Science.gov

Sample records for acid aa protein

  1. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    PubMed

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. PMID:26146224

  2. Ascorbic acid (AA) metabolism in protection against radiation damage

    SciTech Connect

    Rose, R.C.; Koch, M.J.

    1986-03-05

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with /sup 14/C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the /sup 14/C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of < 3 minutes compared with nonirradiated samples (t/sub 1/2/ > 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of /sup 14/C-AFR disproportionate, with the net effect of /sup 14/C-dehydroascorbic acid formation from /sup 14/C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23/sup 0/C in the presence of 15 ..mu..M /sup 14/C-AA. Samples of supernatant maintained at 100/sup 0/C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues.

  3. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    PubMed

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-03-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. PMID:27098620

  4. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  5. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    PubMed

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  6. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    PubMed Central

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  7. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  8. AA protein-related renal amyloidosis in drug addicts.

    PubMed Central

    Menchel, S.; Cohen, D.; Gross, E.; Frangione, B.; Gallo, G.

    1983-01-01

    Reports of renal amyloidosis occurring among narcotic addicts have been limited, for the most part, to case reports. In a prospective survey of 150 addicts examined at autopsy in the Office of the Chief Medical Examiner of the City of New York, 7 cases of renal amyloidosis were found. Immunohistologic examination demonstrated that in all of the 7 cases, the amyloid was AA protein-related. The amyloid extracted from the kidneys of two addicts and analyzed biochemically did not differ from the AA amyloid secondary to chronic infectious and inflammatory diseases. The combined data of previous reports and the present survey demonstrate that addicts who are subcutaneous users with skin infections most frequently develop amyloidosis. Our data demonstrating renal amyloidosis in 26% of addicts with chronic suppurative skin infections suggest that such addicts are at high risk for the development of amyloidosis. Images Figure 1 Figure 2 PMID:6881286

  9. Mutant Rep protein of the porcine circovirus type 2 N-glycosylation:23-25aa, 256-258aa mutation reduced virus replication but 286-288aa mutation enhanced virus replication in PK-15 cells.

    PubMed

    Shi, Jianli; Peng, Zhe; Fu, Fang; Xu, Shaojian; Xu, Shengnan; Cong, Xiaoyan; Yuan, Xiaoyuan; Yu, Jiang; Wu, Jiaqiang; Sun, Wenbo; Du, Yijun; Li, Jun; Wang, Jinbao

    2015-06-12

    Porcine circovirus type 2 (PCV2) Rep protein and the splice variant Rep' protein impact genome replication. The Rep protein contains three potential N-glycosylation at positions 23-25aa (NPS), 256-258aa (NQT) and 286-288aa (NAT). Three double copy infectious clones with Rep protein N-glycosylation at positions mutations 23-25aa (DPS), 256-258aa (DQT) and 286-288aa (DAT) were constructed and their function in virus replication in PK-15 cells was investigated. The results showed that the double copy infectious clone with N-glycosylation site mutation could be rescued in vitro and 23-25aa, 256-258aa mutation reduced virus replication but 286-288aa mutation enhanced virus replication. PMID:25829242

  10. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L.

    PubMed

    Jiang, Fan; Zhou, Chen-Yang; Wu, Yun-Dong

    2014-06-26

    Traditional protein force fields use one set of parameters for most of the 20 amino acids (AAs), allowing transferability of the parameters. However, a significant shortcoming is the difficulty to fit the Ramachandran plots of all AA residues simultaneously, affecting the accuracy of the force field. In this Feature Article, we report a new strategy for protein force field parametrization. Backbone and side-chain conformational distributions of all 20 AA residues obtained from protein coil library were used as the target data. The dihedral angle (torsion) potentials and some local nonbonded (1-4/1-5/1-6) interactions in OPLS-AA/L force field were modified such that the target data can be excellently reproduced by molecular dynamics simulations of dipeptides (blocked AAs) in explicit water, resulting in a new force field with AA-specific parameters, RSFF1. An efficient free energy decomposition approach was developed to separate the corrections on ϕ and ψ from the two-dimensional Ramachandran plots. RSFF1 is shown to reproduce the experimental NMR (3)J-coupling constants of AA dipeptides better than other force fields. It has a good balance between α-helical and β-sheet secondary structures. It can successfully fold a set of α-helix proteins (Trp-cage and Homeodomain) and β-hairpins (Trpzip-2, GB1 hairpin), which cannot be consistently stabilized by other state-of-the-art force fields. Interestingly, the RSFF1 force field systematically overestimates the melting temperature (and the stability of native state) of these peptides/proteins. It has a potential application in the simulation of protein folding and protein structure refinement. PMID:24815738

  11. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA).

    PubMed

    Kuipers, Remko S; Luxwolda, Martine F; Janneke Dijck-Brouwer, D A; Muskiet, Frits A J

    2011-11-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from 'biomagnification' into 'bioattenuation' occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. PMID:21561751

  12. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  13. Localization of the adenovirus E1Aa protein, a positive-acting transcriptional factor, in infected cells infected cells.

    PubMed Central

    Feldman, L T; Nevins, J R

    1983-01-01

    The function of the adenovirus E1Aa protein (the product of the 13S E1A mRNA) during a productive viral infection is to activate transcription of the six early viral transcription units. To study the mechanism of action of this protein, a peptide which was 13 amino acids long and had a sequence unique to the protein product of the adenovirus 13S E1A mRNA (pE1Aa) was coupled to keyhole limpet hemocyanin and used to raise an antibody in rabbits. The resulting antiserum was specific to this protein and did not react with the protein product of the 12S E1A mRNA, which shares considerable sequence with the E1Aa protein. This antiserum was used to probe for the E1Aa protein in situ by indirect immunofluorescence and in extracts of infected HeLa cells. We found that the protein was associated with large cellular structures both in the nucleus and in the cytoplasm. The nuclear form of the protein was analyzed further and was found to purify with the nuclear matrix. Images PMID:6346057

  14. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1)

    PubMed Central

    Zhang, Fengjuan; Peng, Donghai; Cheng, Chunsheng; Zhou, Wei; Ju, Shouyong; Wan, Danfeng; Yu, Ziquan; Shi, Jianwei; Deng, Yaoyao; Wang, Fenshan; Ye, Xiaobo; Hu, Zhenfei; Lin, Jian; Ruan, Lifang; Sun, Ming

    2016-01-01

    Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1). In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control. PMID:26795495

  15. Expression of cationic amino acid transporters, carcass traits, and performance of growing pigs fed low-protein amino acid-supplemented versus high protein diets.

    PubMed

    Morales, A; Grageola, F; García, H; Araiza, A; Zijlstra, R T; Cervantes, M

    2013-01-01

    Free amino acids (AA) appear to be absorbed faster than protein-bound AA (PB-AA). We conducted an experiment to assess the effect of feeding pigs with a partially free (F-AA) or totally PB-AA diet on expression of selected genes and performance of pigs. The expression of cationic AA transporters b(0,+) and CAT-1 in intestinal mucosa, liver, and longissimus (LM) and semitendinosus (SM) muscles, as well as that of myosin in LM and SM, was analyzed. Twelve pigs (31.7 ± 2.7 kg) were used. The F-AA diet was based on wheat, supplemented with 0.59% L-Lys, 0.33% L-Thr, and 0.10% DL-Met. The PB-AA diet was formulated with wheat-soybean meal. Average daily feed intake was 1.53 kg per pig. The expression of b(0,+) and CAT-1 was analyzed in jejunal and ileal mucosa, liver, LM, and SM; myosin expression was also analyzed in both muscles. Pigs fed the PB-AA diet tended to have higher weight gain and feed efficiency (P < 0.10), and had thinner back fat (P = 0.02). The expression of b(0,+) was higher (P < 0.01) in jejunum but lower (P < 0.01) in the liver of pigs fed the F-AA diet; CAT-1 tended to be lower in liver but higher in LM of PB-AA pigs. Myosin expression was not affected. Intestinal AA absorption was faster in pigs fed the F-AA diet, but AA uptake by the liver seemed to be faster in pigs fed the PB-AA. Performance and expression of AA transporters and myosin suggest that the dietary content of free or protein-bound AA does not affect their availability for protein synthesis in pigs. PMID:24222247

  16. Is the serum amyloid A protein in acute phase plasma high density lipoprotein the precursor of AA amyloid fibrils?

    PubMed Central

    Baltz, M L; Rowe, I F; Caspi, D; Turnell, W G; Pepys, M B

    1986-01-01

    Serum amyloid A protein (SAA), an apolipoprotein of high density lipoprotein (HDL), is generally considered to be the precursor of AA protein, which forms the fibrils in reactive systemic amyloidosis in man and animals. This view is based on amino acid sequence identity between AA and the amino-terminal portion of SAA. However, in extensive and well-controlled studies of experimentally induced murine AA amyloidosis, we were unable to demonstrate a direct precursor-product relationship between SAA, in SAA-rich HDL preparations from acute phase or amyloidotic mouse or human serum, and AA protein in the amyloid deposits. This raises the possibility that SAA in its usual form, as an apolipoprotein of HDL synthesized during the acute phase response, may not be the major precursor of AA fibrils. The amyloidogenic forms of circulating SAA molecules may not be isolated during the preparation of HDL. Alternatively, particularly in the light of recent evidence that SAA mRNA is expressed in many different tissues throughout the body of appropriately stimulated animals, amyloidogenic SAA may be derived from sources other than the liver cells in which SAA-rich HDL is synthesized. PMID:3105937

  17. Effect of adding amino acids residues in N- and C-terminus of Vip3Aa16 (L121I) toxin.

    PubMed

    Sellami, Sameh; Cherif, Marwa; Jamoussi, Kaïs

    2016-06-01

    To study the importance of N- and C-terminus of Bacillus thuringiensis Vip3Aa16 (L121I) toxin (88 kDa), a number of mutants were generated. The addition of two (2R: RS) or eleven (11R: RSRPGHHHHHH) amino acid residues at the Vip3Aa16 (L121I) C-terminus allowed to an unappropriated folding illustrated by the abundant presence of the 62 kDa proteolytic form. The produced Vip3Aa16 (L121I) full length form was less detected when increasing the number of amino acids residues in the C-terminus. Bioassays demonstrated that the growth of the lepidopteran Ephestia kuehniella was slightly affected by Vip3Aa16 (L121I)-2R and not affected by Vip3Aa16 (L121I)-11R. Additionally, the fusion at the Vip3Aa16 (L121I) N-terminus of 39 amino acids harboring the E. coli OmpA leader peptide and the His-tag sequence allowed to the increase of protease sensitivity of Vip3Aa16 (L121I) full length form, as only the 62 kDa proteolysis form was detected. Remarkably, this fused protein produced in Escherichia coli (E. coli) was biologically inactive toward Ephestia kuehniella larvae. Thus, the N-terminus of the protein is required to the accomplishment of the insecticidal activity of Vip3 proteins. This report serves as guideline for the study of Vip3Aa16 (L121I) protein stability and activity. PMID:26876111

  18. Effect of glycine supplementation in low protein diets with amino acids from soy protein isolate or free amino acids on broiler growth and nitrogen utilisation.

    PubMed

    Siegert, W; Wild, K J; Schollenberger, M; Helmbrecht, A; Rodehutscord, M

    2016-06-01

    Here, it was investigated whether substitution of amino acids (AA) from soy protein isolate with free AA in low crude protein diets influences the growth performance and N utilisation in broilers, and whether interactions with dietary glycine equivalent (Glyequi) concentration exist. Birds were distributed in two 2 × 2 factorial arrangements of 48 floor pens containing 10 birds each, plus 48 metabolism cages containing two birds each. Experimental feed was provided for ad libitum consumption from d 7 to 22. Diets contained either a soy protein isolate at 79 g/kg or a mix of free AA, which supplied the same amount of 18 proteinogenic AA. A mix of free glycine and l-serine was used to obtain low and high (12.0 and 20.5 g/kg dry matter) levels of dietary Glyequi. Substitution of soy protein isolate with free AA reduced the average daily gain and feed efficiency, mainly due to reduced feed intake. Efficiency of N accretion was not influenced by the AA source or Glyequi concentration on d 21, possibly due to the lower AA digestibility of soy protein isolate and higher urinary excretion of nitrogenous substances in the treatments with the AA mix. The average daily weight gain of the treatments with high Glyequi concentration was higher for both AA sources. This increase was due to higher average daily feed intake by broilers in the treatments with soy protein isolate and due to the increased feed efficiency in the treatments with the AA mix. Broilers exhibited different growth responses to dietary Glyequi between the AA sources; however, these responses could not be attributed to the different utilisation of Glyequi for uric acid synthesis. PMID:26955743

  19. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    PubMed

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  20. Molecular Characteristic, Protein Distribution and Potential Regulation of HSP90AA1 in the Anadromous Fish Coilia nasus

    PubMed Central

    Fang, Di-An; Duan, Jin-Rong; Zhou, Yan-Feng; Zhang, Min-Ying; Xu, Dong-Po; Liu, Kai; Xu, Pao

    2016-01-01

    Heat shock proteins play essential roles in basic cellular events. Spawning migration is a complex process, with significant structural and biochemical changes taking place in the adult gonad. To date, the molecular mechanisms underlying migration reproductive biology remain undetermined. In this regard, a full length HSP90AA1 comprising 2608 nucleotides from the anadromous fish Coilia nasus was characterized, encoding 742 amino acid (aa) residues with potential phosphorylation sites. HSP90AA1 mRNA transcripts were detected in all organs, especially in the gonad. Furthermore, the greatest transcript levels were found during the developmental phase, while the lowest levels were found during the resting phase. In addition, the strongest immunolabeling positive signal was found in the primary spermatocyte and oocyte, with lower positive staining in secondary germ cells, and a weak or absent level in the mature sperm and oocyte. Interestingly, HSP90AA1 was mainly located in the cytoplasm of germ cells. These results are important for understanding the molecular mechanism of anadromous migration reproductive biology. In combination with data from other fish species, the result of this present study may facilitate further investigations on the spawning migration mechanism. PMID:26828521

  1. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins

    PubMed Central

    Li, Weiwei; Hu, Qin; Chan, Wan

    2015-01-01

    Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of “Chinese herb nephropathy” and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern−Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII. PMID:26471474

  2. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Hu, Qin; Chan, Wan

    2015-10-01

    Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of “Chinese herb nephropathy” and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern-Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII.

  3. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  4. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    PubMed

    Qiu, Kai; Qin, Chun Fu; Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  5. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown. PMID:17264222

  6. Prohibitin, an essential protein for Colorado potato beetle larval viability, is relevant to Bacillus thuringiensis Cry3Aa toxicity.

    PubMed

    Ochoa-Campuzano, Camila; Martínez-Ramírez, Amparo C; Contreras, Estefanía; Rausell, Carolina; Real, M Dolores

    2013-11-01

    Bacillus thuringienesis (Bt) Cry toxins constitute the most extensively used environmentally safe biopesticide and their mode of action relies on the interaction of the toxins with membrane proteins in the midgut of susceptible insects that mediate toxicity and insect specificity. Therefore, identification of Bt Cry toxin interacting proteins in the midgut of target insects and understanding their role in toxicity is of great interest to exploit their insecticidal action. Using ligand blot, we demonstrated that Bt Cry3Aa toxin bound to a 30kDa protein in Colorado potato beetle (CPB) larval midgut membrane, identified by sequence homology as prohibitin-1 protein. Prohibitins comprise a highly conserved family of proteins implicated in important cellular processes. We obtained the complete CPB prohibitin-1 DNA coding sequence of 828pb, in silico translated into a 276-amino acid protein. The analysis at the amino acid level showed that the protein contains a prohibitin-homology domain (Band7_prohibitin, cd03401) conserved among prohibitin proteins. A striking feature of the CPB identified prohibitin-1 is the predicted presence of cadherin elements, potential binding sites for Cry toxins described in other Bt susceptible insects. We also showed that CPB prohibitin-1 protein partitioned into both, detergent soluble and insoluble membrane fractions, as well as a prohibitin-2 homologous protein, previously reported to form functional complexes with prohibitin-1 in other organisms. Prohibitin complexes act as membrane scaffolds ensuring the recruitment of membrane proteases to facilitate substrate processing. Accordingly, sequestration of prohibitin-1 by an anti-prohibitin-1 antibody impaired the Cry3Aa toxin inhibition of the proteolytic cleavage of a fluorogenic synthetic substrate of an ADAM-like metalloprotease previously reported to proteolize this toxin. In this work, we also demonstrated that prohibitin-1 RNAi silencing in CPB larvae produced deleterious effects and

  7. Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues.

    PubMed

    Sjöberg, Béatrice; Foley, Sarah; Staicu, Angela; Pascu, Alexandru; Pascu, Mihail; Enescu, Mironel

    2016-06-01

    The singlet oxygen quenching rate constants were measured for three model proteins, bovine serum albumin, β-lactoglobulin and lysozyme. The results were analyzed by comparing them with the corresponding singlet oxygen quenching rate constants for a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was the oxidizable amino acid, tryptophan, tyrosine, methionine and histidine. It was found that the reaction rate constant in proteins can be satisfactorily modelled by the sum of the individual contributions of the oxidizable AA residues corrected for the solvent accessible surface area (SASA) effects. The best results were obtained when the SASA of the AA residues were determined by averaging over molecular dynamics simulated trajectories of the proteins. The limits of this geometrical correction of the AA residue reactivity are also discussed. PMID:27045278

  8. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure

    PubMed Central

    Maciel, Rafael R. G.; de Almeida, Adriele A.; Godinho, Odin G. C.; Gorza, Filipe D. S.; Pedro, Graciela C.; Trescher, Tarquin F.; Silva, Josmary R.; de Souza, Nara C.

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state. PMID:23984366

  9. Ascorbic acid and BSA protein in solution and films: interaction and surface morphological structure.

    PubMed

    Maciel, Rafael R G; de Almeida, Adriele A; Godinho, Odin G C; Gorza, Filipe D S; Pedro, Graciela C; Trescher, Tarquin F; Silva, Josmary R; de Souza, Nara C

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state. PMID:23984366

  10. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus thuringiensis Vip3Aa protein... thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Vip3Aa proteins in or on corn or cotton are exempt from the requirement of...

  11. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Vip3Aa protein... thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Vip3Aa proteins in or on corn or cotton are exempt from the requirement of...

  12. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus thuringiensis Vip3Aa protein... thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Vip3Aa proteins in or on corn or cotton are exempt from the requirement of...

  13. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus thuringiensis Vip3Aa protein... thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Vip3Aa proteins in or on corn or cotton are exempt from the requirement of...

  14. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism.

    PubMed

    Reidy, Paul T; Rasmussen, Blake B

    2016-02-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on

  15. Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet.

    PubMed

    de Brevern, Alexandre G; Joseph, Agnel Praveen

    2011-05-01

    Protein structure analysis and prediction methods are based on non-redundant data extracted from the available protein structures, regardless of the species from which the protein originates. Hence, these datasets represent the global knowledge on protein folds, which constitutes a generic distribution of amino acid sequence-protein structure (AAS-PS) relationships. In this study, we try to elucidate whether the AAS-PS relationship could possess specificities depending on the specie. For this purpose, we have chosen three different species: Saccharomyces cerevisiae, Plasmodium falciparum and Arabidopsis thaliana. We analyzed the AAS-PS behaviors of the proteins from these three species and compared it to the "expected" distribution of a classical non-redundant databank. With the classical secondary structure description, only slight differences in amino acid preferences could be observed. With a more precise description of local protein structures (Protein Blocks), significant changes could be highlighted. S. cerevisiae's AAS-PS relationship is close to the general distribution, while striking differences are observed in the case of A. thaliana. P. falciparum is the most distant one. This study presents some interesting view-points on AAS-PS relationship. Certain species exhibit unique preferences for amino acids to be associated with protein local structural elements. Thus, AAS-PS relationships are species dependent. These results can give useful insights for improving prediction methodologies which take the species specific information into account. PMID:21333657

  16. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition.

    PubMed

    Shi, J-Y; Zhang, S-W; Pan, Q; Cheng, Y-M; Xie, J

    2007-07-01

    As more and more genomes have been discovered in recent years, there is an urgent need to develop a reliable method to predict the subcellular localization for the explosion of newly found proteins. However, many well-known prediction methods based on amino acid composition have problems utilizing the sequence-order information. Here, based on the concept of Chou's pseudo amino acid composition (PseAA), a new feature extraction method, the multi-scale energy (MSE) approach, is introduced to incorporate the sequence-order information. First, a protein sequence was mapped to a digital signal using the amino acid index. Then, by wavelet transform, the mapped signal was broken down into several scales in which the energy factors were calculated and further formed into an MSE feature vector. Following this, combining this MSE feature vector with amino acid composition (AA), we constructed a series of MSEPseAA feature vectors to represent the protein subcellular localization sequences. Finally, according to a new kind of normalization approach, the MSEPseAA feature vectors were normalized to form the improved MSEPseAA vectors, named as IEPseAA. Using the technique of IEPseAA, C-support vector machine (C-SVM) and three multi-class SVMs strategies, quite promising results were obtained, indicating that MSE is quite effective in reflecting the sequence-order effects and might become a useful tool for predicting the other attributes of proteins as well. PMID:17235454

  17. New variants of lepidoptericidal toxin genes encoding Bacillus thuringiensis Vip3Aa proteins.

    PubMed

    Sauka, Diego H; Rodriguez, Sonia E; Benintende, Graciela B

    2012-01-01

    Bacillus thuringiensis is an entomopathogenic bacterium characterized by producing parasporal proteinaceous insecticidal crystal inclusions during sporulation. Many strains are capable of also expressing other insecticidal proteins called Vip during the vegetative growing phase. Particularly, Vip3A proteins have activity against certain Lepidoptera species through a unique mechanism of action which emphasized their possible use in resistance management strategies against resistant pests. The aim of the work was to develop a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that can distinguish between vip3A genes from B. thuringiensis strains. In addition, 4 novel vip3Aa genes were cloned and sequenced. The method was originally based on amplification of a single PCR amplicon and the use of 2 restriction enzymes with recognition sites that facilitate simultaneous detection. Subsequently, a third restriction enzyme was used to distinguish between vip3A variants. Thirteen vip3Aa genes were identified in strains belonging to 10 different B. thuringiensis serovars. Three intra-subclass variants of vip3Aa genes could be differentiated. The presented method can serve as an invaluable tool for the investigation of known and novel vip3A genes in B. thuringiensis strains. To the best of our knowledge, this is the first report where variants of a same subclass of insecticidal genes could be distinguished following PCR-RFLP. PMID:23307196

  18. Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2013-09-28

    It is well known that ingestion of a protein source is effective in stimulating muscle protein synthesis after exercise. In addition, there are numerous reports on the impact of leucine and leucine-rich whey protein on muscle protein synthesis and mammalian target of rapamycin (mTOR) signalling. However, there is only limited information on the effects of whey protein hydrolysates (WPH) on muscle protein synthesis and mTOR signalling. The aim of the present study was to compare the effects of WPH and amino acids on muscle protein synthesis and the initiation of translation in skeletal muscle during the post-exercise phase. Male Sprague–Dawley rats swam for 2 h to depress muscle protein synthesis. Immediately after exercise, the animals were administered either carbohydrate (CHO), CHO plus an amino acid mixture (AA) or CHO plus WPH. At 1 h after exercise, the supplements containing whey-based protein (AA and WPH) caused a significant increase in the fractional rate of protein synthesis (FSR) compared with CHO. WPH also caused a significant increase in FSR compared with AA. Post-exercise ingestion of WPH caused a significant increase in the phosphorylation of mTOR levels compared with AA or CHO. In addition, WPH caused greater phosphorylation of ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 than AA and CHO. In contrast, there was no difference in plasma amino acid levels following supplementation with either AA or WPH. These results indicate that WPH may include active components that are superior to amino acids for stimulating muscle protein synthesis and initiating translation. PMID:23388415

  19. Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis.

    PubMed Central

    Loferer, H; Bott, M; Hennecke, H

    1993-01-01

    We report the discovery of a bacterial gene, tlpA, that codes for a hitherto unknown type of thioredoxin-like protein. The gene was found in the course of studying a Tn5 insertion mutant of the soybean root nodule symbiont Bradyrhizobium japonicum. The TlpA protein shared up to 31% amino acid sequence identity with various eukaryotic and prokaryotic thioredoxins and protein disulfide isomerases, and possessed a characteristic active-site sequence, Trp-Cys-Val-Pro-Cys. In contrast to all members of the thioredoxin family known to date, TlpA was shown to be anchored to the cytoplasmic membrane by means of an N-terminal transmembrane domain, while the active site-containing part of the protein faced the periplasm. The tlpA mutant had a pleiotropic phenotype in that it was defective in the development of a nitrogen fixing endosymbiosis and exhibited a strongly decreased oxidase activity, as compared with the wild-type. Holocytochrome aa3 was spectroscopically undetectable in the mutant, whereas the apoprotein of subunit one (CoxA) of this oxidase was still synthesized and incorporated into the cytoplasmic membrane. Since cytochrome aa3 is not a prerequisite for the development of symbiosis, the results suggest that TlpA is involved in at least two independent cellular processes, one of which is an essential periplasmic step in the maturation of cytochrome aa3. Images PMID:8253065

  20. Protein and Amino Acid Restriction, Aging and Disease: from yeast to humans

    PubMed Central

    Mirzaei, Hamed; Suarez, Jorge A.; Longo, Valter D.

    2014-01-01

    Many of the effects of dietary restriction (DR) on longevity and health span in model organisms have been linked to reduced protein and amino acid (AA) intake and the stimulation of specific nutrient signaling pathways. Studies in yeast have shown that addition of serine, threonine, and valine in media promotes cellular sensitization and aging by activating different but connected pathways. Protein or essential AA restriction extends both lifespan and healthspan in rodent models. In humans, protein restriction (PR) has been associated with reduced cancer, diabetes, and overall mortality. Thus, interventions aimed at lowering the intake of proteins or specific AAs can be beneficial and have the potential to be widely adopted and effective in optimizing healthspan. PMID:25153840

  1. Stimulation of muscle protein synthesis by leucine is dependent on plasma amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that a physiological increase in plasma leucine increased translation initiation factor activity during 60- and 120-min leucine infusion. Muscle protein synthesis was stimulated at 60 min but not at 120 min, perhaps due to the decrease (-50%) in plasma essential amino acids (AA). ...

  2. EB1 Levels Are Elevated in Ascorbic Acid (AA)-stimulated Osteoblasts and Mediate Cell-Cell Adhesion-induced Osteoblast Differentiation*

    PubMed Central

    Pustylnik, Sofia; Fiorino, Cara; Nabavi, Noushin; Zappitelli, Tanya; da Silva, Rosa; Aubin, Jane E.; Harrison, Rene E.

    2013-01-01

    Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation. PMID:23740245

  3. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. PMID:26796095

  4. Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids

    NASA Technical Reports Server (NTRS)

    Paddon-Jones, Douglas; Sheffield-Moore, Melinda; Creson, Daniel L.; Sanford, Arthur P.; Wolf, Steven E.; Wolfe, Robert R.; Ferrando, Arny A.

    2003-01-01

    Debilitating injury is accompanied by hypercortisolemia, muscle wasting, and disruption of the normal anabolic response to food. We sought to determine whether acute hypercortisolemia alters muscle protein metabolism following ingestion of a potent anabolic stimulus: essential amino acids (EAA). A 27-h infusion (80 microg. kg(-1). h(-1)) of hydrocortisone sodium succinate mimicked cortisol (C) levels accompanying severe injury (>30 microg/dl), (C + AA; n = 6). The control group (AA) received intravenous saline (n = 6). Femoral arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol. kg(-1). min(-1)) of l-[ring-(2)H(5)]phenylalanine before and after ingestion of 15 g of EAA. Hypercortisolemia [36.5 +/- 2.1 (C + AA) vs. 9.0 +/- 1.0 microg/dl (AA)] increased postabsorptive arterial, venous, and muscle intracellular phenylalanine concentrations. Hypercortisolemia also increased postabsorptive and post-EAA insulin concentrations. Net protein balance was blunted (40% lower) following EAA ingestion but remained positive for a greater period of time (60 vs. 180 min) in the C + AA group. Thus, although differences in protein metabolism were evident, EAA ingestion improved muscle protein anabolism during acute hypercortisolemia and may help minimize muscle loss following debilitating injury.

  5. Synergism and Rules of the new Combination drug Yiqijiedu Formulae (YQJD) on Ischemic Stroke based on amino acids (AAs) metabolism

    PubMed Central

    Gao, Jian; Chen, Chang; Chen, Jian-Xin; Wen, Li-Mei; Yang, Geng-Liang; Duan, Fei-Peng; Huang, Zhi-Ying; Li, De-Feng; Yu, Ding-Rong; Yang, Hong-Jun; Li, Shao-Jing

    2014-01-01

    The use of combination drugs is considered to be a promising strategy to control complex diseases such as ischemic stroke. The detection of metabolites has been used as a versatile tool to reveal the potential mechanism of diverse diseases. In this study, the levels of 12 endogenous AAs were simultaneously determined quantitatively in the MCAO rat brain using RRLC-QQQ method. Seven AAs were chosen as the potential biomarkers, and using PLS-DA analysis, the effects of the new combination drug YQJD, which is composed of ginsenosides, berberine, and jasminoidin, on those 7 AAs were evaluated. Four AAs, glutamic acid, homocysteine, methionine, and tryptophan, which changed significantly in the YQJD-treated groups compared to the vehicle groups (P < 0.05), were identified and designated as the AAs to use to further explore the synergism of YQJD. The result of a PCA showed that the combination of these three drugs exhibits the strongest synergistic effect compared to other combination groups and that ginsenosides might play a pivotal role, especially when combined with jasminoidin. We successfully explored the synergetic mechanism of multi-component and provided a new method for evaluating the integrated effects of combination drugs in the treatment of complex diseases. PMID:24889025

  6. Revealing the amino acid composition of proteins within an expanded genetic code

    PubMed Central

    Aerni, Hans R.; Shifman, Mark A.; Rogulina, Svetlana; O'Donoghue, Patrick; Rinehart, Jesse

    2015-01-01

    The genetic code can be manipulated to reassign codons for the incorporation of non-standard amino acids (NSAA). Deletion of release factor 1 in Escherichia coli enhances translation of UAG (Stop) codons, yet may also extended protein synthesis at natural UAG terminated messenger RNAs. The fidelity of protein synthesis at reassigned UAG codons and the purity of the NSAA containing proteins produced require careful examination. Proteomics would be an ideal tool for these tasks, but conventional proteomic analyses cannot readily identify the extended proteins and accurately discover multiple amino acid (AA) insertions at a single UAG. To address these challenges, we created a new proteomic workflow that enabled the detection of UAG readthrough in native proteins in E. coli strains in which UAG was reassigned to encode phosphoserine. The method also enabled quantitation of NSAA and natural AA incorporation at UAG in a recombinant reporter protein. As a proof-of-principle, we measured the fidelity and purity of the phosphoserine orthogonal translation system (OTS) and used this information to improve its performance. Our results show a surprising diversity of natural AAs at reassigned stop codons. Our method can be used to improve OTSs and to quantify amino acid purity at reassigned codons in organisms with expanded genetic codes. PMID:25378305

  7. Revealing the amino acid composition of proteins within an expanded genetic code.

    PubMed

    Aerni, Hans R; Shifman, Mark A; Rogulina, Svetlana; O'Donoghue, Patrick; Rinehart, Jesse

    2015-01-01

    The genetic code can be manipulated to reassign codons for the incorporation of non-standard amino acids (NSAA). Deletion of release factor 1 in Escherichia coli enhances translation of UAG (Stop) codons, yet may also extended protein synthesis at natural UAG terminated messenger RNAs. The fidelity of protein synthesis at reassigned UAG codons and the purity of the NSAA containing proteins produced require careful examination. Proteomics would be an ideal tool for these tasks, but conventional proteomic analyses cannot readily identify the extended proteins and accurately discover multiple amino acid (AA) insertions at a single UAG. To address these challenges, we created a new proteomic workflow that enabled the detection of UAG readthrough in native proteins in E. coli strains in which UAG was reassigned to encode phosphoserine. The method also enabled quantitation of NSAA and natural AA incorporation at UAG in a recombinant reporter protein. As a proof-of-principle, we measured the fidelity and purity of the phosphoserine orthogonal translation system (OTS) and used this information to improve its performance. Our results show a surprising diversity of natural AAs at reassigned stop codons. Our method can be used to improve OTSs and to quantify amino acid purity at reassigned codons in organisms with expanded genetic codes. PMID:25378305

  8. Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production.

    PubMed

    Ronco, A M; Moraga, P F; Llanos, M N

    2002-01-01

    We have previously demonstrated that the release of arachidonic acid (AA) from human chorionic gonadotropin (hCG)-stimulated Leydig cells occurs in a dose- and time-dependent manner. In addition, the amount of AA released was dependent on the hormone-receptor interaction and the concentration of LH-hCG binding sites on the cell surface. The present study was conducted to evaluate the involvement of phospholipase A(2) (PLA(2)) and G proteins in AA release from hormonally stimulated rat Leydig cells, and the possible role of this fatty acid in cAMP production. Cells were first prelabelled with [(14)C]AA to incorporate the fatty acid into cell phospholipids, and then treated in different ways to evaluate AA release. hCG (25 mIU) increased the release of AA to 180+/-12% when compared with AA released from control cells, arbitrarily set as 100%. Mepacrine and parabromophenacyl bromide (pBpB), two PLA(2) inhibitors, decreased the hormone-stimulated AA release to 85+/-9 and 70+/-24% respectively. Conversely, melittin, a PLA(2) stimulator, increased the release of AA up to 200% over control. The inhibitory effect of mepacrine on the release of AA was evident in hCG-treated Leydig cells, but not in the melittin-treated cells. To determine if the release of AA was also mediated through a G protein, cells were first permeabilized and subsequently treated with pertussis toxin or GTPgammaS, a non-hydrolyzable analog of GTP. Results demonstrate that GTPgammaS was able to induce a similar level of the release of AA as hCG. In addition, pertussis toxin completely abolished the stimulatory effect of hCG on the release of AA, indicating that a member of the G(i) family was involved in the hCG-dependent release of AA. Cells treated with PLA(2) inhibitors did not modify cAMP production, but exogenously added AA significantly reduced cAMP production from hCG-treated Leydig cells, in a manner dependent on the concentration of AA and hCG. Results presented here suggest an involvement of

  9. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera).

    PubMed

    Bergamasco, V B; Mendes, D R P; Fernandes, O A; Desidério, J A; Lemos, M V F

    2013-02-01

    The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65 kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. PMID:23220241

  10. Ruminal protein metabolism and intestinal amino acid utilization as affected by dietary protein and carbohydrate sources in sheep.

    PubMed

    Hussein, H S; Jordan, R M; Stern, M D

    1991-05-01

    Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein. PMID:1648551

  11. Estimation of endogenous protein and amino acid ileal losses in weaned piglets by regression analysis using diets with graded levels of casein

    PubMed Central

    2013-01-01

    Background Many studies have investigated endogenous loss of proteins and amino acids (AAs) at the ileal level in growing pigs. However, only a few studies have researched this subject in piglets. Knowledge regarding AA ileal digestibility in piglets would be helpful during the formulation of diets for weaning piglets, rather than just using coefficients obtained in growing pigs. Therefore, in this study, we sought to estimate endogenous protein and AA ileal losses in piglets. Furthermore, apparent and true ileal digestibility (AID and TID) of protein and AAs from casein were measured. Results The average flow of protein was 20.8 g/kg of dry matter intake (DMI). Basal protein loss, as estimated by regression, was 16.9 g/kg DMI. Glutamic acid, arginine, and aspartic acid (2.2, 1.4, and 1.2 g/kg DMI, respectively) were the AAs for which greater losses were seen. The AID of protein and AAs increased as the protein level in the diet increased. A higher increment in AID was observed between diets with 80 and160 g CP/kg of feed; this finding was mainly attributable to increases in glycine and arginine (46.1% and 18%, respectively). The TID of protein was 97.8, and the TID of AAs varied from 93.9 for histidine to 100.2 for phenylalanine. Conclusions The basal endogenous protein loss in piglets was 16.9 g/kg DMI. Endogenous protein was rich in glutamic acid, aspartic acid, and arginine, which represented 32.7% of endogenous protein loss in weaning piglets. The TID of casein was high and varied from 93.0 for histidine to 100.2 for phenylalanine. PMID:24053636

  12. Production of polyclonal and monoclonal antibodies against the Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16.

    PubMed

    Ben Hamadou-Charfi, Dorra; Sauer, Annette Juliane; Abdelkafi-Mesrati, Lobna; Jaoua, Samir; Stephan, Dietrich

    2015-03-01

    The aim of this study is to establish a quantitative determination of the vegetative insecticidal protein Vip3A from the culture supernatant of Bacillus thuringiensis either by ELISA or by the conventional quantification method of the Western blot band. The Vip3A protein was produced by fermentation of the B. thuringiensis reference strain BUPM95 in 3 L. By Western blot, the Vip3Aa16 toxin was detected in the culture supernatant during the exponential growth phase of B. thuringiensis BUPM95. However, the detection of Vip3Aa16 on Western blot showed in addition to the toxin two other strips (62 and 180 kDa) recognized by the anti-Vip3Aa16 polyclonal antibodies prepared at the Centre of Biotechnology of Sfax Tunisia. For that reason and in order to develop a technique for reliable quantification of the toxin, we have considered the production of polyclonal antibodies at the Julius Kühn Institute, Germany. These antibodies were the basis for the production of monoclonal antibodies directed against the protein produced by the Vip3Aa16 recombinant strain Escherichia coli BL21 (DE3). These monoclonal antibodies were tested by plate-trapped antigen (PTA) and triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA). The selection of hybridoma supernatants gave us four positive clones producing monoclonal antibodies. PMID:25492687

  13. Protein biosynthesis with conformationally restricted amino acids

    SciTech Connect

    Mendel, D. Lawrence Berkeley Lab., CA ); Ellman, J.; Schultz, P.G. )

    1993-05-19

    The incorporation of conformationally constrained amino acids into peptides is a powerful approach for generating structurally defined peptides as conformational probes and bioactive agents. The ability to site-specifically introduce constrained amino acids into large polypeptide chains would provide a similar opportunity to probe the flexibility, conformation, folding and stability of proteins. To this end, we have examined the competence of the Escherichia coli protein biosynthetic machinery to incorporate a number of these unnatural amino acids into the 164 residue protein T4 lysozyme (T4L). Results clearly demonstrate that the protein biosynthetic machinery can accommodate a wide variety of conformationally constrained amino acids. The expansion of structural motifs that can be biosynthetically incorporated into proteins to include a large number of conformationally constrained amino acids significantly increases the power of mutagenesis methods as probes of protein structure and function and provides additional insights into the steric requirements of the translational machinery. 13 refs., 2 figs.

  14. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  15. An experimental and theoretical study of the amino acid side chain Raman bands in proteins

    NASA Astrophysics Data System (ADS)

    Sjöberg, Béatrice; Foley, Sarah; Cardey, Bruno; Enescu, Mironel

    2014-07-01

    The Raman spectra of a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was tryptophan, tyrosine, phenylalanine, glycine, methionine, histidine, lysine and leucine were measured in H2O. The theoretical Raman spectra obtained using density functional theory (DFT) calculations at the B3LYP/6-311+G(2df,2pd) level of theory allows a precise attribution of the vibrational bands. The experimental results show that there is a blue shift in the frequencies of several bands of the amino acid side chains in tripeptides compared to free amino acids, especially in the case of AAs containing aromatic rings. On the other hand, a very good agreement was found between the Raman bands of AA residues in tripeptides and those measured on three model proteins: bovine serum albumin, β-lactoglobulin and lysozyme. The present analysis contributes to an unambiguous interpretation of the protein Raman spectra that is useful in monitoring the biological reactions involving AA side chains alteration.

  16. Dendronylation: Residue-specific chemoselective attachment of oligoglycerol dendrimers on proteins with noncanonical amino acids.

    PubMed

    Ma, Ying; Thota, Bala N S; Haag, Rainer; Budisa, Nediljko

    2015-11-15

    Polyglycerol dendrimers as an important class of polymeric materials especially attractive for covalent attachment to therapeutic proteins as a useful alternative to traditional PEGylation procedures. Herein, we combine in vivo noncanonical amino acid (ncAA) incorporation and chemoselective conjugation in vitro to produce novel hybrid protein-dendrimer conjugates with the defined architectures. We incorporated Azidohomoalanine (Aha) as methionine substitute in vivo into various protein scaffolds to allow non-invasive dendrimer conjugations (dendronylation). Our approach makes recombinant proteins accessible for the design of multivalent dendrimer conjugates since it enables the preparation of many sequences with various positions for regioselective dendronylation. PMID:26483199

  17. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

    PubMed Central

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-01-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance. PMID:25656208

  18. Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements

    PubMed Central

    Wang, Y.; Jin, L.; Wen, Q. N.; Kopparapu, N. K.; Liu, J.; Liu, X. L.; Zhang, Y. G.

    2016-01-01

    The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a 4×4 Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established. PMID:26732449

  19. Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements.

    PubMed

    Wang, Y; Jin, L; Wen, Q N; Kopparapu, N K; Liu, J; Liu, X L; Zhang, Y G

    2016-02-01

    The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a 4×4 Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established. PMID:26732449

  20. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    PubMed

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. PMID:20022733

  1. Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation.

    PubMed

    Chamberlin, Amy; Mitsuhashi, Yuka; Bigley, Karen; Bauer, John E

    2011-10-01

    An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion. PMID:22005409

  2. Hepatic fatty acid biosynthesis is more responsive to protein than carbohydrate in rainbow trout during acute stimulations.

    PubMed

    Dai, Weiwei; Panserat, Stéphane; Kaushik, Sadasivam; Terrier, Frédéric; Plagnes-Juan, Elisabeth; Seiliez, Iban; Skiba-Cassy, Sandrine

    2016-01-01

    The link between dietary carbohydrate/protein and de novo lipogenesis (DNL) remains debatable in carnivorous fish. We aimed to evaluate and compare the response of hepatic lipogenic gene expression to dietary carbohydrate intake/glucose and dietary protein intake/amino acids (AAs) during acute stimulations using both in vivo and in vitro approaches. For the in vivo trial, three different diets and a controlled-feeding method were employed to supply fixed amount of dietary protein or carbohydrate in a single meal; for the in vitro trial, primary hepatocytes were stimulated with a low or high level of glucose (3 mM or 20 mM) and a low or high level of AAs (one-fold or four-fold concentrated AAs). In vitro data showed that a high level of AAs upregulated the expression of enzymes involved in DNL [fatty acid synthase (FAS) and ATP citrate lyase (ACLY)], lipid bioconversion [elongation of very long chain fatty acids like-5 (Elovl5), Elovl2, Δ6 fatty acyl desaturase (D6D) and stearoyl-CoA desaturase-1 (SCD1)], NADPH production [glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME)], and transcriptional factor sterol regulatory element binding protein 1-like, while a high level of glucose only elevated the expression of ME. Data in trout liver also showed that high dietary protein intake induced higher lipogenic gene expression (FAS, ACLY, and Elovl2) regardless of dietary carbohydrate intake, while high carbohydrate intake markedly suppressed the expression of acetyl-CoA carboxylase (ACC) and Elovl5. Overall, we conclude that, unlike rodents or humans, hepatic fatty acid biosynthetic gene expression in rainbow trout is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations. This discrepancy probably represents one important physiological and metabolic difference between carnivores and omnivores. PMID:26491101

  3. Long-chain polyunsaturated fatty acids upregulate LDL receptor protein expression in fibroblasts and HepG2 cells.

    PubMed

    Yu-Poth, Shaomei; Yin, Dezhong; Kris-Etherton, Penny M; Zhao, Guixiang; Etherton, Terry D

    2005-11-01

    The objective of this study was to investigate the effect of individual PUFAs on LDL receptor (LDLr) expression in human fibroblasts and HepG2 cells, and to evaluate whether acyl CoA:cholesterol acyltransferase (ACAT) and sterol regulatory element-binding protein 1 (SREBP-1) were involved in the regulation of LDLr expression by fatty acids. When fibroblasts and HepG2 cells were cultured with serum-free defined medium for 48 h, there was a 3- to 5-fold (P < 0.05) increase in LDLr protein and mRNA levels. Incubation of fibroblasts and HepG2 cells in serum-free medium supplemented with 25-hydroxycholesterol (25OH-cholesterol, 5 mg/L) for 24 h decreased LDLr protein and mRNA levels by 50-90% (P < 0.05). Arachidonic acid [AA, 20:4(n-6)], EPA [20:5(n-3)], and DHA [22:6(n-3)] antagonized the depression of LDLr gene expression by 25OH-cholesterol and increased LDLr protein abundance 1- to 3-fold (P < 0.05), but had no significant effects on LDLr mRNA levels. Oleic (18:1), linoleic (18:2), and alpha-linolenic acids [18:3(n-3)] did not significantly affect LDLr expression. ACAT inhibitor (58-035, 1 mg/L) attenuated the regulatory effect of AA on LDLr protein abundance by approximately 40% (P < 0.05), but did not modify the regulatory effects of other unsaturated fatty acids in HepG2 cells. The present results suggest that AA, EPA, and DHA increase LDLr protein levels, and that ACAT plays a role in modulating the effects of AA on LDLr protein levels. Furthermore, the effects of the fatty acids appeared to be independent of any change in SREBP-1 protein. PMID:16251608

  4. Probing protein stability with unnatural amino acids

    SciTech Connect

    Mendel, D.; Ellman, J.A.; Zhiyuh Chang; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. )

    1992-06-26

    Unnatural amino acid mutagenesis, in combination with molecular modeling and simulation techniques, was used to probe the effect of side chain structure on protein stability. Specific replacements at position 133 in T4 lysozyme included (1) leucine (wt), norvaline, ethylglycine, and alanine to measure the cost of stepwise removal of methyl groups from the hydrophobic core, (2) norvaline and O-methyl serine to evaluate the effects of side chain solvation, and (3) leucine, S,S-2-amino-4-methylhexanoic acid, and S-2-amino-3-cyclopentylpropanoic acid to measure the influence of packing density and side chain conformational entropy on protein stability. All of these factors (hydrophobicity, packing, conformational entropy, and cavity formation) significantly influence protein stability and must be considered when analyzing any structural change to proteins.

  5. Ascorbic acid and protein glycation in vitro.

    PubMed

    Sadowska-Bartosz, Izabela; Bartosz, Grzegorz

    2015-10-01

    The aim of the study was to compare the effects of ascorbic acid (AA) in vitro in the absence and in the presence of cell-dependent recycling. In a cell-free system, AA enhanced glycoxidation of bovine serum albumin (BSA) by glucose and induced BSA glycation in the absence of sugars. On the other hand, AA did not affect erythrocyte hemolysis, glycation of hemoglobin and erythrocyte membranes, and inactivation of catalase, protected against inactivation of acetylcholinesterase of erythrocytes incubated with high glucose concentrations and enhanced the loss of glutathione. These results can be explained by assumption that AA acts as a proglycating agent in the absence of recycling while is an antiglycating agent when metabolic recycling occurs. PMID:26163454

  6. Effects of one-seed juniper on intake, rumen fermentation, and plasma amino acids in sheep and goats fed supplemental protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the effect of feeding one-seed juniper on total intake, VFA profile, and plasma amino acids (AA) of 12 does and 12 ewes fed sudangrass and a basal diet with no protein supplement (Control; 5% CP) or rumen degradable (SBM; RDP 15% CP) or undegradable (FM; RUP 15% CP) protein supplement. Aft...

  7. Isolation and partial sequence of the A-protein gene of Thermus thermophilus cytochrome c/sub 1/aa/sub 3/

    SciTech Connect

    Fee, J.A.; Mather, M.W.; Springer, P.; Hensel, S.; Buse, G.

    1988-01-01

    Thermus thermophilus is a strictly aerobic eubacterium which grows optimally near 70/degree/C. Its respiratory system is very similar to that of eukaryotic mitochondria, and the organism has proven to be a particularly good source of stable, comparatively simple respiratory enzymes. There are at least two terminal oxidases: The recently discovered cytochrome ba/sub 3//sup 3/ and cytochrome c/sub 1/aa/sub 3//sup 2/. Cytochrome ba/sub 3/ is analog of aa/sub 3/ in which the heme A of cytochrome a is replaced with protoporphyrin IX (heme B) while its order redox components appear to be largely identical to those of the now classical mammalian cytochrome aa/sub 3/; it has only a single 35 kD protein subunit. Cytochrome c/sub 1/aa/sub 3/ consists of two polypeptides. The /approximately/33 kD C-protein covalently binds one heme C, while the /approximately/55 kD protein is thought to bind the four canonical redox centers of aa/sub 3/, two heme A, and two Cu. Toward our goal of unequivocally establishing the distribution of the metal centers in cytochrome c/sub 1/aa/sub 3/, we have isolated the structural gene of the A-protein. 20 refs., 4 figs.

  8. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    PubMed

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. PMID:25641865

  9. In-Silico Determination of Insecticidal Potential of Vip3Aa-Cry1Ac Fusion Protein Against Lepidopteran Targets Using Molecular Docking.

    PubMed

    Ahmad, Aftab; Javed, Muhammad R; Rao, Abdul Q; Khan, Muhammad A U; Ahad, Ammara; Din, Salah Ud; Shahid, Ahmad A; Husnain, Tayyab

    2015-01-01

    Study and research of Bt (Bacillus thuringiensis) transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac) insecticidal protein and vegetative insecticidal protein (Vip3Aa) have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN) and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua, and Spodoptera litura) revealed that the Ser290, Ser293, Leu337, Thr340, and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein. PMID:26697037

  10. Effect of the Concentration of Cytolytic Protein Cyt2Aa2 on the Binding Mechanism on Lipid Bilayers Studied by QCM-D and AFM.

    PubMed

    Tharad, Sudarat; Iturri, Jagoba; Moreno-Cencerrado, Alberto; Mittendorfer, Margareta; Promdonkoy, Boonhiang; Krittanai, Chartchai; Toca-Herrera, José L

    2015-09-29

    Bacillus thuringiensis is known by its insecticidal property. The insecticidal proteins are produced at different growth stages, including the cytolytic protein (Cyt2Aa2), which is a bioinsecticide and an antimicrobial protein. However, the binding mechanism (and the interaction) of Cyt2Aa2 on lipid bilayers is still unclear. In this work, we have used quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) to investigate the interaction between Cyt2Aa2 protein and (cholesterol-)lipid bilayers. We have found that the binding mechanism is concentration dependent. While at 10 μg/mL, Cyt2Aa2 binds slowly on the lipid bilayer forming a compliance protein/lipid layer with aggregates, at higher protein concentrations (100 μg/mL), the binding is fast, and the protein/lipid layer is more rigid including holes (of about a lipid bilayer thickness) in its structure. Our study suggests that the protein/lipid bilayer binding mechanism seems to be carpet-like at low protein concentrations and pore forming-like at high protein concentrations. PMID:26354323

  11. In-Silico Determination of Insecticidal Potential of Vip3Aa-Cry1Ac Fusion Protein Against Lepidopteran Targets Using Molecular Docking

    PubMed Central

    Ahmad, Aftab; Javed, Muhammad R.; Rao, Abdul Q.; Khan, Muhammad A. U.; Ahad, Ammara; Din, Salah ud; Shahid, Ahmad A.; Husnain, Tayyab

    2015-01-01

    Study and research of Bt (Bacillus thuringiensis) transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac) insecticidal protein and vegetative insecticidal protein (Vip3Aa) have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN) and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua, and Spodoptera litura) revealed that the Ser290, Ser293, Leu337, Thr340, and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein. PMID:26697037

  12. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  13. Protein and amino Acid supplementation in athletes.

    PubMed

    Armsey, Thomas D; Grime, Todd E

    2002-08-01

    Amino acid supplementation is practiced by numerous individuals with the hope of increasing muscle mass and function by increasing available proteins. Theoretically, this makes a great deal of sense; the scientific facts, however, fail to conclusively prove that ingesting more than the recommended dietary allowance of protein has any effect on otherwise healthy adults. Athletes may be the exception to this rule. This review examines the most current literature pertaining to amino acid supplementation, and reports on the potential benefits and risks of this common practice. PMID:12831703

  14. Baseline susceptibility and monitoring of Brazilian populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein.

    PubMed

    Bernardi, Oderlei; Amado, Douglas; Sousa, Renan S; Segatti, Fabiana; Fatoretto, Julio; Burd, Anthony D; Omoto, Celso

    2014-04-01

    The genetically modified maize expressing Vip3Aa20 insecticidal protein from Bacillus thuringiensis Berliner is abiotechnological option for the control of Spodoptera frugiperda (J.E. Smith) and Diatraea saccharalis (F.) in Brazil. To support an Insect Resistance Management program, we conducted studies of baseline susceptibility and monitoring of Brazilian populations of S. frugiperda and D. saccharalis to the Vip3Aa20 insecticidal protein. Neonates were exposed to Vip3Aa20 applied on artificial diet surface. Mortality and growth inhibition were assessed after 7 d. All populations were susceptible to Vip3Aa20. The LC50 ranged from 92.38 to 611.65 ng Vip3Aa20/cm2 for 16 populations of S. frugiperda (6.6-fold variation), and between 61.18 and 367.86 ng Vip3Aa20/cm2 for 6 populations of D. saccharalis (sixfold variation). The EC50 ranged from 21.76 to 70.09 and 48.65 to 163.60 ng Vip3Aa20/cm2 for S. frugiperda and D. saccharalis, respectively. There was a low interpopulation variation in susceptibility to Vip3Aa20, which represents the natural geographic variation in the response, and not the variation caused by previous exposure to selection pressure. For these two pests, the diagnostic concentrations of 2,000 and 3,600 ng of Vip3Aa20/cm2 caused high mortality. These diagnostic concentrations will be used in resistance monitoring programs in Brazil. PMID:24772561

  15. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  16. Effect of Dietary L-ascorbic Acid (L-AA) on Production Performance, Egg Quality Traits and Fertility in Japanese Quail (Coturnix japonica) at Low Ambient Temperature.

    PubMed

    Shit, N; Singh, R P; Sastry, K V H; Agarwal, R; Singh, R; Pandey, N K; Mohan, J

    2012-07-01

    Environmental stress boosts the levels of stress hormones and accelerates energy expenditure which subsequently imbalance the body's homeostasis. L-ascorbic acid (L-AA) has been recognized to mitigate the negative impact of environmental stress on production performances in birds. The present investigation was carried out to elucidate the effect of different dietary levels of L-AA on production performance, egg quality traits and fertility in Japanese quail at low ambient temperature. Sixty matured females (15 wks) were equally divided into three groups (20/group) based on the different dietary levels of L-AA (0, 250 and 500 ppm) and coupled with an equal number of males (1:1) obtained from the same hatch. They were managed in uniform husbandry conditions without restriction of feed and water at 14 h photo-schedule. Except for feed efficiency, body weight change, feed consumption and hen-day egg production were recorded highest in 500 ppm L-AA supplemented groups. Among the all egg quality traits studied, only specific gravity, shell weight and thickness differed significantly (p<0.05) in the present study. Fertility was improved significantly (p<0.01) to a dose dependent manner of L-AA. The findings of the present study concluded that dietary L-AA can be a caring management practice at least in part to alleviate the adverse effect of cold induced stress on production performance in Japanese quail. PMID:25049657

  17. Dihydrolipoic acid reduces cytochrome b561 proteins.

    PubMed

    Bérczi, Alajos; Zimányi, László; Asard, Han

    2013-03-01

    Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins. PMID:22526465

  18. Resistance Risk Assessment of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 Insecticidal Protein Expressed in Corn.

    PubMed

    Bernardi, Oderlei; Bernardi, Daniel; Amado, Douglas; Sousa, Renan S; Fatoretto, Julio; Medeiros, Fernanda C L; Conville, Jared; Burd, Tony; Omoto, Celso

    2015-12-01

    Transgenic Agrisure Viptera 3 corn that expresses Cry1Ab, Vip3Aa20, and EPSPS proteins and Agrisure Viptera expressing Vip3Aa20 are used for control of Spodoptera frugiperda (J.E. Smith) and Diatraea saccharalis (F.) in Brazil. To support a resistance management program, resistance risk assessment studies were conducted to characterize the dose expression of Vip3Aa20 protein and level of control against these species. The Vip3Aa20 expression in Agrisure Viptera 3 and Agrisure Viptera decreased from V6 to V10 stage of growth. However, Vip3Aa20 expression in Agrisure Viptera 3 at V6 and V10 stages was 13- and 16-fold greater than Cry1Ab, respectively. The Vip3Aa20 expression in lyophilized tissue of Agrisure Viptera 3 and Agrisure Viptera diluted 25-fold in an artificial diet caused complete larval mortality of S. frugiperda and D. saccharalis. In contrast, lyophilized tissue of Bt11 at the same dilution does not provide complete mortality of these species. Agrisure Viptera 3 and Agrisure Viptera also caused a high level of mortality against S. frugiperda and D. saccharalis. Moreover, 100% mortality was observed for S. frugiperda larvae (neonates through fifth-instar larvae) when fed in corn with the Vip trait technology. Viptera corn achieves a high level of control against S. frugiperda and D. saccharalis providing a high dose, which is an important determination to support the refuge strategy for an effective resistance management program. PMID:26470366

  19. Effects of L- and iso-ascorbic acid on meat protein hydrolyzing activity of four commercial plant and three microbial protease preparations.

    PubMed

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan

    2014-04-15

    The present study investigated the effects of both l- and iso-ascorbic acid (AA) on the activity of four plant proteases (papain, bromelain, actinidin and zingibain) and three microbial proteases (Bacterial Protease G, Fungal 31,000 and Fungal 60,000) preparations using fluorescent-labelled casein, meat myofibrillar and connective tissue extracts to explore their effects on meat structure components upon treatment with individual proteases. While l-AA in the range 0.8-3.2mM inhibited the activity of papain, bromelain and zingibain, iso-AA acted as an inhibitor of papain but as an activator of zingibain and had no significant effect on bromelain. Both AA isoforms acted as an activator of the actinidin protease and the concentration of AA isoforms appeared to affect the level of activation of the protease. The effect of the two AA isoforms on collagen and myofibrillar protein hydrolyzing activity varied depending on the concentration of the two AA isoforms. The results indicate the ability to up and down regulate the activity of the investigated proteases by using an appropriate concentration of the AA isoform. PMID:24295669

  20. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    PubMed

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  1. The Exchangeability of Amino Acids in Proteins

    PubMed Central

    Yampolsky, Lev Y.; Stoltzfus, Arlin

    2005-01-01

    The comparative analysis of protein sequences depends crucially on measures of amino acid similarity or distance. Many such measures exist, yet it is not known how well these measures reflect the operational exchangeability of amino acids in proteins, since most are derived by methods that confound a variety of effects, including effects of mutation. In pursuit of a pure measure of exchangeability, we present (1) a compilation of data on the effects of 9671 amino acid exchanges engineered and assayed in a set of 12 proteins; (2) a statistical procedure to combine results from diverse assays of exchange effects; (3) a matrix of “experimental exchangeability” values EXij derived from applying this procedure to the compiled data; and (4) a set of three tests designed to evaluate the power of an exchangeability measure to (i) predict the effects of amino acid exchanges in the laboratory, (ii) account for the disease-causing potential of missense mutations in the human population, and (iii) model the probability of fixation of missense mutations in evolution. EX not only captures useful information on exchangeability while remaining free of other effects, but also outperforms all measures tested except for the best-performing alignment scoring matrix, which is comparable in performance. PMID:15944362

  2. Apparent or Standardized Ileal Digestibility of Amino Acids of Diets Containing Different Protein Feedstuffs Fed at Two Crude Protein Levels for Growing Pigs

    PubMed Central

    Adebiyi, A. O.; Ragland, D.; Adeola, O.; Olukosi, O. A.

    2015-01-01

    The current study determined the apparent or standardized ileal digestibility of amino acids (AID or SID of AA) in growing pigs fed diets containing three protein feedstuffs with different fiber characteristics at two dietary crude protein (CP) levels. Twenty boars (Yorkshire×Landrace) with average initial body weight of 35 (±2.6) kg were fitted with a simple T-cannula at the distal ileum. These pigs were offered six diets containing soybean meal (SBM), canola meal (CM) or corn distillers dried grains with solubles (corn-DDGS) that were either adequate (19%) or marginal (15%) in CP using a triplicated 6×2 Youden Square Design. Except for Met, Trp, Cys, and Pro, AID of AA was greater (p<0.05) in the SBM diet compared with the CM diet. Apparent ileal digestibility for Gly and Asp was greater (p<0.05) in the SBM diet compared with the corn-DDGS diet. The AID of Ile, Leu, Phe, Val, Ala, Tyr, and Asp was greater (p<0.05) in the corn-DDGS diet compared with the CM diet. Standardized ileal digestibility of AA was greater (p<0.05) in the SBM diet compared with the CM diet for all AA except Trp and Pro. The SID of Ile, Leu, Val, Ala, Tyr, and Asp was greater (p<0.05) in the corn-DDGS diet compared with the CM diet. It was concluded that protein feedstuff affects ileal AA digestibility and is closely related to dietary fiber characteristics, and a 4-percentage unit reduction in dietary CP had no effect on ileal AA digestibility in growing pigs. PMID:26194226

  3. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  4. Protein and Amino Acid Requirements during Pregnancy.

    PubMed

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  5. In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid.

    PubMed

    Lilavivat, Seth; Sardar, Debosmita; Jana, Subrata; Thomas, Geoffrey C; Woycechowsky, Kenneth J

    2012-08-15

    In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200-350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems. PMID:22827162

  6. Changes in composition and amino acid profile during dry grind ethanol processing from corn and estimation of yeast contribution toward DDGS proteins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn, yeast, intermediate masses and DDGS were collected from three commercial ethanol plants in Iowa. Samples were freeze-dried before chemical analysis. Compared to ground corn, there was slight increase in contents of protein, oil, ash, and amino acids (AA) before fermentati...

  7. Effects of one-seed juniper and polyethylene glycol on intake, rumen fermentation, and plasma amino acids in sheep and goats fed supplemental protein and tannins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the effect of polyethylene glycol (PEG) on juniper and total intake, rumen fermentation, and plasma amino acids (AA) of 12 does and 12 ewes fed sudangrass and basal diets containing 10% quebracho tannins with no protein supplement (Control; 5% CP) or high rumen degradable (RDP 15% CP) or u...

  8. MATERNAL PROTEIN HOMEOSTASIS AND MILK PROTEIN SYNTHESIS DURING FEEDING AND FASTING IN HUMANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about amino acid (aa) and protein metabolism in lactating women. We hypothesized: 1) aa sources other than the plasma acid pool provide substrate for milk protein synthesis in humans; and 2) if albumin was one such source, then albumin fractional synthesis rate (FSR) is higher in th...

  9. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects

    PubMed Central

    Kota, Madhuri; Daniell, Henry; Varma, Sam; Garczynski, Stephen F.; Gould, Fred; Moar, William J.

    1999-01-01

    Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field. PMID:10051556

  10. Protein content and amino acids profile of pseudocereals.

    PubMed

    Mota, Carla; Santos, Mariana; Mauro, Raul; Samman, Norma; Matos, Ana Sofia; Torres, Duarte; Castanheira, Isabel

    2016-02-15

    Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and buckwheat (Fagopyrum esculentum) represent the main protein source in several diets, although these pseudocereals are not currently present in the FCDB nutrient profile information. The aim of this work is to characterise the AA profile of these pseudocereals and compare them with rice. Total protein content revealed to vary from 16.3g/100g (quinoa Salta) to 13.1g/100g (buckwheat) and lower values were found in rice samples (6.7g/100g). For pseudocereals the most abundant essential AA was leucine. Quinoa-Salta evidences the highest leucine content (1013mg/100g) and the minor methionine content (199mg/100g). Buckwheat was the cereal with the highest phenylalanine content (862mg/100g). Rice (Oryza sativa) presents the lowest content for all AA. Results showed pseudocereals as the best source of AA. EuroFIR guidelines where strictly followed and proved to be a crucial tool to guarantee data interchangeability and comparability. PMID:26433287

  11. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. 174.501 Section 174.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED...

  12. Shared binding sites for the Bacillus thuringiensis proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African sweet potato pest Cylas puncticollis (Brentidae).

    PubMed

    Hernández-Martínez, Patricia; Vera-Velasco, Natalia Mara; Martínez-Solís, María; Ghislain, Marc; Ferré, Juan; Escriche, Baltasar

    2014-12-01

    Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas, which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-terminal sequencing of the trypsin-activated Cry7Aa fragments revealed that processing occurs at Glu(47) for the 70-kDa form or Ile(88) for the 65-kDa form. Homologous binding assays showed specific binding of the two Cry3 proteins and the 65-kDa Cry7Aa fragment to brush border membrane vesicles (BBMV) from C. puncticollis larvae. The 70-kDa fragment did not bind to BBMV. Heterologous-competition assays showed that Cry3Bb, Cry3Ca, and Cry7Aa (65-kDa fragment) competed for the same binding sites. Hence, our results suggest that pest resistance mediated by the alteration of a shared Cry receptor binding site might render all three Cry toxins ineffective. PMID:25261517

  13. Interactions between protein kinase C and arachidonic acid in the gonadotropin response to salmon and chicken gonadotropin-releasing hormone-II in goldfish.

    PubMed

    Chang, J P; Van Goor, F; Neumann, C M

    1994-03-01

    Previous studies have shown that, in goldfish, the gonadotropin (GTH) response to salmon GTH-releasing hormone (sGnRH) is partly mediated by arachidonic acid (AA) metabolism via the lipoxygenase enzyme system, whereas protein kinase C (PKC) participates in both sGnRH- and chicken (c)GnRH-II-induced GTH secretion. In this study, the interactions between AA- and PKC-dependent pathways in mediating the long-term GnRH stimulation of GTH release were further investigated using dispersed goldfish pituitary cell cultures in static incubation. Treatments with AA or the PKC activator tetradecanoylphorbol acetate (TPA) increased GTH release. The GTH responses to AA and TPA were additive. The lipoxygenase inhibitor nordihydroguairetic acid (NDGA) and the PKC inhibitor H7 selectively reduced AA- and TPA-stimulated GTH release, respectively. These findings suggest that the GTH responses to stimulation by AA- and PKC-dependent signaling pathways are independent of one another. In other experiments, the GTH response to cGnRH-II was unaffected by NDGA but was abolished by H7. In contrast, sGnRH-induced GTH release was attenuated by NDGA and H7. Furthermore, in the presence of both NDGA and H7, the GTH response to sGnRH was abolished. These data suggest that sGnRH stimulation of GTH secretion involves both AA- and PKC-dependent mechanisms; in contrast, cGnRH-II action is not dependent on AA metabolism. The pathway by which AA might be mobilized in response to a GnRH challenge was also investigated by pharmacological manipulations. The diacylglcerol (DG) lipase inhibitor, U-57908, did not decrease sGnRH- and cGnRH-II-induced GTH secretion. On the other hand, the phospholipase A2 (PLA2) inhibitors, bromophenacyl bromide (BPB), chloroquine, and quinacrine, reduced sGnRH-elicited, but not cGnRH-II-stimulated GTH release. The addition of AA reversed the inhibitory action of BPB on sGnRH-elicited GTH release. In addition, the GTH response to AA was additive to the cGnRH-II-induced, but

  14. Protective effects of ascorbic acid against the genetic and epigenetic alterations induced by 3,5-dimethylaminophenol in AA8 cells.

    PubMed

    Chao, Ming-Wei; Erkekoglu, Pınar; Tseng, Chia-Yi; Ye, Wenjie; Trudel, Laura J; Skipper, Paul L; Tannenbaum, Steven R; Wogan, Gerald N

    2015-05-01

    Exposure to monocyclic aromatic alkylanilines (MAAs), namely 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and 3-ethylaniline (3-EA), was significantly and independently associated with bladder cancer incidence. 3,5-DMAP (3,5-dimethylaminophenol), a metabolite of 3,5-DMA, was shown to induce an imbalance in cytotoxicity cellular antioxidant/oxidant status, and DNA damage in mammalian cell lines. This study was designed to evaluate the protective effect of ascorbic acid (Asc) against the cytotoxicity, reactive oxygen species (ROS) production, genotoxicity and epigenetic changes induced by 3,5-DMAP in AA8 Chinese Hamster Ovary (CHO) cells. In different cellular fractions, 3,5-DMAP caused alterations in the enzyme activities orchestrating a cellular antioxidant balance, decreases in reduced glutathione levels and a cellular redox ratio as well as increases in lipid peroxidation and protein oxidation. We also suggest that the cellular stress caused by this particular alkylaniline leads to both genetic (Aprt mutagenesis) and epigenetic changes in histones 3 and 4 (H3 and H4). This may further cause molecular events triggering different pathological conditions and eventually cancer. In both cytoplasm and nucleus, Asc provided increases in 3,5-DMAP-reduced glutathione levels and cellular redox ratio and decreases in the lipid peroxidation and protein oxidation. Asc was also found to be protective against the genotoxic and epigenetic effects initiated by 3,5-DMAP. In addition, Asc supplied protection against the cell cycle (G1 phase) arrest induced by this particular alkylaniline metabolite. PMID:25178734

  15. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    PubMed

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  16. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein.

    PubMed

    McMahon, Kelton W; Fogel, Marilyn L; Elsdon, Travis S; Thorrold, Simon R

    2010-09-01

    1. Analysis of stable carbon isotopes is a valuable tool for studies of diet, habitat use and migration. However, significant variability in the degree of trophic fractionation (Delta(13)C(C-D)) between consumer (C) and diet (D) has highlighted our lack of understanding of the biochemical and physiological underpinnings of stable isotope ratios in tissues. 2. An opportunity now exists to increase the specificity of dietary studies by analyzing the delta(13)C values of amino acids (AAs). Common mummichogs (Fundulus heteroclitus, Linnaeus 1766) were reared on four isotopically distinct diets to examine individual AA Delta(13)C(C-D) variability in fish muscle. 3. Modest bulk tissue Delta(13)C(C-D) values reflected relatively large trophic fractionation for many non-essential AAs and little to no fractionation for all essential AAs. 4. Essential AA delta(13)C values were not significantly different between diet and consumer (Delta(13)C(C-D) = 0.0 +/- 0.4 per thousand), making them ideal tracers of carbon sources at the base of the food web. Stable isotope analysis of muscle essential AAs provides a promising tool for dietary reconstruction and identifying baseline delta(13)C values to track animal movement through isotopically distinct food webs. 5. Non-essential AA Delta(13)C(C-D) values showed evidence of both de novo biosynthesis and direct isotopic routing from dietary protein. We attributed patterns in Delta(13)C(C-D) to variability in protein content and AA composition of the diet as well as differential utilization of dietary constituents contributing to the bulk carbon pool. This variability illustrates the complicated nature of metabolism and suggests caution must be taken with the assumptions used to interpret bulk stable isotope data in dietary studies. 6. Our study is the first to investigate the expression of AA Delta(13)C(C-D) values for a marine vertebrate and should provide for significant refinements in studies of diet, habitat use and migration using

  17. A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, David; Hill, David J. T.; Rasoul, Firas; Whittaker, Andrew K.

    2011-02-01

    Hydrogels were prepared from poly(acrylic acid-co-N-vinyl pyrrolidone), poly(AA-co-VP) and mixtures of poly(AA-co-VP) and poly(ethylene oxide), PEO, by gamma radiolysis of aqueous solutions of the AA and VP monomers containing ethylene glycol dimethacrylate, EGDMA, as crosslinker and PEO. The AA/VP composition range of the poly(AA-co-VP) was XAA 0.7-0.9. The swelling behaviours of the hydrogels from the dry state were investigated in water (pH 6.5) and 50 mM 4-(2-hydroxyethyl)piperazine-1-ethylsulfonic acid buffer, HEPES buffer, at pH 7.4 and 295 K. The effects of poly(AA-co-VP) composition, crosslinker mole fraction and the presence of PEO on the equilibrium swelling ratio for the gels was examined. The kinetics of the release of a model protein, horseradish peroxidase, HRP, from the hydrogels in water were also studied at 295 K.

  18. Effect of allicin (diallyl disulfide-oxide) on prostaglandin endoperoxide H/sub 2/ (PGH/sub 2/) and arachidonic acid (AA) metabolism and platelet aggregation

    SciTech Connect

    Mayeux, P.R.; Agrawal, K.C.; King, B.T.; Kadowitz, P.J.; McNamara, D.B.

    1986-03-01

    The authors report here the effects of pure allicin (the antibacterial component of GO), synthesized from diallyl disulfide and hydrogen peroxide, on human platelet aggregation, PGH/sub 2/ metabolism in microsomes of bovine lung (BL) and bovine coronary artery (BCA), homogenates of human platelet (HP), and on AA metabolism in HP. Allicin at 16 ..mu..g/ml to 160 ..mu..g/ml produced concentration-dependent inhibition of platelet aggregation to 1.6 mM AA and 2.8 ..mu..M U 46619, a stable analog of PGH/sub 2/ and a TXA/sub 2/ minic. BL (200 ..mu..g protein), BCA (10 ..mu..g protein), and HP (1500 ..mu..g protein) were incubated with 10 ..mu..M (/sup 14/C) PGH/sub 2/ +/- allicin. HP (1500 ..mu..g protein) were incubated with 20 ..mu..M (/sup 14/C) AA +/- allicin. Products were separated by TLC and quantified by radiochromatographic scan. Allicin in the concentration range of 10-/sup 6/M-10-/sup 3/M induced no change in the formation of prostacyclin by BL and BCA or of TXA/sub 2/ by BL and HP. These data suggest that the platelet antiaggregatory action of allicin is not due to inhibition of cyclooxygenase or TXA/sub 2/ synthetase in the human platelet, but may be related to interactions at the TXA/sub 2/ receptor or on cyclic nucleotide levels.

  19. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine

    PubMed Central

    Xu, Cheng; Li, Ying-Chun; Yang, Hua; Long, Yan; Chen, Min-Jian; Qin, Yu-Feng; Xia, Yan-Kai; Song, Ling; Gu, Ai-Hua; Wang, Xin-Ru

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa) as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+)-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star™ (DE3) and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks) after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels. PMID:24713829

  20. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine.

    PubMed

    Xu, Cheng; Li, Ying-Chun; Yang, Hua; Long, Yan; Chen, Min-Jian; Qin, Yu-Feng; Xia, Yan-Kai; Song, Ling; Gu, Ai-Hua; Wang, Xin-Ru

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa) as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+)-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star TM (DE3) and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks) after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels. PMID:24713829

  1. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions.

    PubMed

    Salwiczek, Mario; Nyakatura, Elisabeth K; Gerling, Ulla I M; Ye, Shijie; Koksch, Beate

    2012-03-21

    Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references). PMID:22130572

  2. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  3. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  4. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  5. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  6. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  7. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  8. The 35-amino acid C2 protein of Cotton leaf curl Kokhran virus, Burewala, implicated in resistance breaking in cotton, retains some activities of the full-length protein.

    PubMed

    Akbar, Fazal; Iqbal, Zafar; Briddon, Rob W; Vazquez, Franck; Saeed, Muhammad

    2016-10-01

    With one exception, all the begomoviruses characterized so far encode an ~134-amino acid (aa) (A)C2 protein. The exception is the "Burewala" strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bu), associated with resistance breaking in cotton across Pakistan and northwestern India, that encodes a truncated 35-aa C2. The C2 protein encoded by begomoviruses performs multiple functions including suppression of post-transcriptional gene silencing (PTGS), modulating microRNA (miRNA) expression and may be a pathogenicity determinant. The study described here was designed to investigate whether the CLCuKoV-Bu 35-aa C2 retains the activities of the full-length C2 protein. The results showed the 35-aa C2 of CLCuKoV-Bu acts as a pathogenicity determinant, suppresses PTGS and upregulates miRNA expression when expressed from a Potato virus X vector in Nicotiana benthamiana. The symptoms induced by expression of full-length C2 were more severe than those induced by the 35-aa C2. The accumulation of most developmental miRNAs decreases with the full-length C2 protein and increases with the 35-aa peptide of CLCuKoV-Bu. The study also revealed that 35-aa peptide of CLCuKoV-Bu maintains suppressor of silencing activity at a level equal to that of full-length C2. The significance of the results with respect to virus fitness and resistance breaking is discussed. PMID:27209537

  9. Herring roe protein has a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model.

    PubMed

    Havenaar, Robert; Maathuis, Annet; de Jong, Aard; Mancinelli, Daniele; Berger, Alvin; Bellmann, Susann

    2016-08-01

    It is hypothesized that the digestible indispensable amino acid score (DIAAS) can be determined based on dynamic in vitro gastrointestinal digestion experiments as replacement for invasive animal studies. We determined the in vitro DIAAS for immature herring eggs (roe) proteins in comparison with reference proteins. The true ileal digestibility of protein and indispensable amino acids (IAA) was measured under human conditions simulated in a gastrointestinal model (tiny-TIM). The in vitro true ileal digestibility of ovalbumin, cooked and raw chicken egg white, and casein was similar to that found in humans (r(2) = 0.96), providing a casual observation to support the validity of tiny-TIM. The digestibility of the immature herring egg proteins was 71% to 92%. The highest IAA digestibility was found for immature whole herring egg protein (55%-80%) in comparison to immature herring egg membrane and immature de-membraned herring protein (50%-70%). The DIAAS as recommended by FAO for children and adults, but measured in vitro, were 91% for immature whole herring egg protein (lysine first limiting), 71% for immature herring egg membrane protein (histidine first limiting), and 88% for immature herring egg de-membraned protein (sulfur AA first limiting). True ileal protein and amino acid digestibility can be determined in a dynamic gastrointestinal model, such as tiny-TIM, which can be used for estimating the DIAAS. Immature herring egg proteins, a previously underutilized resource, were determined to be an important and valuable source of IAA for human consumption. PMID:27440534

  10. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor.

    PubMed

    Pérez, Claudia; Fernandez, Luisa E; Sun, Jianguang; Folch, Jorge Luis; Gill, Sarjeet S; Soberón, Mario; Bravo, Alejandra

    2005-12-20

    Bacillus thuringiensis subsp. israelensis produces crystal proteins, Cry (4Aa, 4Ba, 10Aa, and 11Aa) and Cyt (1Aa and 2Ba) proteins, toxic to mosquito vectors of human diseases. Cyt1Aa overcomes insect resistance to Cry11Aa and Cry4 toxins and synergizes the toxicity of these toxins. However, the molecular mechanism of synergism remains unsolved. Here, we provide evidence that Cyt1Aa functions as a receptor of Cry11Aa. Sequential-binding analysis of Cyt1Aa and Cry11Aa revealed that Cyt1Aa binding to Aedes aegypti brush border membrane vesicles enhanced the binding of biotinylated-Cry11Aa. The Cyt1Aa- and Cry11Aa-binding epitopes were mapped by means of the yeast two-hybrid system, peptide arrays, and heterologous competition assays with synthetic peptides. Two exposed regions in Cyt1Aa, loop beta6-alphaE and part of beta7, bind Cry11Aa. On the other side, Cry11Aa binds Cyt1Aa proteins by means of domain II-loop alpha8 and beta-4, which are also involved in midgut receptor interaction. Characterization of single-point mutations in Cry11Aa and Cyt1Aa revealed key Cry11Aa (S259 and E266) and Cyt1Aa (K198, E204 and K225) residues involved in the interaction of both proteins and in synergism. Additionally, a Cyt1Aa loop beta6-alphaE mutant (K198A) with enhanced synergism to Cry11Aa was isolated. Data provided here strongly indicates that Cyt1Aa synergizes or suppresses resistance to Cry11Aa toxin by functioning as a membrane-bound receptor. Bacillus thuringiensis subsp. israelensis is a highly effective pathogenic bacterium because it produces a toxin and also its functional receptor, promoting toxin binding to the target membrane and causing toxicity. PMID:16339907

  11. Microspectrophotometric quantitation of nucleic acid and protein in irradiated epidermis.

    PubMed

    Conti, C J; Giménez, I B; Cabrini, R L

    1976-03-01

    Nucleic acid and proteins of newborn rat tail subjected to local X-irradiation were microspectrophotometrically studied. Feulgen, gallocyanine chrom-alum and naphthol yellow S methods were performed for demonstration of DNA, total nucleic acid and proteins respectively. The amount of proteins and total nucleic acid increases concomitantly with reactional acanthosis. However, the proteins and nucleic acid decrease as from day 3 post-irradiation. A tentative interpretation of the results would point to a giantization of the epidermic cells not only caused by aqueous imbition but also by an actual increase of the cellular protoplasm. PMID:1258094

  12. Relatedness of acyl carrier proteins shown by amino acid compositions.

    PubMed

    Walker, T A; Ernst-Fonberg, M L

    1982-01-01

    1. Relatedness among the following carrier proteins was assessed on the basis of amino acid compositions: eight acyl carrier proteins (ACP's) associated with fatty acid synthesis, ACP's associated with citrate lyase and citramalate lyase, a biotin carboxyl carrier protein and cytochrome 552. Two independent indices of amino acid composition were used. 2. The fatty acid synthesis-associated ACP's of many organisms and the lyase-associated ACP's show a high degree of relatedness among one another. 3. The ACP's show no relatedness to biotin carboxyl carrier protein or cytochrome 552. PMID:7128903

  13. Effects of reducing dietary protein on the expression of nutrition sensing genes (amino acid transporters) in weaned piglets*

    PubMed Central

    Wu, Li; He, Liu-qin; Cui, Zhi-jie; Liu, Gang; Yao, Kang; Wu, Fei; Li, Jun; Li, Tie-jun

    2015-01-01

    The effects of crude protein (CP) levels in the diet on the mRNA expression of amino acid (AA) transporters were studied in a 45-d trial. Eighteen piglets with an initial body weight (BW) of 9.57 kg were assigned to three groups (14%, 17%, and 20% CP in the diet) in a completely randomized design (six replicates per treatment). Diets were supplemented with crystalline AA to achieve equal standardized ileal digestible contents of Lys, Met plus Cys, Thr, and Trp, and were provided ad libitum. After 45 d, all piglets were slaughtered to collect small intestine samples. Compared with the values in the 14% CP group, the expressions of ASCT2, 4F2hc, and ATB0 mRNA in the jejunum were increased by 23.00%, 12.00%, 6.00% and 48.00%, 47.00%, 56.00% in the 17% and 20% CP groups, respectively. These results indicate that a 14% CP diet supplemented with crystalline AA may not transport enough AA into the body and maintain growth performance of piglets. However, a reduction of dietary 17% CP may reduce the excretion of nitrogen into the environment while supporting the development of piglets. Therefore, the 17% CP level is more suitable than 14% CP level. PMID:26055911

  14. Strained cycloalkynes as new protein sulfenic acid traps.

    PubMed

    Poole, Thomas H; Reisz, Julie A; Zhao, Weiling; Poole, Leslie B; Furdui, Cristina M; King, S Bruce

    2014-04-30

    Protein sulfenic acids are formed by the reaction of biologically relevant reactive oxygen species with protein thiols. Sulfenic acid formation modulates the function of enzymes and transcription factors either directly or through the subsequent formation of protein disulfide bonds. Identifying the site, timing, and conditions of protein sulfenic acid formation remains crucial to understanding cellular redox regulation. Current methods for trapping and analyzing sulfenic acids involve the use of dimedone and other nucleophilic 1,3-dicarbonyl probes that form covalent adducts with cysteine-derived protein sulfenic acids. As a mechanistic alternative, the present study describes highly strained bicyclo[6.1.0]nonyne (BCN) derivatives as concerted traps of sulfenic acids. These strained cycloalkynes react efficiently with sulfenic acids in proteins and small molecules yielding stable alkenyl sulfoxide products at rates more than 100× greater than 1,3-dicarbonyl reagents enabling kinetic competition with physiological sulfur chemistry. Similar to the 1,3-dicarbonyl reagents, the BCN compounds distinguish the sulfenic acid oxoform from the thiol, disulfide, sulfinic acid, and S-nitrosated forms of cysteine while displaying an acceptable cell toxicity profile. The enhanced rates demonstrated by these strained alkynes identify them as new bioorthogonal probes that should facilitate the discovery of previously unknown sulfenic acid sites and their parent proteins. PMID:24724926

  15. Influence of ascorbic acid (AA) on iron (Fe) utilization in copper (Cu) deficient male and female rats

    SciTech Connect

    Johnson, M.A. )

    1989-02-09

    Interactions between Cu status (-Cu: 1.0 mg Cu/kg diet or +Cu: 5.8 mg Cu/kg diet) and AA (0 or 1% of the diet) were compared in male and female weanling rats. Food intakes were controlled so that final body weights were similar on day 23 when rats were killed. On day 17 rats were given an oral dose of 4 uCi of Fe-59 and feces were collected for 5 days. Heart weights (g/100 g body weight) were increased in both male and female -Cu rats. Among -Cu rats, AA increased heart weight by 25% in females but by only 6% in males. Similarly, among -Cu rats AA increased liver weight (g/100 g body weight) by 16% in females but not at all in males. Hematocrits (%) were similar among +Cu rats but were decreased in -Cu rats to a greater in male than in female rats. However, among -Cu rats AA decreased hematocrits from 34.1 to 26.4% in females but from only 30.0 to 26.8% in males. Compared to -Cu rats, +Cu rats apparently absorbed 2-times more Fe-59 and retained 2.5- times more absorbed Fe-59 in their whole blood. Among -Cu rats, AA decreased the absorption of Fe-59 and whole blood Fe-59 to a greater extent in female than in male rats. These results suggest that female rats may be somewhat more sensitive to the adverse effects of AA during Cu deficiency than are male rats.

  16. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    PubMed Central

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  17. A Western Corn Rootworm Cadherin-like Protein is not Involved in the Binding and Toxicity of Cry34/35Ab1 and Cry3Aa Bacillus Thuringiensis Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is an important insect pest of corn. Bacillus thuringiensis (Bt) insecticidal proteins Cry3Aa (as mCry3A) and Cry34Ab1/Cry35Ab1 have been expressed in transgenic corn and are used to control the insect in the U.S. To date, there ...

  18. Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake

    PubMed Central

    Karlsson, L.; Ruiz-Moreno, M.; Stern, M. D.; Martinsson, K.

    2012-01-01

    The objective of this study was to evaluate ruminal degradability and intestinal digestibility of crude protein (CP) and amino acids (AA) in hempseed cake (HC) that were moist heat treated at different temperatures. Samples of cold-pressed HC were autoclaved for 30 min at 110, 120 or 130°C, and a sample of untreated HC was used as the control. Ruminal degradability of CP was estimated, using the in situ Dacron bag technique; intestinal CP digestibility was estimated for the 16 h in situ residue using a three-step in vitro procedure. AA content was determined for the HC samples (heat treated and untreated) of the intact feed, the 16 h in situ residue and the residue after the three-step procedure. There was a linear increase in RUP (p = 0.001) and intestinal digestibility of RUP (p = 0.003) with increasing temperature during heat treatment. The 130°C treatment increased RUP from 259 to 629 g/kg CP, while intestinal digestibility increased from 176 to 730 g/kg RUP, compared to the control. Hence, the intestinal available dietary CP increased more than eight times. Increasing temperatures during heat treatment resulted in linear decreases in ruminal degradability of total AA (p = 0.006) and individual AA (p<0.05) and an increase in intestinal digestibility that could be explained both by a linear and a quadratic model for total AA and most individual AA (p<0.05). The 130°C treatment decreased ruminal degradability of total AA from 837 to 471 g/kg, while intestinal digestibility increased from 267 to 813 g/kg of rumen undegradable AA, compared with the control. There were differences between ruminal AA degradability and between intestinal AA digestibility within all individual HC treatments (p<0.001). It is concluded that moist heat treatment at 130°C did not overprotect the CP of HC and could be used to shift the site of CP and AA digestion from the rumen to the small intestine. This may increase the value of HC as a protein supplement for ruminants. PMID:25049517

  19. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle

    PubMed Central

    Greenhaff, P. L.; Karagounis, L. G.; Peirce, N.; Simpson, E. J.; Hazell, M.; Layfield, R.; Wackerhage, H.; Smith, K.; Atherton, P.; Selby, A.; Rennie, M. J.

    2008-01-01

    We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-13C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d5-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser473 and p70S6k Thr389 increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser2448, 4E-BP1 Thr37/46, or GSK3β Ser9 and decreased that of eEF2 Thr56, higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB. PMID:18577697

  20. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  1. Amino acid substitution in the core protein has no impact on relapse in hepatitis C genotype 1 patients treated with peginterferon and ribavirin.

    PubMed

    Inoue, Yuko; Hiramatsu, Naoki; Oze, Tsugiko; Yakushijin, Takayuki; Mochizuki, Kiyoshi; Fukuda, Kazuto; Mita, Eiji; Haruna, Yoshimichi; Inoue, Atsuo; Imai, Yasuharu; Hosui, Atsushi; Miyagi, Takuya; Yoshida, Yuichi; Tatsumi, Tomohide; Kiso, Shinichi; Kanto, Tatsuya; Kasahara, Akinori; Takehara, Tetsuo; Hayashi, Norio

    2011-03-01

    Previous reports demonstrated that amino acid (aa) substitutions in the hepatitis C virus (HCV) core protein are predictors of non-virological responses to pegylated interferon (Peg-IFN) and ribavirin combination therapy. The aim of this study was to investigate the impact of core aa substitutions on viral kinetics during the treatment and relapse after the treatment. The 187 patients with HCV genotype 1 enrolled in this study were categorized into four groups according to core aa substitution patterns: double-wild group (n=92), Arg70/Leu91; 70-mutant group (n=42), Gln70/Leu91; 91-mutant group (n=31), Arg70/Met91; and double-mutant group (n=22), Gln70/Met91. The relationship between the core aa substitutions and the virological response was examined. Multivariate logistic regression analyses showed that substitution at aa 70 was significantly associated with a poor virological response during the first 12 weeks (decline of <1 log from baseline at week 4, <2 log at week 12), and substitution at aa 91 was significantly associated with detectable HCV RNA at week 24. With respect to relapse, only the ribavirin exposure (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.60-0.98) and HCV RNA disappearance between weeks 13 and 24 (OR, 23.69; 95% CI, 5.44-103.08) were associated independently with relapse, with no correlation being found with the core aa substitutions and relapse. In conclusion, the results showed that core aa substitutions can be strong predictive factors at pretreatment of the non-response, but not for relapse, for virological responders with HCV RNA disappearance during treatment. PMID:21264862

  2. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide.

    PubMed

    Guan, Yihong; Zhu, Qinfang; Huang, Delai; Zhao, Shuyi; Jan Lo, Li; Peng, Jinrong

    2015-01-01

    The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x - 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins. PMID:26311515

  3. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  4. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    PubMed Central

    Elsherbiny, Marwa E.; Goruk, Susan; Monckton, Elizabeth A.; Richard, Caroline; Brun, Miranda; Emara, Marwan; Field, Catherine J.; Godbout, Roseline

    2015-01-01

    Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains. PMID:26506385

  5. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults

    PubMed Central

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults. PMID:26635626

  6. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection.

    PubMed

    Dai, Zhaolai; Wu, Zhenlong; Jia, Sichao; Wu, Guoyao

    2014-08-01

    Studies of protein nutrition and biochemistry require reliable methods for analysis of amino acid (AA) composition in polypeptides of animal tissues and foods. Proteins are hydrolyzed by 6M HCl (110°C for 24h), 4.2M NaOH (105°C for 20 h), or proteases. Analytical techniques that require high-performance liquid chromatography (HPLC) include pre-column derivatization with 4-chloro-7-nitrobenzofurazan, 9-fluorenyl methylchloroformate, phenylisothiocyanate, naphthalene-2,3-dicarboxaldehyde, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and o-phthaldialdehyde (OPA). OPA reacts with primary AA (except cysteine or cystine) in the presence of 2-mercaptoethanol or 3-mercaptopropionic acid to form a highly fluorescent adduct. OPA also reacts with 4-amino-1-butanol and 4-aminobutane-1,3-diol produced from oxidation of proline and 4-hydroxyproline, respectively, in the presence of chloramine-T plus sodium borohydride at 60°C, or with S-carboxymethyl-cysteine formed from cysteine and iodoacetic acid at 25°C. Fluorescence of OPA derivatives is monitored at excitation and emission wavelengths of 340 and 455 nm, respectively. Detection limits are 50 fmol for AA. This technique offers the following advantages: simple procedures for preparation of samples, reagents, and mobile-phase solutions; rapid pre-column formation of OPA-AA derivatives and their efficient separation at room temperature (e.g., 20-25°C); high sensitivity of detection; easy automation on the HPLC apparatus; few interfering side reactions; a stable chromatography baseline for accurate integration of peak areas; and rapid regeneration of guard and analytical columns. Thus, the OPA method provides a useful tool to determine AA composition in proteins of animal tissues (e.g., skeletal muscle, liver, intestine, placenta, brain, and body homogenates) and foods (e.g., milk, corn grain, meat, and soybean meal). PMID:24731621

  7. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  8. Phosphate acceptor amino acid residues in structural proteins of rhabdoviruses.

    PubMed

    Sokol, F; Tan, K B; McFalls, M L; Madore, P

    1974-07-01

    Partial acid hydrolysates of the [(32)P]phosphate- or [(3)H]serine-labeled proteins of purified vesicular stomatitis, rabies, Lagos bat, Mokola, or spring viremia of carp virions and of purified intracellular nucleocapsids of these viruses have been analyzed by paper electrophoresis for the presence of phosphorylated amino acids. Both phosphoserine and phosphothreonine, with the former predominant, were present in virion and nucleocapsid preparations that contained phosphoproteins. An exception was the fish rhabdovirus, which contained only phosphoserine. When vesicular stomatitis or rabies virus proteins were phosphorylated in a cell-free system by the virion-associated protein kinase and analyzed for the presence of phosphorylated amino acid residues, phosphoserine was again found to be more abundant than phosphothreonine. After in vitro protein phosphorylation, another phospho-compound, possibly a third phosphoamino acid, was detected in the partial acid hydrolysates of these viruses. PMID:4365328

  9. Protein and amino acid metabolism and requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells of the body. Enzymes, membrane carriers, blood transport molecules, intracellular matrix, and even hair and fingernails are proteins, as are many hormones. Proteins also constitute a major portion of all membranes, and the cons...

  10. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  11. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-01-01

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. PMID:25640894

  12. A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae.

    PubMed

    Hara, Hirotaka; Atsumi, Shogo; Yaoi, Katsuro; Nakanishi, Kazuko; Higurashi, Satoshi; Miura, Nami; Tabunoki, Hiroko; Sato, Ryoichi

    2003-03-13

    Aminopeptidase N (APN) and cadherin-like protein (BtR175) from Bombyx mori larvae were examined for their roles in Cry1Aa- and Cry1Ac-induced lysis of B. mori midgut epithelial cells (MECs). APNs and BtR175 were present in all areas of the midgut, were particularly abundant in the posterior region, and were found only on columnar cell microvilli and not on the lateral membrane that makes cell-cell contacts. This distribution was in accordance with the distribution of Cry1A-susceptible MECs in the midgut. The lytic activity of Cry1Aa and Cry1Ac on collagenase-dissociated MECs was linearly dependent on toxin concentration. Although pre-treatment of MECs with anti-BtR175 antibody was observed to partially inhibit the lytic activity exerted by 0.1-1 nM Cry1Aa toxin or 5 nM Cry1Ac toxin, no significant inhibition was observed when MECs were pre-treated with anti-APN antibody. These results suggest that BtR175 functions as a major receptor for Cry1A toxins in the midgut of B. mori larvae. PMID:12633848

  13. In-frame amber stop codon replacement mutagenesis for the directed evolution of proteins containing non-canonical amino acids: identification of residues open to bio-orthogonal modification.

    PubMed

    Arpino, James A J; Baldwin, Amy J; McGarrity, Adam R; Tippmann, Eric M; Jones, D Dafydd

    2015-01-01

    Expanded genetic code approaches are a powerful means to add new and useful chemistry to proteins at defined residues positions. One such use is the introduction of non-biological reactive chemical handles for site-specific biocompatible orthogonal conjugation of proteins. Due to our currently limited information on the impact of non-canonical amino acids (nAAs) on the protein structure-function relationship, rational protein engineering is a "hit and miss" approach to selecting suitable sites. Furthermore, dogma suggests surface exposed native residues should be the primary focus for introducing new conjugation chemistry. Here we describe a directed evolution approach to introduce and select for in-frame codon replacement to facilitate engineering proteins with nAAs. To demonstrate the approach, the commonly reprogrammed amber stop codon (TAG) was randomly introduced in-frame in two different proteins: the bionanotechnologically important cyt b(562) and therapeutic protein KGF. The target protein is linked at the gene level to sfGFP via a TEV protease site. In absence of a nAA, an in-frame TAG will terminate translation resulting in a non-fluorescent cell phenotype. In the presence of a nAA, TAG will encode for nAA incorporation so instilling a green fluorescence phenotype on E. coli. The presence of endogenously expressed TEV proteases separates in vivo target protein from its fusion to sfGFP if expressed as a soluble fusion product. Using this approach, we incorporated an azide reactive handle and identified residue positions amenable to conjugation with a fluorescence dye via strain-promoted azide-alkyne cycloaddition (SPAAC). Interestingly, best positions for efficient conjugation via SPAAC were residues whose native side chain were buried through analysis of their determined 3D structures and thus may not have been chosen through rational protein engineering. Molecular modeling suggests these buried native residues could become partially exposed on

  14. Polymorphisms in Fatty Acid Binding Protein 5 Show Association with Type 2 Diabetes

    PubMed Central

    Bu, Liming; Salto, Lorena M.; De Leon, Kevin J; De Leon, Marino

    2011-01-01

    Genes for the fatty acid binding protein (FABP) family encode small 14–15 kDa cytosolic proteins and can be regulated during type 2 diabetes mellitus (T2DM) and obesity. This study compared association of single nucleotide polymorphisms (SNPs) in FABP1-5 with T2DM in different ethnic groups. Associations with T2DM of SNPs in these proteins were assessed in African American (AA), non-Hispanic White (NHW), and Hispanic American (HA) individuals. A total of 650 DNA samples were genotyped; control samples were obtained from Coriell’s North American Human Variation Panel Repository (NAVP) of apparently healthy individuals and T2DM cases were taken from the American Diabetes Association GENNID Study. The rs454550 SNP of FABP5 showed a significant association with T2DM in NHW (OR: 9.03, 95% CI: 1.13–71.73, p=0.014). Our analysis also identified a new FABP5 SNP (nSNP) that showed a significant association with T2DM in NHW (OR: 0.44, 95% CI: 0.19–0.99, p=0.045) and AA (OR: 0.17, 95% CI: 0.03–0.80, p=0.016). The Ala54Thr FABP2 polymorphism was significantly associated with T2DM in HA individuals only (OR: 1.85, 95% CI: 1.05–3.27, p=0.032). All other FABP SNPs did not show association with T2DM. These findings suggest a potential distinct role of SNPs in FABP5, 2 genes in T2DM in different populations. PMID:21288588

  15. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  16. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  17. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  18. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  19. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40...

  20. Amino acid digestibility of plant protein feed ingredients for growing pigs.

    PubMed

    Cotten, B; Ragland, D; Thomson, J E; Adeola, O

    2016-03-01

    Two experiments were designed to determine the N and AA digestibility of various protein sources (potato protein concentrate, soy protein concentrate, soy protein isolate, linseed meal, sunflower meal, cottonseed meal, canola meal, and camelina meal) fed to growing pigs. In each experiment, barrows were surgically fitted with a simple T-cannula at the distal ileum and fed 4 experimental diets and a N-free diet (NFD) on the basis of a replicated 5 × 2 crossover arrangement with 5 diets and 2 periods. For Exp. 1, 20 cannulated 25-kg barrows received potato concentrate, soy concentrate, soy isolate, and linseed meal. The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of N for potato concentrate, soy concentrate, and soy isolate were similar and greater than that for linseed meal ( < 0.05). The AID and SID of Leu and Thr were greater in potato protein concentrate than soy concentrate ( < 0.05), and AID and SID of Thr were lower in soy isolate than potato concentrate. The AID and SID of all essential AA were similar between soy isolate and soy concentrate. Linseed meal had the lowest AID and SID of N and AA digestibility among protein sources ( < 0.05). In Exp. 2, sunflower meal, cottonseed meal, canola meal, and camelina meal were fed to 42-kg barrows to determine their AID and SID of AA. The AID and SID of N and all AA were greatest for sunflower meal ( < 0.05), and canola meal had similar AID and SID of N, Met, Thr, Leu, and Val. The AID and SID of all essential AA, except for Met and Trp, were lowest for sunflower meal ( < 0.05). Cottonseed meal had lower AID and SID for Lys, Ile, Leu, Met, Thr, and Val compared with the other protein sources ( < 0.05). In conclusion, the digestibility of N and AA varies greatly among oilseed meals. PMID:27065269

  1. Non-protein amino acids and neurodegeneration: the enemy within.

    PubMed

    Rodgers, Kenneth J

    2014-03-01

    Animals, in common with plants and microorganisms, synthesise proteins from a pool of 20 protein amino acids (plus selenocysteine and pyrolysine) (Hendrickson et al., 2004). This represents a small proportion (~2%) of the total number of amino acids known to exist in nature (Bell, 2003). Many 'non-protein' amino acids are synthesised by plants, and in some cases constitute part of their chemical armoury against pathogens, predators or other species competing for the same resources (Fowden et al., 1967). Microorganisms can also use selectively toxic amino acids to gain advantage over competing organisms (Nunn et al., 2010). Since non-protein amino acids (and imino acids) are present in legumes, fruits, seeds and nuts, they are ubiquitous in the diets of human populations around the world. Toxicity to humans is unlikely to have been the selective force for their evolution, but they have the clear potential to adversely affect human health. In this review we explore the links between exposure to non-protein amino acids and neurodegenerative disorders in humans. Environmental factors play a major role in these complex disorders which are predominantly sporadic (Coppede et al., 2006). The discovery of new genes associated with neurodegenerative diseases, many of which code for aggregation-prone proteins, continues at a spectacular pace but little progress is being made in identifying the environmental factors that impact on these disorders. We make the case that insidious entry of non-protein amino acids into the human food chain and their incorporation into protein might be contributing significantly to neurodegenerative damage. PMID:24374297

  2. Heat capacities of amino acids, peptides and proteins.

    PubMed

    Makhatadze, G I

    1998-04-20

    The heat capacity is one of the fundamental parameters describing thermodynamic properties of a system. It has wide applications in a number of areas such as polymer chemistry, protein folding and DNA stability. To aid the scientific community in the analysis of such data, I have compiled a database on the experimentally measured heat capacities of amino acids, polyamino acids, peptides, and proteins in solid state and in aqueous solutions. PMID:9648205

  3. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages

    PubMed Central

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A.; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  4. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    PubMed

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  5. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-01-01

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis. PMID:23797655

  6. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  7. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  8. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. PMID:22766489

  9. AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Hansen, Immo A.; Boudko, Dmitri Y.; Shiao, Shin-Hong; Voronov, Dmitri A.; Meleshkevitch, Ella A.; Drake, Lisa L.; Aguirre, Sarah E.; Fox, Jeffrey M.; Attardo, Geoffrey M.; Raikhel, Alexander S.

    2011-01-01

    Insect yolk protein precursor gene expression is regulated by nutritional and endocrine signals. A surge of amino acids in the hemolymph of blood-fed female mosquitoes activates a nutrient signaling system in the fat bodies, which subsequently derepresses yolk protein precursor genes and makes them responsive to activation by steroid hormones. Orphan transporters of the SLC7 family were identified as essential upstream components of the nutrient signaling system in the fat body of fruit flies and the yellow fever mosquito, Aedes aegypti. However, the transport function of these proteins was unknown. We report expression and functional characterization of AaCAT1, cloned from the fat body of A. aegypti. Expression of AaCAT1 transcript and protein undergoes dynamic changes during postembryonic development of the mosquito. Transcript expression was especially high in the third and fourth larval stages; however, the AaCAT1 protein was detected only in pupa and adult stages. Functional expression and analysis of AaCAT1 in Xenopus oocytes revealed that it acts as a sodium-independent cationic amino acid transporter, with unique selectivity to l-histidine at neutral pH (K0.5l-His = 0.34 ± 0.07 mm, pH 7.2). Acidification to pH 6.2 dramatically increases AaCAT1-specific His+-induced current. RNAi-mediated silencing of AaCAT1 reduces egg yield of subsequent ovipositions. Our data show that AaCAT1 has notable differences in its transport mechanism when compared with related mammalian cationic amino acid transporters. It may execute histidine-specific transport and signaling in mosquito tissues. PMID:21262963

  10. A Soluble, Folded Protein without Charged Amino Acid Residues.

    PubMed

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall; Johansson, Kristoffer Enøe; Villa, Mara; Willemoës, Martin; Lindorff-Larsen, Kresten; Teilum, Kaare; Winther, Jakob R

    2016-07-19

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably, this chargeless protein is produced reasonably well in Escherichia coli, retains its stable three-dimensional structure, and is still capable of strong cellulose binding. To further deprive this protein of charges, we removed the N-terminal charge by acetylation and studied the protein at pH 2, where the C-terminus is effectively protonated. Under these conditions, the protein retains its function and proved to be both soluble and have a reversible folding-unfolding transition. To the best of our knowledge, this is the first time a soluble, functional protein with no titratable side chains has been produced. PMID:27307139

  11. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  12. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  13. Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation.

    PubMed

    Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Elena Lugo-Sánchez, M; Gisela Carvallo-Ruiz, M; García-Sánchez, Guillermina

    2008-09-15

    A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional-technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein-protein aggregates insoluble at high ionic strength (I=0.5M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160gcm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle. PMID:26049243

  14. Predicting protein disorder by analyzing amino acid sequence

    PubMed Central

    Yang, Jack Y; Yang, Mary Qu

    2008-01-01

    Background Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation. Results Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity). Conclusion We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins. PMID:18831799

  15. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  16. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  17. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  18. Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): Synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Nowesser, Nourhan; Al-Hussaini, A. S.; Zoromba, Mohamed Shafick

    2016-02-01

    The copolymer of anthranilic acid and o-aminophenol (AA-co-OAP) was synthesized and characterized by IR, UV-Vis. and thermal analyses (TGA). Linear chain mode was suggested for the pure (AA-co-OAP). The effect of inclusion of MnCl2, CoCl2, NiCl2, CuCl2 and FeCl3 on the spectral, thermal and optical properties of AA-co-OAP has been studied. Octahedral stereochemistry was suggested for Fe, Mn and Ni doped AA-co-OAP, while tetrahedral and square-planar geometries were suggested for Co and Cu doped AA-co-OAP, respectively. Fe doped AA-co-OAP has been used as a precursor for α-Fe2O3 nanoparticles by thermal decomposition route at 800 °C. The obtained hematite has been characterized by XRD and TEM. The average size of the prepared nanoparticles was estimated as 34 nm. The optical band gap of the synthesized hematite nanoparticles was measured and compared with the bulk.

  19. [Amino acid composition of rice grain proteins].

    PubMed

    Peruanskiĭ, Iu V; Savich, I M

    1976-01-01

    The composition of the major reserve proteins of rice grain--globulins, prolamines and glutelins--was examined in four rice varieties (Dubovsky 129, Kuban 3, Alakul, Ushtobinsky). Globulins proved to be most heterogeneous whereas glutelins appeared to be least heterogeneous. In regards to the ratio of components globulins showed high variability and glutelins displayed high stability. PMID:1005365

  20. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  1. Nucleic acid compositions and the encoding proteins

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  2. Contribution of Fermentation Yeast to Final Amino Acid Profile in DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One major factor affecting DDGS quality and market values is amino acid (AA) composition. DDGS proteins come from corn and yeast. Yet, the effect of fermentation yeast on DDGS protein quantity and quality (AA profile) has not been well documented. Based on literature review, there are at least 4 met...

  3. Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus.

    PubMed

    Bideshi, Dennis K; Waldrop, Greer; Fernandez-Luna, Maria Teresa; Diaz-Mendoza, Mercedes; Wirth, Margaret C; Johnson, Jeffrey J; Park, Hyun-Woo; Federici, Brian A

    2013-08-01

    The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that has evolved in Culex quinquefasciatus. It is also known that Cyt1Aa, which is highly lipophilic, synergizes Cry11Aa by functioning as a surrogate membrane-bound receptor for the latter protein. Little is known, however, about whether Cyt1Aa can interact similarly with other Cry proteins not primarily mosquitocidal; for example, Cry2Aa, which is active against lepidopteran larvae, but essentially inactive or has very low toxicity to mosquito larvae. Here we demonstrate by ligand binding and enzyme-linked immunosorbent assays that Cyt1Aa and Cry2Aa form intermolecular complexes in vitro, and in addition show that Cyt1Aa facilitates binding of Cry2Aa throughout the midgut of C. quinquefasciatus larvae. As Cry2Aa and Cry11Aa share structural similarity in domain II, the interaction between Cyt1Aa and Cry2Aa could be a result of a similar mechanism previously proposed for Cry11Aa and Cyt1Aa. Finally, despite the observed interaction between Cry2Aa and Cyt1Aa, only a 2-fold enhancement in toxicity resulted against C. quinquefasciatus. Regardless, our results suggest that Cry2Aa could be a useful component of mosquitocidal endotoxin complements being developed for recombinant strains of B. thuringiensis subsp. israelensis and B. sphaericus aimed at improving the efficacy of commercial products and avoiding resistance. PMID:23727800

  4. FLU, an amino acid substitution model for influenza proteins

    PubMed Central

    2010-01-01

    Background The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the understanding of the evolution of influenza viruses. Results A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU) from ~113, 000 influenza protein sequences, consisting of ~20 million residues. FLU outperforms 14 widely used models in constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU gains ~42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/. Conclusions FLU should be useful for any influenza protein analysis system which requires an accurate description of amino acid substitutions. PMID:20384985

  5. Acid Cleavable Surface enhanced Raman Tagging for Protein Detection

    PubMed Central

    Zhang, Dongmao; Vangala, Karthikeshwar; Li, Shaoyong; Yanney, Michael; Xia, Hao; Zou, Sige; Sygula, Andrzej

    2010-01-01

    Dye conjugation is a common strategy improving the surface enhanced Raman detection sensitivity of biomolecules. Reported is a proof-of-concept study of a novel surface enhanced Raman spectroscopic tagging strategy termed as acid-cleavable SERS tag (ACST) method. Using Rhodamine B as the starting material, we prepared the first ACST prototype that consisted of, from the distal end, a SERS tag moiety (STM), an acid-cleavable linker, and a protein reactive moiety. Complete acid cleavage of the ACST tags was achieved at a very mild condition that is 1.5% trifluoroacetic acid (TFA) aqueous solution at room temperature. SERS detection of this ACST tagged protein was demonstrated using bovine serum albumin (BSA) as the model protein. While the SERS spectrum of intact ACST-BSA was entirely dominated by the fluorescent signal of STM, quality SERS spectra can be readily obtained with the acid cleaved ACST-BSA conjugates. Separation of the acid cleaved STM from protein further enhances the SERS sensitivity. Current SERS detection sensitivity, achieved with the acid cleaved ACST-BSA conjugate is ~5 nM in terms of the BSA concentration and ~1.5 nM in ACST content. The linear dynamic range of the cleaved ACST-BSA conjugate spans four orders of magnitudes from ~10 nM to ~100 μM in protein concentrations. Further improvement in the SERS sensitivity can be achieved with resonance Raman acquisition. This cleavable tagging strategy may also be used for elimination of protein interference in fluorescence based biomolecule detection. PMID:21109888

  6. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore. PMID:21378181

  7. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    PubMed

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development. PMID:27336588

  8. Transmission of systemic AA amyloidosis in animals.

    PubMed

    Murakami, T; Ishiguro, N; Higuchi, K

    2014-03-01

    Amyloidoses are a group of protein-misfolding disorders that are characterized by the deposition of amyloid fibrils in organs and/or tissues. In reactive amyloid A (AA) amyloidosis, serum AA (SAA) protein forms deposits in mice, domestic and wild animals, and humans that experience chronic inflammation. AA amyloid fibrils are abnormal β-sheet-rich forms of the serum precursor SAA, with conformational changes that promote fibril formation. Extracellular deposition of amyloid fibrils causes disease in affected animals. Recent findings suggest that AA amyloidosis could be transmissible. Similar to the pathogenesis of transmissible prion diseases, amyloid fibrils induce a seeding-nucleation process that may lead to development of AA amyloidosis. We review studies of possible transmission in bovine, avian, mouse, and cheetah AA amyloidosis. PMID:24280941

  9. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  10. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts.

    PubMed

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  11. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    PubMed Central

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  12. Roles of G-protein beta gamma, arachidonic acid, and phosphorylation inconvergent activation of an S-like potassium conductance by dopamine, Ala-Pro-Gly-Trp-NH2, and Phe-Met-Arg-Phe-NH2.

    PubMed

    van Tol-Steye, H; Lodder, J C; Mansvelder, H D; Planta, R J; van Heerikhuizen, H; Kits, K S

    1999-05-15

    Dopamine and the neuropeptides Ala-Pro-Gly-Trp-NH2 (APGWamide or APGWa) and Phe-Met-Arg-Phe-NH2 (FMRFamide or FMRFa) all activate an S-like potassium channel in the light green cells of the mollusc Lymnaea stagnalis, neuroendocrine cells that release insulin-related peptides. We studied the signaling pathways underlying the responses, the role of the G-protein betagamma subunit, and the interference by phosphorylation pathways. All responses are blocked by an inhibitor of arachidonic acid (AA) release, 4-bromophenacylbromide, and by inhibitors of lipoxygenases (nordihydroguaiaretic acid and AA-861) but not by indomethacin, a cyclooxygenase inhibitor. AA and phospholipase A2 (PLA2) induced currents with similar I-V characteristics and potassium selectivity as dopamine, APGWa, and FMRFa. PLA2 occluded the response to FMRFa. We conclude that convergence of the actions of dopamine, APGWa, and FMRFa onto the S-like channel occurs at or upstream of the level of AA and that formation of lipoxygenase metabolites of AA is necessary to activate the channel. Injection of a synthetic peptide, which interferes with G-protein betagamma subunits, inhibited the agonist-induced potassium current. This suggests that betagamma subunits mediate the response, possibly by directly coupling to a phospholipase. Finally, the responses to dopamine, APGWa, and FMRFa were inhibited by activation of PKA and PKC, suggesting that the responses are counteracted by PKA- and PKC-dependent phosphorylation. The PLA2-activated potassium current was inhibited by 8-chlorophenylthio-cAMP but not by 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA did inhibit the potassium current induced by irreversible activation of the G-protein using GTP-gamma-S. Thus, it appears that PKA targets a site downstream of AA formation, e.g., the potassium channel, whereas PKC acts at the active G-protein or the phospholipase. PMID:10234006

  13. Comparative evaluation of standardized ileal amino acid digestibility in protein supplements for piglets.

    PubMed

    Eklund, M; Sauer, N; Hörner, S; Rademacher, M; Mosenthin, R

    2012-12-01

    Standardized ileal digestibility (SID) of AA was determined in 6 protein ingredients for piglets. A basal diet based on corn (Zea mays) starch and casein was supplemented with fluid-bed-dried porcine intestinal mucosa hydrolysate, spray-dried porcine intestinal mucosa hydrolysate, soy (Glycine max) protein concentrate, 2 batches of soy protein, or full-fat soybeans. The SID of AA did not differ between the 4 soybean products (P > 0.05). Compared to most SID values in the 4 soybean products, SID of AA were lower in the 2 porcine intestinal mucosa hydrolysates (P ≤ 0.05). In conclusion, although the initial trypsin inhibitor contents in the raw soybeans have not been determined, high SID values in the 4 soybean products indicate that the different processing procedures used to manufacture these products were efficient to inactivate trypsin inhibitors. For most AA in the 2 porcine intestinal mucosa hydrolysates, drying procedure did not affect SID of AA, but SID values were generally lower compared to the 4 soybean products. PMID:23365314

  14. Ruminal degradation and intestinal digestibility of protein and amino acids in high-protein feedstuffs commonly used in dairy diets.

    PubMed

    Paz, H A; Klopfenstein, T J; Hostetler, D; Fernando, S C; Castillo-Lopez, E; Kononoff, P J

    2014-10-01

    A study was conducted to determine the rumen degradation and intestinal digestibility of crude protein (CP) and AA, and AA composition of the rumen-undegradable protein (RUP) from 3 sources of blood meal (BM1, BM2, and BM3), canola meal (CM), low-fat distillers dried grains with solubles (LFDG), soybean meal (SBM), and expeller soybean meal (ESBM). Two Holstein cows fitted with ruminal and proximal duodenal cannulas were used for in situ incubation of 16h and for the mobile bag technique. To correct for bacterial contamination of the RUP, 2 methods were used: purines and DNA as bacterial markers. Ruminal degradations of CP were 85.3, 29.8, 40.7, 75.7, 76.9, 68.8, and 37.0 ± 3.93% for BM1, BM2, BM3, CM, LFDG, SBM, and ESBM, respectively. Ruminal degradation of both total essential AA and nonessential AA followed a similar pattern to that of CP across feedstuffs. Based on the ratio of AA concentration in the RUP to AA concentration in the original feedstuff, ruminal incubation decreased (ratio <1) the concentrations of His, Lys, and Trp, and increased (ratio >1) the concentrations of Ile and Met across feedstuffs. Compared with purines, the use of DNA as bacterial marker resulted in a higher estimate of bacterial CP contamination for CM and lower estimates for LFDG and ESBM. Intestinal digestibility of RUP could not be estimated for BM1, BM3, and SBM due to insufficient recovery of residue. For the remaining feedstuffs, intestinal digestibility of RUP was highest for ESBM, followed by BM2 and LFDG, and lowest for CM: 98.8, 87.9, 89.7, and 72.4 ± 1.40%, respectively. Intestinal absorbable dietary protein was higher for BM2 compared with CM and LFDG, at 61.7, 17.9, and 20.7 ± 2.73% CP, respectively. As prices fluctuate, intestinal absorbable protein or AA may be used as a tool to aid in the selection among feedstuffs with different protein quality. PMID:25108871

  15. A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels

    PubMed Central

    Murthy, Niren; Xu, Mingcheng; Schuck, Stephany; Kunisawa, Jun; Shastri, Nilabh; Fréchet, Jean M. J.

    2003-01-01

    The development of protein-based vaccines remains a major challenge in the fields of immunology and drug delivery. Although numerous protein antigens have been identified that can generate immunity to infectious pathogens, the development of vaccines based on protein antigens has had limited success because of delivery issues. In this article, an acid-sensitive microgel material is synthesized for the development of protein-based vaccines. The chemical design of these microgels is such that they degrade under the mildly acidic conditions found in the phagosomes of antigen-presenting cells (APCs). The rapid cleavage of the microgels leads to phagosomal disruption through a colloid osmotic mechanism, releasing protein antigens into the APC cytoplasm for class I antigen presentation. Ovalbumin was encapsulated in microgel particles, 200–500 nm in diameter, prepared by inverse emulsion polymerization with a synthesized acid-degradable crosslinker. Ovalbumin is released from the acid-degradable microgels in a pH-dependent manner; for example, microgels containing ovalbumin release 80% of their encapsulated proteins after 5 h at pH 5.0, but release only 10% at pH 7.4. APCs that phagocytosed the acid-degradable microgels containing ovalbumin were capable of activating ovalbumin-specific cytoxic T lymphocytes. The acid-degradable microgels developed in this article should therefore find applications as delivery vehicles for vaccines targeted against viruses and tumors, where the activation of cytoxic T lymphocytes is required for the development of immunity. PMID:12704236

  16. Nucleic Acid Programmable Protein Array: A Just-In-Time Multiplexed Protein Expression and Purification Platform

    PubMed Central

    Qiu, Ji; LaBaer, Joshua

    2012-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. PMID:21943897

  17. Amino acid repeats and the structure and evolution of proteins.

    PubMed

    Albà, M M; Tompa, P; Veitia, R A

    2007-01-01

    Many proteins have repeats or runs of single amino acids. The pathogenicity of some repeat expansions has fueled proteomic, genomic and structural explorations of homopolymeric runs not only in human but in a wide variety of other organisms. Other types of amino acid repetitive structures exhibit more complex patterns than homopeptides. Irrespective of their precise organization, repetitive sequences are defined as low complexity or simple sequences, as one or a few residues are particularly abundant. Prokaryotes show a relatively low frequency of simple sequences compared to eukaryotes. In the latter the percentage of proteins containing homopolymeric runs varies greatly from one group to another. For instance, within vertebrates, amino acid repeat frequency is much higher in mammals than in amphibians, birds or fishes. For some repeats, this is correlated with the GC-richness of the regions containing the corresponding genes. Homopeptides tend to occur in disordered regions of transcription factors or developmental proteins. They can trigger the formation of protein aggregates, particularly in 'disease' proteins. Simple sequences seem to evolve more rapidly than the rest of the protein/gene and may have a functional impact. Therefore, they are good candidates to promote rapid evolutionary changes. All these diverse facets of homopolymeric runs are explored in this review. PMID:18753788

  18. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays

    NASA Astrophysics Data System (ADS)

    Fang, Ting; Verma, Vishal; Bates, Josephine T.; Abrams, Joseph; Klein, Mitchel; Strickland, Matthew J.; Sarnat, Stefanie E.; Chang, Howard H.; Mulholland, James A.; Tolbert, Paige E.; Russell, Armistead G.; Weber, Rodney J.

    2016-03-01

    The ability of certain components of particulate matter to induce oxidative stress through the generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and report here the development of a similar semi-automated system for the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed for a host of aerosol species, along with AA and DTT activities. We present a detailed contrast in findings from these two assays. Water-soluble AA activity was higher in summer and fall than in winter, with highest levels near heavily trafficked highways, whereas DTT activity was higher in winter compared to summer and fall and more spatially homogeneous. AA activity was nearly exclusively correlated with water-soluble Cu (r = 0.70-0.94 at most sites), whereas DTT activity was correlated with organic and metal species. Source apportionment models, positive matrix factorization (PMF) and a chemical mass balance method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from traffic emissions and secondary processes (e.g., organic aerosol oxidation or metals mobilization by secondary acids) to both AA and DTT activities in urban Atlanta. In contrast, biomass burning was a large source for DTT activity, but insignificant for AA. AA activity was not correlated with PM2.5 mass, while DTT activity co-varied strongly with mass (r = 0.49-0.86 across sites and seasons). Various linear models were developed to estimate AA and DTT activities for the central Atlanta Jefferson Street site, based on the CMB-E sources. The models were then used to estimate daily

  19. Oxidative potential of ambient water-soluble PM2.5 measured by Dithiothreitol (DTT) and Ascorbic Acid (AA) assays in the southeastern United States: contrasts in sources and health associations

    NASA Astrophysics Data System (ADS)

    Fang, T.; Verma, V.; Bates, J. T.; Abrams, J.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.; Weber, R. J.

    2015-11-01

    The ability of certain components of particulate matter to induce oxidative stress through catalytic generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and have recently developed a similar semi-automated system using the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed using both assays. We found that water-soluble DTT activity on a per air volume basis was more spatially uniform than water-soluble AA activity. DTT activity was higher in winter than in summer/fall, whereas AA activity was higher in summer/fall compared to winter, with highest levels near highly trafficked highways. DTT activity was correlated with organic and metal species, whereas AA activity was correlated with water-soluble metals (especially water-soluble Cu, r=0.70-0.91 at most sites). Source apportionment models, Positive Matrix Factorization (PMF) and a Chemical Mass Balance Method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from secondary processes (e.g., organic aerosol oxidation or metal mobilization by formation of an aqueous particle with secondary acids) and traffic emissions to both DTT and AA activities in urban Atlanta. Biomass burning was a large source for DTT activity, but insignificant for AA. DTT activity was well correlated with PM2.5 mass (r=0.49-0.86 across sites/seasons), while AA activity did not co-vary strongly with mass. A linear model was developed to estimate DTT and AA activities for the central Atlanta Jefferson Street site, based on the CMB-E sources that are statistically significant with positive

  20. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  1. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  2. Structural Assessment of the Effects of Amino Acid Substitutions on Protein Stability and Protein-Protein Interaction

    PubMed Central

    Teng, Shaolei; Wang, Liangjiang; Srivastava, Anand K.; Schwartz, Charles E.; Alexov, Emil

    2012-01-01

    A structure-based approach is described for predicting the effects of amino acid substitutions on protein function. Structures were predicted using a homology modelling method. Folding and binding energy differences between wild-type and mutant structures were computed to quantitatively assess the effects of amino acid substitutions on protein stability and protein–protein interaction, respectively. We demonstrated that pathogenic mutations at the interaction interface could affect binding energy and destabilise protein complex, whereas mutations at the non-interface might reduce folding energy and destabilise monomer structure. The results suggest that the structure-based analysis can provide useful information for understanding the molecular mechanisms of diseases. PMID:21297231

  3. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows.

    PubMed

    Lee, C; Giallongo, F; Hristov, A N; Lapierre, H; Cassidy, T W; Heyler, K S; Varga, G A; Parys, C

    2015-03-01

    This study investigated the effect of metabolizable protein (MP) supply and rumen-protected (RP) Lys and Met supplementation on productivity, nutrient digestibility, urinary N losses, apparent total-tract digestibility of dietary AA, and the efficiency of AA utilization for milk protein synthesis in dairy cows. The experiment was conducted with 8 ruminally cannulated Holstein cows in a replicated 4×4 Latin square design trial with 21-d periods. Treatments were (1) MP-adequate diet (AMP; MP balance of -24 g/d); (2) MP-deficient diet (DMP; MP balance of -281 g/d); (3) DMP supplemented with 100 g of RPLys/cow per day (estimated digestible Lys supply=24 g/d; DMPL; MP balance of -305g/d); and (4) DMPL supplemented with 24 g of RPMet/cow per day (estimated digestible Met supply=15 g/d; DMPLM; MP balance of -256g/d). Diet had no effect on total-tract nutrient digestibility, milk production, and milk composition, but the DMP diets decreased urinary N excretion and the ammonia emitting potential of manure. Plasma Met concentration was increased by DMPLM compared with AMP. Supplementation with RPLys had no effect on plasma Lys. Concentration of most AA in milk protein was increased or tended to be increased by DMPLM compared with DMPL. Except for the AA supplemented as RPAA (i.e., Met and Lys), apparent total-tract digestibility of all dietary AA was generally greater for the DMP diets and ranged from 33% (Arg, AMP diet) to 67% (Thr, DMPL diet). Apparent recovery of dietary AA in milk protein followed the same trends, being greater for the DMP diets than AMP and generally lower for Lys and Met with the RPAA-supplemented diets versus AMP and DMP. The RPAA were apparently not used for milk protein synthesis in the conditions of this experiment. The AA recoveries in milk protein varied from around 17% (Ala) to 70% (Pro). Milk protein recoveries of essential AA (EAA) were around 54% for the DMP diet and 49% for AMP. The estimated efficiency of utilization of digestible EAA for

  4. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-05-15

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  5. INCAP studies of energy, amino acids, and protein.

    PubMed

    Viteri, Fernando E

    2010-03-01

    This Special Issue summarizes the results of several studies aimed at providing information on a series of questions related to the adequate protein and energy intakes that allow adequate growth and function in children and work performance and productivity in adults. The effect of different sources of protein on nitrogen balance and the requirements of essential amino acids in young children were also explored in fully recovered, previously malnourished children housed in the Metabolic Ward of the Biomedical Division of INCAP. The following are the main results of these investigations: Animal experiments and studies in children recovering from protein-energy malnutrition (PEM) strongly suggest that even when requirements of all nutrients are satisfied, inactivity reduces the rate of linear growth and physical activity improves it as well as lean body mass repletion. The effects of different energy intakes on nitrogen balance demonstrated how energy intake modifies the need to ingest different amounts of protein to satisfy protein requirements. Insensible nitrogen losses in preschool children and their relation to protein intake was demonstrated. The quality of even "good protein sources" modifies the amount needed to satisfy nitrogen requirements, and corn and bean-based diets can satisfy protein needs for health and even growth of young children. Essential amino acid requirements of 2-year-old children was assessed by diverse measurements of nitrogen metabolism and amino acid levels in blood, and were found lower than those recommended by FAO-WHO. In rural adult populations the relationship between energy and protein intake, productivity and body composition, and the impact of environmental hygiene on nitrogen balance was demonstrated and measured. PMID:20461903

  6. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD). PMID:23075272

  7. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Mansara, Prakash P.; Deshpande, Rashmi A.; Vaidya, Milind M.; Kaul-Ghanekar, Ruchika

    2015-01-01

    Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer. PMID:26325577

  8. Studies on fatty acid-binding proteins. The diurnal variation shown by rat liver fatty acid-binding protein.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1987-01-01

    The concentration of fatty acid-binding protein in rat liver was examined by SDS/polyacrylamide-gel electrophoresis, by Western blotting and by quantifying the fluorescence enhancement achieved on the binding of the fluorescent probe 11-(dansylamino)undecanoic acid. A 2-3-fold increase in the concentration of this protein produced by treatment of rats with the peroxisome proliferator tiadenol was readily detected; however, only a small variation in the concentration of the protein due to a diurnal rhythm was observed. This result contradicts the 7-10-fold variation previously reported for this protein [Hargis, Olson, Clarke & Dempsey (1986) J. Biol. Chem. 261, 1988-1991]. Images Fig. 1. Fig. 3. PMID:3593284

  9. Integration of Insecticidal Protein Vip3Aa1 into Beauveria bassiana Enhances Fungal Virulence to Spodoptera litura Larvae by Cuticle and Per Os Infection▿

    PubMed Central

    Qin, Yi; Ying, Sheng-Hua; Chen, Ying; Shen, Zhi-Cheng; Feng, Ming-Guang

    2010-01-01

    The entomopathogenic fungus Beauveria bassiana acts slowly on insect pests through cuticle infection. Vegetative insecticidal proteins (Vip3A) of Bacillus thuringiensis kill lepidopteran pests rapidly, via per os infection, but their use for pest control is restricted to integration into transgenic plants. A transgenic B. bassiana strain (BbV28) expressing Vip3Aa1 (a Vip3A toxin) was thus created to infect the larvae of the oriental leafworm moth Spodoptera litura through conidial ingestion and cuticle adhesion. Vip3Aa1 (∼88 kDa) was highly expressed in the conidial cytoplasm of BbV28 and was detected as a digested form (∼62 kDa) in the larval midgut 18 and 36 h after conidial ingestion. The median lethal concentration (LC50) of BbV28 against the second-instar larvae feeding on cabbage leaves sprayed with conidial suspensions was 26.2-fold lower than that of the wild-type strain on day 3 and 1.1-fold lower on day 7. The same sprays applied to both larvae and leaves for their feeding reduced the LC50 of the transformant 17.2- and 1.3-fold on days 3 and 7, respectively. Median lethal times (LT50s) of BbV28 were shortened by 23 to 35%, declining with conidial concentrations. The larvae infected by ingestion of BbV28 conidia showed typical symptoms of Vip3A action, i.e., shrinkage and palsy. However, neither LC50 nor LT50 trends differed between BbV28 and its parental strain if the infection occurred through the cuticle only. Our findings indicate that fungal conidia can be used as vectors for spreading the highly insecticidal Vip3A protein for control of foliage feeders such as S. litura. PMID:20495052

  10. Commercial Phaseolus vulgaris extract (starch stopper) increases ileal endogenous amino acid and crude protein losses in the growing rat.

    PubMed

    Deglaire, A; Moughan, P J; Bos, C; Tome, D

    2006-07-12

    The effect of a commercial Phaseolus vulgaris extract (PVE, starch stopper) on ileal and fecal endogenous protein losses was studied. Growing rats were fed for 14 days a protein-free diet containing PVE at a nutritional concentration of 0% (PF1), 0.4% (PF2), or 1.1% PVE (PF3) or 1.1% autoclaved PVE (PF4). An indigestible marker (TiO(2)) was included in each diet. Ileal endogenous amino acid (AA) losses were significantly higher (P < 0.05) in PF3 (20% higher than in PF1), except for Pro, Gly, Ala, and His. Endogenous ileal N losses were 22% higher in PF3 than in PF1. Endogenous fecal AA and N losses were all significantly higher (P < 0.05) in PF3. Starch digestibility ( approximately 100%), food intake (single daily meal, d10-23), and body weight loss were not significantly different among the groups. PVE, at 1.1% of the diet, not only was ineffective in reducing starch digestibility but also led to increased ileal endogenous N losses, possibly due to the antinutritional factors (trypsin inhibitor, lectin) present in the PVE. PMID:16819935

  11. Protein and amino acid metabolism in the human newborn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, ...

  12. Nucleic acid-protein interactions: Wedding for love or circumstances?

    PubMed

    Lavelle, Christophe; Buckle, Malcolm

    2009-08-01

    The sixth Figeac meeting on nucleic acid-protein interactions was held in Figeac, France, from September 26th to October 1st, 2008. It was organized by the working group "nucleic acid-protein interactions and gene expression" from the French Society for Biochemistry and Molecular Biology. This report briefly summarizes the presentations by 40 speakers during the four plenary sessions, which were organised as follows: (1) nucleic acids: targets and tools, (2) RNA superstar, (3) nuclear structure and dynamics, and (4) new concepts - new approaches. A total of 22 plenary lectures, 18 oral communications and 40 posters were presented over the 5 days, providing a highly stimulating environment for scientific exchange between the approximately 80 participants (biochemists, physicists, bio-informaticians and molecular and cellular biologists). PMID:19422875

  13. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.

    PubMed

    Englander, Michael T; Avins, Joshua L; Fleisher, Rachel C; Liu, Bo; Effraim, Philip R; Wang, Jiangning; Schulten, Klaus; Leyh, Thomas S; Gonzalez, Ruben L; Cornish, Virginia W

    2015-05-12

    The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells. PMID:25918365

  14. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center

    PubMed Central

    Englander, Michael T.; Avins, Joshua L.; Fleisher, Rachel C.; Liu, Bo; Effraim, Philip R.; Wang, Jiangning; Schulten, Klaus; Leyh, Thomas S.; Gonzalez, Ruben L.; Cornish, Virginia W.

    2015-01-01

    The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells. PMID:25918365

  15. Interference of N-hydroxysuccinimide with bicinchoninic acid protein assay.

    PubMed

    Vashist, Sandeep Kumar; Dixit, Chandra Kumar

    2011-07-29

    We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu(2+) in the BCA working reagent. The absorbance peak and absorbance signal of NHS were very similar to those of bovine serum albumin (BSA), thereby indicating a similar BCA reaction mechanism for NHS and protein. However, the combined absorbance of NHS and BSA was not additive. The time-response measurements of the BCA protein assay showed consistent single-phase kinetics for NHS and gradually decreasing kinetics for BSA. The error in protein estimation due to the presence of NHS was counteracted effectively by plotting additional BCA standard curve for BSA with a fixed concentration of NHS. The difference between the absorbance values of BSA and BSA with a fixed NHS concentration provided the absorbance contributed by NHS, which was then subtracted from the total absorbance of analyte sample to determine the actual absorbance of protein in the analyte sample. PMID:21762678

  16. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus.

    PubMed

    Stettler, M; Zurbriggen, A

    1995-05-01

    Virus persistence is essential in the chronic inflammatory canine distemper virus (CDV)-induced demyelinating disease. In the case of CDV there is a close association between persistence and virulence. Virulent CDV isolated from dogs with distemper shows immediate persistence in primary dog brain cell cultures (DBCC) and in different cell lines. We have evidence that the nucleocapsid (NP) protein plays an important role in the development of persistence. The NP-protein, the most abundant structural virus protein, also influences virus assembly and has some regulatory functions in virus transcription and replication. In this study we compared the nucleotide and deduced amino acid sequence of a virulent CDV strain (A75/17-CDV) to a culture-attenuated non-virulent strain (OP-CDV). Viral RNA was extracted from DBCC infected with virulent CDV. Virulent CDV retains its in vivo properties, such as virulence and ability to cause demyelination, when propagated in these DBCC. The viral RNA was reverse transcribed and the resulting cDNA amplified by polymerase chain reaction for subsequent cloning. The nucleotide sequences of these clones were determined by the dideoxy chain termination method. The number of nucleotides and the putative NP-protein of the virulent strain matched the attenuated CDV strain. We observed a total of 105 nucleotide differences. Three were localised within the 3' and five within the 5' non-coding region of the NP-gene. The 97 nucleotide changes within the coding region resulted in 22 amino acid differences. 10 of these amino acid (AA) modifications were within the N-terminal region (AA 1 to 159) and 12 within the C-terminal area (AA 351 to 523).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8588315

  17. Regulatory signals for intestinal amino acid transporters and peptidases

    SciTech Connect

    Ferraris, R.P.; Kwan, W.W.; Diamond, J. )

    1988-08-01

    Dietary protein ultimately regulates many processes involved in protein digestion, but it is often unclear whether proteins themselves, peptides, or amino acids (AAs) are the proximate regulatory signal. Hence the authors compared several processes involved in protein digestion in mice adapted to one of three rations, identical except for containing 54% of either casein, a partial hydrolysate of casein, or a free AA mixture simulating a complete hydrolysate of casein. The authors measured brush-border uptakes of seven AAs that variously serve as substrates for four AA transporters, and brush-border and cytosolic activities of four peptidases. The three rations yielded essentially the same AA uptake rates. Peptidase activities tended to be lower on the AA ration than on the protein ration. In other studies, all three rations yielded the same rates of brush-border peptide uptake; protein is only modestly more effective than AAs at inducing synthesis of pancreatic proteases; and, depending on the animal species, protein is either much less or much more effective than AAs at stimulating release of cholecystokinin and hence of pancreatic enzymes. Thus the regulators of each process involved in protein digestion are not necessarily that process's substrate.

  18. USEPA METHOD STUDY 37 - SW-846 METHOD 3050, ACID DIGESTION OF SEDIMENTS, SLUDGES AND SOILS BY AA-DIRECT ASPIRATION

    EPA Science Inventory

    An interlaboratory collaborative study was conducted to determine the precision and accuracy of Method 3050 for the analysis of 23 elements in sediments, sludqes and soils. Method 3050 is entitled, "Acid Digestion of Sediments, Sludges and Soils." It includes instructions for qua...

  19. Acid extraction and purification of recombinant spider silk proteins.

    PubMed

    Mello, Charlene M; Soares, Jason W; Arcidiacono, Steven; Butler, Michelle M

    2004-01-01

    A procedure has been developed for the isolation of recombinant spider silk proteins based upon their unique stability and solubilization characteristics. Three recombinant silk proteins, (SpI)7, NcDS, and [(SpI)4/(SpII)1]4, were purified by extraction with organic acids followed by affinity or ion exchange chromatography resulting in 90-95% pure silk solutions. The protein yield of NcDS (15 mg/L culture) and (SpI)7 (35 mg/L) increased 4- and 5-fold, respectively, from previously reported values presumably due to a more complete solubilization of the expressed recombinant protein. [(SpI)4/(SpII)1]4, a hybrid protein based on the repeat sequences of spidroin I and spidroin II, had a yield of 12.4 mg/L. This method is an effective, reproducible technique that has broad applicability for a variety of silk proteins as well as other acid stable biopolymers. PMID:15360297

  20. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  1. Buffer interference with protein dynamics: a case study on human liver fatty acid binding protein.

    PubMed

    Long, Dong; Yang, Daiwen

    2009-02-18

    Selection of suitable buffer types is often a crucial step for generating appropriate protein samples for NMR and x-ray crystallographic studies. Although the possible interaction between MES buffer (2-(N-morpholino)ethanesulfonic acid) and proteins has been discussed previously, the interaction is usually thought to have no significant effects on the structures of proteins. In this study, we demonstrate the direct, albeit weak, interaction between MES and human liver fatty acid binding protein (hLFABP). Rather than affecting the structure of hLFABP, we found that the dynamics of hLFABP, which were previously proposed to be relevant to its functions, were significantly affected by the binding of hLFABP with MES. Buffer interference with protein dynamics was also demonstrated with Bis-Tris buffer, which is quite different from MES and fatty acids in terms of their molecular structures and properties. This result, to our knowledge, is the first published report on buffer interference with protein dynamics on a microsecond to millisecond timescale and could represent a generic problem in the studies of functionally relevant protein dynamics. Although being a fortuity, our finding of buffer-induced changes in protein dynamics offers a clue to how hLFABP accommodates its ligands. PMID:19217864

  2. Ruminal degradability and intestinal digestibility of individual amino acids in mixed diets with different crude protein levels measured by the modified in vitro three-step and mobile nylon bag technique.

    PubMed

    Gao, Wei; Zhang, Bowen; Lv, Bo; Liu, Chenli; Chen, Daofu

    2016-04-01

    The ruminal degradability and intestinal digestibility of dry matter (DM), crude protein (CP) and amino acids (AA) in three total mixed rations with different CP levels were estimated using the modified in vitro three-step procedure (TSP) and mobile nylon bag (MNB) technique on growing lambs. The ruminal effective degradability of DM and CP did not respond with increasing dietary CP level. However, the intestinal digestibility of DM was significantly increased with increasing dietary CP level estimated by TSP (P < 0.05) or MNB method (P < 0.01). Intestinal digestibility coefficients of CP determined by TSP were lower than those of the MNB method. Histidine was extensively degraded by rumen micro-organisms, while tyrosine was the most anti-degradable AA among the samples. The ruminal AA degradability exhibited no significant differences except for threonine, tryptophan, alanine, aspartic acid and proline for the three diets. Similarly, only a few AAs (i.e. histidine, methionine, tryptophan, aspartic acid and cysteine in TSP; histidine, tryptophan, aspartic acid and serine in MNB) had significant differences in their intestinal digestibility; in addition, values of MNB were lower than that of the TSP method, indicating that intestinal digestibility of DM seems to be overestimated in TSP, while that of CP might be overestimated in the MNB method. PMID:26559908

  3. Advances in protein-amino acid nutrition of poultry.

    PubMed

    Baker, David H

    2009-05-01

    The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn-soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn-soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary L: -cysteine (2.5% or higher) is lethal for young chicks, but a similar level of DL: -methionine, L: -cystine or N-acetyl-L: -cysteine causes no mortality. A supplemental dietary level of 3.0% L: -cysteine (7x requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks. PMID:19009229

  4. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids.

    PubMed Central

    Dynan, W S; Yoo, S

    1998-01-01

    The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs. PMID:9512523

  5. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins.

    PubMed

    Wang, Jilite; Shimada, Masaya; Kato, Yukina; Kusada, Mio; Nagaoka, Satoshi

    2015-01-01

    Dietary plant protein is well known to reduce serum cholesterol levels. Rice bran is a by-product of rice milling and is a good source of protein. The present study examined whether feeding rats a high-cholesterol diet containing 10% rice bran protein (RBP) for 10 d affected cholesterol metabolism. Rats fed dietary RBP had lower serum total cholesterol levels and increased excretion of fecal steroids, such as cholesterol and bile acids, than those fed dietary casein. In vitro assays showed that RBP strongly bound to taurocholate, and inhibited the micellar solubility of cholesterol, compared with casein. Moreover, the bile acid-binding proteins of the RBP were eluted by a chromatographic column conjugated with cholic acid, and one of them was identified as hypothetical protein OsJ_13801 (NCBI accession No. EAZ29742) using MALDI-TOF mass spectrometry analysis. These results suggest that the hypocholesterolemic action of the RBP may be caused by the bile acid-binding proteins. PMID:25374002

  6. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  7. Modeling nucleic acid structure in the presence of single-stranded binding proteins

    NASA Astrophysics Data System (ADS)

    Forties, Robert; Bundschuh, Ralf

    2009-03-01

    There are many important proteins which bind single-stranded nucleic acids, such as the nucleocapsid protein in HIV, the RecA DNA repair protein in bacteria, and all proteins involved in mRNA splicing and translation. We extend the Vienna Package for quantitatively modeling the secondary structure of nucleic acids to include proteins which bind to unpaired portions of the nucleic acid. All parameters needed to model nucleic acid secondary structures in the absence of proteins have been previously measured. This leaves the footprint and sequence dependent binding affinity of the protein as adjustable parameters of our model. Using this model we are able to predict the probability of the protein binding at any position in the nucleic acid sequence, the impact of the protein on nucleic acid base pairing, the end-to-end distance distribution for the nucleic acid, and FRET distributions for fluorophores attached to the nucleic acid.

  8. Impact of Q139R substitution of MEB4-Cry2Aa toxin on its stability, accessibility and toxicity against Ephestia kuehniella.

    PubMed

    Nouha, Abdelmalek; Sameh, Sellami; Fakher, Frikha; Slim, Tounsi; Souad, Rouis

    2015-11-01

    The Bacillus thuringiensis subsp. kurstaki strain MEB4 was previously found to be highly toxic to Ephestia kuehniella. SDS-PAGE analysis of the recombinant strain DH5α (pBS-cry2Aa-MEB4) showed that Cry2Aa-MEB4 delta-endotoxins were forming inclusion bodies, and were 2.75 fold more toxic towards E. kuehniella than those of Cry2Aa-BNS3. Besides to the 65kDa active toxin, proteolysis activation of Cry2Aa-BNS3 protein with E. kuehniella midgut juice generated an extra proteolysis form of 49kDa, which was the result of another chymotrypsin cleavage located in Leu144. The amino acid sequences alignment of Cry2Aa-MEB4 and Cry2Aa-BNS3 showed that among the different 15 amino acids, the Q139R substitution was found to be interesting. In fact, due to its presence within the loop α3-α4, the chymotrypsin-like protease was unable to access to its site in Cry2Aa-MEB4, resulting to the production of only the 65kDa form. The accessible surface and the stability studies of the structure model of the Cry2Aa-BNS3-49 form showed a lower hydrophobicity surface due to the omission of 144 amino acids from the N-terminal comparing with the active Cry2Aa-MEB4 protein. All these features caused the diminishing of Cry2Aa-BNS3 toxicity towards E. kuehniella. PMID:26321422

  9. RNAi induced knockdown of a cadherin-like protein (EF531715) does not affect toxicity of Cry34/35Ab1 or Cry3Aa to Diabrotica virgifera virgifera larvae (Coleoptera: Chrysomelidae).

    PubMed

    Tan, Sek Yee; Rangasamy, Murugesan; Wang, Haichuan; Vélez, Ana María; Hasler, James; McCaskill, David; Xu, Tao; Chen, Hong; Jurzenski, Jessica; Kelker, Matthew; Xu, Xiaoping; Narva, Kenneth; Siegfried, Blair D

    2016-08-01

    The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an important maize pest throughout most of the U.S. Corn Belt. Bacillus thuringiensis (Bt) insecticidal proteins including modified Cry3Aa and Cry34/35Ab1 have been expressed in transgenic maize to protect against WCR feeding damage. To date, there is limited information regarding the WCR midgut target sites for these proteins. In this study, we examined whether a cadherin-like gene from Diabrotica virgifera virgifera (DvvCad; GenBank accession # EF531715) associated with WCR larval midgut tissue is necessary for Cry3Aa or Cry34/35Ab1 toxicity. Experiments were designed to examine the sensitivity of WCR to trypsin activated Cry3Aa and Cry34/35Ab1 after oral feeding of the DvvCad dsRNA to knockdown gene expression. Quantitative real-time PCR confirmed that DvvCad mRNA transcript levels were reduced in larvae treated with cadherin dsRNA. Relative cadherin expression by immunoblot analysis and nano-liquid chromatography - mass spectrometry (nanoLC-MS) of WCR neonate brush border membrane vesicle (BBMV) preparations exposed to DvvCad dsRNA confirmed reduced cadherin expression when compared to BBMV from untreated larvae. However, the larval mortality and growth inhibition of WCR neonates exposed to cadherin dsRNA for two days followed by feeding exposure to either Cry3Aa or Cry34/35Ab1 for four days was not significantly different to that observed in insects exposed to either Cry3Aa or Cry34/35Ab1 alone. In combination, these results suggest that cadherin is unlikely to be involved in the toxicity of Cry3Aa or Cry34/35Ab1 to WCR. PMID:27334721

  10. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  11. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate. PMID:23129181

  12. Hyperdimensional analysis of amino acid pair distributions in proteins.

    PubMed

    Henriksen, Svend B; Mortensen, Rasmus J; Geertz-Hansen, Henrik M; Neves-Petersen, Maria Teresa; Arnason, Omar; Söring, Jón; Petersen, Steffen B

    2011-01-01

    Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis. PMID:22174733

  13. Probing interactions between plant virus movement proteins and nucleic acids.

    PubMed

    Tzfira, Tzvi; Citovsky, Vitaly

    2008-01-01

    Most plant viruses move between plant cells with the help of their movement proteins (MPs). MPs are multifunctional proteins, and one of their functions is almost invariably binding to nucleic acids. Presumably, the MP-nucleic acid interaction is directly involved in formation of nucleoprotein complexes that function as intermediates in the cell-to-cell transport of many plant viruses. Thus, when studying a viral MP, it is important to determine whether or not it binds nucleic acids, and to characterize the hallmark parameters of such binding, i.e., preference for single- or double-stranded nucleic acids and binding cooperativity and sequence specificity. Here, we present two major experimental approaches, native gel mobility shift assay and ultra violet (UV) light cross-linking, for detection and characterization of MP binding to DNA and RNA molecules. We also describe protocols for purification of recombinant viral MPs over-expressed in bacteria and production of different DNA and RNA probes for these binding assays. PMID:18370264

  14. Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria.

    PubMed

    Thomas, Mark E; Harris, Kevin P G; Walls, John; Furness, Peter N; Brunskill, Nigel J

    2002-10-01

    The role of the albumin-carried fatty acids in the induction of tubulointerstitial injury was studied in protein-overload proteinuria. Rats were injected with fatty acid-carrying BSA [FA(+)BSA], fatty acid-depleted BSA [FA(-)BSA], or saline. Macrophage infiltration was measured by immunohistochemical staining, apoptotic cells were detected by in situ end labeling, and proliferating cells were identified by in situ hybridization for histone mRNA. Macrophage infiltration was significantly greater in the FA(+)BSA group than in the FA(-)BSA and saline groups. The infiltrate was largely restricted to the outer cortex. Apoptosis was greater in the FA(+)BSA group than in the FA(-)BSA and saline groups. Compared with the saline group, apoptosis was significantly increased in the FA(+)BSA group but not in the FA(-)BSA group. Cortical cells proliferated significantly more in the FA(+)BSA and FA(-)BSA groups than in the saline group. FA(+)BSA is therefore a more potent inducer of macrophage infiltration and cell death than FA(-)BSA. The fatty acids carried on albumin may be the chief instigators of tubulointerstitial injury in protein-overload proteinuria. PMID:12217854

  15. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid. PMID:23499846

  16. Bacillus thuringiensis insecticidal Cry1Aa toxin binds to a highly conserved region of aminopeptidase N in the host insect leading to its evolutionary success.

    PubMed

    Nakanishi, K; Yaoi, K; Shimada, N; Kadotani, T; Sato, R

    1999-06-15

    Bacillus thuringiensis insecticidal protein, Cry1Aa toxin, binds to a specific receptor in insect midguts and has insecticidal activity. Therefore, the structure of the receptor molecule is probably a key factor in determining the binding affinity of the toxin and insect susceptibility. The cDNA fragment (PX frg1) encoding the Cry1Aa toxin-binding region of an aminopeptidase N (APN) or an APN family protein from diamondback moth, Plutella xylostella midgut was cloned and sequenced. A comparison between the deduced amino acid sequence of PX frg1 and other insect APN sequences shows that Cry1Aa toxin binds to a highly conserved region of APN family protein. In this paper, we propose a model to explain the mechanism that causes B. thuringiensis evolutionary success and differing insect susceptibility to Cry1Aa toxin. PMID:10366728

  17. Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein.

    PubMed

    Yun, Bingling; Gao, Yanni; Liu, Yongzhen; Guan, Xiaolu; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Gao, Yulong; Wang, Xiaomei

    2015-10-01

    The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein. PMID:26175070

  18. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins.

    PubMed Central

    Foster, J W

    1993-01-01

    Although Salmonella typhimurium prefers neutral-pH environments, it can adapt to survive conditions of severe low-pH stress (pH 3.3). The process, termed the acid tolerance response (ATR), includes two distinct stages. The first stage, called pre-acid shock, is induced at pH 5.8 and involves the production of an inducible pH homeostasis system functional at external pH values below 4.0. The second stage occurs following an acid shock shift to pH 4.5 or below and is called the post-acid shock stage. During this stage of the ATR, 43 acid shock proteins (ASPs) are synthesized. The present data reveal that several ASPs important for pH 3.3 acid tolerance are only transiently produced. Their disappearance after 30 to 40 min of pH 4.4 acid shock coincides with an inability to survive subsequent pH 3.3 acid challenge. Clearly, an essential feature of inducible acid tolerance is an ability to synthesize these key ASPs. The pre-acid shock stage, with its inducible pH homeostasis system, offers the cell an enhanced ability to synthesize ASPs following rapid shifts to conditions below pH 4.0, an external pH that normally prevents ASP synthesis. The data also address possible signals for ASP synthesis. The inducing signal for 22 ASPs appears to be internal acidification, while external pH serves to induce 13 others. Of the 14 transient ASPs, 10 are induced in response to changes in internal pH. Mutations in the fur (ferric uptake regulator) locus that produce an Atr- acid-sensitive phenotype also eliminate induction of six transiently induced ASPs. Images PMID:8458840

  19. Amino Acid Polymorphisms in Hepatitis C Virus Core Affect Infectious Virus Production and Major Histocompatibility Complex Class I Molecule Expression.

    PubMed

    Tasaka-Fujita, Megumi; Sugiyama, Nao; Kang, Wonseok; Masaki, Takahiro; Masaski, Takahiro; Murayama, Asako; Yamada, Norie; Sugiyama, Ryuichi; Tsukuda, Senko; Watashi, Koichi; Asahina, Yasuhiro; Sakamoto, Naoya; Wakita, Takaji; Shin, Eui-Cheol; Kato, Takanobu

    2015-01-01

    Amino acid (aa) polymorphisms in the hepatitis C virus (HCV) genotype 1b core protein have been reported to be a potent predictor for poor response to interferon (IFN)-based therapy and a risk factor for hepatocarcinogenesis. We investigated the effects of these polymorphisms with genotype 1b/2a chimeric viruses that contained polymorphisms of Arg/Gln at aa 70 and Leu/Met at aa 91. We found that infectious virus production was reduced in cells transfected with chimeric virus RNA that had Gln at aa 70 (aa70Q) compared with RNA with Arg at aa 70 (aa70R). Using flow cytometry analysis, we confirmed that HCV core protein accumulated in aa70Q clone transfected cells, and it caused a reduction in cell-surface expression of major histocompatibility complex (MHC) class I molecules induced by IFN treatment through enhanced protein kinase R phosphorylation. We could not detect any effects due to the polymorphism at aa 91. In conclusion, the polymorphism at aa 70 was associated with efficiency of infectious virus production, and this deteriorated virus production in strains with aa70Q resulted in the intracellular accumulation of HCV proteins and attenuation of MHC class I molecule expression. These observations may explain the strain-associated resistance to IFN-based therapy and hepatocarcinogenesis of HCV. PMID:26365522

  20. Determination of digestibility, tissue deposition, and metabolism of the omega-3 fatty acid content of krill protein concentrate in growing rats.

    PubMed

    Bridges, Kayla M; Gigliotti, Joseph C; Altman, Stephanie; Jaczynski, Jacek; Tou, Janet C

    2010-03-10

    Krill protein concentrate (KPC) consists of high-quality protein (77.7% dry basis) and lipids (8.1% dry basis) that are rich (27% of total fatty acids) in omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The objective of the study was to determine digestibility, tissue deposition, metabolism, and tissue oxidative stability of the omega-3 PUFAs provided by KPC. Young female Sprague-Dawley rats (n = 10/group) were fed ad libitum isocaloric diets for 4 weeks with either 10% freeze-dried KPC or 10% casein. The casein diet contained 5.3% added corn oil (CO), whereas the KPC contained 5.3% total lipids from 0.9% krill oil (KO) provided by KPC and 4.4% added corn oil (KO + CO). Fatty acid compositions of various tissues were analyzed by gas chromatography. Lipid peroxidation was determined by thiobarbituric acid reactive substances (TBARS). Total antioxidant capacity and urinary eicosanoid metabolites were determined by enzyme immunoassay. The omega-3 PUFAs provided in KO from KPC increased (P = 0.003) docosahexaenoic acid (DHA) concentration in the brain. DHA and eicosapentaenoic acid (EPA) content in fat pads and liver were increased (P < 0.01), whereas the omega-6 PUFA, arachidonic acid (AA), was decreased (P < 0.01) in rats fed the KPC diet containing the KO + CO mixture compared to rats fed the casein diet containing pure CO. Feeding the KPC diet decreased pro-inflammatory 2-series prostaglandin and thromboxane metabolites. There was no significant difference in TBARS or total antioxidant capacity in the tissues of rats fed the different diets. On the basis of the study results, the low amount of omega-3 PUFAs provided by the KO content of KPC provides beneficial effects of increasing tissue EPA and DHA deposition and reduced AA-derived 2-series eicosanoid metabolites without increasing lipid peroxidation. Therefore, consumption of KPC has the potential to provide a healthy and sustainable source of omega-3 PUFAs. PMID:20131797

  1. Expression of heat shock protein (Hsp90) paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon.

    PubMed

    Garcia de la Serrana, Daniel; Johnston, Ian A

    2013-01-01

    Heat shock proteins 90 (Hsp90) have an essential role in sarcomere formation and differentiation in skeletal muscle and also act as molecular chaperones during protein folding impacting a wide range of physiological processes. We characterised and provided a phylogenetically consistent nomenclature for the complete repertoire of six Hsp90 paralogues present in duplicated salmonid fish genomes (Hsp90α1a, Hsp90α1b, Hsp90α2a, Hsp90α2b, Hsp90ß1a and Hsp90ß1b). The expression of paralogues in fast skeletal muscle was investigated using in vivo fasting-feeding experiments and primary myogenic cultures. Fasted juvenile Atlantic salmon (Salmo salar) showed a transient 2 to 8-fold increase in the expression of all 4 Hsp90α paralogues within 24h of satiation feeding. Hsp90α1a and hsp90α1b also showed a pronounced secondary increase in expression after 10 days, concomitant with muscle differentiation and the expression of myogenin and sarcomeric proteins (mlc2, myhc). Hsp90ß1b was constitutively expressed whereas Hsp90ß1a expression was downregulated 10-fold between fasted and fed individuals. Hsp90α1a and Hsp90α1b were upregulated 10 to 15-fold concomitant with myotube formation and muscle differentiation in vitro whereas other Hsp90 paralogues showed no change in expression. In cells starved of amino acid (AA) and serum for 72h the addition of AA, but not insulin-like growth factor 1, increased phosphorylation of mTor and expression of all 4 hsp90α paralogues and associated co-chaperones including hsp30, tbcb, pdia4, pdia6, stga and fk504bp1, indicating a general activation of the protein folding response. In contrast, Hsp90ß1a expression in vitro was unresponsive to AA treatment indicating that some other as yet uncharacterised signal(s) regulate its expression in response to altered nutritional state. PMID:24040223

  2. Effect of Ethionine on the Ribonucleic Acid, Deoxyribonucleic Acid, and Protein Content of Escherichia coli

    PubMed Central

    Smith, Robert C.; Salmon, W. D.

    1965-01-01

    Smith, Robert C. (Auburn University, Auburn, Ala.), and W. D. Salmon. Effect of ethionine on the ribonucleic acid, deoxyribonucleic acid, and protein content of Escherichia coli. J. Bacteriol. 89:687–692. 1965.—The addition of ethionine to cultures of Escherichia coli K-12 W6, a methionine-requiring auxotroph, led to inhibition of the rate of increase in optical density when the ratio of ethionine to methionine was 200:1. When the ratio was 600:1, the increase in optical density became linear. When ethionine was substituted for methionine in the medium, the optical density of the culture increased, and there was a parallel increase in protein content. There was no cell division in these cultures. The rate of synthesis of ribonucleic acid (RNA) in a culture containing ethionine was similar to that of a culture deprived of methionine, but the synthesis of deoxyribonucleic acid in a culture with ethionine was about twice that of a culture deprived of methionine. No detectable radioactivity from ethionine-ethyl-1-C14 was incorporated into RNA. Ethionine-ethyl-1-C14 was readily incorporated into the protein fraction. PMID:14273646

  3. Effects of arachidonic acid on ATP-sensitive K+ current in murine colonic smooth muscle cells.

    PubMed

    Jun, Jae Yeoul; Yeum, Cheol Ho; Park, Yoo Whan; Jang, In Youb; Kong, In Deok; Sim, Jae Hoon; So, Insuk; Kim, Ki Whan; You, Ho Jin

    2002-09-01

    The effects of arachidonic acid (AA) and the mechanism through which it modulates ATP-sensitive K+ (K(ATP)) currents were examined in single smooth muscle cells of murine proximal colon. In the current-clamping mode, AA and glibenclamide induced depolarization of membrane potential. Using 0.1 mM ATP and 140 mM K+ solution in the pipette and 90 mM K+ in the bath solution at a -80 mV of holding potential, pinacidil activated the glibenclamide-sensitive inward current. The potential of these currents was reversed to near the equilibrium potential of K+ by 60 mM K+ in the bath solution. AA inhibited K(ATP) currents in a dose-dependent manner. This inhibition was not changed when 1 mM GDPbetaS was present in the pipette. Chelerythrine, protein kinase C inhibitor, did not block the AA effects. Superoxide dismutase and metabolic inhibitors (indomethacin and nordihydroguaiacretic acid) of AA did not affect the AA-induced inhibition. Eicosatetraynoic acid, a nonmetabolizable analogue of AA, inhibited the K(ATP) currents. These results suggest that AA-induced inhibition of K(ATP) currents is not mediated by G-protein or protein kinase C activation. The inhibitory action is likely to be a possible mechanism of AA-induced membrane depolarization. PMID:12396031

  4. The mRNA expression of amino acid transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1 in the intestine and liver of post-hatch broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acid transporter (AAT) proteins are responsible for the movement of amino acids (AA) in and out of cells. Aminopeptidase (APN) cleaves AAs from the N terminus of polypeptides making them available for transport, while PepT1 is a di- and tri- peptide transporter. In the intestine, these prote...

  5. The requirements of protein & amino acid during acute & chronic infections.

    PubMed

    Kurpad, Anura V

    2006-08-01

    Nutrition and infection interact with each other in a synergistic vicious cycle, leading to an adverse nutritional status and increased susceptibility to infection. Infectious episodes result in hypermetabolism and a negative nitrogen balance which is modulated by hormones, cytokines and other pro-inflammatory mediators, and is compounded by a reduced food intake. The extent of the negative nitrogen balance varies with the type of infection and its duration; however, it is reasonable to suggest that the loss of body protein could be minimized by the provision of dietary nitrogen, although anorexia will limit this. Further, distinctions need to be made about the provision of nutrients or protein during the catabolic and anabolic or recovery phase of the infection, since the capacity of the body to retain protein is enhanced in the anabolic recovery phase. Meeting the increased requirement for protein (and other nutrients) in infection does not imply a complete therapeutic strategy. Infections need to be treated appropriately, with nutrition as an adjunct to the treatment. Prior undernutrition could also impair the body's response to infection, although the weight of the evidence would suggest that this happens more particularly in oedematous undernutrition. In general, the amount of extra protein that would appear to be needed is of the order of 20-25 per cent of the recommended intake, for most infections. In acute infections, this is particularly relevant during the convalescence period. Community trials have suggested that lysine supplementation to the level required for normal daily nutriture, in predominantly wheat eating or potentially lysine deficient communities, improves immune function among other functional nutritional parameters; however, there is as yet insufficient evidence to suggest a specific requirement for amino acids in infections over and above the normal daily requirement as based on recent evidence. Some clinical studies that have showed

  6. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation. PMID:6283503

  7. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis.

    PubMed

    Hamann, Martin V; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  8. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    PubMed

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables. PMID:27451158

  9. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1986-01-01

    Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946

  10. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank. PMID:16780982

  11. Systemic AA amyloidosis in the common marmoset.

    PubMed

    Ludlage, E; Murphy, C L; Davern, S M; Solomon, A; Weiss, D T; Glenn-Smith, D; Dworkin, S; Mansfield, K G

    2005-03-01

    The common marmoset (Callithrix jacchus) is a small New World primate native to Brazil that has been used extensively in biomedical research. A retrospective analysis of archived hematoxylin and eosin-stained tissue sections and clinical records was conducted at the New England Primate Research Center on 86 marmosets more than 1 year of age that were euthanized during the past decade because of morbidity and failure to thrive. Approximately 17% (15 of 86) were found to have amyloid deposits in one or more organs, including the liver, adrenal glands, kidneys, and intestine. This material was shown by amino acid sequence analysis to be composed of serum amyloid A (SAA)-related protein. This type of amyloidosis, designated AA or "secondary," is associated typically with an inflammatory process that induces elevated levels of the SAA amyloidogenic precursor molecule. Notably, there were no significant pathologic differences or other distinguishing features in animals with amyloid versus those without; furthermore, on the basis of the limited number of serum specimens available for analysis, the SAA concentrations in the two groups were comparable, thus suggesting the possible inheritable nature of the disorder. In this respect, the common marmoset provides a unique experimental model for study of the pathogenesis and treatment of AA and other forms of systemic amyloidosis. PMID:15753464

  12. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein.

    PubMed

    Longo, Liam M; Lee, Jihun; Blaber, Michael

    2013-02-01

    A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 "prebiotic" α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a "foldable set"--that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two "primitive" versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment. PMID:23341608

  13. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein

    PubMed Central

    Longo, Liam M.; Lee, Jihun; Blaber, Michael

    2013-01-01

    A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 “prebiotic” α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a “foldable set”—that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two “primitive” versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment. PMID:23341608

  14. Oocyte-Specific Expression of Mouse MEX3C652AA in the Ovary and Its Potential Role in Regulating Maternal Fos mRNA.

    PubMed

    Li, Xue; Li, Yan; Liu, Chunlian; Jin, Mulan; Lu, Baisong

    2016-05-01

    Currently, the human MEX3C gene is known to encode an RNA-binding protein of 659 amino acid residues. Here we show that the MEX3C gene has alternative splicing forms giving rise to multiple MEX3C variants, and some cells express MEX3C transcripts coding for short MEX3C isoforms but not transcripts for MEX3C(659AA) MEX3C(659AA) functions as an adaptor protein for Exportin 1 (XPO1)-mediated nuclear export since it increases the cytoplasmic distribution of poly(A)(+) RNA and since addition of the nuclear export signal (NES) sequence to a short MEX3C isoform MEX3C(464AA) confers similar cytoplasmic poly(A)(+) RNA accumulation activity as MEX3C(659AA) FOS mRNA is a potential MEX3C target mRNA. One mechanism by which MEX3C(659AA) could regulate FOS mRNA is by promoting its nuclear export. Overexpressing MEX3C(659AA) significantly increased FOS mRNA expression, whereas mutating the NES of MEX3C(659AA) and treating cells with leptomycin B to inhibit XPO1-mediated nuclear export attenuated FOS upregulation. FOS mRNA is unstable in somatic cells but less so in oocytes; how it is stabilized in the oocytes is unknown. Transcripts for the mouse counterpart of human MEX3C(659AA) (MEX3C(652AA)) are specifically expressed in developing oocytes in the ovary, although total Mex3c transcripts are expressed in both granulosa cells and oocytes. The specific expression of this long MEX3C isoform in oocytes and its ability to enhance FOS mRNA nuclear export and stability all suggest that MEX3C(659AA) is an RNA-binding protein that preserves maternal FOS mRNA in oocytes. PMID:27053362

  15. Photolabeling of brain membrane proteins by lysergic acid diethylamide.

    PubMed

    Mahon, A C; Hartig, P R

    1982-04-01

    3H-Lysergic acid diethylamide (3H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a subpopulation of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. 3H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays. PMID:7087658

  16. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    SciTech Connect

    Mahon, A.C.; Hartig, P.R.

    1982-04-05

    /sup 3/H-Lysergic acid diethylamide (/sup 3/H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. /sup 3/H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.

  17. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. PMID:26762189

  18. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells.

    PubMed

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 - ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species. PMID:27073893

  19. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells

    PubMed Central

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species. PMID:27073893

  20. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  1. DNA binding proteins that alter nucleic acid flexibility

    NASA Astrophysics Data System (ADS)

    McCauley, Micah; Hardwidge, Philip R.; Maher, L. J., III; Williams, Mark C.

    2007-09-01

    Dual - beam optical tweezers experiments subject single molecules of DNA to high forces (~ 300 pN) with 0.1 pN accuracy, probing the energy and specificity of nucleic acid - ligand structures. Stretching phage λ-DNA reveals an increase in the applied force up to a critical force known as the overstretching transition. In this region, base pairing and stacking are disrupted as double stranded DNA (dsDNA) is melted. Proteins that bind to the double strand will tend to stabilize dsDNA, and melting will occur at higher forces. Proteins that bind to single stranded DNA (ssDNA) destabilize melting, provided that the rate of association is comparable to the pulling rate of the experiment. Many proteins, however, exhibit some affinity for both dsDNA and ssDNA. We describe experiments upon DNA + HMGB2 (box A), a nuclear protein that is believed to facilitate transcription. By characterizing changes in the structure of dsDNA with a polymer model of elasticity, we have determined the equilibrium association constant for HMGB2 to be K ds = 0.15 +/- 0.7 10 9 M -1 for dsDNA binding. Analysis of the melting transition reveals an equilibrium association constant for HMGB2 to ssDNA to be K ss = 0.039 +/- 0.019 10 9 M -1 for ssDNA binding.

  2. Salicylic acid interferes with clathrin-mediated endocytic protein trafficking.

    PubMed

    Du, Yunlong; Tejos, Ricardo; Beck, Martina; Himschoot, Ellie; Li, Hongjiang; Robatzek, Silke; Vanneste, Steffen; Friml, Jirí

    2013-05-01

    Removal of cargos from the cell surface via endocytosis is an efficient mechanism to regulate activities of plasma membrane (PM)-resident proteins, such as receptors or transporters. Salicylic acid (SA) is an important plant hormone that is traditionally associated with pathogen defense. Here, we describe an unanticipated effect of SA on subcellular endocytic cycling of proteins. Both exogenous treatments and endogenously enhanced SA levels repressed endocytosis of different PM proteins. The SA effect on endocytosis did not involve transcription or known components of the SA signaling pathway for transcriptional regulation. SA likely targets an endocytic mechanism that involves the coat protein clathrin, because SA interfered with the clathrin incidence at the PM and clathrin-deficient mutants were less sensitive to the impact of SA on the auxin distribution and root bending during the gravitropic response. By contrast, SA did not affect the ligand-induced endocytosis of the flagellin sensing2 (FLS2) receptor during pathogen responses. Our data suggest that the established SA impact on transcription in plant immunity and the nontranscriptional effect of SA on clathrin-mediated endocytosis are independent mechanisms by which SA regulates distinct aspects of plant physiology. PMID:23613581

  3. A single amino acid in the F2 subunit of respiratory syncytial virus fusion protein alters growth and fusogenicity

    PubMed Central

    Schickli, Jeanne H.; Tang, Roderick S.

    2013-01-01

    Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in children, especially in infants less than 1 year of age. There are currently no licensed vaccines against RSV. rA2ΔM2-2 is a promising live-attenuated vaccine candidate that is currently being evaluated in the clinic. Attenuation of rA2ΔM2-2 is achieved by a single deletion of the M2-2 gene, which disrupts the balance between viral transcription and replication. Whilst performing a manufacturing feasibility study in a serum-free adapted Vero cell line, differences in growth kinetics and cytopathic effect (CPE) were identified between two rA2ΔM2-2 vaccine candidates. Comparative sequence analysis identified four amino acid differences between the two vaccine viruses. Recombinant rA2ΔM2-2 viruses carrying each of the four amino acid differences identified a K66E mutation in the F2 fragment of the fusion (F) protein as the cause of the growth and CPE differences. Syncytium-formation experiments with RSV F protein carrying mutations at aa 66 suggested that a change in charge at this residue within the F2 fragment can have a significant impact on fusion. PMID:24092758

  4. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  5. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding. PMID:25096519

  6. Apparent ileal digestibility of nutrients and amino acids in soybean meal, fish meal, spray-dried plasma protein and fermented soybean meal to weaned pigs.

    PubMed

    Jeong, Jin Suk; Park, Jae Won; Lee, Sang In; Kim, In Ho

    2016-05-01

    This study sought to determine whether fermentation could increase apparent ileal digestibility (AID) of dry matter (DM), nitrogen (N), energy (E) and amino acids (AA) in fermented soybean meal (FSBM) greater than that of soybean meal (SBM) in weaned pigs. Four weaned pigs (10.00 ± 0.30 kg) were surgically equipped with T-cannulas and randomly followed a 4 × 4 Latin square design of treatments (SBM, FSBM, fish meal and spray-dried plasma protein). Overall, the fermentation process was able to reduce the amount of anti-nutritional factors (ANF), including trypsin inhibitors, raffinose and stachyose, in the FSBM diet, which were significantly reduced by 39.4, 92.2, and 92.9%, respectively, as compared to the SBM diet. As a consequence of ANF reduction in FSBM, the AID of DM, N and E as well as AA was significantly greater with FSBM than SBM. Taken all together, the fermentation process improved the nutritional quality of SBM, due to ANF reduction, leading to improvement of digestibility of AA. As such, FSBM can be potentially used as a specialized feed ingredient, especially for young animal diets in an attempt to reduce diet costs. PMID:26300306

  7. cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori.

    PubMed

    Yaoi, K; Nakanishi, K; Kadotani, T; Imamura, M; Koizumi, N; Iwahana, H; Sato, R

    1999-01-18

    Bacillus thuringiensis Cry1Aa toxin binds to a 120 kDa putative receptor protein in the Bombyx mori midgut. Recently, this protein was purified and identified as glycosyl-phosphatidylinositol (GPI) anchored aminopeptidase N (APN). In this study, a full-length cDNA thought to encode this 120 kDa APN was isolated and sequenced. It has a 2958 bp ORF encoding 986 amino acids. In the deduced amino acid sequence, we identified GPI-anchor and zinc-metallopeptidase signals, which are the same as those of APNs of other insects that are reported to be putative Cry1 toxin receptors. The B. mori APN amino acid sequence also has a high similarity with those of the other APNs. Subsequently, the recombinant APN was expressed by Escherichia coli and its Cry1Aa toxin binding ability was analyzed. Ligand blotting showed that Cry1Aa toxin bound to the recombinant APN. PMID:9931470

  8. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  9. Shedding light on proteins, nucleic acids, cells, humans and fish.

    PubMed

    Setlow, Richard B

    2002-03-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma. PMID:11906839

  10. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  11. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children.

    PubMed

    Chen, Long Hui; Yang, Ze Min; Chen, Wei Wen; Lin, Jing; Zhang, Min; Yang, Xiao Rong; Zhao, Ling Bo

    2015-04-14

    Salivary α-amylase (sAA) is responsible for the 'pre-digestion' of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children. PMID:25784372

  12. High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser22(Phos) → Phe variant

    PubMed Central

    Iavarone, Federica; D’Alessandro, Alfredo; Tian, Na; Cabras, Tiziana; Messana, Irene; Helmerhorst, Eva J.; Oppenheim, Frank G.; Castagnola, Massimo

    2015-01-01

    During a survey of human saliva by a top-down reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometry approach, two proteins eluting at 27.4 and 28.4 min, with average masses of 15 494 ± 1 and 11 142 ± 1 Da, were detected in a subject from Boston. The Δmass value (4352 Da) of the two proteins was similar to the difference in mass values between intact (150 amino acids, [a.a.]) and truncated acidic proline-rich proteins (aPRPs; 106 a.a.) suggesting an a.a. substitution in the first 106 residues resulting in a strong reduction in polarity, since under the same experimental conditions aPRPs eluted at ~22.5 min (intact) and 23.5 min (truncated forms). Manual inspection of the high-resolution high-performance liquid chromatography with electrospray ionization tandem mass spectra of the truncated isoform showed the replacement of the phosphorylated Ser-22 in PRP-3 with a Phe residue. Inspection of the tandem mass spectra of the intact isoform confirmed the substitution, which is allowed by the code transition TCT→TTT and is in agreement with the dramatic increase in elution time. The isoform was also detected in two other subjects, one from Boston (unrelated to the previous) and one from Rome. For this reason we propose to name this variant PRP-1 (PRP-3) RB (Roma-Boston) Ser22(phos)→Phe. PMID:24771659

  13. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hayashi, Kenjiro; Kuribayashi, Hideaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-08-15

    The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids. PMID:23872411

  14. Mutagenesis Mapping of the Protein-Protein Interaction Underlying FusB-Type Fusidic Acid Resistance

    PubMed Central

    Cox, Georgina; Edwards, Thomas A.

    2013-01-01

    FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB–EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012). PMID:23836182

  15. Mutagenesis mapping of the protein-protein interaction underlying FusB-type fusidic acid resistance.

    PubMed

    Cox, Georgina; Edwards, Thomas A; O'Neill, Alex J

    2013-10-01

    FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB-EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012). PMID:23836182

  16. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  17. Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation.

    PubMed

    Huang, Qiaoying; You, Zhuhong; Zhang, Xiaofeng; Zhou, Yong

    2015-01-01

    With the completion of the Human Genome Project, bioscience has entered into the era of the genome and proteome. Therefore, protein-protein interactions (PPIs) research is becoming more and more important. Life activities and the protein-protein interactions are inseparable, such as DNA synthesis, gene transcription activation, protein translation, etc. Though many methods based on biological experiments and machine learning have been proposed, they all spent a long time to learn and obtained an imprecise accuracy. How to efficiently and accurately predict PPIs is still a big challenge. To take up such a challenge, we developed a new predictor by incorporating the reduced amino acid alphabet (RAAA) information into the general form of pseudo-amino acid composition (PseAAC) and with the weighted sparse representation-based classification (WSRC). The remarkable advantages of introducing the reduced amino acid alphabet is being able to avoid the notorious dimensionality disaster or overfitting problem in statistical prediction. Additionally, experiments have proven that our method achieved good performance in both a low- and high-dimensional feature space. Among all of the experiments performed on the PPIs data of Saccharomyces cerevisiae, the best one achieved 90.91% accuracy, 94.17% sensitivity, 87.22% precision and a 83.43% Matthews correlation coefficient (MCC) value. In order to evaluate the prediction ability of our method, extensive experiments are performed to compare with the state-of-the-art technique, support vector machine (SVM). The achieved results show that the proposed approach is very promising for predicting PPIs, and it can be a helpful supplement for PPIs prediction. PMID:25984606

  18. Amino acid infusion fails to stimulate skeletal muscle protein synthesis up to one year post injury in children with severe burns

    PubMed Central

    Cotter, Matthew; Diaz, Eva C; Jennings, Kristofer; Herndon, David N; Børsheim, Elisabet

    2013-01-01

    Background Burn injury results in increased skeletal muscle protein turnover, where the magnitude of protein breakdown outweighs synthesis resulting in muscle wasting. The impact of increased amino acid (AA) provision on skeletal muscle fractional synthesis rate (FSR) in severely burned patients during their convalescence after discharge from hospital is not known. Subsequently, the purpose of this study was to determine skeletal muscle FSR in response to AA infusion in severely burned pediatric patients at discharge from hospital, and at six and twelve months post injury. Methods Stable isotope infusion studies were performed in the postprandial state and during intravenous AA infusion. Skeletal muscle biopsies were obtained and isotope enrichment determined in order to calculate skeletal muscle FSR. Patients were studied at discharge from hospital (n=11), and at six (n=15), and twelve months (n=14) post injury. Results The cohorts of patients studied at each time point post injury were not different with regards to age, body mass or burn size. AA infusion failed to stimulate FSR above basal values at discharge from hospital (0.27±0.04 vs. 0.26±0.06 %·hr−1), six months post injury (0.20±0.04 vs. 0.22±0.03 %·hr−1), and twelve months post injury (0.16±0.03 vs. 0.15±0.05 %·hr−1). Daily FSR was numerically lower at six months post burn (5.51±0.79 %·day−1) and significantly (P<0.05) lower at 12 months post burn (3.67±0.65 %·day−1) relative to discharge group (6.32±1.02 %·day−1). Discussion The findings of the current study suggest that the deleterious impact of burn injury on skeletal muscle AA metabolism persists for up to one year post injury. In light of these findings, nutritional and pharmacological strategies aimed at attenuating muscle protein breakdown post burn may be a more efficacious approach to maintaining muscle mass in severely burned patients. PMID:23694875

  19. Functional amino acids in fish nutrition, health and welfare.

    PubMed

    Andersen, Synne M; Waagbø, Rune; Espe, Marit

    2016-01-01

    Protein is the most expensive part of fish diets and supplies amino acids (AA) for energy, growth, protein synthesis and as substrates for key metabolic pathways. Functional AA is a term used to describe AA that are involved in cellular processes apart from protein synthesis. A deficiency, or imbalance, in functional AA may impair body metabolism and homeostasis. Recent years have seen an increased interest in AA to increase disease resistance, immune response, reproduction, behavior and more. This has led to a boost of commercially available functional fish feeds that aim to optimize fish performance and quality of the product. This review aim to collect recent findings of functional AA and of how they may improve fish health and welfare. It will focus on functional properties of some of the most studied AA, namely arginine, glutamine, glutamate, tryptophan, sulfur amino acids (methionine, cysteine and taurine), histidine and branched chain amino acids. Where information is not available in fish, we will point towards functions known in animals and humans, with possible translational functions to fish. PMID:26709652

  20. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  1. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  2. Net Flux of Amino Acids Across the Portal-drained Viscera and Liver of the Ewe During Abomasal Infusion of Protein and Glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreasing the fraction of amino acids metabolized by the mucosal cells may increase the fraction of AA being released into the blood. A potential mechanism to reduce AA catabolism by mucosal cells is to provide an alternative source of energy. We hypothesized that increasing glucose flow to the s...

  3. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  4. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  5. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  6. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  7. Comparison between the AA/EPA ratio in depressed and non depressed elderly females: omega-3 fatty acid supplementation correlates with improved symptoms but does not change immunological parameters

    PubMed Central

    2012-01-01

    Background Depression is one of the most frequently missed diagnoses in elderly people, with obvious negative effects on quality of life. Various studies have shown that long chain omega-3 polyunsaturated fatty acids (n-3 PUFA) may be useful in its management. Our objective was to evaluate whether a supplement containing n-3 PUFA improves depressive symptoms in depressed elderly patients, and whether the blood fatty acid pattern is correlated with these changes. Methods The severity of depressive symptoms according to the Geriatric Depression Scale (GDS), blood fatty acid composition and erythrocyte phospholipids were analyzed in 46 depressed females aged 66-95y, diagnosed with depression according to DSMIV, within the context of a randomized, double-blind, placebo-controlled trial. 22 depressed females were included in the intervention group (2.5 g/day of n-3 PUFA for 8 weeks), and 24 in the placebo group. We also measured immunological parameters (CD2, CD3, CD4, CD8, CD16, CD19 and cytokines (IL-5, IL-15). Results The mean GDS score and AA/EPA ratio, in whole blood and RBC membrane phospholipids, were significantly lower after 2 months supplementation with n-3 PUFA. A significant correlation between the amelioration of GDS and the AA/EPA ratio with some immunological parameters, such as CD2, CD19, CD4, CD16 and the ratio CD4/CD8, was also found. Nevertheless, omega-3 supplementation did not significantly improve the studied immunological functions. Conclusions n-3 PUFA supplementation ameliorates symptoms in elderly depression. The n-3 PUFA status may be monitored by means of the determination of whole blood AA/EPA ratio. PMID:23046564

  8. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Yoon, Jin-Soo; Yadunandam, Anandam Kasin; Kim, Gun-Do

    2014-03-01

    Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca(2+) mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells. PMID:23955513

  9. Cu(II)-catalyzed reactions in ternary [Cu(AA)(AA - H)]+ complexes (AA = Gly, Ala, Val, Leu, Ile, t-Leu, Phe).

    PubMed

    Wang, Ping; Ohanessian, Gilles; Wesdemiotis, Chrys

    2009-01-01

    The unimolecular chemistry of [Cu(II)AA(AA - H)](+) complexes, composed of an intact and a deprotonated amino acid (AA) ligand, have been probed in the gas phase by tandem and multistage mass spectrometry in an electrospray ionization quadrupole ion trap mass spectrometer. The amino acids examined include Gly, Ala, Val, Leu, Ile, t-Leu and Phe. Upon collisionally-activated dissociation (CAD), the [Cu(II)AA(AA - H)](+) complexes undergo decarboxylation with simultaneous reduction of Cu(II) to Cu(I); during this process, a radical site is created at the alpha-carbon of the decarboxylated ligand (H(2)N(1) - (*)C(alpha)H - C(beta)H(2) - R; R = side chain substituent). The radical site is able to move along the backbone of the decarboxylated amino acid to form two new radicals (HN(1)(*) - C(alpha)H(2) - C(beta)H(2) - R and H(2)N(1) - C(alpha)H(2) - (*)C(beta)H - R). From the complexes of Gly and t-Leu, only C(alpha) and N(1) radicals can be formed. The whole radical ligand can be lost to form [Cu(I)AA](+) from these three isomeric radicals. Alternatively, further radical induced dissociations can take place along the backbone of the decarboxylated amino acid ligand to yield [Cu(II)AA(AA - 2H - CO(2))](+), [Cu(I)AA((*)NH(2))](+), [Cu(I)AA(HN = C(alpha)H(2))](+), or [Cu(I)AA(H(2)N - C(alpha)H = C(beta)H - R'](+) (R' = partial side chain substituent). The sodiated copper complexes, [Cu(II)(AA - H + Na)(AA - H)](+), show the same fragmentation patterns as their non-sodiated counterparts; sodium ion is retained on the intact amino acid ligand and is not involved in the CAD pathways. The amino groups of both AA units, the carbonyl group of the intact amino acid, and the deprotonated hydroxyl oxygen coordinate Cu(II) in square-planar fashion. Ab initio calculations indicate that the metal ion facilitates hydrogen atom shuttling between the N(1), C(alpha) and C(beta) atoms of the decarboxylated amino acid ligand. The dissociations of the decarboxylated radical ions unveil

  10. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins.

    PubMed

    Solé-Magdalena, Antonio; Revuelta, Enrique G; Menénez-Díaz, Ivan; Calavia, Marta G; Cobo, Teresa; García-Suárez, Olivia; Pérez-Piñera, Pablo; De Carlos, Felix; Cobo, Juan; Vega, Jose A

    2011-05-01

    Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa(+) C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa(+) C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa(+) C. The intensity of immunostaining was high for β-ENa(+) C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa(+) C, and TRPV4, being absent for α-ENa(+) C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission. PMID:20836083

  11. DBBP: database of binding pairs in protein-nucleic acid interactions

    PubMed Central

    2014-01-01

    Background Interaction of proteins with other molecules plays an important role in many biological activities. As many structures of protein-DNA complexes and protein-RNA complexes have been determined in the past years, several databases have been constructed to provide structure data of the complexes. However, the information on the binding sites between proteins and nucleic acids is not readily available from the structure data since the data consists mostly of the three-dimensional coordinates of the atoms in the complexes. Results We analyzed the huge amount of structure data for the hydrogen bonding interactions between proteins and nucleic acids and developed a database called DBBP (DataBase of Binding Pairs in protein-nucleic acid interactions, http://bclab.inha.ac.kr/dbbp). DBBP contains 44,955 hydrogen bonds (H-bonds) of protein-DNA interactions and 77,947 H-bonds of protein-RNA interactions. Conclusions Analysis of the huge amount of structure data of protein-nucleic acid complexes is labor-intensive, yet provides useful information for studying protein-nucleic acid interactions. DBBP provides the detailed information of hydrogen-bonding interactions between proteins and nucleic acids at various levels from the atomic level to the residue level. The binding information can be used as a valuable resource for developing a computational method aiming at predicting new binding sites in proteins or nucleic acids. PMID:25474259

  12. Protein quality of insects as potential ingredients for dog and cat foods.

    PubMed

    Bosch, Guido; Zhang, Sheng; Oonincx, Dennis G A B; Hendriks, Wouter H

    2014-01-01

    Insects have been proposed as a high-quality, efficient and sustainable dietary protein source. The present study evaluated the protein quality of a selection of insect species. Insect substrates were housefly pupae, adult house cricket, yellow mealworm larvae, lesser mealworm larvae, Morio worm larvae, black soldier fly larvae and pupae, six spot roach, death's head cockroach and Argentinean cockroach. Reference substrates were poultry meat meal, fish meal and soyabean meal. Substrates were analysed for DM, N, crude fat, ash and amino acid (AA) contents and for in vitro digestibility of organic matter (OM) and N. The nutrient composition, AA scores as well as in vitro OM and N digestibility varied considerably between insect substrates. For the AA score, the first limiting AA for most substrates was the combined requirement for Met and Cys. The pupae of the housefly and black soldier fly were high in protein and had high AA scores but were less digestible than other insect substrates. The protein content and AA score of house crickets were high and similar to that of fish meal; however, in vitro N digestibility was higher. The cockroaches were relatively high in protein but the indispensable AA contents, AA scores and the in vitro digestibility values were relatively low. In addition to the indices of protein quality, other aspects such as efficiency of conversion of organic side streams, feasibility of mass-production, product safety and pet owner perception are important for future dog and cat food application of insects as alternative protein source. PMID:26101598

  13. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  14. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  15. Coffee bean arabinogalactans: acidic polymers covalently linked to protein.

    PubMed

    Redgwell, Robert J; Curti, Delphine; Fischer, Monica; Nicolas, Pierre; Fay, Laurent B

    2002-02-11

    The arabinogalactan content of green coffee beans (Coffea arabica var. Yellow Caturra) was released by a combination of chemical extraction and enzymatic hydrolysis of the mannan-cellulose component of the wall. Several arabinogalactan fractions were isolated, purified by gel-permeation and ion-exchange chromatography and characterised by compositional and linkage analysis. The AG fractions contained between 6 and 8% glucuronic acid, and gave a positive test for the beta-glucosyl-Yariv reagent, a stain specific for arabinogalactan-proteins. The protein component accounted for between 0.5 and 2.0% of the AGPs and contained between 7 and 12% hydroxyproline. The AG moieties displayed considerable heterogeneity with regard to their degree of arabinosylation and the extent and composition of their side-chains. They possessed a MW average of 650 kDa which ranged between 150 and 2000 kDa. An investigation of the structural features of the major AG fraction, released following enzymatic hydrolysis of the mannan-cellulose polymers, allowed a partial structure of coffee arabinogalactan to be proposed. PMID:11844494

  16. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  17. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses. PMID:20005247

  18. Latency, duration and dose response relationships of amino acid effects on human muscle protein synthesis.

    PubMed

    Rennie, Michael J; Bohé, Julien; Wolfe, Robert R

    2002-10-01

    The components of the stimulatory effect of food on net deposition of protein are beginning to be identified and separated. One of the most important of these appears to be the effect of amino acids per se in stimulating muscle anabolism. Amino acids appear to have a linear stimulatory effect within the range of normal diurnal plasma concentrations from postabsorptive to postprandial. Within this range, muscle protein synthesis (measured by incorporation of stable isotope tracers of amino acids into biopsied muscle protein) appears to be stimulated approximately twofold; however, little further increase occurs when very high concentrations of amino acids (>2.5 times the normal postabsorptive plasma concentration) are made available. Amino acids provided in surfeit of the ability of the system to synthesize protein are disposed of by oxidation, ureagenesis and gluconeogenesis. The stimulatory effect of amino acids appears to be time dependent; a square wave increase in the availability of amino acids causes muscle protein synthesis to be stimulated and to fall back to basal values, despite continued amino acid availability. The relationship between muscle protein synthesis and insulin availability suggests that most of the stimulatory effects occur at low insulin concentrations, with large increases having no effect. These findings may have implications for our understanding of the body's requirements for protein. The maximal capacity for storage of amino acids as muscle protein probably sets an upper value on the extent to which amino acids can be stored after a single meal. PMID:12368422

  19. Reducing protein adsorption with polymer-grafted hyaluronic acid coatings.

    PubMed

    Ramadan, Mohamed H; Prata, Joseph E; Karácsony, Orsolya; Dunér, Gunnar; Washburn, Newell R

    2014-07-01

    We report a thermoresponsive chemical modification strategy of hyaluronic acid (HA) for coating onto a broad range of biomaterials without relying on chemical functionalization of the surface. Poly(di(ethylene glycol) methyl ether methacrylate) (PMEO2MA), a polymer with a lower critical solution temperature of 26 °C in water, was grafted onto HA to allow facile formation of biopolymer coatings. While the mechanism for film formation appears to involve a complex combination of homogeneous nucleation followed by heterogeneous film growth, we demonstrate that it resulted in hydrophilic coatings that significantly reduce protein adsorption despite the high fraction of hydrophobic (PMEO2MA). Structural characterization was performed using atomic force microscopy (AFM), which showed the formation of a dense, continuous coating based on 200 nm domains that were stable in protein solutions for at least 15 days. The coatings had a water contact angle of 16°, suggesting the formation of hydrophilic but not fully wetting films. Quartz crystal microbalance with dissipation monitoring (QCM-D) as well as biolayer interferometry (BLI) techniques were used to measure adsorption of bovine serum albumin (BSA), fibrinogen (Fbg), and human immunoglobulin (IgG), with results indicating that HA-PMEO2MA-coated surfaces effectively inhibited adsorption of all three serum proteins. These results are consistent with previous studies demonstrating that this degree of hydrophilicity is sufficient to generate an effectively nonfouling surface and suggest that segregation during the solubility transition resulted in a surface that presented the hydrophilic HA component of the hybrid biopolymer. We conclude that PMEO2MA-grafted HA is a versatile platform for the passivation of hydrophobic biomaterial surfaces without need for substrate functionalization. PMID:24892924

  20. Effects of ascorbic acid supplementation on male reproductive system during exposure to hypoxia

    NASA Astrophysics Data System (ADS)

    Havazhagan, G.; Riar, S. S.; Kain, A. K.; Bardhan, Jaya; Thomas, Pauline

    1989-09-01

    Two groups of male rats were exposed to simulated altitudes of 6060 m and 7576 m for 6 h/day for 7 days (intermittent exposure). In two additional groups of animals exposed to the same altitude, 100 mg of ascorbic acid (AA) was fed daily for 5 days prior to the exposure period and also during the exposure period. Rats that did not receive AA showed loss of body weight and weight of reproductive organs after exposure. Sex organs showed atrophy on histological examination and there was a deterioration in spermatozoal quality. There was an increase in alkaline and acid phosphatase, and decrease in protein, sialic acid and glyceryl phosphorylcholine content in various reproductive tissues after exposure. All the above changes in histology and biochemical composition could be partially prevented by AA supplementation. AA supplementation can therefore protect the male reproductive system from deleterious effects of hypoxia. The probable mechanism of action of AA is discussed.

  1. ASSESSMENT OF NEUROTOXICITY: USE OF GLIAL FIBRILLARY ACIDIC PROTEIN AS A BIOMARKER

    EPA Science Inventory

    Diverse neurotoxic insults results in proliferation and hypertrophy of astrocytes. he hallmark of this response is enhanced expression of the major intermediate filament protein of astrocytes, glial fibrillary acidic protein (GFAP). hese observations suggest that GFAP may be a us...

  2. SEED PROTEIN QUANTITIES OF FIELD-GROWN SOYBEANS EXPOSED TO SIMULATED ACIDIC RAIN

    EPA Science Inventory

    Analysis of seeds harvested from field-grown soybeans demonstrated that simulated acidic rainfalls from two experimental protocols can significantly decrease total protein contents of soybeans. Statistically significant differences in protein content per seed mass were obtained i...

  3. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    PubMed

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. PMID:26928903

  4. Solvent accessible surface area-based hot-spot detection methods for protein-protein and protein-nucleic acid interfaces.

    PubMed

    Munteanu, Cristian R; Pimenta, António C; Fernandez-Lozano, Carlos; Melo, André; Cordeiro, Maria N D S; Moreira, Irina S

    2015-05-26

    Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems). The best models for these interactions have been implemented in two free Web tools. PMID:25845030

  5. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  6. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  7. Fatty acid transport protein 1 can compensate for fatty acid transport protein 4 in the developing mouse epidermis.

    PubMed

    Lin, Meei-Hua; Miner, Jeffrey H

    2015-02-01

    Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very-long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective barrier; they die neonatally because of dehydration and restricted movements. Mutations in SLC27A4, the gene encoding FATP4, cause ichthyosis prematurity syndrome (IPS), characterized by premature birth, respiratory distress, and edematous skin with severe ichthyotic scaling. Symptoms of surviving patients become mild, although atopic manifestations are common. We previously showed that suprabasal keratinocyte expression of a Fatp4 transgene in Fatp4 mutant skin rescues the lethality and ameliorates the skin phenotype. Here we tested the hypothesis that FATP1, the closest FATP4 homolog, can compensate for the lack of FATP4 in our mouse model of IPS, as it might do postnatally in IPS patients. Transgenic expression of FATP1 in suprabasal keratinocytes rescued the phenotype of Fatp4 mutants, and FATP1 sorted to the same intracellular organelles as endogenous FATP4. Thus, FATP1 and FATP4 likely have overlapping substrate specificities, enzymatic activities, and biological functions. These results suggest that increasing expression of FATP1 in suprabasal keratinocytes could normalize the skin of IPS patients and perhaps prevent the atopic manifestations. PMID:25184958

  8. Highly immunoreactive antibodies against the rHup-F2 fragment (aa 63-161) of the iron-regulated HupB protein of Mycobacterium tuberculosis and its potential for the serodiagnosis of extrapulmonary and recurrent tuberculosis.

    PubMed

    Sritharan, N; Choudhury, M; Sivakolundu, S; Chaurasia, R; Chouhan, N; Rao, P P; Sritharan, M

    2015-01-01

    HupB is an iron-regulated protein in Mycobacterium tuberculosis that functions as a positive regulator of mycobactin biosynthesis. It is essential for the growth and survival of the pathogen inside macrophages. Previously, using the full-length rHupB of M. tuberculosis, we demonstrated high levels of anti-HupB antibodies in the serum of pulmonary tuberculosis (TB) and, interestingly, extrapulmonary TB patients with negligible levels in household contacts and healthy controls. Here, we used three antigenic fragments of HupB, namely the recombinant HupB-F1 (aa 1-71), HupB-F2 (aa 63-161) and HupB-F3 (aa 164-214), as antigens in enzyme-linked immunosorbent assay (ELISA) to screen serum from TB patients. HupB-F2 showed enhanced immunoreactivity with serum from patients with pulmonary TB (three groups consisting of new cases, defaulters and recurrent cases) and extrapulmonary TB, with negligible levels in normal healthy controls. The negative correlation of the anti-(HupB-F2) antibodies with serum iron was maximal, with a Pearson's correlation coefficient value of -0.415. The study, in addition to strengthening the diagnostic potential of HupB, reflected the superior performance of HupB-F2 as an antigen in screening pulmonary and extrapulmonary TB. PMID:25037869

  9. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  10. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  11. Gene Activation in Eukaryotes: Are Nuclear Acidic Proteins the Cause or the Effect?

    PubMed Central

    Pederson, Thoru

    1974-01-01

    Nuclear acidic proteins have been implicated in the positive control of gene transcription in eukaryotes. This hypothesis was examined in greater detail by analysis of these proteins during experimental gene activation by a technique for fractionating nuclei into chromatin and the ribonucleoprotein particles that contain heterogeneous nuclear RNA. When synthesis of rat-liver heterogeneous nuclear RNA was stimulated by administration of hydrocortisone, there was a parallel increase in the labeling of acidic proteins in ribonucleoprotein particles. However, there was no detectable effect on the labeling of either acidic chromatin proteins or histones. Thus, the nuclear acidic proteins that respond to the hormone are concerned with a post-transcriptional event, namely the assembly and processing of ribonucleoprotein particles that contain heterogeneous RNA, rather than with direct gene activation. Increases in synthesis of “chromatin” acidic proteins during gene activation observed by others may reflect the presence of these ribonucleoprotein particles in crude chromatin preparations. Images PMID:4522777

  12. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail. PMID:27452282

  13. Identification of Dynamic Changes in Proteins Associated with the Cellular Cytoskeleton after Exposure to Okadaic Acid

    PubMed Central

    Opsahl, Jill A.; Ljostveit, Sonja; Solstad, Therese; Risa, Kristin; Roepstorff, Peter; Fladmark, Kari E.

    2013-01-01

    Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100–500 nM), the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM) could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment. PMID:23708184

  14. Release of arachidonic acid from oligodendrocytes by terminal complement proteins, C5b-C9

    SciTech Connect

    Shirazi, Y.; Imagawa, D.K.; Shin, M.L.

    1986-03-01

    Activation of C5b-C9 on monocytes, macrophages, platelets and neutrophils induces membrane lipid hydrolysis and generates arachidonic acid (AA) and its oxygenated derivatives. Additionally, activation of C5b-C9 and myelin lipid hydrolysis has been observed in demyelination. The authors have investigated the modulatory effect of C5b-9 on membrane lipid hydrolysis of oligodendrocytes (OLG), the myelin producing cells in the central nervous system. Antibody-sensitized rat OLG, prelabeled with /sup 14/C AA were treated with excess C6-deficient rabbit serum reconstituted with limiting doses of C6. Qualitative analysis of the supernatants by HPLC revealed the presence of both cyclooxygenase and lipooxygenase products. Prostaglandin E/sub 2/, leukotriene (LT) E/sub 4/, LTB/sub 4/ and free AA were the major radiolabeled products. The kinetics and dose response of LTB/sub 4/ release with respect to the cytolytic dose of C5b-9 were quantitated by radioimmunoassay. LTB/sub 4/ release approached maximum in 1 hr and higher amounts were detected with fewer C5b-9 channels. Addition of C8 to OLG bearing C5b-7 intermediates induced maximum LTB/sub 4/ release without further enhancement by C9 in contrast to the absolute requirement of C9 in mediator release from rat neutrophils. Thus, the requirement of C5b-8 or C5b-9 in mediator release appears to be cell-type dependent.

  15. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. PMID:26776055

  16. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability

    PubMed Central

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-01-01

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability. PMID:26056817

  17. BILE ACIDS REGULATE THE ONTOGENIC EXPRESSION OF ILEAL BILE ACID BINDING PROTEIN IN THE RAT VIA THE FARNESOID X RECEPTOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the rat, an increase in ileal bile acid binding protein (IBABP) expression occurs during the third postnatal week. In vitro studies suggest that bile acids (BAs) increase IBABP transcription by activating the BA receptor, farnesoid X receptor (FXR). Thus, we investigated the role of BAs on the on...

  18. [Effect of proteolysis inhibitors on the incorporation of labelled amino acids into proteins].

    PubMed

    Konikova, A S; Korotkina, R N

    1975-01-01

    Role of peptide bond breaks in the incorporation of amino acids into proteins in a "protein--amino acid" system is investigated. For this purpose the incorporation of labelled amino acids into trypsin under the inhibition of its autolysis by a specific inhibitor from soybean and epsilon-amino-caproic acid is studied. The trypsin inhibitor from soybean is found to suppress considerably the incorporation of 14C-glycine, 14C-lysine and 14C-methionine into crystal trypsin and not to affect the incorporation of labelled amino acids into chomotrypsin, papain and carboxypeptidase. Epsilon-Aminocaproic acid inhibited 14C-glycine incorporation into crystal trypsin by 40% and did not change its incorporation level into serum albumin. The dependency of amino acid incorporation level into trypsin on the activity of autolysis in the "protein--amino acid" system is demonstrated. PMID:1212456

  19. Retinoic acid-binding protein, rhombomeres and the neural crest.

    PubMed

    Maden, M; Hunt, P; Eriksson, U; Kuroiwa, A; Krumlauf, R; Summerbell, D

    1991-01-01

    We have investigated by immunocytochemistry the spatial and temporal distribution of cellular retinoic acid-binding protein (CRABP) in the developing nervous system of the chick embryo in order to answer two specific questions: do neural crest cells contain CRABP and where and when do CRABP-positive neuroblasts first arise in the neural tube? With regard to the neural crest, we have compared CRABP staining with HNK-1 staining (a marker of migrating neural crest) and found that they do indeed co-localise, but cephalic and trunk crest behave slightly differently. In the cephalic region in tissues such as the frontonasal mass and branchial arches, HNK-1 immunoreactivity is intense at early stages, but it disappears as CRABP immunoreactivity appears. Thus the two staining patterns do not overlap, but are complementary. In the trunk, HNK-1 and CRABP stain the same cell populations at the same time, such as those migrating through the anterior halves of the somites. In the neural tube, CRABP-positive neuroblasts first appear in the rhombencephalon just after the neural folds close and then a particular pattern of immunoreactivity appears within the rhombomeres of the hindbrain. Labelled cells are present in the future spinal cord, the posterior rhombencephalon up to rhombomere 6 and in rhombomere 4 thus producing a single stripe pattern. This pattern is dynamic and gradually changes as anterior rhombomeres begin to label. The similarity of this initial pattern to the arrangement of certain homeobox genes in the mouse stimulated us to examine the expression of the chicken Hox-2.9 gene. We show that at stage 15 the pattern of expression of this gene is closely related to that of CRABP. The relationship between retinoic acid, CRABP and homeobox genes is discussed. PMID:1707786

  20. The amino acid sequence of protein CM-3 from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J

    1985-01-01

    Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities. PMID:4029488

  1. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  2. Section AA Pre2004 Fire, Section AA 2009, Section AA, South ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section A-A Pre-2004 Fire, Section A-A 2009, Section A-A, South Elevation - Boston & Maine Railroad, Berlin Branch Bridge #148.81, Formerly spanning Moose Brook at former Boston & Maine Railroad, Gorham, Coos County, NH

  3. Use of a peptide rather than free amino acid nitrogen source in chemically defined "elemental" diets.

    PubMed

    Silk, D B; Fairclough, P D; Clark, M L; Hegarty, J E; Marrs, T C; Addison, J M; Burston, D; Clegg, K M; Matthews, D M

    1980-01-01

    Previous studies have shown that amino acid (AA) residues are absorbed more rapidly from di- tripeptides than from free AA. In the present study, an intestinal perfusion technique has been used in normal human subjects to compare absorption of AA residues and total alpha-amino nitrogen (N) from 4 partial enzymic hydrolysates of protein (50--80% of the N contents present as small peptides) and their respective equimolar free AA mixtures. alpha-Amino N absorption was greater from 2 casein hydrolytes and a lactalbumin hydrolysate than from the respective free AA mixtures but similar to that from a fish protein hydrolysate and its AA mixture. The considerable variation in absorption of individual AA residues from the AA mixtures was much reduced when the protein hydrolysates were perfused, as a number of AA which were poorly absorbed from the AA mixtures were absorbed to a greater extent from the protein hydrolysates. The casein and lactalbumin hydrolysates had a stimulatory effect on jejunal absorption of water and electrolytes. In contrast, the fish protein hydrolysate appeared to cause a mean net secretion of fluid and electrolytes. The findings indicate that when absorption is limited by diminished luminal hydrolysis or absorptive capacity, serious consideration might be given to using partial enzymic hydrolysates of whole protein rather than free AA mixtures as the N source in "elemental" diets. Care should be taken, however, in ensuring that the preparation of choice does not promote a net secretion of fluid and electrolytes for such a property could have a deleterious effect in the clinical setting. PMID:6780707

  4. Experimentally Testing the Hypothesis of a Limited Amino Acid Repertoire in Primitive Proteins

    NASA Astrophysics Data System (ADS)

    Akanuma, S.; Nakajima, Y.; Yokobori, S.; Yamagishi, A.

    2013-11-01

    It has been argued that a fewer amino acids were used in primitive proteins and later the repertoire increased up to 20. To test this hypothesis experimentally, we restricted the amino acid usage of a reconstructed, ancestral protein to reduced sets.

  5. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition.

    PubMed

    Morales, A; Buenabad, L; Castillo, G; Arce, N; Araiza, B A; Htoo, J K; Cervantes, M

    2015-05-01

    Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P < 0.01). Expression of b(0,+) in the duodenum was higher in pigs fed the LPAA compared with the HP diet (P= 0.036) but there was no difference in the jejunum and ileum. In the ileum, y+ L expression tended to be higher in pigs fed the LPAA diet (P = 0.098). Expression of b(0,+) in LPAA pigs did not differ between the duodenum and the jejunum, but in HP pigs, the expression of all AA transporters was higher in the jejunum than in the duodenum or ileum (P < 0.05). The serum concentration of Arg, His, Ile, Leu, Phe, and Val was higher but serum Lys and Met were lower in pigs fed the HP diet (P < 0.05). These results indicate that LPAA can substitute up to 8

  6. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  7. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans. PMID:25370009

  8. Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress 12

    PubMed Central

    Barnett, N. M.; Naylor, A. W.

    1966-01-01

    The ability of Arizona Common and Coastal Bermuda grass [Cynodon dactylon (L.) Pers.] to synthesize amino acids and proteins during water stress was investigated. Amino acids were continually synthesized during the water stress treatments, but protein synthesis was inhibited and protein levels decreased. Water stress induced a 10- to 100-fold accumulation of free proline in shoots and a 2- to 6-fold accumulation of free asparagine, both of which are characteristic responses of water-stressed plants. Valine levels increased, and glutamic acid and alanine levels decreased. 14C labeling experiments showed that free proline turns over more slowly than any other free amino acid during water stress. This proline is readily synthesized and accumulated from glutamic acid. It is suggested that during water stress free proline functions as a storage compound. No significant differences were found in the amino acid and protein metabolism of the 2 varieties of Bermuda grass. PMID:16656387

  9. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1980-12-01

    Protein A from Dendroaspis polylepis polylepis venom comprises 81 amino acids, including ten half-cystine residues. The complete primary structures of protein A and its variant A' were elucidated. The sequences of proteins A and A', which differ in a single position, show no homology with various neurotoxins and non-neurotoxic proteins and represent a new type of elapid venom protein. PMID:7461607

  10. A human dietary arachidonic acid supplementation study conducted in a metabolic research unit: rationale and design.

    PubMed

    Nelson, G J; Kelley, D S; Emken, E A; Phinney, S D; Kyle, D; Ferretti, A

    1997-04-01

    While there are many reports of studies that fed arachidonic acid (AA) to animals, there are very few reports of AA feeding to humans under controlled conditions. This 130-d study was conceived as a controlled, symmetrical crossover design with healthy, adult male volunteers. They lived in the metabolic research unit (MRU) of the Western Human Nutrition Research (WHNRC) for the entire study. All food was prepared by the WHNRC kitchen. The basal (low-AA) diet consisted of natural foods (30 en% fat, 15 en% protein, and 55 en% carbohydrate), containing 210 mg/d of AA, and met the recommended daily allowance for all nutrients. The high-AA (intervention) diet was similar except that 1.5 g/d of AA in the form of a triglyceride containing 50% AA replaced an equal amount of high-oleic safflower oil in the basal diet. The subjects (ages 20 to 39) were within -10 to +20% of ideal body weight, nonsmoking, and not allowed alcohol in the MRU. Their exercise level was constant, and their body weights were maintained within 2% of entry level. Subjects were initially fed the low-AA diet for 15 d. On day 16, half of the subjects (group A) wee placed on the high-AA diet, and the other group (B) remained on the low-AA diets. On day 65, the two groups switched diets. On day 115, group B returned to the low-AA diet. This design, assuming no carryover effect, allowed us to merge the data from the two groups, with the data comparison days being 65 (low-AA) and 115 (high-AA) for group B and 130 (low-AA) and 65 (high-AA) for group A. The main indices studied were the fatty acid composition of the plasma, red blood cells, platelets, and adipose tissue; in vitro platelet aggregation, bleeding times, clotting factors; immune response as measured by delayed hypersensitivity skin tests, cellular proliferation of peripheral blood mononuclear cells in response to various mitogens and antigens, natural killer cell activity, and response to measles/mumps/rubella and influenza vaccines; the

  11. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    SciTech Connect

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  12. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  13. The AAS Workforce Survey

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Norman, D. J.; Evans, N. R.; Ivie, R.

    2014-01-01

    The AAS Demographics Committee, on behalf of the AAS, was tasked with initiating a biennial survey to improve the Society's ability to serve its members and to inform the community about changes in the community's demographics. A survey, based in part on similar surveys for other scientific societies, was developed in the summer of 2012 and was publicly launched in January 2013. The survey randomly targeted 2500 astronomers who are members of the AAS. The survey was closed 4 months later (April 2013). The response rate was excellent - 63% (1583 people) completed the survey. I will summarize the results from this survey, highlighting key results and plans for their broad dissemination.

  14. Studies on the high-sulphur proteins of reduced Merino wool. Amino acid sequence of protein SCMKB-IIIB4

    PubMed Central

    Swart, L. S.; Haylett, T.

    1971-01-01

    The complete amino acid sequence of protein SCMKB-IIIB4 is presented. It is closely related to the sequence of protein SCMKB-IIIB3 (Haylett, Swart & Parris, 1971) differing in only four positions. The peptic and thermolysin peptides of protein SCMKB-IIIB4 were analysed by the dansyl–Edman method (Gray, 1967) and by tritium-labelling of C-terminal residues (Matsuo, Fujimoto & Tatsuno, 1966). This protein is the third member of a group of high-sulphur wool proteins with molecular weight of about 11400. It consists of 98 residues and has acetylalanine and carboxymethylcysteine as N- and C-terminal residues respectively. PMID:4942536

  15. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  16. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes.

    PubMed Central

    Baker, R T; Board, P G

    1991-01-01

    Complementary DNA clones encoding ubiquitin fused to a 52 amino acid tail protein were isolated from human placental and adrenal gland cDNA libraries. The deduced human 52 amino acid tail protein is very similar to the homologous protein from other species, including the conservation of the putative metal-binding, nucleic acid-binding domain observed in these proteins. Northern blot analysis with a tail-specific probe indicated that the previously identified UbA mRNA species most likely represents comigrating transcripts of the 52 amino acid tail (UbA52) and 80 amino acid tail (UbA80) ubiquitin fusion genes. The UbA52 gene was isolated from a human genomic library and consists of five exons distributed over 3400 base pairs. One intron is in the 5' non-coding region, two interrupt the single ubiquitin coding unit, and the fourth intron is within the tail coding region. Several members of the Alu family of repetitive DNA are associated with the gene. The UbA52 promoter has several features in common with mammalian ribosomal protein genes, including its location in a CpG-rich island, initiation of transcription within a polypyrimidine tract, the lack of a consensus TATA motif, and the presence of Sp1 binding sites, observations that are consistent with the recent identification of the ubiquitin-free tail proteins as ribosomal proteins. Thus, in spite of its unusual feature of being translationally fused to ubiquitin, the 52 amino acid tail ribosomal protein is expressed from a structurally typical ribosomal protein gene. Images PMID:1850507

  17. Amino acid and energy digestibility of protein sources for growing pigs.

    PubMed

    Gottlob, R O; DeRouchey, J M; Tokach, M D; Goodband, R D; Dritz, S S; Nelssen, J L; Hastad, C W; Knabe, D A

    2006-06-01

    Two experiments were conducted to determine the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA and DE, and to estimate ME and NE of rice protein concentrate, salmon protein hydrolysate, whey protein concentrate, and spray-dried plasma protein. In Exp. 1, 6 barrows (initially 29.5 +/- 2.5 kg of BW) were fitted with ileal T-cannulas and fed each of 5 cornstarch-based diets in a balanced crossover design over 35 d. During a given week, there were either 1 or 2 replications of each treatment, resulting in 6 total replications over 5 wk. The 4 test diets (fed from d 0 to 28) were formulated to contain 12.5% CP by using analyzed nutrient compositions of rice protein concentrate, salmon protein hydrolysate, whey protein concentrate, or spray-dried plasma protein. The fifth (N-free) diet was fed from d 28 to 35 to estimate basal endogenous losses of CP and AA, which were used to calculate SID. Ileal digesta were collected and analyzed, and AID and SID values were calculated. Apparent ileal digestible Lys, Met, and Thr values were 80.0 +/- 3.3, 65.6 +/- 3.1, and 68.4 +/- 4.5% for rice protein concentrate; 85.6 +/- 4.8, 85.5 +/- 4.3, and 69.8 +/- 8.5% for salmon protein hydrolysate; 93.3 +/- 1.4, 89.9 +/- 5.8, and 83.6 +/- 5.3% for whey protein concentrate; and 92.8 +/- 0.9, 85.7 +/- 2.1, 86.5 +/- 2.3% for spray-dried plasma protein, respectively. In Exp. 2, 6 barrows (initially 37.6 +/- 1.7 kg of BW) were fed each of 5 corn-based diets in a balanced crossover design over 35 d. During a given week, there were either 1 or 2 replications of each treatment, resulting in 6 total replications over 5 wk. The 4 diets containing the test ingredients were formulated to contain approximately 20% CP by using their analyzed nutrient compositions. The fifth (corn control) diet containing 8.2% CP was also used to calculate energy values by difference. Feces were collected to determine DE. The ME and NE contents were estimated using published regression

  18. Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity

    PubMed Central

    Yan, Zhiqiang; Wang, Jin

    2013-01-01

    Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions. PMID:24098651

  19. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins.

    PubMed

    Silva, Jerson L; Cordeiro, Yraima

    2016-07-22

    Protein misfolding results in devastating degenerative diseases and cancer. Among the culprits involved in these illnesses are prions and prion-like proteins, which can propagate by converting normal proteins to the wrong conformation. For spongiform encephalopathies, a real prion can be transmitted among individuals. In other disorders, the bona fide prion characteristics are still under investigation. Besides inducing misfolding of native proteins, prions bind nucleic acids and other polyanions. Here, we discuss how nucleic acid binding might influence protein misfolding for both disease-related and benign, functional prions and why the line between bad and good amyloids might be more subtle than previously thought. PMID:27288413

  20. Biophysical and computational methods to analyze amino acid interaction networks in proteins.

    PubMed

    O'Rourke, Kathleen F; Gorman, Scott D; Boehr, David D

    2016-01-01

    Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies. PMID:27441044

  1. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  2. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  3. Acidosis Blocks CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP)- and c-Jun-Mediated Induction of p53-Upregulated Mediator of Apoptosis (PUMA) during Amino Acid Starvation

    PubMed Central

    Ryder, Christopher B.; McColl, Karen; Distelhorst, Clark W.

    2012-01-01

    Cancer cells must avoid succumbing to a variety of noxious conditions within their surroundings. Acidosis is one such prominent feature of the tumor microenvironment that surprisingly promotes tumor survival and progression. We recently reported that acidosis prevents apoptosis of starved or stressed lymphoma cells through regulation of several Bcl-2 family members (Ryder et al., JBC, 2012). Mechanistic studies in that work focused on the acid-mediated upregulation of anti-apoptotic Bcl-2 and Bcl-xL, while additionally showing inhibition of glutamine starvation-induced expression of pro-apoptotic PUMA by acidosis. Herein we report that amino acid (AA) starvation elevates PUMA, an effect that is blocked by extracellular acidity. Knockdown studies confirm that PUMA induction during AA starvation requires expression of both CHOP and c-Jun. Interestingly, acidosis strongly attenuates AA starvation-mediated c-Jun expression, which correlates with PUMA repression. As c-Jun exerts a tumor suppressive function in this and other contexts, its inhibition by acidosis has broader implications for survival of cancer cells in the acidic tumor milieu. PMID:23261451

  4. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  5. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  6. AMINO ACIDS AUGMENT MUSCLE PROTEIN SYNTHESIS IN NEONATAL PIGS DURING ENDOTOXEMIA BY MODULATING TRANSLATION INITIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In adults, sepsis reduces protein synthesis in skeletal muscle by restraining translation. The effect of sepsis on amino acid-stimulated muscle protein synthesis has not been determined in neonates, a population who is highly anabolic and whose muscle protein synthesis rates are uniquely sensitive ...

  7. Improved method for simultaneous isolation of proteins and nucleic acids.

    PubMed

    Chey, Soroth; Claus, Claudia; Liebert, Uwe Gerd

    2011-04-01

    Guanidinium thiocyanate-phenol-chloroform extraction (GTPC extraction) is widely used in molecular biology for isolating DNA, RNA, and proteins. Protein isolation by commercially available GTPC solutions is time consuming and the resulting pellets are only incompletely soluble. In this study ethanol-bromochloropropane-water was used for precipitation of proteins from the phenol-ethanol phase after GTPC extraction of RNA and DNA. The precipitated proteins can be readily dissolved in 4% SDS for subsequent analysis. This technique allows a fast (30min) and efficient (with a protein recovery of up to 95%) extraction of proteins for the study of transcriptional and posttranscriptional events from the same sample. PMID:21094121

  8. Amino acid sequence analysis and characterization of a ribonuclease from starfish Asterias amurensis.

    PubMed

    Motoyoshi, Naomi; Kobayashi, Hiroko; Itagaki, Tadashi; Inokuchi, Norio

    2016-09-01

    The aim of this study was to phylogenetically characterize the location of the RNase T2 enzyme in the starfish (Asterias amurensis). We isolated an RNase T2 ribonuclease (RNase Aa) from the ovaries of starfish and determined its amino acid sequence by protein chemistry and cloning cDNA encoding RNase Aa. The isolated protein had 231 amino acid residues, a predicted molecular mass of 25,906 Da, and an optimal pH of 5.0. RNase Aa preferentially released guanylic acid from the RNA. The catalytic sites of the RNase T2 family are conserved in RNase Aa; furthermore, the distribution of the cysteine residues in RNase Aa is similar to that in other animal and plant T2 RNases. RNase Aa is cleaved at two points: 21 residues from the N-terminus and 29 residues from the C-terminus; however, both fragments may remain attached to the protein via disulfide bridges, leading to the maintenance of its conformation, as suggested by circular dichroism spectrum analysis. The phylogenetic analysis revealed that starfish RNase Aa is evolutionarily an intermediate between protozoan and oyster RNases. PMID:26920046

  9. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    PubMed

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. PMID:25063152

  10. Expression of liver fatty acid binding protein in hepatocellular carcinoma.

    PubMed

    Cho, Soo-Jin; Ferrell, Linda D; Gill, Ryan M

    2016-04-01

    Loss of expression of liver fatty acid binding protein (LFABP) by immunohistochemistry has been shown to be characteristic of a subset of hepatocellular adenomas (HCAs) in which HNF1A is inactivated. Transformation to hepatocellular carcinoma is thought to be a very rare phenomenon in the HNF1A-inactivated variant of HCA. However, we recently observed 2 cases at our institution, 1 definite hepatocellular carcinoma and 1 possible hepatocellular carcinoma, with loss of LFABP staining, raising the possibility that LFABP down-regulation may be associated with hepatocellular carcinogenesis. Our aim was to evaluate hepatocellular carcinomas arising in various backgrounds and with varying degrees of differentiation for loss of LFABP staining. Twenty total cases of hepatocellular carcinoma were examined. Thirteen cases arose in a background of cirrhosis due to hepatitis C (n = 8) or steatohepatitis (n = 5); 7 cases arose in a noncirrhotic background, with 2 cases arising within HNF1A-inactivated variant HCA and 2 cases arising within inflammatory variant HCA. Complete loss of expression of LFABP was seen in 6 of 20 cases, including 2 cases of hepatocellular carcinoma arising within HNF1A-inactivated variant HCA. Thus, loss of staining for LFABP appears to be common in hepatocellular carcinoma and may be seen in well-differentiated hepatocellular carcinoma. Therefore, LFABP loss should not be interpreted as evidence for hepatocellular adenoma over carcinoma, when other features support a diagnosis of hepatocellular carcinoma. The findings raise consideration for a role of HNF1A inactivation in hepatocellular carcinogenesis, particularly in less differentiated tumors. PMID:26997447

  11. AAS 227: Welcome!

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Greetings from the 227th American Astronomical Society meeting in Kissimmee, Florida! This week, along with several fellow authors from astrobites, Iwill bewritingupdates on selectedevents at themeeting and posting at the end of each day. You can follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.If youre an author or referee (or plan to be!) and youre here at the meeting, consider joining us at our Author and Referee Workshop on Wednesday in the Tallahassee room, where well be sharingsome of the exciting new features of the AAS journals. You can drop intoeither of the two-hour sessions(10 AM 12 PM or 1 PM 3 PM), and there will be afree buffet lunch at noon.Heres the agenda:Morning SessionTopic Speaker10:00 am 10:05 amIntroductionsJulie Steffen10:05 am 10:35 amChanges at AAS Journals; How to Be a Successful AAS AuthorEthan Vishniac10:35 am 11:00 amThe Peer Review ProcessButler Burton11:00 am 11:15 amAAS Nova: Sharing AAS Authors Research with the Broader CommunitySusanna Kohler11:15 am 11:30 amFixing Software and Instrumentation Publishing: New Paper Styles in AAS JournalsChris Lintott11:30 am 11:45 amMaking Article Writing Easier with the New AASTeX v6.0Greg Schwarz11:45 am 12:00 pmBringing JavaScript and Interactivity to Your AAS Journal FiguresGus MuenchLunch SessionTopic Speaker12:00 pm 12:15 pmUnified Astronomy ThesaurusKatie Frey12:15 pm 12:30 pmAAS/ADS ORCID Integration ToolAlberto Accomazzi12:30 pm 12:45 pmWorldWide Telescope and Video AbstractsJosh Peek12:45 pm 01:00 pmArizona Astronomical Data Hub (AADH)Bryan HeidornAfternoon SessionTopic Speaker01:00 pm 01:05 pmIntroductionsJulie Steffen01:05 pm 01:35 pmChanges at AAS Journals; How to Be a Successful AAS AuthorEthan Vishniac01:35 pm 02:00 pmThe Peer Review ProcessButler Burton02:00 pm 02:15 pmAAS Nova: Sharing AAS Authors Research with the Broader CommunitySusanna Kohler02:15 pm 02:30 pm

  12. AAS 228: Welcome!

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Greetings from the 228th American Astronomical Society meeting in San Diego, California! This week, along with a team of fellow authorsfrom astrobites, Iwill bewritingupdates on selectedevents at themeeting and posting twiceeach day. You can follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.If youre at the meeting, come stop by the AAS booth (Booth #211-213) to learn about the newly-announced partnership between AAS and astrobites and pick up some swag.And dont forget to visit the IOP booth in the Exhibit Hall (Booth #223) to learn more about the new corridors for AAS Journals and to pick up a badge pin to representyour corridor!

  13. Chronic improvement of amino acid nutrition stimulates initiation of global messenger ribonucleic acid translation in tissues of sheep without affecting protein elongation.

    PubMed

    Connors, M T; Poppi, D P; Cant, J P

    2010-02-01

    Initiation of mRNA translation and elongation of the polypeptide chain are 2 regulated processes responsible for the short-term postprandial acceleration of protein synthesis in animal tissues. It is known that a chronic increase in the absorptive supply of AA stimulates protein synthesis in ruminant animals, but effects on translation initiation and elongation are unknown. To determine whether initiation or elongation phases of global mRNA translation are affected by chronic elevation of AA supply, 24 ewe lambs of 25.9 +/- 2.5 kg of BW were randomly allocated to 4 treatment groups of 6 lambs each. All lambs received a basal diet of barley and hay at 1.2 times maintenance ME intake. Treatments were an intravenous (i.v.) saline infusion as a control, i.v. infusion of 6 essential AA (EAA; Arg, Lys, His, Thr, Met, Cys) for 10 d, i.v. infusion of the same EAA excluding Met and Cys (EAA-SAA) for 10 d, and an oral drench of fishmeal twice daily for 17 d. Fishmeal supplementation supplied an extra 719 mg of N x kg(-0.75) x d(-1) and N retention was increased 519 mg x kg(-0.75) x d(-1) over the control. The EAA treatment supplied an extra 343 mg of N x kg(-0.75) x d(-1) directly into the blood, and N balance was increased by 268 mg x kg(-0.75) x d(-1). Deletion of Met plus Cys from EAA had no effect on N balance. The results indicate that Met plus Cys did not limit body protein gain on the basal diet alone or the basal diet plus 6 AA. Protein fractional synthesis rates in liver, duodenum, skin, rumen, semimembranosus, and LM were measured by a flooding dose procedure using L-[ring-2,6-(3)H]-Phe. Ribosome transit times were estimated from the ratio of nascent to total protein-bound radioactivities. Fishmeal and EAA treatments had no effect on RNA, DNA, or protein contents of tissues, but fractional synthesis rate, translational efficiency, and concentrations of active ribosomes were consistently elevated. Ribosome transit time was not affected by long-term AA supply. We

  14. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  15. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  16. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  17. Acute effects of enteral leucine supplementation of a low protein diet on muscle protein synthesis in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in skeletal muscle of neonatal pigs parenterally infused with insulin and amino acids (AA), particularly leucine. We hypothesized that enteral Leu supplementation of a low protein diets in neonatal pigs will acutely in...

  18. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken.

    PubMed

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-10-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394

  19. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

    PubMed Central

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-01-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394

  20. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  1. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  2. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  3. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  4. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  5. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  6. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids.

    PubMed

    Lim, Sung In; Kwon, Inchan

    2016-10-01

    The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering. PMID:26036278

  7. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids.

    PubMed

    Xiang, Zheng; Lacey, Vanessa K; Ren, Haiyan; Xu, Jing; Burban, David J; Jennings, Patricia A; Wang, Lei

    2014-02-17

    The selective generation of covalent bonds between and within proteins would provide new avenues for studying protein function and engineering proteins with new properties. New covalent bonds were genetically introduced into proteins by enabling an unnatural amino acid (Uaa) to selectively react with a proximal natural residue. This proximity-enabled bioreactivity was expanded to a series of haloalkane Uaas. Orthogonal tRNA/synthetase pairs were evolved to incorporate these Uaas, which only form a covalent thioether bond with cysteine when positioned in close proximity. By using the Uaa and cysteine, spontaneous covalent bond formation was demonstrated between an affibody and its substrate Z protein, thereby leading to irreversible binding, and within the affibody to increase its thermostability. This strategy of proximity-enabled protein crosslinking (PEPC) may be generally expanded to target different natural amino acids, thus providing diversity and flexibility in covalent bond formation for protein research and protein engineering. PMID:24449339

  8. Cellular retinol-binding protein and retinoic acid-binding protein in rat testes: effect of retinol depletion.

    PubMed

    Ong, D E; Tsai, C H; Chytil, F

    1976-02-01

    Testes of rats contain two cellular binding proteins of interest in vitamin A metabolism. One protein binds retinoic acid with high specificity; the other binds retinol with high specificity. When the cellular retinol-binding protein was partially purified from rat testes, it exhibited fluorescence excitation and emission spectra similar to that of all-trans-retinol in hexane. Exposure of this preparation to UV light destroyed this fluorescence but spectra identical to the original were obtained after addition of retinol. Hexane extracts of the binding protein had fluorescence spectra identical to all-trans-retinol, suggesting that this compound is bound to the protein in vivo. Extracts of testes from retinol depleted rats were submitted to gel filtration but failed to show a retinol-like fluorescence at the elution position of retinol binding protein. This fluorescence was observed in the preparations from pair fed control animals. However, after addition of all-trans-retinol to the extracts from the depleted rats, fluorescence at that elution position was observed. This indicates that in testes of retinol depleted rats the cellular retinol binding protein is present but without bound retinol, in contrast to the non-depleted rats where 30-43% of the binding protein had bound retinol. The amounts of cellular retinol binding protein and retinoic acid binding protein in testes, as determined by sucrose gradient centrifugation, were found to be similar for retinol depleted and pair fed control rats. PMID:942996

  9. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.

    PubMed

    Richarme, G

    1985-04-01

    We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers. PMID:3920206

  10. Role of the mitochondrial amino acid pool in the differential sensitivity of erythroid and myeloid cells to chloramphenicol

    SciTech Connect

    Abou-Khalil, S.; Abou-Khalil, W.H.; Whitney, P.L.; Yunis, A.A.

    1986-05-01

    Previous studies in the authors laboratory have suggested that mitochondrial amino acid (AA) pool is involved in the differential sensitivity of erythroid and myeloid cells to chloramphenicol (CAP). The present study examines the role of AA pool by analysis of its composition and testing the effects of its major components. The endogenous AA composition of isolated mitochondria protein was determined using a JEOL 5AH AA analyzer. L-(/sup 14/C) leucine incorporation into mitochondrial protein was used to measure the rate of protein synthesis. Analysis of the endogenous pool in erythroleukemia (EM) and chloroleukemia (CM) mitochrondria showed similar total amount of AAs. However, some AAs were present in significantly higher or lower quantity within EM and CM (i.e. EM had about 2-fold higher glycine content). When compensating for each low AA addition of that particular acid to the reaction medium, only glycine and serine had significant effect. Thus, the addition of increasing concentrations of glycine or serine enhanced the sensitivity to CAP from 14% to 49-51% in CM but not in EM. Other AAs gave little or no effect. Since glycine is one of the first reactants in heme biosynthesis within mitochondria and is interconvertible with serine, it would appear that erythroid cells sensitivity to CAP is determined by the mitochondrial glycine-serine pool and may be somehow related of the pathway to heme biosynthesis in these cells.

  11. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  12. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  13. Arachidonic acid actions on functional integrity and attenuation of the negative effects of palmitic acid in a clonal pancreatic β-cell line

    PubMed Central

    Keane, Deirdre C.; Takahashi, Hilton K.; Dhayal, Shalinee; Morgan, Noel G.; Curi, Rui; Newsholme, Philip

    2010-01-01

    Chronic exposure of pancreatic β-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to β-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic β-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to β-cell incubations at 100 μM, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Δ3,5,Δ2,4-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P<0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-κB (nuclear factor κB) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective β-cell action, which may be beneficial to function and survival in the ‘lipotoxic’ environment commonly associated with Type 2 diabetes mellitus. PMID:20840078

  14. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate. PMID:25085083

  15. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  16. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones. PMID:26656109

  17. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions. PMID:26862880

  18. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  19. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induced P-450 mediated arachidonic acid (AA) metabolism in chick embryo liver (CEL) occurs in parenchymal cells (PC) rather than in non-parenchymal cells (NPC)

    SciTech Connect

    Paroli, L.; Rifkind, A.B. )

    1992-02-26

    TCDD induces cytochrome P-450 mediated AA metabolism in CEL and changes the dominant metabolite(s) from {omega}-OH AA to AA epoxygenase products (EETs and EET-diols). PC and NPC from CEL were separated by differential centrifugation and characterized by morphology, immunohistochemistry and P-450 mediated xenobiotic metabolism; purities were >95%. PC and NPC, from 16 day old chick embryos treated for 5 days with TCDD or vehicle alone, were cultured for 48 hr, homogenized and incubated with ({sup 14}C)-AA {plus minus} NADPH. AA products were resolved by reverse phase HPLC. The major product in control PC, {omega}-OH AA was not significantly affected by TCDD. All of the AA metabolism was NADPH dependent. Control and TCDD treated PC had the same metabolite patterns as whole liver microsomes. Neither control nor TCDD treated NPC generated P-450 AA metabolites. Also co-culturing NPC with PC did not affect AA metabolism of either cell type. The findings indicate that TCDD-induced changes in AA metabolism are retained in culture and that hepatocytes rather than NPC effect P-450 mediated AA metabolism in both control and TCDD-induced CEL.

  20. Structural Basis of Fatty Acid Substrate Binding to Cyclooxygenase-2*

    PubMed Central

    Vecchio, Alex J.; Simmons, Danielle M.; Malkowski, Michael G.

    2010-01-01

    The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co3+-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 Å, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates. PMID:20463020

  1. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    PubMed

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). PMID:22980905

  2. Single-molecule pull-down for investigating protein-nucleic acid interactions.

    PubMed

    Fareh, Mohamed; Loeff, Luuk; Szczepaniak, Malwina; Haagsma, Anna C; Yeom, Kyu-Hyeon; Joo, Chirlmin

    2016-08-01

    The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes. PMID:27017911

  3. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  4. GLUCOCORTICOIDS REGULATE THE CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN THROUGHOUT THE BRAIN

    EPA Science Inventory

    The role of glucocorticoids in the in vivo regulation of glial fibrillary acidic protein was examined. orticosterone administration to adult rats resulted in decreased levels of GFAP throughout the brain whereas adrenalectomy caused levels of GFAP to increase. orticosterone admin...

  5. GONADAL STEROIDS REGULATED THE EXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN IN THE ADULT MALE RAT HIPPOCAMPUS

    EPA Science Inventory

    This study demonstrates that gonadal steroids (estradiol, testosterone, dihydrotestosterone) can inhibit the expression of glial fibrillary acidic protein and it MRNA in the adult male rat brain. esticular hormones may influence the activity of astrocytes in the intact and lesion...

  6. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins. PMID:26286010

  7. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  8. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  9. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    PubMed

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production. PMID:26129953

  10. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  11. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    SciTech Connect

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  12. Hypochlorite-induced oxidation of amino acids, peptides and proteins.

    PubMed

    Hawkins, C L; Pattison, D I; Davies, M J

    2003-12-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reaction with HOCl within a cell due to their abundance and high reactivity with HOCl. This review summarizes information on the rate of reaction of HOCl with proteins, the nature of the intermediates formed, the mechanisms involved in protein oxidation and the products of these reactions. The predicted targets for reaction with HOCl from kinetic modeling studies and the consequences of HOCl-induced protein oxidation are also discussed. PMID:14661089

  13. A novel method to identify nucleic acid binding sites in proteins by scanning mutagenesis: application to iron regulatory protein.

    PubMed Central

    Neupert, B; Menotti, E; Kühn, L C

    1995-01-01

    We describe a new procedure to identify RNA or DNA binding sites in proteins, based on a combination of UV cross-linking and single-hit chemical peptide cleavage. Site-directed mutagenesis is used to create a series of mutants with single Asn-Gly sequences in the protein to be analysed. Recombinant mutant proteins are incubated with their radiolabelled target sequence and UV irradiated. Covalently linked RNA- or DNA-protein complexes are digested with hydroxylamine and labelled peptides identified by SDS-PAGE and autoradiography. The analysis requires only small amounts of protein and is achieved within a relatively short time. Using this method we mapped the site at which human iron regulatory protein (IRP) is UV cross-linked to iron responsive element RNA to amino acid residues 116-151. Images PMID:7544459

  14. Tables of critical values for examining compositional non-randomness in proteins and nucleic acids

    NASA Technical Reports Server (NTRS)

    Laird, M.; Holmquist, R.

    1975-01-01

    A binomially distributed statistic is defined to show whether or not the proportion of a particular amino acid in a protein deviates from random expectation. An analogous statistic is derived for nucleotides in nucleic acids. These new statistics are simply related to the classical chi-squared test. They explicitly account for the compositional fluctuations imposed by the finite length of proteins, and they are more accurate than previous tables.

  15. Highly efficient extraction of cellular nucleic acid associated proteins in vitro with magnetic oxidized carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Wei, Xiaoluan; Cheng, Kai; Liu, Fangjie; Wu, Ren'an; Zou, Hanfa

    2012-12-01

    Nucleic acid associated proteins (NAaP) play the essential roles in gene regulation and protein expression. The global analysis of cellular NAaP would give a broad insight to understand the interaction between nucleic acids and the associated proteins, such as the important proteinous regulation factors on nucleic acids. Proteomic analysis presents a novel strategy to investigate a group of proteins. However, the large scale analysis of NAaP is yet impossible due to the lack of approaches to harvest target protein groups with a high efficiency. Herein, a simple and efficient method was developed to collect cellular NAaP using magnetic oxidized carbon nanotubes based on the strong interaction between carbon nanotubes and nucleic acids along with corresponding associated proteins. We found that the magnetic oxidized carbon nanotubes demonstrated a nearly 100% extraction efficiency for intracellular nucleic acids from cells in vitro. Importantly, the proteins associated on nucleic acids could be highly efficiently harvested using magnetic oxidized carbon nanotubes due to the binding of NAaP on nucleic acids. 1594 groups of nuclear NAaP and 2595 groups of cellular NAaP were extracted and identified from about 1,000,000 cells, and 803 groups of NAaP were analyzed with only about 10,000 cells, showing a promising performance for the proteomic analysis of NAaP from minute cellular samples. This highly efficient extraction strategy for NAaP is a simple approach to identify cellular nucleic acid associated proteome, and we believed this strategy could be further applied in systems biology to understand the gene expression and regulation. PMID:23121485

  16. Glutathione peroxidase's reaction intermediate selenenic acid is stabilized by the protein microenvironment.

    PubMed

    Li, Fei; Liu, Jun; Rozovsky, Sharon

    2014-11-01

    Selenenic acids are highly reactive intermediates of selenoproteins' enzymatic reactions. Knowledge of how the protein environment protects and stabilizes them is fundamental not only to descriptions of selenoproteins' reactivity but also potentially for proteomics and therapeutics. However, selenenic acids are considered particularly short-lived and are not yet identified in wild-type selenoproteins. Here, we report trapping the selenenic acid in glutathione peroxidase, an antioxidant enzyme that efficiently eliminates hydroperoxides. It has long been thought that selenium-containing glutathione peroxidases form a selenenic acid intermediate. However, this putative species has eluded detection. Here, we report its identification. The selenenic acid in bovine glutathione peroxidase 1 was chemically trapped using dimedone, an alkylating agent specific to sulfenic and selenenic acids. The alkylation of the catalytic selenocysteine was verified by electrospray ionization mass spectrometry. In the presence of glutathione, the selenocysteine was not alkylated because the selenenic acid condenses faster with glutathione than the alkylation reaction. In the absence of thiols, the selenenic acid was surprisingly long-lived with 95% of the protein still able to react with dimedone 10 min after hydrogen peroxide was removed, indicating that the protein environment stabilizes the selenenic acid by shielding it from reactive groups in the protein. After 30 min, the selenocysteine was no longer modified but became accessible once the protein was exposed to reducing agents. This suggests that the selenenic acid reacted with a protein's amide or amine to form a selenylamide bond. Such a modification may play a role in protecting glutathione peroxidase׳' reactivity. PMID:25124921

  17. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  18. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  19. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[S

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Stafforini, Diana M.; Azhar, Salman; Liu, Jingwen

    2014-01-01

    ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells. AA treatment decreased the half-life of ACSL4 protein in HepG2 cells by approximately 4-fold (from 17.3 ± 1.8 h to 4.2 ± 0.4 h) without causing apoptosis. The inhibitory action of AA on ACSL4 protein stability could not be prevented by rosiglitazone or inhibitors that interfere with the cellular pathways involved in AA metabolism to biologically active compounds. In contrast, treatment of cells with inhibitors specific for the proteasomal degradation pathway largely prevented the AA-induced ACSL4 degradation. We further show that ACSL4 is intrinsically ubiquitinated and that AA treatment can enhance its ubiquitination. Collectively, our studies have identified a novel substrate-induced posttranslational regulatory mechanism by which AA downregulates ACSL4 protein expression in hepatic cells. PMID:24879802

  20. Super-resolution Microscopy of Clickable Amino Acids Reveals the Effects of Fluorescent Protein Tagging on Protein Assemblies.

    PubMed

    Vreja, Ingrid C; Nikić, Ivana; Göttfert, Fabian; Bates, Mark; Kröhnert, Katharina; Outeiro, Tiago F; Hell, Stefan W; Lemke, Edward A; Rizzoli, Silvio O

    2015-11-24

    The advent of super-resolution microscopy (nanoscopy) has set high standards for fluorescence tagging. Fluorescent proteins (FPs) are convenient tags in conventional imaging, but their use in nanoscopy has been questioned due to their relatively large size and propensity to form multimers. Here, we compared the nanoscale organization of proteins with or without FP tags by introducing the unnatural amino acid propargyl-L-lysine (PRK) in 26 proteins known to form multimolecular arrangements and into their FP-tagged variants. We revealed the proteins by coupling synthetic fluorophores to PRK via click chemistry and visualized them using ground-state depletion microscopy followed by individual molecule return, as well as stimulated emission depletion microscopy. The arrangements formed by the FP-tagged and nontagged proteins were similar. Mild, but statistically significant differences were observed for only six proteins (23% of all proteins tested). This suggests that FP-based nanoscopy is generally reliable. Unnatural amino acids should be a reliable alternative for the few proteins that are sensitive to FP tagging. PMID:26498474

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  2. The distinct C-terminal acidic domains of HMGB proteins are functionally relevant in Schistosoma mansoni.

    PubMed

    de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Vicentino, Amanda Roberta Revoredo; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Thiengo, Silvana; Fernandez, Monica Ammon; Fantappié, Marcelo Rosado

    2016-04-01

    The Schistosoma mansoni High Mobility Group Box (HMGB) proteins SmHMGB1, SmHMGB2 and SmHMGB3 share highly conserved HMG box DNA binding domains but have significantly different C-terminal acidic tails. Here, we used three full-length and tailless forms of the S. mansoni HMGB proteins to examine the functional roles of their acidic tails. DNA binding assays revealed that the different lengths of the acidic tails among the three SmHMGB proteins significantly and distinctively influenced their DNA transactions. Spectroscopic analyses indicated that the longest acidic tail of SmHMGB3 contributes to the structural stabilisation of this protein. Using immunohistochemical analysis, we showed distinct patterns of SmHMGB1, SmHMGB2 and SmHMGB3 expression in different tissues of adult worms. RNA interference approaches indicated a role for SmHMGB2 and SmHMGB3 in the reproductive system of female worms, whereas for SmHMGB1 no clear phenotype was observed. Schistosome HMGB proteins can be phosphorylated, acetylated and methylated. Importantly, the acetylation and methylation of schistosome HMGBs were greatly enhanced upon removal of the acidic tail. These data support the notion that the C-terminal acidic tails dictate the differences in the structure, expression and function of schistosome HMGB proteins. PMID:26820302

  3. Insulinogenic sucrose+amino acid mixture ingestion immediately after resistance exercise has an anabolic effect on bone compared with non-insulinogenic fructose+amino acid mixture in growing rats.

    PubMed

    Notomi, Takuya; Karasaki, Ikuaki; Okazaki, Yuichi; Okimoto, Nobukazu; Kato, Yushi; Ohura, Kiyoshi; Noda, Masaki; Nakamura, Toshitaka; Suzuki, Masashige

    2014-08-01

    Maximizing peak bone mass is an important factor in osteoporosis prevention. Resistance exercise increases bone mass and strength, while nutritional supplements have beneficial effects on bone loss reduction. We have previously shown that the combined intake of sucrose and amino acids (AA), which is strongly insulinogenic, efficiently increased muscle protein synthesis. To investigate the effects of sugar and an AA solution immediately after resistance exercise, we compared insulinogenic sucrose and non-insulinogenic fructose combined with an AA solution with or without resistance exercise. Sucrose intake immediately after resistance exercise increased the trabecular bone mass and compressive maximum load compared with fructose+AA intake after exercise. Additionally, combined sucrose+AA and exercise increased trabecular bone formation and decreased bone resorption more than combined fructose and exercise. Serum insulin levels were greatly increased by sucrose+AA intake with exercise. In culture experiments, neither sugar+AA affected osteoblast and osteoclast differentiation. In a gene expression study, sucrose+AA intake after resistance exercise was shown to upregulate the Runx2 expression level and decrease RANKL/OPG ratio. These results suggest that the combined intake of sucrose and an AA solution immediately after resistance exercise exerts anabolic effects on bone by altering gene expression related to bone remodeling. Although translation of our bone remodeling findings from animal to human studies has been challenging, our findings suggest that exercise with sugar+AA intake may contribute to improved bone health. PMID:24815919

  4. Distinctive amino acid composition profiles in salivary proteins of the tick Ixodes scapularis

    PubMed Central

    Hughes, Austin L.; Friedman, Robert

    2012-01-01

    Bioinformatic analysis of the amino acid composition of proteins of the tick Ixodes scapularis showed that, in comparison to other secreted proteins, salivary proteins in general have higher frequencies of polar residues and lower frequencies of the non-polar residues leucine and valine. Computer prediction of linear B-cell epitopes showed that polar residues were associated with the presence of high-quality epitopes and that tick salivary proteins included significantly more proteins with predicted high-quality epitopes than did other secreted proteins. The results provided no evidence that salivary proteins as a whole have evolved characteristics minimizing their antigenicity to the vertebrate host. Certain salivary proteins may indeed have evolved low antigenicity, but the I. scapularis sialome include at least some apparently antigenic proteins that might be tested experimentally to determine whether they would be suitable candidates for anti-tick vaccines. PMID:22108016

  5. [Recombinant proteins containing amino acid sequences of two ectatomin chains].

    PubMed

    Esipov, R S; Gurevich, A I; Kaiushin, A L; Korosteleva, M D; Miroshnikov, A I; Shevchenko, L V; Pluzhnikov, K A; Grishin, E V

    1997-12-01

    Artificial genes for chains A and B of ectatomin, an Ectatomma tuberculatum ant toxin, were obtained by chemical and enzymic synthesis and cloned into new plasmid vectors. Expression plasmids with the genes of hybrid proteins were constructed containing human interleukin-3 or its terminal 63-mer fragment as well as chains A and B of ectatomin, which are linked via a region containing the cleavage site of specific protease, enterokinase (hybrid proteins IL3ETOXA, IL3ETOXB, ILETOXA, and ILETOXB). Escherichia coli producer strains providing a high yield of IL3ETOXA and IL3ETOXB proteins as inclusion bodies were obtained. PMID:9499370

  6. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  7. Prolonged stimulation of muscle protein synthesis by leucine in neonates is dependent on amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rise in amino acids and insulin after a meal independently stimulate protein synthesis in skeletal muscle of neonates by activating the intracellular signalling pathways that regulate mRNA translation. Leucine, in particular, is important in mediating the response to amino acids. Previously, w...

  8. Amino acid composition and crude protein values of some Cyanobacteria from Çanakkale (Turkey).

    PubMed

    Akgül, Rıza; Kızılkaya, Bayram; Akgül, Füsun; Erduğan, Hüseyin

    2015-09-01

    Cyanobacteria (blue-green algae) form an important component of integrated nutrient managements in agriculture and are exploited in commercial biotechnological ventures. In this study, Rivularia bullata (Poir) Berkeley ex Bornet & Flahault, Nostocs pongiaeforme C. Agardh ex Bornet & Flahault were researched for their amino acid composition and crude protein values. R. bullata was collected from coastal zones of the Gulf of Saros and N. spongiaeforme from the Ayazma Stream. The levels of amino acids were measured in algae samples using EZ: fast kits (EZ: fast GC/FID Protein Hydrolysate Amino Acid Kit) by gas chromatography. The crude proteins of samples were determined by the Kjeldahl method and were calculated using a nitrogen conversion factor of 6.25. Thirty-two amino acids were investigated, for N. spongiaeforme eight free essential amino acids (EAA), eight free non-essential amino acids (NEAA) and eleven other amino acids (OAA); for R. bullata eight EAA, eight NEAA and eight OAA were detected. Aspartic acid is the major constituent for both species. The total protein percents were determined for N. spongiaeforme as % 19.83 and for R. bullata as % 6.15. When considering the increasing world population and reducing natural products; Cyanobacteria will benew feed sources for all living. PMID:26408895

  9. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  10. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  11. Nucleic acid chaperons: a theory of an RNA-assisted protein folding

    PubMed Central

    Biro, Jan C

    2005-01-01

    Background Proteins are assumed to contain all the information necessary for unambiguous folding (Anfinsen's principle). However, ab initio structure prediction is often not successful because the amino acid sequence itself is not sufficient to guide between endless folding possibilities. It seems to be a logical to try to find the "missing" information in nucleic acids, in the redundant codon base. Results mRNA energy dot plots and protein residue contact maps were found to be rather similar. The structure of mRNA is also conserved if the protein structure is conserved, even if the sequence similarity is low. These observations led me to suppose that some similarity might exist between nucleic acid and protein folding. I found that amino acid pairs, which are co-located in the protein structure, are preferentially coded by complementary codons. This codon complementarity is not perfect; it is suboptimal where the 1st and 3rd codon residues are complementary to each other in reverse orientation, while the 2nd codon letters may be, but are not necessarily, complementary. Conclusion Partial complementary coding of co-locating amino acids in protein structures suggests that mRNA assists in protein folding and functions not only as a template but even as a chaperon during translation. This function explains the role of wobble bases and answers the mystery of why we have a redundant codon base. PMID:16137324

  12. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids.

    PubMed

    Hesse, Almut; Weller, Michael G

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  13. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  14. AAS Career Services

    NASA Astrophysics Data System (ADS)

    Marvel, Kevin B.

    2012-08-01

    The American Astronomical Society provides substantial programs in the area of Career Services.Motivated by the Society's mission to enhance and share humanity's understanding of the Universe, the AAS provides a central resource for advertising positions, interviewing opportunities at its annual winter meeting and information, workshops and networks to enable astronomers to find employment.The programs of the Society in this area are overseen by an active committee on employment and the AAS Council itself.Additional resources that help characterize the field, its growth and facts about employment such as salaries and type of jobs available are regularly summarized and reported on by the American Institute of Physics.

  15. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  16. INCREASE IN GLIAL FIBRILLARY ACIDIC PROTEIN FOLLOWS BRAIN HYPERTHERMIA IN RATS

    EPA Science Inventory

    Previously, the authors have demonstrated that an increase in the astrocyte-associated protein, glial fibrillary acidic protein (GFAP), accompanies brain injury induced by a variety of chemical insults. In the present study the authors examined the effects of microwave-induced hy...

  17. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  18. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions

    PubMed Central

    Vickers, Timothy A.; Crooke, Stanley T.

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  19. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Borchard, F; Kochwa, S; Berk, P D

    1985-01-01

    When [14C]oleate-bovine serum albumin complexes were incubated in vitro with rat liver plasma membranes (LPM), specific, saturable binding of oleate to the membranes was observed. Maximal heat-sensitive (i.e., specific) binding was 3.2 nmol/mg of membrane protein. Oleate-agarose affinity chromatography of Triton X-100-solubilized LPM was used to isolate a single 40-kDa protein with high affinity for oleate. On gel filtration, the protein comigrated with various fatty acids but not with [14C]bilirubin, [35S]sulfobromophthalein, [14C]taurocholate, [14C]phosphatidylcholine, or [14C]cholesteryloleate. A rabbit antibody to this membrane fatty acid-binding protein gave a single precipitin line with the antigen but no reactivity with concentrated cytosolic proteins, LPM bilirubin/sulfobromophthalein-binding protein, or rat albumin or other rat plasma proteins. The antibody selectively inhibited heat-sensitive binding of [14C]oleate to LPM. Immunofluorescence studies localized the antigen in liver-cell plasma membranes as well as in other major sites of fatty acid transport. These data are compatible with the hypothesis that this protein may act as a receptor in a hepatocellular uptake mechanism for fatty acids. Images PMID:3881757

  20. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  1. Acid diet (high meat protein) effects on calcium metabolism and bone health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Update recent advancements regarding the effect of high animal protein on calcium utilization and bone health. Recent findings: Increased potential renal acid load resulting from a high protein (meat) intake has been closely associated with increased urinary calcium excretion. How...

  2. Semisynthetic DNA-protein conjugates for fabrication of nucleic acid based nanostructures

    NASA Astrophysics Data System (ADS)

    Rabe, Kersten S.; Feldkamp, Udo; Niemeyer, Christof M.

    2008-10-01

    We here report on the developments of semisynthetic DNA-protein conjugates and their assembly into multi-component nanostructures. We describe the improvement of the DNA sequences embedded in such nanostructures by computational and analytical methods. Moreover, we report on the exploration of novel DNA conjugates of streptavidin or redox proteins with improved properties for the assembly of nucleic acid based nanostructures.

  3. CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN INCREASES WITH AGE IN THE MOUSE AND RAT BRAIN

    EPA Science Inventory

    The role of aging in the expression of the astrocyte protein, glial fibrillary acidic protein (GFAP), was examined. n both mice and rats the concentration of GFAP increased throughout the brain as a function of aging. he largest increase (2-fold) was observed in striatum for both...

  4. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the curre...

  5. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis was performed for extracting protein to prepare umami taste amino acids from defatted tomato seed meal (DTSM) which is a by-product of tomato processing. Papain was used as an enzyme for the hydrolysis of DTSM. The particle size distribution of DTSM, protein concentration and fr...

  6. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  7. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  8. Intracellular Nucleic Acid Delivery by the Supercharged Dengue Virus Capsid Protein

    PubMed Central

    Freire, João Miguel; Veiga, Ana Salomé; Conceição, Thaís M.; Kowalczyk, Wioleta; Mohana-Borges, Ronaldo; Andreu, David; Santos, Nuno C.; Da Poian, Andrea T.; Castanho, Miguel A. R. B.

    2013-01-01

    Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins. PMID:24339931

  9. Beta-galactosidase and selective neutrality. [amino acid composition of proteins

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1979-01-01

    Three hypotheses to explain the amino acid composition of proteins are inconsistent (about 10 to the minus 9th) with the experimental data for beta-galactosidase from Escherichia coli. The exceptional length of this protein, 1021 residues, permits rigorous tests of these hypotheses without complication from statistical artifacts. Either this protein is not at compositional equilibrium, which is unlikely from knowledge about other proteins, or the evolution of this protein and its coding gene have not been selectively neutral. However, the composition of approximately 60% of the molecule is consistent with either a selectively neutral or nonneutral evolutionary process.

  10. Nucleic acid encoding DS-CAM proteins and products related thereto

    SciTech Connect

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  11. The 9aaTAD Transactivation Domains: From Gal4 to p53.

    PubMed

    Piskacek, Martin; Havelka, Marek; Rezacova, Martina; Knight, Andrea

    2016-01-01

    The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors. PMID:27618436

  12. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  13. Glutathione Peroxidase’s Reaction Intermediate Selenenic Acid is Stabilized by the Protein Microenvironment

    PubMed Central

    Li, Fei; Liu, Jun; Rozovsky, Sharon

    2014-01-01

    Selenenic acids are highly reactive intermediates of selenoproteins’ enzymatic reactions. Knowledge of how the protein environment protects and stabilizes them is fundamental not only to descriptions of selenoproteins’ reactivity but also potentially for proteomics and therapeutics. However, selenenic acids are considered particularly short-lived and were not yet identified in wild-type selenoproteins. Here, we report trapping the selenenic acid in glutathione peroxidase, an anti-oxidant enzyme that efficiently eliminates hydroperoxides. It has long been thought that selenium-containing glutathione peroxidases form a selenenic acid intermediate. However, this putative species has eluded detection. Here, we report its identification. The selenenic acid in bovine glutathione peroxidase 1 was chemically trapped using dimedone, an alkylating agent specific to sulfenic and selenenic acids. The alkylation of the catalytic selenocysteine was verified by electrospray ionization mass spectrometry. In the presence of glutathione, the selenocysteine was not alkylated because the selenenic acid condenses faster with glutathione than the alkylation reaction. In the absence of thiols, the selenenic acid was surprisingly long-lived with 95% of the protein still able to react with dimedone 10 min after hydrogen peroxide was removed, indicating that the protein environment stabilizes the selenenic acid by shielding it from reactive groups in the protein. After 30 min, the selenocysteine was no longer modified but became accessible once the protein was exposed to reducing agents. This suggests that the selenenic acid reacted with a protein’s amide or amine to form a selenylamide bond. Such a modification may play a role in protecting glutathione peroxidase’s reactivity. PMID:25124921

  14. Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis)

    PubMed Central

    2010-01-01

    Background Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity. Results Therefore, a cDNA encoding Eriocheir sinensis FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp Es-FABP gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of Es-FABP transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that Es-FABP expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January. Conclusions Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in E. sinensis, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes. PMID:20846381

  15. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

    SciTech Connect

    Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2008-06-27

    {sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  16. Protein adsorption on piezoelectric poly(L-lactic) acid thin films by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Barroca, Nathalie; Vilarinho, Paula M.; Daniel-da-Silva, Ana Luisa; Wu, Aiying; Fernandes, Maria Helena; Gruverman, Alexei

    2011-03-01

    Up until now, no direct evidence of protein adsorption processes associated with polar activity of a piezoelectric has been reported. This work presents the experimental evidence of the protein adsorption process' dependence on the surface polarization of a piezoelectric by showing at the local scale that the process of protein adsorption is highly favored in the poled areas of a piezoelectric polymer such as poly(L-lactic) acid.

  17. Coarse-grained modeling of protein second osmotic virial coefficients: sterics and short-ranged attractions.

    PubMed

    Grünberger, Alexander; Lai, Pin-Kuang; Blanco, Marco A; Roberts, Christopher J

    2013-01-24

    A series of coarse-grained models, with different levels of structural resolution, were tested to calculate the steric contributions to protein osmotic second virial coefficients (B(22,S)) for proteins ranging from small single-domain molecules to large multidomain molecules, using the recently developed Mayer sampling method. B(22,S) was compared for different levels of coarse-graining: four-beads-per-amino-acid (4bAA), one-bead-per-amino-acid (1bAA), one-sphere-per-domain (1sD), and one-sphere-per-protein (1sP). Values for the 1bAA and 4bAA models were quantitatively indistinguishable for both spherical and nonspherical proteins, and the agreement with values from all-atom models improved with increasing protein size, making the CG approach attractive for large proteins of biotechnological interest. Interestingly, in the absence of detailed structural information, the hydrodynamic radius (R(h)) along with a simple 1sP approximation provided reasonably accurate values for B(22,S) for both globular and highly asymmetric protein structures, while other 1sP approximations gave poorer agreement; this helps to justify the currently empirical practice of estimating B(22,S) from R(h) for large proteins such as antibodies. The results also indicate that either 1bAA or 4bAA CG models may be good starting points for incorporating short-range attractions. Comparison of gD-crystallin B(22) values including both sterics and short-range attractions shows that 1bAA and 4bAA models give equivalent results when properly scaled to account for differences in the number of surface beads in the two CG descriptions. This provides a basis for future work that will also incorporate long-ranged electrostatic attractions and repulsions. PMID:23245189

  18. Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes.

    PubMed

    Herr, F M; Matarese, V; Bernlohr, D A; Storch, J

    1995-09-19

    The transfer of unesterified fatty acids (FA) from adipocyte fatty acid binding protein (A-FABP) to phospholipid membranes is proposed to occur via a collisional mechanism involving transient ionic and hydrophobic interactions [Wootan & Storch (1994) J. Biol. Chem. 269, 10517-10523]. In particular, it was suggested that membrane acidic phospholipids might specifically interact with basic residues on the surface of A-FABP. Here we addressed whether lysine residues on the surface of the protein are involved in this collisional transfer mechanism. Recombinant A-FABP was acetylated to neutralize all positively charged surface lysine residues. Protein fluorescence, CD spectra, and chemical denaturant data indicate that acetylation did not substantially alter the conformational integrity of the protein, and nearly identical affinities were obtained for binding of the fluorescently labeled FA [12-(9-anthroyloxy)oleate] to native and acetylated protein. Transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated A-FABP to small unilamellar vesicles (SUV) was 35-fold slower than from native protein. In addition, whereas the 2AP transfer rate from native A-FABP was directly dependent on SUV concentration, 2AP transfer from acetylated protein was independent on the concentration of acceptor membranes. Factors which alter aqueous-phase solubility of FA, such as ionic strength and acyl chain length and saturation, affected the AOFA transfer rate from acetylated but not native A-FABP. Finally, an increase in the negative charge density of the acceptor SUV resulted in a marked increase in the rate of transfer from native A-FABP but did not increase the rate from acetylated A-FABP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547918

  19. Rapid Online Non-Enzymatic Protein Digestion Combining Microwave Heating Acid Hydrolysis and Electrochemical Oxidation

    PubMed Central

    Basile, Franco; Hauser, Nicolas

    2010-01-01

    We report an online non-enzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical (microwave/echem) digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel non-enzymatic digestion method, when analyzed by ESI-MS, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two non-enzymatic methods overcomes shortcomings with each individual method in that: i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids, and ii) the inability of the electrochemical-cleavage method to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min digestion time) on a series of standard peptides and proteins as well as an E. coli protein extract. PMID:21138252

  20. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues. PMID:27118013

  1. AAS Oral History Project

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Holbrook, Jarita; AAS Oral History Team

    2016-06-01

    Now in its fourth year, the AAS Oral History Project has interviewed over 80 astronomers from all over the world. Led by the AAS Historical Astronomy Division (HAD) and partially funded by the American Institute of Physics Niels Bohr Library and ongoing support from the AAS, volunteers have collected oral histories from astronomers at professional meetings starting in 2015, including AAS, DPS, and the IAU general assembly. Each interview lasts one and a half to two hours and focuses on interviewees’ personal and professional lives. Questions include those about one’s family, childhood, strong influences on one’s scientific career, career path, successes and challenges, perspectives on how astronomy is changing as a field, and advice to the next generation. Each interview is audio recorded and transcribed, the content of which is checked with each interviewee. Once complete, interview transcripts are posted online as part of a larger oral history library at https://www.aip.org/history-programs/niels-bohr-library/oral-histories. Future analysis will reveal a rich story of astronomers and will help the community address issues of diversity, controversies, and the changing landscape of science. We are still recruiting individuals to be interviewed from all stages of career from undergraduate students to retired and emeritus astronomers. Contact Jarita Holbrook to schedule an interview or to find out more information about the project (astroholbrook@gmail.com). Also, contact Jarita Holbrook if you would like to become an interviewer for the project.

  2. American Astronomical Society (AAS)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Founded in 1899, the AAS is a non-profit scientific society created to promote the advancement of astronomy and closely related branches of science. Its membership consists primarily of professional researchers in the astronomical sciences, but also includes educators, students and others interested in the advancement of astronomical research. About 85% of the membership is drawn from North Ame...

  3. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.

    PubMed

    Devarie-Baez, Nelmi O; Silva Lopez, Elsa I; Furdui, Cristina M

    2016-01-01

    Selective modification of proteins at cysteine residues by reactive oxygen, nitrogen or sulfur species formed under physiological and pathological states is emerging as a critical regulator of protein activity impacting cellular function. This review focuses primarily on protein sulfenylation (-SOH), a metastable reversible modification connecting reduced cysteine thiols to many products of cysteine oxidation. An overview is first provided on the chemistry principles underlining synthesis, stability and reactivity of sulfenic acids in model compounds and proteins, followed by a brief description of analytical methods currently employed to characterize these oxidative species. The following chapters present a selection of redox-regulated proteins for which the -SOH formation was experimentally confirmed and linked to protein function. These chapters are organized based on the participation of these proteins in the regulation of signaling, metabolism and epigenetics. The last chapter discusses the therapeutic implications of altered redox microenvironment and protein oxidation in disease. PMID:26340608

  4. Genetically Encoding an Electrophilic Amino Acid for Protein Stapling and Covalent Binding to Native Receptors

    PubMed Central

    2015-01-01

    Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology. In addition to efficient cross-linking of proteins inter- and intramolecularly, this Uaa permits direct stapling of a protein α-helix in a recombinant manner and covalent binding of native membrane receptors in live cells. The target diversity, recombinant stapling, and covalent targeting of endogenous proteins enabled by this versatile Uaa should prove valuable in developing novel research tools, biological diagnostics, and therapeutics by exploiting covalent protein linkages for specificity, irreversibility, and stability. PMID:25010185

  5. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  6. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  7. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    DOEpatents

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  8. Macronutrient requirement for growth: Protein/amino acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current recommendations by the Institute of Medicine on amino acid requirements in healthy children older than 6 months and for children and adolescents have been established using the factorial approach, which takes into account: i) maintenance for obligatory losses, which is estimated by regressio...

  9. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  10. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed

    Hackney, Kyle J; English, Kirk L

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%-15% of total energy intake (≤1.4 g∙kg-1∙day-1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5-2.0 g∙kg-1∙day-1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  11. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed Central

    Hackney, Kyle J.; English, Kirk L.

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  12. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off. PMID:26260520

  13. Determination of seleno-amino acids bound to proteins in extra virgin olive oils.

    PubMed

    Torres, Sabier; Gil, Raul; Silva, María Fernanda; Pacheco, Pablo

    2016-04-15

    An analytical method has been developed to determine seleno-amino acids in proteins extracted from extra virgin olive oils (EVOOs). Different aqueous/organic solvents were tested to isolate proteins, an acetone:n-hexane combination being the best protein precipitant. In a first dimension chromatography, extracted proteins were analysed by size exclusion chromatography (SEC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) to identify S and Se associations as proteins marker. Two fractions of 66 kDa (A) and 443 kDa (B) were identified. These fractions were submitted to microwave-assisted acid hydrolysis (MAAH) to release seleno-amino acids. In a second dimension chromatography seleno-amino acids were determined by reversed-phase chromatography (RPC) coupled to ICP-MS. Seleno-methylselenocysteine was determined with values ranging from 1.03-2.03±0.2 μg kg(-1) and selenocysteine at a concentration of 1.47±0.1 μg kg(-1). Variations of protein and seleno-amino acid concentrations were observed between EVOO varieties, contributing to EVOO cultivar differentiation. PMID:26616967

  14. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa.

    PubMed

    Thanapornpoonpong, Sa-nguansak; Vearasilp, Suchada; Pawelzik, Elke; Gorinstein, Shela

    2008-12-10

    The effect of nitrogen application levels (0.16 and 0.24 g N kg(-1) soil) on seed proteins and their amino acid compositions of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) was studied. Total proteins of amaranth and quinoa had high contents of lysine (6.3-8.2 g 100 g(-1) protein) but low contents of methionine (1.2-1.8 g 100 g(-1) protein). Seed proteins were fractionated on the basis of different solubility in water, saline, and buffer as albumin-1 (Albu-1), albumin-2 (Albu-2), globulin (Glob), and glutelin (Glu) and were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Albu-1 was high in lysine (5.4-8.6 g 100 g(-1) protein), while Albu-2, which is a part of storage proteins, had a high leucine content (7.2-8.9 g 100 g(-1) protein) as an effect of different nitrogen application levels. Glu fractions were well-balanced in their essential amino acids with the exception of methionine. In conclusion, nitrogen application can be used for the nutritional improvement in human diet by increasing and maintaining protein and essential amino acid contents. PMID:19006392

  15. Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.

    PubMed

    Wilkerson, Julia E R; Satriotomo, Irawan; Baker-Herman, Tracy L; Watters, Jyoti J; Mitchell, Gordon S

    2008-03-12

    Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during IH and conferring pattern sensitivity to pLTF. We hypothesized that spinal protein phosphatase inhibition would relieve this braking action of protein phosphatases, thereby revealing pLTF after SH. Anesthetized rats received intrathecal (C4) okadaic acid (25 nm) before SH (25 min, 11% O(2)). Unlike (vehicle) control rats, SH induced a significant pLTF in okadaic acid-treated rats that was indistinguishable from rats exposed to IH (three 5 min episodes, 11% O(2)). IH and SH with okadaic acid may elicit pLTF by similar, serotonin-dependent mechanisms, because intravenous methysergide blocks pLTF in rats receiving IH or okadaic acid plus SH. Okadaic acid did not alter IH-induced pLTF. In summary, pattern sensitivity in pLTF may reflect differential regulation of okadaic acid-sensitive serine/threonine phosphatases; presumably, these phosphatases are less active during/after IH versus SH. The specific okadaic acid-sensitive phosphatase(s) constraining pLTF and their spatiotemporal dynamics during and/or after IH and SH remain to be determined. PMID:18337426

  16. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  17. Ascorbic acid improves embryonic cardiomyoblast cell survival and promotes vascularization in potential myocardial grafts in vivo.

    PubMed

    Martinez, Eliana C; Wang, Jing; Gan, Shu Uin; Singh, Rajeev; Lee, Chuen Neng; Kofidis, Theo

    2010-04-01

    Organ restoration via cell therapy and tissue transplantation is limited by impaired graft survival. We tested the hypothesis that ascorbic acid (AA) reduces cell death in myocardial grafts both in vitro and in vivo and introduced a new model of autologous graft vascularization for later transplantation. Luciferase (Fluc)- and green fluorescent protein (GFP)-expressing H9C2 cardiomyoblasts were seeded in gelatin scaffolds to form myocardial artificial grafts (MAGs). MAGs were supplemented with AA (5 or 50 mumol/L) or plain growth medium. Bioluminescence imaging showed increased cell photon emission from day 1 to 5 in grafts supplemented with 5 mumol/L (p < 0.001) and 50 mumol/L (p < 0.01) AA. The amount of apoptotic cells in plain MAGs was significantly higher than in AA-enriched grafts. In our in vitro model, AA also enhanced H9C2 cell myogenic differentiation. For in vivo studies, MAGs containing H9C2-GFP-Fluc cells and enriched with AA (n = 10) or phosphate-buffered saline (n = 10) were implanted in the renal pouch of Wistar rats. At day 6, postimplantation bioluminescence signals decreased by 74% of baseline in plain MAGs versus 36% in AA-enriched MAGs (p < 0.0001). AA grafts contained significantly higher amounts of blood vessels, GFP(+) donor cells, and endothelial cells. In this study, we identified AA as a potent supplement that improves cardiomyoblast survival and promotes neovascularization in bioartificial grafts. PMID:19908964

  18. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  19. Structure of the photoactive yellow protein reconstituted with caffeic acid at 1.16 A resolution.

    PubMed

    van Aalten, Daan M F; Crielaard, Wim; Hellingwerf, Klaas J; Joshua-Tor, Leemor

    2002-04-01

    A structural study is described of the photoactive yellow protein (PYP) reconstituted with the chromophore derivative 3,4-dihydroxycinnamic acid. The crystal structure of PYP reconstituted with this chromophore at 1.16 A resolution is reported in space group P6(5). This is the first high-resolution structure of a photoreceptor containing a modified chromophore. The introduction of an extra hydroxyl group in the native chromophore (i.e. p-coumaric acid) appears to perturb the structure of the hybrid yellow protein only slightly. The chromophore is bound by the protein in two different conformations, separated by a rotation of 180 degrees of the catechol ring. In combination with available spectroscopic data, it is concluded that the caffeic acid chromophore binds to the protein in a strained conformation, which leads to a faster ejection from the chromophore-binding pocket upon pB formation. PMID:11914481

  20. Incorporation of Noncanonical Amino Acids into Rosetta and Use in Computational Protein-Peptide Interface Design

    PubMed Central

    Renfrew, P. Douglas; Choi, Eun Jung; Bonneau, Richard; Kuhlman, Brian

    2012-01-01

    Noncanonical amino acids (NCAAs) can be used in a variety of protein design contexts. For example, they can be used in place of the canonical amino acids (CAAs) to improve the biophysical properties of peptides that target protein interfaces. We describe the incorporation of 114 NCAAs into the protein-modeling suite Rosetta. We describe our methods for building backbone dependent rotamer libraries and the parameterization and construction of a scoring function that can be used to score NCAA containing peptides and proteins. We validate these additions to Rosetta and our NCAA-rotamer libraries by showing that we can improve the binding of a calpastatin derived peptides to calpain-1 by substituting NCAAs for native amino acids using Rosetta. Rosetta (executables and source), auxiliary scripts and code, and documentation can be found at (http://www.rosettacommons.org/). PMID:22431978

  1. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  2. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  3. Single-Cell Protein Production by the Acid-Tolerant Fungus Scytalidium acidophilum from Acid Hydrolysates of Waste Paper †

    PubMed Central

    Ivarson, K. C.; Morita, H.

    1982-01-01

    The bioconversion of waste paper to single-cell protein at pH <1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H2SO4 at 4°C was diluted with water to a pH of <0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. PMID:16345970

  4. Single-cell protein production by the acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper

    SciTech Connect

    Ivarson, K.C.; Morita, H.

    1982-03-01

    The bioconversion of waste paper to single-cell protein at pH less than 1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H/sub 2/SO/sub 4/ at 4 degrees C was diluted with water to a pH of less than 0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. (Refs. 30).

  5. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats

    PubMed Central

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-01-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring’s plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring’s plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development. PMID:26633475

  6. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  7. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  8. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  9. Effects of reduced dietary protein and supplemental rumen-protected essential amino acids on the nitrogen efficiency of dairy cows.

    PubMed

    Arriola Apelo, S I; Bell, A L; Estes, K; Ropelewski, J; de Veth, M J; Hanigan, M D

    2014-09-01

    When fed to meet the metabolizable protein requirements of the National Research Council, dairy cows consume an excess of N, resulting in approximately 75% of dietary N being lost to the environment as urine and feces. Reductions in environmental N release could be attained through an improvement in N efficiency. The objective of this study was to determine if the predicted reduction in milk yield associated with feeding a low-protein diet to lactating dairy cows could be avoided by dietary supplementation with 1 or more ruminally protected (RP) AA. Fourteen multiparous and 10 primiparous Holstein cows, and 24 multiparous Holstein × Jersey crossbred cows were used in a Youden square design consisting of 8 treatments and 3 periods. The 8 dietary treatments were (1) a standard diet containing 17% crude protein [CP; positive control (PC)], (2) a 15% CP diet [negative control (NC)], (3) NC plus RP Met (+M), (4) NC plus RP Lys (+K), (5) NC plus RP Leu (+L), (6) NC plus RP Met and Lys (+MK), (7) NC plus RP Met and Leu (+ML), and (8) NC plus RP Met, Lys, and Leu (+MKL). Dry matter intake was not affected by treatment. Crude protein intake was lower for NC and RP AA treatments compared with the PC treatment. No detrimental effect was detected of the low-CP diet alone or in combination with AA supplementation on milk and fat yield. However, milk protein yield decreased for NC and +MKL diets, and lactose yield decreased for the +MKL compared with the PC diet. Milk urea N concentrations were lower for all diets, suggesting that greater N efficiency was achieved by feeding the low-protein diet. Minimal effects of treatments on arterial plasma essential AA concentrations were detected, with only Ile and Val being significantly lower in the NC than in the PC diet. Phosphorylation ratios of signaling proteins known to regulate mRNA translation were not affected by treatments. This study highlights the limitations of requirement models aggregated at the protein level and the use

  10. Amino acid alignment of cholinesterases, esterases, lipases, and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.

    1995-12-31

    The alignments previously published (Gentry Doctor, 1991; Cygler et al., 1993), nine and 32 sequences respectively, have been further expanded by the addition of 22 newly-found sequences. References and protein sequences were found by searching on the term acetylcholinesterase using the software package Entrez, an integrated citation and sequence retrieval system (National Center for Biotechnology Information, NLM, Bethesda, MD).

  11. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... addition to information meeting the requirements stated under 40 CFR 79.60, the following specific...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... the desired dilution in blocking solution containing 0.1 percent Triton X-100). Serum anti-bovine...

  12. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... addition to information meeting the requirements stated under 40 CFR 79.60, the following specific...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... the desired dilution in blocking solution containing 0.1 percent Triton X-100). Serum anti-bovine...

  13. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... addition to information meeting the requirements stated under 40 CFR 79.60, the following specific...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... the desired dilution in blocking solution containing 0.1 percent Triton X-100). Serum anti-bovine...

  14. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... addition to information meeting the requirements stated under 40 CFR 79.60, the following specific...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... the desired dilution in blocking solution containing 0.1 percent Triton X-100). Serum anti-bovine...

  15. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... addition to information meeting the requirements stated under 40 CFR 79.60, the following specific...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... the desired dilution in blocking solution containing 0.1 percent Triton X-100). Serum anti-bovine...

  16. Thermoformed protein based composites in presence of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are non biodegradable. There is a growing demand for the use of renewable agricultural sources to develop eco-friendly biobased composites. Agriculture-sourced proteins and starches are b...

  17. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    PubMed

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  18. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  19. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. PMID:17661353

  20. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis.

    PubMed

    Ye, Shixin; Köhrer, Caroline; Huber, Thomas; Kazmi, Manija; Sachdev, Pallavi; Yan, Elsa C Y; Bhagat, Aditi; RajBhandary, Uttam L; Sakmar, Thomas P

    2008-01-18

    G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors. PMID:17993461

  1. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  2. A strategy to select suitable physicochemical attributes of amino acids for protein fold recognition

    PubMed Central

    2013-01-01

    Background Assigning a protein into one of its folds is a transitional step for discovering three dimensional protein structure, which is a challenging task in bimolecular (biological) science. The present research focuses on: 1) the development of classifiers, and 2) the development of feature extraction techniques based on syntactic and/or physicochemical properties. Results Apart from the above two main categories of research, we have shown that the selection of physicochemical attributes of the amino acids is an important step in protein fold recognition and has not been explored adequately. We have presented a multi-dimensional successive feature selection (MD-SFS) approach to systematically select attributes. The proposed method is applied on protein sequence data and an improvement of around 24% in fold recognition has been noted when selecting attributes appropriately. Conclusion The MD-SFS has been applied successfully in selecting physicochemical attributes of the amino acids. The selected attributes show improved protein fold recognition performance. PMID:23879571

  3. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding

    SciTech Connect

    Kaye, F.J.; Gerster, J.L. Uniformed Services Univ. of Health Sciences, Bethesda, MD ); Kratzke, R.A. ); Horowitz, J.M. )

    1990-09-01

    The authors have previously identified a small-cell lung cancer cell line (NCI-H209) that expresses an aberrant, underphosphorylated form of the retinoblastoma protein RB1. Molecular analysis of RB1 mRNA from this cell line revealed a single point mutation within exon 21 that resulted in a nonconservative amino acid substitution (cysteine to phenylalanine) at codon 706. Stable expression of this mutant RB1 cDNA in a human cell line lacking endogenous RB1 demonstrated that this amino acid change was sufficient to inhibit phosphorylation. In addition, this cysteine-to-phenylalanine substitution also resulted in loss of RB1 binding to the simian virus 40 large tumor and adenovirus E1A transforming proteins. These results confirm the importance of exon 21 coding sequences and suggest that the cysteine residue at codon 706 may play a role in achieving a specific protein conformation essential for protein-protein interactions.

  4. N-Homocysteinylation Induces Different Structural and Functional Consequences on Acidic and Basic Proteins

    PubMed Central

    Sharma, Gurumayum Suraj; Kumar, Tarun; Singh, Laishram Rajendrakumar

    2014-01-01

    One of the proposed mechanisms of homocysteine toxicity in human is the modification of proteins by the metabolite of Hcy, homocysteine thilolactone (HTL). Incubation of proteins with HTL has earlier been shown to form covalent adducts with ε-amino group of lysine residues of protein (called N-homocysteinylation). It has been believed that protein N-homocysteinylation is the pathological hallmark of cardiovascular and neurodegenerative disorders as homocysteinylation induces structural and functional alterations in proteins. In the present study, reactivity of HTL towards proteins with different physico-chemical properties and hence their structural and functional alterations were studied using different spectroscopic approaches. We found that N-homocysteinylation has opposite consequences on acidic and basic proteins suggesting that pI of the protein determines the extent of homocysteinylation, and the structural and functional consequences due to homocysteinylation. Mechanistically, pI of protein determines the extent of N-homocysteinylation and the associated structural and functional alterations. The study suggests the role of HTL primarily targeting acidic proteins in eliciting its toxicity that could yield mechanistic insights for the associated neurodegeneration. PMID:25551634

  5. Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1.

    PubMed

    Zheng, Yunan; Lajoie, Marc J; Italia, James S; Chin, Melissa A; Church, George M; Chatterjee, Abhishek

    2016-05-24

    Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins expressed in E. coli using UAG-suppression competes with termination mediated by release factor 1 (RF1). Recently, unconditional deletion of RF1 was achieved in a genomically recoded E. coli (C321), devoid of all endogenous UAG stop codons. Here we evaluate the efficiency of ncAA incorporation in this strain using optimized suppression vectors. Even though the absence of RF1 does not benefit the suppression efficiency of a single UAG codon, multi-site incorporation of a series of chemically distinct ncAAs was significantly improved. PMID:27027374

  6. Cloning and sequencing of a cDNA encoding a taste-modifying protein, miraculin.

    PubMed

    Masuda, Y; Nirasawa, S; Nakaya, K; Kurihara, Y

    1995-08-19

    A cDNA clone encoding a taste-modifying protein, miraculin (MIR), was isolated and sequenced. The encoded precursor to MIR was composed of 220 amino acid (aa) residues, including a possible signal sequence of 29 aa. Northern blot analysis showed that the mRNA encoding MIR was already expressed in fruits of Richadella dulcifica at 3 weeks after pollination and was present specifically in the pulp. PMID:7665074

  7. Effects of postruminal protein on fatty acid digestibility in dairy cows.

    PubMed

    Goodling, L E; Grummer, R R

    1998-06-01

    Eight ruminally cannulated Holstein cows (four multiparous and four primiparous) were used in a replicated 4 x 4 Latin square with an extra period to determine the effects of postruminal protein on fatty acid digestibility. Samples were collected during the last 4 d of each 14-d period. Total mixed rations were composed of 41% alfalfa haylage, 42% corn silage, 12% concentrate based on corn, and 5% tallow. Cows were fed at 90% of ad libitum intake. Treatments were abomasal infusion of guar gum or guar gum plus urea, corn gluten meal, or blood meal in 12 L of water. The basal ration contained 12% crude protein (CP), and infusion of N sources increased CP to approximately 14%. Dry matter intake was similar for cows on all treatments. Milk, 3.5% fat-corrected milk, milk protein, and milk fat yields increased for cows receiving postruminal CP. Postruminal CP did not affect milk fat and protein percentages. Dry matter, organic matter, and CP digestibilities were greater in cows receiving postruminal CP. Total fatty acid and total C18 fatty acid digestibilities were not affected by treatment. Total C16 fatty acid and C18:0 fatty acid digestibilities were greater for cows receiving nonprotein N than for those receiving true protein. PMID:9684169

  8. Enamel erosion in dietary acids: inhibition by food proteins in vitro.

    PubMed

    Hemingway, C A; White, A J; Shellis, R P; Addy, M; Parker, D M; Barbour, M E

    2010-01-01

    The aim of this study was to investigate the effects of two common food proteins on human enamel erosion in vitro. Erosion was measured by non-contact profilometry in citric, malic and lactic acids at pH 2.8, 3.2 and 3.8 and five commercially available soft drinks, in the presence of a salivary pellicle. Whole milk casein or hen egg ovalbumin was added to the acid solutions and drinks at 0.2% w/v, and the effect on erosion was determined by comparison with the corresponding solution without protein. Casein significantly reduced erosion in all but two solutions. The effects of the individual subfractions of casein in citric acid at pH 3.2 were similar to that of whole casein. Ovalbumin reduced erosion in some solutions, but the magnitude of the reduction was less than that with casein. A greater proportional reduction in erosion was seen in citric acid than in malic or lactic acids. We postulate that the mechanism involves adsorption of proteins to the pellicle or the enamel surface, forming a protein film with enhanced erosion-inhibiting properties. The citrate ion may play an active stabilising role, since erosion reduction was less in the other acids. In conclusion, casein and, to a lesser extent, ovalbumin show promise as potential anti-erosive additives to drinks. PMID:20980757

  9. Uniformly sup 13 C-labeled algal protein used to determine amino acid essentiality in vivo

    SciTech Connect

    Berthold, H.K.; Hachey, D.L.; Reeds, P.J.; Klein, P.D. ); Thomas, O.P. ); Hoeksema, S. )

    1991-09-15

    The edible alga Spirulina platensis was uniformly labeled with {sup 13}C by growth in an atmosphere of pure {sup 13}CO{sub 2}. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly {sup 13}C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo.

  10. Search for conserved amino acid residues of the [Formula: see text]-crystallin proteins of vertebrates.

    PubMed

    Shiliaev, Nikita G; Selivanova, Olga M; Galzitskaya, Oxana V

    2016-04-01

    [Formula: see text]-crystallin is the major eye lens protein and a member of the small heat-shock protein (sHsp) family. [Formula: see text]-crystallins have been shown to support lens clarity by preventing the aggregation of lens proteins. We performed the bioinformatics analysis of [Formula: see text]-crystallin sequences from vertebrates to find conserved amino acid residues as the three-dimensional (3D) structure of [Formula: see text]-crystallin is not identified yet. We are the first who demonstrated that the N-terminal region is conservative along with the central domain for vertebrate organisms. We have found that there is correlation between the conserved and structured regions. Moreover, amyloidogenic regions also correspond to the structured regions. We analyzed the amino acid composition of [Formula: see text]-crystallin A and B chains. Analyzing the occurrence of each individual amino acid residue, we have found that such amino acid residues as leucine, serine, lysine, proline, phenylalanine, histidine, isoleucine, glutamic acid, and valine change their content simultaneously in A and B chains in different classes of vertebrates. Aromatic amino acids occur more often in [Formula: see text]-crystallins from vertebrates than on the average in proteins among 17 animal proteomes. We obtained that the identity between A and B chains in the mammalian group is 0.35, which is lower than the published 0.60. PMID:26972563

  11. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo.

    PubMed Central

    Berthold, H K; Hachey, D L; Reeds, P J; Thomas, O P; Hoeksema, S; Klein, P D

    1991-01-01

    The edible alga Spirulina platensis was uniformly labeled with 13C by growth in an atmosphere of pure 13CO2. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly 13C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo. Images PMID:11607211

  12. Controlled protein release from polyethyleneimine-coated poly(L-lactic acid)/pluronic blend matrices.

    PubMed

    Park, T G; Cohen, S; Langer, R

    1992-01-01

    Protein release from degradable polymer matrices, composed of poly(L-lactic acid) and its blends with Pluronic surfactant, was investigated with and without the aqueous coating of an adsorptive water-soluble polymer, polyethyleneimine (PEI). PEI is a highly branched cationic polymer containing primary, secondary, and tertiary amino groups in its backbone. The treatment of PEI for PLA/Pluronic blend films exhibited a remarkable decrease in the "burst" release of protein at an initial stage and a significant extension in the protein release period. Protein release profiles could be controlled by varying PEI treatment time and its concentration. Our results suggest that PEI diffuses into the polymer matrices and crosslinks protein molecules by ionic interactions. Such a PEI-protein network near the surface region of matrix may act as a diffusional barrier for further release of protein molecules. PMID:1589407

  13. Chlamydia pneumoniae encodes a functional aromatic amino acid hydroxylase.

    PubMed

    Abromaitis, Stephanie; Hefty, P Scott; Stephens, Richard S

    2009-03-01

    Chlamydia pneumoniae is a community-acquired respiratory pathogen that has been associated with the development of atherosclerosis. Analysis of the C. pneumoniae genome identified a gene (Cpn1046) homologous to eukaryotic aromatic amino acid hydroxylases (AroAA-Hs). AroAA-Hs hydroxylate phenylalanine, tyrosine, and tryptophan into tyrosine, dihydroxyphenylalanine, and 5-hydroxytryptophan, respectively. Sequence analysis of Cpn1046 demonstrated that residues essential for AroAA-H enzymatic function are conserved and that a subset of Chlamydia species contain an AroAA-H homolog. The chlamydial AroAA-Hs are transcriptionally linked to a putative bacterial membrane transport protein. We determined that recombinant Cpn1046 is able to hydroxylate phenylalanine, tyrosine, and tryptophan with roughly equivalent activity for all three substrates. Cpn1046 is expressed within 24 h of infection, allowing C. pneumoniae to hydroxylate host stores of aromatic amino acids during the period of logarithmic bacterial growth. From these results we can conclude that C. pneumoniae, as well as a subset of other Chlamydia species, encode an AroAA-H that is able to use all three aromatic amino acids as substrates. The maintenance of this gene within a number of Chlamydia suggests that the enzyme may have an important role in shaping the metabolism or overall pathogenesis of these bacteria. PMID:19141112

  14. Changes in intramuscular amino acid levels in submaximally exercised horses - a pilot study.

    PubMed

    van den Hoven, R; Bauer, A; Hackl, S; Zickl, M; Spona, J; Zentek, J

    2010-08-01

    The time-dependent changes in intramuscular amino acid (AA) levels caused by exercise and by feeding a protein/AA supplement were analysed in nine horses. Horses were submitted to a total of four standardized exercise tests (SETs). Amino acid concentrations were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period two SETs were performed. In the second period, horses were given a protein/AA supplement within 1 h after exercise. Significant changes in mean plasma AA levels similar to previous studies were noted to be time-dependent and to be associated with feeding the supplement. The intramuscular concentrations of the free AA in relation to pre-exercise levels showed significant time-dependent changes for alanine, asparagine, aspartate, citrulline, glutamine, glycine, isoleucine, leucine, methionine, serine, taurine, threonine, tyrosine and valine. Feeding the supplement significantly increased the 4 h post-exercise intramuscular concentration of alanine, isoleucine, methionine and tyrosine. At 18 h after exercise, apart from isoleucine and methionine, levels were still increased and also those of asparagine, histidine and valine in relation to none treatment. Hence, it was concluded that AA mixtures administered orally to horses within 1 h after exercise increased intramuscular AA pool. PMID:19663973

  15. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics. PMID:24412336

  16. The effect of whey acidic protein fractions on bone loss in the ovariectomised rat.

    PubMed

    Kruger, Marlena C; Plimmer, Gabrielle G; Schollum, Linda M; Haggarty, Neill; Ram, Satyendra; Palmano, Kate

    2005-08-01

    Bovine milk has been shown to contain bioactive components with bone-protective properties. Earlier studies on bovine milk whey protein showed that it suppressed bone resorption in the female ovariectomised rat. A new osteotropic component was subsequently identified in the whey basic protein fraction, but bone bioactivity may also be associated with other whey fractions. In the present study, we investigated whether acidic protein fractions isolated from bovine milk whey could prevent bone loss in mature ovariectomised female rats. Six-month-old female rats were ovariectomised (OVX) or left intact (sham). The OVX rats were randomised into four groups. One group remained the control (OVX), whereas three groups were fed various whey acidic protein fractions from milk whey as 3 g/kg diet for 4 months. Outcomes were bone mineral density, bone biomechanics and markers of bone turnover. Bone mineral density of the femurs indicated that one of the whey AF over time caused a recovery of bone lost from OVX. Plasma C-telopeptide of type I collagen decre