Science.gov

Sample records for acid aa metabolism

  1. Ascorbic acid (AA) metabolism in protection against radiation damage

    SciTech Connect

    Rose, R.C.; Koch, M.J.

    1986-03-05

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with /sup 14/C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the /sup 14/C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of < 3 minutes compared with nonirradiated samples (t/sub 1/2/ > 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of /sup 14/C-AFR disproportionate, with the net effect of /sup 14/C-dehydroascorbic acid formation from /sup 14/C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23/sup 0/C in the presence of 15 ..mu..M /sup 14/C-AA. Samples of supernatant maintained at 100/sup 0/C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues.

  2. Synergism and Rules of the new Combination drug Yiqijiedu Formulae (YQJD) on Ischemic Stroke based on amino acids (AAs) metabolism

    PubMed Central

    Gao, Jian; Chen, Chang; Chen, Jian-Xin; Wen, Li-Mei; Yang, Geng-Liang; Duan, Fei-Peng; Huang, Zhi-Ying; Li, De-Feng; Yu, Ding-Rong; Yang, Hong-Jun; Li, Shao-Jing

    2014-01-01

    The use of combination drugs is considered to be a promising strategy to control complex diseases such as ischemic stroke. The detection of metabolites has been used as a versatile tool to reveal the potential mechanism of diverse diseases. In this study, the levels of 12 endogenous AAs were simultaneously determined quantitatively in the MCAO rat brain using RRLC-QQQ method. Seven AAs were chosen as the potential biomarkers, and using PLS-DA analysis, the effects of the new combination drug YQJD, which is composed of ginsenosides, berberine, and jasminoidin, on those 7 AAs were evaluated. Four AAs, glutamic acid, homocysteine, methionine, and tryptophan, which changed significantly in the YQJD-treated groups compared to the vehicle groups (P < 0.05), were identified and designated as the AAs to use to further explore the synergism of YQJD. The result of a PCA showed that the combination of these three drugs exhibits the strongest synergistic effect compared to other combination groups and that ginsenosides might play a pivotal role, especially when combined with jasminoidin. We successfully explored the synergetic mechanism of multi-component and provided a new method for evaluating the integrated effects of combination drugs in the treatment of complex diseases. PMID:24889025

  3. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  4. Effect of allicin (diallyl disulfide-oxide) on prostaglandin endoperoxide H/sub 2/ (PGH/sub 2/) and arachidonic acid (AA) metabolism and platelet aggregation

    SciTech Connect

    Mayeux, P.R.; Agrawal, K.C.; King, B.T.; Kadowitz, P.J.; McNamara, D.B.

    1986-03-01

    The authors report here the effects of pure allicin (the antibacterial component of GO), synthesized from diallyl disulfide and hydrogen peroxide, on human platelet aggregation, PGH/sub 2/ metabolism in microsomes of bovine lung (BL) and bovine coronary artery (BCA), homogenates of human platelet (HP), and on AA metabolism in HP. Allicin at 16 ..mu..g/ml to 160 ..mu..g/ml produced concentration-dependent inhibition of platelet aggregation to 1.6 mM AA and 2.8 ..mu..M U 46619, a stable analog of PGH/sub 2/ and a TXA/sub 2/ minic. BL (200 ..mu..g protein), BCA (10 ..mu..g protein), and HP (1500 ..mu..g protein) were incubated with 10 ..mu..M (/sup 14/C) PGH/sub 2/ +/- allicin. HP (1500 ..mu..g protein) were incubated with 20 ..mu..M (/sup 14/C) AA +/- allicin. Products were separated by TLC and quantified by radiochromatographic scan. Allicin in the concentration range of 10-/sup 6/M-10-/sup 3/M induced no change in the formation of prostacyclin by BL and BCA or of TXA/sub 2/ by BL and HP. These data suggest that the platelet antiaggregatory action of allicin is not due to inhibition of cyclooxygenase or TXA/sub 2/ synthetase in the human platelet, but may be related to interactions at the TXA/sub 2/ receptor or on cyclic nucleotide levels.

  5. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induced P-450 mediated arachidonic acid (AA) metabolism in chick embryo liver (CEL) occurs in parenchymal cells (PC) rather than in non-parenchymal cells (NPC)

    SciTech Connect

    Paroli, L.; Rifkind, A.B. )

    1992-02-26

    TCDD induces cytochrome P-450 mediated AA metabolism in CEL and changes the dominant metabolite(s) from {omega}-OH AA to AA epoxygenase products (EETs and EET-diols). PC and NPC from CEL were separated by differential centrifugation and characterized by morphology, immunohistochemistry and P-450 mediated xenobiotic metabolism; purities were >95%. PC and NPC, from 16 day old chick embryos treated for 5 days with TCDD or vehicle alone, were cultured for 48 hr, homogenized and incubated with ({sup 14}C)-AA {plus minus} NADPH. AA products were resolved by reverse phase HPLC. The major product in control PC, {omega}-OH AA was not significantly affected by TCDD. All of the AA metabolism was NADPH dependent. Control and TCDD treated PC had the same metabolite patterns as whole liver microsomes. Neither control nor TCDD treated NPC generated P-450 AA metabolites. Also co-culturing NPC with PC did not affect AA metabolism of either cell type. The findings indicate that TCDD-induced changes in AA metabolism are retained in culture and that hepatocytes rather than NPC effect P-450 mediated AA metabolism in both control and TCDD-induced CEL.

  6. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  7. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  8. Modulating the gut flora alters amino acid metabolism in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intestinal microbes consume and produce amino acids (AA). This may impact intestinal threonine (THR) metabolism necessary for adequate gut function. We hypothesized that modulating the gut flora results in an alteration of intestinal THR utilization and hence whole body AA metabolism. Neonatal pigs ...

  9. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

    PubMed

    Yuan, Dongjuan; Zou, Qiuqiong; Yu, Ting; Song, Cuikai; Huang, Shengfeng; Chen, Shangwu; Ren, Zhenghua; Xu, Anlong

    2014-09-01

    Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus. PMID:24801744

  10. Altered arachidonic acid metabolism and platelet size in atopic subjects

    SciTech Connect

    Audera, C.; Rocklin, R.; Vaillancourt, R.; Jakubowski, J.A.; Deykin, D.

    1988-03-01

    The release and metabolism of endogenous arachidonic acid (AA) in physiologically activated platelets obtained from 11 atopic patients with allergic rhinitis and/or asthma was compared to that of sex- and age-matched nonatopic controls. Prelabeled (/sup 3/H)AA platelets were stimulated with thrombin or collagen and the amount of free (/sup 3/H)AA and radiolabeled metabolites released were measured by high-performance liquid chromatography. The results obtained indicate that although the incorporation of (/sup 3/H)AA into platelet phospholipids and total release of /sup 3/H-radioactivity upon stimulation were comparable in the two groups, the percentage of /sup 3/H-radioactivity released from platelets as free AA was significantly lower (P less than 0.01) in the atopic group. The reduction in free (/sup 3/H)AA was accompanied by an increase (P less than 0.01) in the percentage of /sup 3/H-radioactivity released as cyclooxygenase products in atopic platelets (compared to nonatopic cells) after stimulation with 10 and 25 micrograms/ml collagen. The amount of platelet lipoxygenase product released was comparable between the two groups. Although the blood platelet counts were similar, the mean platelet volume was statistically higher (P less than 0.01) in the atopic group. These results indicate that arachidonic acid metabolism in atopic platelets is altered, the pathophysiological significance of which remains to be clarified.

  11. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... Treatment of amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please ... this page It's been added to your dashboard . Amino acid metabolism disorders are rare health conditions that affect ...

  12. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  13. Bile acids as metabolic regulators

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2015-01-01

    Summary Small molecule ligands that target to TGR5 and FXR have shown promise in treating various metabolic and inflammation-related human diseases. New insights into the mechanisms underlying the bariatric surgery and bile acid sequestrant treatment suggest that targeting the enterohepatic circulation to modulate gut-liver bile acid signaling, incretin production and microbiota represents a new strategy to treat obesity and type-2 diabetes. PMID:25584736

  14. A human dietary arachidonic acid supplementation study conducted in a metabolic research unit: rationale and design.

    PubMed

    Nelson, G J; Kelley, D S; Emken, E A; Phinney, S D; Kyle, D; Ferretti, A

    1997-04-01

    While there are many reports of studies that fed arachidonic acid (AA) to animals, there are very few reports of AA feeding to humans under controlled conditions. This 130-d study was conceived as a controlled, symmetrical crossover design with healthy, adult male volunteers. They lived in the metabolic research unit (MRU) of the Western Human Nutrition Research (WHNRC) for the entire study. All food was prepared by the WHNRC kitchen. The basal (low-AA) diet consisted of natural foods (30 en% fat, 15 en% protein, and 55 en% carbohydrate), containing 210 mg/d of AA, and met the recommended daily allowance for all nutrients. The high-AA (intervention) diet was similar except that 1.5 g/d of AA in the form of a triglyceride containing 50% AA replaced an equal amount of high-oleic safflower oil in the basal diet. The subjects (ages 20 to 39) were within -10 to +20% of ideal body weight, nonsmoking, and not allowed alcohol in the MRU. Their exercise level was constant, and their body weights were maintained within 2% of entry level. Subjects were initially fed the low-AA diet for 15 d. On day 16, half of the subjects (group A) wee placed on the high-AA diet, and the other group (B) remained on the low-AA diets. On day 65, the two groups switched diets. On day 115, group B returned to the low-AA diet. This design, assuming no carryover effect, allowed us to merge the data from the two groups, with the data comparison days being 65 (low-AA) and 115 (high-AA) for group B and 130 (low-AA) and 65 (high-AA) for group A. The main indices studied were the fatty acid composition of the plasma, red blood cells, platelets, and adipose tissue; in vitro platelet aggregation, bleeding times, clotting factors; immune response as measured by delayed hypersensitivity skin tests, cellular proliferation of peripheral blood mononuclear cells in response to various mitogens and antigens, natural killer cell activity, and response to measles/mumps/rubella and influenza vaccines; the

  15. Eicosapentaenoic and dihomo gamma linolenic acid metabolism by cultured rat mesangial cells

    SciTech Connect

    Scharschmidt, L.A.; Gibbons, N.B.; Neuwirth, R.

    1989-01-01

    To better understand the effects of dietary fatty acid manipulations on glomerular function, we compared mesangial incorporation, release, and metabolism of arachidonic (AA), eicosapentaenoic (EPA), and dihomo gamma linolenic (DHG) acids. We found marked differences in mesangial handling of these fatty acids. AA was incorporated into lipids of mesangial cells much more rapidly than EPA or DHG. Ionophore-induced stimulation of fatty acid release from mesangial cells prelabeled with (/sup 14/C)AA, (/sup 14/C)EPA, or (/sup 14/C)DHG caused a release of labeled AA greater than DHG much less than EPA, respectively. Preloading mesangial cells with DHG or EPA for 24 h reduced subsequent basal, ionophore-, and hormone-stimulated prostaglandin E2 (PGE2) synthesis. Finally, unlike AA, neither EPA nor DHG was converted to a significant extent by mesangial cyclooxygenase or lipoxygenase. Thus the mesangial metabolism of DHG and EPA differs both quantitatively and qualitatively from that of AA. Furthermore, EPA and DHG inhibit metabolism of AA at the level of mesangial cyclooxygenase.

  16. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA).

    PubMed

    Kuipers, Remko S; Luxwolda, Martine F; Janneke Dijck-Brouwer, D A; Muskiet, Frits A J

    2011-11-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from 'biomagnification' into 'bioattenuation' occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. PMID:21561751

  17. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    SciTech Connect

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with {sup 3}H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED{sub 50}) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED{sub 50} values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM.

  18. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    PubMed

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  19. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    SciTech Connect

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  20. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    PubMed Central

    Samman, Samir; Crossett, Ben; Somers, Miles; Bell, Kirstine J; Lai, Nicole T; Sullivan, David R; Petocz, Peter

    2014-01-01

    Amino acid (AA) status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM) or chicken (CM), and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014), with consistently higher changes observed after 60 minutes (P<0.001). Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the postprandial state. The sustained increase in histidine following the consumption of a PM is consistent with the reported effects of lean pork on cardiometabolic risk factors. PMID:24971025

  1. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  2. The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism

    PubMed Central

    Demetz, Egon; Schroll, Andrea; Auer, Kristina; Heim, Christiane; Patsch, Josef R.; Eller, Philipp; Theurl, Markus; Theurl, Igor; Theurl, Milan; Seifert, Markus; Lener, Daniela; Stanzl, Ursula; Haschka, David; Asshoff, Malte; Dichtl, Stefanie; Nairz, Manfred; Huber, Eva; Stadlinger, Martin; Moschen, Alexander R.; Li, Xiaorong; Pallweber, Petra; Scharnagl, Hubert; Stojakovic, Tatjana; März, Winfried; Kleber, Marcus E.; Garlaschelli, Katia; Uboldi, Patrizia; Catapano, Alberico L.; Stellaard, Frans; Rudling, Mats; Kuba, Keiji; Imai, Yumiko; Arita, Makoto; Schuetz, John D.; Pramstaller, Peter P.; Tietge, Uwe J.F.; Trauner, Michael; Norata, Giuseppe D.; Claudel, Thierry; Hicks, Andrew A.; Weiss, Guenter; Tancevski, Ivan

    2014-01-01

    Summary Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By combining data from a GWAS screening in >100,000 individuals of European ancestry, mediator lipidomics, and functional validation studies in mice, we identify the AA metabolome as an important regulator of cholesterol homeostasis. Pharmacological modulation of AA metabolism by aspirin induced hepatic generation of leukotrienes (LTs) and lipoxins (LXs), thereby increasing hepatic expression of the bile salt export pump Abcb11. Induction of Abcb11 translated in enhanced reverse cholesterol transport, one key function of HDL. Further characterization of the bioactive AA-derivatives identified LX mimetics to lower plasma LDL-C. Our results define the AA metabolome as conserved regulator of cholesterol metabolism, and identify AA derivatives as promising therapeutics to treat cardiovascular disease in humans. PMID:25444678

  3. The gut microbiota modulates host amino acid and glutathione metabolism in mice.

    PubMed

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-10-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  4. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    PubMed Central

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  5. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  6. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  7. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  8. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  9. Effect of heavy metal ions on neutrophil arachidonic acid metabolism and chemotaxis

    SciTech Connect

    Smith, D.M.; Turner, S.R.; Johnson, J.A.; Turner, R.A.

    1986-05-01

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism, protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup +3/, Zn/sup +2/, Cr/sup +3/, Mn/sup +2/, and Cu/sup +2/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored both qualitatively by thin-layer chromatography of /sup 3/H-AA metabolities and quantitatively by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-Met-Leu-Phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid production. In contrast to previous reports, the data obtained using Au/sup +3/ and Cu/sup +2/ demonstrates no correlation between AA metabolism and chemotaxis, suggesting that these 2 processes are not linked.

  10. Metabolic fate of arachidonic acid in hepatocytes of continuously endotoxemic rats.

    PubMed Central

    Rodriguez de Turco, E B; Spitzer, J A

    1988-01-01

    The present experiments were designed to characterize the kinetics of [1-14C]arachidonic acid (AA) metabolism as a function of time in hepatocytes obtained from rats infused continuously for 30 h with a nonlethal dose of Escherichia coli endotoxin (ET). Chronic endotoxemia greatly reduces the ability of hepatocytes to utilize [1-14C]AA, which is reflected from the earliest times of incubation in very low labeling of intermediates in the biosynthetic pathways of glycerolipids (phosphatidic acid and diacylglycerol) and slower removal of [1-14C]AA from the free fatty acid pool as compared with saline-infused rats. At later times of incubation, the labeling of phospholipids (especially phosphatidylethanolamine and phosphatidylinositol [PI]), but not of triacylglycerides is decreased. Analysis of fatty acid composition of individual phospholipids from cells of ET-infused rats reveals that the content of AA is significantly reduced only in PI. Hence an impairment in activation/acylation enzymatic mechanisms could affect the turnover of metabolically active phospholipid pools, i.e., PI, involved in signal transmission processes, and result in increased availability of 20:4 for eicosanoid synthesis, contributing to cellular metabolic perturbations in endotoxicosis. PMID:3125225

  11. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) serves a key function in the digestion of dietary protein and absorption of amino acids. However, the GIT is also an important site of amino acid metabolism in the body. Methionine is an indispensable amino acid and must be supplied in the diet. In addition, consider...

  12. Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health.

    PubMed

    Li, Yusheng; Xiao, Wenfeng; Luo, Wei; Zeng, Chao; Deng, Zhenhan; Ren, Wenkai; Wu, Guoyao; Lei, Guanghua

    2016-04-01

    Osteoarthritis (OA) is a common form of arthritis in humans. It has long been regarded as a non-inflammatory disease, but a degree of inflammation is now recognized as being a vital inducer of subpopulation of OA. Besides inflammation, the establishment and development of OA are associated with alterations in metabolism and profiles of amino acids (AA), including glutamate- and arginine-family AA as well as their related metabolites (e.g., creatinine, hydroxyproline, γ-aminobutyrate, dimethylarginines and homoarginine). Functional AA (e.g., glutamine, arginine, glutamate, glycine, proline, and tryptophan) have various benefits (i.e., anti-inflammation and anti-oxidation) in treatment of inflammation-associated diseases, including OA. Thus, these AA have potential as immunomodulatory nutrients for patients with inflammation-induced OA. PMID:26767374

  13. Hyponatremic Chloride-depletion Metabolic Alkalosis Successfully Treated with High Cation-gap Amino Acid.

    PubMed

    Ryuge, Akihiro; Matsui, Katsuomi; Shibagaki, Yugo

    2016-01-01

    Chloride (Cl)-depletion alkalosis (CDA) develops due to the loss of Cl-rich body fluid, i.e., vomiting or diuretics use, and is typically treated with a chloride-rich solution such as normal saline (NS). Although NS is one of the most utilized Cl-rich solutions, high cation-gap amino acid (HCG-AA) predominantly comprises Cl and less sodium, making HCG-AA more efficient in correcting CDA. We herein report a case of CDA with chronic hyponatremia after frequent vomiting, which was successfully treated with HCG-AA without overcorrecting hyponatremia or causing hypervolemia. HCG-AA may be more beneficial than NS for treating hyponatremic or hypervolemic metabolic alkalosis. PMID:27374680

  14. Whole-body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge.

    PubMed

    McNeil, C J; Hoskin, S O; Bremner, D M; Holtrop, G; Lobley, G E

    2016-07-01

    Supplemented protein or specific amino acids (AA) are proposed to help animals combat infection and inflammation. The current study investigates whole-body and splanchnic tissue metabolism in response to a lipopolysaccharide (LPS) challenge with or without a supplement of six AA (cysteine, glutamine, methionine, proline, serine and threonine). Eight sheep were surgically prepared with vascular catheters across the gut and liver. On two occasions, four sheep were infused through the jugular vein for 20 h with either saline or LPS from Escherichia coli (2 ng/kg body weight per min) in a random order, plus saline infused into the mesenteric vein; the other four sheep were treated with saline or LPS plus saline or six AA infused via the jugular vein into the mesenteric vein. Whole-body AA irreversible loss rate (ILR) and tissue protein metabolism were monitored by infusion of [ring-2H2]phenylalanine. LPS increased (P<0·001) ILR (+17 %), total plasma protein synthesis (+14 %) and lymphocyte protein synthesis (+386 %) but decreased albumin synthesis (-53 %, P=0·001), with no effect of AA infusion. Absorption of dietary AA was not reduced by LPS, except for glutamine. LPS increased the hepatic removal of leucine, lysine, glutamine and proline. Absolute hepatic extraction of supplemented AA increased, but, except for glutamine, this was less than the amount infused. This increased net appearance across the splanchnic bed restored arterial concentrations of five AA to, or above, values for the saline-infused period. Infusion of key AA does not appear to alter the acute period of endotoxaemic response, but it may have benefits for the chronic or recovery phases. PMID:27189533

  15. Effects of Angiotensin II Receptor Blockers on Metabolism of Arachidonic Acid via CYP2C8.

    PubMed

    Senda, Asuna; Mukai, Yuji; Toda, Takaki; Hayakawa, Toru; Yamashita, Miki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-01-01

    Arachidonic acid (AA) is metabolized to epoxyeicosatrienoic acids (EETs) via cytochrome enzymes such as CYP 2C9, 2C8 and 2J2. EETs play a role in cardioprotection and regulation of blood pressure. Recently, adverse reactions such as sudden heart attack and fatal myocardial infarction were reported among patients taking angiotensin II receptor blockers (ARBs). As some ARBs have affinity for these CYP enzymes, metabolic inhibition of AA by ARBs is a possible cause for the increase in cardiovascular events. In this study, we quantitatively investigated the inhibitory effects of ARBs on the formation of EETs and further metabolites, dihydroxyeicosatrienoic acids (DHETs), from AA via CYP2C8. In incubations with recombinant CYP2C8 in vitro, the inhibitory effects were compared by measuring EETs and DHETs by HPLC-MS/MS. Inhibition of AA metabolism by ARBs was detected in a concentration-dependent manner with IC50 values of losartan (42.7 µM), telmisartan (49.5 µM), irbesartan (55.6 µM), olmesartan (66.2 µM), candesartan (108 µM), and valsartan (279 µM). Losartan, telmisartan and irbesartan, which reportedly accumulate in the liver and kidneys, have stronger inhibitory effects than other ARBs. The lower concentration of EETs leads to less protective action on the cardiovascular system and a higher incidence of adverse effects such as sudden heart attack and myocardial infarction in patients taking ARBs. PMID:26632190

  16. 2-Hydroxy Acids in Plant Metabolism

    PubMed Central

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567

  17. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  18. Lipoic Acid Metabolism in Microbial Pathogens

    PubMed Central

    Spalding, Maroya D.; Prigge, Sean T.

    2010-01-01

    Summary: Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments. PMID:20508247

  19. Lipoxygenase Pathway in Islet Endocrine Cells. OXIDATIVE METABOLISM OF ARACHIDONIC ACID PROMOTES INSULIN RELEASE

    PubMed Central

    Metz, Stewart; VanRollins, Michael; Strife, Robert; Fujimoto, Wilfred; Robertson, R. Paul

    1983-01-01

    Metabolism of arachidonic acid (AA) via the cyclooxygenase pathway reduces glucose-stimulated insulin release. However, metabolism of AA by the lipoxygenase pathway and the consequent effects on insulin secretion have not been simultaneously assessed in the endocrine islet. Both dispersed endocrine cell-enriched pancreatic cells of the neonatal rat, as well as intact islets of the adult rat, metabolized [3H]AA not only to cyclooxygenase products (prostaglandins E2, F2α, and prostacyclin) but also to the lipoxygenase product 12-hydroxyeicosatetraenoic acid (12-HETE). 12-HETE was identified by coelution with authentic tritiated or unlabeled 12-HETE using four high performance liquid chromatographic systems under eight mobile-phase conditions and its identity was confirmed by gas chromatography/mass spectrometry using selected ion monitoring. The predominant effect of exogenous AA (5 μg/ml) was to stimulate insulin release from pancreatic cells grown in monolayer. This effect was concentration- and time-dependent, and reversible. The effect of AA upon insulin release was potentiated by a cyclooxygenase inhibitor (indomethacin) and was prevented by either of two lipoxygenase inhibitors (5,8,11,14-eicosatetraynoic acid [ETYA] and BW755c). In addition, glucose, as well as two structurally dissimilar agents (the calcium ionophore A23187 and bradykinin), which activate phospholipase(s) and thereby release endogenous AA in several cell systems, also stimulated insulin secretion. The effects of glucose, glucagon, bradykinin and high concentrations of A23187 (5 μg/ml) to augment insulin release were blocked or considerably reduced by lipoxygenase inhibitors. However, a lower concentration of the ionophore (0.25 μg/ml), which did not appear to activate phospholipase, was resistant to blockade. Exogenous 12-HETE (up to 2,000 ng/ml) did not alter glucose-induced insulin release. However, the labile intermediate 12-hydroperoxy-ETE increased insulin release. Furthermore

  20. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  1. P450-dependent arachidonic acid metabolism and angiotensin II-induced renal damage.

    PubMed

    Kaergel, Eva; Muller, Dominik N; Honeck, Horst; Theuer, Juergen; Shagdarsuren, Erdenechimeg; Mullally, Alexander; Luft, Friedrich C; Schunck, Wolf-Hagen

    2002-09-01

    Transgenic rats overexpressing both human renin and angiotensinogen genes (dTGR) develop hypertension, inflammation, and renal failure. We tested the hypothesis that these pathological features are associated with changes in renal P450-dependent arachidonic acid (AA) metabolism. Samples were prepared from 5- and 7-week-old dTGR and from normotensive Sprague-Dawley (SD) rats, ie, before and after the dTGR developed severe hypertension and albuminuria. At both stages, dTGR showed significantly lower renal microsomal AA epoxygenase and hydroxylase activities that reached 63% and 76% of the control values at week 7. Furthermore, the protein levels of several potential AA epoxygenases (CYP2C11, CYP2C23, and CYP2J) were significantly reduced. Immunoinhibition studies identified CYP2C23 as the major AA epoxygenase, both in dTGR and SD rats. Immunohistochemistry showed that CYP2C23 was localized in cortical and outer medullary tubules that progressively lost this enzyme from week 5 to week 7 in dTGR. CYP2C11 expression occurred only in the outer medullary tubules and was markedly reduced in dTGR compared with age-matched SD rats. These findings indicate site-specific decreases in the availability of AA epoxygenase products in the kidney of dTGR. In contrast to renal microsomes, liver microsomes of dTGR and SD rats showed no change in the expression and activity of AA epoxygenases and hydroxylases. We conclude that hypertension and end-organ damage in dTGR is associated with kidney-specific downregulation of P450-dependent AA metabolism. Because the products of AA epoxygenation have anti-inflammatory properties, this alteration may contribute to uncontrolled renal inflammation, which is a major cause of renal damage in dTGR. PMID:12215466

  2. Eugenol: a dual inhibitor of platelet-activating factor and arachidonic acid metabolism.

    PubMed

    Saeed, S A; Simjee, R U; Shamim, G; Gilani, A H

    1995-07-01

    Eugenol is an active principal and responsible for several pharmacological activities of clove oil. We studied the effects of eugenol on human platelet aggregation, arachidonic acid (AA) and platelet-activating factor (PAF) metabolism and in vivo effects on AA and PAF-induced shock in rabbits. Eugenol strongly inhibited PAF-induced platelet aggregation with lesser effect against AA and collegen. The IC(50) values were against AA: 31 ± 0.5; collagen: 64 ± 0.7 and PAF 7 ± 0.2 μM (n=9) respectively. In addition, eugenol stimulated PAF-acetylhydrolase activity suggesting that inhibition of PAF could be due to its inactivation to lyso-PAF. Pretreatment of rabbits with eugenol (50-100 mg/kg) prevented the lethal effects of intravenous PAF (11 μgg/kg) or AA (2 mg/kg) in a dose-dependent fashion. The protective effects of eugenol in the rabbits, however, were more pronounced against PAF-induced mortality (100% protection). In addition, eugenol also inhibited AA metabolism via cyclooxygenase and lipoxygenase pathways in human platelets. Both the production of thromboxane-A(2) and 12-hydroxy-eicosatetraenoic acid was inhibited by eugenol in a concentration-related manner (30-120 μM). In vivo, eugenol (50-100 mg/kg; i.p.) inhibited carrageenan-induced rat paw oedema (P < 0.001). In this test, eugenol was 5 times more potent than aspirin. These results provide evidence that eugenol acts as a dual antagonist of AA and PAF. PMID:23196096

  3. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  4. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    PubMed

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  5. Phylogenomic reconstruction of archaeal fatty acid metabolism

    PubMed Central

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  6. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    PubMed Central

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise − rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = −0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. PMID:25038148

  7. Metabolism of sinapic acid and related compounds in the rat

    PubMed Central

    Griffiths, L. A.

    1969-01-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  8. Metabolism of sinapic acid and related compounds in the rat.

    PubMed

    Griffiths, L A

    1969-07-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  9. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  10. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

    PubMed

    Sengupta, Sudeshna; Jonnalagadda, Sudhakar; Goonewardena, Lakshani; Juturu, Veeresh

    2015-12-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroF(FBR), aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  11. Computational Modeling of Competitive Metabolism between ω3- and ω6-Polyunsaturated Fatty Acids in Inflammatory Macrophages.

    PubMed

    Gupta, Shakti; Kihara, Yasuyuki; Maurya, Mano R; Norris, Paul C; Dennis, Edward A; Subramaniam, Shankar

    2016-08-25

    Arachidonic acid (AA), a representative ω6-polyunsaturated fatty acid (PUFA), is a precursor of 2-series prostaglandins (PGs) that play important roles in inflammation, pain, fever, and related disorders including cardiovascular diseases. Eating fish or supplementation with the ω3-PUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is widely assumed to be beneficial in preventing cardiovascular diseases. A proposed mechanism for a cardio-protective role of ω3-PUFAs assumes competition between AA and ω3-PUFAs for cyclooxygenases (COX), leading to reduced production of 2-series PGs. In this study, we have used a systems biology approach to integrate existing knowledge and novel high-throughput data that facilitates a quantitative understanding of the molecular mechanism of ω3- and ω6-PUFA metabolism in mammalian cells. We have developed a quantitative computational model of the competitive metabolism of AA and EPA via the COX pathway through a two-step matrix-based approach to estimate the rate constants. This model was developed by using lipidomic data sets that were experimentally obtained from EPA-supplemented ATP-stimulated RAW264.7 macrophages. The resulting model fits the experimental data well for all metabolites and demonstrates that the integrated metabolic and signaling networks and the experimental data are consistent with one another. The robustness of the model was validated through parametric sensitivity and uncertainty analysis. We also validated the model by predicting the results from other independent experiments involving AA- and DHA-supplemented ATP-stimulated RAW264.7 cells using the parameters estimated with EPA. Furthermore, we showed that the higher affinity of EPA binding to COX compared with AA was able to inhibit AA metabolism effectively. Thus, our model captures the essential features of competitive metabolism of ω3- and ω6-PUFAs. PMID:27063350

  12. Regulation of uric acid metabolism and excretion.

    PubMed

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. PMID:26316329

  13. Cellular metabolism of unnatural sialic acid precursors.

    PubMed

    Pham, Nam D; Fermaintt, Charles S; Rodriguez, Andrea C; McCombs, Janet E; Nischan, Nicole; Kohler, Jennifer J

    2015-10-01

    Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE. PMID:25957566

  14. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  15. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism.

    PubMed

    Toledo, Daniel A M; Roque, Natália R; Teixeira, Lívia; Milán-Garcés, Erix A; Carneiro, Alan B; Almeida, Mariana R; Andrade, Gustavo F S; Martins, Jefferson S; Pinho, Roberto R; Freire-de-Lima, Célio G; Bozza, Patrícia T; D'Avila, Heloisa; Melo, Rossana C N

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  16. Metabolic annotation of 2-ethylhydracrylic acid.

    PubMed

    Ryan, Robert O

    2015-08-25

    Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein/ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle. PMID:26115894

  17. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    PubMed

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  18. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    PubMed Central

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  19. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  20. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    PubMed Central

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  1. Retinoic acid: its biosynthesis and metabolism.

    PubMed

    Napoli, J L

    1999-01-01

    This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis. PMID:10506831

  2. Metabolism of arachidonic acid by macaque platelets. Implications for studies on atherosclerosis.

    PubMed

    Beatty, C H; Howard, C F; Hoskins, M K; Herrington, P T

    1985-04-01

    The metabolism of [1-14C]arachidonic acid [( 1-14C]AA) by washed platelets from macaques and human subjects was investigated. The results were as follows: At substrate levels of 1 microM, similar amounts of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), prostaglandin D2 (PGD2), and thromboxane A2 (TXA2), measured as thromboxane B2 (TXB2), were produced from [1-14C]AA by platelets from rhesus, Celebes black, and cynomolgus macaques and humans. An increase in the AA concentration from 1 microM to 20 microM decreased the TXB2: PGD2 ratio (aggregator: antiaggregator) from greater than 5 to less than 2 in all series. In the human series, the ratio decrease was due to an increase in PGD2 production; in the macaque series, PGD2 production increased and TXB2 production decreased. Under basal conditions and at 1 microM AA concentrations, the amounts of prostaglandins and thromboxanes produced by platelets from male and female rhesus macaques were the same. An increase in substrate concentration from 1 microM to 20 microM AA decreased TXB2 production and increased PGD2 production to the same extent in platelets from male and female rhesus macaques. Imidazole increased prostaglandin production and decreased TXB2 production by platelets from both male and female rhesus macaques. The TXB2: PGD2 ratios were reduced below 1.5; there was no difference between the ratios in the two series. In the presence of 1 mM imidazole, greater amounts of prostaglandins and thromboxanes were produced in the male than in the female series. These data indicate that macaque's platelets are a suitable model for the study of AA metabolism in human platelets. PMID:3924062

  3. Linking uric acid metabolism to diabetic complications.

    PubMed

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-12-15

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  4. Linking uric acid metabolism to diabetic complications

    PubMed Central

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  5. Diversity of Microbial Sialic Acid Metabolism

    PubMed Central

    Vimr, Eric R.; Kalivoda, Kathryn A.; Deszo, Eric L.; Steenbergen, Susan M.

    2004-01-01

    Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals. PMID:15007099

  6. Molecular Genetics of Crassulacean Acid Metabolism.

    PubMed Central

    Cushman, J. C.; Bohnert, H. J.

    1997-01-01

    Most higher plants assimilate atmospheric CO2 through the C3 pathway of photosynthesis using ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, when CO2 availability is reduced by environmental stress conditions, the incomplete discrimination of CO2 over O2 by Rubisco leads to increased photorespiration, a process that reduces the efficiency of C3 photosynthesis. To overcome the wasteful process of photorespiration, approximately 10% of higher plant species have evolved two alternate strategies for photosynthetic CO2 assimilation, C4 photosynthesis and Crassulacean acid metabolism. Both of these biochemical pathways employ a "CO2 pump" to elevate intracellular CO2 concentrations in the vicinity of Rubisco, suppressing photorespiration and therefore improving the competitiveness of these plants under conditions of high light intensity, high temperature, or low water availability. This CO2 pump consists of a primary carboxylating enzyme, phosphoenolpyruvate carboxylase. In C4 plants, this CO2-concentrating mechanism is achieved by the coordination of two carboxylating reactions that are spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7: 797-807;M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol 111: 949-957). In contrast, Crassulacean acid metabolism plants perform both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell-specific changes in the expression of many genes that are not present in C3 plants. PMID:12223634

  7. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM

    PubMed Central

    Benziman, Moshe; Abeliovitz, A.

    1964-01-01

    Benziman, Moshe (The Hebrew University of Jerusalem, Jerusalem, Israel), and A. Abeliovitz. Metabolism of dicarboxylic acids in Acetobacter xylinum. J. Bacteriol. 87:270–277. 1964.—During the oxidation of fumarate or l-malate by whole cells or extracts of Acetobacter xylinum grown on succinate, a keto acid accumulated in the medium in considerable amounts. This acid was identified as oxaloacetic acid (OAA). No accumulation of OAA was observed when succinate served as substrate. These phenomena could be explained by the kinetics of malate, succinate, and OAA oxidation. OAA did not inhibit malate oxidation, even when present at high concentrations. When cells were incubated with OAA or fumarate in the presence of C14O2, only the beta-carboxyl of residual OAA was found to be labeled. Evidence was obtained indicating that nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) are not directly involved in malate oxidation by cell-free extracts. The results suggest that malate oxidation in A. xylinum is irreversible, and is catalyzed by an enzyme which is not NAD- or NADP-linked. PMID:14151044

  8. Influence of Amino Acid Metabolism on Embryonic Stem Cell Function and Differentiation.

    PubMed

    Kilberg, Michael S; Terada, Naohiro; Shan, Jixiu

    2016-07-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promise in regenerative medicine because of their ability to differentiate into all 3 primary germ layers. This review describes recent advances in the understanding of the link between the metabolism of ESCs/iPSCs and their maintenance/differentiation in the cell culture setting, with particular emphasis on amino acid (AA) metabolism. ESCs are endowed with unique metabolic features with regard to energy consumption, metabolite flux through particular pathways, and macromolecular synthesis. Therefore, nutrient availability has a strong influence on stem cell growth, self-renewal, and lineage specification, both in vivo and in vitro. Evidence from several laboratories has documented that self-renewal and differentiation of mouse ESCs are critically dependent on proline metabolism, with downstream metabolites possibly serving as signal molecules. Likewise, catabolism of either threonine (mouse) or methionine (human) is required for growth and differentiation of ESCs because these AAs serve as precursors for donor molecules used in histone methylation and acetylation. Epigenetic mechanisms are recognized as critical steps in differentiation, and AA metabolism in ESCs appears to modulate these epigenetic processes. Recent reports also document that, in vitro, the nutrient composition of the culture medium in which ESCs are differentiated into embryoid bodies can influence lineage specification, leading to enrichment of a specific cell type. Although research designed to direct tissue specification of differentiating embryoid bodies in culture is still in its infancy, early results indicate that manipulation of the nutrient milieu can promote or suppress the formation of specific cell lineages. PMID:27422515

  9. Second-tier test for quantification of underivatized amino acids in dry blood spot for metabolic diseases in newborn screening.

    PubMed

    Wang, Chunyan; Zhu, Hongbin; Zhang, Wenyan; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-01

    The quantitative analysis of amino acids (AAs) in single dry blood spot (DBS) samples is an important issue for metabolic diseases as a second-tier test in newborn screening. An analytical method for quantifying underivatized AAs in DBS was developed by using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample preparation in this method is simple and ion-pairing agent is not used in the mobile phase that could avoid ion suppression, which happens in mass spectrometry and avoids damage to the column. Through chromatographic separation, some isomeric compounds could be identified and quantified, which cannot be solved through only appropriate multiple reactions monitoring transitions by MS/MS. The concentrations of the different AAs were determined using non-deuterated internal standard. All calibration curves showed excellent linearity within test ranges. For most of the amino acids the accuracy of extraction recovery was between 85.3 and 115 %, and the precision of relative standard deviation was <7.0 %. The 35 AAs could be identified in DBS specimens by the developed LC-MS/MS method in 17-19 min, and eventually 24 AAs in DBS were quantified. The results of the present study prove that this method as a second-tier test in newborn screening for metabolic diseases could be performed by the quantification of free AAs in DBS using the LC-MS/MS method. The assay has advantages of high sensitive, specific, and inexpensive merits because non-deuterated internal standard and acetic acid instead of ion-pairing agent in mobile phase are used in this protocol. PMID:22932943

  10. Metabolic mechanism of phenyllactic acid naturally occurring in Chinese pickles.

    PubMed

    Li, Xingfeng; Ning, Yawei; Liu, Dou; Yan, Aihong; Wang, Zhixin; Wang, Shijie; Miao, Ming; Zhu, Hong; Jia, Yingmin

    2015-11-01

    Phenyllactic acid, a phenolic acid phytochemical with the antimicrobial activity, was rarely reported in food besides honey and sourdough. This study evidenced a new food source of phenyllactic acid and elucidated its metabolic mechanism. Phenyllactic acid naturally occurred in Chinese pickles with concentrations ranged from 0.02 to 0.30 mM in 23 pickle samples including homemade and commercial ones. Then, lactic acid bacteria capable of metabolizing phenyllactic acid were screened from each homemade pickle and a promising strain was characterized as Lactobacillus plantarum. Moreover, the investigation of the metabolic mechanism of phenyllactic acid in pickles suggested that the yield of phenyllactic acid was positively related to the content of phenylalanine in food, and the addition of phenylalanine as precursor substance could significantly promote the production of phenyllactic acid. This investigation could provide some insights into the accumulation of phenyllactic acid in pickle for long storage life. PMID:25976820

  11. Emerging aspects of gut sulfur amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses the recent evidence indicating that sulfur amino acid metabolism in gastrointestinal tissues may be linked to human health and gut disease. Studies indicate that the gastrointestinal tract metabolizes 20% of dietary methionine and that its main metabolic fate is transmethylatio...

  12. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals

    PubMed Central

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  13. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals.

    PubMed

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  14. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  15. Renal acid-base metabolism after ischemia.

    PubMed

    Holloway, J C; Phifer, T; Henderson, R; Welbourne, T C

    1986-05-01

    The response of the kidney to ischemia-induced cellular acidosis was followed over the immediate one hr post-ischemia reflow period. Clearance and extraction experiments as well as measurement of cortical intracellular pH (pHi) were performed on Inactin-anesthetized Sprague-Dawley rats. Arteriovenous concentration differences and para-aminohippurate extraction were obtained by cannulating the left renal vein. Base production was monitored as bicarbonate released into the renal vein and urine; net base production was related to the renal handling of glutamine and ammonia as well as to renal oxygen consumption and pHi. After a 15 min control period, the left renal artery was snared for one-half hr followed by release and four consecutive 15 min reflow periods. During the control period, cortical cell pHi measured by [14C]-5,5-Dimethyl-2,4-Oxazolidinedione distribution was 7.07 +/- 0.08, and Q-O2 was 14.1 +/- 2.2 micromoles/min; neither net glutamine utilization nor net bicarbonate generation occurred. After 30 min of ischemia, renal tissue pH fell to 6.6 +/- 0.15. However, within 45 min of reflow, cortical cell pH returned and exceeded the control value, 7.33 +/- 0.06 vs. 7.15 +/- 0.08. This increase in pHi was associated with a significant rise in cellular metabolic rate, Q-O2 increased to 20.3 +/- 6.4 micromoles/min. Corresponding with cellular alkalosis was a net production of bicarbonate and a net ammonia uptake and glutamine release; urinary acidification was abolished. These results are consistent with a nonexcretory renal metabolic base generating mechanism governing cellular acid base homeostasis following ischemia. PMID:3723929

  16. Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects.

    PubMed

    Bachar, Mostafa; Raimann, Jochen G; Kotanko, Peter

    2016-03-01

    In this work, we develop an impulsive mathematical model of Vitamin C (ascorbic acid) metabolism in healthy subjects for daily intake over a long period of time. The model includes the dynamics of ascorbic acid plasma concentration, the ascorbic acid absorption in the intestines and a novel approach to quantify the glomerular excretion of ascorbic acid. We investigate qualitative and quantitative dynamics. We show the existence and uniqueness of the global asymptotic stability of the periodic solution. We also perform a numerical simulation for the entire time period based on published data reporting parameters reflecting ascorbic acid metabolism at different oral doses of ascorbic acid. PMID:26724712

  17. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    PubMed

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  18. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    PubMed Central

    Neis, Evelien P. J. G.; Dejong, Cornelis H. C.; Rensen, Sander S.

    2015-01-01

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus. PMID:25894657

  19. Amino acid metabolism in patients with propionic acidaemia.

    PubMed

    Scholl-Bürgi, Sabine; Sass, Jörn Oliver; Zschocke, Johannes; Karall, Daniela

    2012-01-01

    Propionic acidaemia (PA) is an inborn error of intermediary metabolism caused by deficiency of propionyl-CoA carboxylase. The metabolic block leads to a profound failure of central metabolic pathways, including the urea and the citric acid cycles. This review will focus on changes in amino acid metabolism in this inborn disorder of metabolism. The first noted disturbance of amino acid metabolism was hyperglycinaemia, which is detectable in nearly all PA patients. Additionally, hyperlysinaemia is a common observation. In contrast, concentrations of branched chain amino acids, especially of isoleucine, are frequently reported as decreased. These non-proportional changes of branched-chain amino acids (BCAAs) compared with aromatic amino acids are also reflected by the Fischer's ratio (concentration ratio of BCAAs to aromatic amino acids), which is decreased in PA patients. As restricted dietary intake of valine and isoleucine as precursors of propionyl-CoA is part of the standard treatment in PA, decreased plasma concentrations of BCAAs may be a side effect of treatment. The concentration changes of the nitrogen scavenger glutamine have to be interpreted in the light of ammonia levels. In contrast to other hyperammonaemic syndromes, in PA plasma glutamine concentrations do not increase in hyperammonaemia, whereas CSF glutamine concentrations are elevated. Despite lactic acidaemia in PA patients, hyperalaninaemia is only rarely reported. The mechanisms underlying the observed changes in amino acid metabolism have not yet been elucidated, but most of the changes can be at least partly interpreted as consequence of disturbance of anaplerosis. PMID:21113738

  20. Disturbed Amino Acid Metabolism in HIV: Association with Neuropsychiatric Symptoms

    PubMed Central

    Gostner, Johanna M.; Becker, Kathrin; Kurz, Katharina; Fuchs, Dietmar

    2015-01-01

    Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions. PMID:26236243

  1. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism.

    PubMed

    Larsen, M; Galindo, C; Ouellet, D R; Maxin, G; Kristensen, N B; Lapierre, H

    2015-11-01

    Nine Holstein cows with rumen cannulas and indwelling catheters in splanchnic blood vessels were used in a generalized randomized incomplete block design with repeated measures to study the effect of increased early postpartum AA supply on splanchnic and mammary AA metabolism. At calving, cows were blocked according to parity (second and third or greater) and allocated to 2 treatments: abomasal infusion of water (CTRL; n=4) or free AA with casein profile (AA-CN; n=5) in addition to a basal diet. The AA-CN infusion started with half of the maximal dose at the calving day (1 d in milk; DIM) and then steadily decreased from 791 to 226 g/d until 29 DIM. On 5, 15, and 29 DIM, 6 sample sets of arterial, portal, hepatic, and mammary blood were taken at 45-min intervals. Over the whole period, increasing AA supply increased milk (+7.8 ± 1.3 kg/d) and milk protein yields (+220 ± 65 g/d) substantially. The increased milk yield was not supported by greater dry matter intake (DMI) as, overall, DMI decreased with AA-CN (-1.6 ± 0.6 kg/d). Arterial concentrations of essential AA were greater for AA-CN compared with CTRL. The net portal-drained viscera (PDV) release of His, Met, and Phe was greater for AA-CN compared with CTRL, and the net PDV recovery of these infused AA ranged from 72 to 102% once changes in DMI were accounted for. The hepatic removal of these AA was increased equivalently to the increased net PDV release, resulting in an unaltered net splanchnic release. The net PDV release of Ile, Leu, Val, and Lys tended to be greater for AA-CN, and the net PDV recovery of these infused AA ranged from 69 to 73%, indicating increased PDV metabolism with AA-CN. The fractional hepatic removal of these AA did not differ from zero and was unaffected by the increased supply. Consequently, the splanchnic release of these AA was approximately equivalent to their net PDV release for both CTRL and AA-CN. Overall, greater early postpartum AA supply increased milk and milk protein

  2. Arachidonic acid metabolism in endotoxin tolerance.

    PubMed

    Wise, W C; Cook, J A; Halushka, P V

    1983-01-01

    The arachidonic acid metabolites thromboxane A2, a potent platelet aggregator, and prostacyclin, a potent vasodilator, are released early in endotoxin shock and may contribute to its pathologic sequelae. Plasma levels of thromboxane (Tx) A2 and prostacyclin were measured via radioimmunoassay of their stable metabolites immunoreactive (i) TxB2 and i6-keto-PGF1 alpha in tolerant and nontolerant rats after endotoxin. Long-Evans rats were made tolerant to endotoxin by four daily IV injections of S enteritidis (endotoxin) (0.1, 0.5, 1, and 5 mg/kg). In normal rats (N = 15) given LPS (IV, 15 mg/kg), only 11% survived at 24 h; in contrast, tolerant rats (N = 13) all survived even at a dose of 50 mg/kg. At 1 h, after endotoxin (15 mg/kg) IV, plasma i6-keto-PGF1 alpha in nontolerant rats was 1,005 +/- 149 pg/ml (N = 14) and continued to rise to 4,209 +/- 757 pg/ml (N = 5) (P less than 0.001) after 4 h. In tolerant rats, given endotoxin (15 mg/kg), plasma i6-keto-PGF1 alpha at 1 h was 800 +/- 203 pg/ml (N = 5) and was not significantly different (734 +/- 254 pg/ml) at 4 h. Plasma iTxB2 at both 1 and 4 h was significantly (P less than 0.01) lower in tolerant than nontolerant rats. Both iTxB2 and i6-keto-PGF1 alpha were significantly (P less than 0.01) lower in tolerant rats given 50 mg/kg IV endotoxin than nontolerant rats. Endotoxin-induced elevation in fibrin degradation products was significantly decreased (P less than 0.05) during endotoxin tolerance although there was no difference in the severity of thrombocytopenia. These composite observations demonstrate that endotoxin tolerance in the rat is associated with altered arachidonic acid metabolism. PMID:6410699

  3. Ecophysiology of Crassulacean Acid Metabolism (CAM)

    PubMed Central

    LÜTTGE, ULRICH

    2004-01-01

    • Background and Scope Crassulacean Acid Metabolism (CAM) as an ecophysiological modification of photosynthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the flow of carbon along various pathways and through various cellular compartments have been well documented and discussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. • Input Input is given by a network of environmental parameters. Six major ones, CO2, H2O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level (‘physiological aut‐ecology’). • Receivers Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter including morphotypes and physiotypes. CAM genotypes largely remain ‘black boxes’, and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. • Output Output is the shaping of habitats, ecosystems and communities by CAM. A number of systems are briefly surveyed, namely aquatic systems, deserts, salinas, savannas, restingas, various types of forests, inselbergs and paramós. • Conclusions While quantitative census data for CAM diversity and biomass are largely missing, intuition suggests that the larger CAM domains are those systems which are governed by a network of interacting stress factors requiring versatile responses and not systems where a single stress factor strongly prevails. CAM is noted to be a strategy for variable, flexible and plastic

  4. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  5. Effect of cholestyramine on bile acid metabolism in normal man

    PubMed Central

    Garbutt, J. T.; Kenney, T. J.

    1972-01-01

    The effect of cholestyramine administration on the enterohepatic circulation of bile acids was studied in eight normal volunteers. In six subjects the metabolism of sodium taurocholate-14C was determined after its intravenous injection before and during the 6th wk of cholestyramine administration, 16 g/day. In two subjects, the metabolism of cholic acid-14C was observed before and during the 2nd wk of cholestyramine, 16 g/day. Bile acid sequestration resulted in a more rapid disappearance of the injected primary bile acid and its metabolic products. The composition of fasting bile acids was promptly altered by cholestyramine to predominantly glycine-conjugated trihydroxy bile acid. In four subjects, unconjugated bile acid-14C was administered during cholestyramine administration; the relative proportion of glycine-conjugated bile acid-14C before enterohepatic circulation was similar to the relative proportion of unlabeled glycine-conjugated bile acid present in duodenal contents after an overnight fast, indicating that a hepatic mechanism was responsible for the elevated ratios of glycine- to taurine-conjugated bile acid (G: T ratios) observed. The relative proportions of both dihydroxy bile acids, chenodeoxycholic and deoxycholic, were significantly reduced. Steatorrhea did not occur, and the total bile acid pool size determined after an overnight fast was unaltered by cholestyramine. These findings suggest that in normal man bile acid sequestered from the enterohepatic circulation by cholestyramine is replaced by an increase in hepatic synthesis primarily via the pathway leading to production of glycocholic acid. PMID:5080408

  6. The effects of the oral administration of fish oil concentrate on the release and the metabolism of (/sup 14/C)arachidonic acid and (/sup 14/C)eicosapentaenoic acid by human platelets

    SciTech Connect

    Hirai, A.; Terano, T.; Hamazaki, T.; Sajiki, J.; Kondo, S.; Ozawa, A.; Fujita, T.; Miyamoto, T.; Tamura, Y.; Kumagai, A.

    1982-11-01

    It has been suggested by several investigators that eicosapentaenoic acid (C20:5 omega 3, EPA) might have anti-thrombotic effects. In this experiment, the effect of the oral administration of EPA rich fish oil concentrate on platelet aggregation and the release and the metabolism of (/sup 1 -14/C)arachidonic acid and ((U)-/sup 14/C)eicosapentaenoic acid by human platelets was studied. Eight healthy male subjects ingested 18 capsules of fish oil concentrate (EPA 1.4 g) per day for 4 weeks. Plasma and platelet concentrations of EPA markedly increased, while those of arachidonic acid (C20:4 omega 6, AA) and docosahexaenoic acid (C22:6 omega 3, DHA) did not change. Platelet aggregation induced by collagen and ADP was reduced. Collagen induced (/sup 14/C)thromboxane B2 (TXB2) formation from (/sup 14/C)AA prelabeled platelets decreased. There was no detectable formation of (/sup 14/C)TXB3 from (/sup 14/C)EPA prelabeled platelets, and the conversion of exogenous (/sup 14/C)EPA to (/sup 14/C)TXB3 was lower than that of (/sup 14/C)AA to (/sup 14/C)TXB2. The release of (/sup 14/C)AA from (/sup 14/C)AA prelabeled platelets by collagen was significantly decreased. These observations raise the possibility that the release of arachidonic acid from platelet lipids might be affected by the alteration of EPA content in platelets.

  7. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  8. Amino acid composition and amino acid-metabolic network in supragingival plaque.

    PubMed

    Washio, Jumpei; Ogawa, Tamaki; Suzuki, Keisuke; Tsukiboshi, Yosuke; Watanabe, Motohiro; Takahashi, Nobuhiro

    2016-01-01

    Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque. PMID:27545001

  9. CACODYLIC ACID (DMAV): METABOLISM AND CARCINOGENIC MODE OF ACTION

    EPA Science Inventory

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic...

  10. Fatty acid metabolism: Implications for diet, genetic variation, and disease

    PubMed Central

    Suburu, Janel; Gu, Zhennan; Chen, Haiqin; Chen, Wei; Zhang, Hao; Chen, Yong Q.

    2014-01-01

    Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases. PMID:24511462

  11. [The physiology and pathology of bile acid metabolism].

    PubMed

    Coraggio, F; Farro, M; Spina, M

    1980-01-01

    The biochemistry and metabolism of bile acids are briefly described together with their importance in the maintenance of biliary homeostasis. An account is given os some situations in which such metabolism is impaired: in cirrhosis of the liver, an isotope technique was used to show a fall in cholic acid (expression of liver cell damage); in cholostasis, stress is laid on reduced bile acid synthesis and a simultaneous increase in sensitivity of the bile canicular epithelium to secretin stimulation. Lastly, evidence is produced to suggest that the diarrhoea which often recurs after extensive intestinal resection is secondary to an increase in intestinal AMPc cells induced by bile acids. PMID:6257207

  12. Amino Acids as Metabolic Substrates during Cardiac Ischemia

    PubMed Central

    Drake, Kenneth J.; Sidorov, Veniamin Y.; McGuinness, Owen P.; Wasserman, David H.; Wikswo, John P.

    2013-01-01

    The heart is well known as a metabolic omnivore in that it is capable of consuming fatty acids, glucose, ketone bodies, pyruvate, lactate, amino acids and even its own constituent proteins, in order of decreasing preference. The energy from these substrates supports not only mechanical contraction, but also the various transmembrane pumps and transporters required for ionic homeostasis, electrical activity, metabolism and catabolism. Cardiac ischemia – for example, due to compromise of the coronary vasculature or end-stage heart failure – will alter both electrical and metabolic activity. While the effects of myocardial ischemia on electrical propagation and stability have been studied in depth, the effects of ischemia on metabolic substrate preference has not been fully appreciated: oxygen deprivation during ischemia will significantly alter the relative ability of the heart to utilize each of these substrates. Although changes in cardiac metabolism are understood to be an underlying component in almost all cardiac myopathies, the potential contribution of amino acids in maintaining cardiac electrical conductance and stability during ischemia is underappreciated. Despite clear evidence that amino acids exert cardioprotective effects in ischemia and other cardiac disorders, their role in the metabolism of the ischemic heart has yet to be fully elucidated. This review synthesizes the current literature of the metabolic contribution of amino acids during ischemia by analyzing relevant historical and recent research. PMID:23354395

  13. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids.

    PubMed

    Tripathi, Preeti; Tripathi, Rudra Deo; Singh, Rana Pratap; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Adhikari, Bijan

    2013-02-01

    Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0-25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC(2), PC(3) and PC(4)) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs. PMID:23054772

  14. The Role of Circulating Amino Acids in the Hypothalamic Regulation of Liver Glucose Metabolism.

    PubMed

    Arrieta-Cruz, Isabel; Gutiérrez-Juárez, Roger

    2016-07-01

    A pandemic of diabetes and obesity has been developing worldwide in close association with excessive nutrient intake and a sedentary lifestyle. Variations in the protein content of the diet have a direct impact on glucose homeostasis because amino acids (AAs) are powerful modulators of insulin action. In this work we review our recent findings on how elevations in the concentration of the circulating AAs leucine and proline activate a metabolic mechanism located in the mediobasal hypothalamus of the brain that sends a signal to the liver via the vagus nerve, which curtails glucose output. This neurogenic signal is strictly dependent on the metabolism of leucine and proline to acetyl-coenzyme A (CoA) and the subsequent production of malonyl-CoA; the signal also requires functional neuronal ATP-sensitive potassium channels. The liver then responds by lowering the rate of gluconeogenesis and glycogenolysis, ultimately leading to a net decrease in glucose production and in concentrations of circulating glucose. Furthermore, we review here how our work with proline suggests a new role of astrocytes in the central regulation of glycemia. Last, we outline how factors such as the consumption of fat-rich diets can interfere with glucoregulatory mechanisms and, in the long term, may contribute to the development of hyperglycemia, a hallmark of type 2 diabetes. PMID:27422516

  15. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.

    PubMed

    Cheng, Gang; Shapir, Nir; Sadowsky, Michael J; Wackett, Lawrence P

    2005-08-01

    Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease. PMID:16085834

  16. Decreased consumption of branched chain amino acids improves metabolic health

    PubMed Central

    Arriola Apelo, Sebastian I.; Neuman, Joshua C.; Kasza, Ildiko; Schmidt, Brian A.; Cava, Edda; Spelta, Francesco; Tosti, Valeria; Syed, Faizan A.; Baar, Emma L.; Veronese, Nicola; Cottrell, Sara E.; Fenske, Rachel J.; Bertozzi, Beatrice; Brar, Harpreet K.; Pietka, Terri; Bullock, Arnold D.; Figenshau, Robert S.; Andriole, Gerald L.; Merrins, Matthew J.; Alexander, Caroline M.; Kimple, Michelle E.; Lamming, Dudley W.

    2016-01-01

    Protein restricted, high carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Further, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderately protein restricted (PR) diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet, via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health, and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet. PMID:27346343

  17. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  18. Quantitation of myocardial fatty acid metabolism using PET

    SciTech Connect

    Bergmann, S.R.; Weinheimer, C.J.; Markham, J.; Herrero, P.

    1996-10-01

    Abnormalities of fatty acid metabolism in the heart presage contractile dysfunction and arrhythmias. This study was performed to determine whether myocardial fatty acid metabolism could be quantified noninvasively using PET and 1-{sup 11}C-palmitate. Anesthetized dogs were studied during control conditions; during administration of dobutamine; after oxfenicine; and during infusion of glucose. Dynamic PET data after administration of 1-{sup 11}C-palmitate were fitted to a four-compartment mathematical model. Modeled rates of palmitate utilization correlated closely with directly measured myocardial palmitate and total long-chain fatty acid utilization (r = 0.93 and 0.96, respectively, p < 0.001 for each) over a wide range of arterial fatty acid levels and altered patterns of myocardial substrate use (fatty acid extraction fraction ranging from 1% to 56%, glucose extraction fraction from 1% to 16% and myocardial fatty acid utilization from 1 to 484 nmole/g/min). The percent of fatty acid undergoing oxidation could also be measured. The results demonstrate the ability to quantify myocardial fatty acid utilization with PET. The approach is readily applicable for the determination of fatty acid metabolism noninvasively in patients. 37 refs., 5 figs., 4 tabs.

  19. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  20. Metabolomics revealed diurnal heat stress and zinc supplementation-induced changes in amino acid, lipid, and microbial metabolism.

    PubMed

    Wang, Lei; Urriola, Pedro E; Luo, Zhao-Hui; Rambo, Zachary J; Wilson, Mark E; Torrison, Jerry L; Shurson, Gerald C; Chen, Chi

    2016-01-01

    Heat stress (HS) dramatically disrupts the events in energy and nutrient metabolism, many of which requires zinc (Zn) as a cofactor. In this study, metabolic effects of HS and Zn supplementation were evaluated by examining growth performance, blood chemistry, and metabolomes of crossbred gilts fed with ZnNeg (no Zn supplementation), ZnIO (120 ppm ZnSO4), or ZnAA (60 ppm ZnSO4 + 60 ppm zinc amino acid complex) diets under diurnal HS or thermal-neutral (TN) condition. The results showed that growth performance was reduced by HS but not by Zn supplementation. Among measured serum biochemicals, HS was found to increase creatinine but decrease blood urea nitrogen (BUN) level. Metabolomic analysis indicated that HS greatly affected diverse metabolites associated with amino acid, lipid, and microbial metabolism, including urea cycle metabolites, essential amino acids, phospholipids, medium-chain dicarboxylic acids, fatty acid amides, and secondary bile acids. More importantly, many changes in these metabolite markers were correlated with both acute and adaptive responses to HS. Relative to HS-induced metabolic effects, Zn supplementation-associated effects were much more limited. A prominent observation was that ZnIO diet, potentially through its influences on microbial metabolism, yielded different responses to HS compared with two other diets, which included higher levels of short-chain fatty acids (SCFAs) in cecal fluid and higher levels of lysine in the liver and feces. Overall, comprehensive metabolomic analysis identified novel metabolite markers associated with HS and Zn supplementation, which could guide further investigation on the mechanisms of these metabolic effects. PMID:26755737

  1. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  2. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2014-01-01

    Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. PMID:25093613

  3. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  4. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  5. Fatty acids from diet and microbiota regulate energy metabolism

    PubMed Central

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system. PMID:27006755

  6. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance. PMID:17003226

  7. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  8. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  9. Effect of borage oil consumption on fatty acid metabolism, transepidermal water loss and skin parameters in elderly people.

    PubMed

    Brosche, T; Platt, D

    2000-01-01

    Human skin is not able to biosynthesize gamma-linolenic acid (GLA, 18:3omega6) from the precursor linoleic acid (LA), or arachidonic acid (AA) from dihomo-gamma-linolenic acid (DHGLA). Dietary supplementation with GLA-rich seed oil of borage skips the step of hepatic 6-desaturation of fatty acids (FA) and, therefore, compensates the lack of these essential FA in conditions with impaired activity of delta 6-desaturase. Twenty-nine healthy elderly people (mean age 68.6 years), received a daily dose of 360 or 720 mg GLA for 2 months, using Borage oil in gelatine capsules (Quintesal 180, manufacturer Galderma Laboratorium GmbH, Freiburg, Germany). The effects of fatty acids derived from ingested borage oil capsules on skin barrier function were assessed by measurement of transepidermal water loss (TEWL). The consumption of borage oil induced a statistically significant improvement of cutaneous barrier function in the elderly people, as reflected in a mean decrease of 10.8% in the transepidermal water loss. Thirty-four percent of the people noted itch before borage oil consumption and 0% afterwards. Dry skin was claimed to be reduced from 42 to 14%, but no significant alteration of skin hydration was measured. The FA-composition of erythrocyte membrane phospholipids demonstrated an increase of GLA (+70%) and DHGLA (+18%) and a reduction of saturated and monounsaturated FA. There was no significant alteration in nervonic acid or in AA content, but an increase in the DHGLA/AA ratio (+23%). Thus, the consumption of borage oil by elderly people lead to alteration of FA metabolism and improved skin function. PMID:15374040

  10. Metabolism of Ferulic Acid by Paecilomyces variotii and Pestalotia palmarum

    PubMed Central

    Rahouti, Mohammed; Seigle-Murandi, Françoise; Steiman, Régine; Eriksson, Karl-Erik

    1989-01-01

    Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions. Images PMID:16348018

  11. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    NASA Technical Reports Server (NTRS)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  12. Modulation of Arachidonic Acid Metabolism in the Rat Kidney by Sulforaphane: Implications for Regulation of Blood Pressure

    PubMed Central

    2014-01-01

    Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure. PMID:24734194

  13. Modulation of arachidonic Acid metabolism in the rat kidney by sulforaphane: implications for regulation of blood pressure.

    PubMed

    Elbarbry, Fawzy; Vermehren-Schmaedick, Anke; Balkowiec, Agnieszka

    2014-01-01

    Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure. PMID:24734194

  14. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells.

    PubMed

    Mazzio, Elizabeth A; Smith, Bruce; Soliman, Karam F A

    2010-06-01

    Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O(2). While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1-10 mM) +/- mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP(+)) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pH(ex)) from neutral to 6.7 +/- 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 +/- 0.5 mM; +GLU 12.35 +/- 1.3 mM; +GLU + MPP 18.1 +/- 1.8 mM), acetate (Ctrl 0.84 +/- 0.13 mM: +GLU 1.3 +/- 0.15 mM; +GLU + MPP 2.7 +/- 0.4 mM), fumarate, and a-ketoglutarate (<10 microM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection-LC show accumulation of L: -alanine (1.6 +/- .052 mM), L: -glutamate (285 +/- 9.7 microM), L: -asparagine (202 +/- 2.1 microM), and L: -aspartate (84.2 +/- 4.9 microM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde

  15. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  16. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  17. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    PubMed

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. PMID:20022733

  18. EFFECTS OF PHOSGENE EXPOSURE ON LUNG ARACHIDONIC ACID METABOLISM

    EPA Science Inventory

    Phosgene is a pulmonary toxicant that can produce lung edema, bronchoconstriction, and immune suppression following an acute exposure. he response of the lung to phosgene inhalation may be mediated through alternations in the metabolism of arachidonic acid to the biologically pot...

  19. Protein and amino acid metabolism in the human newborn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, ...

  20. Carbohydrate and amino acid metabolism of Spironucleus vortens.

    PubMed

    Millet, Coralie O M; Lloyd, David; Coogan, Michael P; Rumsey, Joanna; Cable, Joanne

    2011-09-01

    The metabolism of Spironucleus vortens, a parasitic, diplomonad flagellate related to Giardia intestinalis, was investigated using a combination of membrane inlet mass spectrometry, (1)H NMR, (13)C NMR, bioscreen continuous growth monitoring, and ion exchange chromatography. The products of glucose-fuelled and endogenous metabolism were identified by (1)H NMR and (13)C NMR as ethanol, acetate, alanine and lactate. Mass spectrometric monitoring of gas metabolism in buffered cell suspensions showed that glucose and ethanol could be used by S. vortens as energy-generating substrates, but bioscreen automated monitoring of growth in culture medium, as well as NMR analyses, suggested that neither of these compounds are the substrates of choice for this organism. Ion-exchange chromatographic analyses of free amino-acid and amino-acid hydrolysate of growth medium revealed that, despite the availability of large pools of free amino-acids in the medium, S. vortens hydrolysed large amounts of proteins during growth. The organism produced alanine and aspartate, and utilised lysine, arginine, leucine, cysteine and urea. However, mass spectrometric and bioscreen investigations showed that addition of the utilised amino acids to diluted culture medium did not induce any significant increase in metabolic or growth rates. Moreover, as no significant amounts of ornithine were produced, and addition of arginine under aerobic conditions did not generate NO production, there was no evidence of the presence of an energy-generating, arginine dihydrolase pathway in S. vortens under in vitro conditions. PMID:21679707

  1. Role of Intestinal Microflora in the Metabolism of Guanidinosuccinic Acid

    PubMed Central

    Milstien, Sheldon; Goldman, Peter

    1973-01-01

    Among a variety of bacteria isolated from the gastrointestinal tracts of rats and humans, only streptococci of group N are capable of degrading guanidinosuccinic acid added to their culture medium. The urinary excretion of guanidinosuccinic acid by germfree rats is greater than that of conventional rats. The excretion of this compound by gnotobiotic rats correlates with the capacity of their intestinal microflora to degrade guanidinosuccinic acid in culture. Thus, guanidinosuccinic acid excretion is low in rats infected exclusively with Streptococcus faecalis, and the excretion is not altered when germfree rats are infected with an organism unable to degrade guanidinosuccinic acid (Lactobacillus). These findings suggest that the intestinal microflora, particularly Streptococcus, play a role in the metabolism of guanidinosuccinic acid by the host. PMID:4196249

  2. Role of mitochondrial transamination in branched chain amino acid metabolism

    SciTech Connect

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  3. Transport, metabolism, and effect of chronic feeding of lagodeoxycholic acid. A new, natural bile acid.

    PubMed

    Schmassmann, A; Angellotti, M A; Clerici, C; Hofmann, A F; Ton-Nu, H T; Schteingart, C D; Marcus, S N; Hagey, L R; Rossi, S S; Aigner, A

    1990-10-01

    Ursodeoxycholic acid, the 7 beta-hydroxy epimer of chenodeoxycholic acid, is more hydrophilic and less hepatotoxic than chenodeoxycholic acid. Because "lagodeoxycholic acid," the 12 beta-hydroxy epimer of deoxycholic acid, is also more hydrophilic than deoxycholic acid, it was hypothesized that it should also be less hepatotoxic than deoxycholic acid. To test this, lagodeoxycholic acid was synthesized, and its transport and metabolism were examined in the rat, rabbit, and hamster. The taurine conjugate of lagodeoxycholic acid was moderately well transported by the perfused rat ileum (Tmax = 2 mumol/min.kg). In rats and hamsters with biliary fistulas, the taurine conjugate of lagodeoxycholic acid was well transported by the liver with a Tmax greater than 20 mumol/min.kg; for the taurine conjugate of deoxycholic acid, doses infused at a rate greater than 2.5 mumol/min.kg are known to cause cholestasis and death. Hepatic biotransformation of lagodeoxycholic acid in the rabbit was limited to conjugation with glycine; in the hamster, lagodeoxycholic acid was conjugated with glycine or taurine; in addition, 7-hydroxylation occurred to a slight extent (approximately 10%). When lagodeoxycholic acid was instilled in the rabbit colon, it was absorbed as such although within hours it was progressively epimerized by bacteria to deoxycholic acid. When injected intravenously and allowed to circulate enterohepatically, lagodeoxycholic acid was largely epimerized to deoxycholic acid in 24 hours. Surgical creation of a distal ileostomy abolished epimerization in the rabbit, indicating that exposure to colonic bacterial enzymes was required for the epimerization. Lagodeoxycholic acid was administered for 3 weeks at a dose of 180 mumol/day (0.1% by weight of a chow diet; 2-4 times the endogenous bile acid synthesis rate); other groups received identical doses of deoxycholic acid (hamster) or cholyltaurine, a known precursor of deoxycholic acid (rabbit). After 3 weeks of

  4. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  5. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    SciTech Connect

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-09-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production.

  6. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  7. Taurocholic acid metabolism by gut microbes and colon cancer.

    PubMed

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-01

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  8. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    PubMed

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production. PMID:26384571

  9. Effect of adding amino acids residues in N- and C-terminus of Vip3Aa16 (L121I) toxin.

    PubMed

    Sellami, Sameh; Cherif, Marwa; Jamoussi, Kaïs

    2016-06-01

    To study the importance of N- and C-terminus of Bacillus thuringiensis Vip3Aa16 (L121I) toxin (88 kDa), a number of mutants were generated. The addition of two (2R: RS) or eleven (11R: RSRPGHHHHHH) amino acid residues at the Vip3Aa16 (L121I) C-terminus allowed to an unappropriated folding illustrated by the abundant presence of the 62 kDa proteolytic form. The produced Vip3Aa16 (L121I) full length form was less detected when increasing the number of amino acids residues in the C-terminus. Bioassays demonstrated that the growth of the lepidopteran Ephestia kuehniella was slightly affected by Vip3Aa16 (L121I)-2R and not affected by Vip3Aa16 (L121I)-11R. Additionally, the fusion at the Vip3Aa16 (L121I) N-terminus of 39 amino acids harboring the E. coli OmpA leader peptide and the His-tag sequence allowed to the increase of protease sensitivity of Vip3Aa16 (L121I) full length form, as only the 62 kDa proteolysis form was detected. Remarkably, this fused protein produced in Escherichia coli (E. coli) was biologically inactive toward Ephestia kuehniella larvae. Thus, the N-terminus of the protein is required to the accomplishment of the insecticidal activity of Vip3 proteins. This report serves as guideline for the study of Vip3Aa16 (L121I) protein stability and activity. PMID:26876111

  10. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.

    PubMed

    Blazeck, John; Miller, Jarrett; Pan, Anny; Gengler, Jon; Holden, Clinton; Jamoussi, Mariam; Alper, Hal S

    2014-10-01

    Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity. PMID:24997118

  11. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

  12. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    PubMed Central

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  13. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes.

    PubMed

    Kurek, Anna; Grudniak, Anna M; Szwed, Magdalena; Klicka, Anna; Samluk, Lukasz; Wolska, Krystyna I; Janiszowska, Wirginia; Popowska, Magdalena

    2010-01-01

    The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids. PMID:19894138

  14. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  15. Ruminal protein metabolism and intestinal amino acid utilization as affected by dietary protein and carbohydrate sources in sheep.

    PubMed

    Hussein, H S; Jordan, R M; Stern, M D

    1991-05-01

    Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein. PMID:1648551

  16. Metabolism of arachidonic acid in 1 yr old New Zealand white (NZW) and watanabe heritable hyperlipidemic (WHHL) rabbit aortas

    SciTech Connect

    Pfister, S.L.; Schmitz, J.M.; Willerson, J.T.; Campbell, W.B.

    1986-03-01

    This study was designed to characterize the metabolism of arachidonic acid (AA) in normal and atherosclerotic aortas. Segments of aortas were obtained from 1 yr old NZW rabbits, and WHHL rabbits, a genetic model of athero-sclerosis resembling familial hypercholesterolemia. Aortas were incubated at 37/sup 0/C for 15 min with /sup 14/C-AA (5 x 10/sup -5/M) during stimulation by A23187. The media was extracted using octadecylsilica columns and resolved into metabolites by reverse-phase HPLC. Prostaglandins (PGs) were identified by comigration of /sup 14/C-metabolites with standards. The monoxygenated metabolites of AA (HETEs) were resolved by normal-phase HPLC, and their structures confirmed by GC-MS. In extracts from NZW and WHHL aortas, approximately 14% and 6% of the total radioactivity was converted to PGs and HETEs, respectively. The major PG produced by NZW and WHHL aortas was 6-keto PGF/sub 1..cap alpha../ with lesser amounts of PGE/sub 2/. Similarly, NZW and WHHL aortas produced primarily 12- and 15-HETE with lesser amounts of 11-, 9-, 8-, and 5-HETE. There were no qualitative differences between NZW and WHHL aortas in PG and HETE production. Therefore, despite extensive atherosclerosis in aortas of WHHL rabbits, the vessels maintain the ability to synthesize PGs and HETEs.

  17. Phenoloxidase production and vanillic acid metabolism by Zygomycetes.

    PubMed

    Seigle-Murandi, F; Guiraud, P; Steiman, R; Benoit-Guyod, J L

    1992-04-01

    The ability of 23 strains of Zygomycetes to produce extracellular phenoloxidases was examined on solid media by using 10 different reagents. The results varied depending on the reagent and indicated that most of the strains were devoid of phenoloxidase activity. The production of inducible phenoloxidases was demonstrated by the Bavendamm reaction. The study of the biotransformation of vanillic acid in synthetic medium indicated that the reaction most often obtained was the reduction of vanillic acid to vanillyl alcohol. Helicostylum piriforme and Rhizopus microsporus var. chinensis completely metabolized vanillic acid while good transformation was obtained with Absidia spinosa, Cunninghamella bainieri, Mucor bacilliformis, Mucor plumbeus, Rhizopus arrhizus, Rhizopus stolonifer, Syncephalastrum racemosum and Zygorhynchus moelleri. Other strains did not degrade or poorly degraded vanillic acid. Decarboxylation and demethoxylation of this compound was independent of the production of phenoloxidases as in the case of white-rot fungi. Other enzymatic systems might be implicated in this phenomenon. PMID:1602986

  18. Fatty Acids in Energy Metabolism of the Central Nervous System

    PubMed Central

    Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups. PMID:24883315

  19. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea.

    PubMed

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-08-14

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  20. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    PubMed Central

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  1. Transport and metabolism of glycolic acid by Chlamydomonas reinhardtii

    SciTech Connect

    Wilson, B.J.

    1987-01-01

    In order to understand the excretion of glycolate from Chlamydomonas reinhardtii, the conditions affecting glycolate synthesis and metabolism were investigated. Although glycolate is synthesized only in the light, the metabolism occurs in the light and dark with greater metabolism in the light due to refixation of photorespiratory CO/sub 2/. The amount of internal glycolate will affect the metabolism of externally added glycolate. When glycolate synthesis exceeds the metabolic capacity, glycolate is excreted from the cell. The transport of glycolate into the cells occurs very rapidly. Equilibrium is achieved at 4/sup 0/C within the time cells are pelleted by the silicone oil centrifugation technique through a layer of (/sup 14/C) glycolate. Glycolate uptake does not show the same time, temperature and pH dependencies as diffusion of benzoate. Uptake can be inhibited by treatment of cells with N-ethylmaleimide and stimulated in the presence of valino-mycin/KCl. Acetate and lactate are taken up as quickly as glycolate. The hypothesis was made that glycolate is transported by a protein carrier that transports monocarboxylic acids. The equilibrium concentration of glycolate is dependent on the cell density, implying that there may be a large number of transporter sites and that uptake is limited by substrate availability.

  2. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    PubMed Central

    Ceusters, Johan; Borland, Anne M.; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P.

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m–2 s–1) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea ‘Maya’. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  3. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism.

    PubMed

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-07-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m(-2) s(-1)) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea 'Maya'. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  4. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study.

    PubMed

    Ohide, Hiroko; Miyoshi, Yurika; Maruyama, Rindo; Hamase, Kenji; Konno, Ryuichi

    2011-11-01

    It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases. PMID:21757409

  5. Adipose tissue fatty acid metabolism during pregnancy in swine.

    PubMed

    McNamara, J P; Dehoff, M H; Collier, R J; Bazer, F W

    1985-08-01

    In vitro adipose tissue fatty acid pool size (POOL), fatty acid release (FAR) and esterification (EST) were measured in peritoneal (PFP) and subcutaneous mammary (MFP) fat pads of swine at d 15, 30, 45, 60, 75, 90, 105 and 112 of pregnancy. Plasma free fatty acids (FFA) and triglycerides (TG) were not altered by stage of pregnancy. Basal EST in PFP was generally constant across pregnancy with a peak at d 75. Basal EST in MFP was elevated at d 30, 75 and 112. Esterification in response to norepinephrine stimulus (NE) was lower than basal rates in both fat depots. Basal FAR was constant throughout pregnancy in PFP, but elevated at d 75 and 90 in MFP. Fatty acid release in response to NE was biphasic with peaks at d 30 and in late pregnancy (in MFP, micromolar FAR in response to NE was 69.3% greater on d 75 to 112 than on d 45 to 60). Basal POOL was constant throughout pregnancy in both depots and lower than NE-stimulated POOL. All responses to NE were greater in MFP than in PFP, indicating that adipose tissue surrounding the developing mammary gland had higher metabolic activity and a greater response to NE than peritoneal adipose. Changes in fatty acid metabolism during pregnancy in swine are temporally related to published values for plasma steroids, fetal growth and mammary development. Metabolic adaptations in adipose and mannary epithelial tissue occur in synchrony with changing plasma estrogen concentrations, redirecting energy flow from maternal adipose tissue toward developing mammary and fetal tissue. PMID:4044440

  6. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  7. Radiometric measurement of differential metabolism of fatty acid by mycobacteria

    SciTech Connect

    Camargo, E.E.; Kertcher, J.A.; Larson, S.M.; Tepper, B.S.; Wagner, H.N. Jr.

    1982-06-01

    An assay system has been developed based on automated radiometric quantification of /sup 14/CO2 produced through oxidation of (1-/sup 14/C) fatty acids by mycobacteria. Two stains of M. tuberculosis (H37Rv and Erdman) and one of M. bovis (BCG) in 7H9 medium (ADC) with 1.0 microCi of one of the fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic) were studied. Results previously published on M. lepraemurium (Hawaiian) were also included for comparison. Both strains of M. tuberculosis had maximum /sup 14/CO2 production from hexanoic acid. Oxidation of butyric and avid oxidation of lauric acids were also found with the H37Rv strain but not with Erdman. In contrast, /sup 14/CO2 production by M. bovis was greatest from lauric and somewhat less from decanoic acid. M. lepraemurium showed increasing oxidation rates from myristic, decanoic and lauric acids. Assimilation studies of M. tuberculosis H37Rv confirmed that most of the oxidized substrates were converted into by-products with no change in those from which no oxidation was found. These data suggest that the radiometric measurement of differential fatty acid metabolism may provide a basis of strain identification of the genus Mycobacterium.

  8. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    PubMed

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  9. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism[S

    PubMed Central

    Van Veldhoven, Paul P.

    2010-01-01

    In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, α-oxidation and β-oxidation; the latter pathway can also handle ω-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases. PMID:20558530

  10. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana

    PubMed Central

    Binder, Stefan

    2010-01-01

    Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana. PMID:22303262

  11. Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation.

    PubMed

    Graulet, B; Matte, J J; Desrochers, A; Doepel, L; Palin, M-F; Girard, C L

    2007-07-01

    The present experiment was undertaken to determine the effects of dietary supplements of folic acid and vitamin B12 given from 3 wk before to 8 wk after calving on lactational performance and metabolism of 24 multiparous Holstein cows assigned to 6 blocks of 4 cows each according to their previous milk production. Supplementary folic acid at 0 or 2.6 g/d and vitamin B12 at 0 or 0.5 g/d were used in a 2 x 2 factorial arrangement. Supplementary folic acid increased milk production from 38.0 +/- 0.9 to 41.4 +/- 1.0 kg/d and milk crude protein yield from 1.17 +/- 0.02 to 1.25 +/- 0.03 kg/d. It also increased plasma Gly, Ser, Thr, and total sulfur AA, decreased Asp, and tended to increase plasma Met. Supplementary B12 decreased milk urea N, plasma Ile, and Leu and tended to decrease Val but increased homocysteine, Cys, and total sulfur AA. Liver concentration of phospholipids was higher in cows fed supplementary B12. Plasma and liver concentrations of folates and B12 were increased by their respective supplements, but the increase in plasma folates and plasma and liver B12 was smaller for cows fed the 2 vitamins together. In cows fed folic acid supplements, supplementary B12 increased plasma glucose and alanine, tended to decrease plasma biotin, and decreased Km of the methylmalonyl-coenzyme A mutase in hepatic tissues following addition of deoxyadenosylcobalamin, whereas it had no effect when cows were not fed folic acid supplements. There was no treatment effect on plasma nonesterified fatty acids as well as specific activity and gene expression of Met synthase and methylmalonyl-coenzyme A mutase in the liver. Ingestion of folic acid supplements by cows fed no supplementary B12 increased total lipid and triacylglycerols in liver, whereas these supplements had no effect in cows supplemented with B12. The increases in milk and milk protein yields due to folic acid supplements did not seem to be dependent on the vitamin B12 supply. However, when vitamin B12 was given in

  12. Effect of Dietary L-ascorbic Acid (L-AA) on Production Performance, Egg Quality Traits and Fertility in Japanese Quail (Coturnix japonica) at Low Ambient Temperature.

    PubMed

    Shit, N; Singh, R P; Sastry, K V H; Agarwal, R; Singh, R; Pandey, N K; Mohan, J

    2012-07-01

    Environmental stress boosts the levels of stress hormones and accelerates energy expenditure which subsequently imbalance the body's homeostasis. L-ascorbic acid (L-AA) has been recognized to mitigate the negative impact of environmental stress on production performances in birds. The present investigation was carried out to elucidate the effect of different dietary levels of L-AA on production performance, egg quality traits and fertility in Japanese quail at low ambient temperature. Sixty matured females (15 wks) were equally divided into three groups (20/group) based on the different dietary levels of L-AA (0, 250 and 500 ppm) and coupled with an equal number of males (1:1) obtained from the same hatch. They were managed in uniform husbandry conditions without restriction of feed and water at 14 h photo-schedule. Except for feed efficiency, body weight change, feed consumption and hen-day egg production were recorded highest in 500 ppm L-AA supplemented groups. Among the all egg quality traits studied, only specific gravity, shell weight and thickness differed significantly (p<0.05) in the present study. Fertility was improved significantly (p<0.01) to a dose dependent manner of L-AA. The findings of the present study concluded that dietary L-AA can be a caring management practice at least in part to alleviate the adverse effect of cold induced stress on production performance in Japanese quail. PMID:25049657

  13. Ascorbic acid, cognitive function, and Alzheimer's disease: a current review and future direction.

    PubMed

    Bowman, Gene L

    2012-01-01

    This narrative review appraises the human and animal studies implicating ascorbic acid (AA) in normal cognitive function and Alzheimer's disease. A research framework for how nutrition affects brain aging is proposed with emphasis on AA intake, status, metabolism, and transport into brain tissue. A final synopsis highlights areas for future research regarding AA nourishment and healthy brain aging. PMID:22419527

  14. Adipose tissue n-3 fatty acids and metabolic syndrome

    PubMed Central

    Cespedes, Elizabeth; Baylin, Ana; Campos, Hannia

    2014-01-01

    Background Evidence regarding the relationship of n-3 fatty acids (FA) to type 2 diabetes (T2D) and metabolic syndrome components (MetS) is inconsistent. Objective To examine associations of adipose tissue n-3 FA with MetS. Design We studied 1611 participants without prior history of diabetes or heart disease who were participants in a population-based case-control study of diet and heart disease (The Costa Rica Heart Study). We calculated prevalence ratios (PR) and 95% confidence intervals (CI) for MetS by quartile of n-3 FA in adipose tissue derived mainly from plants [α-Linolenic acid (ALA)], fish [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], or metabolism [docosapentaenoic acid (DPA), as well as the EPA:ALA ratio, a surrogate marker of delta-6 desaturase activity]. Results N-3 FA levels in adipose tissue were associated with MetS prevalence in opposite directions. The PR (95% CI) for the highest compared to the lowest quartile adjusted for age, sex, BMI, residence, lifestyle, diet and other fatty acids were 0.60 (0.44, 0.81) for ALA, 1.43 (1.12, 1.82) for EPA, 1.63 (1.22, 2.18) for DPA, and 1.47 (1.14, 1.88) for EPA:ALA, all p for trend <0.05. Although these associations were no longer significant (except DPA) after adjustment for BMI, ALA and DPA were associated with lower glucose and higher triglyceride levels, p<0.05 (respectively). Conclusions These results suggest that ALA could exert a modest protective benefit, while EPA and DHA are not implicated in MetS. The positive associations for DPA and MetS could reflect higher delta-6 desaturase activity caused by increased adiposity. PMID:25097001

  15. In vitro metabolism and metabolic effects of ajulemic acid, a synthetic cannabinoid agonist.

    PubMed

    Burstein, Sumner H; Tepper, Mark A

    2013-12-01

    Ajulemic acid is a synthetic analog of Δ(8)-THC-11-oic acid, the terminal metabolite of Δ(8)-THC. Unlike Δ(9)-THC, the psychoactive principle of Cannabis, it shows potent anti-inflammatory action and has minimal CNS cannabimimetic activity. Its in vitro metabolism by hepatocytes from rats, dogs, cynomolgus monkeys and humans was studied and the results are reported here. Five metabolites, M1 to M5, were observed in human hepatocyte incubations. One metabolite, M5, a glucuronide, was observed in the chromatogram of canine hepatocyte incubations. In monkey hepatocyte incubations, M5 was observed in the chromatograms of both the 120 and 240 min samples, trace metabolite M1 (side-chain hydroxyl) was observed in the 120 min samples, and trace metabolite M4 (side-chain dehydrogenation) was observed in the 240 min samples. No metabolites were found in the rat hepatocyte incubations. Unchanged amounts of ajulemic acid detected after the 2-h incubation were 103%, 90%, 86%, and 83% for rat, dog, monkey, and human hepatocytes, respectively. Additional studies were done to ascertain if ajulemic acid can inhibit the activities of five principal human cytochrome P450 isozymes; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5. In contrast to the phytocannabinoids Δ(9)-THC and CBD, no significant inhibition of cytochrome activity was observed. These data further support the conclusions reached in earlier reports on ajulemic acid's high margin of safety and suggest that it undergoes minimal metabolism and is not likely to interfere with the normal metabolism of drugs or endogenous substances. PMID:25505570

  16. In vitro metabolism and metabolic effects of ajulemic acid, a synthetic cannabinoid agonist

    PubMed Central

    Burstein, Sumner H; Tepper, Mark A

    2013-01-01

    Ajulemic acid is a synthetic analog of Δ8-THC-11-oic acid, the terminal metabolite of Δ8-THC. Unlike Δ9-THC, the psychoactive principle of Cannabis, it shows potent anti-inflammatory action and has minimal CNS cannabimimetic activity. Its in vitro metabolism by hepatocytes from rats, dogs, cynomolgus monkeys and humans was studied and the results are reported here. Five metabolites, M1 to M5, were observed in human hepatocyte incubations. One metabolite, M5, a glucuronide, was observed in the chromatogram of canine hepatocyte incubations. In monkey hepatocyte incubations, M5 was observed in the chromatograms of both the 120 and 240 min samples, trace metabolite M1 (side-chain hydroxyl) was observed in the 120 min samples, and trace metabolite M4 (side-chain dehydrogenation) was observed in the 240 min samples. No metabolites were found in the rat hepatocyte incubations. Unchanged amounts of ajulemic acid detected after the 2-h incubation were 103%, 90%, 86%, and 83% for rat, dog, monkey, and human hepatocytes, respectively. Additional studies were done to ascertain if ajulemic acid can inhibit the activities of five principal human cytochrome P450 isozymes; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5. In contrast to the phytocannabinoids Δ9-THC and CBD, no significant inhibition of cytochrome activity was observed. These data further support the conclusions reached in earlier reports on ajulemic acid's high margin of safety and suggest that it undergoes minimal metabolism and is not likely to interfere with the normal metabolism of drugs or endogenous substances. PMID:25505570

  17. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans

    PubMed Central

    Glynn, Erin L.; Piner, Lucy W.; Huffman, Kim M.; Slentz, Cris A.; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga R.; Stevens, Robert D.; Porter Starr, Kathryn N.; Bales, Connie W.; Volpi, Elena; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.

    2016-01-01

    Aims/hypotheses Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Methods Whole-body leucine turnover, IS by hyperinsulinaemic–euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). Results IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. Conclusions/interpretation A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Trial registration Clinicaltrials.gov NCT01786941 PMID:26254576

  18. Metabolic modeling of fumaric acid production by Rhizopus arrhizus

    SciTech Connect

    Gangl, I.C.; Weigand, W.W.; Keller, F.A.

    1991-12-31

    A metabolic model is developed for fumaric acid production by Rhizopus arrhizus. The model describes the reaction network and the extents of reaction in terms of the concentrations of the measurable species. The proposed pathway consists of the Embden-Meyerhof pathway and two pathways to FA production, both of which require CO{sub 2} fixation (the forward and the reverse TCA cycles). Relationships among the measurable quantities, in addition to those obtainable by a macroscopic mass balance, are found by invoking a pseudo-steady-state assumption on the nonaccumulating species in the pathway. Applications of the metabolic model, such as verifying the proposed pathway, obtaining the theoretical yield and selectivity, and detecting experimental errors, are discussed.

  19. Evaluation of myocardial metabolism, with /sup 13/N- and /sup 11/C-labeled amino acids and positron computed tomography

    SciTech Connect

    Henze, E.; Schelbert, H.R.; Barrio, J.R.; Egbert, J.E.; Hansen, H.W.; MacDonald, N.S.; Phelps, M.E.

    1982-08-01

    To evaluate the utility of labeled L-amino acids (AA) for imaging regional myocardial AA metabolism by positron computed tomography (PCT), the myocardial uptake and clearance of Ala,* Glu, Gln, Asp, Leu tagged with /sup 13/N, and of /sup 11/C-tagged Asp, and oxaloacetate (Oxal), were examined in 44 experiments at control, during ischemia, and after transaminase inhibition. The myocardial time-activity curves recorded after intracoronary tracer injection had two clearance phases (an early and a late) for all /sup 13/N AA, and three (early, intermediate, late) for the two /sup 11/C compounds, with significantly different clearance half-times of 18.7 +/- 8.0 (s.d.) sec for the early phase, 141.7 +/- 56.5 sec for the intermediate, and 61.2 +/- 43.5 min for the late phase. The residual fractions ranged from 0.07 to 0.23 in normal myocardium, and consistently increased with ischemia by 0.01-0.07 for /sup 13/N-labeled Ala, Glu, Asp, and Leu, but not for /sup 13/N Gln and /sup 11/C compounds. Transaminase inhibition shortened the half-times of the late phases of /sup 13/N-labeled Ala, Glu, Asp, and Leu; had no effect on t1/2 of /sup 13/N Gln and /sup 11/C Oxal; and resulted in a loss of /sup 11/C CO/sub 2/ production and of the intermediate phase for /sup 11/C Asp. On the PCT images, /sup 13/N activity from labeled Ala and Glu was not decreased in an ischemic segment despite a significant flow reduction, as demonstrated by /sup 13/N NH/sub 3/ imaging and labeled microspheres. From the results, a three-compartment tracer kinetic model is proposed for the noninvasive quantification of Krebscycle activity, protein synthesis, and metabolic derangements related to ischemia.

  20. Presystemic metabolism and intestinal absorption of antipsoriatic fumaric acid esters.

    PubMed

    Werdenberg, D; Joshi, R; Wolffram, S; Merkle, H P; Langguth, P

    2003-09-01

    Psoriasis is a chronic inflammatory skin disease. Its treatment is based on the inhibition of proliferation of epidermal cells and interference in the inflammatory process. A new systemic antipsoriasis drug, which consists of dimethylfumarate and ethylhydrogenfumarate in the form of their calcium, magnesium and zinc salts has been introduced in Europe with successful results. In the present study, a homologous series of mono- and diesters of fumaric acid has been studied with respect to the sites and kinetics of presystemic ester degradation using pancreas extract, intestinal perfusate, intestinal homogenate and liver S9 fraction. In addition, intestinal permeability has been determined using isolated intestinal mucosa as well as Caco-2 cell monolayers, in order to obtain estimates of the fraction of the dose absorbed for these compounds. Relationships between the physicochemical properties of the fumaric acid esters and their biological responses were investigated. The uncharged diester dimethylfumarate displayed a high presystemic metabolic lability in all metabolism models. It also showed the highest permeability in the Caco-2 cell model. However, in permeation experiments with intestinal mucosa in Ussing-type chambers, no undegraded DMF was found on the receiver side, indicating complete metabolism in the intestinal tissue. The intestinal permeability of the monoesters methyl hydrogen fumarate, ethyl hydrogen fumarate, n-propylhydrogen fumarate and n-pentyl hydrogen fumarate increased with an increase in their lipophilicity, however, their presystemic metabolism rates likewise increased with increasing ester chain length. It is concluded that for fumarates, an increase in intestinal permeability of the more lipophilic derivatives is counterbalanced by an increase in first-pass extraction. PMID:12973823

  1. Exploring De Novo metabolic pathways from pyruvate to propionic acid.

    PubMed

    Stine, Andrew; Zhang, Miaomin; Ro, Soo; Clendennen, Stephanie; Shelton, Michael C; Tyo, Keith E J; Broadbelt, Linda J

    2016-03-01

    Industrial biotechnology provides an efficient, sustainable solution for chemical production. However, designing biochemical pathways based solely on known reactions does not exploit its full potential. Enzymes are known to accept non-native substrates, which may allow novel, advantageous reactions. We have previously developed a computational program named Biological Network Integrated Computational Explorer (BNICE) to predict promiscuous enzyme activities and design synthetic pathways, using generalized reaction rules curated from biochemical reaction databases. Here, we use BNICE to design pathways synthesizing propionic acid from pyruvate. The currently known natural pathways produce undesirable by-products lactic acid and succinic acid, reducing their economic viability. BNICE predicted seven pathways containing four reaction steps or less, five of which avoid these by-products. Among the 16 biochemical reactions comprising these pathways, 44% were validated by literature references. More than 28% of these known reactions were not in the BNICE training dataset, showing that BNICE was able to predict novel enzyme substrates. Most of the pathways included the intermediate acrylic acid. As acrylic acid bioproduction has been well advanced, we focused on the critical step of reducing acrylic acid to propionic acid. We experimentally validated that Oye2p from Saccharomyces cerevisiae can catalyze this reaction at a slow turnover rate (10(-3) s(-1) ), which was unknown to occur with this enzyme, and is an important finding for further propionic acid metabolic engineering. These results validate BNICE as a pathway-searching tool that can predict previously unknown promiscuous enzyme activities and show that computational methods can elucidate novel biochemical pathways for industrial applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:303-311, 2016. PMID:26821575

  2. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  3. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  4. Metabolic interactions between vitamin A and conjugated linoleic acid.

    PubMed

    Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Ortiz, Berenice; Giordano, Elena; Belury, Martha A; Quadro, Loredana; Banni, Sebastiano

    2014-01-01

    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A. PMID:24667133

  5. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    SciTech Connect

    Loewus, F.A. . Inst. of Biological Chemistry); Seib, P.A. . Dept. of Grain Science and Industry)

    1990-01-01

    Sclerotinia sclerotiorum contains D-erythroascorbic acid (EAA) and a closely related reducing acid, possibly the open-chain form of EAA. The organism cleaves one of these products or possibly both to yield OA and D-glyceric acid. The OA is rapidly secreted into the medium. An analogy can be made between AA-linked OA biosynthesis in higher plants and EAA-linked OA biosynthesis in fungi as exemplified by S. sclerotiorum.

  6. The role of bile acids in metabolic regulation.

    PubMed

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. PMID:26733603

  7. Metabolism of Flavone-8-acetic Acid in Mice.

    PubMed

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  8. Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers.

    PubMed

    Pencek, R; Marmon, T; Roth, J D; Liberman, A; Hooshmand-Rad, R; Young, M A

    2016-09-01

    The bile acid analogue obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist in development for treatment of several chronic liver diseases. FXR activation regulates lipoprotein homeostasis. The effects of OCA on cholesterol and lipoprotein metabolism in healthy individuals were assessed. Two phase I studies were conducted to evaluate the effects of repeated oral doses of 5, 10 or 25 mg OCA on lipid variables after 14 or 20 days of consecutive administration in 68 healthy adults. Changes in HDL and LDL cholesterol levels were examined, in addition to nuclear magnetic resonance analysis of particle sizes and sub-fraction concentrations. OCA elicited changes in circulating cholesterol and particle size of LDL and HDL. OCA decreased HDL cholesterol and increased LDL cholesterol, independently of dose. HDL particle concentrations declined as a result of a reduction in medium and small HDL. Total LDL particle concentrations increased because of an increase in large LDL particles. Changes in lipoprotein metabolism attributable to OCA in healthy individuals were found to be consistent with previously reported changes in patients receiving OCA with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. PMID:27109453

  9. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    PubMed Central

    Baptissart, Marine; De Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor (TGR5). These recent studies have led to the idea that molecules derived from bile acids (BAs) and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases. PMID:26439743

  10. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  11. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    PubMed

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  12. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    PubMed Central

    Miller, Erica F.

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg2+ at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

  13. Metabolic Fate of Unsaturated Glucuronic/Iduronic Acids from Glycosaminoglycans

    PubMed Central

    Maruyama, Yukie; Oiki, Sayoko; Takase, Ryuichi; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2015-01-01

    Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of

  14. Untangling the complex relationship between dietary acid load and glucocorticoid metabolism.

    PubMed

    Weiner, I David

    2016-08-01

    The kidney's maintenance of the metabolic component of acid-base homeostasis is critical for normal health. The study by Esche and colleagues in this issue of Kidney International shows that normal children with higher levels of renal net acid excretion and of dietary acid loads have stimulation of glucocorticoid hormone metabolism. Thus, normal variations in dietary acid intake and renal net acid excretion have important biological correlates. PMID:27418088

  15. Myocardial metabolism of pantothenic acid in chronically diabetic rats.

    PubMed

    Beinlich, C J; Naumovitz, R D; Song, W O; Neely, J R

    1990-03-01

    Transport and metabolism of [3H]pantothenic acid ([3H]Pa) was investigated in hearts from control and streptozotocin-induced diabetic rats. In isolated perfused hearts from control animals, the transport of [3H]Pa was linear over 3 h of perfusion when 11 mM glucose was the only exogenous substrate. The in vitro transport of [3H]Pa by hearts from 48-h diabetic rats was reduced by 65% compared to controls and was linear over 2 h of perfusion with no further accumulation of Pa during the third hour. The defect in transport observed in vitro could be corrected by in vivo treatment with 4 U Lente insulin/day for 2 days. In vitro addition of insulin in the presence of 11 mM glucose or 11 mM glucose plus 1.2 mM palmitate had no effect on [3H]Pa transport in hearts from 48-h diabetic rats during 3 h of perfusion. Accumulation of [3H]Pa was not inhibited by inclusion of 0.7 mM amino acids, 1 mM carnitine, 50 microM mersalic acid or 1 mM panthenol, pantoyllactone or pantoyltaurine. Uptake was inhibited by 1 mM nonanoic, octanoic or heptanoic acid, 0.1 mM biotin or 0.25 mM probenecid, suggesting a requirement for the terminal carboxyl group for transport. Transport of pantothenic acid was reduced in hearts from diabetic rats within 24 h of injection of streptozotocin. In vitro accumulation of [3H]Pa decreased to 10% of control 1 week after streptozotocin injection and then remained at 30% of the control value over 10 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2141362

  16. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  17. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  18. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    PubMed Central

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  19. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  20. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  1. Phosphoenolpyruvate Carboxykinase in Plants Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Dittrich, P.; Campbell, Wilbur H.; Black, C. C.

    1973-01-01

    Phosphoenolpyruvate carboxykinase has been found in significant activities in a number of plants exhibiting Crassulacean acid metabolism. Thirty-five species were surveyed for phosphoenolpyruvate carboxykinase, phosphoenolpyruvate carboxylase, ribulose diphosphate carboxylase, malic enzyme, and malate dehydrogenase (NAD). Plants which showed high activities of malic enzyme contained no detectable phosphoenolpyruvate carboxykinase, while plants with high activities of the latter enzyme contained little malic enzyme. It is proposed that phosphoenolpyruvate carboxykinase acts as a decarboxylase during the light period, furnishing CO2 for the pentose cycle and phosphoenolpyruvate for gluconeogenesis. Some properties of phosphoenolpyruvate carboxykinase in crude extracts of pineapple leaves were investigated. The enzyme required Mn2+, Mg2+, and ATP for maximum activity. About 60% of the activity could be pelleted, along with chloroplasts and mitochondria, in extracts from leaves kept in the dark overnight. PMID:16658562

  2. Engineering crassulacean acid metabolism to improve water-use efficiency

    PubMed Central

    Borland, Anne M.; Hartwell, James; Weston, David J.; Schlauch, Karen A.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Yang, Xiaohan; Cushman, John C.

    2014-01-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here, we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic ‘parts list’ required to operate the core CAM functional modules of nocturnal carboxylation, daytime decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  3. Engineering crassulacean acid metabolism to improve water-use efficiency.

    PubMed

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  4. Microbial diversity and metabolic networks in acid mine drainage habitats

    PubMed Central

    Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887

  5. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  6. A dynamic computer model of the metabolic and regulatory processes in Crassulacean acid metabolism.

    PubMed

    Nungesser, D; Kluge, M; Tolle, H; Oppelt, W

    1984-09-01

    The paper describes a computer model which is capable of simulating the typical phenomena of Crassulacean acid metabolism (CAM). The model is based on a simplified scheme of the metabolic processes of CAM described earlier in the literature. The evolution of the model proceeded in the following steps, namely i) a verbal description of CAM in the form of a scheme integrating the metabolic and regulatory CAM processes at the cellular level of the cell, and transcription of the scheme into a block diagram; ii) the stepwise transformation of the block diagram into a structural model, represented by a system of differential equations; this was later used as the dynamic model. In the first attempt to construct the dynamic model, it appeared to be useful to accept the following simplifications: i) All reactions involved were considered to be of the first order. ii) Sequences of reactions, in which the intermediary products appeared to be of minor importance, were summarized in a single step. iii) All reactions were considered to proceed irreversibly in the main direction. iv) The mathematical formulations, usually used in describing enzyme regulations (for instance, competitive or allosteric behaviour), were replaced in the model by a uniformly simplified equation which independent of the actual mechanism, described activation by the multiplication of the velocity constant with an activating factor, and inhibition by division of the velocity constant by an inhibiting factor. v) From the manifold interactions between the plants and their environment, at present, only two factors have been selected to act as input parameters of the model, namely, the CO2 concentration in the air and light. Our studies showed that the model was capable of simulating not only some basic phenomena of CAM such as the diurnal rhythms of malic acid and starch, and the diurnal pattern of net CO2 exchange, but also alterations in the pool sizes of phosphoenolpyruvate, glucose-6-phosphate and

  7. Uric acid in metabolic syndrome: From an innocent bystander to a central player

    PubMed Central

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A.; Nakagawa, Takahiko; Johnson, Richard J.

    2016-01-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. PMID:26703429

  8. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    SciTech Connect

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  9. Arachidonic acid metabolism in polymorphonuclear cells in headaches. A methodologic study.

    PubMed

    Fragoso, Y D; Seim, A; Stovner, L J; Mack, M; Bjerve, K S; Sjaastad, O

    1988-09-01

    Prostaglandins and leukotrienes have been implicated in the pathogenesis of various types of headache, mainly because some, but not all, cyclo-oxygenase inhibitors are effective in their treatment. We have therefore investigated whether a pathologically changed turnover of arachidonic acid (AA)-containing phospholipids can be seen in headache patients, using isolated polymorphonuclear cells (PMNs) from healthy controls and patients with chronic paroxysmal hemicrania (CPH) and cluster headache. PMNs from healthy controls incorporated 55% of the added (1-14C)AA into total lipids, and 0.5% +/- 0.14% of this radioactivity was found in the phosphatidylserine (PS) fraction. PMNs from a cluster headache and a CPH patient showed 300% and 900% increase in PS labeling from AA, respectively. No other phospholipids showed any difference between controls and patients. The results are discussed in connection with membrane signal transduction via the PS-dependent protein kinase C. PMID:3143481

  10. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi

    PubMed Central

    Cain, R. B.; Bilton, R. F.; Darrah, Josephine A.

    1968-01-01

    1. The metabolic pathways of aromatic-ring fission were examined in a range of fungal genera that utilize several compounds related to lignin. 2. Most of the genera, after growth on p-hydroxybenzoate, protocatechuate or compounds that are degraded to the latter (e.g. caffeate, ferulate or vanillate), rapidly oxidized these compounds, but not catechol. 3. Such genera possessed a protocatechuate 3,4-oxygenase and accumulated β-carboxymuconate as the product of protocatechuate oxidation. This enzyme had a high pH optimum in most organisms; the Rhodotorula enzyme was competitively inhibited by catechol. 4. β-Carboxymuconate was converted by all competent fungi into β-carboxymuconolactone, which was isolated and characterized. None of the fungi produced or utilized at significant rates the corresponding bacterial intermediate γ-carboxymuconolactone. 5. The lactonizing enzymes of Rhodotorula and Neurospora crassa had a pH optimum near 5·5 and approximate molecular weights of 19000 and 190000 respectively. 6. The fungi did not degrade the isomeric (+)-muconolactone, γ-carboxymethylenebutanolide or β-oxoadipate enol lactone at significant rates, and thus differ radically from bacteria, where β-oxoadipate enol lactone is the precursor of β-oxoadipate in all strains examined. 7. The end product of β-carboxymuconolactone metabolism by extracts was β-oxoadipate. 8. Evidence for a coenzyme A derivative of β-oxoadipate was found during further metabolism of this keto acid. 9. A few anomalous fungi, after growth on p-hydroxybenzoate, had no protocatechuate 3,4-oxygenase, but possessed all the enzymes of the catechol pathway. Catechol was detected in the growth medium in one instance. 10. A strain of Penicillium sp. formed pyruvate but no β-oxoadipate from protocatechuate, suggesting the existence also of a `meta' type of ring cleavage among fungi. PMID:5691754

  11. Obesity and cancer progression: is there a role of fatty acid metabolism?

    PubMed

    Balaban, Seher; Lee, Lisa S; Schreuder, Mark; Hoy, Andrew J

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  12. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    PubMed Central

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  13. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    PubMed Central

    Ananieva, Elitsa

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment, however, tumor cells form metabolic relationships with immune cells, and they often compete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response. PMID:26629311

  14. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  15. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  16. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    SciTech Connect

    Abian, J.; Gelpi, E.; Pages, M. )

    1991-04-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-({sup 14}C)LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. {alpha}- and {gamma}-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed.

  17. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    PubMed

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation. PMID:11244098

  18. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  19. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    PubMed

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  20. Vaccenic acid metabolism in the liver of rat and bovine.

    PubMed

    Gruffat, Dominique; De La Torre, Anne; Chardigny, Jean-Michel; Durand, Denys; Loreau, Olivier; Bauchart, Dominique

    2005-03-01

    Hepatic metabolism of vaccenic acid (VA), especially its conversion into CLA, was studied in the bovine (ruminant species that synthesizes CLA) and in the rat (model for non-ruminant) by using the in vitro technique of liver explants. Liver tissue samples were collected from fed animals (5 male Wistar rats and 5 Charolais steers) and incubated at 37 degrees C for 17 h under an atmosphere of 95% O2/5% CO2 in medium supplemented with 0.75 mM of FA mixture and with 55 microM [1-14C]VA. VA uptake was about sixfold lower in bovine than in rat liver slices (P< 0.01). For both species, VA that was oxidized to partial oxidation products represented about 20% of VA incorporated by cells. The chemical structure of VA was not modified in bovine liver cells, whereas in rat liver cells, 3.2% of VA was converted into 16:0 and only 0.33% into CLA. The extent of esterification of VA was similar for both animal species (70-80% of incorporated VA). Secretion of VA as part of VLDL particles was very low and similar in rat and bovine liver (around 0.07% of incorporated VA). In conclusion, characteristics of the hepatic metabolism of VA were similar for rat and bovine animals, the liver not being involved in tissue VA conversion into CLA in spite of its high capacity for FA desaturation especially in the rat. This indicates that endogenous synthesis of CLA should take place exclusively in peripheral tissues. PMID:15957256

  1. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  2. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  3. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    SciTech Connect

    Loewus, F.A. . Inst. of Biological Chemistry); Seib, P.A. . Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  4. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    SciTech Connect

    Loewus, F.A.; Seib, P.A.

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  5. EFFECTS OF OZONE EXPOSURE ON LIPID METABOLISM IN HUMAN ALVEOLAR MACROPHAGES

    EPA Science Inventory

    Alveolar macrophages (AM) store arachidonic acid (AA) which is esterified in cellular phospholipids until liberated by phospholipase A2 or C after exposure to inflammatory stimuli. ollowing release, there can be subsequent metabolism of AA into various potent, biological active m...

  6. Deciphering the link between salicylic acid signaling and sphingolipid metabolism

    PubMed Central

    Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

    2015-01-01

    The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

  7. Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation.

    PubMed

    Meng, Hu; Liu, Ying; Lai, Luhua

    2015-08-18

    Inflammation and other common disorders including diabetes, cardiovascular disease, and cancer are often the result of several molecular abnormalities and are not likely to be resolved by a traditional single-target drug discovery approach. Though inflammation is a normal bodily reaction, uncontrolled and misdirected inflammation can cause inflammatory diseases such as rheumatoid arthritis and asthma. Nonsteroidal anti-inflammatory drugs including aspirin, ibuprofen, naproxen, or celecoxib are commonly used to relieve aches and pains, but often these drugs have undesirable and sometimes even fatal side effects. To facilitate safer and more effective anti-inflammatory drug discovery, a balanced treatment strategy should be developed at the biological network level. In this Account, we focus on our recent progress in modeling the inflammation-related arachidonic acid (AA) metabolic network and subsequent multiple drug design. We first constructed a mathematical model of inflammation based on experimental data and then applied the model to simulate the effects of commonly used anti-inflammatory drugs. Our results indicated that the model correctly reproduced the established bleeding and cardiovascular side effects. Multitarget optimal intervention (MTOI), a Monte Carlo simulated annealing based computational scheme, was then developed to identify key targets and optimal solutions for controlling inflammation. A number of optimal multitarget strategies were discovered that were both effective and safe and had minimal associated side effects. Experimental studies were performed to evaluate these multitarget control solutions further using different combinations of inhibitors to perturb the network. Consequently, simultaneous control of cyclooxygenase-1 and -2 and leukotriene A4 hydrolase, as well as 5-lipoxygenase and prostaglandin E2 synthase were found to be among the best solutions. A single compound that can bind multiple targets presents advantages including low

  8. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  9. Chromatographic analysis of amino and organic acids in physiological fluids to detect inborn errors of metabolism.

    PubMed

    Woontner, Michael; Goodman, Stephen I

    2006-11-01

    This unit describes methods for the preparation of samples for analysis of physiological amino acids and organic acids. Amino acids are analyzed by ion-exchange chromatography using an automated system. Organic acids are analyzed by gas-chromatography/mass spectrometry (GC-MS). Analysis of amino and organic acids is necessary to detect and monitor the treatment of many inborn errors of metabolism. PMID:18428392

  10. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus.

    PubMed

    Atek-Mebarki, Feriel; Hichami, Aziz; Abdoul-Azize, Souleymane; Bitam, Arezki; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2015-02-01

    The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus. PMID:25528298

  11. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    PubMed

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs. PMID:27497079

  12. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.

    PubMed

    Brulfert, J; Guerrier, D; Queiroz, O

    1982-05-01

    Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods. PMID:24276160

  13. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    PubMed Central

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  14. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo.

    PubMed

    Rechner, A R; Spencer, J P; Kuhnle, G; Hahn, U; Rice-Evans, C A

    2001-06-01

    The purpose of this study was to investigate biomarkers of the bioavailability and metabolism of hydroxycinnamate derivatives through the determination of the pharmacokinetics of their urinary elimination and identification of the metabolites excreted. Coffee was used as a rich source of caffeic acid derivatives and human supplementation was undertaken. The results show a highly significant increase in the excretion of ferulic, isoferulic, dihydroferulic acid (3-(4-hydroxy-3-methoxyphenyl)-propionic acid), and vanillic acid postsupplementation relative to the levels presupplementation. Thus, ferulic, isoferulic, and dihydroferulic acids are specific biomarkers for the bioavailability and metabolism of dietary caffeic acid esters. Isoferulic acid is a unique biomarker as it is not a dietary component, however, dihydroferulic acid may well derive from other flavonoids with a structurally related B-ring. 3-Hydroxyhippuric acid has also been identified as an indicator for bioavailability and metabolism of phenolic compounds, and shows a highly significant excretion increase postsupplementation. The results reveal isoferulic acid (and possibly dihydroferulic acid) as novel markers of caffeoyl quinic acid metabolism. PMID:11368919

  15. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    SciTech Connect

    Del Bufalo, Aurelia; Bernad, Jose; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Francoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1{beta} and TNF-{alpha}) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE{sub 2,} TxB{sub 2} and PGD{sub 2}), eugenol and cinnamaldehyde inhibiting also the production of IL-1{beta} and TNF-{alpha}. We further demonstrated that there is no unique PGE{sub 2} inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: > We investigated how contact sensitizers modulate an inflammatory response. > We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. > Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). > Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. > New insight in the biochemical properties of sensitizers.

  16. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    PubMed

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC. PMID

  17. Role of bile acids in the regulation of the metabolic pathways

    PubMed Central

    Taoka, Hiroki; Yokoyama, Yoko; Morimoto, Kohkichi; Kitamura, Naho; Tanigaki, Tatsuya; Takashina, Yoko; Tsubota, Kazuo; Watanabe, Mitsuhiro

    2016-01-01

    Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome. PMID:27433295

  18. Role of bile acids in the regulation of the metabolic pathways.

    PubMed

    Taoka, Hiroki; Yokoyama, Yoko; Morimoto, Kohkichi; Kitamura, Naho; Tanigaki, Tatsuya; Takashina, Yoko; Tsubota, Kazuo; Watanabe, Mitsuhiro

    2016-07-10

    Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome. PMID:27433295

  19. Reducing the Dietary Omega-6:Omega-3 Utilizing α-Linolenic Acid; Not a Sufficient Therapy for Attenuating High-Fat-Diet-Induced Obesity Development Nor Related Detrimental Metabolic and Adipose Tissue Inflammatory Outcomes

    PubMed Central

    Enos, Reilly T.; Velázquez, Kandy T.; McClellan, Jamie L.; Cranford, Taryn L.; Walla, Michael D.; Murphy, E. Angela

    2014-01-01

    Aims To examine the effect of manipulating the omega-6:omega-3 (1∶1, 5∶1, 10∶1, and 20∶1) utilizing only α-linolenic and linoleic acid within a clinically-relevant high-fat diet (HFD) composed of up to seven sources of fat and designed to be similar to the standard American diet (MUFA∶PUFA of 2∶1, 12% and 40% of calories from saturated and total fat, respectively) on body composition, macrophage polarization, inflammation, and metabolic dysfunction in mice. Methods Diets were administered for 20 weeks. Body composition and metabolism (HOMA index and lipid profile) were examined monthly. GC-MS was utilized to determine the eicosapentaenoic acid (EPA):arachidonic acid (AA) and the docosahexaenoic acid (DHA):AA in AT phospholipids. Adipose tissue (AT) mRNA expression of chemokines (MCP-1, Fetuin-A, CXCL14), marker genes for M1 and M2 macrophages (CD11c and CD206, respectively) and inflammatory markers (TNF-α, IL-6, IL-1β, TLR-2, TLR-4, IL-10, GPR120) were measured along with activation of NFκB, JNK, and STAT-3. Macrophage infiltration into AT was examined using F4/80 immunohistochemistry. Results Any therapeutic benefit produced by reducing the omega-6:omega-3 was evident only when comparing the 1∶1 to 20∶1 HFD; the 1∶1 HFD resulted in a lower TC:HDL-C and decreased AT CXCL14 gene expression and AT macrophage infiltration, which was linked to a higher EPA:AA and DHA:AA in AT phospholipids. However, despite these effects, and independent of the omega-6:omega-3, all HFDs, in general, led to similar levels of adiposity, insulin resistance, and AT inflammation. Conclusion Reducing the omega-6:omega-3 using α-linolenic acid is not an effective therapy for attenuating obesity and type II diabetes mellitus development. PMID:24733548

  20. Effects of organometals on cellular signaling. I. Influence of metabolic inhibitors on metal-induced arachidonic acid liberation.

    PubMed Central

    Käfer, A; Krug, H F

    1994-01-01

    Organic lead and tin compounds stimulate an increase of free arachidonic acid (AA) in HL-60 cells. This fatty acid is involved in numerous health problems and physiological mechanisms. Three major pathways result in a liberation of AA from membrane phospholipids and there is evidence that G-proteins serve as couplers within all three pathways. Therefore we investigated the influence of pertussis toxin (PT) on the organometallic-induced AA liberation. The effect of all studied compounds (organotin and organo-lead) was diminished by PT. We conclude that the organometals activate PLA2 to some extent via a PT-sensitive pathway. The ionophor A 23187 (1-10 microM) led to an increase of free AA by raising the intracellular Ca2+ level. One of the postulated ways of AA release is via Ca2+ channel activation; phospholipases are Ca2+ dependent. Thus, we examined the necessity of free intracellular Ca2+ for the organometallic effect. The Ca2+ chelator EGTA inhibited the increase of free AA induced by organometals. This is true also for verapamil, a Ca2+ channel blocker. Quinacrine, which is thought to be an inhibitor of phospholipase A2 (PLA2), prevented the AA liberation from membrane phospholipids induced by organometals. This could be due to the inhibition of PLA2, but it could also be the result of an inhibited Ca2+ influx. PMID:7843128

  1. Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco.

    PubMed Central

    Scheible, W. R.; Gonzalez-Fontes, A.; Lauerer, M.; Muller-Rober, B.; Caboche, M.; Stitt, M.

    1997-01-01

    Nia30(145) transformants with very low nitrate reductase activity provide an in vivo screen to identify processes that are regulated by nitrate. Nia30(145) resembles nitrate-limited wild-type plants with respect to growth rate and protein and amino acid content but accumulates large amounts of nitrate when it is grown on high nitrate. The transcripts for nitrate reductase (NR), nitrite reductase, cytosolic glutamine synthetase, and glutamate synthase increased; NR and nitrite reductase activity increased in leaves and roots; and glutamine synthetase activity increased in roots. The transcripts for phosphoenolpyruvate carboxylase, cytosolic pyruvate kinase, citrate synthase, and NADP-isocitrate dehydrogenase increased; phosphoenolpyruvate carboxylase activity increased; and malate, citrate, isocitrate, and [alpha]-oxoglutarate accumulated in leaves and roots. There was a decrease of the ADP-glucose pyrophosphorylase transcript and activity, and starch decreased in the leaves and roots. After adding 12 mM nitrate to nitrate-limited Nia30(145), the transcripts for NR and phosphoenolpyruvate carboxylase increased, and the transcripts for ADP-glucose pyrophosphorylase decreased within 2 and 4 hr, respectively. Starch was remobilized at almost the same rate as in wild-type plants, even though growth was not stimulated in Nia30(145). It is proposed that nitrate acts as a signal to initiate coordinated changes in carbon and nitrogen metabolism. PMID:12237366

  2. Influence of ascorbic acid (AA) on iron (Fe) utilization in copper (Cu) deficient male and female rats

    SciTech Connect

    Johnson, M.A. )

    1989-02-09

    Interactions between Cu status (-Cu: 1.0 mg Cu/kg diet or +Cu: 5.8 mg Cu/kg diet) and AA (0 or 1% of the diet) were compared in male and female weanling rats. Food intakes were controlled so that final body weights were similar on day 23 when rats were killed. On day 17 rats were given an oral dose of 4 uCi of Fe-59 and feces were collected for 5 days. Heart weights (g/100 g body weight) were increased in both male and female -Cu rats. Among -Cu rats, AA increased heart weight by 25% in females but by only 6% in males. Similarly, among -Cu rats AA increased liver weight (g/100 g body weight) by 16% in females but not at all in males. Hematocrits (%) were similar among +Cu rats but were decreased in -Cu rats to a greater in male than in female rats. However, among -Cu rats AA decreased hematocrits from 34.1 to 26.4% in females but from only 30.0 to 26.8% in males. Compared to -Cu rats, +Cu rats apparently absorbed 2-times more Fe-59 and retained 2.5- times more absorbed Fe-59 in their whole blood. Among -Cu rats, AA decreased the absorption of Fe-59 and whole blood Fe-59 to a greater extent in female than in male rats. These results suggest that female rats may be somewhat more sensitive to the adverse effects of AA during Cu deficiency than are male rats.

  3. An in vitro metabolic system of gut flora and the metabolism of ginsenoside Rg3 and cholic acid.

    PubMed

    Zhao, Chunyan; Sun, Runbin; Cao, Bei; Gu, Shenghua; Zhao, Jieyu; Liu, Linsheng; Wang, Xinwen; Zha, Weibin; Yu, Xiaoyi; Xiao, Wenjing; Mao, Yong; Ge, Chun; Ju, Jiaqi; Aa, Lixiang; Fei, Fei; Ding, Yi; Aa, Jiye; Wang, Guangji

    2014-06-01

    For orally administered drugs, the metabolism of a drug by the gut flora plays an important role in the bioavailability, activation and disposition of the drug in vivo. However, no in vitro system is currently available to evaluate the metabolism of a drug by the gut flora before the drug is absorbed into the body. This paper presents an in vitro metabolic system in an anaerobic environment that could be used to evaluate the metabolism of an endogenous compound, cholic acid, and a xenobiotic compound, ginsenoside Rg3. We showed that the proliferation of the anaerobic bacteria of the gut content of hamsters produced a similar composition of gut flora in a culture medium for yeast to that in vivo. Incubation of ginsenoside Rg3 and cholic acid in the anaerobic in vitro system efficiently produced the metabolites Rh2 and deoxycholic acid, respectively, similar to those seen in the gut content in vivo. In comparison with in vivo analysis, this anaerobic in vitro metabolic system is convenient, reproducible, economic and animal saving, and can easily be applied to assess the transformation and disposition of a drug before it enters into the circulatory system. PMID:23749587

  4. Crassulacean acid metabolism-cycling in Euphorbia milii

    PubMed Central

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (PN) decreased 85 % and nocturnal R was nearly zero. Nocturnal H+ accumulation (ΔH+) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H+ (g fresh mass)−1. Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ13C) was −25.2 ± 0.7 ‰ in leaves and −24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH+, no nocturnal CO2 uptake and values of δ13C intermediate between C3 and constitutive CAM plants; ΔH+ was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ13C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  5. Crassulacean acid metabolism-cycling in Euphorbia milii.

    PubMed

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  6. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA c...

  7. Modulation of fatty acid and bile acid metabolism by PPARα protects against alcoholic liver disease

    PubMed Central

    Li, Heng-Hong; Tyburski, John B.; Wang, Yiwen; Strawn, Steve; Moon, Bo-Hyun; Kallakury, Bhaskar V. S.; Gonzalez, Frank J.; Fornace, Albert J.

    2014-01-01

    Background Chronic alcohol intake affects liver function and causes hepatic pathological changes. It has been shown that peroxisome proliferator-activated receptor α (PPARα)-null mice developed more pronounced hepatic changes than wild type (WT) mice after chronic exposure to a diet containing 4% alcohol. The remarkable similarity between the histopathology of ALD in Ppara-null model and in humans, and the fact that PPARα expression and activity in human liver are less than one-tenth of those in WT mouse liver make Ppara-null a good system to investigate ALD. Methods In this study, the Ppara-null model was used to elucidate the dynamic regulation of PPARα activity during chronic alcohol intake. Hepatic transcriptomic and metabolomic analyses were used to examine alterations of gene expression and metabolites associated with pathological changes. The changes triggered by alcohol consumption on gene expression and metabolites in Ppara-null mice were compared with those in wild-type mice. Results The results showed that in the presence of PPARα, three major metabolic pathways in mitochondria, namely the fatty acid β-oxidation, the tricarboxylic acid cycle (TCA) and the electron transfer chain, were induced in response to two-month alcohol feeding, while these responses were greatly reduced in the absence of PPARα. In line with the transcriptional modulations of these metabolic pathways, lipidomic profiling showed consistent accumulation of triglycerides in Ppara-null mice, a robust increase of hepatic cholic acid and its derivatives, and a strong induction of fibrogenesis genes exclusively in alcohol-fed Ppara-null mice. Conclusions These observations indicate that PPARα plays a protective role to enhance mitochondrial function in response to chronic alcohol consumption by adaptive transcriptional activation and suggest that activation of this nuclear receptor may be of therapeutic value in the treatment of ALD. PMID:24773203

  8. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  9. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    PubMed

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  10. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    PubMed

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times plasma flow (splanchnic: downstream dilution of deacetylated para-aminohippurate; mammary: Fick principle using Phe+Tyr). Energy-corrected milk and lactose yields increased on average with AA-CN by 6.4 kg/d and 353 g/d, respectively, with no DIM × treatment interaction. Despite increased AA supply and increased demand for lactose secretion with AA-CN, net hepatic release of glucose remained unchanged, but WB-Ra of glucose tended to increase with AA-CN. Portal true flux of glucose increased with AA-CN and represented, on average, 17% of WB-Ra. Splanchnic true flux of glucose was unaltered by treatments and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased

  11. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability

    PubMed Central

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-01-01

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability. PMID:26056817

  12. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid 1

    PubMed Central

    Chu, Chun; Dai, Ziyu; Ku, Maurice S. B.; Edwards, Gerald E.

    1990-01-01

    The facultative halophyte, Mesembryanthemum crystallinum, shifts its mode of carbon assimilation from the C3 pathway to Crassulacean acid metabolism (CAM) in response to water stress. In this study, exogenously applied abscisic acid (ABA), at micromolar concentrations, could partially substitute for water stress in induction of CAM in this species. ABA at concentrations of 5 to 10 micromolar, when applied to leaves or to the roots in hydroponic culture or in soil, induced the expression of CAM within days (as indicated by the nocturnal accumulation of total titratable acidity and malate). After applying ABA there was also an increase in phosphoenolpyruvate carboxylase and NADP-malic enzyme activities. The degree and time course of induction by ABA were comparable to those induced by salt and water stress. Electrophoretic analyses of leaf soluble protein indicate that the increases in phosphoenolpyruvate carboxylase activity during the induction by ABA, salt, and water stress are due to an increase in the quantity of the enzyme protein. ABA may be a factor in the stress-induced expression of CAM in M. crystallinum, serving as a functional link between stress and biochemical adaptation. Images Figure 9 PMID:16667587

  13. Determination of digestibility, tissue deposition, and metabolism of the omega-3 fatty acid content of krill protein concentrate in growing rats.

    PubMed

    Bridges, Kayla M; Gigliotti, Joseph C; Altman, Stephanie; Jaczynski, Jacek; Tou, Janet C

    2010-03-10

    Krill protein concentrate (KPC) consists of high-quality protein (77.7% dry basis) and lipids (8.1% dry basis) that are rich (27% of total fatty acids) in omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The objective of the study was to determine digestibility, tissue deposition, metabolism, and tissue oxidative stability of the omega-3 PUFAs provided by KPC. Young female Sprague-Dawley rats (n = 10/group) were fed ad libitum isocaloric diets for 4 weeks with either 10% freeze-dried KPC or 10% casein. The casein diet contained 5.3% added corn oil (CO), whereas the KPC contained 5.3% total lipids from 0.9% krill oil (KO) provided by KPC and 4.4% added corn oil (KO + CO). Fatty acid compositions of various tissues were analyzed by gas chromatography. Lipid peroxidation was determined by thiobarbituric acid reactive substances (TBARS). Total antioxidant capacity and urinary eicosanoid metabolites were determined by enzyme immunoassay. The omega-3 PUFAs provided in KO from KPC increased (P = 0.003) docosahexaenoic acid (DHA) concentration in the brain. DHA and eicosapentaenoic acid (EPA) content in fat pads and liver were increased (P < 0.01), whereas the omega-6 PUFA, arachidonic acid (AA), was decreased (P < 0.01) in rats fed the KPC diet containing the KO + CO mixture compared to rats fed the casein diet containing pure CO. Feeding the KPC diet decreased pro-inflammatory 2-series prostaglandin and thromboxane metabolites. There was no significant difference in TBARS or total antioxidant capacity in the tissues of rats fed the different diets. On the basis of the study results, the low amount of omega-3 PUFAs provided by the KO content of KPC provides beneficial effects of increasing tissue EPA and DHA deposition and reduced AA-derived 2-series eicosanoid metabolites without increasing lipid peroxidation. Therefore, consumption of KPC has the potential to provide a healthy and sustainable source of omega-3 PUFAs. PMID:20131797

  14. EB1 Levels Are Elevated in Ascorbic Acid (AA)-stimulated Osteoblasts and Mediate Cell-Cell Adhesion-induced Osteoblast Differentiation*

    PubMed Central

    Pustylnik, Sofia; Fiorino, Cara; Nabavi, Noushin; Zappitelli, Tanya; da Silva, Rosa; Aubin, Jane E.; Harrison, Rene E.

    2013-01-01

    Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation. PMID:23740245

  15. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    ERIC Educational Resources Information Center

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  16. BIOCONCENTRATION AND METABOLISM OF ALL-TRANS RETINOIC ACID BY RANA SYLVATICA AND RANA CLAMITANS TADPOLES

    EPA Science Inventory

    Retinoids, which are Vitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of all-trans retinoic acid...

  17. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  18. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking

    PubMed Central

    Mittendorfer, Bettina

    2013-01-01

    Purpose of review Obesity is associated with a number of serious medical complications that are risk factors for cardiovascular disease (e.g., insulin resistance, dyslipidemia and liver fat accumulation). Alterations in fatty acid trafficking, both between tissues and within cells, represent a key feature in the pathophysiology of the metabolic complications in obese subjects. The ways by which fatty acid “re-routing” may affect metabolic function are summarized in this article. Recent findings Ectopic fat accumulation (i.e., fat accumulation in non-adipose tissues) appears to be a key feature distinguishing metabolically healthy from metabolically abnormal subjects. This observation has led to the believe that an imbalance in fatty acid trafficking away from adipose tissue towards non-adipose tissues is a primary cause for the development of metabolic alterations in obese subjects. More recently, however, it has become apparent that fatty acid trafficking with within non-adipose tissues cells (i.e., towards storage - in the form of triglycerides - and oxidation) may be equally important in determining risk for development of metabolic disease. Summary The pathophysiology of the metabolic alterations associated with obesity is probably multifactorial within a complex network of coordinated physiological responses. Only through the integration of multiple concepts will it be possible to further our understanding in this area and to help prevent the metabolic alterations associated with obesity. PMID:21849896

  19. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural (2-furaldehyde) is a furan formed by dehydration of pentose sugars. Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid and Coenzyme A intermediates. To identify genes involved in furan metabolism, two P. putida transposo...

  20. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations

    PubMed Central

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  1. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations.

    PubMed

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  2. The effect of trinitrobenzene sulfonic acid (TNB) on colonocyte arachidonic acid metabolism.

    PubMed

    Stratton, M D; Sexe, R; Peterson, B; Kaminski, D L; Li, A P; Longo, W E

    1996-02-01

    In previous studies we found that luminal perfusion of the isolated left colon of the rabbit with the hapten, trinitrobenzene, resulted in the production of an acute inflammatory process associated with alterations in eicosanoid metabolism. As the colitis was attenuated by cyclooxygenase inhibitors it is possible that the inflammation was mediated by arachidonic acid metabolites. In the present study it was intended to evaluate the effect of trinitrobenzene on eicosanoid metabolism in transformed human colonic cells by exposing Caco-2++ cells to various doses of trinitrobenzene. Cell injury was evaluated by measuring lactate dehydrogenase levels and cyclooxygenase and lipoxygenase activity was evaluated by measuring prostanoid and leukotriene production. In separate experiments resting and trinitrobenzene stimulated cells were treated with indomethacin and dexamethasone. Trinitrobenzene produced increased prostaglandin E2 and 6-keto prostaglandin F1alpha++ and increased lactate dehydrogenase levels. Leukotriene B4 was significantly increased compared to control values at the highest TNB concentration administered. Indomethacin inhibited the lactate dehydrogenase and prostanoid changes, suggesting that the inflammatory changes produced were mediated by the prostanoids. Dexamethasone administered for 1 hr prior to trinitrobenzene decreased the 6-keto prostaglandin F1alpha but did not alter trinitrobenzene produced changes in lactate dehydrogenase concentrations. Exposure of Caco-2 cells to dexamethasone for 24 hr decreased the trinitrobenzene produced lactate dehydrogenase and eicosanoid changes. The results suggest that trinitrobenzene produces an acute injury to Caco-2 cells that may be mediated by the cyclooxygenase enzymes. PMID:8598672

  3. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  4. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  5. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    PubMed

    Poorani, R; Bhatt, Anant N; Dwarakanath, B S; Das, Undurti N

    2016-08-15

    Polyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions. PMID:26335394

  6. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  7. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  8. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  9. The effect of fluid mechanical stress on cellular arachidonic acid metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Rhee, B. G.; Eskin, S. G.; Hall, E. R.

    1987-01-01

    The effect of sublytic levels of mechanical perturations of cells on cell metabolism were investigated by analyzing the products of arachidonic acid (used as a marker metabolite) in blood platelets, polymorphonuclear leucocytes, and cultured umbilical-vein endothelial cells after the suspensions of these cells were subjected to a shear stress in a modified viscometer. It is shown that the sublytic levels of mechanical stress stimulated the arachidonic acid metabolism in all these cell types. Possible biological implications of this stress-metabolism coupling are discussed.

  10. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  11. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.

    PubMed Central

    Zeldin, D C; Plitman, J D; Kobayashi, J; Miller, R F; Snapper, J R; Falck, J R; Szarek, J L; Philpot, R M; Capdevila, J H

    1995-01-01

    Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols, and 19- and 20-hydroxyeicosatetraenoic acids. Inhibition studies using polyclonal antibodies prepared against purified CYP2B4 demonstrated 100% inhibition of arachidonic acid epoxide formation. Purified CYP2B4, reconstituted in the presence of NADPH-cytochrome P450 reductase and cytochrome b5, metabolized arachidonic acid, producing primarily EETs. EETs were detected in lung homogenate using gas chromatography/mass spectroscopy, providing evidence for the in vivo pulmonary cytochrome P450 epoxidation of arachidonic acid. Chiral analysis of these lung EETs demonstrated a preference for the 14(R),15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET enantiomers. Both EETs and vic-dihydroxyeicosatrienoic acids were detected in bronchoalveolar lavage fluid. At micromolar concentrations, methylated 5,6-EET and 8,9-EET significantly relaxed histamine-contracted guinea pig hilar bronchi in vitro. In contrast, 20-hydroxyeicosatetraenoic acid caused contraction to near maximal tension. We conclude that CYP2B4, an abundant rabbit lung cytochrome P450 enzyme, is the primary constitutive pulmonary arachidonic acid epoxygenase and that these locally produced, biologically active eicosanoids may be involved in maintaining homeostasis within the lung. Images PMID:7738183

  12. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health.

    PubMed

    Fontana, Luigi; Cummings, Nicole E; Arriola Apelo, Sebastian I; Neuman, Joshua C; Kasza, Ildiko; Schmidt, Brian A; Cava, Edda; Spelta, Francesco; Tosti, Valeria; Syed, Faizan A; Baar, Emma L; Veronese, Nicola; Cottrell, Sara E; Fenske, Rachel J; Bertozzi, Beatrice; Brar, Harpreet K; Pietka, Terri; Bullock, Arnold D; Figenshau, Robert S; Andriole, Gerald L; Merrins, Matthew J; Alexander, Caroline M; Kimple, Michelle E; Lamming, Dudley W

    2016-07-12

    Protein-restricted (PR), high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet. PMID:27346343

  13. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  14. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  15. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    PubMed

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment. PMID:24467635

  16. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism.

    PubMed

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  17. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    PubMed Central

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  18. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome

    PubMed Central

    Tochikubo, O; Nakamura, H; Jinzu, H; Nagao, K; Yoshida, H; Kageyama, N; Miyano, H

    2016-01-01

    Objectives: The prevalence of metabolic syndrome is increasing worldwide, especially in Asian populations. Early detection and effective intervention are vital. Plasma free amino acid profile is a potential biomarker for the early detection for lifestyle-related diseases. However, little is known about whether the altered plasma free amino acid profiles in subjects with metabolic syndrome are related to the effectiveness of dietary and exercise interventions. Methods: Eighty-five Japanese subjects who fulfilled the Japanese diagnostic criteria for metabolic syndrome were enrolled in a 3-month diet and exercise intervention. The plasma free amino acid concentrations and metabolic variables were measured, and the relationships between plasma free amino acid profiles, metabolic variables and the extent of body weight reduction were investigated. Those who lost more than 3% of body weight were compared with those who lost less than 3%. Results: Baseline levels of most amino acids in the subset that went on to lose <3% body weight were markedly lower compared with the counterpart, although both groups showed similar proportional pattern of plasma amino acid profiles. The weight loss induced by the diet and exercise intervention normalized plasma free amino acid profiles. For those with a high degree of weight loss, those changes were also associated with improvement in blood pressure, triglyceride and hemoglobin A1c levels. Conclusions: These data suggest that among Japanese adults meeting the criteria for metabolic syndrome, baseline plasma free amino acid profiles may differ in ways that predict who will be more vs less beneficially responsive to a standard diet and exercise program. Plasma free amino acid profiles may also be useful as markers for monitoring the risks of developing lifestyle-related diseases and measuring improvement in physiological states. PMID:26926588

  19. Intestinal bile acid sensing is linked to key endocrine and metabolic signalng pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids have historically been considered to mainly function in cholesterol homeostasis and facilitate fat digestion in the gastrointestinal tract. Recent discoveries show that bile acids also function as signaling molecules that exert diverse endocrine and metabolic actions by activating G prote...

  20. Red blood cell fatty acid composition and the metabolic syndrome: NHLBI GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different fatty acids may vary in their effect on the metabolic syndrome (MetS). We tested whether fatty acid classes measured in red blood cells (RBC) are associated with the MetS or its components. Included were men (n=497, 49+/-16 y) and women (n=539, 48+/-16 y) from 187 families in the Genetics ...

  1. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    PubMed Central

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  2. Salvage syntheses and their relationship to nucleic acid metabolism

    PubMed Central

    Königk, E.

    1977-01-01

    The intraerythrocytic stages of plasmodia are capable of synthesizing purine nucleotides and apparently deoxycytidylate by salvage syntheses. Data obtained by studying the incorporation of radioactive precursor molecules into intact cells and kinetic experiments on purified enzyme preparations suggest biosynthetic routes which, generally, are similar to those of the host's cell metabolism. However, details on the regulation of both the uptake of nucleosides and bases into the intraerythrocytic stages of plasmodia and of the metabolic routes involved in this incorporation are still lacking. PMID:303949

  3. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    PubMed Central

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-01-01

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome. PMID:26307979

  4. Metabolism of fatty acids in rat brain in microsomal membranes

    SciTech Connect

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool.

  5. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.

    PubMed

    Ferrebee, Courtney B; Dawson, Paul A

    2015-03-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  6. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade.

    PubMed

    Rapoport, Stanley I

    2014-06-18

    This Review evaluates the arachidonic acid (AA, 20:4n-6) cascade hypothesis for the actions of lithium and other FDA-approved mood stabilizers in bipolar disorder (BD). The hypothesis is based on evidence in unanesthetized rats that chronically administered lithium, carbamazepine, valproate, or lamotrigine each downregulated brain AA metabolism, and it is consistent with reported upregulated AA cascade markers in post-mortem BD brain. In the rats, each mood stabilizer reduced AA turnover in brain phospholipids, cyclooxygenase-2 expression, and prostaglandin E2 concentration. Lithium and carbamazepine also reduced expression of cytosolic phospholipase A2 (cPLA2) IVA, which releases AA from membrane phospholipids, whereas valproate uncompetitively inhibited in vitro acyl-CoA synthetase-4, which recycles AA into phospholipid. Topiramate and gabapentin, proven ineffective in BD, changed rat brain AA metabolism minimally. On the other hand, the atypical antipsychotics olanzapine and clozapine, which show efficacy in BD, decreased rat brain AA metabolism by reducing plasma AA availability. Each of the four approved mood stabilizers also dampened brain AA signaling during glutamatergic NMDA and dopaminergic D2 receptor activation, while lithium enhanced the signal during cholinergic muscarinic receptor activation. In BD patients, such signaling effects might normalize the neurotransmission imbalance proposed to cause disease symptoms. Additionally, the antidepressants fluoxetine and imipramine, which tend to switch BD depression to mania, each increased AA turnover and cPLA2 IVA expression in rat brain, suggesting that brain AA metabolism is higher in BD mania than depression. The AA hypothesis for mood stabilizer action is consistent with reports that low-dose aspirin reduced morbidity in patients taking lithium, and that high n-3 and/or low n-6 polyunsaturated fatty acid diets, which in rats reduce brain AA metabolism, were effective in BD and migraine patients. PMID

  7. Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin

    SciTech Connect

    Ruzicka, T.; Walter, J.F.; Printz, M.P.

    1983-10-01

    This study was conducted to investigate the metabolism of arachidonic acid in the skin of hairless mice exposed to UVA, PUVA, UVB, and UVC irradiation. The main products of arachidonic acid in the epidermis were hydroxyeicosatetraenoic acid (HETE), PGE2, and PGD2. Dermis displayed a lower lipoxygenase activity (expressed as HETE production) than the epidermis and showed no detectable cyclooxygenase activity, i.e., no prostaglandin production. The main changes observed in UV-induced inflammatory reactions were as follows. 1. A 5-fold increase in dermal HETE production in PUVA-treated animals and a 29% reduction in epidermal HETE formation after UVC treatment. 2. A marked decrease of PGD2 and a marked increase of PGE2 formation due to alterations of PGH2 metabolism in the UVB-treated group; however, cyclooxygenase activity was unchanged. These changes in arachidonic acid metabolism in the skin may be of pathophysiologic importance in UV-induced inflammatory reaction.

  8. Comparative nutrition and metabolism: Explication of open questions with emphasis on protein and amino acids

    PubMed Central

    Baker, David H.

    2005-01-01

    The 20th century saw numerous important discoveries in the nutritional sciences. Nonetheless, many unresolved questions still remain. Fifteen questions dealing with amino acid nutrition and metabolism are posed in this review. The first six deal with the functionality of sulfur amino acids (methionine and cysteine) and related compounds. Other unresolved problems that are discussed include priorities of use for amino acids having multiple functions; interactions among lysine, niacin and tryptophan; amino acid contributions to requirements from gut biosynthesis; the potential for gluconeogenesis to divert amino acids away from protein synthesis; the unique nutritional and metabolic idiosyncrasies of feline species, with emphasis on arginine; controversies surrounding human amino acid requirements; and the potential for maternal diet to influence sex ratio of offspring. PMID:16326801

  9. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  10. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  11. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  12. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  13. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  14. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  15. DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES

    EPA Science Inventory

    The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

  16. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids.

    PubMed

    Kondo, Natsuki; Ohno, Yusuke; Yamagata, Maki; Obara, Takashi; Seki, Naoya; Kitamura, Takuya; Naganuma, Tatsuro; Kihara, Akio

    2014-01-01

    The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an ~40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized. PMID:25345524

  17. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study

    PubMed Central

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  18. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study.

    PubMed

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  19. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  20. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  1. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    PubMed

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism. PMID:23412866

  2. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses

    NASA Technical Reports Server (NTRS)

    Rajagopalan, Sridhar; Mcintire, Larry V.; Hall, Elizabeth R.; Wu, Kenneth K.

    1988-01-01

    The effects of stimulating human platelets by thrombin and by hydrodynamic stresses on the platelets' arachidonic acid metabolism were investigated using (1-C-14)-arachidonic acid label and a specially designed viscometer that ensured laminar shear flow with a nearly uniform shear rate throughout the flow region. It was found that platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy 5,8,10-heptadecatrienoic acid and 12-hydroxy 5,8,10,14-eicosatetraenoic acid (12-HETE). On the other hand, platelets activated by shear, formed only 12-HETE (although arachidonic acid metabolism was stimulated); no cyclooxygenase metabolites were detected. Results indicate that platelets may greatly increase their 12-HETE production when activated by passage through a high-stress region of the circulation, such as an atherosclerotic stenosis.

  3. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  4. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  5. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    SciTech Connect

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T. )

    1991-05-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of {sup 14}C oleic, {sup 14}C linoleic, and {sup 3H} arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and {sup 3}H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations.

  6. Respiratory CO(2) as Carbon Source for Nocturnal Acid Synthesis at High Temperatures in Three Species Exhibiting Crassulacean Acid Metabolism.

    PubMed

    Winter, K; Schröppel-Meier, G; Caldwell, M M

    1986-06-01

    TEMPERATURE EFFECTS ON NOCTURNAL CARBON GAIN AND NOCTURNAL ACID ACCUMULATION WERE STUDIED IN THREE SPECIES OF PLANTS EXHIBITING CRASSULACEAN ACID METABOLISM: Mamillaria woodsii, Opuntia vulgaris, and Kalanchoë daigremontiana. Under conditions of high soil moisture, nocturnal CO(2) gain and acid accumulation had temperature optima at 15 to 20 degrees C. Between 5 and 15 degrees C, uptake of atmospheric CO(2) largely accounted for acid accumulation. At higher tissue temperatures, acid accumulation exceeded net carbon gain indicating that acid synthesis was partly due to recycling of respiratory CO(2). When plants were kept in CO(2)-free air, acid accumulation based on respiratory CO(2) was highest at 25 to 35 degrees C. Net acid synthesis occurred up to 45 degrees C, although the nocturnal carbon balance became largely negative above 25 to 35 degrees C. Under conditions of water stress, net CO(2) exchange and nocturnal acid accumulation were reduced. Acid accumulation was proportionally more decreased at low than at high temperatures. Acid accumulation was either similar over the whole temperature range (5-45 degrees C) or showed an optimum at high temperatures, although net carbon balance became very negative with increasing tissue temperatures. Conservation of carbon by recycling respiratory CO(2) was temperature dependent. At 30 degrees C, about 80% of the dark respiratory CO(2) was conserved by dark CO(2) fixation, in both well irrigated and water stressed plants. PMID:16664827

  7. The absorption and metabolism of modified amino acids in processed foods.

    PubMed

    Finot, Paul-André

    2005-01-01

    The chemical reactions involved in the modifications of amino acids in processed food proteins are described. They concern the Maillard reaction, reaction with polyphenols and tannins, formation of lysinoalanine during alkaline and heat treatments, formation of isopeptides, oxidation reaction of the sulfur amino acids, and isomerization of the L-amino acids into their D-form. Information on the digestion, absorption, and urinary excretion of the reaction products obtained by using conventional nutritional tests is given. The studies that have been made on the metabolism of these molecules by using a radioisotopic approach to follow their kinetics in the organism after ingestion are also reviewed. This approach provides unique data on the quantitation of the metabolic pathways and on the kinetics of the metabolic processes involved. PMID:16001868

  8. Myocardial imaging and metabolic studies with (17-/sup 123/I)iodoheptadecanoic acid

    SciTech Connect

    Freundlieb, C.; Hoeck, A.; Vyska, K.; Feinendegen, L.E.; Machulla, H.J.; Stoecklin, G.

    1980-11-01

    After intravenous administration of the stearic acid analogue (17-/sup 123/I)iodoheptadecanoic acid (I-123 HA), myocardial metabolism was studied in ten normal individuals, eight patients with coronary artery disease and three patients with congestive heart failure. High-quality images were obtained in sequential scintigraphy of I-123 metabolically bound in myocardial tissue. Infarcted zones as well as ischemic regions are indicated by reduced tracer uptake. Iodine-123 in the blood pool and interstitial space consists mainly of radioiodide that is liberated by fatty-acid metabolism and was corrected for. Using the proposed correction not only are the images improved but the uptake and elimination of the I-123 in the myocardial cells can be followed. The average disappearance half-time of I-123 HA from the myocardium of normal persons was 24 +- 4.7 min. In patients with coronary artery disease significant differences between myocardial regions were observed.

  9. Organization of hepatic nitrogen metabolism and its relation to acid-base homeostasis.

    PubMed

    Häussinger, D

    1990-11-16

    Hepatic and renal nitrogen metabolism are linked by an interorgan glutamine flux, coupling both renal ammoniagenesis and hepatic ureogenesis to systemic acid base regulation. This is because protein breakdown produces equimolar amounts of NH4+ and HCO3-. A hepatic role in this interorgan team effort is based upon the tissue-specific presence of urea synthesis, which represents a major irreversible pathway for removal of metabolically generated bicarbonate. A sensitive and complex control of bicarbonate disposal via ureogenesis by the extracellular acid-base status creates a feed-back control loop between the acid-base status and the rate of bicarbonate elimination. This bicarbonate-homeostatic mechanism operates without threat of hyperammonemia, because a sophisticated structural and functional organisation of ammonia-metabolizing pathways in the liver acinus uncouples urea synthesis from the vital need to eliminate potentially toxic ammonia. PMID:2126308

  10. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    PubMed

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  11. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis

    PubMed Central

    2013-01-01

    Background L-ascorbic acid (L-AA) is naturally synthesized in plants from D-glucose by 10 steps pathway. The pathway branch to synthesize L-galactose, the key intermediate for L-ascorbic acid biosynthesis, has been recently elucidated. Budding yeast produces an 5-carbon ascorbic acid analogue Dehydro-D-arabinono 1,4-lactone (D-DAL), which is synthesized from D-arabinose. Yeast is able to synthesize L-ascorbic acid only if it is cultivated in the presence of one of its precursors: L-galactose, L-galactono 1,4-lactone, or L-gulono 1,4-lactone extracted from plants or animals. To avoid feeding the yeast culture with this “L” enantiomer, we engineered Kluyveromyces lactis with L-galactose biosynthesis pathway genes: GDP-mannose 3,5-epimerase (GME), GDP-L-galactose phosphorylase (VTC2) and L-galactose-1-phosphate phosphatase (VTC4) isolated from Arabidopsis thaliana. Results Plasmids were constructed and modified such that the cloned plant genes were targeted to the K. lactis LAC4 Locus by homologous recombination and that the expression was associated to the growth on D-galactose or lactose. Upon K. lactis transformation, GME was under the control of the native LAC4 promoter whereas VTC2 and VTC4 were expressed from the S. cerevisiae promoters GPD1 and ADH1 respectively. The expression in K. lactis, of the L-galactose biosynthesis genes was determined by Reverse Transcriptase-PCR and western blotting. The recombinant yeasts were capable to produce about 30 mg.L-1 of L-ascorbic acid in 48 hours of cultivation when cultured on rich medium with 2% (w/v) D-galactose. We also evaluated the L-AA production culturing recombinant recombinant strains in cheese whey, a waste product during cheese production, as an alternative source of lactose. Conclusions This work is the first attempt to engineer K. lactis cells for L-ascorbic acid biosynthesis by a fermentation process without any trace of “L” isomers precursors in the culture medium. We have engineered K. lactis

  12. Heparin, free fatty acids and an increased metabolic demand for oxygen.

    PubMed

    Jung, R T; Shetty, P S; James, W P

    1980-05-01

    Obese and lean subjects were given heparin with or without Intralipid in order to assess the effect of heparin on plasma concentration of free fatty acids (FFA) and oxidative metabolism. The FFA response depended on the triglyceride concentration and was associated with a prompt rise in oxygen consumption. Plasma catecholamines did not alter after heparin and the increase in oxygen uptake was proportional to the rise in FFA. The use of heparin, therefore, has metabolic disadvantages which may outweigh the potential benefits, for example in the management of myocardial infarction where heparin may increase the metabolic demand on the heart by increasing FFA levels. PMID:7443592

  13. Heparin, free fatty acids and an increased metabolic demand for oxygen.

    PubMed Central

    Jung, R. T.; Shetty, P. S.; James, W. P.

    1980-01-01

    Obese and lean subjects were given heparin with or without Intralipid in order to assess the effect of heparin on plasma concentration of free fatty acids (FFA) and oxidative metabolism. The FFA response depended on the triglyceride concentration and was associated with a prompt rise in oxygen consumption. Plasma catecholamines did not alter after heparin and the increase in oxygen uptake was proportional to the rise in FFA. The use of heparin, therefore, has metabolic disadvantages which may outweigh the potential benefits, for example in the management of myocardial infarction where heparin may increase the metabolic demand on the heart by increasing FFA levels. PMID:7443592

  14. Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): Synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Nowesser, Nourhan; Al-Hussaini, A. S.; Zoromba, Mohamed Shafick

    2016-02-01

    The copolymer of anthranilic acid and o-aminophenol (AA-co-OAP) was synthesized and characterized by IR, UV-Vis. and thermal analyses (TGA). Linear chain mode was suggested for the pure (AA-co-OAP). The effect of inclusion of MnCl2, CoCl2, NiCl2, CuCl2 and FeCl3 on the spectral, thermal and optical properties of AA-co-OAP has been studied. Octahedral stereochemistry was suggested for Fe, Mn and Ni doped AA-co-OAP, while tetrahedral and square-planar geometries were suggested for Co and Cu doped AA-co-OAP, respectively. Fe doped AA-co-OAP has been used as a precursor for α-Fe2O3 nanoparticles by thermal decomposition route at 800 °C. The obtained hematite has been characterized by XRD and TEM. The average size of the prepared nanoparticles was estimated as 34 nm. The optical band gap of the synthesized hematite nanoparticles was measured and compared with the bulk.

  15. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum.

    PubMed

    Sutherland, J D; Macdonald, I A

    1982-07-01

    Clostridium absonum was shown to metabolize primary bile acids to give rise to both 7-oxo bile acids and 7 beta-hydroxy (urso) bile acids. At relatively low redox potential (Eh) values, high yields of urso bile acids were achieved (60-75%). If, however, the Eh value of the culture was allowed to rise above approximately -100 mv, the 7-oxo bile acid would tend to predominate (more than 75%) and the "death phase" was accelerated. Growth of C. absonum in sterile graduated cylinders instead of in conventional Erlenmeyer flasks was effective in delaying the rise in Eh value with time (which appears largely due to diffusion of atmospheric oxygen into the medium) and in preserving a higher viable count of organisms. It is proposed that the formation of excess amounts of 7-oxo bile acid is a manifestation of oxygen toxicity and that it could be mediated by an increasing intracellular NADP:NADPH ratio. Additionally, the reaction: primary bile acid in equilibrium oxo bile acid in equilibrium urso bile acid was shown to be partially reversible. When the organisms were grown with [24-(14)C]chenodeoxycholic, -cholic, or -7-keto-lithocholic acid, this reaction could be clearly demonstrated. The addition of an equimolar concentration of deoxycholic acid (which itself is not metabolized) effectively enhanced the rate of bioconversion of cholate and 7-keto-lithocholic, but not chenodeoxycholate (whose rate of bioconversion was the fastest of the three). When the organisms were grown with urso bile acids (ursocholic or ursodeoxycholic) or with 7-keto-deoxycholic acid, very little metabolism occurred unless deoxycholic acid was added which induced formation of primary and keto bile acids. In all cases, formation of oxo bile acid from primary or urso bile acid occurred as the Eh value of the medium rose with time and could thus be delayed by the use of a cylinder instead of a flask for growing the culture. These results were rationalized by demonstrating that induction of 7 alpha- and

  16. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-05-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  17. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  18. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26683700

  19. Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

    PubMed Central

    Sun, Hang; Liu, Fangbing; Sun, Liwei; Liu, Jianzeng; Wang, Manying; Chen, Xuenan; Xu, Xiaohao; Ma, Rui; Feng, Kai; Jiang, Rui

    2015-01-01

    Background The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng. PMID:27158231

  20. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts. PMID:24652150

  1. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9

    PubMed Central

    DeBosch, Brian J.; Kluth, Oliver; Fujiwara, Hideji; Schürmann, Annette; Moley, Kelle

    2015-01-01

    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricemia contributes to development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. Additionally, how uric acid is cleared from the circulation is incompletely understood. Here, we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricemia, hyperuricosuria, spontaneous hypertension, dyslipidemia, and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolemia. These data provide evidence that hyperuricemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome. PMID:25100214

  2. Metabolic Pathway Confirmation and Discovery Through 13C-labeling of Proteinogenic Amino Acids

    PubMed Central

    You, Le; Page, Lawrence; Feng, Xueyang; Berla, Bert; Pakrasi, Himadri B.; Tang, Yinjie J.

    2012-01-01

    Microbes have complex metabolic pathways that can be investigated using biochemistry and functional genomics methods. One important technique to examine cell central metabolism and discover new enzymes is 13C-assisted metabolism analysis 1. This technique is based on isotopic labeling, whereby microbes are fed with a 13C labeled substrates. By tracing the atom transition paths between metabolites in the biochemical network, we can determine functional pathways and discover new enzymes. As a complementary method to transcriptomics and proteomics, approaches for isotopomer-assisted analysis of metabolic pathways contain three major steps 2. First, we grow cells with 13C labeled substrates. In this step, the composition of the medium and the selection of labeled substrates are two key factors. To avoid measurement noises from non-labeled carbon in nutrient supplements, a minimal medium with a sole carbon source is required. Further, the choice of a labeled substrate is based on how effectively it will elucidate the pathway being analyzed. Because novel enzymes often involve different reaction stereochemistry or intermediate products, in general, singly labeled carbon substrates are more informative for detection of novel pathways than uniformly labeled ones for detection of novel pathways3, 4. Second, we analyze amino acid labeling patterns using GC-MS. Amino acids are abundant in protein and thus can be obtained from biomass hydrolysis. Amino acids can be derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (TBDMS) before GC separation. TBDMS derivatized amino acids can be fragmented by MS and result in different arrays of fragments. Based on the mass to charge (m/z) ratio of fragmented and unfragmented amino acids, we can deduce the possible labeled patterns of the central metabolites that are precursors of the amino acids. Third, we trace 13C carbon transitions in the proposed pathways and, based on the isotopomer data, confirm whether these

  3. Metabolism of hydroxy fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops.

    PubMed

    Kim, Y S; Spritz, N

    1968-07-01

    Several aspects of the metabolism of hydroxy fatty acids were studied in dogs with steatorrhea resulting from an experimentally produced jejunal blind loop. In these animals hydroxy acids were present in the stool in amounts far above normal. These acids disappeared from the feces during tetracycline administration and after exclusion of the blind loop-both procedures that corrected the steatorrhea apparently by reducing bacterial overgrowth. Hydroxy acids persisted in higher than normal amounts, however, after administration of taurocholic acid, which also corrected the steatorrhea, but by a different mechanism. Both in normal dogs and in those with blind loops, hydroxy acid constituted a higher percentage of total fatty acids in the jejunum. A possible conclusion is that hydroxy fatty acids have an enterohepatic circulation via the portal system. When hydroxy acids were fed to normal dogs, steatorrhea was not produced and absorption in amounts similar to that of unsubstituted stearic acid was observed. Isotopic oleic and linoleic acids were converted to hydroxy acids both in vivo and during in vitro incubation with feces; stearic acid was not. These findings support the idea that hydroxy acids arise by the addition of water across double bonds, this addition being catalyzed by enzymes of intestinal bacteria. PMID:5725881

  4. Acid Stress-Mediated Metabolic Shift in Lactobacillus sanfranciscensis LSCE1 ▿

    PubMed Central

    Serrazanetti, Diana I.; Ndagijimana, Maurice; Sado-Kamdem, Sylvain L.; Corsetti, Aldo; Vogel, Rudi F.; Ehrmann, Matthias; Guerzoni, M. Elisabetta

    2011-01-01

    Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation. PMID:21335381

  5. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  6. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy

    PubMed Central

    2015-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a complex, multifactorial disease in which an increase in pulmonary vascular resistance leads to increased afterload on the right ventricle (RV), causing right heart failure and death. Our understanding of the pathophysiology of RV dysfunction in PAH is limited but is constantly improving. Increasing evidence suggests that in PAH RV dysfunction is associated with various components of metabolic syndrome, such as insulin resistance, hyperglycemia, and dyslipidemia. The relationship between RV dysfunction and fatty acid/glucose metabolites is multifaceted, and in PAH it is characterized by a shift in utilization of energy sources toward increased glucose utilization and reduced fatty acid consumption. RV dysfunction may be caused by maladaptive fatty acid metabolism resulting from an increase in fatty acid uptake by fatty acid transporter molecule CD36 and an imbalance between glucose and fatty acid oxidation in mitochondria. This leads to lipid accumulation in the form of triglycerides, diacylglycerol, and ceramides in the cytoplasm, hallmarks of lipotoxicity. Current interventions in animal models focus on improving RV dysfunction through altering fatty acid oxidation rates and limiting lipid accumulation, but more specific and effective therapies may be available in the coming years based on current research. In conclusion, a deeper understanding of the complex mechanisms of the metabolic remodeling of the RV will aid in the development of targeted treatments for RV failure in PAH. PMID:26064451

  7. Amino Acid Metabolism of Lemna minor L. 1

    PubMed Central

    Rhodes, David; Hogan, Austin L.; Deal, Luanne; Jamieson, Gene C.; Haworth, Philip

    1987-01-01

    Chlorsulfuron, an inhibitor of acetolactate synthase (EC 4.1.3.18) (TB Ray 1984 Plant Physiol 75: 827-831), markedly inhibited the growth of Lemna minor at concentrations of 10−8 molar and above, but had no inhibitory effects on growth at 10−9 molar. At growth inhibitory concentrations, chlorsulfuron caused a pronounced increase in total free amino acid levels within 24 hours. Valine, leucine, and isoleucine, however, became smaller percentages of the total free amino acid pool as the concentration of chlorsulfuron was increased. At concentrations of chlorsulfuron of 10−8 molar and above, a new amino acid was accumulated in the free pool. This amino acid was identified as α-amino-n-butyrate by chemical ionization and electron impact gas chromatography-mass spectrometry. The amount of α-amino-n-butyrate increased from undetectable levels in untreated plants, to as high as 840 nanomoles per gram fresh weight (2.44% of the total free pool) in plants treated with 10−4 molar chlorsulfuron for 24 hours. The accumulation of this amino acid was completely inhibited by methionine sulfoximine. Chlorsulfuron did not inhibit the methionine sulfoximine induced accumulations of valine, leucine, and isoleucine, supporting the idea that the accumulation of the branched-chain amino acids in methionine sulfoximine treated plants is the result of protein turnover rather than enhanced synthesis. Protein turnover may be primarily responsible for the failure to achieve complete depletion of valine, leucine, and isoleucine even at concentrations of chlorsulfuron some 104 times greater than that required to inhibit growth. Tracer studies with 15N demonstrate that chlorsulfuron inhibits the incorporation of 15N into valine, leucine, and isoleucine. The α-amino-n-butyrate accumulated in the presence of chlorsulfuron and [15N]H4+ was heavily labeled with 15N at early time points and appeared to be derived by transamination from a rapidly labeled amino acid such as glutamate or

  8. Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation?

    PubMed

    Brosnan, Margaret E; MacMillan, Luke; Stevens, Jennifer R; Brosnan, John T

    2015-12-01

    One-carbon metabolism is usually represented as having three canonical functions: purine synthesis, thymidylate synthesis and methylation reactions. There is however a fourth major function: the metabolism of some amino acids (serine, glycine, tryptophan and histidine), as well as choline. These substrates can provide cells with more one-carbon groups than they need for these three canonical functions. Therefore, there must be mechanisms for the disposal of these one-carbon groups (when in excess) which maintain the complement of these groups required for the canonical functions. The key enzyme for these mechanisms is 10-formyl-THF (tetrahydrofolate) dehydrogenase (both mitochondrial and cytoplasmic isoforms) which oxidizes the formyl group to CO2 with the attendant reduction of NADP(+) to NADPH and release of THF. In addition to oxidizing the excess of these compounds, this process can reduce substantial quantities of NADP(+) to NADPH. PMID:26567272

  9. Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk

    PubMed Central

    da Silva, Hellen Abreu; Carraro, Júlia Cristina Cardoso; Bressan, Josefina; Hermsdorff, Helen Hermana Miranda

    2015-01-01

    Objective To identify possible relations between serum uric acid levels and metabolic syndrome and its components in a population with cardiometabolic risk. Methods This cross-sectional study included 80 subjects (46 women), with mean age of 48±16 years, seen at the Cardiovascular Health Program. Results The prevalence of hyperuricemia and metabolic syndrome was 6.3% and 47.1%, respectively. Uric acid level was significantly higher in individuals with metabolic syndrome (5.1±1.6mg/dL), as compared to those with no syndrome or with pre-syndrome (3.9±1.2 and 4.1±1.3mg/dL, respectively; p<0.05). The uric acid levels were significantly higher in men presenting abdominal obesity, and among women with abdominal obesity, lower HDL-c levels and higher blood pressure (p<0.05). Conclusion Uric acid concentrations were positively related to the occurrence of metabolic syndrome and its components, and there were differences between genders. Our results indicate serum uric acid as a potential biomarker for patients with cardiometabolic risk. PMID:26018145

  10. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer.

    PubMed

    Vangaveti, Venkat N; Jansen, Holger; Kennedy, Richard Lee; Malabu, Usman H

    2016-08-15

    Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo

  11. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions.

    PubMed

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  12. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  13. Carbon Flow and Metabolic Specialization in the Tissue Layers of the Crassulacean Acid Metabolism Plant, Peperomia camptotricha1

    PubMed Central

    Nishio, John N.; Ting, Irwin P.

    1987-01-01

    Leaves of Peperomia camptotricha contain three distinct upper tissue layers and a one-cell thick lower epidermis. Light and dark CO2 fixation rates and the activity of ribulose bisphosphate carboxylase/oxygenase and several C4 enzymes were determined in the three distinct tissue layers. The majority of the C4 enzyme activity and dark CO2 fixation was associated with the spongy mesophyll, including the lower epidermis; and the least activity was found in the median palisade mesophyll. In contrast, the majority of the C3 activity, that is ribulose bisphosphate carboxylase/oxygenase and light CO2 fixation, was located in the palisade mesophyll. In addition, the diurnal flux in titratable acidity was greatest in the spongy mesophyll and lowest in the palisade mesophyll. The spatial separation of the C3 and C4 phases of carbon fixation in P. camptotricha suggests that this Crassulacean acid metabolism plant may have low photorespiratory rates when it exhibits daytime gas exchange (that is, when it is well watered). The results also indicate that this plant may be on an evolutionary path between a true Crassulacean acid metabolism plant and a true C4 plant. PMID:16665487

  14. Independent Effects of γ-Aminobutyric Acid Transaminase (GABAT) on Metabolic and Sleep Homeostasis*

    PubMed Central

    Maguire, Sarah E.; Rhoades, Seth; Chen, Wen-Feng; Sengupta, Arjun; Yue, Zhifeng; Lim, Jason C.; Mitchell, Claire H.; Weljie, Aalim M.; Sehgal, Amita

    2015-01-01

    Breakdown of the major sleep-promoting neurotransmitter, γ-aminobutyric acid (GABA), in the GABA shunt generates catabolites that may enter the tricarboxylic acid cycle, but it is unknown whether catabolic by-products of the GABA shunt actually support metabolic homeostasis. In Drosophila, the loss of the specific enzyme that degrades GABA, GABA transaminase (GABAT), increases sleep, and we show here that it also affects metabolism such that flies lacking GABAT fail to survive on carbohydrate media. Expression of GABAT in neurons or glia rescues this phenotype, indicating a general metabolic function for this enzyme in the brain. As GABA degradation produces two catabolic products, glutamate and succinic semialdehyde, we sought to determine which was responsible for the metabolic phenotype. Through genetic and pharmacological experiments, we determined that glutamate, rather than succinic semialdehyde, accounts for the metabolic phenotype of gabat mutants. This is supported by biochemical measurements of catabolites in wild-type and mutant animals. Using in vitro labeling assays, we found that inhibition of GABAT affects energetic pathways. Interestingly, we also observed that gaba mutants display a general disruption in bioenergetics as measured by altered levels of tricarboxylic acid cycle intermediates, NAD+/NADH, and ATP levels. Finally, we report that the effects of GABAT on sleep do not depend upon glutamate, indicating that GABAT regulates metabolic and sleep homeostasis through independent mechanisms. These data indicate a role of the GABA shunt in the development of metabolic risk and suggest that neurological disorders caused by altered glutamate or GABA may be associated with metabolic disruption. PMID:26124278

  15. Influence of dietary retrograded starch on the metabolism of neutral steroids and bile acids in rats.

    PubMed

    Verbeek, M J; De Deckere, E A; Tijburg, L B; Van Amelsvoort, J M; Beynen, A C

    1995-12-01

    Diets enriched in retrograded amylose (RS3) have been shown to lower serum cholesterol concentrations in rats. The possibility was tested that this hypocholesterolaemic effect of RS3 is caused by an increase in excretion of neutral steroids and/or bile acids. Six groups of ten rats were fed on purified diets containing either 12 or 140 g RS3/kg solid ingredients with and without added cholesterol (5g/kg). Low-RS3 diets, with and without added cholesterol, to which the bile-acid-binding resin cholestyramine (20 g/kg) was added, were used as reference. The high-RS3 diets v. the low-RS3 diets tended to reduce the increase in the total serum cholesterol concentration during the course of the experiment (P = 0.067), decreased serum triacylglycerol concentrations, raised total neutral steroids and total bile acids in caecal contents and faecal excretion of total bile acids, but lowered faecal excretion of neutral steroids. In addition, the serum concentration of total 3 alpha-bile acids was markedly raised by the high-RS3 diets. The high-RS3 diets raised the faecal excretion of lithocholic and muricholic acids, but lowered that of hyodeoxycholic acid, and increased the caecal amounts of lithocholic, ursodeoxycholic, beta-muricholic and omega-muricholic acids. Apart from the stimulation of faecal bile acids excretion, the effects of cholestyramine on bile acid metabolism differed at various points from those of RS3. Cholesterol feeding had predictable effects on cholesterol metabolism and led to greater elevating effects of RS3 on the faecal and caecal amounts of muricholic acids. The results suggest that the serum-cholesterol-lowering effect of high-RS3 diets may be explained by an increased influx of neutral steroids and bile acids into the caecum, and increased faecal excretion of bile acids, and/or by an altered intestinal bile acid profile. PMID:8562568

  16. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis

    PubMed Central

    van Beilen, J. W. A.; Teixeira de Mattos, M. J.; Hellingwerf, K. J.

    2014-01-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness. PMID:25038097

  17. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering.

    PubMed

    Steiger, Matthias G; Punt, Peter J; Ram, Arthur F J; Mattanovich, Diethard; Sauer, Michael

    2016-05-01

    The mitochondrial carrier protein MttA is involved in the biosynthesis of itaconic acid in Aspergillus terreus. In this paper, the transport specificity of MttA is analyzed making use of different metabolically engineered Aspergillus niger strains. Furthermore, the mitochondrial localization of this protein is confirmed using fluorescence microscopy. It was found that MttA preferentially transports cis-aconitic acid over citric acid and does not transport itaconic acid. The expression of MttA in selected A. niger strains results in secretion of aconitic acid. MttA can be used in further strain engineering strategies to transport cis-aconitic acid to the cytosol to produce itaconic acid or related metabolites. The microbial production of aconitic acid (9g/L) is achieved in strains expressing this transport protein. Thus, metabolic engineering can be used for both the in vivo characterization of transport protein function like MttA and to make use of this protein by creating aconitic acid producing strains. PMID:26875555

  18. New method for administration of hydrochloric acid in metabolic alkalosis.

    PubMed

    Knutsen, O H

    1983-04-30

    In a new method for peripheral intravenous infusion of hydrochloric acid the HCl is buffered in an aminoacid solution and infused with a fat emulsion. The aminoacids and the fat emulsions are stable in the presence of HCl, and the transfusion set is resistant to the chemical actin of 0.15 mol/l HCl. Two case-reports show that HCl can be administered safely through a peripheral vein. PMID:6132269

  19. Nicotinic acid metabolism. 2,3-Dimethylmalate lyase.

    PubMed

    Pirzer, P; Lill, U; Eggerer, H

    1979-12-01

    1) A new enzyme, 2,3-dimethylmalate lyase, was purified from Clostridium barkeri to about 80% homogeneity. Some of the properties of the enzyme are described. 2) It is shown that the 2,3-dimethylmalic acid (m.p. 143 degrees C) described in the literature represents only one racemic pair. This pair is not attacked by 2,3-dimethylmalate lyase. 3) The isolation of both racemic pairs of 2,3-dimethylmalic acid is described. Half of one pair, m.p. 104-106 degrees C, was converted to propionate and pyruvate by 2,3-dimethylmalate lyase. 4) In combination with earlier work performed by E.R. Stadtman and coworkers the results given under points 1--3 establish 2,3-dimethylmalate as an intermediate in the degradation of nicotinic acid by C. barkeri. 5) Experimental evidence indicates the 2,3-dimethylmalate lyase is no acyl-S-enzyme and that it is different in this respect as well as in quaternary structure from the apparently related enzymes citrate lyase and citramalate lyase. PMID:527937

  20. Arachidonate metabolism in bovine gallbladder muscle

    SciTech Connect

    Nakano, M.; Hidaka, T.; Ueta, T.; Ogura, R.

    1983-04-01

    Incubation of (1-/sup 14/C)arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of (1-/sup 14/C)PGH2 was virtually identical to that of (1-/sup 14/C)AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.

  1. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  2. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    SciTech Connect

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  3. Metabolism of Abscisic Acid in Guard Cells of Vicia faba L. and Commelina communis L. 1

    PubMed Central

    Grantz, David A.; Ho, Tuan-Hua David; Uknes, Scott J.; Cheeseman, John M.; Boyer, John S.

    1985-01-01

    Metabolism of abscisic acid (ABA) was investigated in isolated guard cells and in mesophyll tissue of Vicia faba L. and Commelina communis L. After incubation in buffer containing [G-3H]±ABA, the tissue was extracted by grinding and the metabolites separated by thin layer chromatography. Guard cells of Commelina metabolized ABA to phaseic acid (PA), dihydrophaseic acid (DPA), and alkali labile conjugates. Guard cells of Vicia formed only the conjugates. Mesophyll cells of Commelina accumulated DPA while mesophyll cells of Vicia accumulated PA. Controls showed that the observed metabolism was not due to extracellular enzyme contaminants nor to bacterial action. Metabolism of ABA in guard cells suggests a mechanism for removal of ABA, which causes stomatal closure of both species, from the stomatal complex. Conversion to metabolites which are inactive in stomatal regulation, within the cells controlling stomatal opening, might precede detectable changes in levels of ABA in bulk leaf tissue. The differences observed between Commelina and Vicia in metabolism of ABA in guard cells, and in the accumulation product in the mesophyll, may be related to differences in stomatal sensitivity to PA which have been reported for these species. Images Fig. 1 PMID:16664207

  4. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  5. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    PubMed Central

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  6. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  7. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism.

    PubMed

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  8. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  9. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  10. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  11. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD). PMID:23075272

  12. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis.

    PubMed

    Hoefnagel, Marcel H N; Starrenburg, Marjo J C; Martens, Dirk E; Hugenholtz, Jeroen; Kleerebezem, Michiel; Van Swam, Iris I; Bongers, Roger; Westerhoff, Hans V; Snoep, Jacky L

    2002-04-01

    Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds. The model presented here (available at http://jjj.biochem.sun.ac.za/wcfs.html) showed that the enzymes with the greatest effect on this flux resided outside the acetolactate synthase branch itself. Experiments confirmed the predictions of the model, i.e. knocking out lactate dehydrogenase and overexpressing NADH oxidase increased the flux through the acetolactate synthase branch from 0 to 75% of measured product formation rates. PMID:11932446

  13. Nordihydroguaiaretic acid improves metabolic dysregulation and aberrant hepatic lipid metabolism in mice by both PPARα-dependent and -independent pathways

    PubMed Central

    Zhang, Haiyan; Shen, Wen-Jun; Cortez, Yuan; Kraemer, Fredric B.

    2013-01-01

    Creosote bush-derived nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, possesses antioxidant properties and functions as a potent antihyperlipidemic agent in rodent models. Here, we examined the effect of chronic NDGA treatment of ob/ob mice on plasma dyslipidemia, hepatic steatosis, and changes in hepatic gene expression. Feeding ob/ob mice a chow diet supplemented with either low (0.83 g/kg diet) or high-dose (2.5 g/kg diet) NDGA for 16 wk significantly improved plasma triglyceride (TG), inflammatory chemokine levels, hyperinsulinemia, insulin sensitivity, and glucose intolerance. NDGA treatment caused a marked reduction in liver weight and TG content, while enhancing rates of fatty acid oxidation. Microarray analysis of hepatic gene expression demonstrated that NDGA treatment altered genes for lipid metabolism, with genes involved in fatty acid catabolism most significantly increased. NDGA upregulated the mRNA and nuclear protein levels of peroxisome proliferator-activated receptor α (PPARα), and the activated (phosphorylated) form of AMP-activated kinase. NDGA increased PPARα promoter activity in AML12 hepatocytes and also prevented the fatty acid suppression of PPARα expression. In contrast, PPARα siRNA abrogated the stimulatory effect of NDGA on fatty acid catabolism. Likewise, no stimulatory effect of NDGA on hepatic fatty acid oxidation was observed in the livers of PPARα-deficient mice, but the ability of NDGA to reverse fatty liver conditions was unaffected. In conclusion, the beneficial actions of NDGA on dyslipidemia and hepatic steatosis in ob/ob mice are exerted primarily through enhanced fatty acid oxidation via PPARα-dependent pathways. However, PPARα-independent pathways also contribute to NDGA's action to ameliorate hepatic steatosis. PMID:23104557

  14. Metabolically Active Eukaryotic Communities in Extremely Acidic Mine Drainage

    PubMed Central

    Baker, Brett J.; Lutz, Michelle A.; Dawson, Scott C.; Bond, Philip L.; Banfield, Jillian F.

    2004-01-01

    Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50°C), metal-rich (up to 269 mM Fe2+, 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name “Acidomyces richmondensis” for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure. PMID:15466574

  15. [Participation of the adrenals in the pathogenesis of metabolic acid-base disorders].

    PubMed

    Iluchev, D; Shtereva, S

    1976-01-01

    The authors examined in dynamics the changes in the functional state of the adrenals on 240 rabbits, which served as models for acute metabolic deviations in the acid-base balance. The obtained results showed that the acute metabolic acidosis increased moderately the values of ACTH and 17-hydroxycorticosteroids in blood without changing their concentration on the adrenal tissue. It lowered strongly the content of catecholamines (adrenaline and noradranaline) in the adrenal medular part. The metabolic alkalosis raised the concentration of ACTH in blood plasma and increased the amount of corticosteroids in blood and adrenals. There was no well formed parallelism in normalizing acid-base and hormonal indices. As a consequence of this a stage of postaciodotic catecholamine adrenal deficit was formed as well as metabasic hypercorticism in the experimental animals. PMID:14819

  16. Lipoic Acid Metabolism of Plasmodium - A Suitable Drug Target

    PubMed Central

    Storm, Janet; Müller, Sylke

    2012-01-01

    α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria. PMID:22607141

  17. Lipoic acid metabolism of Plasmodium--a suitable drug target.

    PubMed

    Storm, Janet; Müller, Sylke

    2012-01-01

    α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria. PMID:22607141

  18. Intrauterine bacterial inoculation and level of dietary methionine alter amino acid metabolism in nulliparous yearling ewes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using an intrauterine bacterial inoculation method, our objective was to determine the effects of acute sepsis and level of dietary metabolizable-methionine on splanchnic metabolism of amino acids in ewes. Twenty-five nulliparous yearling Rambouillet-cross ewes (initial BW = 65.1 ± 0.6 kg), surgical...

  19. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy.

    PubMed

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5' adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  20. CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Disruption of the circadian system may be causal for manifestations of Metabolic Syndrome (MetS). Objective: To study the associations of five CLOCK polymorphisms with MetS features considering fatty acid (FA) composition, from dietary and red-blood-cells (RBC) membrane sources. Design: ...

  1. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    PubMed

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  2. EFFECT OF DOSE ON THE EXCRETION AND METABOLISM OF MONOMETHYLARSONIC ACID IN THE MOUSE

    EPA Science Inventory

    EFFECT OF DOSE ON THE EXCRETION AND METABOLISM OF MONOMETHYLARSONIC ACID IN THE MOUSE
    M F Hughes1, V Devesa2, B C Edwards1, C T Mitchell1, E M Kenyon1, and D J Thomas1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC; 2UNC-CH, CEMALB, Chapel Hill, NC

    Monomethylar...

  3. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  4. UPTAKE AND METABOLISM OF ALL-TRANS RETINOIC ACID BY THREE NATIVE NORTH AMERICAN RANIDS

    EPA Science Inventory

    Retinoids, which are Vvitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of the model retinoid, all-trans retinoic acid (all-trans RA), by th...

  5. DIFFERENTIAL INFLUENCE OF DISTINCT FATTY ACIDS ON CARDIOMYOCYTE METABOLIC GENE EXPRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus is a major risk factor for development of cardiovascular disease. Metabolic adaptation of the heart to increased fatty acids (FAs) in the diabetic milieu is mediated by induction of genes promoting FA oxidation (e.g. malonyl-CoA decarboxylase; mcd), as well as those suppressing car...

  6. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    PubMed

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  7. Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass

    PubMed Central

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L−1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  8. [Procedure for calculating various parameters of the metabolism of amino acid mixtures].

    PubMed

    Fauth, U; Heinrichs, W; Puénte-Gonzales, I; Tzanova, I; Halmágyi, M

    1989-12-01

    For the evaluation of indirect calorimetry, elements are used, which specify the relation between nitrogen (N) excretion and amount of oxidized amino acids (AS/N) and between nitrogen excretion and oxygen-/carbon dioxide-exchange of the corresponding amounts of amino acids (O2/N, CO2/N). These elements are only valid for the amino acid mixture which was used for their determination, and only under the condition of complete combustion of deaminized amino acid skeletons. We developed a computer program, which is able to simulate complete oxidation, maximal gluconeogenesis, and maximal lipogenesis for a given amino acid mixture of any composition. The parameters AS/N, O2/N and CO2/N were calculated by the program for various parenteral amino acid solutions. Range of error was determined exemplarily for the use of standard parameters. The calculations demonstrate errors up to 50% for the calculation of substrate turnover in indirect calorimetry, depending on composition and actual metabolism of amino acid mixtures. As long as these influencing factors are not known in stress metabolism, we recommend to use those elements, which were calculated for the amino acid solution in use, assuming complete combustion. PMID:2516505

  9. AKR1B7 Is Induced by the Farnesoid X Receptor and Metabolizes Bile Acids*

    PubMed Central

    Schmidt, Daniel R.; Schmidt, Samuel; Holmstrom, Sam R.; Makishima, Makoto; Yu, Ruth T.; Cummins, Carolyn L.; Mangelsdorf, David J.; Kliewer, Steven A.

    2011-01-01

    Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids. PMID:21081494

  10. Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress 12

    PubMed Central

    Barnett, N. M.; Naylor, A. W.

    1966-01-01

    The ability of Arizona Common and Coastal Bermuda grass [Cynodon dactylon (L.) Pers.] to synthesize amino acids and proteins during water stress was investigated. Amino acids were continually synthesized during the water stress treatments, but protein synthesis was inhibited and protein levels decreased. Water stress induced a 10- to 100-fold accumulation of free proline in shoots and a 2- to 6-fold accumulation of free asparagine, both of which are characteristic responses of water-stressed plants. Valine levels increased, and glutamic acid and alanine levels decreased. 14C labeling experiments showed that free proline turns over more slowly than any other free amino acid during water stress. This proline is readily synthesized and accumulated from glutamic acid. It is suggested that during water stress free proline functions as a storage compound. No significant differences were found in the amino acid and protein metabolism of the 2 varieties of Bermuda grass. PMID:16656387

  11. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.

    PubMed

    Morrison, Douglas J; Preston, Tom

    2016-05-01

    The formation of SCFA is the result of a complex interplay between diet and the gut microbiota within the gut lumen environment. The discovery of receptors, across a range of cell and tissue types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent the major carbon flux from the diet through the gut microbiota to the host and evidence is emerging for a regulatory role of SCFA in local, intermediary and peripheral metabolism. However, a lack of well-designed and controlled human studies has hampered our understanding of the significance of SCFA in human metabolic health. This review aims to pull together recent findings on the role of SCFA in human metabolism to highlight the multi-faceted role of SCFA on different metabolic systems. PMID:26963409

  12. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    PubMed Central

    Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang

    2013-01-01

    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792

  13. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  14. Expression of genes associated with fatty acid metabolism during maturation in diploid and triploid female rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study effects of sexual maturation on fatty acid metabolism in fish on a high nutritional plane, expression of thirty-five genes involved in fatty acid metabolism was determined in sexually maturing diploid (2N; fertile) and triploid (3N; sterile) female rainbow trout. Gene expression was assesse...

  15. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    PubMed Central

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  16. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut.

    PubMed

    Ridlon, Jason M; Kang, Dae-Joong; Hylemon, Phillip B; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid, and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in the intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic, and disease progression in cirrhosis, metabolic syndrome, and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal, and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa, and increasing production of deoxycholic acid. Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis, and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide

  17. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  18. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat.

    PubMed

    Roda, Aldo; Pellicciari, Roberto; Gioiello, Antimo; Neri, Flavia; Camborata, Cecilia; Passeri, Daniela; De Franco, Francesca; Spinozzi, Silvia; Colliva, Carolina; Adorini, Luciano; Montagnani, Marco; Aldini, Rita

    2014-07-01

    We report on the relationship between the structure-pharmacokinetics, metabolism, and therapeutic activity of semisynthetic bile acid analogs, including 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid (a selective farnesoid X receptor [FXR] receptor agonist), 6α-ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (a specific Takeda G protein-coupled receptor 5 [TGR5] receptor agonist), and 6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-sulfate (a dual FXR/TGR5 agonist). We measured the main physicochemical properties of these molecules, including ionization constants, water solubility, lipophilicity, detergency, and protein binding. Biliary secretion and metabolism and plasma and hepatic concentrations were evaluated by high-pressure liquid chromatography-electrospray-mass spectrometry/mass spectrometry in bile fistula rat and compared with natural analogs chenodeoxycholic, cholic acid, and taurochenodexycholic acid and intestinal bacteria metabolism was evaluated in terms of 7α-dehydroxylase substrate-specificity in anaerobic human stool culture. The semisynthetic derivatives detergency, measured in terms of their critical micellar concentration, was quite similar to the natural analogs. They were slightly more lipophilic than the corresponding natural analogs, evaluated by their 1-octanol water partition coefficient (log P), because of the ethyl group in 6 position, which makes these molecules very stable toward bacterial 7-dehydroxylation. The hepatic metabolism and biliary secretion were different: 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid, as chenodeoxycholic acid, was efficiently conjugated with taurine in the liver and, only in this form, promptly and efficiently secreted in bile. 6α-Ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid was poorly conjugated with taurine because of the steric hindrance of the methyl at C23(S) position metabolized to the C23(R) isomer and partly conjugated with taurine. Conversely, 6

  19. Effect of Polyunsaturated Fatty Acids on Homocysteine Metabolism through Regulating the Gene Expressions Involved in Methionine Metabolism

    PubMed Central

    Huang, Tao; Hu, Xiaojie; Khan, Nicholas; Yang, Jing; Li, Duo

    2013-01-01

    The objective was to investigate the regulatory effect of polyunsaturated fatty acids (PUFAs) on mRNA expression of key genes involved in homocysteine (Hcy) metabolism. Eighty male Sprague Dawley rats were randomly divided into eight groups. The oils were orally administered daily for 8 weeks. Plasma Hcy, phospholipids fatty acids, and mRNA expression were determined. Compared with the control group, plasma Hcy was significantly decreased in the 22:6n-3 and conjugated linoleic acid (CLA) groups; mRNA expression of Mthfr was significantly upregulated in the 22:6n-3, 20:5n-3, and 18:3n-3 groups and downregulated in the 18:2n-6 and stearolic acid (SO) groups. Mat1a was upregulated in the 22:6n-3, 20:5n-3, 18:3n-3, and CLA groups. In addition, Cbs was upregulated in the 22:6n-3, 20:5n-3, 18:3n-3 and CLA groups while downregulated in 18:2n-6 and SO groups. Dietary 22:6n-3 and CLA decrease the plasma concentration of Hcy. mRNA expression of Mthfr, Mat1a, Cbs and Pemt, Gnmt, Mtrr, and Bad is upregulated by n-3 PUFA and downregulated by n-6 PUFA. CLA upregulates mRNA expression of Mat1a and Cbs. PMID:23766724

  20. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays

    NASA Astrophysics Data System (ADS)

    Fang, Ting; Verma, Vishal; Bates, Josephine T.; Abrams, Joseph; Klein, Mitchel; Strickland, Matthew J.; Sarnat, Stefanie E.; Chang, Howard H.; Mulholland, James A.; Tolbert, Paige E.; Russell, Armistead G.; Weber, Rodney J.

    2016-03-01

    The ability of certain components of particulate matter to induce oxidative stress through the generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and report here the development of a similar semi-automated system for the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed for a host of aerosol species, along with AA and DTT activities. We present a detailed contrast in findings from these two assays. Water-soluble AA activity was higher in summer and fall than in winter, with highest levels near heavily trafficked highways, whereas DTT activity was higher in winter compared to summer and fall and more spatially homogeneous. AA activity was nearly exclusively correlated with water-soluble Cu (r = 0.70-0.94 at most sites), whereas DTT activity was correlated with organic and metal species. Source apportionment models, positive matrix factorization (PMF) and a chemical mass balance method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from traffic emissions and secondary processes (e.g., organic aerosol oxidation or metals mobilization by secondary acids) to both AA and DTT activities in urban Atlanta. In contrast, biomass burning was a large source for DTT activity, but insignificant for AA. AA activity was not correlated with PM2.5 mass, while DTT activity co-varied strongly with mass (r = 0.49-0.86 across sites and seasons). Various linear models were developed to estimate AA and DTT activities for the central Atlanta Jefferson Street site, based on the CMB-E sources. The models were then used to estimate daily

  1. Oxidative potential of ambient water-soluble PM2.5 measured by Dithiothreitol (DTT) and Ascorbic Acid (AA) assays in the southeastern United States: contrasts in sources and health associations

    NASA Astrophysics Data System (ADS)

    Fang, T.; Verma, V.; Bates, J. T.; Abrams, J.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.; Weber, R. J.

    2015-11-01

    The ability of certain components of particulate matter to induce oxidative stress through catalytic generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and have recently developed a similar semi-automated system using the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed using both assays. We found that water-soluble DTT activity on a per air volume basis was more spatially uniform than water-soluble AA activity. DTT activity was higher in winter than in summer/fall, whereas AA activity was higher in summer/fall compared to winter, with highest levels near highly trafficked highways. DTT activity was correlated with organic and metal species, whereas AA activity was correlated with water-soluble metals (especially water-soluble Cu, r=0.70-0.91 at most sites). Source apportionment models, Positive Matrix Factorization (PMF) and a Chemical Mass Balance Method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from secondary processes (e.g., organic aerosol oxidation or metal mobilization by formation of an aqueous particle with secondary acids) and traffic emissions to both DTT and AA activities in urban Atlanta. Biomass burning was a large source for DTT activity, but insignificant for AA. DTT activity was well correlated with PM2.5 mass (r=0.49-0.86 across sites/seasons), while AA activity did not co-vary strongly with mass. A linear model was developed to estimate DTT and AA activities for the central Atlanta Jefferson Street site, based on the CMB-E sources that are statistically significant with positive

  2. Triketocholanoic (Dehydrocholic) Acid. HEPATIC METABOLISM AND EFFECT ON BILE FLOW AND BILIARY LIPID SECRETION IN MAN

    PubMed Central

    Soloway, Roger D.; Hofmann, Alan F.; Thomas, Paul J.; Schoenfield, Leslie J.; Klein, Peter D.

    1973-01-01

    [24-14C]Dehydrocholic acid (triketo-5-β-cholanoic acid) was synthesized from [24-14C]cholic acid, mixed with 200 mg of carrier, and administered intravenously to two patients with indwelling T tubes designed to permit bile sampling without interruption of the enterohepatic circulation. More than 80% of infused radioactivity was excreted rapidly in bile as glycine- and taurine-conjugated bile acids. Radioactive products were identified, after deconjugation, as partially or completely reduced derivatives of dehydrocholic acid. By mass spectrometry, as well as chromatography, the major metabolite (about 70%) was a dihydroxy monoketo bile acid (3α,7α-dihydroxy-12-keto-5β-cholanoic acid); a second metabolite (about 20%) was a monohydroxy diketo acid (3α-hydroxy-7,12-di-keto-5β-cholanoic acid); and about 10% of radioactivity was present as cholic acid. Reduction appeared to have been sequential (3 position, then 7 position, and then 12 position) and stereospecific (only α epimers were recovered). Bile flow, expressed as the ratio of bile flow to bile acid excretion, was increased after dehydrocholic acid administration. It was speculated that the hydroxy keto metabolites are hydrocholeretics. The proportion of cholesterol to lecithin and bile acids did not change significantly after dehydrocholic acid administration. In vitro studies showed that the hydroxy keto metabolites dispersed lecithin poorly compared to cholate; however, mixtures of cholate and either metabolite had dispersant properties similar to those of cholate alone, provided the ratio of metabolite to cholate remained below a value characteristic for each metabolite. These experiments disclose a new metabolic pathway in man, provide further insight into the hydrocholeresis induced by keto bile acids, and indicate the striking change in pharmacologic and physical properties caused by replacement of hydroxyl by a keto substituent in the bile acid molecule. Images PMID:4685091

  3. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism.

    PubMed

    Zhao, Erhu; Ding, Jane; Xia, Yingfeng; Liu, Mengling; Ye, Bingwei; Choi, Jeong-Hyeon; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Zha, Yunhong; Yang, Liqun; Cui, Hongjuan; Ding, Han-Fei

    2016-01-26

    The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here, we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9) trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation. PMID:26774480

  4. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism

    PubMed Central

    Xia, Yingfeng; Liu, Mengling; Ye, Bingwei; Choi, Jeong-Hyeon; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Zha, Yunhong; Yang, Liqun; Cui, Hongjuan; Ding, Han-Fei

    2015-01-01

    SUMMARY The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9) trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation. PMID:26774480

  5. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout.

    PubMed

    Petru, Lenka; Pavelcova, Katerina; Sebesta, Ivan; Stiburkova, Blanka

    2016-09-01

    Hyperuricemia depends on the balance of endogenous production and renal excretion of uric acid. Transporters for urate are located in the proximal tubule where uric acid is secreted and extensively reabsorbed: secretion is principally ensured by the highly variable ABCG2 gene. Enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) plays a central role in purine metabolism and its deficiency is an X-linked inherited metabolic disorder associated with clinical manifestations of purine overproduction. Here we report the case of a middle-aged man with severe chronic tophaceous gout with a poor response to allopurinol and requiring repeated surgical intervention. We identified the causal mutations in the HPRT1 gene, variant c.481G>T (p.A161S), and in the crucial urate transporter ABCG2, a heterozygous variant c.421C>A (p.Q141K). This case shows the value of an analysis of the genetic background of serum uric acid. PMID:27288985

  6. Utilization of Lactic Acid by Fusarium oxysporum var. lini: Regulation of Transport and Metabolism

    PubMed Central

    Castro, Ieso M.; Loureiro-Dias, Maria C.

    1994-01-01

    Lactic acid was transported in Fusarium oxysporum var. lini ATCC 10960 by a saturable transport system that had a half-saturation constant of 56.6 ± 7.5 μM and a maximum velocity of 0.61 ± 0.10 mmol h-1 g-1 (dry weight) at 26°C and pH 5.0. This transport system was inducible and was not expressed in the presence of a repressing substrate. Evidence is presented that the anionic form lactate- was taken up by the cells. Propionic, acetic, pyruvic, and bromoacetic acids but not succinic acid competitively inhibited the transport of lactic acid. Bromoacetic acid, which was not metabolized, was taken up to a steady-state level when intracellular and extracellular concentrations were identical, indicating that the transport system was not accumulative. The enzymatic activity that was physiologically more relevant in the metabolism of lactic acid was lactate: ferricytochrome c oxidase. This enzyme did not exhibit stereospecifity and was induced by lactic acid. PMID:16349143

  7. Metabolism

    MedlinePlus

    ... digestive system called enzymes break proteins down into amino acids, fats into fatty acids, and carbohydrates into simple ... for example, glucose). In addition to sugar, both amino acids and fatty acids can be used as energy ...

  8. Metabolism

    MedlinePlus

    ... digestive system called enzymes break proteins down into amino acids, fats into fatty acids, and carbohydrates into simple ... e.g., glucose). In addition to sugar, both amino acids and fatty acids can be used as energy ...

  9. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity

    PubMed Central

    Mueller, Michaela; Thorell, Anders; Claudel, Thierry; Jha, Pooja; Koefeler, Harald; Lackner, Carolin; Hoesel, Bastian; Fauler, Guenter; Stojakovic, Tatjana; Einarsson, Curt; Marschall, Hanns-Ulrich; Trauner, Michael

    2015-01-01

    Background & Aims Bile acids (BAs) are major regulators of hepatic BA and lipid metabolism but their mechanisms of action in non-alcoholic fatty liver disease (NAFLD) are still poorly understood. Here we aimed to explore the molecular and biochemical mechanisms of ursodeoxycholic acid (UDCA) in modulating the cross-talk between liver and visceral white adipose tissue (vWAT) regarding BA and cholesterol metabolism and fatty acid/lipid partitioning in morbidly obese NAFLD patients. Methods In this randomized controlled pharmacodynamic study, we analyzed serum, liver and vWAT samples from 40 well-matched morbidly obese patients receiving UDCA (20 mg/kg/day) or no treatment three weeks prior to bariatric surgery. Results Short term UDCA administration stimulated BA synthesis by reducing circulating fibroblast growth factor 19 and farnesoid X receptor (FXR) activation, resulting in cholesterol 7α-hydroxylase induction mirrored by elevated C4 and 7α-hydroxycholesterol. Enhanced BA formation depleted hepatic and LDL-cholesterol with subsequent activation of the key enzyme of cholesterol synthesis 3-hydroxy-3-methylglutaryl-CoA reductase. Blunted FXR anti-lipogenic effects induced lipogenic stearoyl-CoA desaturase (SCD) in the liver, thereby increasing hepatic triglyceride content. In addition, induced SCD activity in vWAT shifted vWAT lipid metabolism towards generation of less toxic and more lipogenic monounsaturated fatty acids such as oleic acid. Conclusion These data demonstrate that by exerting FXR-antagonistic effects, UDCA treatment in NAFLD patients strongly impacts on cholesterol and BA synthesis and induces neutral lipid accumulation in both liver and vWAT. PMID:25617503

  10. Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome

    PubMed Central

    2014-01-01

    Background Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms. Methods 35 Wistar rats, as a control, and 35 spontaneously hypertensive obese rats (SHROB) were fed for 13 weeks with 3 different suplemmentation of fish oil containing EPA and DHA ratios (1:1, 2:1 and 1:2, respectively). All samples were stained with haematoxylin/eosin stain, except aorta samples, which were stained also with Verhoeff and van Gieson’s stain. A histological study was carried out to evaluate changes. These changes were statistically analyzed using SPSS IBM 19 software. The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann–Whitney for non-parametric data. Qualitative data were expressed in frequencies, and compared with contingency tables using χ2 statistics. Results EPA:DHA 1:1 treatment tended to improve the density and the wrinkling of elastic layers in SHROB rats. Only Wistar rats fed with EPA:DHA 1:1 treatment did not show mast cells in adipose tissue and has less kidney atrophy. In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney. Conclusions EPA:DHA 1:1 treatment was the most beneficial treatment since improved many histological parameters in both groups of rats. PMID:24512213

  11. Lysophosphatidic acid metabolism and elimination in cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Salous, Abdelghaffar Kamal

    The bioactive lipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are present in human and mouse plasma at a concentration of ~0.1-1 microM and regulate physiological and pathophysiological processes in the cardiovascular system including atherothrombosis, intimal hyperplasia, and immune function, edema formation, and permeability. PPAP2B, the gene encoding LPP3, a broad activity integral membrane enzyme that terminates LPA actions in the vasculature, has a single nucleotide polymorphism that been recently associated with coronary artery disease risk. The synthesis and signaling of LPA and S1P in the cardiovascular system have been extensively studied but the mechanisms responsible for their elimination are less well understood. The broad goal of this research was to examine the role of LPP3 in the termination of LPA signaling in models of cardiovascular disease involving vascular wall cells, investigate the role of LPP3 in the elimination of plasma LPA, and further characterize the elimination of plasma LPA. The central hypothesis is that LPP3 plays an important role in attenuating the pathological responses to LPA signaling and that it mediates the elimination of exogenously applied bioactive lipids from the plasma. These hypotheses were tested using molecular biological approaches, in vitro studies, synthetic lysophospholipid mimetics, modified surgical procedures, and mass spectrometry assays. My results indicated that LPP3 played a critical role in attenuating LPA signaling mediating the pathological processes of intimal hyperplasia and vascular leak in mouse models of disease. Additionally, enzymatic inactivation of lysophospholipids by LPP and PLA enzymes in the plasma was not a primary mechanism for the rapid elimination of plasma LPA and S1P. Instead, evidence strongly suggested a transcellular uptake mechanism by hepatic non-parenchymal cells as the predominant mechanism for elimination of these molecules. These results support a model in

  12. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    PubMed

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  13. Net Flux of Amino Acids Across the Portal-drained Viscera and Liver of the Ewe During Abomasal Infusion of Protein and Glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreasing the fraction of amino acids metabolized by the mucosal cells may increase the fraction of AA being released into the blood. A potential mechanism to reduce AA catabolism by mucosal cells is to provide an alternative source of energy. We hypothesized that increasing glucose flow to the s...

  14. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  15. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  16. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH

  17. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    PubMed

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  18. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  19. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    PubMed

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  20. Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters.

    PubMed

    Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-02-01

    Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolism of normothermic heterotherms is poorly understood. Thus we tested whether diets different in FA composition affect metabolic rate (MR) and the capacity for nonshivering thermogenesis (NST) in normothermic golden hamsters (Mesocricetus auratus). Animals were housed in outdoor enclosures from May 2010 to April 2011 and fed a diet enriched with PUFA (i.e., standard food supplemented weekly with sunflower and flax seeds) or with saturated and monounsaturated fatty acids (SFA/MUFA, standard food supplemented with mealworms). Since diet rich in PUFA results in lower MR in hibernating animals, we predicted that PUFA-rich diet would have similar effect on MR of normothermic hamsters, that is, normothermic hamsters on the PUFA diet would have lower metabolic rate in cold and higher NST capacity than hamsters supplemented with SFA/MUFA. Indeed, in winter resting metabolic rate (RMR) below the lower critical temperature was higher and NST capacity was lower in SFA/MUFA-supplemented animals than in PUFA-supplemented ones. These results suggest that the increased capacity for NST in PUFA-supplemented hamsters enables them lower RMR below the lower critical temperature of the thermoneural zone. PMID:24151228

  1. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism.

    PubMed

    Kwong, Eric; Li, Yunzhou; Hylemon, Phillip B; Zhou, Huiping

    2015-03-01

    The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism. PMID:26579441

  2. The small RNA Aar in Acinetobacter baylyi: a putative regulator of amino acid metabolism.

    PubMed

    Schilling, Dominik; Findeiss, Sven; Richter, Andreas S; Taylor, Jennifer A; Gerischer, Ulrike

    2010-09-01

    Small non-coding RNAs (sRNAs) are key players in prokaryotic metabolic circuits, allowing the cell to adapt to changing environmental conditions. Regulatory interference by sRNAs in cellular metabolism is often facilitated by the Sm-like protein Hfq. A search for novel sRNAs in A. baylyi intergenic regions was performed by a biocomputational screening. One candidate, Aar, encoded between trpS and sucD showed Hfq dependency in Northern blot analysis. Aar was expressed strongly during stationary growth phase in minimal medium; in contrast, in complex medium, strongest expression was in the exponential growth phase. Whereas over-expression of Aar in trans did not affect bacterial growth, seven mRNA targets predicted by two in silico approaches were upregulated in stationary growth phase. All seven mRNAs are involved in A. baylyi amino acid metabolism. A putative binding site for Lrp, the global regulator of branched-chain amino acids in E. coli, was observed within the aar gene. Both facts imply an Aar participation in amino acid metabolism. PMID:20559624

  3. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed. PMID:21984377

  4. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.

    PubMed

    Xue, Zhixiong; Sharpe, Pamela L; Hong, Seung-Pyo; Yadav, Narendra S; Xie, Dongming; Short, David R; Damude, Howard G; Rupert, Ross A; Seip, John E; Wang, Jamie; Pollak, Dana W; Bostick, Michael W; Bosak, Melissa D; Macool, Daniel J; Hollerbach, Dieter H; Zhang, Hongxiang; Arcilla, Dennis M; Bledsoe, Sidney A; Croker, Kevin; McCord, Elizabeth F; Tyreus, Bjorn D; Jackson, Ethel N; Zhu, Quinn

    2013-08-01

    The availability of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is currently limited because they are produced mainly by marine fisheries that cannot keep pace with the demands of the growing market for these products. A sustainable non-animal source of EPA and DHA is needed. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica resulted in a strain that produced EPA at 15% of dry cell weight. The engineered yeast lipid comprises EPA at 56.6% and saturated fatty acids at less than 5% by weight, which are the highest and the lowest percentages, respectively, among known EPA sources. Inactivation of the peroxisome biogenesis gene PEX10 was crucial in obtaining high EPA yields and may increase the yields of other commercially desirable lipid-related products. This technology platform enables the production of lipids with tailored fatty acid compositions and provides a sustainable source of EPA. PMID:23873085

  5. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men

    PubMed Central

    Lee, Mi-Hyang; Kwon, Nayeon; Yoon, So Ra

    2016-01-01

    We hypothesized that lower proportion of serum phospholipid docosahexaenoic acid (DHA) is inversely associated with increased cardiovascular risk and vascular function in metabolically healthy men. To elucidate it, we first compared serum phospholipid free fatty acid (FA) compositions and cardiovascular risk parameters between healthy men (n = 499) and male patients with coronary artery disease (CAD, n = 111) (30-69 years) without metabolic syndrome, and then further-analyzed the association of serum phospholipid DHA composition with arterial stiffness expressed by brachial-ankle pulse wave velocity (ba-PWV) in metabolically healthy men. Basic parameters, lipid profiles, fasting glycemic status, adiponectin, high sensitivity C-reactive protein (hs-CRP) and LDL particle size, and serum phospholipid FA compositions were significantly different between the two subject groups. Serum phospholipid DHA was highly correlated with most of long-chain FAs. Metabolically healthy men were subdivided into tertile groups according to serum phospholipid DHA proportion: lower (< 2.061%), middle (2.061%-3.235%) and higher (> 3.235%). Fasting glucose, insulin resistance, hs-CRP and ba-PWVs were significantly higher and adiponectin and LDL particle size were significantly lower in the lower-DHA group than the higher-DHA group after adjusted for confounding factors. In metabolically healthy men, multiple stepwise regression analysis revealed that serum phospholipid DHA mainly contributed to arterial stiffness (β′-coefficients = -0.127, p = 0.006) together with age, systolic blood pressure, triglyceride (r = 0.548, p = 0.023). Lower proportion of serum phospholipid DHA was associated with increased cardiovascular risk and arterial stiffness in metabolically healthy men. It suggests that maintaining higher proportion of serum phospholipid DHA may be beneficial for reducing cardiovascular risk including arterial stiffness in metabolically healthy men. PMID:27482523

  6. Modulation of arachidonic acid metabolism by Rous sarcoma virus

    SciTech Connect

    Barker, K.; Aderem, A.; Hanafusa, H. )

    1989-07-01

    Arachidonic acid (C{sub 20:4}) metabolites were released constitutively from wild-type Rous sarcoma virus-transformed chicken embryo fibroblasts (CEF). {sup 3}H-labeled C{sub 20:4} and its metabolites were released from unstimulated and uninfected CEF only in response to stimuli such as serum, phorbol ester, or the calcium ionophore A23187. High-pressure liquid chromatography analysis showed that the radioactivity released from ({sup 3}H)arachidonate-labeled transformed cells was contained in free arachidonate and in the cyclooxygenase products prostaglandin E{sub 2} and prostaglandin F{sub 2} alpha; no lipoxygenase products were identified. The release of C{sub 20:4} and its metabolites from CEF infected with pp60{sup src} deletion mutants was correlated with serum-independent DNA synthesis and with the expression of the mRNA for 9E3, a gene expressed in Rous sarcoma virus-transformed cells which has homology with several mitogenic and inflammatory peptides. {sup 3}H-labeled C{sub 20:4} release was not correlated with p36 phosphorylation, which argues against a role for this protein as a phospholipase A{sub 2} inhibitor. CEF infected with other oncogenic viruses encoding a tyrosine kinase also released C{sub 20:4}, as did CEF infected with viruses that contained mos and ras; however, infection with a crk-containing virus did not result in stimulation of {sup 3}H-labeled C{sub 20:4} release, suggesting that utilization of this signaling pathway is specific for particular transformation stimuli.

  7. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  8. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    PubMed Central

    Papagianni, Maria

    2012-01-01

    Lactic acid bacteria (LAB) are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review. PMID:24688663

  9. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    PubMed

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-01-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. PMID:27137487

  10. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders.

    PubMed

    Burrage, Lindsay C; Nagamani, Sandesh C S; Campeau, Philippe M; Lee, Brendan H

    2014-09-15

    Branched-chain amino acid (BCAA) metabolism plays a central role in the pathophysiology of both rare inborn errors of metabolism and the more common multifactorial diseases. Although deficiency of the branched-chain ketoacid dehydrogenase (BCKDC) and associated elevations in the BCAAs and their ketoacids have been recognized as the cause of maple syrup urine disease (MSUD) for decades, treatment options for this disorder have been limited to dietary interventions. In recent years, the discovery of improved leucine tolerance after liver transplantation has resulted in a new therapeutic strategy for this disorder. Likewise, targeting the regulation of the BCKDC activity may be an alternative potential treatment strategy for MSUD. The regulation of the BCKDC by the branched-chain ketoacid dehydrogenase kinase has also been implicated in a new inborn error of metabolism characterized by autism, intellectual disability and seizures. Finally, there is a growing body of literature implicating BCAA metabolism in more common disorders such as the metabolic syndrome, cancer and hepatic disease. This review surveys the knowledge acquired on the topic over the past 50 years and focuses on recent developments in the field of BCAA metabolism. PMID:24651065

  11. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders

    PubMed Central

    Burrage, Lindsay C.; Nagamani, Sandesh C.S.; Campeau, Philippe M.; Lee, Brendan H.

    2014-01-01

    Branched-chain amino acid (BCAA) metabolism plays a central role in the pathophysiology of both rare inborn errors of metabolism and the more common multifactorial diseases. Although deficiency of the branched-chain ketoacid dehydrogenase (BCKDC) and associated elevations in the BCAAs and their ketoacids have been recognized as the cause of maple syrup urine disease (MSUD) for decades, treatment options for this disorder have been limited to dietary interventions. In recent years, the discovery of improved leucine tolerance after liver transplantation has resulted in a new therapeutic strategy for this disorder. Likewise, targeting the regulation of the BCKDC activity may be an alternative potential treatment strategy for MSUD. The regulation of the BCKDC by the branched-chain ketoacid dehydrogenase kinase has also been implicated in a new inborn error of metabolism characterized by autism, intellectual disability and seizures. Finally, there is a growing body of literature implicating BCAA metabolism in more common disorders such as the metabolic syndrome, cancer and hepatic disease. This review surveys the knowledge acquired on the topic over the past 50 years and focuses on recent developments in the field of BCAA metabolism. PMID:24651065

  12. Lipoxygenase- and cyclooxygenase-reaction products and incorporation into glycerolipids or radiolabeled arachidonic acid in the bovine retina

    SciTech Connect

    Birkle, D.L.; Bazan, N.G.

    1984-02-01

    The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina in vitro has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF2 alpha, PGE2, PGD2, 6-keto-PGF1 alpha and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 . 8.3 nM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 microM), indomethacin (1 microM) and NDGA (IC50 . 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina.

  13. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    PubMed

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  14. Unified Theory of Bacterial Sialometabolism: How and Why Bacteria Metabolize Host Sialic Acids

    PubMed Central

    Vimr, Eric R.

    2013-01-01

    Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection. PMID:23724337

  15. USEPA METHOD STUDY 37 - SW-846 METHOD 3050, ACID DIGESTION OF SEDIMENTS, SLUDGES AND SOILS BY AA-DIRECT ASPIRATION

    EPA Science Inventory

    An interlaboratory collaborative study was conducted to determine the precision and accuracy of Method 3050 for the analysis of 23 elements in sediments, sludqes and soils. Method 3050 is entitled, "Acid Digestion of Sediments, Sludges and Soils." It includes instructions for qua...

  16. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  17. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli].

    PubMed

    Li, Feng; Ma, Jiangfeng; Wu, Mingke; Ji, Yaliang; Chen, Wufang; Ren, Xinyi; Jiang, Min

    2015-04-01

    Sugarcane molasses containing large amounts of sucrose is an economical substrate for succinic acid production. However, Escherichia coli AFP111 cannot metabolize sucrose although it is a promising candidate for succinic acid production. To achieve sucrose utilizing ability, we cloned and expressed cscBKA genes encoding sucrose permease, fructokinase and invertase of non-PTS sucrose-utilization system from E. coli W in E. coli AFP111 to generate a recombinant strain AFP111/pMD19T-cscBKA. After 72 h of anaerobic fermentation of the recombinant in serum bottles, 20 g/L sucrose was consumed and 12 g/L succinic acid was produced. During dual-phase fermentation comprised of initial aerobic growth phase followed by anaerobic fermentation phase, the concentration of succinic acid from sucrose and sugarcane molasses was 34 g/L and 30 g/L, respectively, at 30 h of anaerobic phase in a 3 L fermentor. The results show that the introduction of non-PTS sucrose-utilization system has sucrose-metabolizing capability for cell growth and succinic acid production, and can use cheap sugarcane molasses to produce succinic acid. PMID:26380410

  18. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  19. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes1234

    PubMed Central

    Mozaffarian, Dariush; Cao, Haiming; King, Irena B; Lemaitre, Rozenn N; Song, Xiaoling; Siscovick, David S; Hotamisligil, Gökhan S

    2010-01-01

    Background: Animal experiments suggest that circulating palmitoleic acid (cis-16:1n–7) from adipocyte de novo fatty acid synthesis may directly regulate insulin resistance and metabolic dysregulation. Objective: We investigated the independent determinants of circulating palmitoleate in free-living humans and whether palmitoleate is related to lower metabolic risk and the incidence of diabetes. Design: In a prospective cohort of 3630 US men and women in the Cardiovascular Health Study, plasma phospholipid fatty acids, anthropometric variables, blood lipids, inflammatory markers, and glucose and insulin concentrations were measured between 1992 and 2006 by using standardized methods. Independent determinants of plasma phospholipid palmitoleate and relations of palmitoleate with metabolic risk factors were investigated by using multivariable-adjusted linear regression. Relations with incident diabetes (296 incident cases) were investigated by using Cox proportional hazards. Results: The mean (±SD) palmitoleate value was 0.49 ± 0.20% (range: 0.11–2.55%) of total fatty acids. Greater body mass index, carbohydrate intake, protein intake, and alcohol use were each independent lifestyle correlates of higher palmitoleate concentrations. In multivariable analyses that adjusted for these factors and other potential confounders, higher palmitoleate concentrations were independently associated with lower LDL cholesterol (P < 0.001), higher HDL cholesterol (P < 0.001), lower total:HDL-cholesterol ratio (P = 0.04), and lower fibrinogen (P < 0.001). However, palmitoleate was also associated with higher triglycerides (P < 0.001) and (in men only) with greater insulin resistance (P < 0.001). Palmitoleate was not significantly associated with incident diabetes. Conclusions: Adiposity (energy imbalance), carbohydrate consumption, and alcohol use—even within typical ranges—are associated with higher circulating palmitoleate concentrations. Circulating palmitoleate is

  20. Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism

    PubMed Central

    Solheim, Margrete; van Grinsven, Koen W. A.; Olivier, Brett G.; Levering, Jennifer; Grosseholz, Ruth; Hugenholtz, Jeroen; Holo, Helge; Nes, Ingolf; Teusink, Bas; Kummer, Ursula

    2014-01-01

    Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets. PMID:25527553

  1. Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes.

    PubMed

    Atkinson, J P; Weiss, A; Ito, M; Kelly, J; Parker, C W

    1979-01-01

    L-ascorbic acid (LAA) augmented cGMP many-fold in highly purified human peripheral blood lymphocytes. The cGMP response occurred within 10 sec and persisted for at least 60 min. D-ascorbic acid (DAA) and dehydroascorbic acid (DHAA) were also equally active in enhancing cGMP concentrations but metabolic precursors of ascorbic acid and other inorganic acids did not increase cGMP levels. Determination of the amount of DHAA contaminating the LAA precluded the possibility that it was solely responsible for the enhanced cGMP levels. The sodium or calcium salts of ascorbic acid did not increase cGMP concentrations. If these neutralized preparations were acidified, increased cGMP concentrations were then noted. In broken cell preparations, LAA, DAA, and DHAA and to a lesser extent sodium ascorbate (NaA) enhanced guanylate cyclase activity while neither inhibited cAMP or cGMP phosphodiesterase (PDE) activity. The possible role of H2O2, fatty acid liberation, prostaglandin production, oxidizing-reducing agents, and free radical formation in mediating the effects of ascorbic acid on cGMP levels were evaluated, but none of these potential mechanisms were definitively proven to be a required intermediary for the cGMP enhancing activity of ascorbic acid. LAA, DHAA or NaA did not induce lymphocyte transformation or modulate lectin-induced mitogenesis. PMID:36416

  2. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids.

    PubMed

    Adeyemi, Kazeem Dauda; Ebrahimi, Mahdi; Samsudin, Anjas Asmara; Alimon, Abd Razak; Karim, Roselina; Karsani, Saiful Anuar; Sazili, Awis Qurni

    2015-03-01

    The study appraised the effects of Carotino oil on in vitro rumen fermentation, gas production, metabolism and apparent biohydrogenation of oleic, linoleic and linolenic acids. Carotino oil was added to a basal diet (50% concentrate and 50% oil palm frond) at the rate of 0, 2, 4, 6 and 8% dry matter of the diet. Rumen inoculum was obtained from three fistulated Boer bucks and incubated with 200 mg of each treatment for 24 h at 39°C. Gas production, fermentation kinetics, in vitro organic matter digestibility (IVOMD), volatile fatty acids (VFA), in vitro dry matter digestibility (IVDMD), metabolizable energy and free fatty acids were determined. Carotino oil did not affect (P > 0.05) gas production, metabolizable energy, pH, IVOMD, IVDMD, methane, total and individual VFAs. However, Carotino oil decreased (P < 0.05) the biohydrogenation of linoleic and linolenic acids but enhanced (P < 0.05) the biohydrogenation of oleic acid. After 24 h incubation, the concentrations of stearic, palmitic, pentadecanoic, myristic, myristoleic and lauric acids decreased (P < 0.05) while the concentration of linolenic, linoleic, oleic and transvaccenic acids and conjugated linoleic acid (CLAc9t11) increased (P < 0.05) with increasing levels of Carotino oil. Carotino oil seems to enhance the accumulation of beneficial unsaturated fatty acids without disrupting rumen fermentation. PMID:25377536

  3. Metabolic effects and distribution space of flufenamic acid in the isolated perfused rat liver.

    PubMed

    Lopez, C H; Bracht, A; Yamamoto, N S; dos Santos, M D

    1998-11-01

    The following aspects were investigated in the present work: (a) the action of flufenamic acid on hepatic metabolism (oxygen uptake, glycolysis, gluconeogenesis, uricogenesis and glycogenolysis), (b) the action of flufenamic acid on the cellular adenine nucleotide levels, and (c) the transport and distribution space of flufenamic acid in the liver parenchyma. The experimental system was the isolated perfused rat liver. Perfusion was accomplished in an open, non-recirculating system. The perfusion fluid was Krebs/Henseleit-bicarbonate buffer (pH 7.4), saturated with a mixture of oxygen and carbon dioxide (95:5) by means of a membrane oxygenator and heated to 37 degrees C. The distribution space of flufenamic acid was measured by means of the multiple-indicator dilution technique with constant infusion (step input) of [3H]water plus flufenamic acid. The results of the present work indicate that the metabolic effects of flufenamic acid are the consequence of an uncoupling of oxidative phosphorylation, a conclusion based on the following observations: (a) flufenamic acid increased oxygen uptake, a common property of all uncouplers; (b) the drug also increased glycolysis and glycogenolysis in livers from fed rats (these are expected compensatory phenomena for the decreased mitochondrial ATP formation); (c) flufenamic acid inhibited glucose production from fructose, an energy-dependent process; (d) the cellular ATP levels were decreased by flufenamic acid whereas the AMP levels were increased; and (e) the total adenine nucleotide content was decreased by flufenamic acid and uric acid production was stimulated. Indicator-dilution experiments with flufenamic acid revealed that this substance undergoes flow-limited distribution in the liver and that its apparent distribution space greatly exceeds the aqueous space of the liver. Flufenamic acid changed its behaviour when the portal concentration was increased from 25 to 50 microM. At 25 microM the initial upslope of the

  4. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder

    PubMed Central

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M.; Sellgren, Carl M.; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-01-01

    Background Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. Methods We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). Results After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. Conclusions The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. General significance The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD. PMID:27114925

  5. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring. PMID:26003565

  6. Ascorbic Acid and the Brain: Rationale for the Use against Cognitive Decline

    PubMed Central

    Harrison, Fiona E.; Bowman, Gene L.; Polidori, Maria Cristina

    2014-01-01

    This review is focused upon the role of ascorbic acid (AA, vitamin C) in the promotion of healthy brain aging. Particular attention is attributed to the biochemistry and neuronal metabolism interface, transport across tissues, animal models that are useful for this area of research, and the human studies that implicate AA in the continuum between normal cognitive aging and age-related cognitive decline up to Alzheimer’s disease. Vascular risk factors and comorbidity relationships with cognitive decline and AA are discussed to facilitate strategies for advancing AA research in the area of brain health and neurodegeneration. PMID:24763117

  7. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.

    PubMed

    Mayers, Jared R; Torrence, Margaret E; Danai, Laura V; Papagiannakopoulos, Thales; Davidson, Shawn M; Bauer, Matthew R; Lau, Allison N; Ji, Brian W; Dixit, Purushottam D; Hosios, Aaron M; Muir, Alexander; Chin, Christopher R; Freinkman, Elizaveta; Jacks, Tyler; Wolpin, Brian M; Vitkup, Dennis; Vander Heiden, Matthew G

    2016-09-01

    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements. PMID:27609895

  8. NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism.

    PubMed

    Chen, Chia-Lin; Uthaya Kumar, Dinesh Babu; Punj, Vasu; Xu, Jun; Sher, Linda; Tahara, Stanley M; Hess, Sonja; Machida, Keigo

    2016-01-12

    Stem cell markers, including NANOG, have been implicated in various cancers; however, the functional contribution of NANOG to cancer pathogenesis has remained unclear. Here, we show that NANOG is induced by Toll-like receptor 4 (TLR4) signaling via phosphorylation of E2F1 and that downregulation of Nanog slows down hepatocellular carcinoma (HCC) progression induced by alcohol western diet and hepatitis C virus protein in mice. NANOG ChIP-seq analyses reveal that NANOG regulates the expression of genes involved in mitochondrial metabolic pathways required to maintain tumor-initiating stem-like cells (TICs). NANOG represses mitochondrial oxidative phosphorylation (OXPHOS) genes, as well as ROS generation, and activates fatty acid oxidation (FAO) to support TIC self-renewal and drug resistance. Restoration of OXPHOS activity and inhibition of FAO renders TICs susceptible to a standard care chemotherapy drug for HCC, sorafenib. This study provides insights into the mechanisms of NANOG-mediated generation of TICs, tumorigenesis, and chemoresistance through reprogramming of mitochondrial metabolism. PMID:26724859

  9. Effect of mitochondrial ascorbic acid synthesis on photosynthesis.

    PubMed

    Senn, M E; Gergoff Grozeff, G E; Alegre, M L; Barrile, F; De Tullio, M C; Bartoli, C G

    2016-07-01

    Ascorbic acid (AA) is synthesized in plant mitochondria through the oxidation of l-galactono-1,4-lactone (l-GalL) and then distributed to different cell compartments. AA-deficient Arabidopsis thaliana mutants (vtc2) and exogenous applications of l-GalL were used to generate plants with different AA content in their leaves. This experimental approach allows determining specific AA-dependent effects on carbon metabolism. No differences in O2 uptake, malic and citric acid and NADH content suggest that AA synthesis or accumulation did not affect mitochondrial activity; however, l-GalL treatment increased CO2 assimilation and photosynthetic electron transport rate in vtc2 (but not wt) leaves demonstrating a stimulation of photosynthesis after l-GalL treatment. Increased CO2 assimilation correlated with increased leaf stomatal conductance observed in l-GalL-treated vtc2 plants. PMID:27010742

  10. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells.

    PubMed

    Petrov, Petar D; Ribot, Joan; López-Mejía, Isabel C; Fajas, Lluís; Palou, Andreu; Bonet, M Luisa

    2016-03-01

    Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. PMID:26241807

  11. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis.

    PubMed

    Napoli, J L

    1993-02-01

    The enzymes that constitute the pathway of retinoic acid biosynthesis and metabolism may recognize retinoid binding proteins as effectors and substrates. Apocellular retinol-binding protein (CRBP) stimulates a bile-salt independent membrane-bound retinyl ester hydrolase resulting in the hydrolysis of endogenous retinyl esters and the formation of holoCRBP. HoloCRBP delivers retinol to a microsomal nicotin-amide-adenine dinucleotide phosphate-dependent dehydrogenase, protects it from artifactual oxidation and denies enzymes that cannot recognize the binding protein access to retinol. The retinal synthesized may be transferred from the microsomes to the cytosol by CRBP. A cytosolic retinal dehydrogenase has been purified that produces retinoic acid from retinal generated by microsomes in the presence of CRBP and from the complex CRBP-retinal itself. Thus, CRBP(type I) seems to channel retinoids through the reactions of retinoic acid synthesis via a series of protein-protein interactions. Cellular retinoic acid-binding protein (type I) facilitates retinoic acid metabolism by sequestering it and by acting as a low Km substrate, thereby also modulating the steady-state concentrations of retinoic acid. PMID:8381481

  12. ATPase activity associated with isolated vacuoles of the crassulacean acid metabolism plant Kalanchoë daigremontiana.

    PubMed

    Smith, J A; Uribe, E G; Ball, E; Lüttge, U

    1984-10-01

    A technique is described that allows a relatively rapid and controlled isolation of vacuoles from leaves of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana. The method involves polybase-induced lysis of mesophyllcell protoplasts and isolation of vacuoles on a discontinuous density gradient. ATPase activity is associated with the isolated vacuoles and is not attributable to contamination by cytoplasmic constituents. It is suggested that this ATPase is responsible for the energization of malic-acid accumulation in the vacuole in CAM plants. PMID:24253162

  13. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    PubMed Central

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  14. Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression.

    PubMed

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Saensuk, Theeranuch

    2010-11-01

    Head and neck cancers are known to synthesize arachidonic acid metabolites. Interfering with arachidonic acid metabolism may inhibit growth and invasiveness of cancer cells. In this study we investigate effects of sulindac (the non-selective COX inhibitor), aspirin (the irreversible, preferential COX-1 inhibitor), NS-398 (the selective COX-2 inhibitor), NDGA (nordihydroguaiaretic acid, the selective LOX inhibitor) and ETYA (5,8,11,14-eicosatetraynoic acid, the COX and LOX inhibitor) on cell viability, MMP-2 and MMP-9 activities, and in vitro invasion of cancer cells derived from primary and metastatic head and neck, and colon cancers. The inhibitors of COX and/or LOX could inhibit cell proliferation, MMP activity and invasion in head and neck and colon cancer cells. However, the inhibitory effect was obviously observed in colon cancer cells. Inhibition of arachidonic acid metabolism caused a decrease in cancer cell motility, which partially explained by the inhibition of MMPs. Therefore, COX and LOX pathways play important roles in head and neck cancer cell growth. PMID:20654727

  15. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    PubMed

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  16. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    PubMed Central

    Lee, Ting-I; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  17. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  18. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  19. Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers.

    PubMed

    Vesali, Rokhsareh F; Klaude, Maria; Rooyackers, Olav; Wernerman, Jan

    2005-02-01

    Decreased plasma amino acid concentrations and increased net release of amino acids from skeletal muscle, especially for glutamine, are common features in critically ill patients. A low dose of endotoxin administered to healthy volunteers was used as a human model for the initial phase of sepsis to study the early metabolic response to sepsis. Six healthy male volunteers were studied in the postabsorptive state. Blood samples from the forearm artery and femoral vein were taken during 4 h before and 4 h after an intravenous endotoxin injection (4 ng/kg body wt). In addition, muscle biopsies from the leg muscle were taken. Plasma concentration of the total sum of amino acids decreased by 19% (P = 0.001) and of glutamine by 25% (P = 0.004) the 3rd h after endotoxin administration. At the same time, muscle concentrations of the sum of amino acids and glutamine decreased by 11% (P = 0.05) and 9% (P = 0.09), respectively. In parallel, the efflux from the leg increased by 35% (P = 0.004) for the total sum of amino acids and by 43% (P = 0.05) for glutamine. In conclusion, intravenous endotoxin administration to healthy volunteers, used as a model for the initial phase of sepsis, resulted in a decrease in plasma amino acid concentrations. At the same time, amino acid concentrations in muscle tissue decreased, whereas the efflux of amino acids from leg skeletal muscle increased. PMID:15367399

  20. Liquid chromatography – high resolution mass spectrometry analysis of fatty acid metabolism

    PubMed Central

    Kamphorst, Jurre J.; Fan, Jing; Lu, Wenyun; White, Eileen; Rabinowitz, Joshua D.

    2011-01-01

    We present a liquid chromatography – mass spectrometry (LC-MS) method for long-chain and very-long-chain fatty acid analysis, and its application to 13C-tracer studies of fatty acid metabolism. Fatty acids containing 14 to 36 carbon atoms are separated by C8 reversed-phase chromatography using a water-methanol gradient with tributylamine as ion pairing agent, ionized by electrospray, and analyzed by a stand-alone orbitrap mass spectrometer. The median limit of detection is 5 ng/ml with a linear dynamic range of 100-fold. Ratios of unlabeled to 13C-labeled species are quantitated precisely and accurately (average relative standard deviation 3.2% and deviation from expectation 2.3%). In samples consisting of fatty acids saponified from cultured mammalian cells, 45 species are quantified, with average intraday relative standard deviations for independent biological replicates of 11%. The method enables quantitation of molecular ion peaks for all labeled forms of each fatty acid. Different degrees of 13C-labeling from glucose and glutamine correspond to fatty acid uptake from media, de novo synthesis, and elongation. To exemplify the utility of the method, we examined isogenic cell lines with and without activated Ras oncogene expression. Ras increases the abundance and alters the labeling patterns of saturated and monounsaturated very-long-chain fatty acids, with the observed pattern consistent with Ras leading to enhanced activity of ELOVL4 or an enzyme with similar catalytic activity. This LC-MS method and associated isotope tracer techniques should be broadly applicable to investigating fatty acid metabolism. PMID:22004349

  1. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    PubMed

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA. PMID

  2. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil[S

    PubMed Central

    Gillies, Peter J.; Bhatia, Sujata K.; Belcher, Leigh A; Hannon, Daniel B.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2012-01-01

    Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation. PMID:22556214

  3. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    PubMed Central

    Todorčević, Marijana; Hodson, Leanne

    2015-01-01

    Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity. PMID:26729182

  4. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae

    PubMed Central

    Ljungdahl, Per O.; Daignan-Fornier, Bertrand

    2012-01-01

    Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear. PMID:22419079

  5. Phase I Metabolic Stability and Electrophilic Reactivity of 2-Phenylaminophenylacetic Acid Derived Compounds.

    PubMed

    Pang, Yi Yun; Tan, Yee Min; Chan, Eric Chun Yong; Ho, Han Kiat

    2016-07-18

    Diclofenac and lumiracoxib are two highly analogous 2-phenylaminophenylacetic acid anti-inflammatory drugs exhibiting occasional dose-limiting hepatotoxicities. Prior data indicate that bioactivation and reactive metabolite formation play roles in the observed toxicity, but the exact chemical influence of the substituents remains elusive. In order to elucidate the role of chemical influence on metabolism related toxicity, metabolic stability and electrophilic reactivity were investigated for a series of structurally related analogues and their resulting metabolites. The resulting analogues embody progressive physiochemical changes through varying halogeno- and aliphatic substituents at two positions and were subjected to in vitro human liver microsomal metabolic stability and cell-based GSH depletion assays (to measure electrophilic reactivity). LC-MS/MS analysis of the GSH trapped reactive intermediates derived from the analogues was then used to identify the putative structures of reactive metabolites. We found that chemical modifications of the structural backbone led to noticeable perturbations of metabolic stability, electrophilic reactivity, and structures and composition of reactive metabolites. With the acquired data, the relationships between stability, reactivity, and toxicity were investigated in an attempt to correlate between Phase I metabolism and in vitro toxicity. A positive correlation was identified between reactivity and in vitro toxicity, indicating that electrophilic reactivity can be an indicator for in vitro toxicity. All in all, the effect of substituents on the structures and reactivity of the metabolites, however subtle the changes, should be taken into consideration during future drug design involving similar chemical features. PMID:27245204

  6. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish

    PubMed Central

    Carten, Juliana Debrito; Bradford, Mary Katherine; Farber, Steven Arthur

    2012-01-01

    Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebrafish (Danio rerio). The method utilizes egg yolk liposomes to deliver different chain length FA analogs (BODIPY-FL) to six day-old larvae. Following liposome incubation, larvae accumulate the analogs throughout their digestive organs, providing a comprehensive readout of organ structure and physiology. Using this assay we have observed that different chain length FAs are differentially transported and metabolized by the larval digestive system. We show that this assay can also reveal structural and metabolic defects in digestive mutants. Because this labeling technique can be used to investigate digestive organ morphology and function, we foresee its application in diverse studies of organ development and physiology. PMID:21968100

  7. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  8. Amino Acid Metabolism in Acute Renal Failure: Influence of Intravenous Essential L-Amino Acid Hyperalimentation Therapy

    PubMed Central

    Abel, Ronald M.; Shih, Vivian E.; Abbott, William M.; Beck, Clyde H.; Fischer, Josef E.

    1974-01-01

    A solution of 8 essential I-amino acids and hypertonic dextrose was administered to 5 patients in acute postoperative renal failure in a program of hyperalimentation designed to decrease the patient's catabolic state and to accrue certain metabolic benefits. A sixth patient receiving intravenous glucose alone served as a control. The pretreatment plasma concentrations of amino acids in all 6 patients did not differ significantly from normal; following intravenous essential amino acids at a dose of approximately 12.6 gm/24 hours, no significant elevations out of the normal range of these substances occurred. Since urinary excretion rates did not dramatically increase, urinary loss was excluded as a possible cause for the failure of increase of plasma concentrations. The results suggest that the administration of an intravenous solution of 1-amino acids and hypertonic dextrose is associated with rapid clearance from the blood of these substances and, with a failure of increased urinary excretion, indirect evidence of amino acid utilization for protein synthesis has been obtained. Histidine supplementation in patients with acute renal failure is probably unnecessary based on the lack of significant decreases in histidine concentrations in these patients. PMID:4850497

  9. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: Findings from a prospective cohort study.

    PubMed

    Stepien, Magdalena; Duarte-Salles, Talita; Fedirko, Veronika; Floegel, Anne; Barupal, Dinesh Kumar; Rinaldi, Sabina; Achaintre, David; Assi, Nada; Tjønneland, Anne; Overvad, Kim; Bastide, Nadia; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Saieva, Calogero; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Naccarati, Alessio; Bueno-de-Mesquita, H B As; Peeters, Petra H; Weiderpass, Elisabete; Quirós, J Ramón; Agudo, Antonio; Sánchez, María-José; Dorronsoro, Miren; Gavrila, Diana; Barricarte, Aurelio; Ohlsson, Bodil; Sjöberg, Klas; Werner, Mårten; Sund, Malin; Wareham, Nick; Khaw, Kay-Tee; Travis, Ruth C; Schmidt, Julie A; Gunter, Marc; Cross, Amanda; Vineis, Paolo; Romieu, Isabelle; Scalbert, Augustin; Jenab, Mazda

    2016-01-15

    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), and gallbladder and extrahepatic biliary tract (GBTC). Circulating standard AA, biogenic amines and hexoses were measured (Biocrates AbsoluteIDQ-p180Kit) in a case-control study nested within a large prospective cohort (147 HCC, 43 IHBC and 134 GBTC cases). Liver function and hepatitis status biomarkers were determined separately. Multivariable conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI) for log-transformed standardised (mean = 0, SD = 1) serum metabolite levels and relevant ratios in relation to HCC, IHBC or GBTC risk. Fourteen metabolites were significantly associated with HCC risk, of which seven metabolites and four ratios were the strongest predictors in continuous models. Leucine, lysine, glutamine and the ratio of branched chain to aromatic AA (Fischer's ratio) were inversely, while phenylalanine, tyrosine and their ratio, glutamate, glutamate/glutamine ratio, kynurenine and its ratio to tryptophan were positively associated with HCC risk. Confounding by hepatitis status and liver enzyme levels was observed. For the other cancers no significant associations were observed. In conclusion, imbalances of specific AA and biogenic amines may be involved in HCC development. PMID:26238458

  10. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets.

    PubMed

    Shin, John J; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A; Poon, Tak; Li, Shu Chen; Young, Barry P; Roskelley, Calvin D; Loewen, Christopher J R

    2016-09-01

    A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain

  11. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate. PMID:23129181

  12. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli

    PubMed Central

    2014-01-01

    Background Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production. Results The model microorganism Escherichia coli was engineered to produce free MUFAs. The fatty acyl-ACP thioesterase (AtFatA) and fatty acid desaturase (SSI2) from Arabidopsis thaliana were heterologously expressed in E. coli BL21 star(DE3) to specifically release free unsaturated fatty acids (UFAs) and convert SFAs to UFAs. In addition, the endogenous fadD gene (encoding acyl-CoA synthetase) was disrupted to block fatty acid catabolism while the native acetyl-CoA carboxylase (ACCase) was overexpressed to increase the malonyl coenzyme A (malonyl-CoA) pool and boost fatty acid biosynthesis. The finally engineered strain BL21ΔfadD/pE-AtFatAssi2&pA-acc produced 82.6 mg/L free fatty acids (FFAs) under shake-flask conditions and FFAs yield on glucose reached about 3.3% of the theoretical yield. Two types of MUFAs, palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) made up more than 75% of the FFA profiles. Fed-batch fermentation of this strain further enhanced FFAs production to a titer of 1.27 g/L without affecting fatty acid compositions. Conclusions This study demonstrated the possibility to regulate fatty acid composition by using metabolic engineering approaches. FFAs produced by the recombinant E. coli strain consisted of high-level MUFAs and biodiesel manufactured from these fatty acids would be more suitable for current diesel engines. PMID:24716602

  13. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here. PMID:24343766

  14. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  15. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    PubMed

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  16. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    PubMed

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae. PMID:25422103

  17. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    SciTech Connect

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  18. Metabolism in humans of cis-12,trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids

    SciTech Connect

    Emken, E.A.; Rohwedder, W.K.; Adlof, R.O.; Rakoff, H.; Gulley, R.M.

    1987-07-01

    Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16:0), octadecanoic acid (18:0), cis-9-octadecenoic acid (9c-18:1), cis-9,cis-12-octadecadienoic acid (9c, 12c-18:2) and cis-12,trans-15-octadecadienoic acid (12c,15t-18:2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation. Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t-18:2 was metabolically more similar to saturated and 9c-18:1 fatty acids than to 9c,12c-18:2; (iv) relative incorporation of 9c,12c-18:2 into phospholipids did not increase proportionally with an increase of 9c,12c-18:2 in the mixture of deuterated fats fed; (v) absorption of 16:0, 18:0, 9c-18:1, 9c,12c-18:2 and 12c,15t-18:2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c-18:2. These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c-18:2 is limited.

  19. Effects of Heat Shock on Amino Acid Metabolism of Cowpea Cells 1

    PubMed Central

    Mayer, Randall R.; Cherry, Joe H.; Rhodes, David

    1990-01-01

    When cowpea (Vigna unguiculata) cells maintained at 26°C are transferred to 42°C, rapid accumulation of γ-aminobutyrate (>10-fold) is induced. Several other amino acids (including β-alanine, alanine, and proline) are also accumulated, but less extensively than γ-aminobutyrate. Total free amino acid levels are increased approximately 1.5-fold after 24 hours at 42°C. Heat shock also leads to release of amino acids into the medium, indicating heat shock damage to the integrity of the plasmalemma. Some of the changes in metabolic rates associated with heat shock were estimated by monitoring the 15N labeling kinetics of free intracellular, extracellular and protein-bound amino acids of cultures supplied with 15NH4+, and analyzing the labeling data by computer simulation. Preliminary computer simulation models of nitrogen flux suggest that heat shock induces an increase in the γ-aminobutyrate synthesis rate from 12.5 nanomoles per hour per gram fresh weight in control cells maintained at 26°C, to as high as 800 nanomoles per hour per gram fresh weight within the first 2 hours of heat shock. This 64-fold increase in the γ-aminobutyrate synthesis rate greatly exceeds the expected (Q10) change of metabolic rate of 2.5- to 3-fold due to a 16°C increase in temperature. We suggest that this metabolic response may in part involve an activation of glutamate decarboxylase in vivo, perhaps mediated by a transient cytoplasmic acidification. Proline appears to be synthesized from glutamate and not from ornithine in cowpea cells. Proline became severalfold more heavily labeled than ornithine, citrulline and arginine in both control and heat-shocked cultures. Proline synthesis rate was increased 2.7-fold by heat shock. Alanine, β-alanine, valine, leucine, and isoleucine synthesis rates were increased 1.6-, 3.5-, 2.0-, 5.0-, and 6.0-fold, respectively, by heat shock. In contrast, the phenylalanine synthesis rate was decreased by 50% in response to heat shock. The

  20. Metabolism of orally administered branched-chain alpha-keto acids.

    PubMed

    Dalton, R N; Chantler, C

    1983-11-01

    The changes in serum branched-chain alpha-keto acid (BCKA) and plasma amino acid concentrations, in response to a therapeutic oral dose of an essential amino acid/keto acid mixture, were studied in fasting healthy adults. Of the branched-chain amino acids (BCAA), only the plasma leucine concentration rose significantly despite increases in al three serum BCKA concentrations. The plasma valine concentration tended to rise, but plasma isoleucine concentrations fell. When KMVA (keto-isoleucine) alone was given, there followed an increase in plasma isoleucine concentration and a fall in valine and leucine. Similarly, when KIVA (keto-valine) was given, plasma valine rose and leucine and isoleucine fell. These results suggest some transamination of the keto acid with amino groups of the other BCAA. KICA (keto-leucine), however, produced larger falls in plasma valine and isoleucine than was expected from the rise in leucine. In addition, KICA caused significant, insulin-independent reductions in plasma threonine, serine, cystine, methionine, tyrosine, phenylalanine, and alanine. We conclude that although orally administered BCKA's will increase the BCAA supply, their value may not simply relate to the supply of essential amino acids for protein synthesis but to a direct effect of KICA on protein metabolism. PMID:6368946

  1. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM.

    PubMed Central

    Johnstone, K; Simion, F A; Ellar, D J

    1982-01-01

    The biochemistry of teichoic acid and lipid metabolism has been studied during sporulation of Bacillus megaterium KM. Measurements of cell-wall and membrane teichoic acid have shown that net synthesis of these polymers ceases at the onset of sporulation. Pulse-labelling studies show that the period of asymmetric septation and forespore engulfment is marked by an initiation of turnover of membrane teichoic acid but not of wall teichoic acid. This is reflected in the presence of inner-membrane teichoic acid and the virtual absence of wall teichoic acid in dormant spores. The total amount of lipid phosphorus in the sporulating cell increases by 70% as a result of asymmetric septation and subsequent engulfment of the forespore. The phosphorus requirement for this synthesis is derived from a pool formed during exponential growth, which is not exchangeable with extracellular Pi during sporulation. These results suggest that during sporulation a proportion of the glycerol 3-phosphate produced by preferential degradation of membrane teichoic acid formed during exponential growth is used for phospholipid synthesis during sporulation. PMID:6807293

  2. Metabolism of orally administered tauroursodeoxycholic acid in patients with primary biliary cirrhosis.

    PubMed

    Setchell, K D; Rodrigues, C M; Podda, M; Crosignani, A

    1996-03-01

    The metabolism of tauroursodeoxycholic acid orally administered and its effects on the bile acid pool of patients with asymptomatic/mildly symptomatic primary biliary cirrhosis is described. Patients were randomly assigned 500, 1000, or 1500 mg/day of tauroursodeoxycholate for six months. Biliary and serum bile acids were measured before and during treatment by gas chromatography-mass spectrometry and by high performance liquid chromatography. During tauroursodeoxycholate administration, the proportion of total ursodeoxycholate in bile reached mean (SEM) 34.4 (4.5)%, 32.8 (2.8)%, and 41.6 (3.0)% with doses of 500, 1000, and 1500 mg/day, respectively. Significant decreases in the proportions of chenodeoxycholate and cholate resulted. The glycine/taurine ratio of the biliary bile acid pool decreased from 1.9 at baseline, to 1.1 with the highest dose. Ursodeoxycholate in bile was conjugated with glycine and taurine, indicating that tauroursodeoxycholate undergoes significant deconjugation and reconjugation during its enterohepatic recycling. The proportion of lithocholate in bile remained unchanged. Fasting serum conjugated ursodeoxycholate concentration positively correlated with the tauroursodeoxycholate dose, and the increased proportion of ursodeoxycholate was accompanied by substantial decreases in the endogenous bile acids. Compared with previously published data for ursodeoxycholic acid therapy, these findings indicate that the shift toward a more hydrophilic bile acid pool is greater and potentially more favourable with tauroursodeoxycholate, and this is because of the reduced intestinal biotransformation of tauroursodeoxycholate. PMID:8675100

  3. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases.

    PubMed

    Xu, Yanping

    2016-07-28

    Bile acids are steroid-derived molecules synthesized in the liver, secreted from hepatocytes into the bile canaliculi, and subsequently stored in the gall bladder. During the feeding, bile flows into the duodenum, where it contributes to the solubilization and digestion of lipid-soluble nutrients. After a meal, bile-acid levels increase in the intestine, liver, and also in the systemic circulation. Therefore, serum bile-acid levels serve as an important sensing mechanism for nutrient and energy. Recent studies have described bile acids as versatile signaling molecules endowed with systemic endocrine functions. Bile acids are ligands for G-protein coupled receptors (GPCRs) such as TGR5 (also known as GPBAR1, M-BAR, and BG37) and nuclear hormone receptors including farnesoid X receptor (FXR; also known as NR1H4). Acting through these diverse signaling pathways, bile acids regulate triglyceride, cholesterol, glucose homeostasis, and energy expenditure. These bile-acid-controlled signaling pathways have become the source of promising novel drug targets to treat common metabolic and hepatic diseases. PMID:26878262

  4. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    SciTech Connect

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.

  5. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions.

    PubMed

    Nguyen, Quoc Thien; Kisiala, Anna; Andreas, Peter; Neil Emery, R J; Narine, Suresh

    2016-06-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  6. New insights into sulfur amino acid function in gut health and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAA) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable AA and is transmet...

  7. Functional amino acids in fish nutrition, health and welfare.

    PubMed

    Andersen, Synne M; Waagbø, Rune; Espe, Marit

    2016-01-01

    Protein is the most expensive part of fish diets and supplies amino acids (AA) for energy, growth, protein synthesis and as substrates for key metabolic pathways. Functional AA is a term used to describe AA that are involved in cellular processes apart from protein synthesis. A deficiency, or imbalance, in functional AA may impair body metabolism and homeostasis. Recent years have seen an increased interest in AA to increase disease resistance, immune response, reproduction, behavior and more. This has led to a boost of commercially available functional fish feeds that aim to optimize fish performance and quality of the product. This review aim to collect recent findings of functional AA and of how they may improve fish health and welfare. It will focus on functional properties of some of the most studied AA, namely arginine, glutamine, glutamate, tryptophan, sulfur amino acids (methionine, cysteine and taurine), histidine and branched chain amino acids. Where information is not available in fish, we will point towards functions known in animals and humans, with possible translational functions to fish. PMID:26709652

  8. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    PubMed

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance. PMID:24276159

  9. Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism

    SciTech Connect

    Radogna, F.; Sestili, P.; Martinelli, C.; Paolillo, M.; Paternoster, L.; Albertini, M.C.; Accorsi, A.; Gualandi, G.; Ghibelli, L.

    2009-07-15

    We have shown that melatonin immediately and transiently stimulates intracellular free radical production on a set of leukocytes, possibly as a consequence of calmodulin binding. We show here that melatonin-induced ROS are produced by lipoxygenase (LOX), since they are prevented by a set of LOX inhibitors, and are accompanied by increase of the 5-LOX product 5-HETE. LOX activation is accompanied by strong liberation of AA; inhibition of Ca{sup 2+}-independent, but not Ca{sup 2+}-dependent, phospholipase A2 (PLA2), prevents both melatonin-induced arachidonic acid and ROS production, whereas LOX inhibition only prevents ROS, indicating that PLA2 is upstream with respect to LOX, as occurs in many signaling pathways. Chlorpromazine, an inhibitor of melatonin-calmodulin interaction, inhibits both ROS and arachidonic acid production, thus possibly placing calmodulin at the origin of a melatonin-induced pro-radical pathway. Interestingly, it is known that Ca{sup 2+}-independent PLA2 binds to calmodulin: our results are compatible with PLA2 being liberated by melatonin from a steady-state calmodulin sequestration, thus initiating an arachidonate signal transduction. These results delineate a novel molecular pathway through which melatonin may participate to the inflammatory response.

  10. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism.

    PubMed

    Ikon, Nikita; Ryan, Robert O

    2016-09-01

    3-methylglutaconic acid (3MGA)-uria occurs in numerous inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism. This organic acid arises from thioester cleavage of 3-methylglutaconyl CoA (3MG CoA), an intermediate in leucine catabolism. In individuals harboring mutations in 3MG CoA hydratase (i.e., primary 3MGA-uria), dietary leucine is the source of 3MGA. In secondary 3MGA-uria, however, no leucine metabolism defects have been reported. While others have suggested 3MGA arises from aberrant isoprenoid shunting from cytosol to mitochondria, an alternative route posits that 3MG CoA arises in three steps from mitochondrial acetyl CoA. Support for this biosynthetic route in IEMs is seen by its regulated occurrence in microorganisms. The fungus, Ustilago maydis, the myxobacterium, Myxococcus xanthus and the marine cyanobacterium, Lyngbya majuscule, generate 3MG CoA (or acyl carrier protein derivative) in the biosynthesis of iron chelating siderophores, iso-odd chain fatty acids and polyketide/nonribosomal peptide products, respectively. The existence of this biosynthetic machinery in these organisms supports a model wherein, under conditions of mitochondrial dysfunction, accumulation of acetyl CoA in the inner mitochondrial space as a result of inefficient fuel utilization drives de novo synthesis of 3MG CoA. Since humans lack the downstream biosynthetic capability of the organisms mentioned above, as 3MG CoA levels rise, thioester hydrolysis yields 3MGA, which is excreted in urine as unspent fuel. Understanding the metabolic origins of 3MGA may increase its utility as a biomarker. PMID:27091556

  11. CHARACTERIZATION OF CYPS IN THE METABOLISM OF ALL TRANS RETINOIC ACID BY LIVER MICROSOMES FROM MICE TREATED WITH CONAZOLES

    EPA Science Inventory

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may involve in conazole-...

  12. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    PubMed

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. PMID:26710098

  13. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  14. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

    PubMed

    Joyce, Susan A; MacSharry, John; Casey, Patrick G; Kinsella, Michael; Murphy, Eileen F; Shanahan, Fergus; Hill, Colin; Gahan, Cormac G M

    2014-05-20

    Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia. PMID:24799697

  15. A Systems Model for Ursodeoxycholic Acid Metabolism in Healthy and Patients With Primary Biliary Cirrhosis

    PubMed Central

    Dobbins, RL; O'Connor‐Semmes, RL; Young, MA

    2016-01-01

    A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780

  16. The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition.

    PubMed

    Jiang, Zhihua; Michal, Jennifer J; Wu, Xiao-Lin; Pan, Zengxiang; MacNeil, Michael D

    2011-01-01

    Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation. PMID:21647334

  17. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    SciTech Connect

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. )

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  18. Immunohistochemical Localization of Key Arachidonic Acid Metabolism Enzymes during Fracture Healing in Mice

    PubMed Central

    Lin, Hsuan-Ni; O’Connor, J. Patrick

    2014-01-01

    This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing. PMID:24516658

  19. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    SciTech Connect

    Aiello, R.J.; Armentano, L.E.

    1987-12-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from (2-/sup 14/C) propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic (2-/sup 14/C)-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from (2-/sup 14/C) propionate into (/sup 14/C) glucose by 22%. Butyrate inhibited (2-/sup 14/C) propionate metabolism and increased the apparent Michaelis constant for (2-/sup 14/C) propionate incorporation into (/sup 14/C) glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on (/sup 14/C) glucose production but decreased /sup 14/CO/sub 2/ production to 57, 61, and 54% of the control (2-/sup 14/C) propionate (1.25 mM). This inhibition on /sup 14/CO/sub 2/ was not competitive. Isovalerate had no effect on either (2-/sup 14/C) propionate incorporation into glucose of CO/sub 2/. An increase in ratio of (/sup 14/C) glucose to /sup 14/CO/sub 2/ from (2-/sup 14/C)-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes.

  20. Leptin and uric acid as predictors of metabolic syndrome in jordanian adults

    PubMed Central

    Ahmad, Mousa N.; Haddad, Fares H.; Azzeh, Firas S.

    2016-01-01

    BACKGROUND/OBJECTIVES Metabolic syndrome (MetS) is a set of interrelated metabolic risk factors that increase the risk of cardiovascular morbidity and mortality. Studies regarding the specificity and sensitivity of serum levels of leptin and uric acid as predictors of MetS are limited. The aim of this study was to evaluate the serum levels of leptin and uric acid in terms of their specificity and sensitivity as predictors of MetS in the studied Jordanian group. SUBJECTS/METHODS In this cross sectional study, 630 adult subjects (308 men and 322 women) were recruited from the King Hussein Medical Center (Amman, Jordan). The diagnosis of MetS was made according to the 2005 International Diabetes Federation criteria. Receiver operating characteristic curves were used to determine the efficacy of serum levels of leptin and uric acid as predictors of MetS in the studied Jordanian group. RESULTS Study results showed that for identification of subjects with MetS risk, area under the curve (AUC) for leptin was 0.721 and 0.683 in men and women, respectively. Serum uric acid levels in men showed no significant association with any MetS risk factors and no significant AUC, while uric acid AUC was 0.706 in women. CONCLUSION Serum leptin levels can be useful biomarkers for evaluation of the risk of MetS independent of baseline obesity in both men and women. On the other hand, serum uric acid levels predicted the risk of MetS only in women. PMID:27478548

  1. Stearoyl-CoA Desaturase-1: Is It the Link between Sulfur Amino Acids and Lipid Metabolism?

    PubMed Central

    Poloni, Soraia; Blom, Henk J.; Schwartz, Ida V. D.

    2015-01-01

    An association between sulfur amino acids (methionine, cysteine, homocysteine and taurine) and lipid metabolism has been described in several experimental and population-based studies. Changes in the metabolism of these amino acids influence serum lipoprotein concentrations, although the underlying mechanisms are still poorly understood. However, recent evidence has suggested that the enzyme stearoyl-CoA desaturase-1 (SCD-1) may be the link between these two metabolic pathways. SCD-1 is a key enzyme for the synthesis of monounsaturated fatty acids. Its main substrates C16:0 and C18:0 and products palmitoleic acid (C16:1) and oleic acid (C18:1) are the most abundant fatty acids in triglycerides, cholesterol esters and membrane phospholipids. A significant suppression of SCD-1 has been observed in several animal models with disrupted sulfur amino acid metabolism, and the activity of SCD-1 is also associated with the levels of these amino acids in humans. This enzyme also appears to be involved in the etiology of metabolic syndromes because its suppression results in decreased fat deposits (regardless of food intake), improved insulin sensitivity and higher basal energy expenditure. Interestingly, this anti-obesogenic phenotype has also been described in humans and animals with sulfur amino acid disorders, which is consistent with the hypothesis that SCD-1 activity is influenced by these amino acids, in particularly cysteine, which is a strong and independent predictor of SCD-1 activity and fat storage. In this narrative review, we discuss the evidence linking sulfur amino acids, SCD-1 and lipid metabolism. PMID:26046927

  2. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    PubMed Central

    2010-01-01

    Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms.