopamine administration to beet seedlings, enzymatic hydrolysis, LCMS and 1H NMR analyses, the minor betacyanins from hairy roots were identified as 2-descarboxy-betanin and its 6'-O-malonyl derivative. A short-term dopamine administration experiment with fodder beet seedlings revealed that the condensation step between 2-descarboxy-cyclo-Dopa and betalamic acid is the decisive reaction, followed by glucosylation and acylation. From these data a pathway for the biosynthesis of dopamine-derived betalains is proposed. Furthermore, the occurrence of these compounds in various cell and hairy root cultures as well as beet plants (Fodder and Garden Beet Group) is shown. PMID:11261575

  17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induced P-450 mediated arachidonic acid (AA) metabolism in chick embryo liver (CEL) occurs in parenchymal cells (PC) rather than in non-parenchymal cells (NPC)

    SciTech Connect

    Paroli, L.; Rifkind, A.B. )

    1992-02-26

    TCDD induces cytochrome P-450 mediated AA metabolism in CEL and changes the dominant metabolite(s) from {omega}-OH AA to AA epoxygenase products (EETs and EET-diols). PC and NPC from CEL were separated by differential centrifugation and characterized by morphology, immunohistochemistry and P-450 mediated xenobiotic metabolism; purities were >95%. PC and NPC, from 16 day old chick embryos treated for 5 days with TCDD or vehicle alone, were cultured for 48 hr, homogenized and incubated with ({sup 14}C)-AA {plus minus} NADPH. AA products were resolved by reverse phase HPLC. The major product in control PC, {omega}-OH AA was not significantly affected by TCDD. All of the AA metabolism was NADPH dependent. Control and TCDD treated PC had the same metabolite patterns as whole liver microsomes. Neither control nor TCDD treated NPC generated P-450 AA metabolites. Also co-culturing NPC with PC did not affect AA metabolism of either cell type. The findings indicate that TCDD-induced changes in AA metabolism are retained in culture and that hepatocytes rather than NPC effect P-450 mediated AA metabolism in both control and TCDD-induced CEL.

  18. Dopamine and binge eating behaviors

    PubMed Central

    Bello, Nicholas T.; Hajnal, Andras

    2010-01-01

    Central dopaminergic mechanisms are involved in the motivational aspects of eating and food choices. This review focuses on human and animal data examining the importance of dopamine on binge eating behaviors. Early works examining dopamine metabolites in the cerebrospinal fluid and plasma of bulimic individuals suggested decreased dopamine turnover during the active phase of the illness. While neuroimaging studies of dopamine mechanisms in bulimia nervosa (BN) and binge eating disorder (BED) are limited, genetic studies in humans have implicated an increased frequency of dopamine transporter and associated D2 receptor polymorphisms with binge pathology. Recent examinations of rodent models of dietary-induced binge eating (DIBE) have investigated plausible dopamine mechanisms involved in sustaining binge eating behaviors. In DIBE models, highly palatable foods (fats, sugars and their combination), as well as restricted access conditions appear to promote ingestive responses and result in sustained dopamine stimulation within the nucleus accumbens. Taken together with studies examining the comorbidity of illicit drug use and eating disorders, the data reviewed here support a role for dopamine in perpetuating the compulsive feeding patterns of BN and BED. As such, we propose that sustained stimulation of the dopamine systems by bingeing promoted by preexisting conditions (e.g., genetic traits, dietary restraint, stress, etc.) results in progressive impairments of dopamine signaling. To disrupt this vicious cycle, novel research-based treatment options aiming at the neural substrates of compulsive eating patterns are necessary. PMID:20417658

  19. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    PubMed

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. PMID:26146224

  20. Nanomolar detection of dopamine at multi-walled carbon nanotube grafted silica network/gold nanoparticle functionalised nanocomposite electrodes.

    PubMed

    Komathi, Shanmugasundaram; Gopalan, Anantha Iyengar; Lee, Kwang-Pill

    2010-02-01

    This is the first report on ultrahigh sensitive and selective electrochemical detection of nanomolar concentrations of dopamine (DA) in the presence of ascorbic acid (AA) at a modified electrode fabricated with a new functional nanocomposite, comprising of multi-walled carbon nanotube (MWNT) grafted silica network (silica NW) and gold nanoparticles (Au NPs) (MWNT-g-silica NW/Au NPs). The fabrication of MWNT-g-silica NW/Au NPs modified electrodes involves two steps: covalent functionaliztion of MWNT with silica NW and deposition of Au NP. Cyclic voltammetry and differential pulse voltammetry experiments were performed for the individual and simultaneous electrochemical detection of DA (in nanomolar concentrations) and AA. Differential pulse voltammograms at ITO/MWNT-g-silica NW/Au NPs modified electrode (ME) revealed that the current response is linear for DA in the concentration range of 0.1 nM-30 nM with a detection limit of 0.1 nM. This is the lowest detection limit reported for DA. A plausible mechanism is presented for the excellent performance of ITO/MWNT-g-silica NW/Au NPs-ME towards nanomolar detection of DA. The results revealed that MWNT, silica NW and Au NPs in ITO/MWNT-g-silica NW/Au NPs-ME synergistically contribute to the ultrasensitivity and selectivity for the electrochemical detection of nanomolar concentrations of DA in the presence of coexisting species. PMID:20098776

  1. Implantable Microprobe with Arrayed Microsensors for Combined Amperometric Monitoring of the Neurotransmitters, Glutamate and Dopamine.

    PubMed

    Tseng, Tina T-C; Monbouquette, Harold G

    2012-08-15

    An implantable, micromachined microprobe with a microsensor array for combined monitoring of the neurotransmitters, glutamate (Glut) and dopamine (DA), by constant potential amperometry has been created and characterized. Microprobe studies in vitro revealed Glut and DA microsensor sensitivities of 126±5 nA·μM(-1)·cm(-2) and 3250±50 nA·μM(-1)·cm(-2), respectively, with corresponding detection limits of 2.1±0.2 μM and 62±8 nM, both at comparable ~1 sec response times. No diffusional interaction of H(2)O(2) among arrayed microelectrodes was observed. Also, no responses from the electroactive interferents, ascorbic acid (AA), uric acid (UA), DOPA (a DA catabolite) or DOPAC (a DA precursor), over their respective physiological concentration ranges, were detected. The dual sensing microbe attributes of size, detection limit, sensitivity, response time and selectivity make it attractive for combined sensing of Glut and DA in vivo. PMID:23139647

  2. AAS Career Services

    NASA Astrophysics Data System (ADS)

    Marvel, Kevin B.

    2012-08-01

    The American Astronomical Society provides substantial programs in the area of Career Services.Motivated by the Society's mission to enhance and share humanity's understanding of the Universe, the AAS provides a central resource for advertising positions, interviewing opportunities at its annual winter meeting and information, workshops and networks to enable astronomers to find employment.The programs of the Society in this area are overseen by an active committee on employment and the AAS Council itself.Additional resources that help characterize the field, its growth and facts about employment such as salaries and type of jobs available are regularly summarized and reported on by the American Institute of Physics.

  3. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  4. An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures.

    PubMed

    Khun, K; Ibupoto, Z H; Liu, X; Mansor, N A; Turner, A P F; Beni, V; Willander, M

    2014-09-01

    The selective detection of dopamine (DA) is of great importance in the modern medicine because dopamine is one of the main regulators in human behaviour. In this study, ZnO/CuO nanohybrid structures, grown on the gold coated glass substrate, have been investigated as a novel electrode material for the electrochemical detection of dopamine. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used for the material characterization and the obtained results are in good agreement. The selective determination of dopamine was demonstrated by cyclic voltammetry (CV) and amperometric experiments. The amperometric response was linear for dopamine concentrations between 1.0 x 10(-3) and 8.0 mM with a sensitivity of 90.9 μA mM(-1) cm(-2). The proposed dopamine biosensor is very stable, selective over common interferents as glucose, uric acid and ascorbic acid, and also good reproducibility was observed for seven electrodes. Moreover, the dopamine sensor exhibited a fast response time of less than 10 s. The wide range and acceptable sensitivity of the presented dopamine sensor provide the possible application in analysing the dopamine from the real samples. PMID:25924311

  5. The 9aaTAD Transactivation Domains: From Gal4 to p53.

    PubMed

    Piskacek, Martin; Havelka, Marek; Rezacova, Martina; Knight, Andrea

    2016-01-01

    The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors. PMID:27618436

  6. Dopamine receptors - IUPHAR Review 13.

    PubMed

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  7. AAS Oral History Project

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Holbrook, Jarita; AAS Oral History Team

    2016-06-01

    Now in its fourth year, the AAS Oral History Project has interviewed over 80 astronomers from all over the world. Led by the AAS Historical Astronomy Division (HAD) and partially funded by the American Institute of Physics Niels Bohr Library and ongoing support from the AAS, volunteers have collected oral histories from astronomers at professional meetings starting in 2015, including AAS, DPS, and the IAU general assembly. Each interview lasts one and a half to two hours and focuses on interviewees’ personal and professional lives. Questions include those about one’s family, childhood, strong influences on one’s scientific career, career path, successes and challenges, perspectives on how astronomy is changing as a field, and advice to the next generation. Each interview is audio recorded and transcribed, the content of which is checked with each interviewee. Once complete, interview transcripts are posted online as part of a larger oral history library at https://www.aip.org/history-programs/niels-bohr-library/oral-histories. Future analysis will reveal a rich story of astronomers and will help the community address issues of diversity, controversies, and the changing landscape of science. We are still recruiting individuals to be interviewed from all stages of career from undergraduate students to retired and emeritus astronomers. Contact Jarita Holbrook to schedule an interview or to find out more information about the project (astroholbrook@gmail.com). Also, contact Jarita Holbrook if you would like to become an interviewer for the project.

  8. American Astronomical Society (AAS)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Founded in 1899, the AAS is a non-profit scientific society created to promote the advancement of astronomy and closely related branches of science. Its membership consists primarily of professional researchers in the astronomical sciences, but also includes educators, students and others interested in the advancement of astronomical research. About 85% of the membership is drawn from North Ame...

  9. Purity and Enrichment of Laser-Microdissected Midbrain Dopamine Neurons

    PubMed Central

    Brown, Amanda L.; Day, Trevor A.; Dayas, Christopher V.; Smith, Doug W.

    2013-01-01

    The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells. PMID:23984404

  10. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Mansara, Prakash P.; Deshpande, Rashmi A.; Vaidya, Milind M.; Kaul-Ghanekar, Ruchika

    2015-01-01

    Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer. PMID:26325577

  11. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.

    PubMed

    Lin, Yuqing; Zhang, Zipin; Zhao, Lingzhi; Wang, Xiang; Yu, Ping; Su, Lei; Mao, Lanqun

    2010-02-15

    A new electrochemical approach to selective online measurements of dopamine (DA) release in the cerebral microdialysate is demonstrated with a non-oxidative mechanism based on the distinct reaction properties of DA and the excellent biocatalytic activity of laccase. To make the successful transition of the distinct sequential reaction properties of DA from a conceptual determination protocol to a practical online analytical system, laccase enzyme is immobilized onto magnetite nanoparticles and the nanoparticles are confined into a fused-silica capillary through an external magnetic field to fabricate a magnetic microreactor. The microreactor is placed in the upstream of the thin-layer electrochemical flow cell to efficiently catalyze the oxidation of DA into its quinonoid form and thereby initialize the sequential reactions including deprotonation, intramolecular cyclization, disproportionation and/or oxidation to finally give 5,6-dihydroxyindoline quinone. The electrochemical reduction of the produced 5,6-dihydroxyindoline quinone at bare glassy carbon electrode is used as the readout for the DA measurement. The laccase-immobilized microreactor is also found to catalyze the oxidation of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) into electroinactive species and, as such, to eliminate the great interference from both species. Moreover, the successful transition of the mechanism for DA detection from the conventional oxidative electrochemical approach to the non-oxidative one substantially enables the measurements virtually interference-free from physiological levels of uric acid, 5-hydroxytryptamine, norepinephrine, and epinephrine. The current response is linear with DA concentration within a concentration range from 1 to 20 microM with a sensitivity of 3.97 nA/microM. The detection limit, based on a signal-to-noise ratio of 3, is calculated to be 0.3 microM. The high selectivity and the good linearity as well as the high stability of the online

  12. Structural studies of dopamine. beta. -hydroxylase

    SciTech Connect

    Papadopoulos, N.J.

    1985-01-01

    Dopamine ..beta..-hydroxylase catalyzes the conversion of dopamine to norepinephrine, a ..beta..-hydroxylation reaction, utilizing ascorbic acid as reducing agent and molecular oxygen as cosubstrate. Modifications of the previously published purification procedure for D..beta..H have produced findings which show that (1) enzyme is inactivated by ascorbate autooxidation during the isolation procedure, (2) active as well as inactive D..beta..H co-purify throughout the entire purification procedure and (3) beef liver catalase totally protects against this time dependent inactivation. The stoichiometry of copper binding to the active sites of D..beta..H has been investigated using /sup 19/F-NMR and radioactive binding experiments. The data unequivocally show that homogeneous D..beta..H (isolated in the presence of catalase) specifically binds up to approx.8 copper atoms per enzyme tetramer. Distance determinations done using NMR relaxation rate theory show that anion activators of the catalytic reaction are bound at a fairly far distance from the Cu/sup 2 +/ centers. Spin-echo electron paramagnetic resonance spectroscopy indicates that at least one, possibly two, histidines are bound as equatorial ligands to each Cu/sup 2 +/ ion. The combined data indicate that highly purified dopamine ..beta..-hydroxylase contains a 2 copper atom active site, composed of magnetically non-interacting metal centers. Active site components are distant from the Cu/sup 2 +/ centers, suggesting a possible movement of active site residues or components after reduction of enzyme bound copper in order to achieve the insertion of 1 atom of oxygen into the benzylic C-H bond of dopamine.

  13. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    NASA Technical Reports Server (NTRS)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  14. A genetic determinant of the striatal dopamine response to alcohol in men

    PubMed Central

    Ramchandani, Vijay A.; Umhau, John; Pavon, Francisco J.; Ruiz-Velasco, Victor; Margas, Wojciech; Sun, Hui; Damadzic, Ruslan; Eskay, Robert; Schoor, Michael; Thorsell, Annika; Schwandt, Melanie L.; Sommer, Wolfgang H.; George, David T.; Parsons, Loren H.; Herscovitch, Peter; Hommer, Daniel; Heilig, Markus

    2010-01-01

    Excessive alcohol use, a major cause of morbidity and mortality, is less well understood than other addictive disorders. Dopamine release in ventral striatum is a common element of drug reward, but alcohol has an unusually complex pharmacology, and humans vary greatly in their alcohol responses. This variation is related to genetic susceptibility for alcoholism, which contributes more than half of alcoholism risk. Here, we report that a functional OPRM1 A118G polymorphism is a major determinant of striatal dopamine responses to alcohol. Social drinkers recruited based on OPRM1 genotype were challenged in separate sessions with alcohol and placebo under pharmacokinetically controlled conditions, and examined for striatal dopamine release using positron emission tomography and [11C]-raclopride displacement. A striatal dopamine response to alcohol was restricted to carriers of the minor 118G allele. To directly establish the causal role of OPRM1 A118G variation, we generated two humanized mouse lines, carrying the respective human sequence variant. Brain microdialysis showed a four-fold greater peak dopamine response to an alcohol challenge in h/mOPRM1-118GG than in h/mOPRM1-118AA mice. OPRM1 A118G variation is a genetic determinant of dopamine responses to alcohol, a mechanism by which it likely modulates alcohol reward. PMID:20479755

  15. Complexity of dopamine metabolism

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability. In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD. PMID:23683503

  16. The accurate determination of bismuth in lead concentrates and other non-ferrous materials by AAS after separation and preconcentration of the bismuth with mercaptoacetic acid.

    PubMed

    Howell, D J; Dohnt, B R

    1982-05-01

    A method for determining 0.0001% and upwards of bismuth in lead, zinc or copper concentrates, metals or alloys and other smelter residues is described. Bismuth is separated from lead, iron and gangue materials with mercaptoacetic acid after reduction of the iron with hydrazine. Large quantities of tin can be removed during the dissolution. An additional separation is made for materials high in copper and/or sulphate. The separated and concentrated bismuth is determined by atomic-absorption spectrometry using the Bi line at 223.1 nm. The proposed method also allows the simultaneous separation and determination of silver. PMID:18963145

  17. Strontium vanadate nanoribbons: Synthesis, characterization and detection of dopamine

    SciTech Connect

    Zhou, Qing; Shao, Mingwang; Chen, Tao; Xu, Hongyan

    2010-09-15

    Large-scale, high-purity and uniform strontium vanadate (Sr{sub 2}V{sub 2}O{sub 7}) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.

  18. Elimination of extracellular dopamine in the medial prefrontal cortex of conscious mice analysed using selective enzyme and uptake inhibitors.

    PubMed

    Tammimaki, A; Aonurm-Helm, A; Kaenmaki, M; Mannisto, P T

    2016-04-01

    We have shown in a previous study that in the medial prefrontal cortex (mPFC) of Comt knockout animals, uptake1 followed by oxidation accounts for approximately 50% and uptake2 followed by O-methylation for the remaining 50% of dopamine clearance. However, compensatory mechanisms in genetically modified animals may have affected the result. Therefore, in the present study, we gave a high dose (30 mg/kg) of tolcapone in combination with pargyline and reboxetine to C57BL/6J mice to see whether the earlier findings could be confirmed. The three drugs were also given together. We used intracerebral microdialysis to determine the levels of extracellular dopamine and its metabolites in the mPFC. In addition, we analyzed dopamine, 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) contents in cortical and striatal synaptosomes to estimate the amount of releasable dopamine and dopamine turnover. In the prefrontal cortex of male C57BL/6J mice, the combination of two drugs (pargyline + tolcapone or reboxetine + tolcapone) generally elevated extracellular dopamine levels more than any single drug. Similar responses, although much weaker, were observed in female mice. Unexpectedly, triple treatment with pargyline, reboxetine and tolcapone did not increase dopamine outflow in the mPFC in either sex, and the treatment actually diminished dopamine outflow in the dorsal striatum. This seems to indicate that such an extensive treatment induces a fast and effective shut-down of dopamine release both in the mPFC and striatum to protect the brain from excess dopaminergic stimulation. The observed decrease in extracellular dopamine levels was not due to the depletion of releasable dopamine because abundant amounts of dopamine were present in synaptosomes. These results imply that the relative proportion of COMT-induced dopamine clearance may be somewhat lower than earlier estimated. PMID:27226189

  19. Neuropharmacology of dopamine receptors:

    PubMed Central

    Tarazi, Frank I.

    2001-01-01

    There has been an extraordinary recent accumulation of information concerning the neurobiology and neuropharmacology of dopamine (DA) receptors in the mammalian central nervous system. Many new DA molecular entities have been cloned, their gene, peptide sequences and structures have been identified, their anatomical distributions in the mammalian brain described, and their pharmacology characterized. Progress has been made toward developing selective ligands and drug-candidates for different DA receptors. The new discoveries have greatly stimulated preclinical and clinical studies to explore the neuropharmacology of DA receptors and their implications in the neuropathophysiology of different neuropsychiatric diseases including schizophrenia, Parkinson’s disease and attention-deficit hyperactivity disorder. Accordingly, it seems timely to review the salient aspects of this specialized area of preclinical neuropharmacology and its relevance to clinical neuropsychiatry. PMID:24019715

  20. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  1. AAS 227: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or at astrobites.com, or catch ourlive-tweeted updates from the @astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto have so many people tell us that they already know about and useastrobites, and we were excited to introduce a new cohort of students at AAS to astrobites for the first time.Tuesday morning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended today.Opening Address (by Becky Smethurst)The President of the AAS, aka our fearless leader Meg Urry kicked off the meeting this morning at the purely coffee powered hour of 8am this morning. She spoke about the importance of young astronomers at the meeting (heres looking at you reader!) and also the importance of the new Working Group for Accessibility and Disabilities (aka WGAD pronounced like wicked) at the AAS. The Society has made extra effort this year to make the conference accessible to all,a message which was very well received by everyone in attendance.Kavli Lecture: New Horizons Alan Stern (by Becky Smethurst)We were definitely spoilt with the first Plenary lecture at this years conference Alan Stern gave us a a review of the New Horizons mission of the Pluto Fly By (astrobites covered the mission back in July with this post). We were treated to beautiful images, wonderful results and a foray into geology.Before (Hubble) and after #NewHorizons. #thatisall #science #astro alanstern #aas227 pic.twitter.com/kkMt6RsSIR Science News (@topsciencething) January 5, 2016Some awesome facts from the lecture that blew my mind:New Horizons is now 2AU (!) beyond Pluto

  2. Role of dimerization in dopamine D(4) receptor biogenesis.

    PubMed

    Van Craenenbroeck, Kathleen; Borroto-Escuela, Dasiel O; Skieterska, Kamila; Duchou, Jolien; Romero-Fernandez, Wilber; Fuxe, Kjell

    2014-01-01

    Dopamine receptors are G protein-coupled receptors critically involved in locomotion, reward, and cognitive processes. Export of dopamine receptors to the plasma membrane is thought to follow the default secretory pathway, whereby proteins travel from the endoplasmatic reticulum (ER), through the Golgi apparatus, to arrive at the cell surface. Several observations indicate that trafficking from the ER to the plasma membrane is tightly regulated, and that correct folding in the ER acts as a bottle neck to the maturation of the dopamine D4 receptors. The dopamine D(4) receptor is an interesting receptor since it has a polymorphic region in its third intracellular loop, resulting in receptor isoforms of varying length and amino acid composition. Correct folding is enhanced by: (1) interaction with specific proteins, such as ER resident chaperones, (2) interaction with pharmacological chaperones, for example, ligands that are membrane permeable and can bind to the receptor in the ER, and (3) receptor dimerization; the assembly of multisubunit proteins into a quaternary structure is started in the ER before cell surface delivery, which helps in correct folding and subsequent expression. These interactions help the process of GPCR folding, but more importantly they ensure that only properly folded proteins proceed from the ER to the trans-Golgi network. In this review we will mainly focus on the role of receptor dimerization in dopamine D(4) receptor maturation. PMID:25175456

  3. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  4. Intrinsic vascular dopamine – a key modulator of hypoxia-induced vasodilatation in splanchnic vessels

    PubMed Central

    Pfeil, Uwe; Kuncova, Jitka; Brüggmann, Doerthe; Paddenberg, Renate; Rafiq, Amir; Henrich, Michael; Weigand, Markus A; Schlüter, Klaus-Dieter; Mewe, Marco; Middendorff, Ralf; Slavikova, Jana; Kummer, Wolfgang

    2014-01-01

    Dopamine not only is a precursor of the catecholamines noradrenaline and adrenaline but also serves as an independent neurotransmitter and paracrine hormone. It plays an important role in the pathogenesis of hypertension and is a potent vasodilator in many mammalian systemic arteries, strongly suggesting an endogenous source of dopamine in the vascular wall. Here we demonstrated dopamine, noradrenaline and adrenaline in rat aorta and superior mesenteric arteries (SMA) by radioimmunoassay. Chemical sympathectomy with 6-hydroxydopamine showed a significant reduction of noradrenaline and adrenaline, while dopamine levels remained unaffected. Isolated endothelial cells were able to synthesize and release dopamine upon cAMP stimulation. Consistent with these data, mRNAs coding for catecholamine synthesizing enzymes, i.e. tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase, and dopamine-β-hydroxylase were detected by RT-PCR in cultured endothelial cells from SMA. TH protein was detected by immunohistochemisty and Western blot. Exposure of endothelial cells to hypoxia (1% O2) increased TH mRNA. Vascular smooth muscle cells partially expressed catecholaminergic traits. A physiological role of endogenous vascular dopamine was shown in SMA, where D1 dopamine receptor blockade abrogated hypoxic vasodilatation. Experiments on SMA with endothelial denudation revealed a significant contribution of the endothelium, although subendothelial dopamine release dominated. From these results we conclude that endothelial cells and cells of the underlying vascular wall synthesize and release dopamine in an oxygen-regulated manner. In the splanchnic vasculature, this intrinsic non-neuronal dopamine is the dominating vasodilator released upon lowering of oxygen tension. PMID:24535440

  5. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells.

    PubMed

    Jo, Ara; Kang, Minkyung; Cha, Areum; Jang, Hye Su; Shim, Jun Ho; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi; Lee, Chongmok

    2014-03-28

    We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu-Ru) nanoshells, which exhibited decent sensing characteristics. The hAu-Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu-Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu-Ru loaded on GC electrode (hAu-Ru/GC) showed sensitivity of 426 μA mM(-1) cm(-2) (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu-Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing. PMID:24636416

  6. In vivo release of dopamine from rat striatum, substantia nigra and prefrontal cortex: differential modulation by baclofen.

    PubMed Central

    Santiago, M.; Machado, A.; Cano, J.

    1993-01-01

    1. The effect of baclofen, a GABAB receptor agonist, on the release of dopamine from the striatum (ST), substantia nigra (SN) and prefrontal cortex (PFC) of the rat was examined by intracerebral microdialysis. 2. Perfusion of baclofen 50 microM did not affect the striatal release of dopamine. However, dopamine release was markedly reduced in the SN and PFC. 3. 3,4-Dihydroxyphenylacetic acid and homovanillic acid output increased in the ST and decreased in the SN and PFC when baclofen was perfused through the microdialysis probe. 5-Hydroxyindoleacetic acid levels were not affected in any experimental condition by baclofen perfusion. 4. The results suggest that GABAB receptors modulate the release of dopamine in the SN and PFC, but do not affect the striatal release of dopamine, which indicates that the role of GABA receptor activation is different in the dopaminergic terminals of the ST and PFC. PMID:7689406

  7. Mesolimbic dopamine signals the value of work.

    PubMed

    Hamid, Arif A; Pettibone, Jeffrey R; Mabrouk, Omar S; Hetrick, Vaughn L; Schmidt, Robert; Vander Weele, Caitlin M; Kennedy, Robert T; Aragona, Brandon J; Berke, Joshua D

    2016-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (phasic) dopamine fluctuations support learning, whereas much slower (tonic) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We found that minute-by-minute dopamine levels covaried with reward rate and motivational vigor. Second-by-second dopamine release encoded an estimate of temporally discounted future reward (a value function). Changing dopamine immediately altered willingness to work and reinforced preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly evolving decision variable, the available reward for investment of effort, which is employed for both learning and motivational functions. PMID:26595651

  8. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film.

    PubMed

    Huang, Qitong; Zhang, Hanqiang; Hu, Shirong; Li, Feiming; Weng, Wen; Chen, Jianhua; Wang, Qingxiang; He, Yasan; Zhang, Wuxiang; Bao, Xiuxiu

    2014-02-15

    A novel composite film of Au@carbon dots (Au@CDs)-chitosan (CS) modified glassy carbon electrode (Au@CDs-CS/GCE) was prepared in a simple manner and applied in the sensitive and reliable determination of dopamine (DA). The CDs had carboxyl groups with negative charge, which not only gave it have good stability but also enabled interaction with amine functional groups in DA through electrostatic interaction to multiply recognize DA with high specificity, and the Au nanoparticle could make the surface of the electrode more conductive. Compared with the bare GCE, CS/GCE, and CDs-CS/GCE electrodes, the Au@CDs-CS/GCE had higher catalytic activity toward the oxidation of DA. Furthermore, Au@CDs-CS/GCE exhibited good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA). Under the optimal conditions, selective detection of DA in a linear concentration range of 0.01-100.0 μM was obtained with the limit of 0.001 μM (3S/N). At the same time, the Au@CDs-CS/GCE was also applied to the detection of DA content in DA's injection with satisfactory results, and the biosensor could keep its activity for at least 2 weeks. PMID:24064477

  9. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform.

    PubMed

    Lavanya, J; Gomathi, N

    2015-11-01

    A novel electrode material of graphene sheet/graphene nanoribbon (GS/GNR) hybrid material was developed by incorporating graphene nanoribbons into graphene nanosheets through simultaneous chemical reduction of graphene oxide sheets and graphene oxide ribbons. The structure and properties of synthesized GS/GNR were characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, Brunauer Emmett Teller measurements and Fourier transform infrared spectroscopy. This work compares the electro catalytic performance of the GS/GNR, chemically reduced graphene oxide sheets (CRGOS) and GS/carbon nanotube (CNT) by modifying the glassy carbon electrode (GCE) using ascorbic acid (AA) as analyte. The electrochemical impedance spectroscopy revealed that the charge transfer resistance of GS/GNR modified electrode was less than that of CRGOS modified electrode and bare GCE. The cyclic voltammetric sensing of GS/GNR modified electrode towards AA was negatively shifted (0.08 V) compared to CRGOS, GS/CNT modified electrode and bare GCE (0.222, 0.150 and 0.666 V). This catalytic oxidation allows an amperometric detection of AA with a detection limit of 230 nM and sensitivity of 22 nA μM(-1) cm(-2). GS/GNR modified GCE exhibited a high selectivity for ascorbic acid in the presence of other interferents like dopamine, uric acid and citric acid. PMID:26452874

  10. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine.

    PubMed

    Bhakta, Arvind K; Mascarenhas, Ronald J; D'Souza, Ozma J; Satpati, Ashis K; Detriche, Simon; Mekhalif, Zineb; Dalhalle, Joseph

    2015-12-01

    Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode (Fe-MWCNTs/MCPE) was prepared by bulk-modification method. The electrochemical impedance spectroscopy (EIS) suggests least charge transfer resistance at the modified electrode. The electrochemical behavior of UA was studied in 0.1M phosphate buffer solution (PBS) of pH3.0 using cyclic voltammetry (CV) while differential pulse voltammetry (DPV) was used for quantification. The spectroelectrochemial study of oxidation of UA at Fe-MWCNTs/MCPE showed a decrease in the absorbance of two peaks with time, which are ascribed to π to π(⁎) and n to π(⁎) transitions. Under optimum condition, the DPV response offered two linear dynamic ranges for UA in the concentration range 7.0×10(-8)M-1.0×10(-6)M and 2.0×10(-6)M-1.0×10(-5)M with detection limit (4.80±0.35)×10(-8)M (S/N=3). The practical analytical application of this sensor was successfully evaluated by determination of spiked UA in clinical samples, such as human blood serum and urine with good percentage recovery. The proposed electrochemical sensor offers a simple, reliable, rapid, reproducible and cost effective analysis of a quaternary mixture of biomolecules containing AA, DA, UA and Tyr which was free from mutual interferences. PMID:26354272

  11. Plasma HVA in Adults with Mental Retardation and Stereotyped Behavior: Biochemical Evidence for a Dopamine Deficiency Model.

    ERIC Educational Resources Information Center

    Lewis, Mark H.; And Others

    1996-01-01

    Assessment of the neurotransmitter dopamine through measurement of the dopamine metabolite homovanillic acid (HVA) in adult subjects with mental retardation and with high rates of body stereotypy (n=12), compulsive behaviors (n=9), or neither (n=12) found lowest HVA concentrations in the stereotypy group and highest in the compulsive group. (DB)

  12. Strategic Change in AAS Publishing

    NASA Astrophysics Data System (ADS)

    Steffen, Julie

    2015-08-01

    The American Astronomical Society has embarked on a process of strategic change in its publishing program. The process has incuded authors, AAS leaders, editors, publishing experts, librarians, and data scientists. This session will outline the still ongoing process and present some both upcoming and already available new AAS Publishing features and services to the global astronomy community.

  13. Ambient illuminance, retinal dopamine release and refractive development in chicks.

    PubMed

    Cohen, Yuval; Peleg, Edna; Belkin, Michael; Polat, Uri; Solomon, Arieh S

    2012-10-01

    Form deprivation and low illuminance of ambient light are known to induce myopia in chicks. Low concentrations of retinal dopamine, a light-driven neurohormone, was previously shown to be associated with form deprivation myopia. In the present study we examined the dependence of retinal dopamine release in chicks on illuminance during light-dark cycles and in continuous light, and the role of retinal dopamine release in illuminance dependent refractive development. Newly hatched chicks (n = 166) were divided into two experimental groups, a dopamine (n = 88) and a refraction group (n = 78). Both groups were further divided into six illumination groups for exposure of chicks to illuminances of 50, 500 or 10,000 lux of incandescent illumination (referred to throughout as low, medium, and high illuminance, respectively), either under a light-dark cycle with lights on between 7 AM and 7 PM or under continuous illumination. For the dopamine experiment, chicks were euthanized and vitreous was extracted on day 14 post-hatching at 7, 8 AM and 1 PM. Vitreal dihydroxyphenylacetic acid (DOPAC) and dopamine concentrations were quantified by high-performance liquid chromatography coupled to electrochemical detection. For the refraction experiment, chicks underwent refraction, keratometry and A-scan ultrasonography on days 30, 60 and 90 post-hatching, and each of those measurements was correlated with vitreal DOPAC concentration measured at 1 PM (representing the index of retinal dopamine release). The results showed that under light-dark cycles, vitreal DOPAC concentration was strongly correlated with log illuminance, and was significantly correlated with the developing refraction, corneal radius of curvature, and axial length values. On day 90, low vitreal DOPAC concentrations were associated with myopia (-2.41 ± 1.23 D), flat cornea, deep anterior and vitreous chambers, and thin lens. Under continuous light, vitreal DOPAC concentrations measured at 1 PM in the low, medium

  14. AAS 227: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 2 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Plenary Session: Black Hole Physics with the Event Horizon Telescope (by Susanna Kohler)If anyone needed motivation to wake up early this morning, they got it in the form of Feryal Ozel (University of Arizona) enthralling us all with exciting pictures, videos, and words about black holes and the Event Horizon Telescope. Ozel spoke to a packed room (at 8:30am!) about where the project currently stands, and where its heading in the future.The EHT has pretty much the coolest goal ever: actually image the event horizons of black holes in our universe. The problem is that the largest black hole we can look at (Sgr A*, in the center of our galaxy) has an event horizon size of 50 as. For this kind of resolution roughly equivalent to trying to image a DVD on the Moon! wed need an Earth-sized telescope. EHT has solved this problem by linking telescopes around the world, creating one giant, mm-wavelength effective telescope with a baseline the size of Earth.Besides producing awesome images, the EHT will be able to test properties of black-hole spacetime, the no-hair theorem, and general relativity (GR) in new regimes.Ozel walked us through some of the theory prep work we need to do now in order to get the most science out of the EHT, including devising new

  15. AAS 227: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 2 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Plenary Session: Black Hole Physics with the Event Horizon Telescope (by Susanna Kohler)If anyone needed motivation to wake up early this morning, they got it in the form of Feryal Ozel (University of Arizona) enthralling us all with exciting pictures, videos, and words about black holes and the Event Horizon Telescope. Ozel spoke to a packed room (at 8:30am!) about where the project currently stands, and where its heading in the future.The EHT has pretty much the coolest goal ever: actually image the event horizons of black holes in our universe. The problem is that the largest black hole we can look at (Sgr A*, in the center of our galaxy) has an event horizon size of 50 as. For this kind of resolution roughly equivalent to trying to image a DVD on the Moon! wed need an Earth-sized telescope. EHT has solved this problem by linking telescopes around the world, creating one giant, mm-wavelength effective telescope with a baseline the size of Earth.Besides producing awesome images, the EHT will be able to test properties of black-hole spacetime, the no-hair theorem, and general relativity (GR) in new regimes.Ozel walked us through some of the theory prep work we need to do now in order to get the most science out of the EHT, including devising new

  16. AAS 227: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or at astrobites.com, or catch ourlive-tweeted updates from the @astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto have so many people tell us that they already know about and useastrobites, and we were excited to introduce a new cohort of students at AAS to astrobites for the first time.Tuesday morning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended today.Opening Address (by Becky Smethurst)The President of the AAS, aka our fearless leader Meg Urry kicked off the meeting this morning at the purely coffee powered hour of 8am this morning. She spoke about the importance of young astronomers at the meeting (heres looking at you reader!) and also the importance of the new Working Group for Accessibility and Disabilities (aka WGAD pronounced like wicked) at the AAS. The Society has made extra effort this year to make the conference accessible to all,a message which was very well received by everyone in attendance.Kavli Lecture: New Horizons Alan Stern (by Becky Smethurst)We were definitely spoilt with the first Plenary lecture at this years conference Alan Stern gave us a a review of the New Horizons mission of the Pluto Fly By (astrobites covered the mission back in July with this post). We were treated to beautiful images, wonderful results and a foray into geology.Before (Hubble) and after #NewHorizons. #thatisall #science #astro alanstern #aas227 pic.twitter.com/kkMt6RsSIR Science News (@topsciencething) January 5, 2016Some awesome facts from the lecture that blew my mind:New Horizons is now 2AU (!) beyond Pluto

  17. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; ALOthman, Zeid Abdullah; Naushad, Mu.

    Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10-7 M with limit of detection 1.0 × 10-8 M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10-5 M of dopamine.

  18. AAS 227: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 3 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Henry Norris Russell Lecture: Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope (by Erika Nesvold)The Henry Norris Russell Award is the highest honor given by the AAS, for a lifetime of eminence in astronomy research. This years award went to Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. Fazio became a leader in gamma ray astronomy before switching mid-career to the study of infrared astronomy, and he gave his award lecture on the latter subject, specifically on the Spitzer Space Telescope, one of the most successful infrared telescopes of all time.Artists rendering of the Spitzer space telescope. [NASA/JPL-Caltech]Spitzer has been operating for more than twelve years, and has resulted in over six thousand papers in refereed journals in that time. The telescope sits in an Earth-trailing orbit around the Sun, and is now farther from the Earth (1.4 AU) than the Earth is from the Sun. Fazio gave the audience a fascinating overview of the science done by Spitzer over more than a decade. One of the most productive areas of research for Spitzer is the study of exoplanets, which hadnt even been discovered when the Spitzer Telescope was first conceived. Spitzers high sensitivity and ability to observe exoplanets over

  19. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  20. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    NASA Astrophysics Data System (ADS)

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-01

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  1. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    SciTech Connect

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  2. AAS 227: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 3 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Henry Norris Russell Lecture: Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope (by Erika Nesvold)The Henry Norris Russell Award is the highest honor given by the AAS, for a lifetime of eminence in astronomy research. This years award went to Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. Fazio became a leader in gamma ray astronomy before switching mid-career to the study of infrared astronomy, and he gave his award lecture on the latter subject, specifically on the Spitzer Space Telescope, one of the most successful infrared telescopes of all time.Artists rendering of the Spitzer space telescope. [NASA/JPL-Caltech]Spitzer has been operating for more than twelve years, and has resulted in over six thousand papers in refereed journals in that time. The telescope sits in an Earth-trailing orbit around the Sun, and is now farther from the Earth (1.4 AU) than the Earth is from the Sun. Fazio gave the audience a fascinating overview of the science done by Spitzer over more than a decade. One of the most productive areas of research for Spitzer is the study of exoplanets, which hadnt even been discovered when the Spitzer Telescope was first conceived. Spitzers high sensitivity and ability to observe exoplanets over

  3. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  4. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth. PMID:26921458

  5. Selective Recognition of 5-Hydroxytryptamine and Dopamine on a Multi-Walled Carbon Nanotube-Chitosan Hybrid Film-Modified Microelectrode Array

    PubMed Central

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-01

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at −80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10−6 M to 2 × 10−4 M for DA (r = 0.996) and in the range of 1 × 10−5 M to 3 × 10−4 M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10−4 M AA, the linear responses were obtained in the range of 1 × 10−5 M to 3 × 10−4 M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments. PMID:25580900

  6. AAS 228: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  7. AA9 and AA10: from enigmatic to essential enzymes.

    PubMed

    Corrêa, Thamy Lívia Ribeiro; dos Santos, Leandro Vieira; Pereira, Gonçalo Amarante Guimarães

    2016-01-01

    The lignocellulosic biomass, comprised mainly of cellulose, hemicellulose, and lignin, is a strong competitor for petroleum to obtain fuels and other products because of its renewable nature, low cost, and non-competitiveness with food production when obtained from agricultural waste. Due to its recalcitrance, lignocellulosic material requires an arsenal of enzymes for its deconstruction and the consequent release of fermentable sugars. In this context, enzymes currently classified as auxiliary activity 9 (AA9/formerly GH61) and 10 (AA10/formerly CBM 33) or lytic polysaccharide monooxygenases (LPMO) have emerged as cellulase boosting enzymes. AA9 and AA10 are the new paradigm for deconstruction of lignocellulosic biomass by enhancing the activity and decreasing the loading of classical enzymes to the reaction and, consequently, reducing costs of the hydrolysis step in the second-generation ethanol production chain. In view of that disclosed above, the goal of this work is to review experimental data that supports the relevance of AA9 and AA10 for the biomass deconstruction field. PMID:26476647

  8. AAS 227: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt

  9. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II

    PubMed Central

    Benchoua, Alexandra; Trioulier, Yaël; Diguet, Elsa; Malgorn, Carole; Gaillard, Marie-Claude; Dufour, Noelle; Elalouf, Jean-Marc; Krajewski, Stan; Hantraye, Philippe; Déglon, Nicole; Brouillet, Emmanuel

    2008-01-01

    In neurodegenerative disorders associated with primary or secondary mitochondrial defects such as Huntington's disease (HD), cells of the striatum are particularly vulnerable to cell death, although the mechanisms by which this cell death is induced are unclear. Dopamine, found in high concentrations in the striatum, may play a role in striatal cell death. We show that in primary striatal cultures, dopamine increases the toxicity of an N-terminal fragment of mutated huntingtin (Htt-171-82Q). Mitochondrial complex II protein (mCII) levels are reduced in HD striatum, indicating that this protein may be important for dopamine-mediated striatal cell death. We found that dopamine enhances the toxicity of the selective mCII inhibitor, 3-nitropropionic acid. We also demonstrated that dopamine doses that are insufficient to produce cell loss regulate mCII expression at the mRNA, protein and catalytic activity level. We also show that dopamine-induced down-regulation of mCII levels can be blocked by several dopamine D2 receptor antagonists. Sustained overexpression of mCII subunits using lentiviral vectors abrogated the effects of dopamine, both by high dopamine concentrations alone and neuronal death induced by low dopamine concentrations together with Htt-171-82Q. This novel pathway links dopamine signaling and regulation of mCII activity and could play a key role in oxidative energy metabolism and explain the vulnerability of the striatum in neurodegenerative diseases. PMID:18267960

  10. AAS 228: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  11. Renal dopamine excretion in healthy volunteers after oral ingestion of L-dopa.

    PubMed

    Barthelmebs, M; Mbou, P; Stephan, D; Grima, M; Imbs, J L

    1993-01-01

    L-Dopa is converted to dopamine by aromatic-L-amino acid decarboxylase (AADC). In the kidney, proximal tubular epithelial cells are rich in AADC and urinary free dopamine excretion is a marker for endorenal extraneuronal dopamine synthesis. The urinary free dopamine excretion was analysed in a double-blind cross-over study after oral ingestion of L-Dopa or a placebo in five healthy volunteers. The drug ingestions were separated by one week's wash-out. Since in a preliminary study, two volunteers ingesting a single L-Dopa dose of 500 mg with breakfast experienced nausea, the five volunteers of the present study were given 300 mg L-Dopa (50 mg at 9 am with breakfast, 100 mg before lunch and 150 mg before dinner) without any adverse effects. L-Dopa induced an increase in 24-h urinary dopamine excretion (HPLC with electrochemical detection). Free urinary dopamine (1900 micrograms/24 h) accounted for 0.8% of the daily oral L-Dopa dose and represented 10% of total urinary dopamine excretion. L-Dopa treatment had no significant effect on mean ambulatory arterial blood pressure and heart rate measured from 9 am to 6 pm (Spacelabs) or on 24 h urinary water and sodium excretion. PMID:8458598

  12. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine.

    PubMed

    Ji, Xin; Palui, Goutam; Avellini, Tommaso; Na, Hyon Bin; Yi, Chongyue; Knappenberger, Kenneth L; Mattoussi, Hedi

    2012-04-01

    We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from

  13. Dopamine modulated ionic permeability in mesoporous silica sphere based biomimetic compartment.

    PubMed

    Liu, Wei; Yang, Xiaohai; He, Dinggeng; He, Leiliang; Li, Li; Liu, Yu; Liu, Jianbo; Wang, Kemin

    2016-06-01

    The building of artificial systems with similar structure and function as cellular compartments will expand our understanding of compartmentalization related biological process and facilitate the construction of biomimetic highly functional structures. Herein, surface phenylboronic acid functionalized mesoporous silica sphere was developed as a biomimetic dopamine gated compartment, in which the ionic permeability can be well modulated through the dopamine-binding induced charge reversal. As the phenylboronic acid is negatively charged, the negatively charged 1, 3, 6, 8-pyrenetetrasulfonic acid (TPSA) was hindered from permeation into the biomimetic compartment. However, the presence of dopamine and its binding with phenylboronic acid reversed the gatekeeper shell from negative to positive charged and gated the permeation of TPSA into the interior. The dopamine gated permeation phenomenon resembles that in biological system, and thus the phenylboronic acid functionalized mesoporous silica sphere was taken as a simple model for dopamine gated ion channel decorated biological compartment. It will also contribute to the development of artificial cell and responsive nanoreactor. PMID:26962763

  14. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite.

    PubMed

    Sakthinathan, Subramanian; Lee, Hsin Fang; Chen, Shen-Ming; Tamizhdurai, P

    2016-04-15

    In the present work, a reduced graphene oxide (RGO) supported manganese tetraphenylporphyrin (Mn-TPP) nanocomposite was electrochemically synthesized and used for the highly selective and sensitive detection of dopamine (DA). The nuclear magnetic resonance, scanning electron microscopy and elemental analysis were confirmed the successful formation of RGO/Mn-TPP nanocomposite. The prepared RGO/Mn-TPP nanocomposite modified electrode exhibited an enhanced electrochemical response to DA with less oxidation potential and enhanced response current. The electrochemical studies revealed that the oxidation of the DA at the composite electrode is a surface controlled process. The cyclic voltammetry, differential pulse voltammetry and amperometry methods were enable to detect DA. The working linear range of the electrode was observed from 0.3 to 188.8 μM, limit of detection was 8 nM and the sensitivity was 2.606 μA μM(-1) cm(-2). Here, the positively charged DA and negatively charged porphyrin modified RGO can accelerate the electrocatalysis of DA via electrostatic attraction, while the negatively charged ascorbic acid (AA) repulsed by the negatively charged electrode surface which supported for good selectivity. The good recovery results obtained for the determination of DA present in DA injection samples and human pathological sample further revealed the good practicality of RGO/Mn-TPP nanocomposite film modified electrode. PMID:26835582

  15. AAS 227: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt

  16. DOPAMINE DEPLETION SLOWS RETINAL TRANSMISSION

    EPA Science Inventory

    In male hooded rats, depletion of norepinephrine and dopamine by a-methyl-paratyrosine (AMT) significantly increased the latencies of early peaks in flash-evoked potentials recorded from the visual cortex, lateral geniculate nucleus, and optic tract. These effects were not produc...

  17. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  18. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    DOE PAGESBeta

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; Hensley, Dale; Venton, B. Jill

    2015-09-14

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coatedmore » wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.« less

  19. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    SciTech Connect

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; Hensley, Dale; Venton, B. Jill

    2015-09-14

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coated wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.

  20. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.

    PubMed

    Zestos, Alexander G; Yang, Cheng; Jacobs, Christopher B; Hensley, Dale; Venton, B Jill

    2015-11-01

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In this study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. The CNS growth was characterized on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 μM dopamine while carbon nanospike coated wires could. The highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 ± 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller ΔE(p) for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection. PMID:26389138

  1. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine.

    PubMed

    Farjami, Elaheh; Campos, Rui; Nielsen, Jesper S; Gothelf, Kurt V; Kjems, Jørgen; Ferapontova, Elena E

    2013-01-01

    The inherent redox activity of dopamine enables its direct electrochemical in vivo analysis ( Venton , B. J.; Wightman, M. R. Anal. Chem. 2003, 75, 414A). However, dopamine analysis is complicated by the interference from other electrochemically active endogenous compounds present in the brain, including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine-modified Au electrode, and further electrochemical oxidation of dopamine. Specific recognition of dopamine by the aptamer allowed a selective amperometric detection of dopamine within the physiologically relevant 100 nM to 5 μM range in the presence of competitive concentrations of catechol, epinephrine, norepinephrine, 3,4-dihydroxy-phenylalanine (L-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application of a Nafion-coated membrane. The aptasensor response time was <1 s, and the sensitivity of analysis was 62 nA μM(-1) cm(-2). The proposed design of the aptasensor, based on electrostatic interactions between the positively charged cysteamine-modified electrode and the negatively charged aptamer, may be used as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors. PMID:23210972

  2. Increased brain dopamine and dopamine receptors in schizophrenia

    SciTech Connect

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-09-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients.

  3. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling

    PubMed Central

    Chuhma, Nao; Mingote, Susana; Moore, Holly; Rayport, Stephen

    2014-01-01

    Summary Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. While the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. PMID:24559678

  4. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    PubMed Central

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  5. Systemic AA amyloidosis in the common marmoset.

    PubMed

    Ludlage, E; Murphy, C L; Davern, S M; Solomon, A; Weiss, D T; Glenn-Smith, D; Dworkin, S; Mansfield, K G

    2005-03-01

    The common marmoset (Callithrix jacchus) is a small New World primate native to Brazil that has been used extensively in biomedical research. A retrospective analysis of archived hematoxylin and eosin-stained tissue sections and clinical records was conducted at the New England Primate Research Center on 86 marmosets more than 1 year of age that were euthanized during the past decade because of morbidity and failure to thrive. Approximately 17% (15 of 86) were found to have amyloid deposits in one or more organs, including the liver, adrenal glands, kidneys, and intestine. This material was shown by amino acid sequence analysis to be composed of serum amyloid A (SAA)-related protein. This type of amyloidosis, designated AA or "secondary," is associated typically with an inflammatory process that induces elevated levels of the SAA amyloidogenic precursor molecule. Notably, there were no significant pathologic differences or other distinguishing features in animals with amyloid versus those without; furthermore, on the basis of the limited number of serum specimens available for analysis, the SAA concentrations in the two groups were comparable, thus suggesting the possible inheritable nature of the disorder. In this respect, the common marmoset provides a unique experimental model for study of the pathogenesis and treatment of AA and other forms of systemic amyloidosis. PMID:15753464

  6. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain.

    PubMed

    Kesby, James P; Cui, Xiaoying; Ko, Pauline; McGrath, John J; Burne, Thomas H J; Eyles, Darryl W

    2009-09-18

    There is growing evidence that low vitamin D impacts adversely on brain development. The current study investigated the impact of developmental vitamin D (DVD) deficiency on dopamine and serotonin metabolism in the neonatal rat brain. DVD-deficiency resulted in an altered dopaminergic metabolic profile in the forebrain, with a decrease in the conversion of dihydroxyphenylacetic acid (DOPAC) to homovanillic acid (HVA). Correspondingly, expression of the enzyme required for this conversion, catechol-O-methyl transferase (COMT), was decreased. These results suggest that DVD-deficiency influences dopamine turnover during development. PMID:19500655

  7. Dopamine-secreting giant adrenal ganglioneuroma: clinical and diffusion-weighted magnetic resonance imaging findings.

    PubMed

    Polat, A V; Polat, A Kamali; Aslan, K; Atmaca, H; Karagoz, F

    2014-01-01

    We report a case of a dopamine-secreting giant primary adrenal ganglioneuroma (GN) in a 29-year-old male patient. Although the patient was clinically silent, the 24-hour urine levels of dopamine, normetanephrine, homovanillic acid and vanillyl mandelic acid were elevated. Abdominal ultrasonography and magnetic resonance imaging showed a large solid tumor with calcifications and a slightly lobular edge on the left adrenal gland. A tumor, 13 x 23 x 25 cm in size, was completely resected without morbidity. A 2-year follow-up with computed tomography showed that the postoperative course of the patient was uneventful. PMID:25073244

  8. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  9. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-01

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease. PMID:19853009

  10. Imaging dopamine transmission parameters in cannabis dependence.

    PubMed

    Ghazzaoui, Rassil; Abi-Dargham, Anissa

    2014-07-01

    Low striatal dopamine D2/3 receptor (D2/3) availability and low ventrostriatal dopamine release have been observed in alcoholism, cocaine and heroin dependence. Multiple studies to date have examined D2 availability in cannabis dependence and have consistently failed to demonstrate alterations. In addition, the response of the dopamine system to an amphetamine challenge and to a stress challenge has also been examined, and did not show alterations. We review these studies here and conclude that cannabis dependence is an exception among commonly abused drugs in that it is not associated with blunting of the dopamine system. PMID:24513022

  11. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  12. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter.

    PubMed

    Clarke, P B; Reuben, M

    1995-01-01

    1. The NMDA-type glutamate receptor antagonist, dizocilpine (MK-801) can protect against neurotoxicity associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its principal metabolite, the 1-methyl-4-phenylpyridinium ion (MPP+). It has been suggested that these neurotoxic effects may be mediated by release of excitatory amino acids, but possible alternative mechanisms have been little investigated. 2. MPTP and MPP+ (0.1-1000 microM) were tested in superfused rat striatal synaptosomes preloaded with [3H]-dopamine. Both MPTP (10 microM and higher) and MPP+ (1 microM and higher) evoked an immediate and concentration-dependent release of [3H]-dopamine. The maximal effect exceeded that achievable with nicotine. For subsequent experiments, submaximal concentrations of MPTP (50 microM) and MPP+ (10 microM) were tested. 3. MK-801 (0.1-100 microM) inhibited responses to MPTP (50 microM) and MPP+ (10 microM) in a concentration-dependent manner. However, further tests of NMDA-type glutamate receptor involvement proved negative. Responses to MPTP or MPP+ were unaffected by the omission of Mg2+ or Ca2+ and were not reduced by the NMDA receptor antagonists, AP-7 (200 microM) and kynurenic acid (300 microM). In this assay, N-methyl-D-aspartate (even in the absence of Mg2+ and with added glycine and strychnine) did not evoked [3H]-dopamine release. 4. In crude membrane preparations of rat cerebral cortex, MPTP and MPP+ inhibited high-affinity [3H]-nicotine binding to nicotinic cholinoceptors (IC50 1.8 microM and 26 microM, respectively). 5. [3H]-dopamine release evoked by nicotine (1 microM) was blocked by the nicotinic antagonists,mecamylamine and chlorisondamine, and by MK-801 (all at 100 micro M); K+-evoked release was not affected. Release evoked by MPTP and MPP+ was significantly attenuated by MK-801 but not by mecamylamine or chlorisondamine.6. At a high concentration (1O I1M), the selective dopamine uptake inhibitor, nomifensine, completely blocked [3HJ-dopamine

  13. Dopamine gene therapy for Parkinson's disease in a nonhuman primate without associated dyskinesia.

    PubMed

    Jarraya, Béchir; Boulet, Sabrina; Ralph, G Scott; Jan, Caroline; Bonvento, Gilles; Azzouz, Mimoun; Miskin, James E; Shin, Masahiro; Delzescaux, Thierry; Drouot, Xavier; Hérard, Anne-Sophie; Day, Denise M; Brouillet, Emmanuel; Kingsman, Susan M; Hantraye, Philippe; Mitrophanous, Kyriacos A; Mazarakis, Nicholas D; Palfi, Stéphane

    2009-10-14

    In Parkinson's disease, degeneration of specific neurons in the midbrain can cause severe motor deficits, including tremors and the inability to initiate movement. The standard treatment is administration of pharmacological agents that transiently increase concentrations of brain dopamine and thereby discontinuously modulate neuronal activity in the striatum, the primary target of dopaminergic neurons. The resulting intermittent dopamine alleviates parkinsonian symptoms but is also thought to cause abnormal involuntary movements, called dyskinesias. To investigate gene therapy for Parkinson's disease, we simulated the disease in macaque monkeys by treating them with the complex I mitochondrial inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which induces selective degeneration of dopamine-producing neurons. In this model, we demonstrated that injection of a tricistronic lentiviral vector encoding the critical genes for dopamine synthesis (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, and guanosine 5'-triphosphate cyclohydrolase 1) into the striatum safely restored extracellular concentrations of dopamine and corrected the motor deficits for 12 months without associated dyskinesias. Gene therapy-mediated dopamine replacement may be able to correct Parkinsonism in patients without the complications of dyskinesias. PMID:20368163

  14. Metabolism of /sup 3/H-dopamine by human chorioamnion in vitro

    SciTech Connect

    Phillippe, M.; Niloff, J.M.

    1982-08-01

    Previous investigation has demonstrated biologically significant concentrations of catecholamines in amniotic fluid, which increase with gestation. The half life, metabolic clearance rate, and metabolic fate of these hormones in the amniotic compartment are yet to be established. This study was undertaken to demonstrate the ability of human chorioamnion to metabolize dopamine in vitro. Incubation experiments demonstrated that /sup 3/H-dopamine is rapidly metabolized to dihydroxyphenylacetic acid, 3-methoxy, 4-hydroxyphenylacetic acid, and 3-methoxy, 4-hydroxyphenylethanol-all products of monoamine oxidase. No significant 3-methoxytyramine, a catechol-o-methyltransferase product, was observed. Incubation experiments with pargyline, a monoamine oxidase inhibitor, resulted in significant reduction in /sup 3/H-dopamine metabolism. Catecholamines and their interaction with prostaglandin synthesis have been theorized to be a fetal signal for the initiation of parturition. The ability of chorioamnion to metabolize catecholamine could, therefore, provide another control mechanism by which fetal catecholamines are modulated.

  15. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study

    PubMed Central

    Kurian, Manju A; Li, Yan; Zhen, Juan; Meyer, Esther; Hai, Nebula; Christen, Hans-Jürgen; Hoffmann, Georg F; Jardine, Philip; von Moers, Arpad; Mordekar, Santosh R; O'Callaghan, Finbar; Wassmer, Evangeline; Wraige, Elizabeth; Dietrich, Christa; Lewis, Timothy; Hyland, Keith; Heales, Simon JR; Sanger, Terence; Gissen, Paul; Assmann, Birgit E; Reith, Maarten EA; Maher, Eamonn R

    2010-01-01

    Summary Background Dopamine transporter deficiency syndrome is the first identified parkinsonian disorder caused by genetic alterations of the dopamine transporter. We describe a cohort of children with mutations in the gene encoding the dopamine transporter (SLC6A3) with the aim to improve clinical and molecular characterisation, reduce diagnostic delay and misdiagnosis, and provide insights into the pathophysiological mechanisms. Methods 11 children with a biochemical profile suggestive of dopamine transporter deficiency syndrome were enrolled from seven paediatric neurology centres in the UK, Germany, and the USA from February, 2009, and studied until June, 2010. The syndrome was characterised by detailed clinical phenotyping, biochemical and neuroradiological studies, and SLC6A3 mutation analysis. Mutant constructs of human dopamine transporter were used for in-vitro functional analysis of dopamine uptake and cocaine-analogue binding. Findings Children presented in infancy (median age 2·5 months, range 0·5–7) with either hyperkinesia (n=5), parkinsonism (n=4), or a mixed hyperkinetic and hypokinetic movement disorder (n=2). Seven children had been initially misdiagnosed with cerebral palsy. During childhood, patients developed severe parkinsonism-dystonia associated with an eye movement disorder and pyramidal tract features. All children had raised ratios of homovanillic acid to 5-hydroxyindoleacetic acid in cerebrospinal fluid, of range 5·0–13·2 (normal range 1·3–4·0). Homozygous or compound heterozygous SLC6A3 mutations were detected in all cases. Loss of function in all missense variants was recorded from in-vitro functional studies, and was supported by the findings of single photon emission CT DaTSCAN imaging in one patient, which showed complete loss of dopamine transporter activity in the basal nuclei. Interpretation Dopamine transporter deficiency syndrome is a newly recognised, autosomal recessive disorder related to impaired dopamine

  16. Dopamine: burning the candle at both ends.

    PubMed

    Pearson, John M; Platt, Michael L

    2013-09-01

    Dopamine neurons are well known for signaling reward-prediction errors. In this issue, Matsumoto and Takada (2013) show that some dopamine neurons also signal salient events during progression through a visual search task requiring working memory and sustained attention. PMID:24011998

  17. Autoradiographic localization of mu and delta opioid receptors in the mesocorticolimbic dopamine system

    SciTech Connect

    Dilts, R.P. Jr.

    1989-01-01

    In vitro autoradiographic techniques were coupled with selective chemical lesions of the A10 dopamine cells and intrinsic perikarya of the region to delineate the anatomical localization of mu and delta opioid receptors, as well as, neurotensin receptors. Mu opioid receptors were labeled with {sup 125}I-DAGO. Delta receptors were labeled with {sup 125}I-DPDPE. Neurotensin receptors were labeled with {sup 125}I-NT3. Unilateral lesions of the dopamine perikarya were produced by injections of 6-OHDA administered in the ventral mesencephalon. Unilateral lesions of intrinsic perikarya were induced by injections of quinolinic acid in to the A10 dopamine cell region. Unilateral lesions produced with 6-OHDA resulted in the loss of neurotensin receptors in the A10 region and within the terminal fields. Mu opioid receptors were unaffected by this treatment, but delta opioid receptors increased in the contralateral striatum and nucleus accumbens following 6-OHDA administration. Quinolinic acid produced a reduction of mu opioid receptors within the A10 region with a concomitant reduction in neurotensin receptors in both the cell body region and terminal fields. These results are consistent with a variety of biochemical and behavioral data which suggest the indirect modulation of dopamine transmission by the opioids. In contrast these results strongly indicate a direct modulation of the mesolimbic dopamine system by neurotensin.

  18. Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin.

    PubMed

    Morgan, Lindsay D; Baker, Hannah; Yeoman, Mark S; Patel, Bhavik Anil

    2012-03-21

    Serotonin and dopamine are crucial regulators of signalling in the peripheral and central nervous systems. We present an ex-vivo, isocratic chromatographic method that allows for the measurement of tyrosine, L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), tryptophan, 5-hydroxytryptophan (5-HTP), serotonin and 5-hydroxy-3-indoleacetic acid (5-HIAA) in a model central nervous (CNS) system, to study the role of key enzymes involved in the synthesis and metabolism of serotonin and dopamine. By utilising a sample splitting technique, we could test a single CNS sample at multiple time points under various pharmacological treatments. In, addition, we were able to conduct this assay by utilising the endogenous biochemical components of the CNS to study the synthesis and metabolism of serotonin and dopamine, negating the requirement of additional enzyme activators or stabilisers in the biological matrix. Finally we utilised NSD-1015, an aromatic amino acid decarboxylase enzyme inhibitor used to study the synthesis of dopamine and serotonin to monitor alterations in levels of key neurochemicals. 3-hydroxybenzylhydrazine dihydrochloride (NSD-1015) was able to reduce levels of serotonin and dopamine, whilst elevating precursors L-DOPA and 5-HTP. PMID:22290325

  19. Electrocatalytic oxidation of ascorbic acid using a poly(aniline-co-m-ferrocenylaniline) modified glassy carbon electrode.

    PubMed

    Chairam, Sanoe; Sriraksa, Worawit; Amatatongchai, Maliwan; Somsook, Ekasith

    2011-01-01

    A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from -0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 μM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA). PMID:22346636

  20. Electrocatalytic Oxidation of Ascorbic Acid Using a Poly(aniline-co-m-ferrocenylaniline) Modified Glassy Carbon Electrode

    PubMed Central

    Chairam, Sanoe; Sriraksa, Worawit; Amatatongchai, Maliwan; Somsook, Ekasith

    2011-01-01

    A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from −0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 μM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA). PMID:22346636

  1. Urinary dopamine in man and rat: effects of inorganic salts on dopamine excretion.

    PubMed

    Ball, S G; Oats, N S; Lee, M R

    1978-08-01

    1. Plasma and urine free dopamine (3,4-dihydroxyphenethylamine) were measured in six normal male volunteer subjects and the urinary clearance of dopamine was calculated for each subject. 2. The excretion rates for free dopamine in man were greater than could be explained by simple renal clearance. It was concluded that free dopamine must, therefore, be formed in the kidney. 3. Changes in urinary dopamine excretion were studied in four groups of rats initially maintained on low sodium diet and then given equimolar dietary supplements of NaCl, NaHCO3, KCl or NH4Cl, to study the specificity of the previously observed increase in dopamine excretion after increased dietary NaCl. 4. The mean dopamine excretion increased significantly in rats given NaCl, KCl and NH4Cl, whereas dopamine excretion decreased in those given NaHCO3. 5. The failure of dopamine excretion to rise in response to loading with NaHCO3 was unexpected, and argues against a simple effect of volume expansion by the sodium ion. The increase in dopamine excretion with KCl and NH4Cl showed that this response was not specific to the sodium ion. PMID:28196

  2. Dopamine beta-hydroxylase deficiency

    PubMed Central

    Senard, Jean-Michel; Rouet, Philippe

    2006-01-01

    Dopamine beta-hydroxylase (DβH) deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS). Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance. PMID:16722595

  3. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  4. Laboratory Astrophysics Division of The AAS (LAD)

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  5. Laboratory Astrophysics Division of the AAS (LAD)

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  6. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  7. Dopamine receptor heteromeric complexes and their emerging functions.

    PubMed

    George, Susan R; Kern, Andras; Smith, Roy G; Franco, Rafael

    2014-01-01

    Dopamine neurotransmission is traditionally accepted as occurring through the five dopamine receptors that transduce its signal. Recent evidence has demonstrated that the range of physiologically relevant dopamine signaling complexes is greatly expanded by the ability of dopamine receptors to interact with other dopamine receptors and with receptors of other endogenous signaling ligands. These novel heteromeric complexes have functional properties distinct from the component receptors or are able to modulate the canonical signaling and function of the cognate receptors. These dopamine receptor heteromers provide new insight into physiological mechanisms and pathophysiological processes involving dopamine. PMID:24968781

  8. Constitutive behavior of as-cast AA1050, AA3104, and AA5182

    NASA Astrophysics Data System (ADS)

    van Haaften, W. M.; Magnin, B.; Kool, W. H.; Katgerman, L.

    2002-07-01

    Recent thermomechanical modeling to calculate the stress field in industrially direct-chill (DC) cast-aluminum slabs has been successful, but lack of material data limits the accuracy of these calculations. Therefore, the constitutive behavior of three aluminum alloys (AA1050, AA3104, and AA5182) was determined in the as-cast condition using tensile tests at low strain rates and from room temperature to solidus temperature. The parameters of two constitutive equations, the extended Ludwik equation and a combination of the Sellars-Tegart equation with a hardening law, were determined. In order to study the effect of recovery, the constitutive behavior after prestraining at higher temperatures was also investigated. To evaluate the quantified constitutive equations, tensile tests were performed simulating the deformation and cooling history experienced by the material during casting. It is concluded that both constitutive equations perform well, but the combined hardening-Sellars-Tegart (HST) equation has temperature-independent parameters, which makes it easier to implement in a DC casting model. Further, the deformation history of the ingot should be taken into account for accurate stress calculations.

  9. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  10. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous parkinsonism-inducing toxin, strongly potentiates MAO-dependent dopamine oxidation and impairs dopamine release: ex vivo and in vivo neurochemical studies.

    PubMed

    Wasik, Agnieszka; Romańska, Irena; Antkiewicz-Michaluk, Lucyna

    2009-01-01

    1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), an endogenous neurotoxin, is known to cause a parkinsonism-like syndrome in rodents and primates. In this study we evaluated the effects of single and multiple 1BnTIQ (50 mg/kg i.p.) administration on the concentrations of dopamine, serotonin, and respective metabolites (homovanillic acid, HVA; 3,4-dihydroxyphenylacetic acid, DOPAC; 3-methoxytyramine, 3-MT; and 5-hydroxyindolacetic acid, 5-HIAA), in substantia nigra, striatum (STR), and nucleus accumbens of Wistar rats. In addition, the effect of 1BnTIQ on locomotor activity and dopamine release in vivo was also estimated in rat STR. In a behavioral study, acute administration of 1BnTIQ (50 mg/kg i.p.) produced a significant decrease in exploratory locomotor activity. A high-performance liquid chromatography with electrochemical detection ex vivo study showed that a single injection of 1BnTIQ produced a dramatic fall in the dopamine concentration in the noted brain regions (approximately 65%; P < 0.01), but not in striatal serotonin. Moreover, 1BnTIQ reduced the content of the extraneuronal dopamine metabolite 3-MT by 70% (P < 0.01). Conversely, levels of DOPAC, HVA, and 5-HIAA were elevated by 220, 320, and 185%, respectively (P < 0.01). Interestingly, multiple 1BnTIQ treatments (50 mg/kg/day i.p. x 10 days) resulted in development of tolerance to its dopamine depressing effect, while the impairment of dopamine synthesis was persisted. An in vivo microdialysis study demonstrated that 1BnTIQ (50 mg/kg i.p.) produced a profound and long-lasting decrease in extraneuronal striatal dopamine. Concurrently, however, DOPAC and HVA were elevated. This comparison between ex vivo and in vivo effects of 1BnTIQ provides greater insight into the neurotoxic actions of 1BnTIQ specific to dopamine neurons. 1BnTIQ neurotoxicity may be related to an impairment of dopamine storage, leading to a fall in intraneuronal dopamine and enhanced dopamine catabolism through a monoamine oxidize

  11. AAS 228: Day 1 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Come visit astrobites at the AAS booth we have swag!Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto hear from undergrads who already know and love the site, educators who want to use it in their classrooms, and students who had not yet been introduced to astrobites and were excited about a new resource!For the rest of the meeting we will be stationed at theAAS booth in the exhibit hall (booth #211-213), so drop by if you want to learn more (or pick up swag: weve got lots of stickers and sunglasses)!Mondaymorning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended this morning.Opening Address(by Susanna Kohler)AAS President Meg Urry kicked off the meeting this morning at 8am with an overview of some of the great endeavors AAS is supporting. We astrobiters had personal motivation to drag ourselves out of bed that early: during this session, Urryannounced the new partnership between AAS and astrobites!Urry touched on some difficult topics in her welcome, including yesterdays tragedy in Orlando. Shereiteratedthe AASs support fortheCommittee for Sexual-Orientation and Gender Minorities in Astronomy (SGMA). She also reminded meeting attendees about the importance ofkeeping conference interactions professional, and pointed to the meetings anti-harassment policy.Partnership Announcement (by Michael Zevin)This morning, the American Astronomical Society announced the new partnership that it will have with Astrobites! We are beyond excited to embark on this new partnership with the

  12. Transmission of systemic AA amyloidosis in animals.

    PubMed

    Murakami, T; Ishiguro, N; Higuchi, K

    2014-03-01

    Amyloidoses are a group of protein-misfolding disorders that are characterized by the deposition of amyloid fibrils in organs and/or tissues. In reactive amyloid A (AA) amyloidosis, serum AA (SAA) protein forms deposits in mice, domestic and wild animals, and humans that experience chronic inflammation. AA amyloid fibrils are abnormal β-sheet-rich forms of the serum precursor SAA, with conformational changes that promote fibril formation. Extracellular deposition of amyloid fibrils causes disease in affected animals. Recent findings suggest that AA amyloidosis could be transmissible. Similar to the pathogenesis of transmissible prion diseases, amyloid fibrils induce a seeding-nucleation process that may lead to development of AA amyloidosis. We review studies of possible transmission in bovine, avian, mouse, and cheetah AA amyloidosis. PMID:24280941

  13. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway

    PubMed Central

    Xiao, Jianchun; Li, Ye; Prandovszky, Emese; Karuppagounder, Senthilkumar S.; Talbot, C. Conover; Dawson, Valina L.; Dawson, Ted M.; Yolken, Robert H.

    2014-01-01

    Congenital toxoplasmosis and toxoplasmic encephalitis can be associated with severe neuropsychiatric symptoms. However, which host cell processes are regulated and how Toxoplasma gondii affects these changes remain unclear. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of over 1000 miRNAs in human neuroepithelioma cells in response to infection with Toxoplasma. MiR-132, a cyclic AMP-responsive element binding (CREB)-regulated miRNA, was the only miRNA that was substantially upregulated by all three prototype Toxoplasma strains. The increased expression of miR-132 was also documented in mice following infection with Toxoplasma. To identify cellular pathways regulated by miR-132, we performed target prediction followed by pathway enrichment analysis in the transcriptome of Toxoplasma-infected mice. This led us to identify 20 genes and dopamine receptor signaling was their strongest associated pathway. We then examined myriad aspects of the dopamine pathway in the striatum of Toxoplasma infected mice 5 days after infection. Here we report decreased expression of D1-like dopamine receptors (DRD1, DRD5), metabolizing enzyme (MAOA) and intracellular proteins associated with the transduction of dopamine-mediated signaling (DARPP-32 phosphorylation at Thr34 and Ser97). Increased concentrations of dopamine and its metabolites, serotonin and 5-hydroxyindoleacetic acid were documented by HPLC analysis; however, the metabolism of dopamine was decreased and serotonin metabolism was unchanged. Our data show that miR-132 is upregulated following infection with Toxoplasma and is associated with changes in dopamine receptor signaling. Our findings provide a possible mechanism for how the parasite contributes to the neuropathology of infection. PMID:24657774

  14. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  15. Dopamine autoreceptors and the effects of drugs on locomotion and dopamine synthesis.

    PubMed Central

    Brown, F.; Campbell, W.; Mitchell, P. J.; Randall, K.

    1985-01-01

    Criteria for distinguishing dopamine autoreceptor agonism from other mechanisms of inhibiting locomotion were examined, together with the relationship between inhibition of locomotion and dopamine synthesis. ED50 potencies to inhibit locomotion of mice were established for drugs from a number of categories. Spiperone 0.02 mg kg-1 significantly (P less than 0.05) reversed inhibition of locomotion by known dopamine agonists but not that by the other types of drug. Idazoxan antagonized inhibition of locomotion due to alpha 2-agonists but not dopamine agonists. RU 24926 (N-propyl-N,N-di[2-(3-hydroxyphenyl)ethyl]amine) was antagonized by both spiperone and idazoxan. Only for dopamine agonists was there good correlation (r = 0.97) between potencies to inhibit locomotion in mice and L-dihydroxyphenylalanine (L-DOPA) accumulation in the nucleus accumbens of rats treated with gamma-butyrolactone and 3-hydroxybenzylhydrazine. The specific dopamine D1-agonist, SK&F 38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine), was inactive in both tests at doses up to 10 mg kg-1. The mixed dopamine agonist/antagonist, (-)-3-(3-hydroxyphenyl)-N-propylpiperidine, commonly known as (-)-3-PPP, acted as a dopamine agonist in both tests but inhibited locomotion more potently than L-DOPA accumulation. The inhibitory effects of dopamine agonists on locomotion were not prevented by alpha-methyl-p-tyrosine pretreatment. The data suggest that spiperone-reversible inhibition of locomotion in mice is a good criterion for dopamine autoreceptor agonists. The receptors involved are affected by low doses of both dopamine agonists and antagonists and seem similar to those involved in the autoreceptor mediated inhibition of dopamine synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4005487

  16. Phasic dopamine release in appetitive behaviors and drug abuse

    PubMed Central

    Wanat, Matthew J.; Willuhn, Ingo; Clark, Jeremy J.; Phillips, Paul E. M.

    2010-01-01

    Short phasic bursts of neuronal activity in dopamine neurons produce rapid and transient increases in extracellular dopamine concentrations throughout the mesocorticolimbic system, which are associated with the initiation of goal-directed behaviors. It is well established that acute exposure to many addictive drugs produce increases in tonic dopamine levels that occur on the order of minutes. However, recent studies suggest that abused drugs similarly enhance phasic dopamine release events that occur on a subsecond time scale. Furthermore, drug experience modulates the synaptic and intrinsic properties of dopamine neurons, which could affect dopamine burst firing and phasic dopamine release. This review will provide a general introduction to the mesolimbic dopamine system, as well as the primary methods used to detect dopamine neurons and dopamine release. We present the role of phasic dopamine release in appetitive behaviors in the context of contemporary theories regarding the function of dopamine. Next we discuss the known drug-induced changes to dopamine neurons and phasic release in both in vitro and in vivo preparations. Finally, we offer a simple model that chronic drug experience attenuates tonic/basal dopamine levels but promotes phasic dopamine release, which may result in aberrant goal-directed behaviors contributing to the development of addiction. PMID:19630749

  17. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  18. Surface-enhanced resonance Raman spectroscopy of iron-dopamine complexes

    NASA Astrophysics Data System (ADS)

    Kowalchyk, Will K.; Davis, Kevin L.; Morris, Michael D.

    1995-01-01

    Surface-enhanced resonance Raman spectroscopy (SERRS) at silver colloids is used to detect the catecholamines, 3-hydroxytyramine (dopamine) and 3,4-dihydroxyphenylacetic acid (DOPAC), in a modified Ringer's solution. Catecholamines form very strong complexes with iron(III) in solution ( Kf > 10 40) and exhibit a broad ligand-to-metal charge-transfer (LMCT) absorption in the visible (˜ 500 nm). Resonance enhancement is achieved by excitation at 532 nm from a frequency doubled Nd:YAG laser with high quality spectra attainable in 1 s. Maximum SERRS signal is observed when basic buffer is added to a dopamine sample containing 50 × 10 -6 M ferric ion. Dopamine concentrations in the nanomolar (resting level) range are obtained using this technique.

  19. Simplified dietary acute tryptophan depletion: effects of a novel amino acid mixture on the neurochemistry of C57BL/6J mice

    PubMed Central

    Sánchez, Cristina L.; Van Swearingen, Amanda E. D.; Arrant, Andrew E.; Biskup, Caroline S.; Kuhn, Cynthia M.; Zepf, Florian D.

    2015-01-01

    Background Diet and nutrition can impact on the biological processes underpinning neuropsychiatric disorders. Amino acid (AA) mixtures lacking a specific neurotransmitter precursor can change the levels of brain serotonin (5-HT) or dopamine (DA) in the central nervous system. The availability of these substances within the brain is determined by the blood–brain barrier (BBB) that restricts the access of peripheral AA into the brain. AA mixtures lacking tryptophan (TRP) compete with endogenous TRP for uptake into the brain across the BBB, which in turn leads to a decrease in central nervous 5-HT synthesis. Objective The present study compared the effects of a simplified acute tryptophan depletion (SATD) mixture in mice on blood and brain serotonergic and dopaminergic metabolites to those of a commonly used acute tryptophan depletion mixture (ATD Moja-De) and its TRP-balanced control (BAL). Design The SATD formula is composed of only three large neutral AAs: phenylalanine (PHE), leucine (LEU), and isoleucine (ILE). BAL, ATD Moja-De, or SATD formulas were delivered to adult male C57BL/6J mice by gavage. TRP, monoamines, and their metabolites were quantified in blood and brain regions (hippocampus, frontal cortex, amygdala, caudate putamen, and nucleus accumbens). Results Both ATD Moja-De and SATD significantly decreased levels of serum and brain TRP, as well as brain 5-HIAA and 5-HT compared with BAL. SATD reduced HVA levels in caudate but did not alter total DA levels or DOPAC. SATD decreased TRP and serotonergic metabolites comparably to ATD Moja-De administration. Conclusion A simplified and more palatable combination of AAs can manipulate serotonergic function and might be useful to reveal underlying monoamine-related mechanisms contributing to different neuropsychiatric disorders. PMID:26278978

  20. Diagnosing dopamine-responsive dystonias.

    PubMed

    Malek, N; Fletcher, N; Newman, E

    2015-10-01

    The clinical spectrum of dopamine-responsive dystonias (DRDs) has expanded over the last decade to comprise several distinct disorders. At the milder end of the clinical spectrum is the autosomal-dominant guanosine triphosphate cyclohydrolase deficiency syndrome (GTPCH-DRD), and at the more severe end is the much less common autosomal recessive tyrosine hydroxylase deficiency syndrome (TH-DRD), with intermediate forms in between. Understanding the pathophysiology of DRDs can help in their optimal diagnosis and management. These are conditions with the potential to be either underdiagnosed when not considered or overdiagnosed if there is an equivocal L-dopa (levo-3,4-dihydroxyphenylalanine) response. In this article, we discuss the clinical phenotypes of these disorders, and we outline how investigations can help in confirming the diagnosis. PMID:26045581

  1. Novel Poly-Dopamine Adhesive for a Halloysite Nanotube-Ru(bpy)32+ Electrochemiluminescent Sensor

    PubMed Central

    Xing, Bo; Yin, Xue-Bo

    2009-01-01

    Herein, for the first time, the electrochemiluminescent sensor based on Ru(bpy)32+-modified electrode using dopamine as an adhesive was successfully developed. After halloysite nanotube slurry was cast on a glassy carbon electrode and dried, an alkaline dopamine solution was added on the electrode surface. Initially, polydopamine belts with dimensions of tens to hundreds of nanometers formed via oxidization of the dopamine by ambient oxygen. As the incubation time increased, the nanobelts became broader and then united with each other to form a polydopamine film. The halloysite nanotubes were embedded within the polydopamine film. The above electrode was soaked in Ru(bpy)32+ aqueous solution to adsorb Ru(bpy)32+ into the active sites of the halloysite nanotubes via cation-exchange procedure. Through this simple procedure, a Ru(bpy)32+-modified electrode was obtained using only 6.25 µg Ru(bpy)32+, 15.0 µg dopamine, and 9.0 µg halloysite nanotubes. The electrochemistry and electrochemiluminescence (ECL) of the modified electrode was investigated using tripropylamine (TPA) and nitrilotriacetic acid (NTA) as co-reactants. The different ECL behaviors of the modified electrode using NTA and TPA as well as the contact angle measurements reflected the hydrophilic character of the electrode. The results indicate that halloysite nanotubes have a high loading capacity for Ru(bpy)32+ and that dopamine is suitable for the preparation of modified electrodes. PMID:19649294

  2. Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode

    PubMed Central

    Castro, Suely S. L.; Mortimer, Roger J.; de Oliveira, Marcelo F.; Stradiotto, Nelson R.

    2008-01-01

    The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 × 105 cm3 mol-1 s-1 at a concentration of 5.0 × 10-5 mol L-1. When a Nafion® film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 × 10-5 to 5.0 × 10-4 mol L-1 with a slope of 23.5 mA mol-1 L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 × 10-6 mol L-1 and the relative standard deviation for five measurements of 2.5 × 10-4 mol L-1 dopamine was 0.58%.

  3. Flow injection-chemiluminescence determination of dopamine using potassium permanganate and formaldehyde system

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; Alothman, Zeid Abdullah; Alam, Seikh Mafiz; Lee, Sang Hak

    2012-10-01

    A simple and sensitive flow injection-chemiluminescence method for the determination of dopamine has been proposed. The method is based on the enhancing effect of dopamine on the chemiluminescence emission generated by the reaction of potassium permanganate with formaldehyde in an acidic medium. The proposed procedure allows the determination of dopamine over the concentration range of 3.1 × 10-8-1.7 × 10-5 mol/L and with a detection limit of 1.0 × 10-8 mol/L. The linear regression equation was F = 44.4912 + 1.07 × 109 ∗ C (correlation coefficient, r2 = 0.9998). The relative standard deviation is 2.1% for the determination of 1.0 × 10-8 mol/L dopamine (n = 11). The method was successfully applied to the determination of dopamine in pharmaceutical preparation with satisfactory results. The recoveries were found in the range of 96.5-101.3%.

  4. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12).

    PubMed

    Walker, J; Rohm, B; Lang, R; Pariza, M W; Hofmann, T; Somoza, V

    2012-02-01

    Coffee and caffeine are known to affect the limbic system, but data on the influence of coffee and coffee constituents on neurotransmitter release is limited. We investigated dopamine release and Ca(2+)-mobilization in pheochromocytoma cells (PC-12 cells) after stimulation with two lyophilized coffee beverages prepared from either Coffea arabica (AR) or Coffea canephora var. robusta (RB) beans and constituents thereof. Both coffee lyophilizates showed effects in dilutions between 1:100 and 1:10,000. To identify the active coffee compound, coffee constituents were tested in beverage and plasma representative concentrations. Caffeine, trigonelline, N-methylpyridinium, chlorogenic acid, catechol, pyrogallol and 5-hydroxytryptamides increased calcium signaling and dopamine release, although with different efficacies. While N-methylpyridinium stimulated the Ca(2+)-mobilization most potently (EC(200): 0.14±0.29μM), treatment of the cells with pyrogallol (EC(200): 48±14nM) or 5-hydroxytryptamides (EC(200): 10±3nM) lead to the most pronounced effect on dopamine release. In contrast, no effect was seen for the reconstituted biomimetic mixture. We therefore conclude that each of the coffee constituents tested stimulated the dopamine release in PC-12 cells. Since no effect was found for their biomimetic mixture, we hypothesize other coffee constituents being responsible for the dopamine release demonstrated for AR and RB coffee brews. PMID:22019894

  5. Detection of Dopamine Dynamics in the Brain.

    ERIC Educational Resources Information Center

    Wightman, R. Mark; And Others

    1988-01-01

    Explores neurochemical events in the extra cellular space of the brain by use of in vivo voltammetric microelectrodes. Reports dopamine concentrations and pathways, and discusses techniques used for analysis. Recognizes current problems and future directions for research. (ML)

  6. Effects of COMT inhibitors on striatal dopamine metabolism: A microdialysis study

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Wurtman, R. J.

    1992-01-01

    In vivo microdialysis was used to examine the effect of two new catechol-O-methyltransferase (COMT) inhibitors, Ro 40-7592 and OR-611, on extracellular levels of dopamine, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in rat striatum. The interactions of the COMT inhibitors with nomifensine, clorgyline, and deprenyl were also studied. Ro 40-7592 (3-30 mg/kg. i.p.) decreased dose-dependently the efflux of HVA, increased that of DOPAC, and tended to increase that of dopamine. Higher doses of OR-611 (30-100 mg/kg, i.p.) also decreased the dialysate level of HVA, increased that of DOPAC, and tended to increase that of dopamine. Ro 40-7592 was about ten-fold as potent as OR-611. Neither of the COMT inhibitors changed dialysate levels of 6-HIAA. An OR-611 dose of 10 mg/kg i.p. had no significant effect, in contrast to Ro 40-7592, on any of the parameters studied; this dose was thus used to differentiate between the effects of central and peripheral COMT inhibition. Both nomifensine (15 mg/kg, i.p.) and clorgyline (4 mg/kg, i.p.) alone elevated extracellular dopamine levels, and lowered those of DOPAC and HVA, though there were quantitative and temporal differences between the drugs. L-deprenyl (1 mg/kg, i.p.) alone had no significant effect on any of the compounds measured. Ro 40-7592 (10 mg/kg, i.p.) potentiated the effect of nomifensine on dopamine efflux, and it tended to increase clorgyline-induced dopamine efflux. DOPAC levels in dialysates were significantly increased by combinations of Ro 40-7592 and nomifensine or clorgyline, whereas HVA remained about as low as they were after Ro 40-7592 alone. Ro 40-7592 had no significant interactions with L-deprenyl. OR-611 (10 mg/kg, i.p.) did not modify the effects on dopamine metabolism of nomifensine, clorgyline, or L-deprenyl. These data show that Ro 40-7592 is a potent centrally active COMT inhibitor, whereas OR-611 is principally a peripherally active inhibitor

  7. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID

  8. Dopamine-oxytocin interactions in penile erection.

    PubMed

    Baskerville, T A; Allard, J; Wayman, C; Douglas, A J

    2009-12-01

    Dopamine and oxytocin have established roles in the central regulation of penile erection in rats; however, the neural circuitries involved in a specific erectile context and the interaction between dopamine and oxytocin mechanisms remain to be elucidated. The medial preoptic area (MPOA), supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus may serve as candidate sites because they contain oxytocin cells, receive dopaminergic inputs and have been implicated in mediating masculine sexual behavior. Double immunofluorescence revealed that substantial numbers of oxytocin cells in the MPOA, SON and PVN possess dopamine D(2), D(3) and D(4) receptors. In anaesthetized rats, using intracavernous pressure as a physiological indicator of erection, blockade of lumbosacral oxytocin receptors (UK, 427843) reduced erectile responses to a nonselective dopamine agonist (apomorphine), suggesting that dopamine recruits a paraventriculospinal oxytocin pathway. In conscious males in the absence of a female, penile erection elicited by a D(2)/D(3) (Quinelorane) but not D(4) (PD168077) agonist was associated with activation of medial parvocellular PVN oxytocin cells. In another experiment where males were given full access to a receptive female, a D(4) (L-745870) but not D(2) or D(3) antagonist (L-741626; nafadotride) inhibited penile erection (intromission), and this was correlated with SON magnocellular oxytocin neuron activation. Together, the data suggest dopamine's effects on hypothalamic oxytocin cells during penile erection are context-specific. Dopamine may act via different parvocellular and magnocellular oxytocin subpopulations to elicit erectile responses, depending upon whether intromission is performed. This study demonstrates the potential existence of interaction between central dopamine and oxytocin pathways during penile erection, with the SON and PVN serving as integrative sites. PMID:20128851

  9. AAS 228: Day 3 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Wikipedia Year of Science Editathon (by Meredith Rawls)Whats your first go-to source for an unfamiliar topic on the internet? If you said Wikipedia, youre not alone. For many people, Wikipedia is the primary source of information about astronomy and science. However, many Wikipedia articles about science topics are incomplete or missing, and women are underrepresented among scientists with biographies.To address this, the AAS Astronomy Education Board teamed up with the Wiki Education Foundation to host an edit-a-thon as part of the Wikipedia Year of Science. More than forty attendees spent the better part of three hours working through tutorials, creating new articles, and editing existing ones. The session was generously sponsored by the Simons Foundation.The Year of Science initiative seeks to bring Wikipedia editing skills to the classroom and help new editors find sustainable ways to contribute to Wikipedia in the long term. Anybody can create a free account and start editing!As a first-time Wikipedia contributor, I took the time to go through nearly all the tutorial exercises and familiarize myself with the process of editing a page. I decided to flesh out one section in an existing page about asteroseismology. Others created biography pages from scratch or selected various astronomical topics to write about. To me, the editing process felt like a cross between writing a blog post and a journal article, in a hack day type environment. Working through the tutorial and some examples renewed my empathy for learners who are tackling a new skill set for the first time. A full summary of our

  10. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor.

    PubMed

    Pérez, Claudia; Fernandez, Luisa E; Sun, Jianguang; Folch, Jorge Luis; Gill, Sarjeet S; Soberón, Mario; Bravo, Alejandra

    2005-12-20

    Bacillus thuringiensis subsp. israelensis produces crystal proteins, Cry (4Aa, 4Ba, 10Aa, and 11Aa) and Cyt (1Aa and 2Ba) proteins, toxic to mosquito vectors of human diseases. Cyt1Aa overcomes insect resistance to Cry11Aa and Cry4 toxins and synergizes the toxicity of these toxins. However, the molecular mechanism of synergism remains unsolved. Here, we provide evidence that Cyt1Aa functions as a receptor of Cry11Aa. Sequential-binding analysis of Cyt1Aa and Cry11Aa revealed that Cyt1Aa binding to Aedes aegypti brush border membrane vesicles enhanced the binding of biotinylated-Cry11Aa. The Cyt1Aa- and Cry11Aa-binding epitopes were mapped by means of the yeast two-hybrid system, peptide arrays, and heterologous competition assays with synthetic peptides. Two exposed regions in Cyt1Aa, loop beta6-alphaE and part of beta7, bind Cry11Aa. On the other side, Cry11Aa binds Cyt1Aa proteins by means of domain II-loop alpha8 and beta-4, which are also involved in midgut receptor interaction. Characterization of single-point mutations in Cry11Aa and Cyt1Aa revealed key Cry11Aa (S259 and E266) and Cyt1Aa (K198, E204 and K225) residues involved in the interaction of both proteins and in synergism. Additionally, a Cyt1Aa loop beta6-alphaE mutant (K198A) with enhanced synergism to Cry11Aa was isolated. Data provided here strongly indicates that Cyt1Aa synergizes or suppresses resistance to Cry11Aa toxin by functioning as a membrane-bound receptor. Bacillus thuringiensis subsp. israelensis is a highly effective pathogenic bacterium because it produces a toxin and also its functional receptor, promoting toxin binding to the target membrane and causing toxicity. PMID:16339907

  11. AAS 228: Day 3 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Wikipedia Year of Science Editathon (by Meredith Rawls)Whats your first go-to source for an unfamiliar topic on the internet? If you said Wikipedia, youre not alone. For many people, Wikipedia is the primary source of information about astronomy and science. However, many Wikipedia articles about science topics are incomplete or missing, and women are underrepresented among scientists with biographies.To address this, the AAS Astronomy Education Board teamed up with the Wiki Education Foundation to host an edit-a-thon as part of the Wikipedia Year of Science. More than forty attendees spent the better part of three hours working through tutorials, creating new articles, and editing existing ones. The session was generously sponsored by the Simons Foundation.The Year of Science initiative seeks to bring Wikipedia editing skills to the classroom and help new editors find sustainable ways to contribute to Wikipedia in the long term. Anybody can create a free account and start editing!As a first-time Wikipedia contributor, I took the time to go through nearly all the tutorial exercises and familiarize myself with the process of editing a page. I decided to flesh out one section in an existing page about asteroseismology. Others created biography pages from scratch or selected various astronomical topics to write about. To me, the editing process felt like a cross between writing a blog post and a journal article, in a hack day type environment. Working through the tutorial and some examples renewed my empathy for learners who are tackling a new skill set for the first time. A full summary of our

  12. Tonic Dopamine Modulates Exploitation of Reward Learning

    PubMed Central

    Beeler, Jeff A.; Daw, Nathaniel; Frazier, Cristianne R. M.; Zhuang, Xiaoxi

    2010-01-01

    The impact of dopamine on adaptive behavior in a naturalistic environment is largely unexamined. Experimental work suggests that phasic dopamine is central to reinforcement learning whereas tonic dopamine may modulate performance without altering learning per se; however, this idea has not been developed formally or integrated with computational models of dopamine function. We quantitatively evaluate the role of tonic dopamine in these functions by studying the behavior of hyperdopaminergic DAT knockdown mice in an instrumental task in a semi-naturalistic homecage environment. In this “closed economy” paradigm, subjects earn all of their food by pressing either of two levers, but the relative cost for food on each lever shifts frequently. Compared to wild-type mice, hyperdopaminergic mice allocate more lever presses on high-cost levers, thus working harder to earn a given amount of food and maintain their body weight. However, both groups show a similarly quick reaction to shifts in lever cost, suggesting that the hyperdominergic mice are not slower at detecting changes, as with a learning deficit. We fit the lever choice data using reinforcement learning models to assess the distinction between acquisition and expression the models formalize. In these analyses, hyperdopaminergic mice displayed normal learning from recent reward history but diminished capacity to exploit this learning: a reduced coupling between choice and reward history. These data suggest that dopamine modulates the degree to which prior learning biases action selection and consequently alters the expression of learned, motivated behavior. PMID:21120145

  13. Genetic Polymorphisms in the Dopamine Receptor 2 Predict Acute Pain Severity after Motor Vehicle Collision

    PubMed Central

    Qadri, Yawar J.; Bortsov, Andrey V.; Orrey, Danielle C.; Swor, Robert A.; Peak, David A.; Jones, Jeffrey S.; Rathlev, Niels K.; Lee, David C.; Domeier, Robert M.; Hendry, Phyllis L.; Mclean, Samuel A.

    2014-01-01

    Objectives: Dopaminergic signaling is implicated in nociceptive pathways. These effects are mediated largely through dopamine receptors and modulated in part by dopamine transporters. This study tests the hypothesis that genetic variants in the genes encoding dopamine receptor 2 (DRD2) and the dopamine active transporter (SLC6A3) influence acute pain severity after motor vehicle collision (MVC). Methods: European Americans presenting to the emergency department (ED) after MVC were recruited. Overall pain intensity in ED was assessed using a 0-10 numeric rating scale. DNA was extracted from blood samples and genotyping of single nucleotide polymorphisms (SNPs) in the DRD2 and SLC6A3 gene was performed. Results: A total of 948 patients completed evaluation. After correction for multiple comparisons, SNP rs6276 at DRD2 showed significant association with pain scores, with individuals with the A/A genotype reporting lower mean pain scores (5.3, 95% CI 5.1 to 5.5) than those with A/G (5.9, 95% CI 5.6 to 6.1) or G/G (5.7, 95%CI 5.2 to 6.2) genotypes (p=0.0027). Secondary analyses revealed an interaction between sex and DRD2 SNPs rs4586205 and rs4648318 on pain scores: females with two minor alleles had increased pain intensity, whereas males with two minor alleles had less pain than individuals with a major allele (interaction p=0.0019). Discussion: Genetic variants in DRD2 are associated with acute pain after a traumatic stressful event. These results suggest that dopaminergic agents may be useful for the treatment of individuals with acute post-traumatic pain as part of a multimodal opioid-sparing analgesic regimen. PMID:25370144

  14. Interface Formation During Fusion™ Casting of AA3003/AA4045 Aluminum Alloy Ingots

    NASA Astrophysics Data System (ADS)

    Di Ciano, Massimo; Caron, E. J. F. R.; Weckman, D. C.; Wells, M. A.

    2015-12-01

    Fusion™ casting is a unique Direct Chill continuous casting process whereby two different alloys can be cast simultaneously, producing a laminated ingot for rolling into clad sheet metal such as AA3003/AA4045 brazing sheet. Better understanding of the wetting and interface formation process during Fusion™ casting is required to further improve process yields and also explore use of other alloy systems for new applications. In this research, AA3003-core/AA4045-clad ingots were cast using a well-instrumented lab-scale Fusion™ casting system. As-cast Fusion™ interfaces were examined metallurgically and by mechanical testing. Computational fluid dynamic analyses of the FusionTM casts were also performed. It was shown that the liquid AA4045-clad alloy was able to successfully wet and create an oxide-free, metallurgical, and mechanically sound interface with the lightly oxidized AA3003-core shell material. Based on the results of this study, it is proposed that the bond formation process at the alloys interface during casting is a result of discrete penetration of AA4045 liquid at defects in the preexisting AA3003 oxide, dissolution of underlying AA3003 by liquid AA4045, and subsequent bridging between penetration sites. Spot exudation on the AA3003 chill cast surface due to remelting and inverse segregation may also improve the wetting and bonding process.

  15. Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity

    PubMed Central

    Cardinal, R. N.; Rygula, R.; Hong, Y. T.; Fryer, T. D.; Sawiak, S. J.; Ferrari, V.; Cockcroft, G.; Aigbirhio, F. I.; Robbins, T. W.; Roberts, A. C.

    2014-01-01

    Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia. PMID:24872570

  16. Cytosolic Sulfotransferase 1A3 Is Induced by Dopamine and Protects Neuronal Cells from Dopamine Toxicity

    PubMed Central

    Sidharthan, Neelima P.; Minchin, Rodney F.; Butcher, Neville J.

    2013-01-01

    Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase (SULT1A3) is present that can rapidly metabolize dopamine to dopamine sulfate. Here, we show that SULT1A3 and a closely related protein SULT1A1 are highly inducible by dopamine. This involves activation of the D1 and NMDA receptors. Both ERK1/2 phosphorylation and calcineurin activation are required for induction. Pharmacological agents that inhibited induction or siRNA targeting SULT1A3 significantly increased the susceptibility of cells to dopamine toxicity. Taken together, these results show that dopamine can induce its own metabolism and protect neuron-like cells from damage, suggesting that SULT1A3 activity may be a risk factor for dopamine-dependent neurodegenerative diseases. PMID:24136195

  17. Evaluation of AaDOP2 receptor antagonists reveals antidepressants and antipsychotics as novel lead molecules for control of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Conley, Jason M; Meyer, Jason M; Nuss, Andrew B; Doyle, Trevor B; Savinov, Sergey N; Hill, Catherine A; Watts, Val J

    2015-01-01

    The yellow fever mosquito, Aedes aegypti, vectors disease-causing agents that adversely affect human health, most notably the viruses causing dengue and yellow fever. The efficacy of current mosquito control programs is challenged by the emergence of insecticide-resistant mosquito populations, suggesting an urgent need for the development of chemical insecticides with new mechanisms of action. One recently identified potential insecticide target is the A. aegypti D1-like dopamine receptor, AaDOP2. The focus of the present study was to evaluate AaDOP2 antagonism both in vitro and in vivo using assay technologies with increased throughput. The in vitro assays revealed AaDOP2 antagonism by four distinct chemical scaffolds from tricyclic antidepressant or antipsychotic chemical classes, and elucidated several structure-activity relationship trends that contributed to enhanced antagonist potency, including lipophilicity, halide substitution on the tricyclic core, and conformational rigidity. Six compounds displayed previously unparalleled potency for in vitro AaDOP2 antagonism, and among these, asenapine, methiothepin, and cis-(Z)-flupenthixol displayed subnanomolar IC50 values and caused rapid toxicity to A. aegypti larvae and/or adults in vivo. Our study revealed a significant correlation between in vitro potency for AaDOP2 antagonism and in vivo toxicity, suggesting viability of AaDOP2 as an insecticidal target. Taken together, this study expanded the repertoire of known AaDOP2 antagonists, enhanced our understanding of AaDOP2 pharmacology, provided further support for rational targeting of AaDOP2, and demonstrated the utility of efficiency-enhancing in vitro and in vivo assay technologies within our genome-to-lead pipeline for the discovery of next-generation insecticides. PMID:25332454

  18. Evaluation of AaDOP2 Receptor Antagonists Reveals Antidepressants and Antipsychotics as Novel Lead Molecules for Control of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Conley, Jason M.; Meyer, Jason M.; Nuss, Andrew B.; Doyle, Trevor B.; Savinov, Sergey N.; Hill, Catherine A.

    2015-01-01

    The yellow fever mosquito, Aedes aegypti, vectors disease-causing agents that adversely affect human health, most notably the viruses causing dengue and yellow fever. The efficacy of current mosquito control programs is challenged by the emergence of insecticide-resistant mosquito populations, suggesting an urgent need for the development of chemical insecticides with new mechanisms of action. One recently identified potential insecticide target is the A. aegypti D1-like dopamine receptor, AaDOP2. The focus of the present study was to evaluate AaDOP2 antagonism both in vitro and in vivo using assay technologies with increased throughput. The in vitro assays revealed AaDOP2 antagonism by four distinct chemical scaffolds from tricyclic antidepressant or antipsychotic chemical classes, and elucidated several structure-activity relationship trends that contributed to enhanced antagonist potency, including lipophilicity, halide substitution on the tricyclic core, and conformational rigidity. Six compounds displayed previously unparalleled potency for in vitro AaDOP2 antagonism, and among these, asenapine, methiothepin, and cis-(Z)-flupenthixol displayed subnanomolar IC50 values and caused rapid toxicity to A. aegypti larvae and/or adults in vivo. Our study revealed a significant correlation between in vitro potency for AaDOP2 antagonism and in vivo toxicity, suggesting viability of AaDOP2 as an insecticidal target. Taken together, this study expanded the repertoire of known AaDOP2 antagonists, enhanced our understanding of AaDOP2 pharmacology, provided further support for rational targeting of AaDOP2, and demonstrated the utility of efficiency-enhancing in vitro and in vivo assay technologies within our genome-to-lead pipeline for the discovery of next-generation insecticides. PMID:25332454

  19. AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Hansen, Immo A.; Boudko, Dmitri Y.; Shiao, Shin-Hong; Voronov, Dmitri A.; Meleshkevitch, Ella A.; Drake, Lisa L.; Aguirre, Sarah E.; Fox, Jeffrey M.; Attardo, Geoffrey M.; Raikhel, Alexander S.

    2011-01-01

    Insect yolk protein precursor gene expression is regulated by nutritional and endocrine signals. A surge of amino acids in the hemolymph of blood-fed female mosquitoes activates a nutrient signaling system in the fat bodies, which subsequently derepresses yolk protein precursor genes and makes them responsive to activation by steroid hormones. Orphan transporters of the SLC7 family were identified as essential upstream components of the nutrient signaling system in the fat body of fruit flies and the yellow fever mosquito, Aedes aegypti. However, the transport function of these proteins was unknown. We report expression and functional characterization of AaCAT1, cloned from the fat body of A. aegypti. Expression of AaCAT1 transcript and protein undergoes dynamic changes during postembryonic development of the mosquito. Transcript expression was especially high in the third and fourth larval stages; however, the AaCAT1 protein was detected only in pupa and adult stages. Functional expression and analysis of AaCAT1 in Xenopus oocytes revealed that it acts as a sodium-independent cationic amino acid transporter, with unique selectivity to l-histidine at neutral pH (K0.5l-His = 0.34 ± 0.07 mm, pH 7.2). Acidification to pH 6.2 dramatically increases AaCAT1-specific His+-induced current. RNAi-mediated silencing of AaCAT1 reduces egg yield of subsequent ovipositions. Our data show that AaCAT1 has notable differences in its transport mechanism when compared with related mammalian cationic amino acid transporters. It may execute histidine-specific transport and signaling in mosquito tissues. PMID:21262963

  20. Theophylline-7-acetic acid: lack of absorption and therapeutic effectiveness.

    PubMed Central

    Fleetham, J A; Owen, J A; May, B; Munt, P W; Nakatsu, K

    1979-01-01

    A double-blind cross-over trial was conducted to evaluate the effectiveness of oral theophylline-7-acetic acid (T7AA) in 13 asthmatic patients. Pulmonary function tests showed no difference between T7AA and placebo. No T7AA or theophylline was found in the sera of these patients or of healthy volunteers who took T7AA tablets or syrup. PMID:388714

  1. AAS 228: Day 1 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Come visit astrobites at the AAS booth we have swag!Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto hear from undergrads who already know and love the site, educators who want to use it in their classrooms, and students who had not yet been introduced to astrobites and were excited about a new resource!For the rest of the meeting we will be stationed at theAAS booth in the exhibit hall (booth #211-213), so drop by if you want to learn more (or pick up swag: weve got lots of stickers and sunglasses)!Mondaymorning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended this morning.Opening Address(by Susanna Kohler)AAS President Meg Urry kicked off the meeting this morning at 8am with an overview of some of the great endeavors AAS is supporting. We astrobiters had personal motivation to drag ourselves out of bed that early: during this session, Urryannounced the new partnership between AAS and astrobites!Urry touched on some difficult topics in her welcome, including yesterdays tragedy in Orlando. Shereiteratedthe AASs support fortheCommittee for Sexual-Orientation and Gender Minorities in Astronomy (SGMA). She also reminded meeting attendees about the importance ofkeeping conference interactions professional, and pointed to the meetings anti-harassment policy.Partnership Announcement (by Michael Zevin)This morning, the American Astronomical Society announced the new partnership that it will have with Astrobites! We are beyond excited to embark on this new partnership with the

  2. Dopamine D2 Receptors Act Upstream of AVP in the Latero-Anterior Hypothalamus to Modulate Adolescent Anabolic/Androgenic Steroid-Induced Aggression in Syrian Hamsters

    PubMed Central

    Morrison, Thomas R.; Ricci, Lesley A.; Melloni, Richard H.

    2015-01-01

    In pubertal male Syrian hamsters, exposure to anabolic/androgenic steroids (AAS) during adolescence facilitates a high level of offensive aggression modulated by the enhanced development and activity of the vasopressin (AVP) and dopamine (DA) neural systems within the latero-anterior hypothalamus (LAH), i.e., a brain region implicated in the control of aggression. The present studies provide a detailed report of the pharmacologic interactions between AVP and DA D2 receptor signaling within the LAH in the control of adolescent AAS-induced offensive aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the DA D2 receptor antagonist eticlopride (ETIC) alone, or in combination with AVP in the LAH in an effort to determine the influence of DA D2 receptors relative to AVP-receptor mediated aggression mechanisms. As previously shown, ETIC infusion into the LAH suppressed adolescent AAS-induced aggressive responding; however, the AAS-induced aggressive phenotype was rescued by the co-infusion of AVP into the LAH. These behavioral data indicate that interactions between AVP and DA neural systems within the LAH modulate the control of aggression following adolescent exposure to AAS and that DA D2 receptor signaling functions upstream of AVP in the LAH to control this behavioral response. PMID:25798632

  3. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    PubMed Central

    Ali, Shah R.; Parajuli, Rishi R.; Balogun, Yetunde; Ma, Yufeng; He, Huixin

    2008-01-01

    Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to eliminate these

  4. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

    PubMed Central

    Harding, Cary O.; Winn, Shelley R.; Gibson, K. Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-01-01

    Summary Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  5. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU).

    PubMed

    Harding, Cary O; Winn, Shelley R; Gibson, K Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-09-01

    Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  6. D-2 dopamine receptor activation reduces free ( sup 3 H)arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    SciTech Connect

    Canonico, P.L. )

    1989-09-01

    Dopamine reduces the stimulation of intracellular ({sup 3}H)arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited ({sup 3}H)arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular ({sup 3}H)arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels.

  7. Endogenous Dopamine Suppresses Initiation of Swimming in Prefeeding Zebrafish Larvae

    PubMed Central

    Thirumalai, Vatsala; Cline, Hollis T.

    2008-01-01

    Dopamine is a key neuromodulator of locomotory circuits, yet the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days postfertilization (dpf) and 5dpf. We found that swim episodes were fewer and of longer durations at 3 than at 5dpf. At 3dpf, application of dopamine as well as bupropion, a dopamine reuptake blocker, abolished spontaneous fictive swim episodes. Blocking D2 receptors increased frequency of occurrence of episodes and activation of adenylyl cyclase, a downstream target inhibited by D2-receptor signaling, blocked the inhibitory effect of dopamine. Dopamine had no effect on motor neuron firing properties, input impedance, resting membrane potential, or the amplitude of spike afterhyperpolarization. Application of dopamine either to the isolated spinal cord or locally within the cord does not decrease episode frequency, whereas dopamine application to the brain silences episodes, suggesting a supraspinal locus of dopaminergic action. Treating larvae with 10 μM MPTP reduced catecholaminergic innervation in the brain and increased episode frequency. These data indicate that dopamine inhibits the initiation of fictive swimming episodes at 3dpf. We found that at 5dpf, exogenously applied dopamine inhibits swim episodes, yet the dopamine reuptake blocker or the D2-receptor antagonist have no effect on episode frequency. These results led us to propose that endogenous dopamine release transiently suppresses swim circuits in developing zebrafish. PMID:18562547

  8. Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice.

    PubMed

    Miville-Godbout, Edith; Bourque, Mélanie; Morissette, Marc; Al-Sweidi, Sara; Smith, Tara; Mochizuki, Asuka; Senanayake, Vijitha; Jayasinghe, Dushmanthi; Wang, Li; Goodenowe, Dayan; Di Paolo, Thérèse

    2016-01-01

    Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson's disease (PD) patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in mice, a PD model. First, in a pre-treatment experiment male mice were treated for 10 days with the docosahexaenoic acid (DHA)-plasmalogen precursor PPI-1011 (10, 50 and 200 mg/kg). On day 5 mice received MPTP and were killed on day 11. Next, in a post-treatment study, male mice were treated with MPTP and then received daily for 5 days PPI-1011 (5, 10 and 50 mg/kg). MPTP treatment reduced serum plasmalogen levels, striatal contents of dopamine (DA) and its metabolites, serotonin, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). Pre-treatment with PPI-1011 (10 and 50 mg/kg) prevented all MPTP-induced effects. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding. Post-treatment with PPI-1011 prevented all MPTP-induced effects at 50 mg/kg but not at lower doses. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding in the post-treatment experiment. PPI-1011 treatment (10 days at 5, 10 and 50 mg/kg) of intact mice left unchanged striatal biogenic amine contents. These data demonstrate that treatment with a plasmalogen precursor is capable of protecting striatal dopamine markers in an animal model of PD. PMID:26959819

  9. Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice

    PubMed Central

    Miville-Godbout, Edith; Bourque, Mélanie; Morissette, Marc; Al-Sweidi, Sara; Smith, Tara; Mochizuki, Asuka; Senanayake, Vijitha; Jayasinghe, Dushmanthi; Wang, Li; Goodenowe, Dayan; Di Paolo, Thérèse

    2016-01-01

    Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson’s disease (PD) patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in mice, a PD model. First, in a pre-treatment experiment male mice were treated for 10 days with the docosahexaenoic acid (DHA)-plasmalogen precursor PPI-1011 (10, 50 and 200 mg/kg). On day 5 mice received MPTP and were killed on day 11. Next, in a post-treatment study, male mice were treated with MPTP and then received daily for 5 days PPI-1011 (5, 10 and 50 mg/kg). MPTP treatment reduced serum plasmalogen levels, striatal contents of dopamine (DA) and its metabolites, serotonin, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). Pre-treatment with PPI-1011 (10 and 50 mg/kg) prevented all MPTP-induced effects. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding. Post-treatment with PPI-1011 prevented all MPTP-induced effects at 50 mg/kg but not at lower doses. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding in the post-treatment experiment. PPI-1011 treatment (10 days at 5, 10 and 50 mg/kg) of intact mice left unchanged striatal biogenic amine contents. These data demonstrate that treatment with a plasmalogen precursor is capable of protecting striatal dopamine markers in an animal model of PD. PMID:26959819

  10. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  11. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  12. Dopamine systems in the forebrain

    PubMed Central

    Cave, John W.; Baker, Harriet

    2009-01-01

    The brain contains a number of distinct regions that share expression of dopamine (DA) and its requisite biosynthetic machinery, but otherwise encompass a diverse array of features and functions. Across the vertebrate family, the olfactory bulb (OB) contains the major DA system in the forebrain. OB DA cells are primarily periglomerular interneurons that define the glomerular structures in which they receive innervation from olfactory receptor neurons as well as mitral and tufted cells, the primary OB output neurons. The OB DA cells are necessary for both discrimination and the dynamic range over which odorant sensory information can be detected. In the embryo, OB DA neurons are derived from the ventricular area of the evaginating telencephalon, the dorsal lateral ganglionic eminence, and the septum. However, most OB DA interneurons are generated post-natally and continue to be produced throughout adult life from neural stem cells in the subventricular zone of the lateral ventricle and rostral migratory stream. Adult born OB DA neurons are capable of integrating into existing circuits and do not appear to degenerate in Parkinson’s disease. Several genes have been identified that regulate the differentiation of OB DA interneurons from neural stem cells. These include transcription factors that modify the expression of tyrosine hydroxylase, the first enzyme in the DA biosynthetic pathway and a reliable marker of the DA phenotype. Elucidation of the molecular genetic pathways of OB DA differentiation may advance the development of strategies to treat neurological disease. PMID:19731547

  13. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  14. Binding of dopamine and 3-methoxytyramine as l-DOPA metabolites to human alpha(2)-adrenergic and dopaminergic receptors.

    PubMed

    Alachkar, Amal; Brotchie, Jonathan M; Jones, Owen T

    2010-07-01

    The ability of l-3,4-dihydroxyphenylalanine (l-DOPA), l-DOPA-methyl ester and their major metabolites, dopamine, dihydroxyphenylacetic acid (DOPAC), homovanillic (HVA), 3-O-methyldopa and 3-methoxytyramine (3-MT) to bind to alpha(2) adrenergic and D1 and D2 dopamine receptors was assessed by radioligand binding to cloned human receptors expressed in cell lines. As anticipated, dopamine bound with high affinity to D1 (IC(50) 1.1 + or - 0.16 microM) and D2 (IC(50) 0.7 + or - 0.3 microM) dopamine receptors. However, dopamine also bound with high affinity to alpha(2A) (IC(50) was 2.6 + or - 0.5 microM), alpha(2C) (IC(50) 3.2 + or - 0.7 microM). 3-MT bound to alpha(2A) with high affinity (IC(50), 3.6 + or - 0.2 microM) though moderate affinity to alpha(2)c, D1 and D2 receptors (values of IC(50) were 55 + or - 14, 121 + or - 43, 36 + or - 14 microM, respectively). l-DOPA-methyl ester bound with high affinity to alpha(2) (IC(50) 17-36 microM) but not dopamine receptors (IC(50) 0.9-2.5 mM). l-DOPA, 3-O-methyldopa and DOPAC had no observable effect on binding to any of the receptors tested. These data suggest that the effects of l-DOPA in Parkinson's disease may result from actions of its metabolites dopamine and 3-MT on both dopaminergic and non-dopaminergic receptors. These findings may provide explanations for the differences between l-DOPA and dopamine receptor agonists in mediating anti-parkinsonian effects and propensity to be associated with dyskinesia and motor complications such as wearing-off and on-off. PMID:20302892

  15. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  16. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    MedlinePlus

    ... CONGENITAL Sources for This Page Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: ... GeneReview: Dopamine Beta-Hydroxylase Deficiency Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson ...

  17. Brain May Compensate for Dopamine Neuron Loss Early in Parkinson's

    MedlinePlus

    ... More Science News Brain May Compensate for Dopamine Neuron Loss Early in Parkinson’s - May 09 2014 Scientists ... at least 25 percent of the brain’s dopamine neurons already have been lost. So why do symptoms ...

  18. Determining the Optimum Dietary Tryptophan to Lysine Ratio in Growing Pigs Fed Diets Formulated with Hhigher Levels of Other Essential Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies on amino acid (AA) ratios require the first limiting AA (generally Lys) to be set below the requirement estimate. Graded levels of the AA being investigated are then fed to determine the required ratio. Essential AA (EAA) not under investigation are often set at their presumed requirement ra...

  19. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320

  20. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. PMID

  1. Imaging of Brain Dopamine Pathways

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Thanos, Panayotis K.; Fowler, Joanna S.

    2011-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity. PMID:21603099

  2. Differential dopamine function in fibromyalgia.

    PubMed

    Albrecht, Daniel S; MacKie, Palmer J; Kareken, David A; Hutchins, Gary D; Chumin, Evgeny J; Christian, Bradley T; Yoder, Karmen K

    2016-09-01

    Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain. PMID:26497890

  3. Thermal Stability of Dopamine Transporters.

    PubMed

    Kukk, Siim; Stepanov, Vladimir; Järv, Jaak

    2015-08-01

    The thermal stabilities of the rat and mouse dopamine transporter (DAT) proteins were studied within the temperature range of 0-37°C. The inactivation of the protein was followed by monitoring changes in radioligand-specific binding. We found that the process followed a rate equation with first-order kinetics and was characterized by having a single rate constant k inact. The activation energies (E a) that were calculated from the Arrhenius plots (ln k inact vs. 1/T) were 43 ± 5 and 45 ± 6 kJ/mol for the rat (rDAT) and mouse (mDAT) transporters, respectively, and 44 ± 7 kJ/mol for rDAT from PC-6.3 cell line. These E a values were similar to the E a values of thermal inactivation of the muscarinic receptor from rat brain cortex and to the thermal inactivation of other transmembrane proteins. However, all of these activation energy values were significantly lower than the E a values for soluble single-subunit proteins of similar size. These results therefore suggest that the thermal stability of transmembrane proteins may be governed to a significant extent by cell membrane properties and by interactions between the membrane components and the protein. In contrast, the stability of soluble proteins seems to be mostly governed by protein structure and size, which determine the sum of the stabilizing intramolecular interactions within the protein molecule. It is therefore not surprising that cell membrane properties and composition may have significant effects on the functional properties of transmembrane proteins. PMID:25812533

  4. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    PubMed Central

    Sulzer, David

    2011-01-01

    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce non-exocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions on the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging. PMID:21338876

  5. Theoretical determinations of ionization potentials of dopamine

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Yu, Z. Y.

    2013-04-01

    Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green's function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.

  6. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal

    PubMed Central

    Natividad, Luis A.; Buczynski, Matthew W.; Parsons, Loren H.; Torres, Oscar; O'Dell, Laura E.

    2012-01-01

    Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, since adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal. PMID:22905672

  7. Dopamine receptors in a songbird brain

    PubMed Central

    Kubikova, Lubica; Wada, Kazuhiro; Jarvis, Erich D

    2010-01-01

    Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors. J. Comp. Neurol. 518:741–769, 2010. © 2009 Wiley-Liss, Inc. PMID:20058221

  8. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults

    PubMed Central

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults. PMID:26635626

  9. DRD4 dopamine receptor genotype and CSF monoamine metabolites in Finnish alcoholics and controls

    SciTech Connect

    Adamson, M.D.; Dean, M.; Goldman, D.

    1995-06-19

    The DRD4 dopamine receptor is thus far unique among neurotransmitter receptors in having a highly polymorphic gene structure that has been reported to produce altered receptor functioning. These allelic variations are caused by a 48-bp segment in exon III of the coding region which may be repeated from 2-10 times. Varying the numbers of repeated segments changes the length, structure, and, possibly, the functional efficiency of the receptor, which makes this gene an intriguing candidate for variations in dopamine-related behaviors, such as alcoholism and drug abuse. Thus far, these DRD4 alleles have been investigated for association with schizophrenia, bipolar disorder, Parkinson`s disease, and chronic alcoholism, and all have been largely negative for a direct association. We evaluated the DRD4 genotype in 226 Finish adult males, 113 of whom were alcoholics, many of the early onset type with features of impulsivity and antisocial traits. Genotype frequencies were compared to 113 Finnish controls who were free of alcohol abuse, substance abuse, and major mental illness. In 70 alcoholics and 20 controls, we measured CSF homovanillic acid (HVA), the major metabolite of dopamine, and 5-hydroxyindoleacetic acid (5-HIAA). No association was found between a particular DRD4 dopamine receptor allele and alcoholism. CSF concentrations of the monoamine metabolites showed no significant difference among the DRD4 genotypes. This study of the DRD4 dopamine receptor in alcoholics is the first to be conducted in a clinically and ethnically homogeneous population and to relate the DRD4 genotype to CSF monoamine concentrations. The results indicate that there is no association of the DRD4 receptor with alcoholism. 52 refs., 3 figs., 1 tab.

  10. Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder.

    PubMed

    Mørk, A; Pehrson, A; Brennum, L T; Nielsen, S Møller; Zhong, H; Lassen, A B; Miller, S; Westrich, L; Boyle, N J; Sánchez, C; Fischer, C W; Liebenberg, N; Wegener, G; Bundgaard, C; Hogg, S; Bang-Andersen, B; Stensbøl, T Bryan

    2012-03-01

    1-[2-(2,4-Dimethylphenyl-sulfanyl)-phenyl]-piperazine (Lu AA21004) is a human (h) serotonin (5-HT)(3A) receptor antagonist (K(i) = 3.7 nM), h5-HT(7) receptor antagonist (K(i) = 19 nM), h5-HT(1B) receptor partial agonist (K(i) = 33 nM), h5-HT(1A) receptor agonist (K(i) = 15 nM), and a human 5-HT transporter (SERT) inhibitor (K(i) = 1.6 nM) (J Med Chem 54:3206-3221, 2011). Here, we confirm that Lu AA21004 is a partial h5-HT(1B) receptor agonist [EC(50) = 460 nM, intrinsic activity = 22%] using a whole-cell cAMP-based assay and demonstrate that Lu AA21004 is a rat (r) 5-HT(7) receptor antagonist (K(i) = 200 nM and IC(50) = 2080 nM). In vivo, Lu AA21004 occupies the r5-HT(1B) receptor and rSERT (ED(50) = 3.2 and 0.4 mg/kg, respectively) after subcutaneous administration and is a 5-HT(3) receptor antagonist in the Bezold-Jarisch reflex assay (ED(50) = 0.11 mg/kg s.c.). In rat microdialysis experiments, Lu AA21004 (2.5-10.0 mg/kg s.c.) increased extracellular 5-HT, dopamine, and noradrenaline in the medial prefrontal cortex and ventral hippocampus. Lu AA21004 (5 mg/kg per day for 3 days; minipump subcutaneously), corresponding to 41% rSERT occupancy, significantly increased extracellular 5-HT in the ventral hippocampus. Furthermore, the 5-HT(3) receptor antagonist, ondansetron, potentiated the increase in extracellular levels of 5-HT induced by citalopram. Lu AA21004 has antidepressant- and anxiolytic-like effects in the rat forced swim (Flinders Sensitive Line) and social interaction and conditioned fear tests (minimal effective doses: 7.8, 2.0, and 3.9 mg/kg). In conclusion, Lu AA21004 mediates its pharmacological effects via two pharmacological modalities: SERT inhibition and 5-HT receptor modulation. In vivo, this results in enhanced release of several neurotransmitters and antidepressant- and anxiolytic-like profiles at doses for which targets in addition to the SERT are occupied. The multimodal activity profile of Lu AA21004 is distinct from that of current

  11. AA amyloidosis in vaccinated growing chickens.

    PubMed

    Murakami, T; Inoshima, Y; Sakamoto, E; Fukushi, H; Sakai, H; Yanai, T; Ishiguro, N

    2013-01-01

    Systemic amyloid-A (AA) amyloidosis in birds occurs most frequently in waterfowl such as Pekin ducks. In chickens, AA amyloidosis is observed as amyloid arthropathy. Outbreaks of systemic amyloidosis in flocks of layers are known to be induced by repeated inflammatory stimulation, such as those resulting from multiple vaccinations with oil-emulsified bacterins. Outbreaks of fatal AA amyloidosis were observed in growing chickens in a large scale poultry farm within 3 weeks of vaccination with multiple co-administered vaccines. This study documents the histopathological changes in tissues from these birds. Amyloid deposits were also observed at a high rate in the tissues of apparently healthy chickens. Vaccination should therefore be considered as a potential risk factor for the development of AA amyloidosis in poultry. PMID:23570943

  12. Dopamine and synaptic plasticity in the neostriatum

    PubMed Central

    ARBUTHNOTT, G. W.; INGHAM, C. A.; WICKENS, J. R.

    2000-01-01

    After the unilateral destruction of the dopamine input to the neostriatum there are enduring changes in rat behaviour. These have been ascribed to the loss of dopamine and the animals are often referred to as ‘hemiparkinsonian’. In the denervated neostriatum, we have shown that not only are the tyrosine hydroxylase positive boutons missing, but also the medium sized densely spiny output cells have fewer spines. Spines usually have asymmetric synapses on their heads. In a recent stereological study we were able to show that there is a loss of approximately 20% of asymmetric synapses in the lesioned neostriatum by 1 mo after the lesion. Current experiments are trying to establish the specificity of this loss. So far we have evidence suggesting that there is no obvious preferential loss of synapses from either D1 or D2 receptor immunostained dendrites in the neostriatum with damaged dopamine innervation. These experiments suggest that dopamine is somehow necessary for the maintenance of corticostriatal synapses in the neostriatum. In a different series of experiments slices of cortex and neostriatum were maintained in vitro in such a way as to preserve at least some of the corticostriatal connections. In this preparation we have been able to show that cortical stimulation results in robust excitatory postsynaptic potentials (EPSPs) recorded from inside striatal neurons. Using stimulation protocols derived from the experiments on hippocampal synaptic plasticity we have shown that the usual consequence of trains of high frequency stimulation of the cortex is the depression of the size of EPSPs in the striatal cell. In agreement with similar experiments by others, the effect seems to be influenced by NMDA receptors since the unblocking of these receptors with low Mg++ concentrations in the perfusate uncovers a potentiation of the EPSPs after trains of stimulation. Dopamine applied in the perfusion fluid round the slices has no effect but pulsatile application of

  13. AAS 228: Day 3 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session 2015 Newton Lacy Pierce Prize Lecture: The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures (by Leonardo dos Santos)The first session on Wednesday at 228th AAS Meeting was the Newton Lacy Pierce Prize Lecture by Heather Knutson (California Institute of Technology). This talk featured a broad range of research efforts on exoplanets, with the main focus on how we study the composition of their atmospheres, and how multi-body interactions carve the structure of the planetary systems we observe.One of her first points is the well-known idea that the Solar System is an oddball, compared to the exoplanet systems we have found so far: most of these systems contain hot Jupiters and mini-Neptunes at very close-in orbits around their host stars. Moreover, even when studying their transmission spectra, it is difficult to know the exact composition of their atmospheres.Knutson: it is difficult to constrain atmospheric composition of exoplanets (H-poor or H-rich+clouds?) #aas228pic.twitter.com/LdyN4o9RC7 astrobites (@astrobites) June 15, 2016The main proposal on how these systems formed is the migration scenario. In order to validate this idea, Dr. Knutson and her group The Friends of Hot Jupiters study systems with close-in gas giants and their frequency of binary companions, which are supposed to be the main culprits causing gas-giant migration. They found that approximately half of the observed systems have long-distance companions, providing strong validation of the migration scenario. Moreover, Dr. Knutson speculates that wide binaries have more

  14. AAS 228: Day 3 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session 2015 Newton Lacy Pierce Prize Lecture: The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures (by Leonardo dos Santos)The first session on Wednesday at 228th AAS Meeting was the Newton Lacy Pierce Prize Lecture by Heather Knutson (California Institute of Technology). This talk featured a broad range of research efforts on exoplanets, with the main focus on how we study the composition of their atmospheres, and how multi-body interactions carve the structure of the planetary systems we observe.One of her first points is the well-known idea that the Solar System is an oddball, compared to the exoplanet systems we have found so far: most of these systems contain hot Jupiters and mini-Neptunes at very close-in orbits around their host stars. Moreover, even when studying their transmission spectra, it is difficult to know the exact composition of their atmospheres.Knutson: it is difficult to constrain atmospheric composition of exoplanets (H-poor or H-rich+clouds?) #aas228pic.twitter.com/LdyN4o9RC7 astrobites (@astrobites) June 15, 2016The main proposal on how these systems formed is the migration scenario. In order to validate this idea, Dr. Knutson and her group The Friends of Hot Jupiters study systems with close-in gas giants and their frequency of binary companions, which are supposed to be the main culprits causing gas-giant migration. They found that approximately half of the observed systems have long-distance companions, providing strong validation of the migration scenario. Moreover, Dr. Knutson speculates that wide binaries have more

  15. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  16. Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk.

    PubMed

    Weseler, Antje R; Dirix, Chantal E H; Bruins, Maaike J; Hornstra, Gerard

    2008-11-01

    Lactation hampers normalization of the maternal arachidonic acid (AA) status, which is reduced after pregnancy and can further decline by the presently recommended increased consumption of (n-3) long-chain PUFA [(n-3) LCPUFA]. This may be unfavorable for breast-fed infants, because they also require an optimum supply of (n-6) LCPUFA. We therefore investigated the LCPUFA responses in nursing mothers upon increased consumption of AA and (n-3) LCPUFA. In a parallel, double-blind, controlled trial, lactating women received for 8 wk no extra LCPUFA (control group, n = 8), 200 (low AA group, n = 9), or 400 (high AA group, n = 8) mg/d AA in combination with (n-3) LCPUFA [320 mg/d docosahexaenoic acid (DHA), 80 mg/d eicosapentaenoic acid, and 80 mg/d other (n-3) fatty acids], or this dose of (n-3) LCPUFA alone [DHA + eicosapentaenoic acid group, n = 8]. Relative concentrations of AA, DHA, and sums of (n-6) and (n-3) LCPUFA were measured in milk total lipids (TL) and erythrocyte phospholipids (PL) after 2 and 8 wk and changes were compared by ANCOVA. The combined consumption of AA and (n-3) LCPUFA caused dose-dependent elevations of AA and total (n-6) LCPUFA concentrations in milk TL and did not significantly affect the DHA and total (n-3) LCPUFA increases caused by (n-3) LCPUFA supplementation only. This latter treatment did not significantly affect breast milk AA and total (n-6) LCPUFA concentrations. AA and DHA concentrations in milk TL and their changes were strongly and positively correlated with their corresponding values in erythrocyte PL (r(2) = 0.27-0.50; P AA in addition to extra (n-3) LCPUFA dose dependently increased the AA concentration of their milk TL. PMID:18936218

  17. The Changing Shape of the AAS

    NASA Astrophysics Data System (ADS)

    Boyce, P. B.

    1995-12-01

    What is the astronomical workforce like? Where do astronomers work? How old are they? How permanent are their jobs? As we move into a period of increased uncertainty in federal funding for science it is important to know the answers to these questions. There are four sources of information for answers: 1. Information from the AAS membership database. 2. A survey of the AAS membership. 3. Surveys of samples of the AAS membership by AIP. 4. Information from the NRC and NSF. We have gender and age data from 1. A survey of the AAS membershWe will have age and gender data from 1. We will complete and analyze a new membersip survey shortly. The latest AIP data is from 1994. They will do a new sample in 1996. Much of the NRC data is aggregated with physics, and that does not give information about astronomers. Nevertheless, we do have some interesting information. The ages and genders of AAS members are available for 1972, 1990 and 1995. The time sequence provides an interesting look at the AAS. For instance, from 1990 to 1995 the number of women in each 5-year age group below the the age of 65 increased. Contrary to popular perception, women are not leaving the Society as they get older. However, the number of men actually decreased in each age group above the age of 35. This and other interesting trends will be discussed.

  18. Hepatoprotective effect of BPC 157, a 15-amino acid peptide, on liver lesions induced by either restraint stress or bile duct and hepatic artery ligation or CCl4 administration. A comparative study with dopamine agonists and somatostatin.

    PubMed

    Sikiric, P; Seiwerth, S; Grabarevic, Z; Rucman, R; Petek, M; Rotkvic, I; Turkovic, B; Jagic, V; Mildner, B; Duvnjak, M

    1993-01-01

    The hepatoprotective effects of a newly synthesized 15 amino acid fragment code named BPC 157 was evaluated in comparison with the reference standards (bromocriptine, amantadine and somatostatin) in various experimental models of liver injury in rats: 24 h-bile duct+hepatic artery ligation 48 h-restraint stress and CCl4 administration. BPC 157 administered either intragastrically or intraperitoneally, significantly prevented the development of liver necrosis or fatty changes in rats subjected to 24 h bile duct + hepatic artery ligation, 48 h-restraint stress, CCl4 treatment (1 ml/kg i.p., sacrifice 48 h thereafter). The other reference drugs had either little or no protective actions in these models. Noteworthy, the laboratory test results for bilirubin, SGOT, SGPT fully correlated with the macro/microscopical findings. Thus, on the basis of consistent protective effect of BPC 157, possible clinical application in liver diseases is now warranted. PMID:7901724

  19. Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures.

    PubMed

    Mena, M A; Davila, V; Sulzer, D

    1997-10-01

    L-DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of L-DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. L-DOPA (50 microM) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where L-DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 microM L-DOPA. The stereoisomer D-DOPA (50-400 microM) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 microM) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of L-DOPA is stereospecific but independent of the production of dopamine. However, L-DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by L-buthionine sulfoximine (3 microM for 24 h) blocked the neurotrophic action of L-DOPA. N-Acetyl-L-cysteine (250 microM for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of L-DOPA. These data suggest that the neurotrophic effect of L-DOPA may be mediated, at least in part, by elevation of glutathione content. PMID:9326268

  20. Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    PubMed Central

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet–Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the ‘dopamine-first’ mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  1. Multiple human D sub 5 dopamine receptor genes: A functional receptor and two pseudogenes

    SciTech Connect

    Grandy, D.K.; Yuan Zhang; Bouvier, C.; Qunyong Zhou; Johnson, R.A.; Allen, L.; Buck, K.; Bunzow, J.R.; Salon, J.; Civelli, O. )

    1991-10-15

    Three genes closely related to the D{sub 1} dopamine receptor were identified in the human genome. One of the genes lacks introns and encodes a functional human dopamine receptor, D{sub 5}, whose deduced amino acid sequence is 49% identical to that of the human D{sub 1} receptor. Compared with the human D{sub 1} dopamine receptor, the D{sub 5} receptor displayed a higher affinity for dopamine and was able to stimulate a biphasic rather than a monophasic intracellular accumulation of cAMP. Neither of the other two genes was able to direct the synthesis of a receptor. nucleotide sequence analysis revealed that these two genes are 98% identical to each other and 95% identical to the D{sub 5} sequence. Relative to the D{sub 5} sequence, both contain insertions and deletions that result in several in-frame termination codons. Premature termination of translation is the most likely explanation for the failure of these genes to produce receptors in COS-7 and 293 cells even though their messages are transcribed. The authors conclude that the two are pseudogenes. Blot hybridization experiments performed on rat genomic DNA suggest that there is one D{sub 5} gene in this species and that the pseudogenes may be the result of a relatively recent evolutionary event.

  2. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  3. Dopamine and Pain Sensitivity: Neither Sulpiride nor Acute Phenylalanine and Tyrosine Depletion Have Effects on Thermal Pain Sensations in Healthy Volunteers

    PubMed Central

    Becker, Susanne; Ceko, Marta; Louis-Foster, Mytsumi; Elfassy, Nathaniel M.; Leyton, Marco; Shir, Yoram; Schweinhardt, Petra

    2013-01-01

    Based on animal studies and some indirect clinical evidence, dopamine has been suggested to have anti-nociceptive effects. Here, we investigated directly the effects of increased and decreased availability of extracellular dopamine on pain perception in healthy volunteers. In Study 1, participants ingested, in separate sessions, a placebo and a low dose of the centrally acting D2-receptor antagonist sulpiride, intended to increase synaptic dopamine via predominant pre-synaptic blockade. No effects were seen on thermal pain thresholds, tolerance, or temporal summation. Study 2 used the acute phenylalanine and tyrosine depletion (APTD) method to transiently decrease dopamine availability. In one session participants ingested a mixture that depletes the dopamine amino acid precursors, phenylalanine and tyrosine. In the other session they ingested a nutritionally balanced control mixture. APTD led to a small mood-lowering response following aversive thermal stimulation, but had no effects on the perception of cold, warm, or pain stimuli. In both studies the experimental manipulation of dopaminergic neurotransmission was successful as indicated by manipulation checks. The results contradict proposals that dopamine has direct anti-nociceptive effects in acute experimental pain. Based on dopamine’s well-known role in reward processing, we hypothesize that also in the context of pain, dopamine acts on stimulus salience and might play a role in the initiation of avoidance behavior rather than having direct antinociceptive effects in acute experimental pain. PMID:24236199

  4. Effects of triadimefon on extracellular dopamine, DOPAC, HVA and 5-HIAA in adult rat striatum.

    PubMed

    Gagnaire, François; Micillino, Jean-Claude

    2006-01-16

    Triadimefon has been shown to inhibit monoamine uptake, bind to the dopamine (DA) transporter, and stimulate dopamine efflux in rat brain tissue, in vitro. To determine whether these changes also occur in the intact animal and to study the reversibility of the effects observed, we used in vivo microdialysis to determine changes in the concentrations of DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) in the striatal dialysates from free moving adult rats after exposure to triadimefon 50, 100 and 200mg/kg, i.p. Triadimefon induced a gradual dose- and time-dependent accumulation of extracellular DA accompanied by a small increase in the HVA and 5-HIAA concentrations. These changes were still present 24h after treatment in the group treated with 200mg/kg and had vanished 48 h after treatment. In contrast to the DA efflux induced by S(+)-amphetamine (2mg/kg, i.p.), that induced by triadimefon was totally inhibited by the infusion of 10(-5)M tetrodotoxin (TTX), a voltage-gated Na(+) channel blocker, thus showing that the increase in extracellular DA induced by triadimefon was an action potential-dependent mechanism. GBR 12909 (10mg/kg, i.p.), a dopamine uptake inhibitor, induced a gradual increase in striatal dopamine similar to that induced by triadimefon, whereas the effects on the acid metabolites were not exactly the same. The present results indicate that triadimefon acts in vivo as a DA transporter inhibitor and could also act on the serotoninergic system. PMID:16246478

  5. AAS 228: Day 1 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session: From Space Archeology to Serving the World Today: A 20-year Journey from the Jungles of Guatemala to a Network of Satellite Remote Sensing Facilities Around the World(by Michael Zevin)In the conferences second plenary session, NASAs Daniel Irwin turned the eyes of the conference back to Earth by highlighting the huge impact that NASA missions play in protecting and developing our own planet.Daniel Irwin: using satellite imagery to detect differences in vegetation and find ancient Mayan cities. #aas228 pic.twitter.com/9LFPQdCHTM astrobites (@astrobites) June 13, 2016Irwin came to be involved in NASA through his work mapping Guatemalan jungles, where he would spend 22 days at a time exploring the treacherous jungles on foot armed with a 1st generation GPS, a compass, and a machete. A colleague introduced Irwin to the satellite imagery thathe was exploring, demonstratinghow these images are a strong complement to field work. The sharing of this satellite data with nearby villages helped to show the encroachment of agriculture and the necessity of connecting space to the village. Satellite imagery also played a role in archeological endeavors, uncovering dozens of Mayan cities that have been buried for over a millennia by vegetation, and it provided evidence that the fall of the Mayan civilization may have been due to massive deforestation that ledto drought.Glacial retreat in Chile imaged by ISERV.Irwin displayed the constellation of NASAs Earth-monitoring satellites that have played an integral role in conserving our planet and alerting the world of natural disasters. He also showed

  6. Dopamine Transporters, D2 Receptors, and Dopamine Release in Generalized Social Anxiety Disorder

    PubMed Central

    Schneier, Franklin R.; Abi-Dargham, Anissa; Martinez, Diana; Slifstein, Mark; Hwang, Dah-Ren; Liebowitz, Michael R.; Laruelle, Marc

    2009-01-01

    Background Dopamine D2 receptor and dopamine transporter availability in the striatum have each been reported abnormal in generalized social anxiety disorder (GSAD) in studies using single photon computerized tomography (SPECT). D2 receptors and dopamine transporters have not previously been studied within the same GSAD subjects, however, and prior GSAD studies have not assessed dopamine release or subdivided striatum into functional subregions. Methods Unmedicated adults with GSAD (N=17) and matched healthy comparison subjects (HC, N=13) participated in this study. Of these, 15 GSAD and 13 HC subjects completed baseline assessment of D2 receptor availability using positron emission tomography (PET) with the radiotracer [11C] raclopride. Twelve GSAD and 13 HC subjects completed a repeat scan after intravenous administration of D-amphetamine, to study dopamine release. Twelve of the GSAD subjects and 10 of the HC subjects also completed SPECT with the radiotracer [123I] methyl 3ß-(4-iodophenyl) tropane-2ß-carboxylate ([123I] ß-CIT) to assess dopamine transporter availability. Results GSAD and HC groups did not differ significantly in striatal dopamine transporter availability, overall striatal or striatal subregion D2 receptor availability at baseline, or change in D2 receptor availability after D-amphetamine. Receptor availability and change after D-amphetamine were not significantly associated with severity of social anxiety or trait detachment. Conclusions These findings do not replicate previous findings of altered striatal dopamine transporter and D2 receptor availability in GSAD subjects assessed with SPECT. The differences from results of prior studies may be due to differences in imaging methods or characteristics of samples. PMID:19180583

  7. Patternable Nanowire Sensors for Electrochemical Recording of Dopamine

    PubMed Central

    Tyagi, P.; Postetter, D.; Saragnese, D. L.; Randall, C. L.; Mirski, M. A.; Gracias, D. H.

    2009-01-01

    Spatially resolved electrochemical recording of neurochemicals is challenging due to the challenges associated with producing nanometer scale patternable and integrated sensors. We describe the lithographic fabrication and characterization of patternable gold nanowire (NW) based sensors for the electrochemical recording of dopamine (DA). We demonstrate a straightforward NW-size-independent approach to align contact pads to NWs. Sensors, with NW widths as small as 30 nm, exhibited: considerable insensitivity to scan rates during cyclic voltammetry, a nonlinear increase in oxidation current with increasing NW width, and the selectivity to measure sub-maximal synaptic concentrations of DA in the presence of interfering ascorbic acid. The electrochemical sensitivity of gold NW electrode sensors was much larger than gold thin film electrodes. In chronoamperometric measurements, the NW sensors were found to be sensitive for sub-µM concentration of DA. Hence, the patternable NW sensors represent an attractive platform for electrochemical sensing and recording. PMID:19904993

  8. New selenium-75 labeled radiopharmaceuticals: selenonium analogues of dopamine

    SciTech Connect

    Sadek, S.A.; Basmadjian, G.P.; Hsu, P.M.; Rieger, J.A.

    1983-07-01

    Selenium-75 labeled selenonium analogues of dopamine, (2-(3,4-dimethoxyphenyl)ethyl)dimethylselenonium iodide and its dihydroxy analogue, were prepared by reducing (/sup 75/Se)selenious acid with sodium borohydride at pH 6.0 and reacting the NaSeH produced with 1-(3,4-dimethoxyphenyl)-2-(p-toluenesulfonyloxy)ethane. Tissue distribution studies in rats given the /sup 75/Se-labeled selenonium agents intravenously demonstrated high initial heart uptake. Prolonged adrenal retention and high adrenal to blood ratio of compound 4 were observed. The high uptake and adrenal to blood ratio suggest the potential use of compound 4 as a radiopharmaceutical for the adrenal gland.

  9. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  10. Dopamine-melanin nanofilms for biomimetic structural coloration.

    PubMed

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-01

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials. PMID:25587771

  11. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatorysystems

    PubMed Central

    Ogawa, Sachie K.; Cohen, Jeremiah Y.; Hwang, Dabin; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2014-01-01

    SUMMARY Serotonin and dopamine are major neuromodulators. Here we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shiftedin the forebrain, with MRserotonin neurons receiving inputs from more medial structures. We then compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantianigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons, apart from the striatum, which preferentially targets dopamine neurons. Ourresults suggest three majorinput streams: amedial stream regulates MR serotonin neurons, anintermediate stream regulatesDR serotonin and VTA dopamine neurons, and alateral stream regulatesSNc dopamine neurons. These results providefundamental organizational principlesofafferent control forserotonin and dopamine. PMID:25108805

  12. Imaging extrastriatal dopamine D(2) receptor occupancy by endogenous dopamine in healthy humans.

    PubMed

    Fujita, M; Verhoeff, N P; Varrone, A; Zoghbi, S S; Baldwin, R M; Jatlow, P A; Anderson, G M; Seibyl, J P; Innis, R B

    2000-01-10

    The effect of endogenous dopamine on in vivo measurement of dopamine D(2) receptors in extrastriatal regions (thalamus and temporal cortex) was evaluated with single photon emission computed tomography and the high affinity ligand [123I]epidepride by comparing the binding potential before and after acute dopamine depletion. Dopamine depletion was achieved by per-oral administration of 5.5 g/70 kg body weight alpha-methyl-para-tyrosine given in 37 h. The alpha-methyl-para-tyrosine treatment increased the binding potential significantly in the temporal cortex (13+/-15%, P=0.036) but not in the thalamus (2+/-9%). The increase of the binding potential in the temporal cortex correlated strongly with the increase of dysphoric mood evaluated by the Positive and Negative Symptom Scale (PANSS) (rho=0.88, P=0.004). These results imply that [123I]epidepride, coupled with acute dopamine depletion might provide estimates of synaptic dopamine concentration. PMID:10650158

  13. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    PubMed

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals. PMID:26497564

  14. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    PubMed Central

    Grattan, David R.; Akopian, Armen N.

    2016-01-01

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  15. AAS 228: Day 1 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session: From Space Archeology to Serving the World Today: A 20-year Journey from the Jungles of Guatemala to a Network of Satellite Remote Sensing Facilities Around the World(by Michael Zevin)In the conferences second plenary session, NASAs Daniel Irwin turned the eyes of the conference back to Earth by highlighting the huge impact that NASA missions play in protecting and developing our own planet.Daniel Irwin: using satellite imagery to detect differences in vegetation and find ancient Mayan cities. #aas228 pic.twitter.com/9LFPQdCHTM astrobites (@astrobites) June 13, 2016Irwin came to be involved in NASA through his work mapping Guatemalan jungles, where he would spend 22 days at a time exploring the treacherous jungles on foot armed with a 1st generation GPS, a compass, and a machete. A colleague introduced Irwin to the satellite imagery thathe was exploring, demonstratinghow these images are a strong complement to field work. The sharing of this satellite data with nearby villages helped to show the encroachment of agriculture and the necessity of connecting space to the village. Satellite imagery also played a role in archeological endeavors, uncovering dozens of Mayan cities that have been buried for over a millennia by vegetation, and it provided evidence that the fall of the Mayan civilization may have been due to massive deforestation that ledto drought.Glacial retreat in Chile imaged by ISERV.Irwin displayed the constellation of NASAs Earth-monitoring satellites that have played an integral role in conserving our planet and alerting the world of natural disasters. He also showed

  16. Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus.

    PubMed

    Bideshi, Dennis K; Waldrop, Greer; Fernandez-Luna, Maria Teresa; Diaz-Mendoza, Mercedes; Wirth, Margaret C; Johnson, Jeffrey J; Park, Hyun-Woo; Federici, Brian A

    2013-08-01

    The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that has evolved in Culex quinquefasciatus. It is also known that Cyt1Aa, which is highly lipophilic, synergizes Cry11Aa by functioning as a surrogate membrane-bound receptor for the latter protein. Little is known, however, about whether Cyt1Aa can interact similarly with other Cry proteins not primarily mosquitocidal; for example, Cry2Aa, which is active against lepidopteran larvae, but essentially inactive or has very low toxicity to mosquito larvae. Here we demonstrate by ligand binding and enzyme-linked immunosorbent assays that Cyt1Aa and Cry2Aa form intermolecular complexes in vitro, and in addition show that Cyt1Aa facilitates binding of Cry2Aa throughout the midgut of C. quinquefasciatus larvae. As Cry2Aa and Cry11Aa share structural similarity in domain II, the interaction between Cyt1Aa and Cry2Aa could be a result of a similar mechanism previously proposed for Cry11Aa and Cyt1Aa. Finally, despite the observed interaction between Cry2Aa and Cyt1Aa, only a 2-fold enhancement in toxicity resulted against C. quinquefasciatus. Regardless, our results suggest that Cry2Aa could be a useful component of mosquitocidal endotoxin complements being developed for recombinant strains of B. thuringiensis subsp. israelensis and B. sphaericus aimed at improving the efficacy of commercial products and avoiding resistance. PMID:23727800

  17. N-terminal sequence of amino acids and some properties of an acid-stable alpha-amylase from citric acid-koji (Aspergillus usamii var.).

    PubMed

    Suganuma, T; Tahara, N; Kitahara, K; Nagahama, T; Inuzuka, K

    1996-01-01

    An acid-stable alpha-amylase (AA) was purified from an acidic extract of citric acid-koji (A. usamii var.). The N-terminal sequence of the first 20 amino acids of the enzyme was identical with that of AA from A. niger, but the two enzymes differed in molecular weight. HPLC analysis for identifying the anomers of products indicated that the AA hydrolyzed maltopentaose (G5) at the third glycoside bond predominantly, which differed from Taka-amylase A and the neutral alpha-amylase (NA) from the citric acid-koji. PMID:8824843

  18. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-amino acids (D-aas) are reported to bind to IgE antibodies from people with allergy and asthma. The objectives of this study were to determine if D-aas bind or inhibit IgE binding to peanut allergens, and if they are more effective than L-amino acids (L-aas) in this respect. Several D-aa cocktails...

  19. Sodium-dependence and ouabain-sensitivity of the synthesis of dopamine in renal tissues of the rat.

    PubMed Central

    Soares-da-Silva, P.; Fernandes, M. H.

    1992-01-01

    1. The present study has examined the influence of sodium chloride (0-160 mM) and ouabain (100 and 500 microM), an inhibitor of the enzyme Na(+)-K+ ATPase, on the synthesis of dopamine in slices of rat renal cortex loaded with exogenous L-dihydroxyphenylalanine (L-DOPA). The deamination of newly-formed dopamine into 3,4-dihydroxyphenylacetic acid (DOPAC) was also examined. The assay of L-DOPA, dopamine and DOPAC in kidney slices was performed by high performance liquid chromatography (h.p.l.c.) with electrochemical detection. 2. The accumulation of newly-formed dopamine and DOPAC in kidney slices loaded with L-DOPA (50 and 100 microM) was found to be dependent on the concentration of NaCl in the medium. A similar picture could be observed for DOPAC. The fractional rate of accumulation (k; mM NaCl-1) was at 50 and 100 microM L-DOPA, respectively, 0.00305 +/- 0.00036 and 0.00328 +/- 0.00029 for dopamine and 0.00672 +/- 0.00072 and 0.00641 +/- 0.00069 for DOPAC. The sodium-dependent formation of dopamine was completely abolished when the experiments were performed in the absence of oxygen. 3. In experiments performed in the presence of 120 mM NaCl, but not in conditions of low sodium (20 mM NaCl in the medium), ouabain (100 and 500 microM) was found to inhibit the accumulation of newly-formed dopamine and DOPAC (14-57% reduction; P less than 0.05); this effect was more marked at 50 and 100 microM L-DOPA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504714

  20. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    SciTech Connect

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  1. Direct-Chill Co-Casting of AA3003/AA4045 Aluminum Ingots via Fusion™ Technology

    NASA Astrophysics Data System (ADS)

    Caron, Etienne J. F. R.; Pelayo, Rosa E. Ortega; Baserinia, Amir R.; Wells, Mary A.; Weckman, David C.; Barker, Simon; Gallerneault, Mark

    2014-06-01

    Laboratory-scale experiments were conducted to cast AA3003/AA4045 clad ingots via Fusion™ Technology, a novel process developed by Novelis Inc. for the production of aluminum clad materials such as brazing sheet. Experimental results were used to validate a steady-state thermofluids model of the Fusion™ Technology co-casting process. The numerical model was able to accurately predict the temperature field within the AA3003/AA4045 clad ingot as well as the shape of the AA3003 liquid sump. The model was also used to quantify the temperature, fraction solid, and velocity fields in a clad ingot cast with an asymmetrical molten metal-feeding system. Feeding of core and clad molten metals at opposite corners of the mold was found to reduce the risks of hot spots and liquid metal breakthrough from the core sump to the clad side of the Fusion™ Technology mold. The use of a diffuser for the AA3003 core molten metal and of a vertical feeding tube for the AA4045 clad produced different flow patterns and liquid sump shapes on either side of the mold. The quality of the metallurgical bond at the core/clad interface appeared good near the clad inlet and at the ingot centerline, but poor near the edges of the ingot. SEM-EDS analysis of the chemical composition across the interface showed that a 1 to 20- μm-deep penetration of silicon from the AA4045 clad into the AA3003 core had occurred at visually acceptable interfaces, whereas silicon diffusion across poor interfaces was very limited. A study of the model-predicted fraction solid history at different points along the interface indicated that reheating of the AA3003 core is not required to form a visually acceptable metallurgical bond. However, a sufficient amount of interaction time between the solid AA3003 core shell and the silicon-rich AA4045 clad liquid is required to chemically dissolve the surface of the core and form a good metallurgical bond. An approximate dissolution depth of 750 to 1000 μm was observed along

  2. JBIR-78 and JBIR-95: phenylacetylated peptides isolated from Kibdelosporangium sp. AK-AA56.

    PubMed

    Izumikawa, Miho; Takagi, Motoki; Shin-Ya, Kazuo

    2012-02-24

    The search for metabolites of Kibdelosporangium sp. AK-AA56 resulted in the discovery of novel N-phenylacetylated peptides, JBIR-78 (1) and JBIR-95 (2). Compounds 1 and 2 were established to be N-phenylacetylated heptapeptides by extensive NMR and HRESIMS analyses. The absolute configuration of the standard amino acids including a cysteic acid moiety was determined using Marfey's method on the acid hydrolysates of 1 and 2. The relative and absolute configurations of a nonstandard amino acid, β-hydroxyleucine, were elucidated using the J-based and modified Mosher's methods, respectively. In an antimicrobial test, 1 showed antibacterial activity against Micrococcus luteus. PMID:22264203

  3. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    PubMed

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-03-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. PMID:27098620

  4. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth.

    PubMed

    Gallant, Pamela; Malutan, Tabita; McLean, Heather; Verellen, LouAnn; Caveney, Stanley; Donly, Cam

    2003-02-01

    A cDNA was cloned from the cabbage looper Trichoplusia ni based on similarity to other cloned dopamine transporters (DATs). The total nucleotide sequence is 3.8 kb in length and contains an open reading frame for a protein of 612 amino acids. The predicted moth DAT protein (TrnDAT) has greatest amino acid sequence identity with Drosophila melanogasterDAT (73%) and Caenorhabditis elegansDAT (51%). TrnDAT shares only 45% amino acid sequence identity with an octopamine transporter (TrnOAT) cloned recently from this moth. The functional properties of TrnDAT and TrnOAT were compared through transient heterologous expression in Sf9 cells. Both transporters have similar transport affinities for DA (Km 2.43 and 2.16 micro m, respectively). However, the competitive substrates octopamine and tyramine are more potent blockers of [3H]dopamine (DA) uptake by TrnOAT than by TrnDAT. D-Amphetamine is a strong inhibitor and l-norepinephrine a weak inhibitor of both transporters. TrnDAT-mediated DA uptake is approximately 100-fold more sensitive to selective blockers of vertebrate transporters of dopamine and norepinephrine, such as nisoxetine, nomifensine and dibenzazepine antidepressants, than TrnOAT-mediated DA uptake. TrnOAT is 10-fold less sensitive to cocaine than TrnDAT. None of the 15 monoamine uptake blockers tested was TrnOAT-selective. In situ hybridization shows that TrnDAT and TrnOAT transcripts are expressed by different sets of neurons in caterpillar brain and ventral nerve cord. These results show that the caterpillar CNS contains both a phenolamine transporter and a catecholamine transporter whereas in the three invertebrates whose genomes have been completely sequenced only a dopamine-selective transporter is found. PMID:12581206

  5. MDCT evaluation of acute aortic syndrome (AAS).

    PubMed

    Valente, Tullio; Rossi, Giovanni; Lassandro, Francesco; Rea, Gaetano; Marino, Maurizio; Muto, Maurizio; Molino, Antonio; Scaglione, Mariano

    2016-05-01

    Non-traumatic acute thoracic aortic syndromes (AAS) describe a spectrum of life-threatening aortic pathologies with significant implications on diagnosis, therapy and management. There is a common pathway for the various manifestations of AAS that eventually leads to a breakdown of the aortic intima and media. Improvements in biology and health policy and diffusion of technology into the community resulted in an associated decrease in mortality and morbidity related to aortic therapeutic interventions. Hybrid procedures, branched and fenestrated endografts, and percutaneous aortic valves have emerged as potent and viable alternatives to traditional surgeries. In this context, current state-of-the art multidetector CT (MDCT) is actually the gold standard in the emergency setting because of its intrinsic diagnostic value. Management of acute aortic disease has changed with the increasing realization that endovascular therapies may offer distinct advantages in these situations. This article provides a summary of AAS, focusing especially on the MDCT technique, typical and atypical findings and common pitfalls of AAS, as well as recent concepts regarding the subtypes of AAS, consisting of aortic dissection, intramural haematoma, penetrating atherosclerotic ulcer and unstable aortic aneurysm or contained aortic rupture. MDCT findings will be related to pathophysiology, timing and management options to achieve a definite and timely diagnostic and therapeutic definition. In the present article, we review the aetiology, pathophysiology, clinical presentation, outcomes and therapeutic approaches to acute aortic syndromes. PMID:27033344

  6. Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes.

    PubMed

    Vaughan, R A; Huff, R A; Uhl, G R; Kuhar, M J

    1997-06-13

    Dopamine transporters (DATs) are members of a family of Na+- and Cl--dependent neurotransmitter transporters responsible for the rapid clearance of dopamine from synaptic clefts. The predicted primary sequence of DAT contains numerous consensus phosphorylation sites. In this report we demonstrate that DATs undergo endogenous phosphorylation in striatal synaptosomes that is regulated by activators of protein kinase C. Rat striatal synaptosomes were metabolically labeled with [32P]orthophosphate, and solubilized homogenates were subjected to immunoprecipitation with an antiserum specific for DAT. Basal phosphorylation occurred in the absence of exogenous treatments, and the phosphorylation level was rapidly increased when synaptosomes were treated with the phosphatase inhibitors okadaic acid or calyculin. Treatment of synaptosomes with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also increased the level of phosphate incorporation. This occurred within 10 min and was dosedependent between 0.1 and 1 microM PMA. DAT phosphorylation was also significantly increased by two other protein kinase C activators, (-)-indolactam V and 1-oleoyl-2-acetyl-sn-glycerol. The inactive phorbol ester 4alpha-phorbol 12,13-didecanoate at 10 microM was without effect, and PMA-induced phosphorylation was blocked by treatment of synaptosomes with the protein kinase C inhibitors staurosporine and bisindoylmaleimide. These results indicate that DATs undergo rapid in vivo phosphorylation in response to protein kinase C activation and that a robust mechanism exists in synaptosomes for DAT dephosphorylation. Dopamine transport activity in synaptosomes was reduced by all treatments that promoted DAT phosphorylation, with comparable dose, time, and inhibitor characteristics. The change in transport activity was produced by a reduction in Vmax with no significant effect on the Km for dopamine. These results suggest that synaptosomal dopamine transport activity is regulated by

  7. Electrophysiological properties of mouse dopamine neurons: in vivo and in vitro studies.

    PubMed

    Sanghera, M K; Trulson, M E; German, D C

    1984-07-01

    The present experiments were conducted to determine the electrophysiological and pharmacological properties of substantia nigra neurons in the mouse. These cells were studied using extracellular single unit recording and microiontophoretic techniques in both chloral hydrate anesthetized mice and in vitro mouse slices. In the in vivo preparation the substantia nigra zona compacta neurons had long duration action potentials (greater than 4 ms), fired from 1 to 7 impulses/s, and the cells discharged with either a decremental burst pattern or with a regular pattern. The dopamine agonists apomorphine and d-amphetamine, given systemically, decreased the firing rate of these neurons and the dopamine receptor blocker, haloperidol, reversed these effects. The zona compacta neurons were inhibited by the micro-iontophoretic application of dopamine and gamma-aminobutyric acid, and systemic haloperidol selectively attenuated the effects of dopamine. In vitro recordings from substantia nigra zona compacta and zona reticulata neurons were generally similar to those found in vivo, both in terms of the electrophysiological and pharmacological properties. However, the zona compacta cells fired faster in vitro than in vivo, and the firing pattern in vitro tended to be pacemaker-like, especially when recordings were made in an incubation medium which blocks synaptic transmission (e.g. low Ca2+/high Mg2+). Our data indicate that: (a) in vivo mouse zona compacta neurons exhibit the same electrophysiological and pharmacological properties as rat dopamine-containing neurons; (b) in vitro mouse dopaminergic neurons fire with pacemaker regularity when in a low Ca2+/high Mg2+ environment; and (c) in vitro studies offer an approach to examine the basic properties of dopaminergic neurons exclusive of feedback pathways and other afferent inputs. PMID:6472621

  8. Shifts in striatal responsivity evoked by chronic stimulation of dopamine and glutamate systems.

    PubMed

    Canales, J J; Capper-Loup, C; Hu, D; Choe, E S; Upadhyay, U; Graybiel, A M

    2002-10-01

    Dopamine and glutamate are key neurotransmitters in cortico-basal ganglia loops affecting motor and cognitive function. To examine functional convergence of dopamine and glutamate neurotransmitter systems in the basal ganglia, we evaluated the long-term effects of chronic stimulation of each of these systems on striatal responses to stimulation of the other. First we exposed rats to chronic intermittent cocaine and used early-gene assays to test the responsivity of the striatum to subsequent acute motor cortex stimulation by application of the GABA(A) (gamma-aminobutyric acid alpha subunit) receptor antagonist, picrotoxin. Reciprocally, we studied the effects of chronic intermittent motor cortex stimulation on the capacity for subsequent acute dopaminergic treatments to induce early-gene activation in the striatum. Prior treatment with chronic intermittent cocaine induced motor sensitization and significantly potentiated the striatal expression of Fos-family early genes in response to stimulation of the motor cortex. Contrary to this, chronic intermittent stimulation of the motor cortex down-regulated cocaine-induced gene expression in the striatum, but enhanced striatal gene expression induced by a full D1 receptor agonist (SKF 81297) and did not change the early-gene response elicited by a D2 receptor antagonist (haloperidol). These findings suggests that repeated dopaminergic stimulation produces long-term enhancement of corticostriatal signalling from the motor cortex, amplifying cortically evoked modulation of the basal ganglia. By contrast, persistent stimulation of the motor cortex inhibits cocaine-stimulated signalling in the striatum, but not signalling mediated by individual dopamine receptor sites, suggesting that chronic cortical hyperexcitability produces long-term impairment of dopaminergic activity and compensation at the receptor level. These findings prompt a model of the basal ganglia function as being regulated by opposing homeostatic dopamine

  9. Amino acid nitrogen isotopic composition patterns in lacustrine sedimenting matter

    NASA Astrophysics Data System (ADS)

    Carstens, Dörte; Lehmann, Moritz F.; Hofstetter, Thomas B.; Schubert, Carsten J.

    2013-11-01

    Amino acids (AAs) comprise a large fraction of organic nitrogen (N) in plankton and sedimenting matter. Aquatic studies of organic N compounds in general and of AAs in particular, mostly concentrate on marine environments. In order to study the cycling and fate of organic N and AAs in lakes, we measured the N isotopic composition (δ15N) of bulk organic matter (OM) and of single hydrolysable AAs in sediment trap and sediment samples from two Swiss lakes with contrasting trophic state: Lake Brienz, an oligotrophic lake with an oxic water column, and Lake Zug a eutrophic, meromictic lake. We also measured the N isotopic composition of water column nitrate, the likely inorganic N source during biosynthesis in both lakes. The δ15N-AA patterns found for the sediment trap material were consistent with published δ15N-AA data for marine plankton. The AA composition and primary δ15N-AA signatures are preserved until burial in the sediments. During early sedimentary diagenesis, the δ15N values of single AAs appear to increase, exceeding those of the bulk OM. This increase in δ15N-AA is paralleled by a decreased contribution of AAs to the total OM pool with progressed degradation, suggesting preferential AA degradation associated with a significant N isotope fractionation. Indicators for trophic level based on δ15N-AAs were determined, for the first time in lacustrine systems. In our samples, the trophic AAs were generally enriched in 15N compared to source AAs and higher trophic δ15N-AA values in Lake Zug were consistent with a higher trophic level of the bulk biomass compared to Lake Brienz. Especially the difference between average trophic δ15N-AAs and average source δ15N-AAs was sensitive to the trophic states of the two lakes. A proxy for total heterotrophic AA re-synthesis (ΣV), which is strongly associated with heterotrophic microbial reworking of the OM, was calculated based on δ15N values of trophic AAs. Higher ΣV in Lake Brienz indicate enhanced

  10. Ascorbic acid, cognitive function, and Alzheimer's disease: a current review and future direction.

    PubMed

    Bowman, Gene L

    2012-01-01

    This narrative review appraises the human and animal studies implicating ascorbic acid (AA) in normal cognitive function and Alzheimer's disease. A research framework for how nutrition affects brain aging is proposed with emphasis on AA intake, status, metabolism, and transport into brain tissue. A final synopsis highlights areas for future research regarding AA nourishment and healthy brain aging. PMID:22419527

  11. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  12. Impact of Q139R substitution of MEB4-Cry2Aa toxin on its stability, accessibility and toxicity against Ephestia kuehniella.

    PubMed

    Nouha, Abdelmalek; Sameh, Sellami; Fakher, Frikha; Slim, Tounsi; Souad, Rouis

    2015-11-01

    The Bacillus thuringiensis subsp. kurstaki strain MEB4 was previously found to be highly toxic to Ephestia kuehniella. SDS-PAGE analysis of the recombinant strain DH5α (pBS-cry2Aa-MEB4) showed that Cry2Aa-MEB4 delta-endotoxins were forming inclusion bodies, and were 2.75 fold more toxic towards E. kuehniella than those of Cry2Aa-BNS3. Besides to the 65kDa active toxin, proteolysis activation of Cry2Aa-BNS3 protein with E. kuehniella midgut juice generated an extra proteolysis form of 49kDa, which was the result of another chymotrypsin cleavage located in Leu144. The amino acid sequences alignment of Cry2Aa-MEB4 and Cry2Aa-BNS3 showed that among the different 15 amino acids, the Q139R substitution was found to be interesting. In fact, due to its presence within the loop α3-α4, the chymotrypsin-like protease was unable to access to its site in Cry2Aa-MEB4, resulting to the production of only the 65kDa form. The accessible surface and the stability studies of the structure model of the Cry2Aa-BNS3-49 form showed a lower hydrophobicity surface due to the omission of 144 amino acids from the N-terminal comparing with the active Cry2Aa-MEB4 protein. All these features caused the diminishing of Cry2Aa-BNS3 toxicity towards E. kuehniella. PMID:26321422

  13. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release

    PubMed Central

    Stacey, David; Bilbao, Ainhoa; Maroteaux, Matthieu; Jia, Tianye; Easton, Alanna C.; Longueville, Sophie; Nymberg, Charlotte; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Carvalho, Fabiana; Conrod, Patricia J.; Desrivières, Sylvane; Fauth-Bühler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Bokde, Arun L. W.; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Lourdusamy, Anbarasu; Mann, Karl F.; Martinot, Jean-Luc; Nees, Frauke; Palkovits, Miklós; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Ruggeri, Barbara; Santos, Eugenio; Smolka, Michael N.; Staehlin, Oliver; Jarvelin, Marjo-Riitta; Elliott, Paul; Sommer, Wolfgang H.; Mameli, Manuel; Müller, Christian P.; Spanagel, Rainer; Girault, Jean-Antoine; Schumann, Gunter

    2012-01-01

    The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca2+-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2−/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2−/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the IA potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse. PMID:23223532

  14. Sensitivity of binding of high-affinity dopamine receptor radioligands to increased synaptic dopamine.

    PubMed

    Gatley, S J; Gifford, A N; Carroll, F I; Volkow, N D

    2000-12-15

    PET and SPECT studies have documented that D2 radioligands of moderate affinity, but not radioligands of high affinity, are sensitive to pharmacological challenges that alter synaptic dopamine levels. The objective of this work was to determine whether the brain kinetics of high-affinity radioligands for dopamine D1 ([(3)H]SCH 23390) and D2 ([(123)I]epidepride) receptors were altered by a prolonged elevation of synaptic dopamine induced by the potent cocaine analog RTI-55. Mice were injected intravenously with radioligands either 30 min after or 4 h before intraperitoneal administration of RTI-55 (2 mg/kg). In separate experiments, the pharmacological effects of RTI-55 were assessed biochemically by measuring uptake of dopamine in synaptosomes prepared from RTI-treated mice and behaviorally by monitoring locomotor activity. Consistent with the expected elevation of synaptic dopamine, RTI-55 induced a long-lasting decrement in dopamine uptake measured ex vivo, and a prolonged increase in locomotor activity. RTI-55 injected prior to the radioligands induced a significant (P < 0.05) increase in striatal concentration of [(123)I]epidepride at 15 min, relative to saline-treated controls, but there were no differences between the two groups at later time-points. For [(3)H]SCH 23390, both initial striatal uptake and subsequent clearance were slightly increased by preadministration of RTI-55. Administration of RTI-55 4 h after the radioligands (i.e., when it was presumed that a state of near equilibrium binding of the radioligands had been reached), was associated with a significant reduction of striatal radioactivity for both radiotracers. Our results are consistent with increased competition between dopamine and radioligand for binding to both D1 and D2 receptors after treatment with RTI-55. We suggest that the magnitude of the competition is reduced by failure of the receptor binding of high-affinity radioligands to rapidly attain equilibrium. PMID:11044896

  15. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release.

    PubMed

    Stacey, David; Bilbao, Ainhoa; Maroteaux, Matthieu; Jia, Tianye; Easton, Alanna C; Longueville, Sophie; Nymberg, Charlotte; Banaschewski, Tobias; Barker, Gareth J; Büchel, Christian; Carvalho, Fabiana; Conrod, Patricia J; Desrivières, Sylvane; Fauth-Bühler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Bokde, Arun L W; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Lourdusamy, Anbarasu; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Palkovits, Miklós; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Ruggeri, Barbara; Santos, Eugenio; Smolka, Michael N; Staehlin, Oliver; Jarvelin, Marjo-Riitta; Elliott, Paul; Sommer, Wolfgang H; Mameli, Manuel; Müller, Christian P; Spanagel, Rainer; Girault, Jean-Antoine; Schumann, Gunter

    2012-12-18

    The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca(2+)-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2(-/-) mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2(-/-) mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I(A) potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive-delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse. PMID:23223532

  16. Optical suppression of drug-evoked phasic dopamine release

    PubMed Central

    McCutcheon, James E.; Cone, Jackson J.; Sinon, Christopher G.; Fortin, Samantha M.; Kantak, Pranish A.; Witten, Ilana B.; Deisseroth, Karl; Stuber, Garret D.; Roitman, Mitchell F.

    2014-01-01

    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior. PMID:25278845

  17. Heterogeneity of dopamine neuron activity across traits and states

    PubMed Central

    Marinelli, Michela; McCutcheon, James E.

    2014-01-01

    Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called ‘bursts’. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in ‘basal’ conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression. PMID:25084048

  18. Increased local dopamine secretion has growth promoting effects in cholangiocarcinoma

    PubMed Central

    Coufal, Monique; Invernizzi, Pietro; Gaudio, Eugenio; Bernuzzi, Francesca; Frampton, Gabriel A.; Onori, Paolo; Franchitto, Antonio; Carpino, Guido; Ramirez, Jonathan C.; Alvaro, Domenico; Marzioni, Marco; Battisti, Guido; Benedetti, Antonio; DeMorrow, Sharon

    2009-01-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. Symptoms are usually evident after blockage of the bile duct by the tumor, and at this late stage, they are relatively resistant to chemotherapy and radiation therapy. Therefore, it is imperative that alternative treatment options are explored. We have previously shown that serotonin metabolism is dysregulated in cholangiocarcinoma leading to an increased secretion of serotonin, which has growth-promoting effects. Because serotonin and dopamine share the degradation machinery, we evaluated the secretion of dopamine from cholangiocarcinoma and its effects on cell proliferation. Using 4 cholangiocarcinoma cell lines and human biopsy samples, we demonstrated that there was an increase in mRNA and protein expression of the dopamine synthesis enzymes tyrosine hydroxylase and dopa decarboxylase in cholangiocarcinoma. There was increased dopamine secretion from cholangiocarcinoma cell lines compared to H69 and HIBEC cholangiocytes and increased dopamine immunoreactivity in human biopsy samples. Furthermore, administration of dopamine to all cholangiocarcinoma cell lines studied increased proliferation by up to 30% which could be blocked by the pretreatment of the D2 and D4 dopamine receptor antagonists, whereas blocking dopamine production by α-methyldopa administration suppressed growth by up to 25%. Administration of α-methyldopa to nude mice also suppressed cholangiocarcinoma tumor growth. The data presented here represent the first evidence that dopamine metabolism is dysregulated in cholangiocarcinoma and that modulation of dopamine synthesis may represent an alternative target for the development of therapeutic strategies. PMID:19795457

  19. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  20. Heterogeneity of dopamine neuron activity across traits and states.

    PubMed

    Marinelli, M; McCutcheon, J E

    2014-12-12

    Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression. PMID:25084048

  1. AAS 228: Day 2 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.The Limits of Scientific Cosmology: Setting the Stage: Accepted Facts, and Testing Limitations in Theory and Data (by Gourav Khullar)With a stellar lineup of speakers to talk about current and future prospects of cosmology and its limits (or lack thereof), the first session kicked off with talks by Risa Wechsler, Joseph Silk, and Sean Carroll (his talk on Multiverses is described below, by Nathan Sanders). Risa set the stage with an elaborate description of the current accepted facts in the era of precision cosmology including the standard model of concordance cosmology, described by seven parameters and an accepted Lambda-CDM paradigm (with a cosmological constant and cold dark matter). The talk stressed on the fact that all these parameters are understood to a percent order precision, which is a remarkable deviation from the time in 1990s when according to Risa, Alan Guth never thought that any of these numbers could be measured precisely!Risa Wechsler describing our current constraints on what Dark Matter could constitute.Joseph Silk discussing limits on cosmological parameters.The CMB measurements, Big Bang Nucleosynthesis estimates and galaxy clustering statistics all contribute to locking down the description of our universe. She emphasized on the tensions between different probes to measure expansion rate H0 of the universe, and small scale predictions of cold dark matter simulations, but she is hopeful that these shall be resolved eventually. Joe Silk followed this up with his interpretation of trying to understand our place in the universe and placing limits on different parameters and

  2. AAS 228: Day 2 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session (Day 1) The Galaxy Zoo(by Benny Tsang)Galaxy Zoo was so hot that the servers hosting the galaxy images got melted down soon after being launched.Kevin Schawinski from ETH Zurich took us on a tour ofhis wonderful Galaxy Zoo. It is a huge zoo with about a quarter million zookeepers, they are citizen astronomers who collaboratively classify galaxies by their looks as an attempt to understand galaxy evolution. The big question that is being answered is: how do blue, actively star-forming galaxies evolve into red, quiescent (non-star-forming) galaxies? The Zoo helped reveal that blue galaxies turn into red galaxies via two possible paths galaxies might run out of supply of gas and shut off star formation slowly; or they could merge with one another and turn off star formation by destroying the gas reservoir rapidly!The Galaxy Zoo project also led to the discoveries of:Green Peas: they are the living fossils of galaxy evolution; compact, bright, green galaxies that are actively forming starsOverlapping galaxies: they are pairs of galaxies that are separated physically but happen to lie on the same line of sight; they provide excellent laboratories for studying dust extinctionHannys Voorwerp: an unusual object named after Hanny the discoverer, which is believed to be the first detection of quasar light echoThe idea of Galaxy Zoo in getting help from citizen scientists was further extended into an award-winningproject known as the Zooniverse, which is an online platform for streamlined crowd-sourcing for scientific research that requires human input. The future of astronomy is going to be

  3. AAS 228: Day 2 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.The Limits of Scientific Cosmology: Setting the Stage: Accepted Facts, and Testing Limitations in Theory and Data (by Gourav Khullar)With a stellar lineup of speakers to talk about current and future prospects of cosmology and its limits (or lack thereof), the first session kicked off with talks by Risa Wechsler, Joseph Silk, and Sean Carroll (his talk on Multiverses is described below, by Nathan Sanders). Risa set the stage with an elaborate description of the current accepted facts in the era of precision cosmology including the standard model of concordance cosmology, described by seven parameters and an accepted Lambda-CDM paradigm (with a cosmological constant and cold dark matter). The talk stressed on the fact that all these parameters are understood to a percent order precision, which is a remarkable deviation from the time in 1990s when according to Risa, Alan Guth never thought that any of these numbers could be measured precisely!Risa Wechsler describing our current constraints on what Dark Matter could constitute.Joseph Silk discussing limits on cosmological parameters.The CMB measurements, Big Bang Nucleosynthesis estimates and galaxy clustering statistics all contribute to locking down the description of our universe. She emphasized on the tensions between different probes to measure expansion rate H0 of the universe, and small scale predictions of cold dark matter simulations, but she is hopeful that these shall be resolved eventually. Joe Silk followed this up with his interpretation of trying to understand our place in the universe and placing limits on different parameters and

  4. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.

    PubMed Central

    Baldwin, H. A.; Colado, M. I.; Murray, T. K.; De Souza, R. J.; Green, A. R.

    1993-01-01

    1. Administration to rats of methamphetamine (15 mg kg-1, i.p.) every 2 h to a total of 4 doses resulted in a neurotoxic loss of striatal dopamine of 36% and of 5-hydroxytryptamine (5-HT) in the cortex (43%) and hippocampus (47%) 3 days later. 2. Administration of chlormethiazole (50 mg kg-1, i.p.) 15 min before each dose of methamphetamine provided complete protection against the neurotoxic loss of monoamines while administration of dizocilpine (1 mg kg-1, i.p.) using the same dose schedule provided substantial protection. 3. Measurement of dopamine release in the striatum by in vivo microdialysis revealed that methamphetamine produced an approximate 7000% increase in dopamine release after the first injection. The enhanced release response was somewhat diminished after the third injection but still around 4000% above baseline. Dizocilpine (1 mg kg-1, i.p.) did not alter this response but chlormethiazole (50 mg kg-1, i.p.) attenuated the methamphetamine-induced release by approximately 40%. 4. Dizocilpine pretreatment did not influence the decrease in the dialysate concentration of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) produced by administration of methamphetamine while chlormethiazole pretreatment decreased the dialysate concentration of these metabolites still further. 5. The concentration of dopamine in the dialysate during basal conditions increased modestly during the course of the experiment. This increase did not occur in chlormethiazole-treated rats. HVA concentrations were unaltered by chlormethiazole administration. 6. Chlormethiazole (100-1000 microM) did not alter methamphetamine (100 microM) or K+ (35 mM)-evoked release of endogenous dopamine from striatal prisms in vitro.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8467354

  5. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    SciTech Connect

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  6. Relationship between methamphetamine-induced dopamine release, hyperthermia, self-injurious behaviour and long term dopamine depletion in BALB/c and C57BL/6 mice.

    PubMed

    Halladay, Alycia K; Kusnecov, Alexander; Michna, Lauri; Kita, Taizo; Hara, Chiaki; Wagner, George C

    2003-07-01

    Differential sensitivity to neurotoxic effects of methamphetamine on striatal dopaminergic neurones between C57BL/6 and BALB/c mice has been established. In the present studies, the interaction of methamphetamine-induced dopamine release, self-injurious behaviour, the neural immune response, and the long-term (3 day) dopamine depletion were examined in these strains after administration of 8 mg/kg methamphetamine. BALB/c mice showed increased hyperthermia compared to the C57BL/6 strain, as well as induction of interleukin-1beta. Additionally, homovanillic acid (HVA) levels, as well as HVA/DA turnover ratios were elevated in the striatum and frontal cortex of BALB/c mice, both compared to untreated mice and to the C57BL/6 strain after a single injection of methamphetamine. Pretreatment with acetaminophen eliminated the methamphetamine-induced hyperthermia in BALB/c mice and reduced body temperature in C57BL/6 mice. However, acetaminophen pretreatment did not affect any parameters of dopaminergic toxicity in the striatum or frontal cortex of the BALB/c strain following repeated methamphetamine injections. Furthermore, acetaminophen pretreatment did not alter the incidence of self-injurious behaviour in BALB/c mice. Therefore, hyperthermia and methamphetamine-induced toxicity appear to be independent phenomena while self-injurious behaviour may provide a better predictor of toxicity, which, in turn, may be related to dopamine release. PMID:12828572

  7. The AAS: Its Next 100 Years

    NASA Astrophysics Data System (ADS)

    Wolff, S.

    1999-05-01

    The AAS: Its Next Hundred Years "We are probably nearing the limit of all we can know about astronomy."-- Simon Newcomb, 1888. The best way to celebrate the centennial of the AAS is to look forward, not backward, and to begin planning for the next 100 years. However, predicting the future is even more difficult than it was in Newcomb's time. We live in an era characterized by an unprecedented rate of change in the kinds of scientific questions we ask, the tools we use to answer them, and the way we communicate our results. This talk will highlight some of the issues that we will face as a community during the next 10--but not the next 100!--years and suggests that the AAS has a fundamental role to play in shaping the community response to these issues.

  8. AAS 228: Day 2 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session (Day 1) The Galaxy Zoo(by Benny Tsang)Galaxy Zoo was so hot that the servers hosting the galaxy images got melted down soon after being launched.Kevin Schawinski from ETH Zurich took us on a tour ofhis wonderful Galaxy Zoo. It is a huge zoo with about a quarter million zookeepers, they are citizen astronomers who collaboratively classify galaxies by their looks as an attempt to understand galaxy evolution. The big question that is being answered is: how do blue, actively star-forming galaxies evolve into red, quiescent (non-star-forming) galaxies? The Zoo helped reveal that blue galaxies turn into red galaxies via two possible paths galaxies might run out of supply of gas and shut off star formation slowly; or they could merge with one another and turn off star formation by destroying the gas reservoir rapidly!The Galaxy Zoo project also led to the discoveries of:Green Peas: they are the living fossils of galaxy evolution; compact, bright, green galaxies that are actively forming starsOverlapping galaxies: they are pairs of galaxies that are separated physically but happen to lie on the same line of sight; they provide excellent laboratories for studying dust extinctionHannys Voorwerp: an unusual object named after Hanny the discoverer, which is believed to be the first detection of quasar light echoThe idea of Galaxy Zoo in getting help from citizen scientists was further extended into an award-winningproject known as the Zooniverse, which is an online platform for streamlined crowd-sourcing for scientific research that requires human input. The future of astronomy is going to be

  9. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    SciTech Connect

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of

  10. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGESBeta

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15).more » In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  11. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake

    PubMed Central

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J. S.

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. PMID:26305376

  12. [Effect of dopamine on the portal pressure].

    PubMed

    Benko, H; Peschl, L; Schüller, J; Neumayr, A

    1975-01-01

    1. An infusion of 3 gamma/kg/min dopamine causes a significant increase in the renal plasma flow and the glomerulum filtration rate. This dosage does not cause a change of the mean systolic and arterial pressure. This effect may also be observed in patients with hepatic cirrhosis. 2. The wedged hepatic vein pressure, an indicator for the portal pressure, only shows a slight increase (9,46 +/- 9,41%) as compared to the initial pressure produced by the mentioned dose. Measurements of the spleen pulpa pressure, which likewise indicates the portal pressure, showed an increase of pressure up to 100% due to pressing or coughing. 3. If in the case of bleeding oesophageal varices acute renal failure might develop, the advantage of the effect of dopamine in stimulating the blood flow through the kidneys may be considered more important than the minute danger of a slight increase of the portal pressure, which might provoke haemorrhage. PMID:1220517

  13. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  14. A descending dopamine pathway conserved from basal vertebrates to mammals.

    PubMed

    Ryczko, Dimitri; Cone, Jackson J; Alpert, Michael H; Goetz, Laurent; Auclair, François; Dubé, Catherine; Parent, Martin; Roitman, Mitchell F; Alford, Simon; Dubuc, Réjean

    2016-04-26

    Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson's disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine's role in locomotion. PMID:27071118

  15. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  16. DRD4 dopamine receptor allelic diversity in various primate species

    SciTech Connect

    Adamson, M.; Higley, D.; O`Brien, S.

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  17. Effect of Insulin Sensitizer Therapy on Amino Acids and their Metabolites

    PubMed Central

    Irving, B.A.; Carter, R.E.; Soop, M.; Weymiller, A.; Syed, H.; Karakelides, H.; Bhagra, S.; Short, K.R.; Tatpati, L.; Barazzoni, R.; Nair, K.S.

    2015-01-01

    Aims Prior studies have reported that elevated concentrations of several plasma amino acids (AA) in plasma, particularly branched chain (BCAA) and aromatic AA predict the onset of type 2 diabetes. We sought to test the hypothesis that circulating BCAA, aromatic AA and related AA metabolites decline in response to the use of insulin sensitizing agents in overweight/obese adults with impaired fasting glucose or untreated diabetes. Methods We performed a secondary analysis of a randomized, double-blind, placebo, controlled study conducted in twenty five overweight/obese (BMI~30 kg/m2) adults with impaired fasting glucose or untreated diabetes. Participants were randomized to three months of pioglitazone (45 mg per day) plus metformin (1000 mg twice per day, N = 12 participants) or placebo (N = 13). We measured insulin sensitivity by the euglycemic-hyperinsulinemic clamp and fasting concentrations of AA and AA metabolites using ultra-pressure liquid chromatography tandem mass spectrometry before and after the three-month intervention. Results Insulin sensitizer therapy that significantly enhanced insulin sensitivity reduced 9 out of 33 AA and AA metabolites measured compared to placebo treatment. Moreover, insulin sensitizer therapy significantly reduced three functionally clustered AA and metabolite pairs: i) phenylalanine/tyrosine, ii) citrulline/arginine, and iii) lysine/α-aminoadipic acid. Conclusions Reductions in plasma concentrations of several AA and AA metabolites in response to three months of insulin sensitizer therapy support the concept that reduced insulin sensitivity alters AA and AA metabolites. PMID:25733201

  18. Action Initiation Shapes Mesolimbic Dopamine Encoding of Future Rewards

    PubMed Central

    Syed, Emilie C.J.; Grima, Laura L.; Magill, Peter J.; Bogacz, Rafal; Brown, Peter; Walton, Mark E.

    2015-01-01

    It is widely held that dopamine signaling encodes predictions of future rewards and such predictions are regularly used to drive behavior, but the relationship between these two is poorly defined. Here, we demonstrate in rats that nucleus accumbens dopamine following a reward-predicting cue is attenuated unless movement is correctly initiated. These results demonstrate that dopamine release in this region is contingent upon correct action initiation and not just reward prediction. PMID:26642087

  19. The dopamine transporter: role in neurotoxicity and human disease

    SciTech Connect

    Bannon, Michael J. . E-mail: mbannon@med.wayne.edu

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  20. Brain dopamine and kinematics of graphomotor functions.

    PubMed

    Lange, Klaus W; Mecklinger, Lara; Walitza, Susanne; Becker, Georg; Gerlach, Manfred; Naumann, Markus; Tucha, Oliver

    2006-10-01

    Three experiments were performed in an attempt to achieve a better understanding of the effect of dopamine on handwriting. In the first experiment, kinematic aspects of handwriting movements were compared between healthy participants and patients with Parkinson's disease (PD) on their usual dopaminergic treatment and following withdrawal of dopaminergic medication. In the second experiment, the writing performance of healthy participants with a hyperechogenicity of the substantia nigra as detected by transcranial sonography (TCS) was compared with the performance of healthy participants with low echogenicity of the substantia nigra. The third experiment examined the effect of central dopamine reduction on kinematic aspects of handwriting movements in healthy adults using acute phenylalanine and tyrosine depletion (APTD). A digitising tablet was used for the assessment of handwriting movements. Participants were asked to perform a simple writing task. Movement time, distance, velocity, acceleration and measures of fluency of handwriting movements were measured. The kinematic analysis of handwriting movements revealed that alterations of central dopaminergic neurotransmission adversely affect movement execution during handwriting. In comparison to the automatic processing of handwriting movements displayed by control participants, participants with an altered dopaminergic neurotransmission shifted from an automatic to a controlled processing of movement execution. Central dopamine appears to be of particular importance with regard to the automatic execution of well-learned movements. PMID:16859791

  1. DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385

  2. Dopamine and food addiction: lexicon badly needed.

    PubMed

    Salamone, John D; Correa, Mercè

    2013-05-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term addiction to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates reward, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present article provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors and a consideration of how these could be altered in pathological conditions. PMID:23177385

  3. Linking unfounded beliefs to genetic dopamine availability

    PubMed Central

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  4. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks of celery of similar varietal characteristics, which are...

  5. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks of celery of similar varietal characteristics, which are...

  6. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks of celery of similar varietal characteristics, which are well developed, and have good...

  7. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks of celery of similar varietal characteristics, which are well developed, and have good...

  8. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  9. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    PubMed Central

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A; Weinstein, Harel; Gether, Ulrik; Loland, Claus J

    2009-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine. PMID:18568020

  10. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Mannisto, P. T.

    1992-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 micrograms/ml, or about 2% of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5% and 1.5%, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33% and 16%, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceeding 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  11. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Maennistoe, P. T.

    1991-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 microg/kg or about 2 percent of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5 percent and 1.5 percent, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33 percent and 16 percent, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine, and 3,4-dihydroxyphenvlacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However, dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceedimg 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  12. Drug-induced up-regulation of dopamine D2 receptors on cultured cells.

    PubMed

    Starr, S; Kozell, L B; Neve, K A

    1995-08-01

    Ligand-induced up-regulation of recombinant dopamine D2 receptors was assessed using C6 glioma cells stably expressing the short (415-amino-acid; D2s) and long (444-amino-acid; D2L) forms of the receptor. Overnight treatment of C6-D2L cells with N-propylnorapomorphine (NPA) caused a time- and concentration-dependent increase in the density of receptors, as assessed by the binding of radioligand to membranes prepared from the cells, with no change in the affinity of the receptors for the radioligand. The effect of 10 microM NPA was maximal after 10 h, at which time the density of D2L receptors was more than doubled. The agonists dopamine and quinpirole also increased the density of D2L receptors. The receptor up-regulation was not specific for agonists, because the antagonists epidepride, sulpiride, and domperidone caused smaller (30-60%) increases in receptor density. Prolonged treatment with 10 microM NPA desensitized D2L receptors, as evidenced by a reduced ability of dopamine to inhibit adenylyl cyclase, whereas treatment with sulpiride was associated with an enhanced responsiveness to dopamine. The magnitude of NPA-induced receptor up-regulation in each of four clonal lines of C6-D2L cells (mean increase, 80%) was greater than in all four lines of C6-D2S cells (33%). Inactivation of pertussis toxin-sensitive G proteins had no effect on the basal density of D2L receptors or on the NPA-induced receptor up-regulation. Treatment with 5 micrograms/ml of cycloheximide, on the other hand, decreased the basal density of receptors and attenuated, but did not prevent, the NPA-induced increase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7616211

  13. Optogenetic control of striatal dopamine release in rats

    PubMed Central

    Bass, Caroline E; Grinevich, Valentina P; Vance, Zachary B; Sullivan, Ryan P; Bonin, Keith D; Budygin, Evgeny A

    2010-01-01

    Optogenetic control over neuronal firing has become an increasingly elegant method to dissect the microcircuitry of mammalian brains. To date, examination of these manipulations on neurotransmitter release has been minimal. Here we present the first in-depth analysis of optogenetic stimulation on dopamine neurotransmission in the dorsal striatum of urethane-anesthetized rats. By combining the tight spatial and temporal resolution of both optogenetics and fast-scan cyclic voltammetry we have determined the parameters necessary to control phasic dopamine release in the dorsal striatum of rats in vivo. The kinetics of optically induced dopamine release mirror established models of electrically evoked release, indicating that potential artifacts of electrical stimulation on ion channels and the dopamine transporter are negligible. Furthermore a lack of change in extracellular pH indicates that optical stimulation does not alter blood flow. Optical control over dopamine release is highly reproducible and flexible. We are able to repeatedly evoke concentrations of dopamine release as small as a single dopamine transient (50 nM). A U-shaped frequency response curve exists with maximal stimulation inducing dopamine effluxes exceeding 500 nM. Taken together, these results have obvious implications for understanding the neurobiological basis of dopaminergic-based disorders and provide the framework to effectively manipulate dopamine patterns. PMID:20534006

  14. Cross-hemispheric dopamine projections have functional significance.

    PubMed

    Fox, Megan E; Mikhailova, Maria A; Bass, Caroline E; Takmakov, Pavel; Gainetdinov, Raul R; Budygin, Evgeny A; Wightman, R Mark

    2016-06-21

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  15. Dopamine receptor regulating factor, DRRF: a zinc finger transcription factor.

    PubMed

    Hwang, C K; D'Souza, U M; Eisch, A J; Yajima, S; Lammers, C H; Yang, Y; Lee, S H; Kim, Y M; Nestler, E J; Mouradian, M M

    2001-06-19

    Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain. PMID:11390978

  16. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice

    PubMed Central

    Zeng, Chunyu; Armando, Ines; Luo, Yingjin; Eisner, Gilbert M.; Felder, Robin A.; Jose, Pedro A.

    2014-01-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3, and D4) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure. PMID:18083900

  17. The action of dopamine and vascular dopamine (DA1) receptor agonists on human isolated subcutaneous and omental small arteries.

    PubMed Central

    Hughes, A. D.; Sever, P. S.

    1989-01-01

    1. Human small arteries were obtained from surgical specimens and studied in vitro by use of a myograph technique. Following induction of tone with a potassium depolarizing solution, dopamine in the presence of beta-adrenoceptor and catecholamine uptake blockade relaxed isolated omental and subcutaneous arteries. Preincubation of tissues with phentolamine increased the maximum relaxation in response to dopamine. 2. The selective vascular dopamine receptor agonists, fenoldopam and SKF 38393 also relaxed isolated subcutaneous and omental arteries in a concentration-dependent manner. The order of potency for agonists was dopamine greater than fenoldopam greater than SKF 38393. 3. Dopamine-induced relaxation was competitively antagonized by SCH 23390, (R)- and (S)-sulpiride, and fenoldopam induced relaxation by SCH 23390 and (+)- but not (-)-butaclamol. 4. These results indicate the presence of vascular dopamine receptors (DA1 subtype) on human isolated resistance arteries from omental and subcutaneous sites. PMID:2474354

  18. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  19. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning

    PubMed Central

    Parker, Jones G.; Zweifel, Larry S.; Clark, Jeremy J.; Evans, Scott B.; Phillips, Paul E. M.; Palmiter, Richard D.

    2010-01-01

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue–reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm. PMID:20616081

  20. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Grade AA. 51.596 Section 51.596 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of...

  1. A novel system combining biocatalytic dephosphorylation of L-ascorbic acid 2-phosphate and electrochemical oxidation of resulting ascorbic acid.

    PubMed

    Kuwahara, Takashi; Homma, Toshimasa; Kondo, Mizuki; Shimomura, Masato

    2011-03-15

    An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction. PMID:21247749

  2. Systemic AA amyloidosis: epidemiology, diagnosis, and management

    PubMed Central

    Real de Asúa, Diego; Costa, Ramón; Galván, Jose María; Filigheddu, María Teresa; Trujillo, Davinia; Cadiñanos, Julen

    2014-01-01

    The term “amyloidosis” encompasses the heterogeneous group of diseases caused by the extracellular deposition of autologous fibrillar proteins. The global incidence of amyloidosis is estimated at five to nine cases per million patient-years. While amyloid light-chain (AL) amyloidosis is more frequent in developed countries, amyloid A (AA) amyloidosis is more common in some European regions and in developing countries. The spectrum of AA amyloidosis has changed in recent decades owing to: an increase in the median age at diagnosis; a percent increase in the frequency of primary AL amyloidosis with respect to the AA type; and a substantial change in the epidemiology of the underlying diseases. Diagnosis of amyloidosis is based on clinical organ involvement and histological evidence of amyloid deposits. Among the many tinctorial characteristics of amyloid deposits, avidity for Congo red and metachromatic birefringence under unidirectional polarized light remain the gold standard. Once the initial diagnosis has been made, the amyloid subtype must be identified and systemic organ involvement evaluated. In this sense, the 123I-labeled serum amyloid P component scintigraphy is a safe and noninvasive technique that has revolutionized the diagnosis and monitoring of treatment in systemic amyloidosis. It can successfully identify anatomical patterns of amyloid deposition throughout the body and enables not only an initial estimation of prognosis, but also the monitoring of the course of the disease and the response to treatment. Given the etiologic diversity of AA amyloidosis, common therapeutic strategies are scarce. All treatment options should be based upon a greater control of the underlying disease, adequate organ support, and treatment of symptoms. Nevertheless, novel therapeutic strategies targeting the formation of amyloid fibrils and amyloid deposition may generate new expectations for patients with AA amyloidosis. PMID:25378951

  3. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  4. Temporal Variation of Aristolochia chilensis Aristolochic Acids during Spring.

    PubMed

    Santander, Rocío; Urzúa, Alejandro; Olguín, Ángel; Sánchez, María

    2015-01-01

    In this communication, we report the springtime variation of the composition of aristolochic acids (AAs) in Aristolochia chilensis leaves and stems. The dominant AA in the leaves of all samples, which were collected between October and December, was AA-I (1), and its concentration varied between 212.6±3.8 and 145.6±1.2 mg/kg and decreased linearly. This decrease occurred in parallel with the increase in AA-Ia (5) concentration from 15.9±0.8 mg/kg at the beginning of October to 96.8±7.8 mg/kg in mid-December. Both acids are enzymatically related by methylation-demethylation reactions. Other AAs also showed important variations: AA-II (2) significantly increased in concentration, reaching a maximum in the first two weeks of November and subsequently decreasing in mid-December to approximately the October levels. The principal component in the AA mixture of the stems was also AA-I (1); similar to AA-II (2), its concentration increased beginning in October, peaked in the second week of November and subsequently decreased. The concentrations of AA-IIIa (6) and AA-IVa (7) in the leaves and stems varied throughout the study period, but no clear pattern was identified. Based on the variation of AAs in A. chilensis leaves and stems during the study period, the reduced contents of non-phenolic AAs and increased concentrations of phenolic AAs are likely associated with a decrease in this plant's toxicity during the spring. PMID:26580587

  5. Processing and Optimization of Dissimilar Friction Stir Welding of AA 2219 and AA 7039 Alloys

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, D.; Nageswara rao, P.; Mahapatra, M. M.; Harsha, S. P.; Mandal, N. R.

    2015-12-01

    The present paper discusses the optimization of dissimilar friction stir welding of AA 2219 and AA 7039 alloys with respect to tool design issues including microstructural study of weld. The optimized ultimate tensile strength was ~280 MPa, and % elongation was ~11.5. It was observed that the extent of tool shoulder flat surface and tool rotational speed influenced the weld quality significantly. A mathematical model was also developed using response surface regression analysis to predict the effects of tool geometry and process variables on dissimilar AA 2219 and AA 7039 alloys welds. The microstructure evolution and mechanical properties were investigated by employing electron backscatter diffraction technique, Vickers microhardness, and tensile testing, respectively. The microstructural observations indicated that the grain size obtained at advancing side (AA 2219 alloy side) was much finer compared to the retreating side (AA 7039 alloy side). Hardness distribution in the stir zone was inhomogeneous, which might be due to inadequate mixing of weld zone material. The hardness values observed at the weld zone were lower than that in the base materials.

  6. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1)

    PubMed Central

    Zhang, Fengjuan; Peng, Donghai; Cheng, Chunsheng; Zhou, Wei; Ju, Shouyong; Wan, Danfeng; Yu, Ziquan; Shi, Jianwei; Deng, Yaoyao; Wang, Fenshan; Ye, Xiaobo; Hu, Zhenfei; Lin, Jian; Ruan, Lifang; Sun, Ming

    2016-01-01

    Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1). In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control. PMID:26795495

  7. Protection of free radical-induced cytotoxicity by 2-O-α-D-glucopyranosyl-L-ascorbic acid in human dermal fibroblasts.

    PubMed

    Hanada, Yukako; Iomori, Atsuko; Ishii, Rie; Gohda, Eiichi; Tai, Akihiro

    2014-01-01

    The stable ascorbic acid (AA) derivative, 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), exhibits vitamin C activity after enzymatic hydrolysis to AA. The biological activity of AA-2G per se has not been studied in detail, although AA-2G has been noted as a stable source for AA supply. The protective effect of AA-2G against the oxidative cell death of human dermal fibroblasts induced by incubating with 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) for 24 h was investigated in this study. AA-2G showed a significant protective effect against the oxidative stress in a concentration-dependent manner. AA-2G did not exert a protective effect during the initial 12 h of incubation, but had a significant protective effect in the later part of the incubation period. Experiments using a α-glucosidase inhibitor and comparative experiments using a stereoisomer of AA-2G confirmed that AA-2G had a protective effect against AAPH-induced cytotoxicity without being converted to AA. Our results provide an insight into the efficacy of AA-2G as a biologically interesting antioxidant and suggest the practical use of AA-2G even before being converted into AA as a beneficial antioxidant. PMID:25036685

  8. Quantitative determination of dopamine in human plasma by a highly sensitive LC-MS/MS assay: Application in preterm neonates.

    PubMed

    Zhang, Daping; Wu, Lei; Chow, Diana S-L; Tam, Vincent H; Rios, Danielle R

    2016-01-01

    The determination of dopamine facilitates better understanding of the complex brain disorders in the central nervous system and the regulation of endocrine system, cardiovascular functions and renal functions in the periphery. The purpose of this study was to develop a highly sensitive and reliable assay for the quantification of dopamine in human neonate plasma. Dopamine was extracted from human plasma by strong cation exchange (SCX) solid phase extraction (SPE), and subsequently derivatized with propionic anhydride. The derivatized analyte was separated by a Waters Acquity UPLC BEH C18 column using gradient elution at 0.4 ml/min with mobile phases A (0.2% formic acid in water [v/v]) and B (MeOH-ACN [v/v, 30:70]). Analysis was performed under positive electrospray ionization tandem mass spectrometer (ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The stable and relatively non-polar nature of the derivatized analyte enables reliable quantification of dopamine in the range of 10-1000 pg/ml using 200 μl of plasma sample. The method was validated with intra-day and inter-day precision less than 7%, and the intra-day and inter-day accuracy of 91.9-101.9% and 92.3-102.6%, respectively. The validated assay was applied to quantify dopamine levels in two preterm neonate plasma samples. In conclusion, a sensitive and selective LC-MS/MS method has been developed and validated, and successfully used for the determination of plasma dopamine levels in preterm neonates. PMID:26372947

  9. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    SciTech Connect

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  10. Responses of in vivo renal microvessels to dopamine.

    PubMed

    Steinhausen, M; Weis, S; Fleming, J; Dussel, R; Parekh, N

    1986-09-01

    The split hydronephrotic kidney preparation was used to directly observe the effects of locally applied dopamine on the in vivo diameters of renal vessels. Dopamine (1 X 10(-6) to 3 X 10(-5) M) produced a concentration-dependent dilation of the arcuate and interlobular arteries and afferent arterioles. Efferent arterioles near the glomeruli also dilated to dopamine but the dilation was less than that of the preglomerular vessels. Higher dopamine concentrations (3 X 10(-4) and 1 X 10(-3) M) produced more variable effects, with a tendency for the arcuate and interlobular arteries and the afferent and efferent arterioles away from the glomeruli to decrease in diameter. After pretreatment with haloperidol, dopamine (1 X 10(-6) to 1 X 10(-4) M) did not dilate any pre- or postglomerular vascular segment, but the tendency for pre- and postglomerular constrictions with higher dopamine concentrations were not abolished. Pretreatment with phentolamine and propranolol enhanced the dilator response of the pre- and postglomerular vessels (except the afferent arterioles near glomeruli and efferent arterioles near welling points) to dopamine (3 X 10(-5) and 1 X 10(-4) M), and abolished the reductions in diameter produced by the high dopamine levels. These data indicate that the dilator effect of dopamine is mediated by interactions with specific dopaminergic receptors, while alpha and beta adrenergic receptors appear to mediate a constrictor influence observed with high dopamine concentrations. The overall effect of dopamine on the renal vessel diameters thus appears to depend on the balance of dilator and constrictor stimuli mediated by multiple receptors. PMID:3023735

  11. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity.

    PubMed

    Geiger, B M; Haburcak, M; Avena, N M; Moyer, M C; Hoebel, B G; Pothos, E N

    2009-04-10

    Increased caloric intake in dietary obesity could be driven by central mechanisms that regulate reward-seeking behavior. The mesolimbic dopamine system, and the nucleus accumbens in particular, underlies both food and drug reward. We investigated whether rat dietary obesity is linked to changes in dopaminergic neurotransmission in that region. Sprague-Dawley rats were placed on a cafeteria-style diet to induce obesity or a laboratory chow diet to maintain normal weight gain. Extracellular dopamine levels were measured by in vivo microdialysis. Electrically evoked dopamine release was measured ex vivo in coronal slices of the nucleus accumbens and the dorsal striatum using real-time carbon fiber amperometry. Over 15 weeks, cafeteria-diet fed rats became obese (>20% increase in body weight) and exhibited lower extracellular accumbens dopamine levels than normal weight rats (0.007+/-0.001 vs. 0.023+/-0.002 pmol/sample; P<0.05). Dopamine release in the nucleus accumbens of obese rats was stimulated by a cafeteria-diet challenge, but it remained unresponsive to a laboratory chow meal. Administration of d-amphetamine (1.5 mg/kg i.p.) also revealed an attenuated dopamine response in obese rats. Experiments measuring electrically evoked dopamine signal ex vivo in nucleus accumbens slices showed a much weaker response in obese animals (12 vs. 25x10(6) dopamine molecules per stimulation, P<0.05). The results demonstrate that deficits in mesolimbic dopamine neurotransmission are linked to dietary obesity. Depressed dopamine release may lead obese animals to compensate by eating palatable "comfort" food, a stimulus that released dopamine when laboratory chow failed. PMID:19409204

  12. DEFICITS OF MESOLIMBIC DOPAMINE NEUROTRANSMISSION IN RAT DIETARY OBESITY

    PubMed Central

    Geiger, B. M.; Haburcak, M.; Avena, N. M.; Moyer, M. C.; Hoebel, B. G.; Pothos, E. N.

    2009-01-01

    Increased caloric intake in dietary obesity could be driven by central mechanisms that regulate reward-seeking behavior. The mesolimbic dopamine system, and the nucleus accumbens in particular, underlies both food and drug reward. We investigated whether rat dietary obesity is linked to changes in dopaminergic neurotransmission in that region. Sprague–Dawley rats were placed on a cafeteria-style diet to induce obesity or a laboratory chow diet to maintain normal weight gain. Extracellular dopamine levels were measured by in vivo microdialysis. Electrically evoked dopamine release was measured ex vivo in coronal slices of the nucleus accumbens and the dorsal striatum using real-time carbon fiber amperometry. Over 15 weeks, cafeteria-diet fed rats became obese (>20% increase in body weight) and exhibited lower extracellular accumbens dopamine levels than normal weight rats (0.007±0.001 vs. 0.023±0.002 pmol/sample; P<0.05). Dopamine release in the nucleus accumbens of obese rats was stimulated by a cafeteria-diet challenge, but it remained unresponsive to a laboratory chow meal. Administration of d-amphetamine (1.5 mg/kg i.p.) also revealed an attenuated dopamine response in obese rats. Experiments measuring electrically evoked dopamine signal ex vivo in nucleus accumbens slices showed a much weaker response in obese animals (12 vs. 25 × 106 dopamine molecules per stimulation, P<0.05). The results demonstrate that deficits in mesolimbic dopamine neurotransmission are linked to dietary obesity. Depressed dopamine release may lead obese animals to compensate by eating palatable “comfort” food, a stimulus that released dopamine when laboratory chow failed. PMID:19409204

  13. Central actions of a novel and selective dopamine antagonist

    SciTech Connect

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D/sub 1/ class, which is linked to the stimulation of adenylate cyclase-activity, and the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D/sub 1/ class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of (/sup 3/H)-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D/sub 1/ receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for (/sup 3/H)-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D/sub 1/ receptors and (/sup 3/H)-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D/sub 1/ dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated.

  14. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.

    PubMed

    Forsberg, Zarah; Røhr, Asmund Kjendseth; Mekasha, Sophanit; Andersson, K Kristoffer; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav; Sørlie, Morten

    2014-03-18

    Lytic polysaccharide monooxygenases (LPMOs), found in family 9 (previously GH61), family 10 (previously CBM33), and the newly discovered family 11 of auxiliary activities (AA) in the carbohydrate-active enzyme classification system, are copper-dependent enzymes that oxidize sp(3)-carbons in recalcitrant polysaccharides such as chitin and cellulose in the presence of an external electron donor. In this study, we describe the activity of two AA10-type LPMOs whose activities have not been described before and we compare in total four different AA10-type LPMOs with the aim of finding possible correlations between their substrate specificities, sequences, and EPR signals. EPR spectra indicate that the electronic environment of the copper varies within the AA10 family even though amino acids directly interacting with the copper atom are identical in all four enzymes. This variation seems to be correlated to substrate specificity and is likely caused by sequence variation in areas that affect substrate binding geometry and/or by variation in a cluster of conserved aromatic residues likely involved in electron transfer. Interestingly, EPR signals for cellulose-active AA10 enzymes were similar to those previously observed for cellulose-active AA9 enzymes. Mutation of the conserved phenylalanine positioned in close proximity to the copper center in AA10-type LPMOs to Tyr (the corresponding residue in most AA9-type LPMOs) or Ala, led to complete or partial inactivation, respectively, while in both cases the ability to bind copper was maintained. Moreover, substrate binding affinity and degradation ability seemed hardly correlated, further emphasizing the crucial role of the active site configuration in determining LPMO functionality. PMID:24559135

  15. Distinct Plasma Profile of Polar Neutral Amino Acids, Leucine, and Glutamate in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Tirouvanziam, Rabindra; Obukhanych, Tetyana V.; Laval, Julie; Aronov, Pavel A.; Libove, Robin; Banerjee, Arpita Goswami; Parker, Karen J.; O'Hara, Ruth; Herzenberg, Leonard A.; Herzenberg, Leonore A.; Hardan, Antonio Y.

    2012-01-01

    The goal of this investigation was to examine plasma amino acid (AA) levels in children with Autism Spectrum Disorders (ASD, N = 27) and neuro-typically developing controls (N = 20). We observed reduced plasma levels of most polar neutral AA and leucine in children with ASD. This AA profile conferred significant post hoc power for discriminating…

  16. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  17. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson's disease.

    PubMed

    Atack, John R; Shook, Brian C; Rassnick, Stefanie; Jackson, Paul F; Rhodes, Kenneth; Drinkenburg, Wilhelmus H; Ahnaou, Abdallah; Te Riele, Paula; Langlois, Xavier; Hrupka, Brian; De Haes, Patrick; Hendrickx, Herman; Aerts, Nancy; Hens, Koen; Wellens, Annemie; Vermeire, Jef; Megens, Anton A H P

    2014-10-15

    Adenosine A2A antagonists are believed to have therapeutic potential in the treatment of Parkinson's disease (PD). We have characterized the dual adenosine A2A/A1 receptor antagonist JNJ-40255293 (2-amino-8-[2-(4-morpholinyl)ethoxy]-4-phenyl-5H-indeno[1,2-d]pyrimidin-5-one). JNJ-40255293 was a high-affinity (7.5 nM) antagonist at the human A2A receptor with 7-fold in vitro selectivity versus the human A1 receptor. A similar A2A:A1 selectivity was seen in vivo (ED50's of 0.21 and 2.1 mg/kg p.o. for occupancy of rat brain A2A and A1 receptors, respectively). The plasma EC50 for occupancy of rat brain A2A receptors was 13 ng/mL. In sleep-wake encephalographic (EEG) studies, JNJ-40255293 dose-dependently enhanced a consolidated waking associated with a subsequent delayed compensatory sleep (minimum effective dose: 0.63 mg/kg p.o.). As measured by microdialysis, JNJ-40255293 did not affect dopamine and noradrenaline release in the prefrontal cortex and the striatum. However, it was able to reverse effects (catalepsy, hypolocomotion, and conditioned avoidance impairment in rats; hypolocomotion in mice) produced by the dopamine D2 antagonist haloperidol. The compound also potentiated the agitation induced by the dopamine agonist apomorphine. JNJ-40255293 also reversed hypolocomotion produced by the dopamine-depleting agent reserpine and potentiated the effects of l-dihydroxyphenylalanine (L-DOPA) in rats with unilateral 6-hydroxydopamine-induced lesions of the nigro-striatal pathway, an animal model of Parkinson's disease. Extrapolating from the rat receptor occupancy dose-response curve, the occupancy required to produce these various effects in rats was generally in the range of 60-90%. The findings support the continued research and development of A2A antagonists as potential treatments for PD. PMID:25203719

  18. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  19. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    SciTech Connect

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked (/sup 3/H) acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity.

  20. Anxiolytic effects of dopamine receptor ligands: I. Involvement of dopamine autoreceptors.

    PubMed

    Bartoszyk, G D

    1998-01-01

    The anxiolytic-like properties of dopamine agonists and antagonists with different receptor profiles were investigated in the ultrasonic vocalization test in rats after subcutaneous administration. Only dopamine D2 receptor agonists inhibited ultrasonic vocalization with the following ED50 values: apomorphine (0.07 mg/kg), quinelorane (0.01 mg/kg), quinpirole (0.04 mg/kg), pramipexole (0.09 mg/kg), roxindole (0.04 mg/kg), talipexole (0.04 mg/kg), (+/-)-7-OH-DPAT (0.05 mg/kg), (+/-)-PPHT (0.03 mg/kg), (-)-TNPA (0.06 mg/kg), PD128907 (0.13 mg/kg). The D2 antagonists haloperidol, mazapertine, raclopride, remoxipride, L745870, U99194A, U101958 and S(-)-DS121, the partial agonists PD143188 and preclamol, the selective D1 agonist R(+)-SKF38393 and the D1 antagonist SCH23390, and the uptake inhibitors GBR12909, GBR12935 and indatraline lacked significant inhibitory effects on ultrasonic vocalization. Because at least some of the D2 receptor agonists investigated have selectivity for dopamine autoreceptors, it is speculated that the dopamine autoreceptor may be a target for the development of new antianxiety drugs. PMID:9472724

  1. Brain regional and adrenal monoamine concentrations and behavioral responses to stress in alcohol-preferring AA and alcohol-avoiding ANA rats.

    PubMed

    Korpi, E R; Sinclair, J D; Kaheinen, P; Viitamaa, T; Hellevuo, K; Kiianmaa, K

    1988-01-01

    The concentrations of monoamines, precursors and metabolites in various brain regions and the levels of catecholamines in the adrenal glands were determined from naive rats of the AA and ANA lines, and from ones immediately after an escapable shock test. The brain determinations were made with a new step-gradient ion-pair elution method on a reversed phase column and coulometric detection. Several significant differences were observed in the amine concentrations, largely confirming and extending the findings made before the genetic revitalization of the lines: in particular, the AAs, unlike other alcohol-preferring rodents, had higher 5-hydroxytryptamine concentrations. The AA rats tended to have smaller changes than the ANAs in brain aminergic systems and had significantly less change in adrenal epinephrine and dopamine levels after the shock test. The AAs were consistently found to be less active than ANAs in this shock test and in a warm-water swim test, but whether this was a cause or an effect of their brain and adrenal changes could not be determined. Our behavioral results might suggest a reduced reaction of the alcohol-preferring rats to aversive stimulation. PMID:3219191

  2. Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease.

    PubMed

    Araujo, D M; Cherry, S R; Tatsukawa, K J; Toyokuni, T; Kornblum, H I

    2000-12-01

    Functional imaging by repeated noninvasive scans of specific (18)F tracer distribution using a high-resolution small-animal PET scanner, the microPET, assessed the time course of alterations in energy utilization and dopamine receptors in rats with unilateral striatal quinolinic acid lesions. Energy utilization ipsilateral to the lesion, determined using scans of 2-deoxy-2-[(18)F]fluoro-d-glucose uptake, was compromised severely 1 week after intrastriatal excitotoxin injections. When the same rats were imaged 5 and 7 weeks postlesion, decrements in energy metabolism were even more prominent. In contrast, lesion-induced effects on dopamine D(2) receptor binding were more progressive, with an initial upregulation of [3-(2'-(18)F]fluoroethyl)spiperone binding apparent 1 week postlesion followed by a decline 5 and 7 weeks thereafter. Additional experiments revealed that marked upregulation of dopamine D(2) receptors consequent to quinolinic acid injections could be detected as early as 3 days after the initial insult. Postmortem markers of striatal GABAergic neurons were assessed in the same rats 7 weeks after the lesion: expression of glutamic acid decarboxylase and dopamine D(1) receptor mRNA, as well as [(3)H]SCH-23,390 and [(3)H]spiperone binding to dopamine D(1) and D(2) receptors, respectively, detected prominent decrements consequent to the lesion. In contrast, by 7 weeks postlesion [(3)H]WIN-35,428 binding to dopamine transport sites within the striatum appeared to be enhanced proximal to the quinolinic acid injection sites. The results demonstrate that functional imaging using the microPET is a useful technique to explore not only the progressive neurodegeneration that occurs in response to excitotoxic insults, but also to examine more closely the intricacies of neurotransmitter activity in a small animal model of HD. PMID:11085894

  3. Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors.

    PubMed

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-09-01

    We measured the functional agonist potencies of dopamine agonists including antiparkinson drugs, and functional antagonist potencies of antipsychotics at human dopamine D(2) and D(3) receptors. In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cells expressing low and high densities of human dopamine D(2L) and D(2S) receptors (hD(2L)-Low, hD(2L)-High, hD(2S)-Low and hD(2S)-High, respectively) and human dopamine D(3) Ser-9 and D(3) Gly-9 receptors (hD(3)-Ser-9 and hD(3)-Gly-9, respectively). Cabergoline, bromocriptine, pergolide, (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), talipexole, pramipexole, R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-olhydrochloride (PD128907) and ropinirole behaved as dopamine D(2) and D(3) receptor full agonists and showed higher potencies in hD(2L)-High and hD(2S)-High compared to hD(2L)-Low and hD(2S)-Low. In hD(3)-Ser-9 and hD(3)-Gly-9 compared to hD(2L)-Low and hD(2S)-Low, dopamine, ropinirole, PD128907, and pramipexole potencies were clearly higher; talipexole and 7-OH-DPAT showed slightly higher potencies; pergolide showed slightly lower potency; and, cabergoline and bromocriptine potencies were lower. Aripiprazole acted as an antagonist in hD(2L)-Low; a low intrinsic activity partial agonist in hD(2S)-Low; a moderate partial agonist in hD(3)-Ser-9 and hD(3)-Gly-9; a robust partial agonist in hD(2L)-High; and a full agonist in hD(2S)-High. Amisulpride, sulpiride and perphenazine behaved as preferential antagonists; and chlorpromazine and asenapine behaved as modest preferential antagonists; whereas fluphenazine, haloperidol, and blonanserin behaved as non-preferential antagonists in hD(2S)-Low and hD(2S)-High compared to hD(3)-Ser-9 and hD(3)-Gly-9. These findings may help to elucidate the basis of therapeutic benefit observed with these drugs, with

  4. Expression of cationic amino acid transporters, carcass traits, and performance of growing pigs fed low-protein amino acid-supplemented versus high protein diets.

    PubMed

    Morales, A; Grageola, F; García, H; Araiza, A; Zijlstra, R T; Cervantes, M

    2013-01-01

    Free amino acids (AA) appear to be absorbed faster than protein-bound AA (PB-AA). We conducted an experiment to assess the effect of feeding pigs with a partially free (F-AA) or totally PB-AA diet on expression of selected genes and performance of pigs. The expression of cationic AA transporters b(0,+) and CAT-1 in intestinal mucosa, liver, and longissimus (LM) and semitendinosus (SM) muscles, as well as that of myosin in LM and SM, was analyzed. Twelve pigs (31.7 ± 2.7 kg) were used. The F-AA diet was based on wheat, supplemented with 0.59% L-Lys, 0.33% L-Thr, and 0.10% DL-Met. The PB-AA diet was formulated with wheat-soybean meal. Average daily feed intake was 1.53 kg per pig. The expression of b(0,+) and CAT-1 was analyzed in jejunal and ileal mucosa, liver, LM, and SM; myosin expression was also analyzed in both muscles. Pigs fed the PB-AA diet tended to have higher weight gain and feed efficiency (P < 0.10), and had thinner back fat (P = 0.02). The expression of b(0,+) was higher (P < 0.01) in jejunum but lower (P < 0.01) in the liver of pigs fed the F-AA diet; CAT-1 tended to be lower in liver but higher in LM of PB-AA pigs. Myosin expression was not affected. Intestinal AA absorption was faster in pigs fed the F-AA diet, but AA uptake by the liver seemed to be faster in pigs fed the PB-AA. Performance and expression of AA transporters and myosin suggest that the dietary content of free or protein-bound AA does not affect their availability for protein synthesis in pigs. PMID:24222247

  5. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference.

    PubMed

    Pelkonen, Anssi; Hiltunen, Mikko; Kiianmaa, Kalervo; Yavich, Leonid

    2010-08-01

    The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats. PMID:20533994

  6. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    PubMed

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease. PMID:25447236

  7. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  8. Undiagnosed congenital hypothyroidism in a newborn treated with dopamine infusion.

    PubMed

    Shi, Xuanxing; Sun, Yueling; Qiang, Rong

    2015-06-01

    Medications administered during the neonatal period may mask the diagnosis of congenital hypothyroidism. Herein, we report a case of undiagnosed congenital hypothyroidism while the infant was on treatment with dopamine. Given the inhibitory effect of dopamine on thyroid-stimulating hormone, a high index of suspicion for potential congenital hypothyroidism is needed in such neonates. PMID:25724212

  9. Mesolimbic dopamine and its neuromodulators in obesity and binge eating.

    PubMed

    Naef, Lindsay; Pitman, Kimberley A; Borgland, Stephanie L

    2015-12-01

    Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents. PMID:26514168

  10. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  11. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux.

    PubMed

    Zestos, Alexander G; Mikelman, Sarah R; Kennedy, Robert T; Gnegy, Margaret E

    2016-06-15

    Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine. PMID:26996926

  12. Decreased brain dopamine cell numbers in human cocaine users.

    PubMed

    Little, Karley Y; Ramssen, Eric; Welchko, Ryan; Volberg, Vitaly; Roland, Courtney J; Cassin, Bader

    2009-08-15

    Cocaine use diminishes striatal and midbrain dopamine neuronal components in both post-mortem and in vivo human experiments. The diffuse nature of these declines suggests the possibility that cocaine use might cause a loss of dopamine neurons in humans. Previous rodent studies have not detected cocaine-induced dopamine cell damage. The present experiment involved counting midbrain dopamine neurons utilizing both melanin and tyrosine hydroxylase immunoreactivity. Well-preserved blocks ranging from +38 mm obex to +45 mm obex were examined in 10 cocaine users and 9 controls. Sections were also examined for signs of acute pathological injury by counting activated macrophages and microglia. Melanized cells at six midbrain levels were significantly reduced in cocaine users by both drug exposures. The estimated total number of melanized dopamine cells in the anterior midbrain was significantly reduced in cocaine users by 16%. Results with tyrosine hydroxylase immunoreactivity were less conclusive because of variability in staining. Both activated macrophages and activated microglia were significantly increased among cocaine users. Cocaine exposure may have neurotoxic effects on dopamine neurons in humans. The infiltration of phagocytic cells suggests that the lower number of dopamine cells found in cocaine users was a relatively recent effect. The loss of dopamine cells could contribute to and intensify cocaine dependence, as well as anhedonic and depressive symptoms, in some cocaine users. Further efforts at clarifying the pathophysiological mechanisms involved may help explain treatment refractoriness, and identify targets for therapeutic intervention. PMID:19233481

  13. New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways

    PubMed Central

    Perez, Stephanie M; Lodge, Daniel J

    2014-01-01

    Schizophrenia is a disease affecting up to 1% of the population. Current therapies are based on the efficacy of chlorpromazine, discovered over 50 years ago. These drugs block dopamine D2-like receptors and are effective at primarily treating positive symptoms in a subset of patients. Unfortunately, current therapies are far from adequate, and novel treatments require a better understanding of disease pathophysiology. Here we review the dopamine, gamma-aminobutyric acid (GABA), and glutamate hypotheses of schizophrenia and describe a pathway whereby a loss of inhibitory signaling in ventral regions of the hippocampus actually drives a dopamine hyperfunction. Moreover, we discuss novel therapeutic approaches aimed at attenuating ventral hippocampal activity in a preclinical model of schizophrenia, namely the MAM GD17 rat. Specifically, pharmacological (allosteric modulators of the α5 GABAA receptor), neurosurgical (deep brain stimulation), and cell-based (GABAergic precursor transplants) therapies are discussed. By better understanding the underlying circuit level dysfunctions in schizophrenia, novel treatments can be advanced that may provide better efficacy and a superior side effect profile to conventional antipsychotic medications. PMID:25061280

  14. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4.

    PubMed

    Hauser, David N; Dukes, April A; Mortimer, Amanda D; Hastings, Teresa G

    2013-12-01

    Oxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest. We have hypothesized that selenoproteins, which contain a highly nucleophilic selenocysteine residue and often play vital roles in the maintenance of neuronal viability, are likely targets for the DAQ. Here we report the findings of our studies on the effect of DA oxidation and DAQ on the mitochondrial antioxidant selenoprotein glutathione peroxidase 4 (GPx4). Purified GPx4 could be covalently modified by DAQ, and the addition of DAQ to rat testes lysate resulted in dose-dependent decreases in GPx4 activity and monomeric protein levels. Exposing intact rat brain mitochondria to DAQ resulted in similar decreases in GPx4 activity and monomeric protein levels as well as detection of multiple forms of DA-conjugated GPx4 protein. Evidence of both GPx4 degradation and polymerization was observed following DAQ exposure. Finally, we observed a dose-dependent loss of mitochondrial GPx4 in differentiated PC12 cells treated with dopamine. Our findings suggest that a decrease in mitochondrial GPx4 monomer and a functional loss of activity may be a contributing factor to the vulnerability of dopaminergic neurons in Parkinson's disease. PMID:23816523

  15. Dopamine modulates egalitarian behavior in humans.

    PubMed

    Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming

    2015-03-30

    Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (1) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (2) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. PMID:25802148

  16. Dopamine agonist: pathological gambling and hypersexuality.

    PubMed

    2008-10-01

    (1) Pathological gambling and increased sexual activity can occur in patients taking dopaminergic drugs. Detailed case reports and small case series mention serious familial and social consequences. The frequency is poorly documented; (2) Most affected patients are being treated for Parkinson's disease, but cases have been reported among patients prescribed a dopamine agonist for restless legs syndrome or pituitary adenoma; (3) Patients treated with this type of drug, and their relatives, should be informed of these risks so that they can watch for changes in behaviour. If such disorders occur, it may be necessary to reduce the dose or to withdraw the drug or replace it with another medication. PMID:19536937

  17. Ethics of Preclinical Dopamine Transporter Imaging.

    PubMed

    Cochrane, Thomas I

    2016-08-01

    While dopamine transporter single-photon emission computed tomography (DAT-SPECT) imaging is sensitive and specific when performed in patients with signs or symptoms of parkinsonism, its predictive value is uncertain in healthy subjects, even with patients who have first-degree relatives affected by Parkinson disease. In deciding whether to honor a patient's request for a DAT-SPECT, neurologists must balance a patient's autonomy rights with beneficence and nonmaleficence and also consider the distributive justice implications of ordering the test. Generally speaking, the benefits of a DAT-SPECT will be too small to justify its use in an asymptomatic patient concerned about developing Parkinson disease. PMID:27495208

  18. A descending dopamine pathway conserved from basal vertebrates to mammals

    PubMed Central

    Ryczko, Dimitri; Cone, Jackson J.; Alpert, Michael H.; Goetz, Laurent; Auclair, François; Dubé, Catherine; Parent, Martin; Roitman, Mitchell F.; Alford, Simon; Dubuc, Réjean

    2016-01-01

    Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion. PMID:27071118

  19. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of antipsychotic drugs. In this review we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis. PMID:20089137

  20. Basal Ganglia Dopamine Loss Due to Defect in Purine Recycling

    PubMed Central

    Egami, Kiyoshi; Yitta, Silaja; Kasim, Suhail; Lewers, J. Chris; Roberts, Rosalinda C.; Lehar, Mohamed; Jinnah, H. A.

    2007-01-01

    Several rare inherited disorders have provided valuable experiments of nature highlighting specific biological processes of particular importance to the survival or function of midbrain dopamine neurons. In both humans and mice, deficiency of hypoxanthine-guanine phosphoribosyl transferase (HPRT) is associated with profound loss of striatal dopamine, with relative preservation of other neurotransmitters. In the current studies of knockout mice, no morphological signs of abnormal development or degeneration were found in an exhaustive battery that included stereological and morphometric measures of midbrain dopamine neurons, electron microscopic studies of striatal axons and terminals, and stains for degeneration or gliosis. A novel culture model involving HPRT-deficient dopaminergic neurons also exhibited significant loss of dopamine without a morphological correlate. These results suggest dopamine loss in HPRT deficiency has a biochemical rather than anatomical basis, and imply purine recycling to be a biochemical process of particular importance to the function of dopaminergic neurons. PMID:17374562

  1. Arithmetic and local circuitry underlying dopamine prediction errors

    PubMed Central

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-01-01

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward1,2. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area (VTA) while mice engaged in classical conditioning. By manipulating the temporal expectation of reward, we demonstrate that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA neurons in the VTA reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction error calculations. Finally, bilaterally stimulating VTA GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors. PMID:26322583

  2. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide.

    PubMed

    Guan, Yihong; Zhu, Qinfang; Huang, Delai; Zhao, Shuyi; Jan Lo, Li; Peng, Jinrong

    2015-01-01

    The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x - 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins. PMID:26311515

  3. Colchicine use in isolated renal AA amyloidosis.

    PubMed

    Meneses, Carlos F; Egües, César A; Uriarte, Miren; Belzunegui, Joaquín; Rezola, Marta

    2015-01-01

    We present the case of a 45-year-old woman, with two-year history of chronic renal insufficiency and proteinuria. A kidney biopsy showed the presence of AA amyloidosis (positive Congo red staining and immunohistochemistry). There was no evidence of amyloid deposits in other organs and there was no underlying disease. AA amyloidosis normally is secondary to chronic inflammatory or infectious diseases. High levels of IL-1, IL-6 and TNF-α play a role in the pathogenesis of amyloidosis and induce the synthesis of serum amyloid A protein (SAA), a precursor of tissue amyloid deposits. We empirically treated the patient with a low dose colchicine. The patient responded well. Colchicine has been used for the treatment of Familiar Mediterranean Fever and related auto-inflammatory diseases. To monitor treatment responses, we measured SAA finding low titers. Soon after treatment onset there were signs of improvement pertaining to proteinuria and stabilization of renal function. PMID:25453598

  4. Characterization of the monophenolase activity of tyrosinase on betaxanthins: the tyramine-betaxanthin/dopamine-betaxanthin pair.

    PubMed

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2005-10-01

    Tyrosinase or polyphenol oxidase (EC 1.14.18.1) is the key enzyme responsible for melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Although the function of tyrosinase in the secondary metabolism of plants remains unclear, it has been proposed that the enzyme plays a role in the betalain biosynthetic pathway. Betalains are an important class of water-soluble pigments, characteristic of plants belonging to the order Caryophyllales. In the present work, the betaxanthins tyramine-betaxanthin (miraxanthin III) and dopamine-betaxanthin (miraxanthin V) are reported as new natural substrates for tyrosinase. The result of the diphenolase activity of the enzyme on dopamine-betaxanthin was a series of products identified by HPLC and ESI-MS as quinone-derivatives. Data indicate that dopamine-betaxanthin-quinone is obtained and evolves to more stable species by intramolecular cyclization. The kinetic parameters evaluated for the diphenolase activity were V(m) = 74.4 microM min(-1), K(m) = 94.7 microM. Monophenolase activity on tyramine-betaxanthin yielded the same compounds in the absence of a reducing agent, but when ascorbic acid was present enzymatic conversion to dopamine-betaxanthin could be found. For the first time, kinetic characterization of the monophenolase activity of tyrosinase on betaxanthins is provided (V(m) = 10.4 microM min(-1) and K(m) = 126.9 microM) and a lag period is described and analyzed according to the mechanism of action of the enzyme. The high affinity shown by tyrosinase for these substrates may be indicative of a previously unconsidered physiological role in betalain metabolism. A possible mechanism for the formation of 2-descarboxy-betacyanins from tyramine-betaxanthin by tyrosinase is also discussed. PMID:15968512

  5. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations.

    PubMed

    Pattison, Lindsey P; McIntosh, Scot; Sexton, Tammy; Childers, Steven R; Hemby, Scott E

    2014-10-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc. PMID:24916769

  6. Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.

    PubMed

    Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Kalyani, Dayanand; Pinelo, Manuel

    2014-12-24

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions. PMID:25420028

  7. Dopamine Depletion Reduces Food-Related Reward Activity Independent of BMI.

    PubMed

    Frank, Sabine; Veit, Ralf; Sauer, Helene; Enck, Paul; Friederich, Hans-Christoph; Unholzer, Theresa; Bauer, Ute-Maria; Linder, Katarzyna; Heni, Martin; Fritsche, Andreas; Preissl, Hubert

    2016-05-01

    Reward sensitivity and possible alterations in the dopaminergic-reward system are associated with obesity. We therefore aimed to investigate the influence of dopamine depletion on food-reward processing. We investigated 34 female subjects in a randomized placebo-controlled, within-subject design (body mass index (BMI)=27.0 kg/m(2) ±4.79 SD; age=28 years ±4.97 SD) using an acute phenylalanine/tyrosine depletion drink representing dopamine depletion and a balanced amino acid drink as the control condition. Brain activity was measured with functional magnetic resonance imaging during a 'wanting' and 'liking' rating of food items. Eating behavior-related traits and states were assessed on the basis of questionnaires. Dopamine depletion resulted in reduced activation in the striatum and higher activation in the superior frontal gyrus independent of BMI. Brain activity during the wanting task activated a more distributed network than during the liking task. This network included gustatory, memory, visual, reward, and frontal regions. An interaction effect of dopamine depletion and the wanting/liking task was observed in the hippocampus. The interaction with the covariate BMI was significant in motor and control regions but not in the striatum. Our results support the notion of altered brain activity in the reward and prefrontal network with blunted dopaminergic action during food-reward processing. This effect is, however, independent of BMI, which contradicts the reward-deficiency hypothesis. This hints to the hypothesis suggesting a different or more complex mechanism underlying the dopaminergic reward function in obesity. PMID:26450814

  8. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.

    PubMed

    O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F

    2007-02-01

    Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary

  9. The Effectiveness of the AAS REU Program

    NASA Astrophysics Data System (ADS)

    Hemenway, M. K.; Boyce, P. B.; Milkey, R. W.

    1996-05-01

    In an attempt to address the particular needs of astronomy faculty and undergraduate students, in 1991 the Education Office of the American Astronomical Society approached the National Science Foundation with a unique proposal for funding through the Research Experiences for Undergraduates program. The goals of the AAS program were to "slow the hemorrhage of students out of science...", extend the REU program to non-NSF-funded scientists, to reach under-represented women and minority students particularly in small educational institutions, and to encourage research scientists there to mentor students. As this grant has now expired, the AAS has surveyed the 44 mentors and their students to assess the program's effect on the mentor and the mentor's career; the educational institution; and the student's education and career choices. More than half the mentors responded by the abstract deadline. The program clearly had an effect upon the individuals involved. The greatest effect (in 85% of the cases) was to develop more interest in the mentor's research project both among the students and among the mentor's faculty colleagues. The mentors rated the grant to be a medium or strong factor in their student's decision to pursue graduate study, which 90% of them did. All but one of the AAS-REU students attended an AAS meeting and 3/4 of those gave a paper on their project research. Over 90% of the mentors felt that the research experience strongly promoted a greater interest in science, a greater understanding of science and a desire to continue in science. According to the mentors, this was a very positive and beneficial program for the students as well as for themselves.

  10. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events.

    PubMed

    Aragona, Brandon J; Cleaveland, Nathan A; Stuber, Garret D; Day, Jeremy J; Carelli, Regina M; Wightman, R Mark

    2008-08-27

    Preferential enhancement of dopamine transmission within the nucleus accumbens (NAc) shell is a fundamental aspect of the neural regulation of cocaine reward. Despite its importance, the nature of this effect is poorly understood. Here, we used fast-scan cyclic voltammetry to examine specific transmission processes underlying cocaine-evoked increases in dopamine transmission within the NAc core and shell. Initially, we examined altered terminal dopamine concentrations after global autoreceptor blockade. This was the first examination of autoreceptor regulation of naturally occurring phasic dopamine transmission and provided a novel characterization of specific components of dopamine neurotransmission. Comparison of increased dopamine signaling evoked by autoreceptor blockade and cocaine administration allowed robust resolution between increased frequency, concentration, and duration of phasic dopamine release events after cocaine delivery. Cocaine increased dopamine transmission by slowed uptake and increased concentration of dopamine released in the core and shell. However, an additional increase in the number phasic release events occurred only within the NAc shell, and this increase was eliminated by inactivation of midbrain dopaminergic neurons. This represents the first evidence that cocaine directly increases the frequency of dopamine release events and reveals that this is responsible for preferentially increased dopamine transmission within the NAc shell after cocaine administration. Additionally, cocaine administration resulted in a synergistic increase in dopamine concentration, and subregion differences were abolished when cocaine was administered in the absence of autoregulation. Together, these results demonstrate that cocaine administration results in a temporally and regionally specific increase in phasic dopamine release that is significantly regulated by dopamine autoreceptors. PMID:18753384

  11. AAS Publishing News: Astronomical Software Citation Workshop

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  12. Introducing the AAS Astronomy Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Gurton, S.; Fienberg, R. T.; Fraknoi, A.; Prather, E. E.

    2013-04-01

    Newly established by the American Astronomical Society (AAS), the Astronomy Ambassadors program is designed to support early-career AAS members with training in resources and techniques for effective outreach to students and/or the public. A pilot Astronomy Ambassadors workshop will be held at the January 2013 AAS meeting. Workshop participants will learn to communicate effectively with public and school audiences; find outreach opportunities and establish ongoing partnerships with local schools, science centers, museums, parks, and/or community centers; reach audiences with personal stories, hands-on activities, and jargon-free language; identify strategies and techniques to improve their presentation skills; gain access to a menu of outreach resources that work in a variety of settings; and become part of an active community of astronomers who do outreach. Applications are welcome from advanced undergraduates (those doing research and committed to continuing in astronomy), graduate students, and postdocs and new faculty in their first two years after receipt of the PhD. We especially encourage applications from members of groups that are presently underrepresented in science.

  13. Effects of ketamine exposure on dopamine concentrations and dopamine type 2 receptor mRNA expression in rat brain tissue

    PubMed Central

    Li, Bing; Liu, Mei-Li; Wu, Xiu-Ping; Jia, Juan; Cao, Jie; Wei, Zhi-Wen; Wang, Yu-Jin

    2015-01-01

    Objective: To explore the effects of ketamine abuse on the concentration of dopamine (DA), a monoamine neurotransmitter, and the mRNA expression of dopamine type 2 (D2) receptors in brain tissue, we used male Wistar rats to model ketamine abuse through chronic intraperitoneal infusion of ketamine across different doses. Methods: The rats were sacrificed 45 minutes and 1, 2, and 3 weeks after initiating the administration of ketamine or normal saline, as well as 3 days following discontinuation. Brain tissue was harvested to examine the concentration of 2,5-dihydroxyphenylacetic acid and homovanillic acid, the primary metabolites of DA, as well as the expression of D2 receptor mRNA. In addition, behavioral changes were observed within 30 minutes of administration, and withdrawal symptoms were also documented. A factorial experimental design was used to investigate variations and correlations in the primary outcome measures across the four doses and five time points. Brain DA concentrations were significantly higher in the ketamine-treated groups compared with the saline-treated group, with 30 mg/kg > 10 mg/kg > 60 mg/kg > saline (P < 0.05). The D2 receptor mRNA expression exhibited an inverse downregulation pattern, with 30 mg/kg < 10 mg/kg < 60 mg/kg < saline (P < 0.05). In the 10 mg/kg and 30 mg/kg ketamine-treated groups, the DA concentration and D2 receptor mRNA level in the brain tissue correlated with the dose of ketamine (r = 0.752, r = -0.806), but no significant correlation was found in the 60 mg/kg group. Result: These findings indicated that chronic dosing with ketamine increased the concentration of DA in rat brain tissue by increasing DA release or interrupting DA degradation. D2 receptor mRNA expression likely decreased because of stimulation with excessive DA. Conclusion: High-dose (60 mg/kg) ketamine had potent paralyzing effects on the central nervous system of rats and weakened the excitatory effects of the limbic system. Brain DA and D2 receptor m

  14. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD). PMID:23075272

  15. Oocyte-Specific Expression of Mouse MEX3C652AA in the Ovary and Its Potential Role in Regulating Maternal Fos mRNA.

    PubMed

    Li, Xue; Li, Yan; Liu, Chunlian; Jin, Mulan; Lu, Baisong

    2016-05-01

    Currently, the human MEX3C gene is known to encode an RNA-binding protein of 659 amino acid residues. Here we show that the MEX3C gene has alternative splicing forms giving rise to multiple MEX3C variants, and some cells express MEX3C transcripts coding for short MEX3C isoforms but not transcripts for MEX3C(659AA) MEX3C(659AA) functions as an adaptor protein for Exportin 1 (XPO1)-mediated nuclear export since it increases the cytoplasmic distribution of poly(A)(+) RNA and since addition of the nuclear export signal (NES) sequence to a short MEX3C isoform MEX3C(464AA) confers similar cytoplasmic poly(A)(+) RNA accumulation activity as MEX3C(659AA) FOS mRNA is a potential MEX3C target mRNA. One mechanism by which MEX3C(659AA) could regulate FOS mRNA is by promoting its nuclear export. Overexpressing MEX3C(659AA) significantly increased FOS mRNA expression, whereas mutating the NES of MEX3C(659AA) and treating cells with leptomycin B to inhibit XPO1-mediated nuclear export attenuated FOS upregulation. FOS mRNA is unstable in somatic cells but less so in oocytes; how it is stabilized in the oocytes is unknown. Transcripts for the mouse counterpart of human MEX3C(659AA) (MEX3C(652AA)) are specifically expressed in developing oocytes in the ovary, although total Mex3c transcripts are expressed in both granulosa cells and oocytes. The specific expression of this long MEX3C isoform in oocytes and its ability to enhance FOS mRNA nuclear export and stability all suggest that MEX3C(659AA) is an RNA-binding protein that preserves maternal FOS mRNA in oocytes. PMID:27053362

  16. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    NASA Astrophysics Data System (ADS)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  17. [Scans without Evidence of Dopamine Deficit (SWEDDs)].

    PubMed

    Mukai, Yohei; Murata, Miho

    2016-01-01

    Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis. PMID:26764301

  18. The AAS Visiting Professor Programs: Three Anniversaries

    NASA Astrophysics Data System (ADS)

    Philip, A. G. Davis

    2003-05-01

    The AAS Program of Visiting Professors was started in 1958 with three astronomers as lecturers. They were Paul Merrill (Mt. Wilson and Palomar Observatories), Seth Nicholson (Mt. Wilson and Palomar Observatories) and Harlow Shapley (Harvard College Observatory). The program was run by a Committee on Visiting Professors from 1958 through 1963. The program was funded by grants from the National Science Foundation. The Executive Officer of the AAS, Paul Routley headed the program from the 1963 - 64 academic year through the 1968 - 69 academic year. Larry Fredrick headed the program for 1969 - 70 and then Hank Gurin headed it through 1973 -74, the last year of the program. At the end of this summer meeting, the combined Visiting Professors Program and the Shapley Program will be starting their 47th year. The Shapley Visiting Lectureships in Astronomy Program was started in the 1974 - 75 academic year under the leadership of Hank Gurin. The original funding came from the Perkin Fund and a three year grant from the Research Corporation. In 1975 the Shapley Endowment fund was set up to help pay the expenses of the program. In 1976 there was support from the Slipher fund which lasted through the 1978 - 79 academic year. From 1979 to the present the program is financed by the Shapley Endowment Fund and by the contributions made by institutions which host the visits. In the fall of 1998 the fee that Institutions pay to the AAS in support of their Shapley visits was reduced from 300 to 250 to make it easier for them to apply for visits. Members of the AAS have made contributions to the program over the years and we are very appreciative of this support. In 1974 there were 42 lecturers in the program, of whom four are still active giving lectures (George Carruthers, Larry Fredrick, Arlo Landolt and Davis Philip). After the summer meeting, the Shapley Program will be embarking on its 30th year. Now there are 82 astronomers in the program and we get from 40 to 60 requests a year

  19. Stimulus-Dependent Dopamine Release in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sikstrom, Sverker; Soderlund, Goran

    2007-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the…