Science.gov

Sample records for acid aba inhibits

  1. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways.

    PubMed

    Garcia-Mata, Carlos; Lamattina, Lorenzo

    2007-01-01

    Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.

  2. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    PubMed

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting.

  3. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    PubMed

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  4. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism

    PubMed Central

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-01-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8’OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy. PMID:25560179

  5. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Safronova, Vera I; Dumova, Valentina A; Shaposhnikov, Alexander I; Ladatko, Alexander G; Davies, William J

    2014-01-01

    Although endogenous phytohormones such as abscisic acid (ABA) regulate root growth, and many rhizobacteria can modulate root phytohormone status, hitherto there have been no reports of rhizobacteria mediating root ABA concentrations and growth by metabolising ABA. Using a selective ABA-supplemented medium, two bacterial strains were isolated from the rhizosphere of rice (Oryza sativa) seedlings grown in sod-podzolic soil and assigned to Rhodococcus sp. P1Y and Novosphingobium sp. P6W using partial 16S rRNA gene sequencing and phenotypic patterns by the GEN III MicroPlate test. Although strain P6W had more rapid growth in ABA-supplemented media than strain P1Y, both could utilize ABA as a sole carbon source in batch culture. When rice seeds were germinated on filter paper in association with bacteria, root ABA concentration was not affected, but shoot ABA concentration of inoculated plants decreased by 14% (strain P6W) and 22% (strain P1Y). When tomato (Solanum lycopersicum) genotypes differing in ABA biosynthesis (ABA deficient mutants flacca - flc, and notabilis - not and the wild-type cv. Ailsa Craig, WT) were grown in gnotobiotic cultures on nutrient solution agar, rhizobacterial inoculation decreased root and/or leaf ABA concentrations, depending on plant and bacteria genotypes. Strain P6W inhibited primary root elongation of all genotypes, but increased leaf biomass of WT plants. In WT plants treated with silver ions that inhibit ethylene perception, both ABA-metabolising strains significantly decreased root ABA concentration, and strain P6W decreased leaf ABA concentration. Since these changes in ABA status also occurred in plants that were not treated with silver, it suggests that ethylene was probably not involved in regulating bacteria-mediated changes in ABA concentration. Correlations between plant growth and ABA concentrations in planta suggest that ABA-metabolising rhizobacteria may stimulate growth via an ABA-dependent mechanism.

  6. Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio.

    PubMed

    Chiu, Rex Shun; Saleh, Yazan; Gazzarrini, Sonia

    2016-11-01

    During seed imbibition at supra-optimal temperature, an increase in the abscisic acid (ABA)/gibberellin (GA) ratio imposes secondary dormancy to prevent germination (thermoinhibition). FUSCA3 (FUS3), a positive regulator of seed dormancy, accumulates in seeds imbibed at high temperature and increases ABA levels to inhibit germination. Recently, we showed that ABA inhibits FUS3 degradation at high temperature, and that ABA and high temperature also inhibit the ubiquitin-proteasome system, by dampening both proteasome activity and protein polyubiquitination. Here, we investigated the role of ABA signaling components and the ABA antagonizing hormone, GA, in the regulation of FUS3 levels. We show that the ABA receptor mutant, pyl1-1, is less sensitive to ABA and thermoinhibition. In this mutant background, FUS3 degradation in vitro is faster. Similarly, GA alleviates thermoinhibition and also increases FUS3 degradation. These results indicate that inhibition of FUS3 degradation at high temperature is dependent on a high ABA/GA ratio and a functional ABA signaling pathway. Thus, FUS3 constitutes an important node in ABA-GA crosstalk during germination at supra-optimal temperature.

  7. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants.

    PubMed

    Castillo, Mari-Cruz; Lozano-Juste, Jorge; González-Guzmán, Miguel; Rodriguez, Lesia; Rodriguez, Pedro L; León, José

    2015-09-01

    Abscisic acid (ABA) is a phytohormone that inhibits growth and enhances adaptation to stress in plants. ABA perception and signaling rely on its binding to receptors of the pyrabactin resistance1/PYR1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) family, the subsequent inhibition of clade A type 2C protein phosphatases (PP2Cs), and the phosphorylation of ion channels and transcription factors by protein kinases of the SnRK2 family. Nitric oxide (NO) may inhibit ABA signaling because NO-deficient plants are hypersensitive to ABA. Regulation by NO often involves posttranslational modification of proteins. Mass spectrometry analysis of ABA receptors expressed in plants and recombinant receptors modified in vitro revealed that the receptors were nitrated at tyrosine residues and S-nitrosylated at cysteine residues. In an in vitro ABA-induced, PP2C inhibition assay, tyrosine nitration reduced receptor activity, whereas S-nitrosylated receptors were fully capable of ABA-induced inhibition of the phosphatase. PYR/PYL/RCAR proteins with nitrated tyrosine, which is an irreversible covalent modification, were polyubiquitylated and underwent proteasome-mediated degradation. We propose that tyrosine nitration, which requires NO and superoxide anions, is a rapid mechanism by which NO limits ABA signaling under conditions in which NO and reactive oxygen species are both produced.

  8. ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves.

    PubMed

    Tanaka, Yoko; Nose, Tomoe; Jikumaru, Yusuke; Kamiya, Yuji

    2013-05-01

    The number and density of stomata are controlled by endogenous and environmental factors. Despite recent advances in our understanding of stomatal development, mechanisms which prevent stomatal-lineage entry remain unclear. Here, we propose that abscisic acid (ABA), a phytohormone known to induce stomatal closure, limits initiation of stomatal development and induces enlargement of pavement cells in Arabidopsis cotyledons. An ABA-deficient aba2-2 mutant had an increased number/proportion of stomata within a smaller cotyledon, as well as reduced expansion of pavement cells. This tendency was reversed after ABA application or in an ABA over-accumulating cyp707a1cyp707a3 doublemutant. Our time course analysis revealed that aba2-2 shows prolonged formation of meristemoids and guard mother cells, both precursors of stoma. This finding is in accordance with prolonged gene expression of SPCH and MUTE, master regulators for stomatal formation, indicating that ABA acts upstream of these genes. Only aba2-2 mute, but not aba2-2 spch double mutant showed additive phenotypes and displayed inhibition of pavement cell enlargement with increased meristemoid number, indicating that ABA action on pavement cell expansion requires the presence of stomatal-lineage cells.

  9. The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction.

    PubMed

    Li, Juan; Shi, Chaowei; Sun, Demeng; He, Yao; Lai, Chaohua; Lv, Pei; Xiong, Ying; Zhang, Longhua; Wu, Fangming; Tian, Changlin

    2015-06-05

    PYL10 is a monomeric abscisic acid (ABA) receptor that inhibits protein phosphatase 2C (PP2C) activity in Arabidopsis thaliana. Previous studies reported that the PP2C phosphatase inhibition by PYL10 was ABA-independent. Here, systematic PYL10 biochemical studies demonstrated that PYL10 activity was ABA-dependent, and the previously reported studies was interfered by the presence of BSA in the commercial kit. To investigate dynamic mechanism of how ABA binding to PYL10 induces PP2C phosphatase inhibiting activity, solution NMR relaxation analysis of apo-PYL10 and PYL10/ABA were conducted following backbone resonance assignments. Reduced spectrum density mapping of the backbone relaxation data revealed that PYL10 was more flexible in ABA bound form than apo-PYL10, indicating an increased conformational entropy upon ligand binding. Moreover, to illustrate conformation exchanges of PYL10 upon ABA binding, NMR line shape analysis was performed with increasing concentrations of ABA, and the results indicated that PYL10 backbone conformational changes occur at different time scales.

  10. ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud.

    PubMed Central

    Goggin, Danica E.; Steadman, Kathryn J.; Emery, R. J. Neil; Farrow, Scott C.; Benech-Arnold, Roberto L.; Powles, Stephen B.

    2009-01-01

    Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds. Inhibitors of ABA metabolism had the expected effects on seed germination but did not influence ABA concentration, suggesting that they act upon other (unknown) factors regulating dormancy. Although gibberellin (GA) synthesis was required for germination, the influence of exogenous GA on both germination and dormancy release was minor or non-existent. Embryo ABA concentration was the same following treatments to promote (dark stratification) and inhibit (light stratification) dormancy release; exogenous ABA had no effect on this process. However, the sensitivity of dark-stratified seeds to ABA supplied during germination was lower than that of light-stratified seeds. Therefore, although ABA definitely plays a role in the germination of annual ryegrass seeds, it is not the major factor mediating inhibition of dormancy release in imbibed seeds. PMID:19487389

  11. ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud.

    PubMed

    Goggin, Danica E; Steadman, Kathryn J; Emery, R J Neil; Farrow, Scott C; Benech-Arnold, Roberto L; Powles, Stephen B

    2009-01-01

    Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds. Inhibitors of ABA metabolism had the expected effects on seed germination but did not influence ABA concentration, suggesting that they act upon other (unknown) factors regulating dormancy. Although gibberellin (GA) synthesis was required for germination, the influence of exogenous GA on both germination and dormancy release was minor or non-existent. Embryo ABA concentration was the same following treatments to promote (dark stratification) and inhibit (light stratification) dormancy release; exogenous ABA had no effect on this process. However, the sensitivity of dark-stratified seeds to ABA supplied during germination was lower than that of light-stratified seeds. Therefore, although ABA definitely plays a role in the germination of annual ryegrass seeds, it is not the major factor mediating inhibition of dormancy release in imbibed seeds.

  12. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence

    PubMed Central

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-01-01

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties. DOI: http://dx.doi.org/10.7554/eLife.13768.001 PMID:27697148

  13. Abscisic acid (ABA) receptors: light at the end of the tunnel

    PubMed Central

    McCormick, Sheila

    2010-01-01

    The plant hormone abscisic acid (ABA) plays a role in several aspects of plant growth and development. Understanding how this hormonal stimulus is sensed and transduced turned out to be one of the major tasks in the field of plant signaling. A series of recent papers proposed several different proteins that could receive the ABA signal and initiate the signaling cascade. The winner appears to be PYR/PYL/RCAR (PYrabactin Resistance/PYrabactin Resistance-Like/Regulatory Component of Abscisic acid Receptor) proteins, as crystal structures were recently published. The crystal structures support the idea that upon ABA binding to a PYR/PYL/RCAR protein, the activity of a phosphatase 2C, with known repressive activity on ABA signaling, is inhibited. PMID:20948817

  14. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis.

    PubMed

    Zhang, Haiwen; Zhu, Huifen; Pan, Yajun; Yu, Yuexuan; Luan, Sheng; Li, Legong

    2014-10-01

    Abscisic acid (ABA) regulates numerous physiological and developmental processes in plants. Recent studies identify intracellular ABA receptors, implicating the transport of ABA across cell membranes as crucial for ABA sensing and response. Here, we report that a DTX/Multidrug and Toxic Compound Extrusion (MATE) family member in Arabidopsis thaliana, AtDTX50, functions as an ABA efflux transporter. When expressed heterologously in both an Escherichia coli strain and Xenopus oocyte cells, AtDTX50 was found to facilitate ABA efflux. Furthermore, dtx50 mutant mesophyll cells preloaded with ABA released less ABA compared with the wild-type (WT). The AtDTX50 gene was expressed mainly in the vascular tissues and guard cells and its expression was strongly up-regulated by exogenous ABA. The AtDTX50::GFP fusion protein was localized predominantly to the plasma membrane. The dtx50 mutant plants were observed to be more sensitive to ABA in growth inhibition. In addition, compared with the WT, dtx50 mutant plants were more tolerant to drought with lower stomatal conductance, consistent with its function as an ABA efflux carrier in guard cells.

  15. Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination.

    PubMed

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Boutet-Mercey, Stéphanie; Maia-Grondard, Alessandra; Limami, Anis M

    2011-01-01

    The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit.

  16. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  17. Effects of high night temperature and abscisic acid (ABA) on rice (Oryza sativa L.) physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High night temperature (HNT) is known to decrease rice yields. The impact of abscisic acid (ABA) on plants has been the subject of many studies. However, little or no work has been carried out on rice response to ABA under HNT-stress conditions. This study determined the effects of ABA on rice leaf ...

  18. A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components.

    PubMed

    Peirats-Llobet, Marta; Han, Soon-Ki; Gonzalez-Guzman, Miguel; Jeong, Cheol Woong; Rodriguez, Lesia; Belda-Palazon, Borja; Wagner, Doris; Rodriguez, Pedro L

    2016-01-04

    Optimal response to drought is critical for plant survival and will affect biodiversity and crop performance during climate change. Mitotically heritable epigenetic or dynamic chromatin state changes have been implicated in the plant response to the drought stress hormone abscisic acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA (BRM) modulates response to ABA by preventing premature activation of stress response pathways during germination. We show that core ABA signaling pathway components physically interact with BRM and post-translationally modify BRM by phosphorylation/dephosphorylation. Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 kinases, and biochemical studies identified phosphorylation sites in the C-terminal region of BRM at SnRK2 target sites that are evolutionarily conserved. Finally, the phosphomimetic BRM(S1760D S1762D) mutant displays ABA hypersensitivity. Prior studies showed that BRM resides at target loci in the ABA pathway in the presence and absence of the stimulus, but is only active in the absence of ABA. Our data suggest that SnRK2-dependent phosphorylation of BRM leads to its inhibition, and PP2CA-mediated dephosphorylation of BRM restores the ability of BRM to repress ABA response. These findings point to the presence of a rapid phosphorylation-based switch to control BRM activity; this property could be potentially harnessed to improve drought tolerance in plants.

  19. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins.

    PubMed

    Hao, Qi; Yin, Ping; Li, Wenqi; Wang, Li; Yan, Chuangye; Lin, Zhaohu; Wu, Jim Zhen; Wang, Jiawei; Yan, S Frank; Yan, Nieng

    2011-06-10

    PYR1/PYL/RCAR proteins (PYLs) are confirmed abscisic acid (ABA) receptors, which inhibit protein phosphatase 2C (PP2C) upon binding to ABA. Arabidopsis thaliana has 14 PYLs, yet their functional distinction remains unclear. Here, we report systematic biochemical characterization of PYLs. A subclass of PYLs, represented by PYL10, inhibited PP2C in the absence of any ligand. Crystal structures of PYL10, both in the free form and in the HAB1 (PP2C)-bound state, revealed the structural basis for its constitutive activity. Structural-guided biochemical analyses revealed that ABA-independent inhibition of PP2C requires the PYLs to exist in a monomeric state. In addition, the residues guarding the entrance to the ligand-binding pocket of these PYLs should be bulky and hydrophobic. Based on these principles, we were able to generate monomeric PYL2 variants that gained constitutive inhibitory effect on PP2Cs. These findings provide an important framework for understanding the complex regulation of ABA signaling by PYL proteins.

  20. Phosphanilic Acid Inhibits Dihydropteroate Synthase

    DTIC Science & Technology

    1989-11-01

    dihydropteroate synthases of P. aeruginosa and E . coli were about equally susceptible to inhibition by PA. These results suggest that cells of P. aeruginosa...are more permeable to PA than cells of E . coli . Although a weak inhibitor, PA acted on dihydropteroate synthase in the same manner as the sulfonamides...with which PA is structurally related. Inhibition of E . coli by PA in a basal salts-glucose medium was prevented by p-aminobenzoic acid (pABA). However

  1. Optically Pure Abscisic Acid Analogs—Tools for Relating Germination Inhibition and Gene Expression in Wheat Embryos 1

    PubMed Central

    Walker-Simmons, M. K.; Anderberg, Robert J.; Rose, Patricia A.; Abrams, Suzanne R.

    1992-01-01

    We report an examination of the structural requirements of the abscisic acid (ABA) recognition response in wheat dormant seed embryos using optically pure isomers of ABA analogs. These compounds include permutations to the ABA structure with either an acetylene or a trans bond at C-4 C-5, and either a single or double bond at the C-2′ C-3′ double bond. (R)-ABA and the three isomers with the same configuration at C-1′ as natural ABA were found to be effective germination inhibitors. The biologically active ABA analogs exhibited differential effects on ABA-responsive gene expression. All the ABA analogs that inhibited germination induced two ABA-responsive genes, wheat group 3 lea and dhn (rab). However, (R)-ABA and (S)-dihydroABA were less effective in inducing the ABA-responsive gene Em within the time that embryonic germination was inhibited. ImagesFigure 3Figure 4 PMID:16668914

  2. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs.

    PubMed

    Li, Zixing; Waadt, Rainer; Schroeder, Julian I

    2016-05-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by "monomeric" PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA.

  3. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  4. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction.

  5. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    SciTech Connect

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  6. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    PubMed Central

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases. PMID:22160701

  7. The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants

    PubMed Central

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K.; Lovisolo, Claudio; Zwieniecki, Maciej A.

    2013-01-01

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling. PMID:23263667

  8. The dynamics of embolism refilling in abscisic acid (ABA)-deficient tomato plants.

    PubMed

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K; Lovisolo, Claudio; Zwieniecki, Maciej A

    2012-12-24

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant's refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant's capacity for refilling.

  9. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found.

  10. Abscisic acid (ABA) receptors: light at the end of the tunnel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone abscisic acid (ABA) plays a role in several aspects of plant growth and development. Understanding how this hormonal stimulus is sensed and transduced turned out to be one of the major tasks in the field of plant signaling. A series of recent papers proposed several different prote...

  11. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  12. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element.

    PubMed Central

    Shen, Q; Ho, T H

    1995-01-01

    To elucidate the mechanism by which abscisic acid (ABA) regulates gene expression, the promoter of the barley ABA-responsive HVA22 gene has been analyzed by both loss- and gain-of-function studies. Previous reports indicate that G-box sequences, which are present in genes responding to a variety of environmental and physiological cues, are involved in ABA response. However, our data suggest that G-box sequences are necessary but not sufficient for ABA response. Instead, an ABA response complex consisting of a G-box, namely, ABRE3 (GCCACGTACA), and a novel coupling element, CE1 (TGCCACCGG), is sufficient for high-level ABA induction, and replacement of either of these sequences abolishes ABA responsiveness. We suggest that the interaction between G-box sequences, such as ABRE3 in the HVA22 gene, and CE-type sequences determines the specificity in ABA-regulated gene expression. Our results also demonstrate that the ABA response complex is the minimal promoter unit governing high-level ABA induction; four copies of this 49-bp-long complex linked to a minimal promoter can confer more than 100-fold ABA-induced gene expression. In addition to ABA response complex 1, composed of ABRE3 and CE1, the HVA22 promoter contains another ABA response complex. The ABA responsiveness of this ABA response complex 2 relies on the interaction of G-box (ABRE2; CGCACGTGTC) with another yet unidentified coupling element. These two complexes contribute incrementally to the expression level of HVA22 in response to ABA. PMID:7734964

  13. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  14. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis

    PubMed Central

    Ha, Yunmi; Shang, Yun; Nam, Kyoung Hee

    2016-01-01

    Stomatal movement in response to water availability is an important physiological process in the survival of land plants. The plant hormone abscisic acid (ABA) and brassinosteroids (BRs) regulate stomatal closure. The physiological functions of ABA and BRs, including germination, cell elongation and stomatal movement, are generally known to be antagonistic. Here, we investigated how BRs affect stomatal movement alone and in combination with ABA. We demonstrate that brassinoslide (BL), the most active BR, promotes stomatal closure in an ABA-independent manner. Interestingly, BL also inhibited ABA-induced stomatal closure when a high concentration of BL was added to ABA. Furthermore, we found that the induction of some genes for reactive oxygen species (ROS) generation by ABA (AtrbohD, NIA1 and NIA2) and subsequent ROS production were repressed by BL treatment. The BR signaling mutant bri1-301 failed to inhibit ABA-induced stomatal closure upon BL treatment. However, BRI1-overexpressing transgenic plants were hypersensitive to ABA during stomatal closure, and BL reversed ABA-induced stomatal closure more completely than in wild type plants. Taken together, these results suggest that BRs can positively and negatively modulate ABA-induced stomatal closure. Therefore, interactions between ABA and BR signaling are important for the regulation of stomatal closure. PMID:27856707

  15. Inhibition of Abscisic Acid Biosynthesis in Cercospora rosicola by Inhibitors of Gibberellin Biosynthesis and Plant Growth Retardants

    PubMed Central

    Norman, Shirley M.; Poling, Stephen M.; Maier, Vincent P.; Orme, Edward D.

    1983-01-01

    The fungus Cercospora rosicola produces abscisic acid (ABA) as a secondary metabolite. We developed a convenient system using this fungus to determine the effects of compounds on the biosynthesis of ABA. Inasmuch as ABA and the gibberellins (GAs) both arise via the isoprenoid pathway, it was of interest to determine if inhibitors of GA biosynthesis affect ABA biosynthesis. All five putative inhibitors of GA biosynthesis tested inhibited ABA biosynthesis. Several plant growth retardants with poorly understood actions in plants were also tested; of these, six inhibited ABA biosynthesis to varying degrees and two had no effect. Effects of plant growth retardants on various branches of the isoprenoid biosynthetic pathway may help to explain some of the diverse and unexpected results reported for these compounds. Knowledge that certain inhibitors of GA biosynthesis also have the ability to inhibit ABA biosynthesis in C. rosicola indicates the need for further studies in plants on the mode of action of these compounds. PMID:16662775

  16. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes.

    PubMed

    Suttle, Jeffrey C; Lulai, Edward C; Huckle, Linda L; Neubauer, Jonathan D

    2013-04-15

    The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato tubers. An increase in ABA and ABA metabolite content was observed 48h after wounding and remained elevated through 96h. Wounding induced dramatic increases in the expression of the ABA metabolic genes encoding zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), and ABA-8'-hydroxylase. Although the patterns of wound-induced expression of individual genes varied, increased gene expression was observed within 3h of wounding and remained elevated through 96h. An apparent correlation between expression of the gene encoding ZEP and the increase in ABA content suggested that the wound-induced increase in ABA biosynthesis was regulated by both substrate availability and increased NCED activity. Suppression of wound-induced jasmonic acid accumulation by rinsing the wounded tissue with water did not inhibit the subsequent increase in ABA content. Exogenous ethylene completely suppressed the wound-induced increase in ABA content and dramatically reduced wound-induced up-regulation of ABA metabolic genes. This study is the first to identify the molecular bases for increased ABA accumulation following physical trauma in potato tubers and highlights the complex physiological interactions between various wound-induced hormones.

  17. Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production.

    PubMed

    Ozfidan, C; Turkan, I; Sekmen, A H; Seckin, B

    2012-03-01

    We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.

  18. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants

    PubMed Central

    Cao, Minjie; Liu, Xue; Zhang, Yan; Xue, Xiaoqian; Zhou, X Edward; Melcher, Karsten; Gao, Pan; Wang, Fuxing; Zeng, Liang; Zhao, Yang; Zhao, Yang; Deng, Pan; Zhong, Dafang; Zhu, Jian-Kang; Xu, H Eric; Xu, Yong

    2013-01-01

    Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules. PMID:23835477

  19. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.

    PubMed Central

    Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A

    1996-01-01

    Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location. Images PMID:8665840

  20. Wheat ABA-insensitive mutants result in reduced grain dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the isolation of wheat mutants in the hard red spring Scarlet resulting in reduced sensitivity to the plant hormone abscisic acid (ABA) during seed germination. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature seeds. Wheat sensitivity t...

  1. Abscisic acid substantially inhibits senescence of cucumber plants (Cucumis sativus) grown under low nitrogen conditions.

    PubMed

    Oka, Mariko; Shimoda, Yousuke; Sato, Naoko; Inoue, Junya; Yamazaki, Teru; Shimomura, Norihiro; Fujiyama, Hideyasu

    2012-05-15

    Low nitrogen (N) availability such as that found in both dry land and tropical regions limits plant growth and development. The relationship between the level of abscisic acid (ABA) in a plant and its growth under low-N conditions was investigated. The level of ABA in cucumber (Cucumis sativus) plants under low-N conditions was significantly higher at 10 and 20 d after transplantation compared with that under sufficient-N conditions. Chlorophyll was preserved in the aerial parts of cucumber plants grown under low-N conditions in the presence of ABA, while there was no significant difference between control plants and ABA-applied plants under sufficient-N conditions. ABA suppressed the reduction of chlorophyll biosynthesis under low-N conditions but not under sufficient-N conditions. On the other hand, ABA decreased the expression of the chlorophyll degradation gene in older cucumber plants grown under both conditions. In addition, transcript and protein levels of a gene encoding a chlorophyll a/b binding protein were positively correlated with ABA concentration under low-N conditions. The chloroplasts in control plants were round, and the stack of thylakoid membranes was reduced compared with that of plants treated with ABA 10(-5) M. These results strongly suggest that ABA is accumulated in cucumber plants grown under low-N conditions and that accumulated ABA promotes chlorophyll biosynthesis and inhibits its degradation in those plants.

  2. Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet.

    PubMed

    Schmidt, Klaus; Pflugmacher, Maike; Klages, Simone; Mäser, Anja; Mock, Andrea; Stahl, Dietmar J

    2008-09-01

    Inducible plant defence responses in sugar beet (Beta vulgaris L.) leaves are repressed during the early phase of infection by the fungus Cercospora beticola. In this report, we show that the concentration of the plant hormone abscisic acid (ABA) increases in sugar beet leaves during C. beticola infection. After an initial burst of ABA induced by inoculation of the fungus, elevated ABA concentrations were detected during the fungal penetration and colonization phases 3-9 days after inoculation. Fifteen days after inoculation, with visible onset of the necrotic phase of infection, the strongly elevated ABA concentrations in infected leaves were at levels similar to drought-stressed plants. A synthetic promoter composed of four copies of the ABA-responsive element (ABRE) A2 and the coupling element CE3 of the ABA-inducible barley gene HVA1 was strongly induced by ABA and C. beticola infection in transgenic sugar beet leaves. Analysis of the spatial pattern of promoter activity revealed that the ABA-inducible promoter was locally activated at the fungal infection sites. Furthermore, expression of the basic leucine zipper transcription factor AREB1 was induced by drought stress and fungal infection in the sugar beet. Application of ABA reduced the promoter activity of the phenylalanine ammonia lyase (BvPAL) gene, and this effect was observed with the -34 to +248 BvPAL promoter region. This region is equivalent to the core promoter, which is necessary for the suppression of BvPAL expression by C. beticola, as recently shown. These data indicate that ABA accumulation and activation of the ABA-dependent signalling cascade are the primary cause of suppression of BvPAL expression during infection of sugar beet leaves.

  3. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds.

    PubMed

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-03-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.

  4. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance

    PubMed Central

    Okamoto, Masanori; Peterson, Francis C.; Defries, Andrew; Park, Sang-Youl; Endo, Akira; Nambara, Eiji; Volkman, Brian F.; Cutler, Sean R.

    2013-01-01

    Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana. Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis, the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2. Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses. PMID:23818638

  5. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance.

    PubMed

    Okamoto, Masanori; Peterson, Francis C; Defries, Andrew; Park, Sang-Youl; Endo, Akira; Nambara, Eiji; Volkman, Brian F; Cutler, Sean R

    2013-07-16

    Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana. Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis, the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2. Genetic analyses show that quinabactin's effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C "lock" hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.

  6. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-01-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca2+-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  7. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed.

  8. Identification and characterization of the abscisic acid (ABA) receptor gene family and its expression in response to hormones in the rubber tree

    PubMed Central

    Guo, Dong; Zhou, Ying; Li, Hui-Liang; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2017-01-01

    Abscisic acid (ABA) is an essential phytohormone involved in diverse physiological processes. Although genome-wide analyses of the ABA receptor PYR/PYL/RCAR (PYL) protein/gene family have been performed in certain plant species, little is known about the ABA receptor protein/gene family in the rubber tree (Hevea brasiliensis). In this study, we identified 14 ABA receptor PYL proteins/genes (designated HbPYL1 through HbPYL14) in the most recent rubber tree genome. A phylogenetic tree was constructed, which demonstrated that HbPYLs can be divided into three subfamilies that correlate well with the corresponding Arabidopsis subfamilies. Eight HbPYLs are highly expressed in laticifers. Five of the eight genes are simultaneously regulated by ABA, jasmonic acid (JA) and ethylene (ET). The identification and characterization of HbPYLs should enable us to further understand the role of ABA signal in the rubber tree. PMID:28332623

  9. Characterization of potential ABA receptors in Vitis vinifera.

    PubMed

    Boneh, Uri; Biton, Iris; Zheng, Chuanlin; Schwartz, Amnon; Ben-Ari, Giora

    2012-02-01

    Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. The phytohormone abscisic acid (ABA) is a key endogenous messenger in a plant's response to such stresses. A novel ABA binding mechanism which plays a key role in plant cell signaling cascades has recently been uncovered. In the absence of ABA, a type 2C protein phosphatase (PP2C) interacts and inhibits the kinase SnRK2. Binding of ABA to the PYR/PYLs receptors enables interaction between the ABA receptor and the PP2C protein, and abrogates the SnRK2 inactivation. The active SnRK2 is then free to activate the ABA-responsive element Binding Factors which target ABA-dependent gene expression. We used the grape as a model to study the ABA perception mechanism in fruit trees. The grape ABA signaling cascade consists of at least seven ABA receptors and six PP2Cs. We used a yeast two-hybrid system to examine physical interaction in vitro between the grape ABA receptors and their interacting partners, and found that twenty-two receptor-PP2C interactions can occur. Moreover, quantifying these affinities by the use of the LacZ reporter enables us to show that VvPP2C4 and VvPP2C9 are the major binding partners of the ABA receptor. We also tested in vivo the root and leaf gene expression of the various ABA receptors and PP2Cs in the presence of exogenic ABA and under different abiotic stresses such as high salt concentration, cold and drought, and found that many of these genes are regulated by such abiotic environmental factors. Our results indicate organ specificity in the ABA receptor genes and stress specificity in the VvPP2Cs. We suggest that VvPP2C4 is the major PP2C involved in ABA perception in leaves and roots, and VvRCAR6 and VvRCAR5 respectively, are the major receptors involved in ABA perception in these organs. Identification, characterization and manipulation of the central players in the ABA signaling cascades in fruit trees is

  10. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake.

    PubMed

    Fan, Shi Kai; Fang, Xian Zhi; Guan, Mei Yan; Ye, Yi Quan; Lin, Xian Yong; Du, Shao Ting; Jin, Chong Wei

    2014-01-01

    Cadmium (Cd) contamination of agricultural soils is an increasingly serious problem. Measures need to be developed to minimize Cd entering the human food chain from contaminated soils. We report here that, under Cd exposure condition, application with low doses of (0.1-0.5 μM) abscisic acid (ABA) clearly inhibited Cd uptake by roots and decreased Cd level in Arabidopsis wild-type plants (Col-0). Expression of IRT1 in roots was also strongly inhibited by ABA treatment. Decrease in Cd uptake and the inhibition of IRT1 expression were clearly lesser pronounced in an ABA-insensitive double mutant snrk2.2/2.3 than in the Col-0 in response to ABA application. The ABA-decreased Cd uptake was found to correlate with the ABA-inhibited IRT1 expression in the roots of Col-0 plants fed two different levels of iron. Furthermore, the Cd uptake of irt1 mutants was barely affected by ABA application. These results indicated that inhibition of IRT1 expression is involved in the decrease of Cd uptake in response to exogenous ABA application. Interestingly, ABA application increased the iron level in both Col-0 plants and irt1 mutants, suggesting that ABA-increased Fe acquisition does not depend on the IRT1 function, but on the contrary, the ABA-mediated inhibition of IRT1 expression may be due to the elevation of iron level in plants. From our results, we concluded that ABA application might increase iron acquisition, followed by the decrease in Cd uptake by inhibition of IRT1 activity. Thus, for crop production in Cd contaminated soils, developing techniques based on ABA application potentially is a promising approach for reducing Cd accumulation in edible organs in plants.

  11. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  12. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress

    PubMed Central

    Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling

    2016-01-01

    Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506

  13. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.

    PubMed

    Stevenson, Sean R; Kamisugi, Yasuko; Trinh, Chi H; Schmutz, Jeremy; Jenkins, Jerry W; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A; Rensing, Stefan A; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J; Li, Fay-Wei; Larsson, Anders; Wong, Gane K-S; Edwards, Thomas A; Cuming, Andrew C

    2016-06-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.

  14. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance

    DOE PAGES

    Stevenson, Sean Ross; Kamisugi, Yasuko; Trinh, Chi H.; ...

    2016-05-18

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. Themore » crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.« less

  15. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    PubMed Central

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  16. Inhibitors of abscisic acid 8'-hydroxylase.

    PubMed

    Cutler, A J; Rose, P A; Squires, T M; Loewen, M K; Shaw, A C; Quail, J W; Krochko, J E; Abrams, S R

    2000-11-07

    Structural analogues of the phytohormone (+)-abscisic acid (ABA) have been synthesized and tested as inhibitors of the catabolic enzyme (+)-ABA 8'-hydroxylase. Assays employed microsomes from suspension-cultured corn cells. Four of the analogues [(+)-8'-acetylene-ABA, (+)-9'-propargyl-ABA, (-)-9'-propargyl-ABA, and (+)-9'-allyl-ABA] proved to be suicide substrates of ABA 8'-hydroxylase. For each suicide substrate, inactivation required NADPH, increased with time, and was blocked by addition of the natural substrate, (+)-ABA. The most effective suicide substrate was (+)-9'-propargyl-ABA (K(I) = 0.27 microM). Several analogues were competitive inhibitors of ABA 8'-hydroxylase, of which the most effective was (+)-8'-propargyl-ABA (K(i) = 1.1 microM). Enzymes in the microsomal extracts also hydroxylated (-)-ABA at the 7'-position at a low rate. This activity was not inhibited by the suicide substrates, showing that the 7'-hydroxylation of (-)-ABA was catalyzed by a different enzyme from that which catalyzed 8'-hydroxylation of (+)-ABA. Based on the results described, a simple model for the positioning of substrates in the active site of ABA 8'-hydroxylase is proposed. In a representative physiological assay, inhibition of Arabidopsis thaliana seed germination, (+)-9'-propargyl-ABA and (+)-8'-acetylene-ABA exhibited substantially stronger hormonal activity than (+)-ABA itself.

  17. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  18. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    PubMed Central

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-01-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed. PMID:12228619

  19. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    PubMed

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  20. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis.

    PubMed

    Ben-Ari, Giora

    2012-08-01

    The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant's response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.

  1. Modulation Role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress.

    PubMed

    Zhang, Lixin; Gao, Mei; Hu, Jingjiang; Zhang, Xifeng; Wang, Kai; Ashraf, Muhammad

    2012-01-01

    The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize particularly at the seedling stage is still poorly understood. Some hydroponic experiments were conducted to investigate the modulation role of ABA on plant growth, water relations and GB metabolism in the leaves of two maize cultivars, Zhengdan 958 (ZD958; drought tolerant), and Jundan 20 (JD20; drought sensitive), subjected to integrated root-zone drought stress (IR-DS) simulated by the addition of polyethylene glycol (PEG, 12% w/v, MW 6000). The IR-DS substantially resulted in increased betaine aldehyde dehydrogenase (BADH) activity and choline content which act as the key enzyme and initial substrate, respectively, in GB biosynthesis. Drought stress also induced accumulation of GB, whereas it caused reduction in leaf relative water content (RWC) and dry matter (DM) in both cultivars. The contents of ABA and GB increased in drought-stressed maize seedlings, but ABA accumulated prior to GB accumulation under the drought treatment. These responses were more predominant in ZD958 than those in JD20. Addition of exogenous ABA and fluridone (Flu) (ABA synthesis inhibitor) applied separately increased and decreased BADH activity, respectively. Abscisic acid application enhanced GB accumulation, leaf RWC and shoot DM production in both cultivars. However, of both maize cultivars, the drought sensitive maize cultivar (JD20) performed relatively better than the other maize cultivar ZD958 under both ABA and Flu application in view of all parameters appraised. It is, therefore, concluded that increase in both BADH activity and choline content possibly resulted in enhancement of GB accumulation under DS. The endogenous ABA was probably involved in the regulation of GB metabolism by regulating

  2. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis.

    PubMed

    Yuan, Ting-Ting; Xu, Heng-Hao; Zhang, Kun-Xiao; Guo, Ting-Ting; Lu, Ying-Tang

    2014-06-01

    Glucose functions as a hormone-like signalling molecule that modulates plant growth and development in Arabidopsis thaliana. However, the role of glucose in root elongation remains elusive. Our study demonstrates that high concentrations of glucose reduce the size of the root meristem zone by repressing PIN1 accumulation and thereby reducing auxin levels. In addition, we verified the involvement of ABA INSENSITIVE 5 (ABI5) in this process by showing that abi5-1 is less sensitive to glucose than the wild type, whereas glucose induces ABI5 expression and the inducible overexpression of ABI5 reduces the size of the root meristem zone. Furthermore, the inducible overexpression of ABI5 in PIN1::PIN1-GFP plants reduces the level of PIN1-GFP, but glucose reduces the level of PIN1-GFP to a lesser extent in abi5-1 PIN1::PIN1-GFP plants than in the PIN1::PIN1-GFP control, suggesting that ABI5 is involved in glucose-regulated PIN1 accumulation. Taken together, our data suggest that ABI5 functions in the glucose-mediated inhibition of the root meristem zone by repressing PIN1 accumulation, thus leading to reduced auxin levels in roots.

  3. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA)

    PubMed Central

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work. PMID:22489180

  4. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    PubMed

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles.

  5. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    PubMed

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  6. Design and Functional Characterization of a Novel Abscisic Acid Analog

    PubMed Central

    Han, Xiaoqiang; Jiang, Lun; Che, Chuanliang; Wan, Chuan; Lu, Huizhe; Xiao, Yumei; Xu, Yanjun; Chen, Zhongzhou; Qin, Zhaohai

    2017-01-01

    The phytohormone abscisic acid (ABA) plays a crucial role in mediating plant growth and development by recruiting genetically redundant ABA receptors. To overcome its oxidation inactivation, we developed a novel ABA analog named 2′,3′-benzo-iso-ABA (iso-PhABA) and studied its function and structural characterization with A. thaliana ABA receptors. The (+)-iso-PhABA form showed much higher ABA-like activities than (+)-ABA including inhibitory effects on the seed germination of lettuce and A. thaliana, wheat embryo germination and rice seedling elongation. The PP2C (protein phosphatases 2C) activity assay showed that (+)-iso-PhABA acted as a potent and selective ABA receptor agonist, which is preferred to PYL10. In some cases, (−)-iso-PhABA showed moderate to high activity for the PYL protein inhibiting PP2C activity, suggesting different mechanisms of action of iso-PhABA and ABA. The complex crystal structure of iso-PhABA with PYL10 was determined and elucidated successfully, revealing that (+)-iso-PhABA was better coordinated in the same binding pocket compared to (+)-ABA. Moreover, the detailed interaction network of iso-PhABA/PYL10 was disclosed and involves hydrogen bonds and multiple hydrophobic interactions that provide a robust framework for the design of novel ABA receptor agonists/antagonists. PMID:28272449

  7. The ABA receptors -- we report you decide.

    PubMed

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  8. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    PubMed

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments.

  9. Elevated urinary excretion of beta-aminoisobutyric acid and delta-aminolevulinic acid (ALA) and the inhibition of ALA-synthase and ALA-dehydratase activities in both liver and kidney in mice exposed to lead.

    PubMed

    Tomokuni, K; Ichiba, M; Hirai, Y

    1991-12-01

    Urinary excretion of beta-aminoisobutyric acid (ABA) and delta-aminolevulinic acid (ALA) was investigated in mice exposed to lead (500 p.p.m.) in drinking water for 14 days. Concentrations of both urinary ABA and urinary ALA increased significantly in the lead-exposed mice. However, the degree of increasing excretion was higher in urinary ALA (10-fold of the control) than in urinary ABA (2-fold of the control). On the other hand, it was demonstrated that ALA dehydratase in liver and kidney is inhibited by exposure to lead, while ALA synthase in these tissues has no inhibitory effect.

  10. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    PubMed

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  11. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.

    PubMed

    Jiao, Yiheng; Sun, Lirong; Song, Yalin; Wang, Limin; Liu, Liping; Zhang, Liyue; Liu, Bo; Li, Ning; Miao, Chen; Hao, Fushun

    2013-11-01

    Reactive oxygen species (ROS) originating from the NADPH oxidases AtrbohD and AtrbohF play an important role in abscisic acid (ABA)-inhibited primary root growth in Arabidopsis. However, the mechanisms underlying this process remain elusive. In this study, the double mutant atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF were disrupted, were less sensitive to ABA suppression of root cell elongation than wild-type (WT) plants. Furthermore, the double mutants showed impaired ABA responses in roots, including ROS generation, cytosolic Ca(2+) increases, and activation of plasma membrane Ca(2+)-permeable channels compared with WT. Exogenous H2O2 can activate the Ca(2+) currents in roots of atrbohD1/F1. In addition, exogenous application of the auxin transport inhibitor naphthylphthalamic acid effectively promoted ABA inhibition of root growth of the mutants relative to that of WT. The ABA-induced decreases in auxin sensitivity of the root tips were more pronounced in WT than in atrbohD1/F1. These findings suggest that both AtrbohD and AtrbohF are essential for ABA-promoted ROS production in roots. ROS activate Ca(2+) signalling and reduce auxin sensitivity of roots, thus positively regulating ABA-inhibited primary root growth in Arabidopsis.

  12. Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases.

    PubMed

    Zhou, X Edward; Soon, Fen-Fen; Ng, Ley-Moy; Kovach, Amanda; Suino-Powell, Kelly M; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H Eric; Melcher, Karsten

    2012-05-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6-HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C-SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.

  13. ABA- and ethylene-mediated responses in osmotically stressed tomato are regulated by the TSS2 and TOS1 loci.

    PubMed

    Rosado, Abel; Amaya, Iraida; Valpuesta, Victoriano; Cuartero, Jesús; Botella, Miguel A; Borsani, Omar

    2006-01-01

    The study of mutants impaired in the sensitivity or synthesis of abscisic acid (ABA) has become a powerful tool to analyse the interactions occurring between the ABA and ethylene signalling pathways, with potential to change the traditional view of the role of ABA as just being involved in growth inhibition. The tss2 tomato mutant, which is hypersensitive to NaCl and osmotic stress, shows enhanced growth inhibition in the presence of exogenous ABA. The tos1 tomato mutant is also hypersensitive to osmotic stress, but in contrast to tss2, shows decreased sensitivity to ABA. Surprisingly, blocking ethylene signalling suppresses the growth defect of tss2 seedlings on ABA, NaCl, and osmotic stress, but not the osmotic hypersensitivity of tos1. The ethylene production of tss2 seedlings is increased compared with that of control seedlings under osmotic stress. In addition, the tss2 plants are hypersensitive to root growth inhibition by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This suggests that, in addition to ABA regulation, TSS2 acts as a negative regulator of endogenous ethylene accumulation. As previously shown in Arabidopsis, it is shown here that extensive cross-talk occurs between the ABA and ethylene signalling pathways in tomato and that the TSS2 and TOS1 loci appear as regulators of this cross-talk.

  14. ABA Receptors: Past, Present and Future

    SciTech Connect

    Guo, Jianjun; Yang, Xiaohan; Weston, David; Chen, Jay

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  15. Sensitivity of Stomata to Abscisic Acid (An Effect of the Mesophyll).

    PubMed Central

    Trejo, C. L.; Davies, W. J.; Ruiz, LdMP.

    1993-01-01

    The effects of added abscisic acid (ABA) on the stomatal behavior of Commelina communis L. were tested using three different systems. ABA was applied to isolated epidermis or to leaf pieces incubated in the light in bathing solutions perfused with CO2-free air. ABA was also fed to detached leaves in a transpiration bioassay. The apparent sensitivity of stomata to ABA was highly dependent on the method used to feed ABA. Stomata of isolated epidermis were apparently most sensitive to ABA, such that a concentration of 1 [mu]M caused almost complete stomatal closure. When pieces of whole leaves were floated on solutions of ABA of the same concentration, the stomata were almost completely open. The same concentration of ABA fed through the midrib of transpiring detached leaves caused an intermediate response. These differences in stomatal sensitivity to added ABA were found to be a function of differences in the ABA concentration in the epidermes. Comparison of the three application systems suggested that, when leaf pieces were incubated in ABA or fed with ABA through the midrib, accumulation of ABA in the epidermes was limited by the presence of the mesophyll. Even bare mesophyll incubated in ABA solution did not accumulate ABA. Accumulation of radioactivity by leaf pieces floated on [3H]ABA confirmed ABA uptake in this system. Experiments with tetcyclacis, an inhibitor of phaseic acid formation, suggested that rapid metabolism of ABA in mesophyll can have a controlling influence on ABA concentration in both the mesophyll and the epidermis. Inhibition of ABA catabolism with tetcyclacis allows ABA accumulation and increases the apparent sensitivity of stomata to applied ABA. The results are discussed in the context of an important role for ABA metabolism in the regulation of stomatal behavior. PMID:12231838

  16. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1.

    PubMed

    Park, EunJoo; Kim, Tae-Houn

    2017-02-26

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction.

  17. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.

    PubMed

    Baccelli, Ivan; Mauch-Mani, Brigitte

    2016-08-01

    Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.

  18. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance

    SciTech Connect

    Stevenson, Sean Ross; Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Jenkins, Jerry W.; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A.; Rensing, Stefan A.; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J.; Li, Fay -Wei; Larsson, Anders; Wong, Gane Ka-Shu; Edwards, Thomas A.; Cuming, Andrew C.

    2016-05-18

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.

  19. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  20. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

    PubMed Central

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2016-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222

  1. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica).

    PubMed

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2015-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.

  2. A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.)

    PubMed Central

    Qiu, Jiehua; Hou, Yuxuan; Wang, Yifeng; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Lin, Haiyan; Wei, Xiangjin; Ao, Hejun; Zhang, Jian

    2017-01-01

    abscisic acid (ABA) is a key phytohormone regulating plant development and stress response. The signal transduction of ABA largely relies on protein phosphorylation. However; little is known about the phosphorylation events occurring during ABA signaling in rice thus far. By employing a label-free; MS (Mass Spectrometry)-based phosphoproteomic approach; we identified 2271 phosphosites of young rice seedlings and their intensity dynamics in response to ABA; during which 1060 proteins were found to be differentially phosphorylated. Western-blot analysis verified the differential phosphorylation pattern of D1, SMG1 and SAPK9 as indicated by the MS result; suggesting the high reliability of our phosphoproteomic data. The DP (differentially phosphorylated) proteins are extensively involved in ABA as well as other hormone signaling pathways. It is suggested that ABA antagonistically regulates brassinosteroid (BR) signaling via inhibiting BR receptor activity. The result of this study not only expanded our knowledge of rice phosphoproteome, but also shed more light on the pattern of protein phosphorylation in ABA signaling. PMID:28054942

  3. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  4. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening

    PubMed Central

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process. PMID:26053166

  5. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration?

    PubMed

    Tallman, Gary

    2004-09-01

    Abscisic acid (ABA) prevents opening of closed stomata and causes open stomata to close. A dual-source model is proposed linking ABA to diurnal stomatal movements. Darkness would favour guard cell biosynthesis of endogenous ABA and disfavour ABA catabolism. At first light, xanthophyll cycling, isomerization of ABA precursors, and activation of a cytochrome P450 mono-oxygenase (CytP450) would deplete endogenous guard cell ABA. The NADPH-requiring CytP450 would be activated by elevated O2 and reduced CO2 concentrations resulting from mesophyll photosynthesis. An increased O2-to-CO2 ratio would limit the Calvin cycle in guard cells, diverting NADPH produced by photosynthetic electron transport to the cytosol where, along with elevated O2, it would activate CytP450. Depletion of endogenous ABA would liberate guard cells to extrude protons and accumulate the ions and water needed to increase guard cell turgor and open stomata. By midday, stomata would be regulated by steady-state concentrations of ABA delivered to the apoplast around guard cells by transpiration. In temperate conditions, ABA would reach concentrations high enough to trigger ion efflux from guard cells, but too low to defeat the accumulation of sugars used to maintain opening. In dry conditions, ABA would reach effective concentrations by midday, high enough to trigger ion efflux and inhibit sugar uptake, reducing apertures for the rest of the day. At sunset, conditions would again favour biosynthesis and disfavour catabolism of endogenous guard cell ABA. The model can be used to reconcile proposed cellular mechanisms for guard cell signal transduction with patterns of stomatal movements in leaves.

  6. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley☆

    PubMed Central

    Chen, Zhiwei; Huang, Jianhua; Muttucumaru, Nira; Powers, Stephen J.; Halford, Nigel G.

    2013-01-01

    The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation. PMID:24748715

  7. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley.

    PubMed

    Chen, Zhiwei; Huang, Jianhua; Muttucumaru, Nira; Powers, Stephen J; Halford, Nigel G

    2013-09-01

    The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation.

  8. ABA-stimulated SoDOG1 expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; García-Ramas, Cristina; Rodríguez-Gacio, María Del Carmen

    2015-12-01

    DELAY OF GERMINATION 1 (AtDOG1) was the first gene identified as dormancy-associated, but its physiological role in germination is far from being understood. Here, an orthologue of AtDOG1 in Sisymbrium officinale (SoDOG1; KM009050) is being reported. Phylogenetically, the SoDOG1 gene is included into the dicotyledonous group together with DOG1 from Arabidopsis thaliana (EF028470), Brassica rapa (AC189537), Lepidium papillosum (JX512183, JX512185) and Lepidium sativum (GQ411192). The SoDOG1 expression peaked at the onset of the silique maturation stage and there was presence of SoDOG1-mRNA in the freshly collected viable dry seed (i.e. AR0). The SoDOG1 transcripts were also found in other organs, such as open and closed flowers and to a lesser degree in roots and stems. We have previously reported in S. officinale seeds in which sensu stricto germination is positively affected by nitrate and both testa and micropylar endosperm ruptures are temporally separated. In dry viable seeds, the SoDOG1-mRNA level in three different after-ripening (AR) status was AR0 ≈ AR7 (optimal AR) < AR27 (optimal AR was almost lost). The presence of nitrate in the AR0 seed imbibition medium markedly decreased the SoDOG1 expression during sensu stricto germination. However, the nitrate stimulated the SoDOG1 expression during imbibition of AR7 compared to AR0. At the early AR0 seed imbibition (3-6 h), exogenous ABA provoked a very strong stimulation of the SoDOG1 expression. AR inhibits ABA-induced SoDOG1 expression during early germination and gibberellins (GA) can partially mimic this AR effect. A view on the integration of all found results in the sensu stricto germination of S. officinale was conducted.

  9. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress.

  10. Renewal and spontaneous recovery, but not latent inhibition, are mediated by gamma-aminobutyric acid in appetitive conditioning.

    PubMed

    Delamater, Andrew R; Campese, Vincent; Westbrook, R Frederick

    2009-04-01

    Previous research has reported a role for the neurotransmitter gamma-aminobutyric acid (GABA) in the extinction and renewal of conditioned fear. Here, the authors examine whether GABA is involved in the acquisition, extinction, renewal, spontaneous recovery, and latent inhibition of appetitive conditioning. Using Long-Evans rats, systemic injection of the GABA A receptor inverse agonist FG 7142 was shown to eliminate ABA renewal (Experiment 1) and spontaneous recovery (Experiment 4) of appetitive responding by selectively reducing the recovery of extinguished magazine approach. Furthermore, treatment with FG 7142 had no effects on acquisition or single-session extinction (Experiment 3) or on the context-specific expression of latent inhibition (Experiment 2). These data suggest that ABA renewal and spontaneous recovery, but not latent inhibition or responding during acquisition and an initial extinction session, are mediated by GABAergic mechanisms in appetitive Pavlovian conditioning. They provide support for the view that renewal and spontaneous recovery share a common psychological mechanism.

  11. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites.

    PubMed Central

    Balsevich, J. J.; Cutler, A. J.; Lamb, N.; Friesen, L. J.; Kurz, E. U.; Perras, M. R.; Abrams, S. R.

    1994-01-01

    The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies. PMID:12232311

  12. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  13. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.

  14. Nitric oxide modulates sensitivity to ABA

    PubMed Central

    Lozano-Juste, Jorge

    2010-01-01

    Nitric oxide (NO) is a gas with crucial signaling functions in plant defense and development. As demonstrated by generating a triple nia1nia2noa1-2 mutant with extremely low levels of NO (February 2010 issue of Plant Physiology), NO is synthesized in plants through mainly two different pathways involving nitrate reductase (NR/NIA) and NO Associated 1 (AtNOA1) proteins. Depletion of basal NO levels leads to a priming of ABA-triggered responses that causes hypersensitivity to this hormone and results in enhanced seed dormancy and decreased seed germination and seedling establishment in the triple mutant. NO produced under non-stressed conditions represses inhibition of seed developmental transitions by ABA. Moreover, NO plays a positive role in post-germinative vegetative development and also exerts a critical control of ABA-related functions on stomata closure. The triple nia1nia2noa1-2 mutant is hypersensitive to ABA in stomatal closure thus resulting in a extreme phenotype of resistance to drought. In the light of the recent discovery of PYR/PYL/RCAR as a family of potential ABA receptors, regulation of ABA sensitivity by NO may be exerted either directly on ABA receptors or on downstream signalling components; both two aspects that deserve our present and future attention. PMID:20168082

  15. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements.

    PubMed

    Rojas-Pierce, Marcela; Whippo, Craig W; Davis, Phillip A; Hangarter, Roger P; Springer, Patricia S

    2014-10-01

    The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.

  16. The effect of light on ABA catabolism in excised seedlings of Phaseolus vulgaris L. cv. top-crop

    SciTech Connect

    Cowan, A.K.; Myemane, D.M. )

    1990-05-01

    Studies on the influence of light quality on ABA catabolism have implicated the involvement of phytochrome in this process. Detailed experiments were therefore carried out to determine whether light could be a factor involved in the regulation of ABA catabolism in higher plants. Excised, etiolated seedlings of Phaseolus vulgaris (4.5g fr. wt.) were supplied with (R,S,)-(2-{sup 14}C)-ABA (5.0 kBq) and exposed to various combinations of red (37 {mu}mol m{sup {minus}2} s{sup {minus}1}) and far-red (23 {mu}mol m{sup {minus}2} s{sup {minus}1}) light. Following light treatments seedlings were returned to darkness for the remainder of the 20 h incubation period. Far-red light illumination stimulated ABA catabolism whereas red light had no significant effect on this process. Kinetic studies and analysis of water-soluble conjugates revealed that far-red light treatment enhanced the sequestration of ABA and its acidic products. The apparent inhibition of ABA catabolism by red light was relieved, if red light irradiation was followed immediately by a dose of far-red light. Thus, these data indicate that ABA catabolism might be mediated by phytochrome and that control is exerted at the level of conjugation rather than oxidation.

  17. Abscisic acid in soil facilitates community succession in three forests in China.

    PubMed

    Zhao, Houben; Peng, Shaolin; Chen, Zhuoquan; Wu, Zhongmin; Zhou, Guangyi; Wang, Xu; Qiu, Zhijun

    2011-07-01

    Plants release secondary metabolites into the soil that change the chemical environment around them. Exogenous abscisic acid (ABA) is an important allelochemical whose role in successional trajectories has not been examined. We hypothesized that ABA can accumulate in the soil through successional processes and have an influence on forest dynamics. To this end, we investigated the distribution of ABA in forest communities from early to late successional stages and the response of dominant species to the gradient of ABA concentrations in three types of forests from northern to southern China. Concentrations of ABA in the soils of three forest types increased from early to late successional stages. Pioneer species' litters had the lowest ABA content, and their seed germination and seedling early growth were the most sensitive to the inhibitory effect of ABA. Mid- and late-successional species had a much higher ABA content in fallen leaves than pioneer species, and their seed germination and seedling early growth were inhibited by higher concentrations of ABA than pioneers. Late-successional species showed little response to the highest ABA concentration, possibly due to their large seed size. The results suggest that ABA accumulates in the soil as community succession proceeds. Sensitivity to ABA in the early stages, associated with other characteristics, may result in pioneer species losing their advantage in competition with late-successional species in an increasingly high ABA concentration environment, and being replaced by ABA-tolerant, late-successional species.

  18. Abscisic acid-lipid interactions: a phospholipid monolayer study.

    PubMed

    Bürner, H; Benz, R; Gimmler, H; Hartung, W; Stillwell, W

    1993-08-15

    Lipid monolayer studies were performed on a Langmuir trough in the absence and in the presence of the plant hormone abscisic acid (ABA). The ABA-induced effects on the lipid monolayers can be summarized as follows: (i) ABA as the free acid (pH below 5.3) increased the molecular area and slightly decreased the surface pressure in the collapse points of monolayers made of saturated, unsaturated and of mixed lipids; ABA as the anion showed only minor effects. (ii) The ABA-induced area increase of the lipid monolayers decreased when the surface pressure increased, but some ABA remained in the monolayers made of unsaturated phospholipids even at collapse pressure. (iii) The incorporation of ABA into the monolayers could be inhibited by adding the plant sterol beta-sitosterol to the monolayer forming phospholipids. (iv) There was no substantial difference of ABA action on plant phospholipids as compared with other phospholipids. (v) ABA had a much stronger influence on unsaturated phospholipids than on saturated ones. (vi) ABA decreased the phase-transition temperature of saturated phospholipids. These results, which agree with those obtained from phospholipid vesicle studies, indicate that the physical state of the lipid is important for the ability of ABA penetrating into the lipid monolayer. Finally, a possible relevance of these results is discussed in terms of the action of ABA on guard cell membranes of plants.

  19. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  20. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  1. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  2. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  3. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

    PubMed Central

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  4. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  5. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    PubMed

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA12, GA19, GA20 and GA8) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides.

  6. Molecular cloning and characterization of the ABA-specific glucosyltransferase gene from bean (Phaseolus vulgaris L.).

    PubMed

    Palaniyandi, Sasikumar Arunachalam; Chung, Gyuhwa; Kim, Sang Hyon; Yang, Seung Hwan

    2015-04-15

    Levels of the plant hormone abscisic acid (ABA) are maintained in homeostasis by a balance of its biosynthesis, catabolism and conjugation. The detailed molecular and signaling events leading to strict homeostasis are not completely understood in crop plants. In this study, we obtained cDNA of an ABA-inducible, ABA-specific UDP-glucosyltransferase (ABAGT) from the bean plant (Phaseolus vulgaris L.) involved in conjugation of a glucose residue to ABA to form inactive ABA-glucose ester (ABA-GE) to examine its role during development and abiotic stress in bean. The bacterially expressed PvABAGTase enzyme showed ABA-specific glucosylation activity in vitro. A higher level of the PvABAGT transcript was observed in mature leaves, mature flowers, roots, seed coats and embryos as well as upon rehydration following a period of dehydration. Overexpression of 35S::PvABAGT in Arabidopsis showed reduced sensitivity to ABA compared with WT. The transgenic plants showed a high level of ABA-GE without significant decrease in the level of ABA compared with the wild type (WT) during dehydration stress. Upon rehydration, the levels of ABA and phaseic acid (PA) decreased in the WT and the PvABAGT-overexpressing lines with high levels of ABA-GE only in the transgenic plants. Our findings suggest that the PvABAGT gene could play a role in ABA homeostasis during development and stress responses in bean and its overexpression in Arabidopsis did not alter ABA homeostasis during dehydration stress.

  7. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses1[OPEN

    PubMed Central

    Yang, Chen-Ru

    2016-01-01

    Heat stress response (HSR) is a conserved mechanism developed to increase the expression of heat shock proteins (HSPs) via a heat shock factor (HSF)-dependent mechanism. Signaling by the stress phytohormone abscisic acid (ABA) is involved in acquired thermotolerance as well. Analysis of Arabidopsis (Arabidopsis thaliana) microarray databases revealed that the expression of HSFA6b, a class A HSF, extensively increased with salinity, osmotic, and cold stresses, but not heat. Here, we show that HSFA6b plays a pivotal role in the response to ABA and in thermotolerance. Salt-inducible HSFA6b expression was down-regulated in ABA-insensitive and -deficient mutants; however, exogenous ABA application restored expression in ABA-deficient, but not -insensitive plants. Thus, ABA signaling is required for proper HSFA6b expression. A transcriptional activation assay of protoplasts revealed that ABA treatment and coexpression of an ABA signaling master effector, ABA-RESPONSIVE ELEMENT-BINDING PROTEIN1, could activate the HSFA6b promoter. In addition, HSFA6b directly bound to the promoter of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2A and enhanced its expression. Analysis of ABA responses in seed germination, cotyledon greening, and root growth as well as salt and drought tolerance in HSFA6b-null, overexpression, and dominant negative mutants revealed that HSFA6b is a positive regulator participating in ABA-mediated salt and drought resistance. Thermoprotection tests showed that HSFA6b was required for thermotolerance acquisition. Our study reveals a network in which HSFA6b operates as a downstream regulator of the ABA-mediated stress response and is required for heat stress resistance. This new ABA-signaling pathway is integrated into the complex HSR network in planta. PMID:27493213

  8. Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation

    PubMed Central

    Capozzi, Megan E.; Hammer, Sandra S.; McCollum, Gary W.; Penn, John S.

    2016-01-01

    The objective of the present study was to assess the effect of elevating epoxygenated fatty acids on retinal vascular inflammation. To stimulate inflammation we utilized TNFα, a potent pro-inflammatory mediator that is elevated in the serum and vitreous of diabetic patients. In TNFα-stimulated primary human retinal microvascular endothelial cells, total levels of epoxyeicosatrienoic acids (EETs), but not epoxydocosapentaenoic acids (EDPs), were significantly decreased. Exogenous addition of 11,12-EET or 19,20-EDP when combined with 12-(3-adamantane-1-yl-ureido)-dodecanoic acid (AUDA), an inhibitor of epoxide hydrolysis, inhibited VCAM-1 and ICAM-1 expression and protein levels; conversely the diol product of 19,20-EDP hydrolysis, 19,20-DHDP, induced VCAM1 and ICAM1 expression. 11,12-EET and 19,20-EDP also inhibited leukocyte adherence to human retinal microvascular endothelial cell monolayers and leukostasis in an acute mouse model of retinal inflammation. Our results indicate that this inhibition may be mediated through an indirect effect on NFκB activation. This is the first study demonstrating a direct comparison of EET and EDP on vascular inflammatory endpoints, and we have confirmed a comparable efficacy from each isomer, suggesting a similar mechanism of action. Taken together, these data establish that epoxygenated fatty acid elevation will inhibit early pathology related to TNFα-induced inflammation in retinal vascular diseases. PMID:27966642

  9. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis.

  10. Phytic acid inhibits lipid peroxidation in vitro.

    PubMed

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  11. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  12. ABA and cytokinins: challenge and opportunity for plant stress research.

    PubMed

    Verslues, Paul E

    2016-08-01

    Accumulation of the stress hormone abscisic acid (ABA) induces many cellular mechanisms associated with drought resistance. Recent years have seen a rapid advance in our knowledge of how increased ABA levels are perceived by ABA receptors, particularly the PYL/RCAR receptors, but there has been relatively less new information about how ABA accumulation is controlled and matched to stress severity. ABA synthesis and catabolism, conjugation and deconjugation to glucose, and ABA transport all are involved in controlling ABA levels. This highly buffered system of ABA metabolism represents both a challenge and opportunity in developing a mechanistic understanding of how plants detect and respond to drought. Recent data have also shown that direct manipulation of cytokinin levels in transgenic plants has dramatic effect on drought phenotypes and prompted new interest in the role of cytokinins and cytokinin signaling in drought. Both ABA and cytokinins will continue to be major foci of drought research but likely with different trajectories both in terms of basic research and in translational research aimed at increasing plant performance during drought.

  13. ABA flow modelling in Ricinus communis exposed to salt stress and variable nutrition

    PubMed Central

    Peuke, Andreas D.

    2016-01-01

    In a series of experiments with Ricinus communis, abscisic acid (ABA) concentrations in tissues and transport saps, its de novo biosynthesis, long-distance transport, and metabolism (degradation) were affected by nutritional conditions, nitrogen (N) source, and nutrient limitation, or salt stress. In the present study these data were statistically re-evaluated, and new correlations presented that underpin the importance of this universal phytohormone. The biggest differences in ABA concentration were observed in xylem sap. N source had the strongest effect; however, nutrient limitation (particularly phosphorus limitation) and salt also had significant effects. ABA was found in greater concentration in phloem sap compared with xylem sap; however, the effect of treatment on ABA concentration in phloem was lower. In the leaves, ABA concentration was most variable compared with the other tissues. This variation was only affected by the N source. In roots, ABA was significantly decreased by nutrient limitation. Of the compartments in which ABA was quantified, xylem sap ABA concentration was most significantly correlated with leaf stomatal conductance and leaf growth. Additionally, ABA concentration in xylem was significantly correlated to that in phloem, indicating a 6-fold concentration increase from xylem to phloem. The ABA flow model showed that biosynthesis of ABA in roots affected the xylem flow of ABA. Moreover, ABA concentration in xylem affected the degradation of the phytohormone in shoots and also its export from shoots via phloem. The role of phloem transport is discussed since it stimulates ABA metabolism in roots. PMID:27440939

  14. Understanding biocatalyst inhibition by carboxylic acids.

    PubMed

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  15. The abscisic acid induction of a novel peroxidase is antagonized by cytokinin in Spirodela polyrrhiza L.

    PubMed Central

    Chaloupková, K; Smart, C C

    1994-01-01

    The growth regulator abscisic acid (ABA) can be used to induce dormant bud structures (turions) in the duckweed Spirodela polyrrhiza L. In this paper we show that during this process, ABA rapidly induces elevated levels of mRNA transcripts encoding a novel basic peroxidase. In addition, we show that in the presence of the cytokinin kinetin the maintained increase is attenuated. Kinetin not only totally inhibits the induction of turions by ABA but also alleviates ABA-induced growth inhibition. This antagonism of an ABA-induced gene by a cytokinin correlates with an easily observable antagonistic effect of these two hormones on plant morphogenesis. These data contribute to a growing body of evidence linking growth regulators with changes in peroxidase gene expression and to the concept of pairs of hormones playing antagonistic roles during plant development. Finally, we discuss the possible functions that peroxidases could have during ABA-induced turion formation and growth inhibition. PMID:8066130

  16. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.

    PubMed

    Hermann, Katrin; Meinhard, Juliane; Dobrev, Peter; Linkies, Ada; Pesek, Bedrich; Hess, Barbara; Machácková, Ivana; Fischer, Uwe; Leubner-Metzger, Gerhard

    2007-01-01

    The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.

  17. Structural basis and functions of abscisic acid receptors PYLs

    PubMed Central

    Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.

    2015-01-01

    Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428

  18. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress.

  19. The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA.

    PubMed

    Toorop, P E; van Aelst, A C; Hilhorst, H W

    2000-08-01

    The role of abscisic acid (ABA) in the weakening of the endosperm cap prior to radicle protrusion in tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds was studied. The endosperm cap weakened substantially in both water and ABA during the first 38 h of imbibition. After 38 h the force required for endosperm cap puncturing was arrested at 0.35 N in ABA, whereas in water a further decrease occurred until the radicle protruded. During the first 2 d of imbibition endo-beta-mannanase activity was correlated with the decrease in required puncture force and with the appearance of ice-crystal-induced porosity in the cell walls as observed by scanning electron microscopy. Prolonged incubation in ABA resulted in the loss of endo-beta-mannanase activity and the loss of ice-crystal-induced porosity, but not in a reversion of the required puncture force. ABA also had a distinct but minor effect on the growth potential of the embryo. However, endosperm cap resistance played the limiting role in the completion of germination. It was concluded that (a) endosperm cap weakening is a biphasic process and (b) inhibition of germination by ABA is through the second step in the endosperm cap weakening process.

  20. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    PubMed

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  1. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum

    PubMed Central

    Dodd, Ian C.

    2012-01-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40–60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil. PMID:23136167

  2. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum.

    PubMed

    Jiang, Fan; Chen, Lin; Belimov, Andrey A; Shaposhnikov, Alexander I; Gong, Fan; Meng, Xu; Hartung, Wolfram; Jeschke, Dieter W; Davies, William J; Dodd, Ian C

    2012-11-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40-60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil.

  3. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  4. Abscisic Acid Levels during Early Seed Development in Sechium edule Sw

    PubMed Central

    Vernieri, Paolo; Perata, Pierdomenico; Lorenzi, Roberto; Ceccarelli, Nello

    1989-01-01

    The time-course growth of single tissues in pollinated and unpollinated ovules of Sechium edule Sw. is described in relation to the endogenous levels of abscisic acid. Quantitation of abscisic acid (ABA) in the minute amounts of material obtained after ovule dissection has been performed by using a highly specific and sensitive solid-phase radioimmunoassay based on a monoclonal antibody raised against free (S)-ABA. While the absolute amount of ABA rises in both types of ovules, only in unpollinated ones does this leads to an increase in the hormone concentration. Infact in pollinated ovules the rapid growth following pollination prevents, through a dilution effect, the increase in ABA concentration. Growth patterns and endogenous ABA levels are similar for integuments and nucellus tissues either in pollinated or unpollinated ovules. It is suggested that the growth inhibition induced by the increase in ABA concentration after anthesis could be counteracted by the pollination triggered fast ovule growth. PMID:16667185

  5. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.

    PubMed

    Seo, Mitsunori; Hanada, Atsushi; Kuwahara, Ayuko; Endo, Akira; Okamoto, Masanori; Yamauchi, Yukika; North, Helen; Marion-Poll, Annie; Sun, Tai-Ping; Koshiba, Tomokazu; Kamiya, Yuji; Yamaguchi, Shinjiro; Nambara, Eiji

    2006-11-01

    In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.

  6. Nitric oxide and ABA in the control of plant function.

    PubMed

    Hancock, J T; Neill, S J; Wilson, I D

    2011-11-01

    Abscisic acid (ABA) and nitric oxide (NO) are both extremely important signalling molecules employed by plants to control many aspects of physiology. ABA has been extensively studied in the mechanisms which control stomatal movement as well as in seed dormancy and germination and plant development. The addition of either ABA or NO to plant cells is known to instigate the actions of many signal transduction components. Both may have an influence on the phosphorylation of proteins in cells mediated by effects on protein kinases and phosphatases, as well as recruiting a wide range of other signal transduction molecules to mediate the final effects. Both ABA and NO may also lead to the regulation of gene expression. However, it is becoming more apparent that NO may be acting downstream of ABA, with such action being mediated by reactive oxygen species such as hydrogen peroxide in some cases. However not all ABA responses require the action of NO. Here, examples of where ABA and NO have been put together into the same signal transduction pathways are discussed.

  7. Evolution of Abscisic Acid Synthesis and Signaling Mechanisms

    PubMed Central

    Hauser, Felix; Waadt, Rainer; Schroeder, Julian I.

    2011-01-01

    The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized. PMID:21549957

  8. Evolution of abscisic acid synthesis and signaling mechanisms.

    PubMed

    Hauser, Felix; Waadt, Rainer; Schroeder, Julian I

    2011-05-10

    The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized.

  9. Reduced Accumulation of ABA during Water Stress in a Molybdenum Cofactor Mutant of Barley 1

    PubMed Central

    Walker-Simmons, Mary; Kudrna, David A.; Warner, Robert L.

    1989-01-01

    A barley (Hordeum vulgare L.) mutant (Az34) has been identified with low basal levels of abscisic acid (ABA) and with reduced capacity for producing ABA in response to water stress. The mutation is in a gene controlling the molybdenum cofactor resulting in a pleiotropic deficiency in at least three molybdoenzymes, nitrate reductase, xanthine dehydrogenase, and aldehyde oxidase. The mutant was found to lack aldehyde oxidase activity with several substrates including: (a) ABA aldehyde, a putative precursor of ABA; (b) an acetylenic analog of ABA aldehyde; and (c) heptaldehyde. Elevating the growth temperature from 18 to 26°C caused mutant leaves to wilt and brown. Desiccation of mutant leaves was prevented by applying ABA. These results indicate that ABA biosynthesis at some developmental stages is dependent upon a molybdoenzyme which may be an aldehyde oxidase. Images Figure 5 PMID:16666835

  10. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi.

    PubMed

    Martín-Rodríguez, José Ángel; León-Morcillo, Rafael; Vierheilig, Horst; Ocampo, Juan Antonio; Ludwig-Müller, Jutta; García-Garrido, José Manuel

    2011-04-01

    We investigated the relationship between ABA and ethylene regulating the formation of the arbuscular mycorrhiza (AM) symbiosis in tomato (Solanum lycopersicum) plants and tried to define the specific roles played by each of these phytohormones in the mycorrhization process. We analysed the impact of ABA biosynthesis inhibition on mycorrhization by Glomus intraradices in transgenic tomato plants with an altered ethylene pathway. We also studied the effects on mycorrhization in sitiens plants treated with the aminoethoxyvinyl glycine hydrochloride (AVG) ethylene biosynthesis inhibitor and supplemented with ABA. In addition, the expression of plant and fungal genes involved in the mycorrhization process was studied. ABA biosynthesis inhibition qualitatively altered the parameters of mycorrhization in accordance with the plant's ethylene perception and ethylene biosynthesis abilities. Inhibition of ABA biosynthesis in wild-type plants negatively affected all the mycorrhization parameters studied, while tomato mutants impaired in ethylene synthesis only showed a reduced arbuscular abundance in mycorrhizal roots. Inhibition of ethylene synthesis in ABA-deficient sitiens plants increased the intensity of mycorrhiza development, while ABA application rescued arbuscule abundance in the root's mycorrhizal zones. The results of our study show an antagonistic interaction between ABA and ethylene, and different roles of each of the two hormones during AM formation. This suggests that a dual ethylene-dependent/ethylene-independent mechanism is involved in ABA regulation of AM formation.

  11. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    PubMed

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  12. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways

    PubMed Central

    Fu, Juanjuan; Wu, Ye; Miao, Yanjun; Xu, Yamei; Zhao, Enhua; Wang, Jin; Sun, Huaien; Liu, Qian; Xue, Yongwei; Xu, Yuefei; Hu, Tianming

    2017-01-01

    Melatonin is an important secondary messenger that plays a central role in plant growth, as well as abiotic and biotic stress tolerance. However, the underlying physiological and molecular mechanisms of melatonin-mediated cold tolerance, especially interactions between melatonin and other key molecules in the plant stress response, remain unknown. Here, the interrelation between melatonin and abscisic acid (ABA) was investigated in two genotypes of Elymus nutans Griseb., the cold-tolerant Damxung (DX) and the cold-sensitive Gannan (GN) under cold stress. Pre-treatment with exogenous melatonin or ABA alleviated oxidative injury via scavenging ROS, while enhancing both antioxidant enzyme activities and non-enzymatic antioxidant contents. Treatment of fluridone, an ABA biosynthesis inhibitor caused membrane lipid peroxidation and lowered melatonin-induced antioxidant defense responses. It is worth noting that cold stress significantly induced both endogenous melatonin and ABA levels in both genotypes. Application of melatonin increased ABA production, while fluridone significantly suppressed melatonin-induced ABA accumulation. ABA and fluridone pre-treatments failed to affect the endogenous melatonin concentration. Moreover, exogenous melatonin up-regulated the expression of cold-responsive genes in an ABA-independent manner. These results indicate that both ABA-dependent and ABA-independent pathways may contribute to melatonin-induced cold tolerance in E. nutans. PMID:28045095

  13. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  14. Endogenous Levels of Abscisic Acid and Decanoic Acid in Dutch Iris Bulbs and the Influence of Abscisic Acid and Decanoic Acid on Iris Meristems Cultured In Vitro1

    PubMed Central

    Doss, Robert P.; Kimura, Yosh; Christian, James K.

    1983-01-01

    Abscisic acid (ABA) and decanoic acid inhibited shoot elongation and floral development of Dutch iris (Iris hollandica Hoog. cv Ideal) meristems cultured in vitro. No synergism with respect to inhibition of leaf growth between ABA and decanoic acid was observed. With monthly harvest dates, from July 10, 1981 to October 10, 1981, there was a progressive decrease in endogenous level of free ABA in `Ideal' iris bulbs. Bulbs subjected to a full set of the usual preplanting storage conditions flowered, on average, 46 days after planting versus 194 days after planting for bulbs planted directly after harvest. ABA levels at harvest were 4- to 5-fold those after the preplanting storage treatment. In general, ABA levels did not correlate well with the length of time from planting until flowering of iris bulbs. Endogenous decanoic acid levels did not follow any pattern with respect to harvest date or postharvest treatment. After the postharvest high temperature treatment, there was about a 3-fold increase in nonscale decanoic acid concentration. Decanoic acid levels, in nonscale tissue, remained high after each of the other postharvest treatments. It is concluded that there is no good evidence to support the contention that either ABA or decanoic acid is directly involved in iris bulb dormancy. PMID:16663072

  15. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport.

    PubMed

    Umezawa, Taishi; Nakashima, Kazuo; Miyakawa, Takuya; Kuromori, Takashi; Tanokura, Masaru; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-11-01

    ABA is a major phytohormone that regulates a broad range of plant traits and is especially important for adaptation to environmental conditions. Our understanding of the molecular basis of ABA responses in plants improved dramatically in 2009 and 2010, banner years for ABA research. There are three major components; PYR/PYL/ RCAR (an ABA receptor), type 2C protein phosphatase (PP2C; a negative regulator) and SNF1-related protein kinase 2 (SnRK2; a positive regulator), and they offer a double negative regulatory system, [PYR/PYL/RCAR-| PP2C-| SnRK2]. In the absence of ABA, PP2C inactivates SnRK2 by direct dephosphorylation. In response to environmental or developmental cues, ABA promotes the interaction of PYR/PYL/RCAR and PP2C, resulting in PP2C inhibition and SnRK2 activation. This signaling complex can work in both the nucleus and cytosol, as it has been shown that SnRK2 phosphorylates basic-domain leucine zipper (bZIP) transcription factors or membrane proteins. Several structural analyses of PYR/PYL/RCAR have provided the mechanistic basis for this 'core signaling' model, by elucidating the mechanism of ABA binding of receptors, or the 'gate-latch-lock' mechanism of interaction with PP2C in inhibiting activity. On the other hand, intercellular ABA transport had remained a major issue, as had intracellular ABA signaling. Recently, two plasma membrane-type ABC transporters were identified and shed light on the influx/efflux system of ABA, resolving how ABA is transported from cell to cell in plants. Our knowledge of ABA responses in plants has been greatly expanded from intracellular signaling to intercellular transport of ABA.

  16. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    NASA Technical Reports Server (NTRS)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  17. Effect of abscissic acid on tobacco mosaic virus.

    PubMed

    Mishra, M D; Ghosh, A; Verma, V S; Dattagupta, M

    1983-01-01

    Abscisic acid (ABA) did not affect the infectivity of tobacco mosaic virus (TMV) in vitro. The same dilutions of ABA when applied on the leaves of Chenopodium amaranticolor Coste and Reyn. at different intervals before inoculation affected development of local lesions variably at different dilutions. The inhibition of local lesion formation was reduced at other intervals leading to stimulation at thirty minutes and six hours intervals. Post-inoculation treatments with 2 mg/l of ABA gave stimulation of local lesion formation, though other dilutions gave inhibition. Viral concentration was stimulated in the tomato seedlings root dipped in 0.2 mg/l of ABA for 6 hours and inoculated 24 hours after transplantation. Incorporation of different concentrations of ABA into tissue culture medium reduced the growth of the TMV infected tobacco callus tissue and stimulated the infectivity of the tissue grown over it assayed after three weeks.

  18. Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele.

    PubMed

    Dupeux, Florine; Antoni, Regina; Betz, Katja; Santiago, Julia; Gonzalez-Guzman, Miguel; Rodriguez, Lesia; Rubio, Silvia; Park, Sang-Youl; Cutler, Sean R; Rodriguez, Pedro L; Márquez, José A

    2011-05-01

    The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABA-INSENSITIVE1 and HYPERSENSITIVE TO ABA1 (HAB1), causing the activation of the ABA signaling pathway. To gain further understanding on the mechanism of hormone perception, PP2C inhibition, and its implications for ABA signaling, we have performed a structural and functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-function mutation in a critical residue of the phosphatase, hab1(W385A), which abolished ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, hab1(W385A) caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1(W385A) qualifies as a hypermorphic mutation. Expression of hab1(W385A) in Arabidopsis (Arabidopsis thaliana) plants leads to a strong, dominant ABA insensitivity, which demonstrates that this conserved tryptophan residue can be targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the critical role of molecular interactions mediated by tryptophan-385 equivalent residues for clade A PP2C function in vivo and the mechanism of ABA perception and signaling.

  19. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors.

    PubMed

    Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio

    2017-04-01

    Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.

  20. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    PubMed

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple.

  1. Abscisic Acid Elicits the Water-Stress Response in Root Hairs of Arabidopsis thaliana1

    PubMed Central

    Schnall, Jennifer A.; Quatrano, Ralph S.

    1992-01-01

    Water stress has been shown to cause root hairs to become short and bulbous. Because abscisic acid (ABA) mediates a variety of water-stress responses, we investigated the response of Arabidopsis thaliana root hairs to ABA. When wild-type root hairs were treated with ABA, they exhibited the water-stress response. The Arabidopsis mutants abi1 and abi2, which are insensitive to ABA at the seedling stage, did not display the root hair response. These data suggest that ABA may mediate the response of root hairs to water stress. The drought response of root hairs resulting in an inhibition of tip growth will provide an easy screen to select mutations that are insensitive to ABA and/or involved in tip growth. Images Figure 1 PMID:16652949

  2. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced.

  3. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway.

    PubMed

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-12-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18.

  4. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway

    PubMed Central

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-01-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. PMID:26443375

  5. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions.

    PubMed

    Takeuchi, Jun; Okamoto, Masanori; Akiyama, Tomonori; Muto, Takuya; Yajima, Shunsuke; Sue, Masayuki; Seo, Mitsunori; Kanno, Yuri; Kamo, Tsunashi; Endo, Akira; Nambara, Eiji; Hirai, Nobuhiro; Ohnishi, Toshiyuki; Cutler, Sean R; Todoroki, Yasushi

    2014-06-01

    The plant stress hormone abscisic acid (ABA) is critical for several abiotic stress responses. ABA signaling is normally repressed by group-A protein phosphatases 2C (PP2Cs), but stress-induced ABA binds Arabidopsis PYR/PYL/RCAR (PYL) receptors, which then bind and inhibit PP2Cs. X-ray structures of several receptor-ABA complexes revealed a tunnel above ABA's 3' ring CH that opens at the PP2C binding interface. Here, ABA analogs with sufficiently long 3' alkyl chains were predicted to traverse this tunnel and block PYL-PP2C interactions. To test this, a series of 3'-alkylsulfanyl ABAs were synthesized with different alkyl chain lengths. Physiological, biochemical and structural analyses revealed that a six-carbon alkyl substitution produced a potent ABA antagonist that was sufficiently active to block multiple stress-induced ABA responses in vivo. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class.

  6. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress.

    PubMed

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin; Cho, Seok Keun; Yang, Seong Wook; Kim, Woo Taek

    2016-01-01

    Plants have developed a variety of complicated responses to cope with drought, one of the most challenging environmental stresses. As a quick response, plants rapidly inhibit stomatal opening under the control of abscisic acid (ABA) signaling pathway, in order to preserve water. Here, we report that Arabidopsis Tóxicos en Levadura (ATL), a RING-type E3 ubiquitin ligase, mediates the ABA-dependent stomatal closure. In contrast to wild-type plants, the stomatal closure was fully impaired in atatl78 mutant plants even in the presence of exogenous ABA and reactive oxygen species (ROS). Besides, under high concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of AtATL78 in the modulation of ROS activity. Based on these results, we suggest that AtATL78 possibly plays a role in promoting ROS-mediated ABA signaling pathway during drought stress.

  7. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase

    PubMed Central

    Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  8. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening

    PubMed Central

    Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  9. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening.

    PubMed

    Mou, Wangshu; Li, Dongdong; Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening.

  10. ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation.

    PubMed

    Yu, Feifei; Lou, Lijuan; Tian, Miaomiao; Li, Qingliang; Ding, Yanglin; Cao, Xiaoqiang; Wu, Yaorong; Belda-Palazon, Borja; Rodriguez, Pedro L; Yang, Shuhua; Xie, Qi

    2016-12-05

    Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-like protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-linked diubiquitin, and PYL4 possesses K63-linked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.

  11. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis

    PubMed Central

    Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L.; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng

    2016-01-01

    Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)–A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals. PMID:27566404

  12. The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance1[C][W][OPEN

    PubMed Central

    Pizzio, Gaston A.; Rodriguez, Lesia; Antoni, Regina; Gonzalez-Guzman, Miguel; Yunta, Cristina; Merilo, Ebe; Kollist, Hannes; Albert, Armando; Rodriguez, Pedro L.

    2013-01-01

    Because abscisic acid (ABA) is recognized as the critical hormonal regulator of plant stress physiology, elucidating its signaling pathway has raised promise for application in agriculture, for instance through genetic engineering of ABA receptors. PYRABACTIN RESISTANCE1/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS ABA receptors interact with high affinity and inhibit clade A phosphatases type-2C (PP2Cs) in an ABA-dependent manner. We generated an allele library composed of 10,000 mutant clones of Arabidopsis (Arabidopsis thaliana) PYL4 and selected mutations that promoted ABA-independent interaction with PP2CA/ABA-HYPERSENSITIVE3. In vitro protein-protein interaction assays and size exclusion chromatography confirmed that PYL4A194T was able to form stable complexes with PP2CA in the absence of ABA, in contrast to PYL4. This interaction did not lead to significant inhibition of PP2CA in the absence of ABA; however, it improved ABA-dependent inhibition of PP2CA. As a result, 35S:PYL4A194T plants showed enhanced sensitivity to ABA-mediated inhibition of germination and seedling establishment compared with 35S:PYL4 plants. Additionally, at basal endogenous ABA levels, whole-rosette gas exchange measurements revealed reduced stomatal conductance and enhanced water use efficiency compared with nontransformed or 35S:PYL4 plants and partial up-regulation of two ABA-responsive genes. Finally, 35S:PYL4A194T plants showed enhanced drought and dehydration resistance compared with nontransformed or 35S:PYL4 plants. Thus, we describe a novel approach to enhance plant drought resistance through allele library generation and engineering of a PYL4 mutation that enhances interaction with PP2CA. PMID:23864556

  13. [Inhibition of growth of microscopic fungi with organic acids].

    PubMed

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%.

  14. Inhibition of in vitro cholesterol synthesis by fatty acids.

    PubMed

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  15. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  16. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.

    PubMed

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  17. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    SciTech Connect

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  18. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    PubMed Central

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  19. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.

    PubMed

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X Edward; West, Graham M; Kovach, Amanda; Tan, M H Eileen; Suino-Powell, Kelly M; He, Yuanzheng; Xu, Yong; Chalmers, Michael J; Brunzelle, Joseph S; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R; Melcher, Karsten; Xu, H Eric

    2012-01-06

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  20. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  1. Abscisic acid regulation of DC8, a carrot embryonic gene. [Daucus carota

    SciTech Connect

    Hatzopoulos, P.; Fong, F.; Sung, Z.R. Texas A M Univ., College Station )

    1990-10-01

    DC8 encodes a hydrophylic 66 kilodalton protein located in the cytoplasm and cell walls of carrot (Daucus carota) embryo and endosperm. During somatic embryogenesis, the levels of DC8 mRNA and protein begin to increase 5 days after removal of auxin. To study the role of abscisic acid (ABA) in the regulation of DC8 gene, fluridone, 1-methyl-3-phenyl,-5(3-trifluoro-methyl-phenyl)-4(1H)-pyridinone, was used to inhibit the endogenous ABA content of the embryos. Fluridone, 50 micrograms per milliliter, effectively inhibits the accumulation of ABA in globular-tage embryos. Western and Northern analysis show that when fluridone is added to the culture medium DC8 protein and mRNA decrease to very low levels. ABA added to fluridone supplemented culture media restores the DC8 protein and mRNA to control levels. Globular-stage embryos contain 0.9 to 1.4 {times} 10{sup {minus}7} molar ABA while 10{sup {minus}6} molar exogenously supplied ABA is the optimal concentration for restoration of DC8 protein accumulation in fluridone-treated embryos. The mRNA level is increased after 15 minutes of ABA addition and reaches maximal levels by 60 minutes. Evidence is presented that, unlike other ABA-regulated genes, DC8 is not induced in nonembryonic tissues via desiccation nor addition of ABA.

  2. A novel ABA insensitive mutant of Lotus japonicus with a wilty phenotype displays unaltered nodulation regulation.

    PubMed

    Biswas, Bandana; Chan, Pick Kuen; Gresshoff, Peter M

    2009-05-01

    An ABA insensitive mutant, Beyma, was isolated in Lotus japonicus MG-20 from an EMS mutagenesis population using root growth inhibition to applied ABA as the screening criterion. (The name 'Beyma' was taken from the Australian Aboriginal language, Wagiman, beyma, meaning 'drying up'.) The stable mutant that segregates as a dominant Mendelian mutation is insensitive to ABA induced inhibition of germination, vegetative growth, stomatal opening, as well as nodulation. Tissue ABA levels were normal, suggesting a sensitivity rather than biosynthesis mutation. It is slow-growing (50-70% of wild-type MG-20) and has a near-constitutive wilty phenotype associated with its inability to regulate stomatal opening. Whilst showing a wide range of ABA insensitive phenotypes, Beyma did not show alteration of nodule number control, as, in the absence of added ABA, the number and patterning (but not size) of nodules formed in the mutant were similar to that of MG-20. Split root experiments on MG-20 showed that application of ABA on one side of the root inhibited nodulation locally but not systemically. We propose that ABA is not involved directly in systemic autoregulation of nodulation (AON).

  3. Catabolism of (+/-)-abscisic acid by excised leaves of Hordeum vulgare L. cv Dyan and its modification by chemical and environmental factors

    SciTech Connect

    Cowan, A.K.; Railton, I.D.

    1987-05-01

    Excised light-grown leaves and etiolated leaves of Hordeum vulgare L. cv Dyan catabolized applied (+/-)-(2-/sup 14/C)abscisic acid ((+/-)-(2-/sup 14/C)ABA) to phaseic acid (PA), dihydrophaseic acid (DPA), and 2'-hydroxymethyl ABA (2'-HMABA). Identification of these catabolites was made by microchemical methods and by combined capillary gas chromatography-mass spectrometry (GC-MS) following high dose feeds of nonlabeled substrate to leaves. Circular dichroism analysis revealed that 2'-HMABA was derived from the (-) enantiomer of ABA. Refeeding studies were used to confirm the catabolic route. The methyl ester of (+/-)-(2/sup 14/C)-ABA was hydrolyzed efficiently by light-grown leaves of H. vulgare. Leaf age played a significant role in (+/-)-ABA catabolism, with younger leaves being less able than their older counterparts to catabolize this compound. The catabolism of (+/-)-ABA was inhibited markedly in water-stressed Hordeum leaves which was characterized by a decreased incorporation of label into 2'-HMABA, DPA, and conjugates. The specific, mixed function oxidase inhibitor, ancymidol, did not inhibit, dramatically (+/-)-ABA catabolism in light-grown leaves of Hordeum whereas the 80s ribosome, translational inhibitor, cycloheximide, inhibited this process markedly. The 70s ribosome translational inhibitors, lincomycin and chloramphenicol, were less effective than cycloheximide in inhibiting (+/-)-ABA catabolism, implying that cytoplasmic protein synthesis is necessary for the catabolism of (+/-)-ABA in Hordeum leaves whereas chloroplast protein synthesis plays only a minor role. This further suggests that the enzymes involved in (+/-)-ABA catabolism in this plant are cytoplasmically synthesized and are turned-over rapidly, although the enzyme responsible for glycosylating (+/-)-ABA itself appeared to be stable.

  4. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    PubMed

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  5. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    PubMed

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  6. Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity.

    PubMed

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2014-06-01

    Legumes are classified as salt-sensitive crops with their productivity particularly affected by salinity. Abcisic acid (ABA) plays an important role in the response to environmental stresses as signal molecule which led us to study its role in the response of nitrogen fixation and antioxidant metabolism in root nodules of Medicago sativa under salt stress conditions. Adult plants inoculated with Sinorhizobium meliloti were treated with 1 μM and 10 μM ABA two days before 200 mM salt addition. Exogenous ABA together with the salt treatment provoked a strong induction of the ABA content in the nodular tissue which alleviated the inhibition induced by salinity in the plant growth and nitrogen fixation. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were induced by ABA pre-treatments under salt stress conditions which together with the reduction of the lipid peroxidation, suggest a role for ABA as signal molecule in the activation of the nodular antioxidant metabolism. Interaction between ABA and polyamines (PAs), described as anti-stress molecules, was studied being detected an induction of the common polyamines spermidine (Spd) and spermine (Spm) levels by ABA under salt stress conditions. In conclusion, ABA pre-treatment improved the nitrogen fixation capacity under salt stress conditions by the induction of the nodular antioxidant defenses which may be mediated by the common PAs Spd and Spm that seems to be involved in the anti-stress response induced by ABA.

  7. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  8. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  9. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  10. Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    PubMed Central

    Yang, Xiang; Wang, Yaqin; Su, Xiaojun; Du, Jinju; Yang, Chengwei

    2011-01-01

    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently. PMID:21556325

  11. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    PubMed Central

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  12. Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

    PubMed

    Ye, Wenxiu; Hossain, Mohammad Anowar; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-09-01

    We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.

  13. Regulation of Embryo Dormancy by Manipulation of Abscisic Acid in Kernels and Associated Cob Tissue of Zea mays L. Cultured in Vitro1

    PubMed Central

    Hole, David J.; Smith, J. D.; Cobb, B. Greg

    1989-01-01

    Sectors of Zea mays cobs, with and without kernels were cultured in vitro in the presence and absence of fluridone. Cultured kernels, cob tissue, and embryos developed similarly to those grown in the field. Abscisic acid (ABA) levels in the embryos were evaluated by enzyme-linked immunosorbant assay. ABA levels in intact embryos cultured in the presence of fluridone were extremely low and indicate an inhibition of ABA synthesis. ABA levels in isolated cob tissue indicate that ABA can be produced by cob tissue. Sections containing kernels cultured in the presence of fluridone were transferred to medium containing fluridone and ABA. Dormancy was induced in more than 50% of the kernels transferred from 13 to 15 days after pollination, but all of the kernels transferred at 16 days after pollination or later were viviparous. ABA recovered from kernels that were placed in medium containing fluridone and ABA suggest that ABA can be transported through the cob tissue into developing embryos and that ABA is required for induction of dormancy in intact embryos. PMID:16666978

  14. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  15. Synthesis, structural characterization and effect on human granulocyte intracellular cAMP levels of abscisic acid analogs.

    PubMed

    Bellotti, Marta; Salis, Annalisa; Grozio, Alessia; Damonte, Gianluca; Vigliarolo, Tiziana; Galatini, Andrea; Zocchi, Elena; Benatti, Umberto; Millo, Enrico

    2015-01-01

    The phytohormone abscisic acid (ABA), in addition to regulating physiological functions in plants, is also produced and released by several mammalian cell types, including human granulocytes, where it stimulates innate immune functions via an increase of the intracellular cAMP concentration ([cAMP]i). We synthesized several ABA analogs and evaluated the structure-activity relationship, by the systematical modification of selected regions of these analogs. The resulting molecules were tested for their ability to inhibit the ABA-induced increase of [cAMP]i in human granulocytes. The analogs with modified configurations at C-2' and C-3' abrogated the ABA-induced increase of the [cAMP]i and also inhibited several pro-inflammatory effects induced by exogenous ABA on granulocytes and monocytes. Accordingly, these analogs could be suitable as novel putative anti-inflammatory compounds.

  16. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes.

    PubMed

    Graeber, Kai; Linkies, Ada; Müller, Kerstin; Wunchova, Andrea; Rott, Anita; Leubner-Metzger, Gerhard

    2010-05-01

    Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum ('garden cress') is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative

  17. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  18. Inhibited muscle amino acid uptake in sepsis.

    PubMed Central

    Hasselgren, P O; James, J H; Fischer, J E

    1986-01-01

    Amino acid uptake in vivo was determined in soleus (SOL) muscle, diaphragm, heart, and liver following intravenous injection of [3H]-alpha-amino-isobutyric acid ([3H]-AIB) in rats made septic by cecal ligation and puncture (CLP) and in sham-operated controls. Muscle amino acid transport was also measured in vitro by determining uptake of [3H]-AIB in incubated extensor digitorum longus (EDL) and SOL muscles. Results were expressed as distribution ratio between [3H]-AIB in intracellular and extracellular fluid. AIB uptake in vivo was reduced by 90% in SOL and cardiac muscle and by 45% in diaphragm 16 hours after CLP. In contrast, AIB uptake by liver was almost four times higher in septic than in control animals. AIB uptake in vitro was reduced by 18% in EDL 8 hours after CLP but was not significantly altered in SOL at the same time point. Sixteen hours after CLP, AIB uptake was significantly reduced in both muscles, i.e., by 17% in EDL and by 65% in SOL. When muscles from untreated rats were incubated in the presence of plasma from septic animals (16 hours CLP) or from animals injected with endotoxin (2 mg/kg body weight), AIB uptake was reduced. Addition of endotoxin in vitro (2-200 micrograms/ml) to incubated muscles did not affect AIB uptake. The results suggest that sepsis leads to marked impairment of amino acid transport system A in muscle and that this impairment is mediated by a circulating factor that is not endotoxin. Reduced uptake of amino acids by skeletal muscle during sepsis may divert amino acids to the liver for increased gluconeogenesis and protein synthesis. PMID:3963895

  19. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  20. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration

    PubMed Central

    Rodrigo, María J.

    2012-01-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components. PMID:22888124

  1. Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.

    PubMed

    Creelman, R A; Mullet, J E

    1991-04-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.

  2. Proton pump inhibition--the ultimate control of acid secretion

    SciTech Connect

    Zdon, M.J.; Ballantyne, G.H.; Schafer, D.E.; Tyshkov, M.; Cambria, R.P.; Modlin, I.M.

    1986-04-01

    The cellular mechanisms of acid secretion by the parietal cell (PC) include stimulation of membrane receptors, increases in cytosolic cyclic AMP levels, and activation of protein kinase systems. These events culminate in stimulation of a membrane-based proton pump. This consists of a non-electrogenic H+-K+-ATPase which transports H+ ions into the secretory canaliculus of the PC in exchange for the cation K+. It has been proposed that blockade of this proton pump would result in inhibition of acid secretion by all classes of acid secretagogues. Thus, the effects of membrane receptor agonists as well as any agents which augment cellular cAMP levels should be inhibited. Substituted benzimidazoles are weak bases which prevent acid secretion by blocking the H+-K+-ATPase system. In order to test the above hypothesis, we investigated the effects of the substituted benzimidazole H168/68 and cimetidine (C) on histamine (H) and 8B-stimulated acid secretion. The rabbit isolated gastric gland (IGG) model was used and acid secretion assessed by the accumulation of /sup 14/C-labeled weak base aminopyrine (AP) within the IGG in response to secretagogue stimulation. H168/68 and C both inhibited H (5 X 10(-5) M)-stimulated (/sup 14/C)AP accumulation in a concentration-dependent manner (P less than 0.05). H168/68 inhibited both H- and 8B-stimulated (/sup 14/C)AP accumulation (P less than 0.05), while C inhibited only H-stimulated (/sup 14/C)AP accumulation (P less than 0.05). H168/68 suppressed (/sup 14/C)AP below even unstimulated levels of (/sup 14/C)AP accumulation. These results support the hypothesis that H168/68 inhibits the PC distal to cAMP stimulation.

  3. ABA in bryophytes: how a universal growth regulator in life became a plant hormone?

    PubMed

    Takezawa, Daisuke; Komatsu, Kenji; Sakata, Yoichi

    2011-07-01

    Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.

  4. ABA-mediated transcriptional regulation in response to osmotic stress in plants.

    PubMed

    Fujita, Yasunari; Fujita, Miki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-07-01

    The plant hormone abscisic acid (ABA) plays a pivotal role in a variety of developmental processes and adaptive stress responses to environmental stimuli in plants. Cellular dehydration during the seed maturation and vegetative growth stages induces an increase in endogenous ABA levels, which control many dehydration-responsive genes. In Arabidopsis plants, ABA regulates nearly 10% of the protein-coding genes, a much higher percentage than other plant hormones. Expression of the genes is mainly regulated by two different families of bZIP transcription factors (TFs), ABI5 in the seeds and AREB/ABFs in the vegetative stage, in an ABA-responsive-element (ABRE) dependent manner. The SnRK2-AREB/ABF pathway governs the majority of ABA-mediated ABRE-dependent gene expression in response to osmotic stress during the vegetative stage. In addition to osmotic stress, the circadian clock and light conditions also appear to participate in the regulation of ABA-mediated gene expression, likely conferring versatile tolerance and repressing growth under stress conditions. Moreover, various other TFs belonging to several classes, including AP2/ERF, MYB, NAC, and HD-ZF, have been reported to engage in ABA-mediated gene expression. This review mainly focuses on the transcriptional regulation of ABA-mediated gene expression in response to osmotic stress during the vegetative growth stage in Arabidopsis.

  5. Antagonistic effect of polyamines on ABA-induced suppression of mitosis in Allium cepa L.

    PubMed

    Mahajan, Arpana; Sharma, Shashi

    2009-02-01

    Effect of abscisic acid (ABA) and polyamines (PAs) [putrescine (Put), spermidine (Spd) and spermine (Spm)] on mitosis in root tips of A. cepa was studied. Treatment with ABA (0.1 to 100 microM) for 24 hr suppressed the mitosis, measured as mitotic index (MI), in a concentration-dependent manner with approx. 50% suppression at 10 microM of ABA. Treatment with different PAs (1 to 100 microM) had differential mitosis suppression effect. Spm was most inhibitory followed by Spd and Put, respectively. The higher concentrations of PAs (1 mM Put; 0.1 and 1 mM Spd or Spm) caused cell distortion. Remarkably, a 24 hr pretreatment of root tips with PAs prior to ABA (100 microM) treatment resulted in a general concentration-dependent reversal of ABA-induced suppression of MI. Catalase (CAT) activity in the root tips, an indicator of redox metabolism, increased due to ABA treatment in a concentration-dependent manner, remained unaltered in response to Put and declined due to Spd and Spm (> or = 0.1 mM). However, all PAs, irrespective of their individual effects, generally antagonized the ABA-dependent increase in CAT activity. Data indicate the possibility of ABA-PA interaction in the regulation of mitosis.

  6. The Receptor Kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 Attenuates Abscisic Acid Responses in Arabidopsis1[C][W

    PubMed Central

    Hok, Sophie; Allasia, Valérie; Andrio, Emilie; Naessens, Elodie; Ribes, Elsa; Panabières, Franck; Attard, Agnès; Ris, Nicolas; Clément, Mathilde; Barlet, Xavier; Marco, Yves; Grill, Erwin; Eichmann, Ruth; Weis, Corina; Hückelhoven, Ralph; Ammon, Alexandra; Ludwig-Müller, Jutta; Voll, Lars M.; Keller, Harald

    2014-01-01

    In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION genes was diminished in Arabidopsis during infection. This effect on ABA signaling was alleviated in the ios1-1 mutant background. Accordingly, ABA-insensitive and ABA-hypersensitive mutants were more susceptible and resistant to oomycete infection, respectively, showing that the intensity of ABA signaling affects the outcome of downy mildew disease. Taken together, our findings suggest that filamentous (hemi)biotrophs attenuate ABA signaling in Arabidopsis during the infection process and that IOS1 participates in this pathogen-mediated reprogramming of the host. PMID:25274985

  7. Stomatal Closure in Flooded Tomato Plants Involves Abscisic Acid and a Chemically Unidentified Anti-Transpirant in Xylem Sap.

    PubMed Central

    Else, M. A.; Tiekstra, A. E.; Croker, S. J.; Davies, W. J.; Jackson, M. B.

    1996-01-01

    We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants. PMID:12226387

  8. Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis

    PubMed Central

    Wang, Li; Hua, Deping; He, Junna; Duan, Ying; Chen, Zhizhong; Hong, Xuhui; Gong, Zhizhong

    2011-01-01

    The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth. PMID:21779177

  9. Mechanism of acid corrosion inhibition using magnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Parekh, Kinnari; Jauhari, Smita; Upadhyay, R. V.

    2016-12-01

    The inhibition effect of magnetic nanofluid on carbon steel in acid solutions was investigated using gravimetric, potentiodynamic and SEM measurement. The inhibition efficiency increases up to 95% and 75% for 51.7 mM concentration, respectively, in 1 M HCl and 1 M H2SO4 medium. The adsorption of nanoparticles to the steel surface forms a barrier between the metal and the aggressive environment, which is responsible for observed inhibition action. The adsorption of nanoparticles on steel surface is supported by the Langmuir and Freundlich adsorption isotherm and surface morphology scanned through SEM.

  10. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-07

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  11. Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production

    PubMed Central

    Toum, Laila; Torres, Pablo S.; Gallego, Susana M.; Benavídes, María P.; Vojnov, Adrián A.; Gudesblat, Gustavo E.

    2016-01-01

    Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata. PMID:28018388

  12. ABA accumulation in water-stressed Citrus roots does not rely on carotenoid content in this organ.

    PubMed

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2016-11-01

    Sustained abscisic acid (ABA) accumulation in dehydrated citrus roots depends on the transport from aerial organs. Under this condition, the role of the β,β-carotenoids (ABA precursors) to the de novo synthesis of ABA in roots needs to be clarified since their low availability in this organ restricts its accumulation. To accomplish that, detached citrus roots were exposed to light (to increase their carotenoid content) and subsequently dehydrated (to trigger ABA accumulation). Stress imposition sharply decreased the pool of β,β-carotenoids but, unexpectedly, no concomitant rise in ABA content was observed. Contrastingly, roots of intact plants (with low levels of carotenoids) showed a similar decrease of ABA precursor together with a significant ABA accumulation. Furthermore, upon dehydration both types of roots showed similar upregulation of the key genes involved in biosynthesis of carotenoids and ABA (CsPSY3a; CsβCHX1; CsβCHX2; CsNCED1; CsNCED2), demonstrating a conserved transcriptional response triggered by water stress. Thus, the sharp decrease in root carotenoid levels in response to dehydration should be related to other stress-related signals instead of contributing to ABA biosynthesis. In summary, ABA accumulation in dehydrated-citrus roots largely relies on the presence of the aerial organs and it is independent of the amount of available root β,β-carotenoids.

  13. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens).

    PubMed

    Aroca, Ricardo; Del Mar Alguacil, Maria; Vernieri, Paolo; Ruiz-Lozano, Juan Manuel

    2008-11-01

    The aims of the present study are to find out whether the effects of arbuscular mycorrhizal (AM) symbiosis on plant resistance to water deficit are mediated by the endogenous abscisic acid (ABA) content of the host plant and whether the exogenous ABA application modifies such effects. The ABA-deficient tomato mutant sitiens and its near-isogenic wild-type parental line were used. Plant development, physiology, and expression of plant genes expected to be modulated by AM symbiosis, drought, and ABA were studied. Results showed that only wild-type tomato plants responded positively to mycorrhizal inoculation, while AM symbiosis was not observed to have any effect on plant development in sitiens plants grown under well-watered conditions. The application of ABA to sitiens plants enhanced plant growth both under well-watered and drought stress conditions. In respect to sitiens plants subjected to drought stress, the addition of ABA had a cumulative effect in relation to that of inoculation with G. intraradices. Most of the genes analyzed in this study showed different regulation patterns in wild-type and sitiens plants, suggesting that their gene expression is modulated by the plant ABA phenotype. In the same way, the colonization of roots with the AM fungus G. intraradices differently regulated the expression of these genes in wild-type and in sitiens plants, which could explain the distinctive effect of the symbiosis on each plant ABA phenotype. This also suggests that the effects of the AM symbiosis on plant responses and resistance to water deficit are mediated by the plant ABA phenotype.

  14. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  15. Relieving Mipafox Inhibition in Organophosphorus Acid Anhydrolase by Rational Design

    DTIC Science & Technology

    2013-03-01

    variant proteins. For each, an Escherichia coli DH5 culture containing one of the plasmids was grown at 37C in 1L of Luria -Bertani (LB) broth...inhibition constant LB Luria -Bertani (broth) OPPA organophosphorus acid anhydrolase SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis

  16. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis.

  17. Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha.

    PubMed

    Tougane, Ken; Komatsu, Kenji; Bhyan, Salma Begum; Sakata, Yoichi; Ishizaki, Kimitsune; Yamato, Katsuyuki T; Kohchi, Takayuki; Takezawa, Daisuke

    2010-03-01

    Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the beta -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts.

  18. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  19. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    PubMed

    Carballeira, Néstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaña-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound.

  20. Abscisic Acid Accumulation Maintains Maize Primary Root Elongation at Low Water Potentials by Restricting Ethylene Production1

    PubMed Central

    Spollen, William G.; LeNoble, Mary E.; Samuels, Timmy D.; Bernstein, Nirit; Sharp, Robert E.

    2000-01-01

    Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (ψw) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743–1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a ψw of −1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low ψw is to restrict ethylene production. PMID:10712561

  1. Inhibition of neutrophil activation by alpha1-acid glycoprotein.

    PubMed Central

    Costello, M J; Gewurz, H; Siegel, J N

    1984-01-01

    We report that alpha1-acid glycoprotein (AAG), a naturally occurring human plasma protein and acute phase reactant of uncertain biological function, inhibits human neutrophil aggregation and superoxide anion generation induced by a variety of stimuli including zymosan treated serum, formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate. Inhibition was transient, directly proportional to the glycoprotein concentration and inversely proportional to the concentration of the stimulus added. Desialyzation, resulting in the removal of a substantial portion of the molecule's negative charge, did not alter the effectiveness of AAG. Removal of the penultimate galactose residues from desialyzed AAG resulted in a slight but significant reversal of inhibition, suggesting that the heteropolysaccharide units of AAG may be important for inhibition of cellular function. We therefore suggest that the acute phase glycoprotein AAG may be a significant modulator of neutrophil as well as platelet and lymphocyte function during inflammation. PMID:6321072

  2. Monochloramine potently inhibits arachidonic acid metabolism in rat platelets.

    PubMed

    Fujimoto, Yohko; Ikeda, Mai; Sakuma, Satoru

    2006-05-26

    In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.

  3. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  4. Seizure control by decanoic acid through direct AMPA receptor inhibition

    PubMed Central

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A.; Hardege, Jörg D.; Chen, Philip E.

    2016-01-01

    See Rogawski (doi:10.1093/awv369) for a scientific commentary on this article.  The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  5. The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat preharvest sprouting (PHS) is the germination of mature grain on the mother plant when rain occurs before harvest. Higher abscisic acid (ABA) hormone levels and sensitivity are associated with higher seed dormancy and PHS tolerance. Consistent with this, the ABA hypersensitive ERA8 (Enhanced...

  6. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  7. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  8. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination.

    PubMed

    da Silva, E A Amaral; Toorop, Peter E; van Aelst, Adriaan C; Hilhorst, Henk W M

    2004-12-01

    The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo-beta-mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.

  9. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability.

  10. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  11. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Hai-Jun; Zhang, Na; Yang, Rong-Chao; Wang, Li; Sun, Qian-Qian; Li, Dian-Bo; Cao, Yun-Yun; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2014-10-01

    Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the

  12. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  13. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.

  14. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis

    PubMed Central

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486

  15. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    SciTech Connect

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  16. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest.

    PubMed

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed.

  17. Dormancy in somatic embryos and seeds ofVitis: changes in endogenous abscisic acid during embryogeny and germination.

    PubMed

    Rajasekaran, K; Vine, J; Mullins, M G

    1982-03-01

    Abscisic acid (ABA) in extracts of somatic embryos and seeds of Gloryvine (Vitis vinifera L.xV. rupestris Scheele) was measured by gas chromatography-mass spectrometry-selected ion monitoring using deuterated ABA, (±)-[C-3Me-(2)H3]ABA, ([(2)H3]ABA) as internal standard. The ABA content increased rapidly during embryogeny (0.035 ng/embryo at the globular stage to 0.22 ng/embryo at the mature stage). The level of ABA in the tissues of somatic embryos, expressed in ng/mg dry weight, decreased from the globular stage (0.76 ng/mg) to the mature stage (0.25 ng/mg). Chilling (4° C) induced normal germination of seeds and mature somatic embryos and precocious germination of globular, heart-shaped and torpedoshaped somatic embryos. In all cases chilling led to a marked reduction in endogenous ABA. Exogenous (±)-ABA inhibited the germination of chilled somatic embryos.

  18. Synthesis of Abscisic Acid-Responsive, Heat-Stable Proteins in Embryonic Axes of Dormant Wheat Grain 1

    PubMed Central

    Ried, Jeffrey L.; Walker-Simmons, Mary K.

    1990-01-01

    Germination of embryonic axes from dormant grain is inhibited by low concentrations of abscisic acid (ABA) compared with axes from nondormant grain. Incubation of dormant grain axes in 0.05 to 50 micromolar ABA caused the prolonged synthesis of a set of heat-stable proteins. Two of these proteins were identified as dehydrins. In nondormant grain axes, 100- to 1000-fold greater ABA concentrations were required to produce similar results. When embryonic axes of dormant wheat (Triticum aestivum) grain were imbibed without ABA, endogenous ABA levels increased 2.5-fold by 4 hours and then gradually declined. Heat-stable proteins were continuously synthesized for at least 18 hours. No increase in endogenous ABA was observed when nondormant grain axes were imbibed. Endogenous ABA levels in nondormant grain axes remained constant at 4 hours and then declined. The nondormant grain axes initially synthesized the heat-stable proteins, but that synthesis disappeared between 8 and 12 hours. These results showing the prolonged synthesis of ABA-responsive, heat-stable proteins by dormant grain axes, demonstrate that biochemical differences occur when axes from dormant compared with nondormant grains are imbibed. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:16667520

  19. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  20. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    SciTech Connect

    Gerbino, Andrea; Debellis, Lucantonio; Caroppo, Rosa; Curci, Silvana; Colella, Matilde

    2010-06-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  1. Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.

    PubMed

    Geilen, Katja; Böhmer, Maik

    2015-01-01

    The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity.

  2. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    PubMed

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  3. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  4. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid

    PubMed Central

    Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H.

    2011-01-01

    Introduction Endogenous dentin matrix metalloproteinases (MMPs) contribute to extracellular collagen matrix degradation in hybrid layers following adhesive dentin bonding procedures. Endodontic irrigants, including chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) may help protect the hybrid layer from this process. The objective of the present study was to determine the exposure time necessary for EDTA to inactivate endogenous MMP activity in human dentin. Methods Dentin beams (2×1×3 mm) were prepared from mid-coronal dentin of extracted third molars. The beams were demineralized in 10 wt% phosphoric acid which also activated endogenous MMPs, and were divided into four experimental groups based on exposure time to 17% EDTA (0, 1, 2 or 5 min). A generic colorimetric MMP assay measured MMP activity via absorbance at 412 nm. Data were evaluated by Kruskal Wallis ANOVA, followed by Dunn’s pair-wise comparisons at α = 0.05. Results All exposure times resulted in significant inhibition (P<0.001) compared to unexposed controls. Specifically, percent inhibition for 1-, 2-, and 5-minute exposure times were 55.1±21.5%, 72.8±11.7%, and 74.7±19.7%, respectively. Conclusions 17% EDTA significantly inhibits endogenous MMP activity of human dentin within 1–2 min. This may minimize hybrid layer degradation following resin bonding procedures in the root canal space. PMID:22152622

  5. Role of PP2C-mediated ABA signaling in the moss Physcomitrella patens.

    PubMed

    Sakata, Yoichi; Komatsu, Kenji; Taji, Teruaki; Tanaka, Shigeo

    2009-09-01

    Plant hormone abscisic acid (ABA) is found in a wide range of land plants, from mosses to angiosperms. However, our knowledge concerning the function of ABA is limited to some angiosperm plant species. We have shown that the basal land plant Physcomitrella patens and the model plant Arabidopsis thaliana share a conserved abscisic acid (ABA) signaling pathway mediated through ABI1-related type 2C protein phosphatases (PP2Cs). Ectopic expression of Arabidopsis abi1-1, a dominant allele of ABI1 that functions as a negative regulator of ABA signaling, or targeted disruption of Physcomitrella ABI1-related gene (PpABI1A) resulted in altered ABA sensitivity and abiotic stress tolerance of Physcomitrella, as demonstrated by osmostress and freezing stress. Moreover, transgenic Physcomitrella overexpressing abi1-1 showed altered morphogenesis. These transgenic plants had longer stem lengths compared to the wild type, and continuous growth of archegonia (female organ) with few sporophytes under non-stress conditions. Our results suggest that PP2C-mediated ABA signaling is involved in both the abiotic stress responses and developmental regulation of Physcomitrella.

  6. Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans

    PubMed Central

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  7. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    PubMed

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine.

  8. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton (Gossypium hirsutum) by Modulating ABA Levels.

    PubMed

    Guo, Kai; Tu, Lili; Wang, Pengcheng; Du, Xueqiong; Ye, Shue; Luo, Ming; Zhang, Xianlong

    2016-01-01

    Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase-oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8'-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation.

  9. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton (Gossypium hirsutum) by Modulating ABA Levels

    PubMed Central

    Guo, Kai; Tu, Lili; Wang, Pengcheng; Du, Xueqiong; Ye, Shue; Luo, Ming; Zhang, Xianlong

    2017-01-01

    Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase–oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8′-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation. PMID:28101095

  10. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  11. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides.

    PubMed

    Wang, L L; Johnson, E A

    1992-02-01

    Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.

  12. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  13. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid

    PubMed Central

    Roy, Sujit; Das, Kali Pada

    2017-01-01

    Abscisic acid (ABA) acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB) repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ) pathway genes, and mutants related to homologous recombination (HR) pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0) during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0) and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis. PMID:28046013

  14. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  15. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.

    PubMed

    Lee, Shin Ae; Jang, Sejeong; Yoon, Eun Kyung; Heo, Jung-Ok; Chang, Kwang Suk; Choi, Ji Won; Dhar, Souvik; Kim, Gyuree; Choe, Jeong-Eun; Heo, Jae Bok; Kwon, Chian; Ko, Jae-Heung; Hwang, Yong-Sic; Lim, Jun

    2016-06-06

    In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root.

  16. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    PubMed Central

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  17. Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells.

    PubMed

    Li, Zheng-Wei; Piao, Cheng-dong; Sun, Hong-hui; Ren, Xian-Sheng; Bai, Yun-Shen

    2014-03-01

    Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.

  18. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  19. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  20. Nicotinic acid inhibits glioma invasion by facilitating Snail1 degradation

    PubMed Central

    Li, Jiejing; Qu, Jiagui; Shi, Yu; Perfetto, Mark; Ping, Zhuxian; Christian, Laura; Niu, Hua; Mei, Shuting; Zhang, Qin; Yang, Xiangcai; Wei, Shuo

    2017-01-01

    Malignant glioma is a formidable disease that commonly leads to death, mainly due to the invasion of tumor cells into neighboring tissues. Therefore, inhibition of tumor cell invasion may provide an effective therapy for malignant glioma. Here we report that nicotinic acid (NA), an essential vitamin, inhibits glioma cell invasion in vitro and in vivo. Treatment of the U251 glioma cells with NA in vitro results in reduced invasion, which is accompanied by a loss of mesenchymal phenotype and an increase in cell-cell adhesion. At the molecular level, transcription of the adherens junction protein E-cadherin is upregulated, leading to accumulation of E-cadherin protein at the cell-cell boundary. This can be attributed to NA’s ability to facilitate the ubiquitination and degradation of Snail1, a transcription factor that represses E-cadherin expression. Similarly, NA transiently inhibits neural crest migration in Xenopus embryos in a Snail1-dependent manner, indicating that the mechanism of action for NA in cell migration is evolutionarily conserved. We further show that NA injection blocks the infiltration of tumor cells into the adjacent brain tissues and improves animal survival in a rat model of glioma. These results suggest that NA treatment may be developed into a potential therapy for malignant glioma. PMID:28256591

  1. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons

    PubMed Central

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug. PMID:25228885

  2. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons.

    PubMed

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug.

  3. Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Rezaei, B.; Movahedinia, H.

    2002-10-01

    A new analytical method was developed for the determination of ascorbic acid in fruit juice and pharmaceuticals. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolourisation of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The linearity range of the calibration graph depends on bromate concentration. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.6×10 -6 M and calibration rang is 8×10 -6-1.2×10 -3 M ascorbic acid. The relative standard deviation of seven replication determinations of 8×10 -6 and 2×10 -5 M ascorbic acid was 2.8 and 1.7%, respectively. The influence of potential interfering substance was studied. The method was successfully applied for the determination of ascorbic acid in pharmaceuticals.

  4. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.

  5. Inhibition of Ileal Water Absorption by Intraluminal Fatty Acids INFLUENCE OF CHAIN LENGTH, HYDROXYLATION, AND CONJUGATION OF FATTY ACIDS

    PubMed Central

    Ammon, Helmut V.; Phillips, Sidney F.

    1974-01-01

    The influence of fatty acids on ileal absorption of water, electrolytes, glucose, and taurocholate was examined in Thirty-Vella fistulas in five mongrel dogs. Fatty acid absorption also was measured. Segments of terminal ileum were perfused at steady state with isotonic electrolyte solutions containing 11.2 mM glucose, 4.5 mM taurocholate, and 0.1-5.0 mM fatty acid. Three C18 fatty acids, oleic acid, 10(9)-hydroxystearic acid, and ricinoleic acid, completely inhibited water absorption at 5 mM. Sodium, chloride, and potassium absorptions were inhibited in parallel with absorption of water. Differences between the potencies of C18 fatty acids were apparent when lesser concentrations were perfused. Dodecanoic and decanoic acids were as effective as C18 fatty acids at 5 mM but octanoic and hexanoic acids were ineffective. The polar group of C18 fatty acids was modified by conjugating oleic and ricinoleic acids with taurine. When these compounds and a substituted C18 fatty acid, p-n-decylbenzenesulfonate, were perfused, water absorption was also inhibited. Short-chain fatty acids (C3 and C4) and their hydroxylated derivatives were ineffective at 5 mM. When water absorption was inhibited, absorption of glucose and taurocholate was decreased. We speculate that the phenomenon of inhibition of water and electrolyte absorption by fatty acids may be relevant to steatorrhea and diarrhea in man. Images PMID:4808636

  6. On the Role of Abscisic Acid and Gibberellin in the Regulation of Growth in Rice 1

    PubMed Central

    Hoffmann-Benning, Susanne; Kende, Hans

    1992-01-01

    Submergence induces rapid elongation of rice coleoptiles (Oryza sativa L.) and of deepwater rice internodes. This adaptive feature helps rice to grow out of the water and to survive flooding. Earlier, we found that the growth response of submerged deepwater rice plants is mediated by ethylene and gibberellin (GA). Ethylene promotes growth, at least in part, by increasing the responsiveness of the internodal tissue to GA. In the present work, we examined the possibility that increased responsiveness to GA was based on a reduction in endogenous abscisic acid (ABA) levels. Submergence and treatment with ethylene led, within 3 hours, to a 75% reduction in the level of ABA in the intercalary meristem and the growing zone of deepwater rice internodes. The level of GA1 increased fourfold during the same time period. An interaction between GA and ABA could also be shown by application of the hormones. ABA inhibited growth of submerged internodes, and GA counteracted this inhibition. Our results indicate that the growth rate of deepwater rice internodes is determined by the ratio of an endogenous growth promoter (GA) and a growth inhibitor (ABA). We also investigated whether ABA is involved in regulating the growth of rice coleoptiles. Rice seedlings were grown on solutions containing fluridone, an inhibitor of carotenoid and, indirectly, of ABA biosynthesis. Treatment with fluridone reduced the level of ABA in coleoptiles and first leaves by more than 75% and promoted coleoptile growth by more than 60%. Little or no enhancement of growth by fluridone was observed in barley, oat, or wheat. The involvement of ABA in determining the growth rate of rice coleoptiles and deepwater rice internodes may be related to the semiaquatic growth habit of this plant. PMID:16668983

  7. Boric acid inhibits embryonic histone deacetylases: a suggested mechanism to explain boric acid-related teratogenicity.

    PubMed

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L; Giavini, Erminio; Menegola, Elena

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor alpha=0.51 and maximum velocity by a factor beta=0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  8. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena . E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  9. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus.

    PubMed

    Iida, Satoko; Ikeda, Miyuki; Amano, Momoe; Sakayama, Hidetoshi; Kadono, Yasuro; Kosuge, Keiko

    2016-09-01

    Heterophyllous aquatic plants produce aerial (i.e., floating and terrestrial) and submerged leaves-the latter lack stomata-while homophyllous plants contain only submerged leaves, and cannot survive on land. To identify whether differences in morphogenetic potential and/or physiological stress responses are responsible for variation in phenotypic plasticity between two plants types, responses to abscisic acid (ABA) and salinity stress were compared between the closely related, but ecologically diverse pondweeds, Potamogeton wrightii (heterophyllous) and P. perfoliatus (homophyllous). The ABA-treated (1 or 10 μM) P. wrightii plants exhibited heterophylly and produced leaves with stomata. The obligate submerged P. perfoliatus plants were able to produce stomata on their leaves, but there were no changes to leaf shape, and stomatal production occurred only at a high ABA concentration (10 μM). Under salinity stress conditions, only P. wrightii leaves formed stomata. Additionally, the expression of stress-responsive NCED genes, which encode a key enzyme in ABA biosynthesis, was consistently up-regulated in P. wrightii, but only temporarily in P. perfoliatus. The observed species-specific gene expression patterns may be responsible for the induction or suppression of stomatal production during exposure to salinity stress. These results suggest that the two Potamogeton species have an innate morphogenetic ability to form stomata, but the actual production of stomata depends on ABA-mediated stress responses specific to each species and habitat.

  10. Influence of abscisic acid and sucrose on somatic embryogenesis in Cactus Copiapoa tenuissima Ritt. forma mostruosa.

    PubMed

    Lema-Rumińska, J; Goncerzewicz, K; Gabriel, M

    2013-01-01

    Having produced the embryos of cactus Copiapoa tenuissima Ritt. forma monstruosa at the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100  μ M on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1  μ M) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1  μ M) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10-100  μ M) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10  μ M ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight.

  11. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery

    PubMed Central

    Aroca, Ricardo; Vernieri, Paolo; Ruiz-Lozano, Juan Manuel

    2008-01-01

    The arbuscular mycorrhizal (AM) symbiosis enhances plant tolerance to water deficit through the alteration of plant physiology and the expression of plant genes. These changes have been postulated to be caused (among others) by different contents of abscisic acid (ABA) between AM and non-AM plants. However, there are no studies dealing with the effects of exogenous ABA on the expression of stress-related genes and on the physiology of AM plants. The aim of the present study was to evaluate the influence of AM symbiosis and exogenous ABA application on plant development, physiology, and expression of several stress-related genes after both drought and a recovery period. Results show that the application of exogenous ABA had contrasting effects on AM and non-AM plants. Only AM plants fed with exogenous ABA maintained shoot biomass production unaltered by drought stress. The addition of exogenous ABA enhanced considerably the ABA content in shoots of non-AM plants, concomitantly with the expression of the stress marker genes Lsp5cs and Lslea and the gene Lsnced. By contrast, the addition of exogenous ABA decreased the content of ABA in shoots of AM plants and did not produce any further enhancement of the expression of these three genes. AM plants always exhibited higher values of root hydraulic conductivity and reduced transpiration rate under drought stress. From plants subjected to drought, only the AM plants recovered their root hydraulic conductivity completely after the 3 d recovery period. As a whole, the results indicate that AM plants regulate their ABA levels better and faster than non-AM plants, allowing a more adequate balance between leaf transpiration and root water movement during drought and recovery. PMID:18469324

  12. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  13. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    SciTech Connect

    Campione, A.L.; Haghighat, N.; Gorman, J.; Van Winkle, L.J.

    1987-05-01

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na/sup +/) inhibited uptake of approx. 1 ..mu..M (/sup 3/H)glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 37/sup 0/C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the (Na/sup +/), observed when choline was substituted for Na/sup +/ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na/sup +/ and choline, respectively. As expected, Gly uptake and the (Na/sup +/) were linearly related up to 116 mM Na/sup +/, when Na/sup +/ was replaced with Li/sup +/. The rates of Na/sup +/-independent Gly and Ala uptake were <5% and <2% of the total, respectively, and similar when either Li/sup +/ or choline replaced Na/sup +/. Therefore, neither Li/sup +/ nor choline appears to substitute for Na/sup +/ in supporting Na/sup +/-dependent transport in blastocysts. Na/sup +/-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li/sup +/ was substituted for Na/sup +/. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na/sup +/ in new transport studies.

  14. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    PubMed Central

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  15. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.

    PubMed

    Parada, Francisca; Noriega, Ximena; Dantas, Débora; Bressan-Smith, Ricardo; Pérez, Francisco J

    2016-08-20

    Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds.

  16. Boric acid inhibition of steam generator materials corrosion

    SciTech Connect

    Wootten, M.J.; Wolfe, C.R.; Hermer, R.E.

    1985-01-01

    In 1974, Westinghouse recommended a change from phosphate water chemistry control for nuclear steam generators to one in which no solids are intentionally added, called all volatile treatment (AVT). The reason for the recommended change in water chemistry control was the occurrence of phosphate thinning of the Alloy 600 heat transfer tubes in some operating plants. Since the change over to AVT, other types of corrosion from impurities in the water have been observed of the materials of construction of nuclear steam generators. Initially, several plants observed denting, which is caused by the corrosion of the carbon steel tube support plates. After 8 yr of usage as a denting inhibitor in nuclear plants, no detrimental effects have been identified as due to boric acid. It is believed that boric acid will inhibit denting-type corrosion and caustic attack of Alloy 600; however, it must be stressed that it is not a substitute for good chemistry practices and all levels and disciplines within the operating plant should recognize the importance of rigorous, long-term chemistry control.

  17. Gastric acid inhibition in the treatment of peptic ulcer hemorrhage.

    PubMed

    Ghassemi, Kevin A; Kovacs, Thomas O G; Jensen, Dennis M

    2009-12-01

    Upper gastrointestinal bleeding from peptic ulcer disease is a common clinical event, resulting in considerable patient morbidity and significant health care costs. Inhibiting gastric acid secretion is a key component in improving clinical outcomes, including reducing rebleeding, transfusion requirements, and surgery. Raising intragastric pH promotes clot stability and reduces the influences of gastric acid and pepsin. Patients with high-risk stigmata for ulcer bleeding (arterial bleeding, nonbleeding visible vessels, and adherent clots) benefit significantly from and should receive high-dose intravenous proton pump inhibitors (PPIs) after successful endoscopic hemostasis. For patients with low-risk stigmata (flat spots or clean ulcer base), oral PPI therapy alone is sufficient. For oozing bleeding (an intermediate risk finding), successful endoscopic hemostasis and oral PPI are recommended. Using intravenous PPIs before endoscopy appears to reduce the frequency of finding high-risk stigmata on later endoscopy, but has not been shown to improve clinical outcomes. High-dose oral PPIs may be as effective as intravenous infusion in achieving positive clinical outcomes, but this has not been documented by randomized studies and its cost-effectiveness is unclear.

  18. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    2000-08-01

    Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer PRINCIPAL INVESTIGATOR: Francis P. Kuhajda, M.D. CONTRACTING ORGANIZATION...SUBTITLE 5. FUNDING NUMBERS Xenograft Studies of Fatty Acid Synthesis DAMD17-96-1-6235 Inhibition as Novel Therapy for Breast Cancer 6. AUTHOR(S...5012. 13. ABSTRACT (Maximum 200 Words) This grant proposed to study the effect of fatty acid synthesis inhibition in human breast cancer xenografts

  19. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    PubMed

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  20. Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): Drawing connections to grain dormancy, preharvest sprouting, and drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the isolation of Wheat ABA-responsive mutants (Warm) in Chinese spring background of allohexaploid Triticum aestivum. The plant hormone abscisic acid (ABA) is required for the induction of seed dormancy, the induction of stomatal closure and drought tolerance, and is associated...

  1. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    PubMed

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation.

  2. The SnRK2-APC/C(TE) regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways.

    PubMed

    Lin, Qibing; Wu, Fuqing; Sheng, Peike; Zhang, Zhe; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Cheng, Zhijun; Wang, Jie; Wang, Haiyang; Wan, Jianmin

    2015-08-14

    Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/C(TE) complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/C(TE) activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/C(TE)-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/C(TE) regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants.

  3. Ethacrynic acid inhibits multiple steps in the NF-kappaB signaling pathway.

    PubMed

    Han, Yusheng; Englert, Joshua A; Delude, Russell L; Fink, Mitchell P

    2005-01-01

    Ethacrynic acid has been used as a safe and effective diuretic for more than 30 years. In this study, we tested the hypothesis that ethacrynic acid is also an anti-inflammatory agent that inhibits signaling by the proinflammatory transcription factor NF-kappaB. We showed that ethacrynic acid inhibited luciferase expression in lipopolysaccharide-stimulated macrophage-like RAW 264.7 cells transfected with an NF-kappaB-dependent luciferase reporter vector and also inhibited NF-kappaB DNA binding in lipopolysaccharide-stimulated RAW 264.7 cells (electrophoretic mobility shift assay). Ethacrynic acid inhibited degradation of IkappaBalpha and IkappaBbeta in lipopolysaccharide-stimulated RAW 264.7 cells. Ethacrynic acid impaired DNA binding of wild-type p65 subunits of NF-kappaB in cells. However, DNA binding of a Cys--> Ser p65 mutant was not inhibited by ethacrynic acid, suggesting that ethacrynic acid inhibits DNA binding by alkylating p65 at Cys. In a cell-free system, binding of p50 homodimers to an NF-kappaB consensus sequence was inhibited by ethacrynic acid at concentrations from 10 to 100 microM, indicating that ethacrynic acid probably also covalently modifies the p50 subunit. These data indicate that ethacrynic acid inhibits activation of the NF-kappaB pathway at multiple points and suggest that this well-studied drug warrants further investigation as a potential therapeutic for various conditions that are associated with excessive inflammation.

  4. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  5. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  6. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis.

    PubMed

    Xin, Zeyu; Zhao, Yihong; Zheng, Zhi-Liang

    2005-11-01

    Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important growth and developmental processes and various stresses responses, but its signal transduction pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis (Arabidopsis thaliana), is a plasma membrane-associated protein specifically involved in negative regulation of ABA responses. To dissect the ROP10-mediated ABA signaling, we carried out transcriptome analysis using the Arabidopsis full-genome chip. Our analysis revealed a total of 262 and 125 genes that were, respectively, up- and down-regulated (> or =2-fold cutoff) by 1 mum ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not been identified in other studies. Consistent with the nonpleiotropic phenotypes of rop10-1, only three genes were altered in rop10-1 in the absence of ABA treatment. In response to 1 microm ABA, 341 and 127 genes were, respectively, activated and repressed in rop10-1. Interestingly, a particular subset of 21 genes that were not altered by 1 microm ABA in Ws but only activated in rop10-1 was identified. Reverse transcription-polymerase chain reaction analysis revealed the existence of three distinct categories of ABA dose-response patterns. One novel category is characterized by their ABA unresponsiveness in Ws and activation in rop10-1 at 1 microm but not 10 and 100 microm of ABA. This indicates that ROP10 gates the expression of genes that are specific to low concentrations of ABA. Furthermore, almost all of these 21 genes are known to be highly induced by various biotic and abiotic stresses. Consequently, we found that rop10-1 enhanced the sensitivity of seed germination inhibition to mannitol and sodium chloride. Our results suggest that ROP10 negatively regulates ABA responses by specifically and differentially modulating the ABA sensitivity of a subset of genes including protein kinases and zinc-finger family proteins.

  7. Is the ABA concentration in the sap collected by pressurizing leaves relevant for analysing drought effects on stomata? Evidence from ABA-fed leaves of transgenic plants with modified capacities to synthesize ABA.

    PubMed

    Borel, Charlotte; Simonneau, Thierry

    2002-02-01

    Most studies on the role of ABA in the stomatal response of the whole plant to drought rely on a good estimate of ABA concentration in xylem sap. In this report, varying volumes of sap (V(sap)) were collected by pressurizing leaves cut from several lines of N. plumbaginifolia with modified capacities to synthesize ABA. Leaves were fed with solutions of known ABA concentration ([ABA](solution) from 0-500 micromol m(-3)) for 2-3 h before sap collection. ABA concentration in extruded sap ([ABA](sap)) was compared with [ABA](solution). In low-volume extracts (less than 0.35 mm(3) cm(-2) leaf area) collected from leaves of well-watered plants, [ABA](sap) was close to [ABA](solution). For all lines, [ABA](sap) decreased with increasing V(sap). The same dilution effect was observed for leaves pressurized just after sampling on droughted plants, suggesting, as for detached leaves fed with ABA, that [ABA](sap) in low-volume extracts approximated well with the concentration of ABA entering leaves still attached on droughted plants. However, ABA-fed leaves sampled from droughted plants yielded higher [ABA](sap) than ABA-fed leaves sampled from well-watered plants. [ABA](sap) was also increased, although very slightly, when leaves were preincubated in highly enriched ABA solution. This indicates that some leaf ABA contributed to the ABA concentration returned in the extruded sap. Consistently, [ABA](sap) in medium-volume extracts (0.35-0.65 mm(3) cm(-2) leaf area) was lower for leaves sampled on under-producing lines than on the wild type. Despite these distortions between [ABA](solution) and [ABA](sap) in medium-volume extracts, stomatal conductance of ABA-fed leaves closely correlated with [ABA](sap) with a similar relationship in all cases, whilst relationships with [ABA](solution) were more scattered.

  8. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice.

    PubMed

    Zhang, Shuxin; Haider, Imran; Kohlen, Wouter; Jiang, Li; Bouwmeester, Harro; Meijer, Annemarie H; Schluepmann, Henriette; Liu, Chun-Ming; Ouwerkerk, Pieter B F

    2012-12-01

    Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress. Trans-activation assays in yeast and transient expression analyses in rice protoplasts demonstrated that Oshox22 is able to bind the CAAT(G/C)ATTG element and acts as a transcriptional activator that requires both the HD and Zip domains. Rice plants homozygous for a T-DNA insertion in the promoter region of Oshox22 showed reduced Oshox22 expression and ABA content, decreased sensitivity to ABA, and enhanced tolerance to drought and salt stresses at the seedling stage. In contrast, transgenic rice over-expressing Oshox22 showed increased sensitivity to ABA, increased ABA content, and decreased drought and salt tolerances. Based on these results, we conclude that Oshox22 affects ABA biosynthesis and regulates drought and salt responses through ABA-mediated signal transduction pathways.

  9. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2016-01-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD. Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD. We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD. In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  10. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  11. Inhibition of Sporulation by Cerulenin and Its Reversion by Exogenous Fatty Acids in Saccharomyces cerevisiae

    PubMed Central

    Ohno, Tadao; Awaya, Juichi; Ōmura, Satoshi

    1976-01-01

    Sporulation of Saccharomyces cerevisiae G2-2 was inhibited by the antibiotic cerulenin which is known to be a specific inhibitor of fatty acid and sterol synthesis. This inhibition was reversed by various fatty acids, especially by oleic acid (C18:1) and pentadecanoic acid (C15:0). Ergosterol showed only slight reversibility of this inhibition. When cerulenin was added to the sporulation medium later than 12 h after the start of incubation, the marked inhibition disappeared. When the fatty acid fraction extracted from the sporulated yeasts was added to the cells pretreated with cerulenin for more than 6 h, sporulation became evident 6 h after the fatty acid fraction addition. Therefore, sufficient synthesis of fatty acids required for sporulation was assumed to occur during the first 6 h in phase I of yeast sporulation. PMID:769672

  12. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries

    PubMed Central

    Giribaldi, Marzia; Gény, Laurence; Delrot, Serge; Schubert, Andrea

    2010-01-01

    The control of ripening of the non-climacteric grapevine fruit is still a matter of debate, but several lines of evidence point to an important role for the hormone abscisic acid (ABA). The effects of ABA treatments on Cabernet Sauvignon berries before and at véraison were studied using a 2-DE proteomic approach. Proteins from whole deseeded berries (before véraison) and berry flesh and skin (at véraison) treated with 0.76 mM ABA and collected 24 h after treatment were separated and analysed. A total of 60 protein spots showed significant variations between treated and control berries, and 40 proteins, mainly related to general metabolism and cell defence, were identified by LC MS/MS. Our results show that ABA acts mainly through the regulation of mostly the same proteins which are involved in the ripening process, and that several of these changes share common elements with the ABA-induced responses in vegetative tissues. PMID:20388747

  13. Ellagic acid inhibits iron-mediated free radical formation.

    PubMed

    Dalvi, Luana T; Moreira, Daniel C; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-15

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  14. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  15. Direct inhibition of retinoic acid catabolism by fluoxetine.

    PubMed

    Hellmann-Regen, Julian; Uhlemann, Ria; Regen, Francesca; Heuser, Isabella; Otte, Christian; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2015-09-01

    Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine's neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

  16. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

    PubMed

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L

    2014-08-01

    Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.

  17. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance

    PubMed Central

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A.; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R.; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L.

    2014-01-01

    Abscisic acid (ABA) plays a crucial role in the plant’s response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. PMID:24863435

  18. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics.

    PubMed

    Urano, Kaoru; Maruyama, Kyonoshin; Ogata, Yoshiyuki; Morishita, Yoshihiko; Takeda, Migiwa; Sakurai, Nozomu; Suzuki, Hideyuki; Saito, Kazuki; Shibata, Daisuke; Kobayashi, Masatomo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2009-03-01

    Drought is the major environmental threat to agricultural production and distribution worldwide. Adaptation by plants to dehydration stress is a complex biological process that involves global changes in gene expression and metabolite composition. Here, using one type of functional genomics analysis, metabolomics, we characterized the metabolic phenotypes of Arabidopsis wild-type and a knockout mutant of the NCED3 gene (nc3-2) under dehydration stress. NCED3 plays a role in the dehydration-inducible biosynthesis of abscisic acid (ABA), a phytohormone that is important in the dehydration-stress response in higher plants. Metabolite profiling performed using two types of mass spectrometry (MS) systems, gas chromatography/time-of-flight MS (GC/TOF-MS) and capillary electrophoresis MS (CE-MS), revealed that accumulation of amino acids depended on ABA production, but the level of the oligosaccharide raffinose was regulated by ABA independently under dehydration stress. Metabolic network analysis showed that global metabolite-metabolite correlations occurred in dehydration-increased amino acids in wild-type, and strong correlations with raffinose were reconstructed in nc3-2. An integrated metabolome and transcriptome analysis revealed ABA-dependent transcriptional regulation of the biosynthesis of the branched-chain amino acids, saccharopine, proline and polyamine. This metabolomics analysis revealed new molecular mechanisms of dynamic metabolic networks in response to dehydration stress.

  19. Inhibition of carnitine biosynthesis by valproic acid in rats--the biochemical mechanism of inhibition.

    PubMed

    Farkas, V; Bock, I; Cseko, J; Sandor, A

    1996-11-08

    The anticonvulsive drug, valproic acid (VPA), inhibits the biosynthesis of carnitine, and may contribute in this way to carnitine deficiency associated with VPA therapy. The conversion of [3H]-butyrobetaine into [3H]-carnitine was determined 60 min following a single intraperitoneal (i.p.) dose of 1.2 mmol/kg VPA in rats. The fraction of radioactivity found in [3H]-carnitine in the liver decreased from 63.2 +/- 1.50% to 39.2 +/- 1.11% (mean +/- SEM). Total carnitine in the liver also decreased, whereas the precursor butyrobetaine increased from 5.01 +/- 0.71 nmol/g to 8.22 +/- 0.82 nmol/g (mean +/- SEM). VPA also exhibited a dramatic effect on the conversion of an unlabeled loading amount of butyrobetaine. The increment in total carnitine caused by butyrobetaine in liver was reduced from 161 +/- 15.4 nmol/g to 53.2 +/- 5.11 nmol/g (mean +/- SEM). These data prove that VPA reduces the flux through butyrobetaine hydroxylase (EC 1.14.11.1.). The drug in vitro, however, did not inhibit the enzyme directly. Searching for the mechanism of action, we found that VPA decreased the level of alpha-ketoglutarate (alpha-KG; a cofactor of butyrobetaine hydroxylase) from 73.5 +/- 2.90 nmol/g to 52.9 +/- 2.2 nmol/g (mean +/- SEM) in the liver. The level of 1-glutamate showed a rather dramatic decrease in the liver. Moreover, alpha-KG proved to have a protective role against VPA in the [3H]-butyrobetaine conversion experiment.

  20. The non-steroidal anti-inflammatory drug niflumic acid inhibits Candida albicans growth.

    PubMed

    Baker, Andrew; Northrop, Frederick D; Miedema, Hendrik; Devine, Gary R; Davies, Julia M

    2002-01-01

    The non-steroidal anti-inflammatory drug niflumic acid was found to inhibit growth of the yeast form of Candida albicans. Niflumic acid inhibited respiratory oxygen uptake and it is hypothesised that this was achieved by cytosolic acidification and block of glycolysis. Inhibitory concentrations are compatible with current practice of topical application.

  1. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    End-product inhibition by cellobiose and glucose is a rate-limiting factor in cellulose hydrolysis by cellulases. While cellobiose and glucose inhibition have been extensively investigated, cellobionate inhibition has been minimally studied despite the discovery that accessory proteins such as cello...

  2. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  3. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.

    PubMed

    Clarke, S D; Turini, M; Jump, D B; Abraham, S; Reedy, M

    1998-01-01

    Polyunsaturated fatty acids (PUFA) of the (n-6) and (n-3) families inhibit the rate of gene transcription for a number of hepatic lipogenic and glycolytic genes, e.g., fatty acid synthase (FAS). In contrast, saturated and monounsaturated fatty acids have no inhibitory capability. The suppression of gene transcription resulting from the addition of PUFA to a high carbohydrate diet: occurs quickly (< 3 h) after its addition to a high glucose diet; can be recreated with hepatocytes cultured in a serum-free medium containing insulin and glucocorticoids; can be demonstrated in diabetic rats fed fructose; and is independent of glucagon. While the nature of the intracellular PUFA inhibitor is unclear, it appears that delta-6 desaturation is a required step in the process. Recently, the fatty acid activated nuclear factor, peroxisome-proliferator activated receptor (PPAR) was suggested to be the PUFA-response factor. However, the potent PPAR activators ETYA and Wy-14643 did not suppress hepatic expression of FAS, but did induce the PPAR-responsive gene, acyl-CoA oxidase (AOX). Similarly, treating rat hepatocytes with 20:4 (n-6) suppressed FAS expression but had no effect on AOX. Thus, it appears that the PUFA regulation of gene transcription involves a PUFA-response factor that is independent from PPAR.

  4. Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons.

    PubMed

    Qu, Zu-Wei; Liu, Ting-Ting; Qiu, Chun-Yu; Li, Jia-Da; Hu, Wang-Ping

    2014-05-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, it is demonstrated to have potent antinociceptive effect. However, little is understood about the mechanism underlying CGA analgesia. Here, we have found that CGA can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. First, CGA decreased the peak amplitude of proton-gated currents mediated by ASICs in a concentration-dependent manner. Second, CGA shifted the proton concentration-response curve downward, with a decrease of 41.76 ± 8.65% in the maximum current response to protons but with no significant change in the pH0.5 value. Third, CGA altered acidosis-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral administered CGA attenuated nociceptive response to intraplantar injection of acetic acid in rats. ASICs are distributed in peripheral sensory neurons and participate in nociception. Our findings CGA inhibition of native ASICs indicated that CGA may exert analgesic action by modulating ASICs in the primary afferent neurons, which revealed a novel cellular and molecular mechanism underlying CGA analgesia.

  5. Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition.

    PubMed

    Byun, Hyun Jung; Kang, Kyung Jin; Park, Mi Kyung; Lee, Hye Ja; Kang, June Hee; Lee, Eun Ji; Kim, You Ri; Kim, Hyun Ji; Kim, Young Woo; Jung, Kyung Chae; Kim, Soo Youl; Lee, Chang Hoon

    2013-09-30

    Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.

  6. Intracellular dehydroascorbic acid inhibits SVCT2-dependent transport of ascorbic acid in mitochondria.

    PubMed

    Fiorani, Mara; Azzolini, Catia; Guidarelli, Andrea; Cerioni, Liana; Scotti, Maddalena; Cantoni, Orazio

    2015-09-01

    Exposure of U937 cells to low concentrations of L-ascorbic acid (AA) is associated with a prompt cellular uptake and a further mitochondrial accumulation of the vitamin. Under the same conditions, dehydroascorbic acid (DHA) uptake was followed by rapid reduction and accumulation of identical intracellular levels of AA, however, in the absence of significant mitochondrial uptake. This event was instead observed after exposure to remarkably greater concentrations of DHA. Furthermore, experiments performed in isolated mitochondria revealed that DHA transport through hexose transporters and Na(+) -dependent transport of AA were very similar. These results suggest that the different subcellular compartmentalization of the vitamin is mediated by events promoting inhibition of mitochondrial AA transport, possibly triggered by low levels of DHA. We obtained results in line with this notion in intact cells, and more direct evidence in isolated mitochondria. This inhibitory effect was promptly reversible after DHA removal and comparable with that mediated by established inhibitors, as quercetin. The results presented collectively indicate that low intracellular concentrations of DHA, because of its rapid reduction back to AA, are a poor substrate for direct mitochondrial uptake. DHA concentrations, however, appear sufficiently high to mediate inhibition of mitochondrial transport of AA/DHA-derived AA.

  7. Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns.

    PubMed

    Cai, Shengguan; Chen, Guang; Wang, Yuanyuan; Huang, Yuqing; Marchant, Blaine; Wang, Yizhou; Yang, Qian; Dai, Fei; Hills, Adrian; Franks, Peter J; Nevo, Eviatar; Soltis, Doug; Soltis, Pamela; Sessa, Emily; Wolf, Paul G; Xue, Dawei; Zhang, Guoping; Pogson, Barry J; Blatt, Mike R; Chen, Zhong-Hua

    2017-02-23

    ABA-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 Mya. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis thaliana and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis thaliana and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report new molecular and physiological evidence for the presence of active stomatal control in ferns.

  8. Promotion of Germination Using Hydroxamic Acid Inhibitors of 9-cis-Epoxycarotenoid Dioxygenase

    PubMed Central

    Awan, Sajjad Z.; Chandler, Jake O.; Harrison, Peter J.; Sergeant, Martin J.; Bugg, Timothy D. H.; Thompson, Andrew J.

    2017-01-01

    Abscisic acid (ABA) inhibits seed germination and the regulation of ABA biosynthesis has a role in maintenance of seed dormancy. The key rate-limiting step in ABA biosynthesis is catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). Two hydroxamic acid inhibitors of carotenoid cleavage dioxygenase (CCD), D4 and D7, previously found to inhibit CCD and NCED in vitro, are shown to have the novel property of decreasing mean germination time of tomato (Solanum lycopersicum L.) seeds constitutively overexpressing LeNCED1. Post-germination, D4 exhibited no negative effects on tomato seedling growth in terms of height, dry weight, and fresh weight. Tobacco (Nicotiana tabacum L.) seeds containing a tetracycline-inducible LeNCED1 transgene were used to show that germination could be negatively and positively controlled through the chemical induction of gene expression and the chemical inhibition of the NCED protein: application of tetracycline increased mean germination time and delayed hypocotyl emergence in a similar manner to that observed when exogenous ABA was applied and this was reversed by D4 when NCED expression was induced at intermediate levels. D4 also improved germination in lettuce (Lactuca sativa L.) seeds under thermoinhibitory temperatures and in tomato seeds imbibed in high osmolarity solutions of polyethylene glycol. D4 reduced ABA and dihydrophaseic acid accumulation in tomato seeds overexpressing LeNCED1 and reduced ABA accumulation in wild type tomato seeds imbibed on polyethylene glycol. The evidence supports a mode of action of D4 through NCED inhibition, and this molecule provides a lead compound for the design of NCED inhibitors with greater specificity and potency. PMID:28373878

  9. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand.

    PubMed

    Kudoyarova, Guzel; Veselova, Svetlana; Hartung, Wolfram; Farhutdinov, Rashit; Veselov, Dmitry; Sharipova, Guzyal

    2011-01-01

    We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.

  10. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  11. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    PubMed

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  12. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    SciTech Connect

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.

  13. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  14. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    PubMed

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

  15. A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

    PubMed Central

    Baek, Dongwon; Chun, Hyun Jin; Kang, Songhwa; Shin, Gilok; Park, Su Jung; Hong, Hyewon; Kim, Chanmin; Kim, Doh Hoon; Lee, Sang Yeol; Kim, Min Chul; Yun, Dae-Jin

    2016-01-01

    MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b. PMID:26674968

  16. A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves.

    PubMed

    Yang, Jiading; Worley, Eric; Udvardi, Michael

    2014-12-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (-196 to -162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA.

  17. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  18. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    PubMed

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  19. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress

    PubMed Central

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M. Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P.

    2016-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  20. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling.

    PubMed

    Dong, Ting; Park, Youngmin; Hwang, Inhwan

    2015-01-01

    The phytohormone abscisic acid (ABA) plays crucial roles in numerous physiological processes during plant growth and abiotic stress responses. The endogenous ABA level is controlled by complex regulatory mechanisms involving biosynthesis, catabolism, transport and signal transduction pathways. This complex regulatory network may target multiple levels, including transcription, translation and post-translational regulation of genes involved in ABA responses. Most of the genes involved in ABA biosynthesis, catabolism and transport have been characterized. The local ABA concentration is critical for initiating ABA-mediated signalling during plant development and in response to environmental changes. In this chapter we discuss the mechanisms that regulate ABA biosynthesis, catabolism, transport and homoeostasis. We also present the findings of recent research on ABA perception by cellular receptors, and ABA signalling in response to cellular and environmental conditions.

  1. UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis.

    PubMed

    Liu, Zhen; Yan, Jin-Ping; Li, De-Kuan; Luo, Qin; Yan, Qiujie; Liu, Zhi-Bin; Ye, Li-Ming; Wang, Jian-Mei; Li, Xu-Feng; Yang, Yi

    2015-04-01

    Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid -: glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis.

  2. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  3. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10.

  4. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.

    PubMed

    Hu, Xiuli; Jiang, Mingyi; Zhang, Jianhua; Zhang, Aying; Lin, Fan; Tan, Mingpu

    2007-01-01

    * Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.

  5. FCA does not bind abscisic acid.

    PubMed

    Risk, Joanna M; Macknight, Richard C; Day, Catherine L

    2008-12-11

    The RNA-binding protein FCA promotes flowering in Arabidopsis. Razem et al. reported that FCA is also a receptor for the phytohormone abscisic acid (ABA). However, we find that FCA does not bind ABA, suggesting that the quality of the proteins assayed and the sensitivity of the ABA-binding assay have led Razem et al. to erroneous conclusions. Because similar assays have been used to characterize other ABA receptors, our results indicate that the ABA-binding properties of these proteins should be carefully re-evaluated and that alternative ABA receptors are likely to be discovered.

  6. Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation.

    PubMed

    Castro, Maite A; Angulo, Constanza; Brauchi, Sebastián; Nualart, Francisco; Concha, Ilona I

    2008-11-01

    In this paper, we present a novel function for ascorbic acid. Ascorbic acid is an important water-soluble antioxidant and cofactor in various enzyme systems. We have previously demonstrated that an increase in neuronal intracellular ascorbic acid is able to inhibit glucose transport in cortical and hippocampal neurons. Because of the presence of sodium-dependent vitamin C transporters, ascorbic acid is highly concentrated in brain, testis, lung, and adrenal glands. In this work, we explored how ascorbic acid affects glucose and lactate uptake in neuronal and non-neuronal cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression of glucose and ascorbic acid transporters in non-neuronal cells was studied. Like neurons, HEK293 cells expressed GLUT1, GLUT3, and SVCT2. With radioisotope-based methods, only intracellular ascorbic acid, but not extracellular, inhibits 2-deoxyglucose transport in HEK293 cells. As monocarboxylates such as pyruvate and lactate, are important metabolic sources, we analyzed the ascorbic acid effect on lactate transport in cultured neurons and HEK293 cells. Intracellular ascorbic acid was able to stimulate lactate transport in both cell types. Extracellular ascorbic acid did not affect this transport. Our data show that ascorbic acid inhibits glucose transport and stimulates lactate transport in neuronal and non-neuronal cells. Mammalian cells frequently present functional glucose and monocarboxylate transporters, and we describe here a general effect in which ascorbic acid functions like a glucose/monocarboxylate uptake switch in tissues expressing ascorbic acid transporters.

  7. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice.

    PubMed

    Lu, Guojun; Gao, Chenxi; Zheng, Xingnan; Han, Bin

    2009-02-01

    Abscisic Acid (ABA) is an important phytohormone involved in abiotic stress resistance in plants. A group of bZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis. However, little is known about the function of their orthologs in rice, where they may hold a great potential for developing drought resistant food crops. In this study, our phylogenetic analysis showed that this group of bZIPs was evolutionarily conserved between Arabidopsis and rice, which implies that they may share similar functions. We demonstrated with quantitative RT-PCR that the expressions of most of these OsbZIPs were significantly induced by ABA, ACC, and abiotic stresses. OsbZIP72, a member of this group, was proved to be an ABRE binding factor in rice using the yeast hybrid systems. We showed that it could bind to ABRE and transactivate the downstream reporter genes in yeast, and the transactivity was depending on its N-terminal region. Transgenic rice overexpressing OsbZIP72 showed a hypersensitivity to ABA, elevated levels of expression of ABA response gene such as LEAs, and an enhanced ability of drought tolerance. These results suggest that OsbZIP72 plays a positive role in drought resistance through ABA signaling, and is potential useful for engineering drought tolerant rice.

  8. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    PubMed

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K

    2015-01-01

    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  9. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli.

    PubMed

    Zimhony, Oren; Vilchèze, Catherine; Arai, Masayoshi; Welch, John T; Jacobs, William R

    2007-02-01

    The activity of different analogs of pyrazinamide on Mycobacterium tuberculosis fatty acid synthase type I (FASI) in replicating bacilli was studied. Palmitic acid biosynthesis was diminished by 96% in bacilli treated with n-propyl pyrazinoate, 94% in bacilli treated with 5-chloro-pyrazinamide, and 97% in bacilli treated with pyrazinoic acid, the pharmacologically active agent of pyrazinamide. We conclude that the minimal structure of pyrazine ring with an acyl group is sufficient for FASI inhibition and antimycobacterial activity.

  10. An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4.

    PubMed

    Yao, Xuan; Li, Juanjuan; Liu, Jianping; Liu, Kede

    2015-10-01

    The molecular mechanisms of abscisic acid (ABA) signalling have been studied for many years; however, how mitochondria-localized proteins play roles in ABA signalling remains unclear. Here an Arabidopsis mitochondria-localized protein RRL (RETARDED ROOT GROWTH-LIKE) was shown to function in ABA signalling. A previous study had revealed that the Arabidopsis mitochondria-localized protein RRG (RETARDED ROOT GROWTH) is required for cell division in the root meristem. RRL shares 54% and 57% identity at the nucleotide and amino acid sequences, respectively, with RRG; nevertheless, RRL shows a different function in Arabidopsis. In this study, disruption of RRL decreased ABA sensitivity whereas overexpression of RRL increased ABA sensitivity during seed germination and seedling growth. High expression levels of RRL were found in germinating seeds and developing seedlings, as revealed by β-glucuronidase (GUS) staining of ProRRL-GUS transgenic lines. The analyses of the structure and function of mitochondria in the knockout rrl mutant showed that the disruption of RRL causes extensively internally vacuolated mitochondria and reduced ABA-stimulated reactive oxygen species (ROS) production. Previous studies have revealed that the expression of alternative oxidase (AOX) in the alternative respiratory pathway is increased by mitochondrial retrograde regulation to regain ROS levels when the mitochondrial electron transport chain is impaired. The APETALA2 (AP2)-type transcription factor ABI4 is a regulator of ALTERNATIVE OXIDASE1a (AOX1a) in mitochondrial retrograde signalling. This study showed that ABA-induced AOX1a and ABI4 expression was inhibited in the rrl mutant, suggesting that RRL is probably involved in ABI4-mediated mitochondrial retrograde signalling. Furthermore, the results revealed that ABI4 is a downstream regulatory factor in RRL-mediated ABA signalling in seed germination and seedling growth.

  11. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Nebe-von-Caron, Gerhardt; Archer, David B

    2009-11-30

    Fungal spoilage of many foods is prevented by weak-acid preservatives such as sorbic acid or acetic acid. We show that sorbic and acetic acids do not both inhibit cells by lowering of internal pH alone and that the "classical weak-acid theory" must be revised. The "classical weak-acid theory" suggests that all lipophilic acids with identical pK(a) values are equally effective as preservatives, causing inhibition by diffusion of molecular acids into the cell, dissociation, and subsequent acidification of the cytoplasm. Using a number of spoilage fungi from different genera, we have shown that sorbic acid was far more toxic than acetic acid, and no correlation existed between resistance to acetic acid and resistance to sorbic acid. The molar ratio of minimum inhibitory concentrations (MICs) (acetic: sorbic) was 58 for Paecilomyces variotii and 14 for Aspergillus phoenicis. Using flow cytometry on germinating conidia of Aspergillusniger, acetic acid at pH 4.0 caused an immediate decline in the mean cytoplasmic pH (pH(i)) falling from neutrality to approximately pH 4.7 at the MIC (80 mM). Sorbic acid also caused a rapid but far smaller drop in pH(i), at the MIC (4.5 mM); the pH remained above pH 6.3. Over 0-5 mM, a number of other weak acids caused a similar fall in cytoplasmic pH. It was concluded that while acetic acid inhibition of A. niger conidia was due to cytoplasmic acidification, inhibition by sorbic acid was not. A possible membrane-mediated mode of action of sorbic acid is discussed.

  12. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    PubMed

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  13. Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid.

    PubMed Central

    Dixit, R; Gold, B

    1986-01-01

    Ellagic acid, a naturally occurring plant phenol, inhibits the activity of the direct-acting mutagen N-methyl-N-nitrosourea (MeNU) in Salmonella typhimurium TA100. Ellagic acid at 0.10, 0.25, 0.50, and 1.00 mM inhibited the mutagenicity of MeNU (0.40 mM) by 3%, 13%, 45%, and 60%, respectively. Ellagic acid (3 mM) also inhibited the mutagenic activity of N,N-dimethylnitrosamine (25-200 mM) in the presence of pyrazole-induced rat liver fraction S-9. The effect of ellagic acid on DNA methylation was studied by incubating 0, 0.72, 1.32, 2.64, and 6.60 mM ellagic acid with DNA (0.9 mM nucleotide) and [3H]MeNU (0.66 mM). HPLC analysis of DNA hydrolysates showed that ellagic acid caused a dose-dependent 36-84% decrease in O6-methylguanine but only a 20% decrease in the 7-methylguanine adduct. Under conditions where methylation at the O6 position of guanine in double-stranded DNA was inhibited 65% by ellagic acid, no significant inhibition of either O6- or 7-methylguanine formation was detected in single-stranded DNA. Affinity-binding studies revealed that [3H]ellagic acid binds equally to double-stranded or single-stranded DNA but that poly(dA X dT) binds 1.5 times as much ellagic acid as does poly(dG X dC). The binding of ellagic acid to DNA is dependent on the concentration of both ellagic acid and DNA. The specific inhibition of O6-methylguanine formation only in double-stranded DNA and the relatively low inhibition of 7-methylguanine formation rule out the possibility that ellagic acid prevents DNA alkylation by scavenging the electrophilic intermediate generated in the hydrolysis of MeNU. The results suggest that ellagic acid inhibition of MeNU-induced mutagenicity is due to specific inhibition of methylation at the O6 position of guanine through an ellagic acid-duplex DNA affinity-binding mechanism. PMID:3464940

  14. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination.

    PubMed

    Lee, Kyounghee; Lee, Hong Gil; Yoon, Seongmun; Kim, Hyun Uk; Seo, Pil Joon

    2015-06-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of abscisic acid-insensitive4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions.

  15. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  16. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone.

    PubMed

    Orlando, Benjamin J; Malkowski, Michael G

    2016-07-15

    Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid (AA) and endocannabinoid substrates, placing the enzyme at a unique junction between the eicosanoid and endocannabinoid signaling pathways. COX-2 is a sequence homodimer, but the enzyme displays half-of-site reactivity, such that only one monomer of the dimer is active at a given time. Certain rapid reversible, competitive nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit COX-2 in a substrate-selective manner, with the binding of inhibitor to a single monomer sufficient to inhibit the oxygenation of endocannabinoids but not arachidonic acid. The underlying mechanism responsible for substrate-selective inhibition has remained elusive. We utilized structural and biophysical methods to evaluate flufenamic acid, meclofenamic acid, mefenamic acid, and tolfenamic acid for their ability to act as substrate-selective inhibitors. Crystal structures of each drug in complex with human COX-2 revealed that the inhibitor binds within the cyclooxygenase channel in an inverted orientation, with the carboxylate group interacting with Tyr-385 and Ser-530 at the top of the channel. Tryptophan fluorescence quenching, continuous-wave electron spin resonance, and UV-visible spectroscopy demonstrate that flufenamic acid, mefenamic acid, and tolfenamic acid are substrate-selective inhibitors that bind rapidly to COX-2, quench tyrosyl radicals, and reduce higher oxidation states of the heme moiety. Substrate-selective inhibition was attenuated by the addition of the lipid peroxide 15-hydroperoxyeicosatertaenoic acid. Collectively, these studies implicate peroxide tone as an important mechanistic component of substrate-selective inhibition by flufenamic acid, mefenamic acid, and tolfenamic acid.

  17. Synergistic inhibition of Listeria monocytogenes in vitro through the combination of octanoic acid and acidic calcium sulfate.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, T Matthew

    2011-01-01

    It has been hypothesized that inhibition of foodborne pathogens can be enhanced by using antimicrobials in combination. A broth dilution assay was devised to determine whether inhibition of Listeria monocytogenes exposed to the combination of the fatty acid octanoic acid (OCT) and the organic acid-containing antimicrobial acidic calcium sulfate (ACS) was enhanced compared with the inhibition of the pathogen exposed to either antimicrobial applied singly. MICs for OCT and ACS were 25.00 μg/g and 1.56 ml/liter, respectively, for all strains of the pathogen tested. Fractional inhibitory concentrations (FICs) from the combination exposures were calculated for use in characterizing the antimicrobial interaction as antagonistic, additive indifferent, or synergistic with respect to L. monocytogenes inhibition. Combining OCT and ACS resulted in observed synergistic inhibition of L. monocytogenes; isobolograms for all strains curved toward the origin, and FIC indices (FIC(I)s) were <1.0. Future investigations of the antimicrobial combination should focus on determining the mechanism of action of combined antimicrobials and the levels of antimicrobials required for pathogen inhibition on the surfaces of ready-to-eat meats.

  18. Inhibition of rat liver microsomal fatty acid chain elongation by gemfibrozil in vitro.

    PubMed

    Sánchez, R M; Viñals, M; Alegret, M; Vázquez, M; Adzet, T; Merlos, M; Laguna, J C

    1992-03-23

    Gemfibrozil, a hypolipidemic drug mainly used in the treatment of hypertriglyceridemic states, strongly inhibits the rat hepatic microsomal fatty acid chain elongation system in vitro. The inhibition is independent on the reducing cofactor used in the assay. Furthermore, gemfibrozil seems to act by inhibiting the rate-limiting step of the elongation process, the condensing reaction, without discriminating among the proposed three different condensing enzymes, devoted to condensation of saturated, mono-unsaturated and polyunsaturated acyl-CoA substrates.

  19. Boric acid application guidelines for intergranular corrosion inhibition

    SciTech Connect

    Piskor, S.R. . Nuclear Services Div.)

    1990-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied on line, or by means of crevice flushing, low power soaks, or a combination of these methods. When boric acid is used, it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and its correct application. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. In addition, new information has recently become available. This report has been prepared and revised to be comprehensive treatise on boric acid relevant to its application in nuclear steam generators. Relevant boric acid information from 1987--89 has been added to provide the latest available data from laboratory testing and power plant application. 5 figs.

  20. Microencapsulation of tannic acid for oral administration to inhibit carbohydrate digestion in the gastrointestinal tract.

    PubMed

    Zhao, Wei; Iyer, Vidya; Flores, Floirendo P; Donhowe, Erik; Kong, Fanbin

    2013-06-01

    The prevalence of diabetes mellitus and obesity is rapidly rising worldwide. Recently, there is increasing evidence that phytochemicals such as polyphenols in our diet could directly inhibit the activities of key digestive enzymes, representing a novel method of controlling and preventing diabetes mellitus and obesity. More research is required to determine how to effectively utilize phytochemicals within the gastrointestinal (GI) tract to obtain maximum inhibition of digestive enzymes. This study investigated the inhibition efficiency of tannic acid (TA) on α-amylase as compared with other potential inhibitors using an in vitro method. The inhibition mode and kinetics were studied. The results showed that tannic acid (TA) is more effective in inhibiting α-amylase than a commercial starch blocker (Phase 2 Starch Blocker), and some selected flavonoids and polyphenols including quercetin, rutin, and polyphenon from green tea. It is also found that inhibition of α-amylase by TA in the GI tract is difficult if administered orally due to the non-specific and reversible noncompetitive interaction between tannic acid and α-amylase or other proteins. Accordingly, a pH-sensitive delivery system using calcium-alginate microspheres encapsulating tannic acid was successfully developed for oral administration to inhibit carbohydrate digestion in the GI tract. The encapsulated TA in calcium-alginate microspheres could be protected from the proteins in the stomach, and sustain release and inhibit α-amylase activity in the small intestine.

  1. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides.

    PubMed

    Altieri, Clelia; Cardillo, Daniela; Bevilacqua, Antonio; Sinigaglia, Milena

    2007-05-01

    The antifungal activity of three fatty acids (lauric, myristic, and palmitic acids) and their monoglycerides (monolaurin, monomyristic acid, and palmitin, respectively) against Aspergillus and Penicillium species in a model system was investigated. Data were modeled through a reparameterized Gompertz equation. The maximum colony diameter attained within the experimental time (30 days), the maximal radial growth rate, the lag time (i.e., the number of days before the beginning of radial fungal growth), and the minimum detection time (MDT; the number of days needed to attain 1 cm colony diameter) were evaluated. Fatty acids and their monoglycerides inhibited mold growth by increasing MDT and lag times. The effectiveness of the active compounds seemed to be strain and genus dependent. Palmitic acid was the most effective chemical against aspergilli, whereas penicilli were strongly inhibited by myristic acid. Aspergilli also were more susceptible to fatty acids than were penicilli, as indicated by the longer MDT.

  2. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  3. A ROLE FOR AMPK IN THE INHIBITION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE BY POLYUNSATURATED FATTY ACIDS

    PubMed Central

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-01-01

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as β-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser307 phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids. PMID:19646964

  4. Destabilization, oligomerization and inhibition of the mitogenic activity of acidic fibroblast-growth factor by aurintricarboxylic acid.

    PubMed

    Lozano, R M; Rivas, G; Giménez-Gallego, G

    1997-08-15

    The triphenylmethane derivative aurintricarboxylic acid has been used to inhibit angiogenesis, vascular smooth muscle cell proliferation and cell transformation, an effect that has been attributed to its relatively nonspecific inhibitory activity of protein-nucleic acid interactions. Here, we show that this compound binds to acidic fibroblast growth factor, a prototypic member of a family of protein mitogens activated by heparin, altering its physicochemical properties and decreasing its mitogenic activity. Counteraction of the effects of aurintricarboxylic acid by heparin shows that the two compounds have opposite and reversible effects on acidic fibroblast growth factor structure and biological activity. The studies reported here may contribute to a deeper understanding of the inhibition of fibroblast-growth-factor-dependent mitogenesis of relevance to future pharmacologic developments.

  5. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.).

    PubMed

    Xiong, You-Cai; Xing, Geng-Mei; Li, Feng-Min; Wang, Shao-Ming; Fan, Xian-Wei; Li, Zhi-Xiao; Wang, Ya-Fu

    2006-01-01

    Interrelationship among abscisic acid (ABA) content, accumulation of free polyamines and biosynthesis of beta-N-oxalyl-l-alpha,beta-diaminopropionic acid (ODAP) was studied in grass pea (Lathyrus sativus L.) seedlings under drought stress induced by 10% polyethylene glycol (PEG6000). Increase of ABA content occurred prior to that of ODAP and polyamine contents, and was found significantly positive correlation between ABA content and ODAP content. Addition of exogenous ABA increased ODAP content in leaves. On the other hand, pretreatment with alpha-difluoromethylarginine (DFMA), a polyamine biosynthesis inhibitor, significantly suppressed the accumulation of free putrescine (Put), free spermidine (Spd) and free spermine (Spm), which in turn inhibited biosynthesis of ODAP in well-watered leaves. Meanwhile, addition of exogenous Put alleviated DFMA-induced inhibition on the biosynthesis of Put and Spd, but did not affect the biosynthesis of Spm and ODAP in well-watered leaves. Same result was also achieved in drought-stressed leaves. Increasing accumulation of ODAP was significantly correlated with increasing Spm content (R=0.7957**) but not with that of Spd and Put. Therefore, it can be argued that ABA stimulated the biosynthesis of ODAP simultaneously with increasing the level of free Spm under drought stress condition.

  6. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

    PubMed

    Huisjes, Eline H; de Hulster, Erik; van Dam, Jan C; Pronk, Jack T; van Maris, Antonius J A

    2012-08-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.

  7. Characterization of Abscisic Acid-Induced Ethylene Production in Citrus Leaf and Tomato Fruit Tissues 1

    PubMed Central

    Riov, Joseph; Dagan, Eliahu; Goren, Raphael; Yang, Shang Fa

    1990-01-01

    Abscisic acid (ABA) significantly stimulated ethylene production in citrus (Citrus sinensis [L.] Osbeck, cv Shamouti orange) leaf discs. The extent of stimulation was dependent upon the concentration of ABA (0.1-1 milimolar) and the duration of treatment (15-300 minutes). Aging the discs before applying ABA increased ABA-induced ethylene production due to enhancement of both ethylene-forming enzyme activity and the responsiveness of ABA. Discs excised from mature leaves were much more responsive to ABA than discs excised from young or senescing leaves. ABA stimulated ethylene production shortly after application, suggesting that ABA does not enhance ethylene production via the acceleration of senescence. The stimulating effect of ABA on ethylene production resulted mainly from the enhancement of 1-aminocylopropane-1-carboxylic acid synthesis. Stimulation of ethylene production by ABA in intact citrus leaves and tomato (Lycopersicon esculentum Mill., cv Castlemart) fruit was small but could be increased by various forms of wounding. PMID:16667264

  8. Protein Conformation Ensembles Monitored by HDX Reveal a Structural Rationale for Abscisic Acid Signaling Protein Affinities and Activities

    PubMed Central

    West, Graham M.; Pascal, Bruce D.; Ng, Ley-Moy; Soon, Fen-Fen; Melcher, Karsten; Xu, H. Eric; Chalmers, Michael J.; Griffin, Patrick R.

    2012-01-01

    Summary Plants regulate growth and respond to environmental stress through abscisic acid (ABA) regulated pathways, and as such these pathways are of primary interest for biological and agricultural research. The ABA response is first perceived by the PYR/PYL/RCAR class of START protein receptors. These ABA activated receptors disrupt phosphatase inhibition of Snf1-related kinases (SnRKs) enabling kinase signaling. Here, insights into the structural mechanism of proteins in the ABA signaling pathway (the ABA receptor PYL2, HAB1 phosphatase, and two kinases, SnRK2.3 and 2.6) are discerned through hydrogen/deuterium exchange (HDX) mass spectrometry. HDX on the phosphatase in the presence of binding partners provides evidence for receptor-specific conformations involving the Trp385 ‘lock’ that is necessary for signaling. Furthermore, kinase activity is linked to a more stable closed conformation. These solution-based studies complement the static crystal structures and provide a more detailed understanding of the ABA signaling pathway. PMID:23290725

  9. MYB96 shapes the circadian gating of ABA signaling in Arabidopsis

    PubMed Central

    Lee, Hong Gil; Mas, Paloma; Seo, Pil Joon

    2016-01-01

    Circadian clocks regulate the rhythms of biological activities with a period of approximately 24-hours and synchronize plant metabolism and physiology with the environmental cycles. The clock also gates responses to environmental stresses to maximize fitness advantages. Here we report that the MYB96 transcription factor is connected with the clock oscillator to shape the circadian gating of abscisic acid (ABA) responses. MYB96 directly binds to the TIMING OF CAB EXPRESSION 1 (TOC1) promoter to positively regulate its expression. The use of myb96 mutant plants shows that this regulation is essential for the gated induction of TOC1 by ABA. In turn, MYB96 induction by ABA is also altered in toc1-3 mutant plants. The increased tolerance to drought of MYB96 over-expressing plants is decreased in the toc1-3 mutant background, suggesting that MYB96 and TOC1 intersect the circadian clock and ABA signaling. The MYB96-TOC1 function might be also regulated by the clock component CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), which binds to the MYB96 promoter and alters its circadian expression. Thus, a complex circuitry of CCA1-MYB96-TOC1 regulatory interactions provides the mechanistic basis underlying the connection between circadian and stress signaling to optimize plant fitness to ambient stresses. PMID:26725725

  10. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  11. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    PubMed

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.

  12. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    PubMed

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando

    2016-01-19

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.

  13. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    PubMed

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula.

  14. Boric acid application guidelines for intergranular corrosion inhibition: Topical report

    SciTech Connect

    Hermer, R.E.

    1987-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied via crevice flushing, low power soaks, on-line, or using a combination of these methods. When boric acid is used it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and how it should be correctly applied. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. This document has been prepared to be a comprehensive treatise on boric acid relevant to its application in nuclear steam generators. 49 refs., 31 figs., 16 tabs.

  15. MYB76 Inhibits Seed Fatty Acid Accumulation in Arabidopsis

    PubMed Central

    Duan, Shaowei; Jin, Changyu; Li, Dong; Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Hai, Jiangbo; Ma, Haoli; Chen, Mingxun

    2017-01-01

    The MYB family of transcription factors is important in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses in Arabidopsis. However, their role in regulating fatty acid accumulation in seeds is still largely unclear. Here, we found that MYB76, localized in the nucleus, was predominantly expressed in developing seeds during maturation. The myb76 mutation caused a significant increase in the amounts of total fatty acids and several major fatty acid compositions in mature seeds, suggesting that MYB76 functioned as an important repressor during seed oil biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed remarkable alteration of numerous genes involved in photosynthesis, fatty acid biosynthesis, modification, and degradation, and oil body formation in myb76 seeds at 12 days after pollination. These results help us to understand the novel function of MYB76 and provide new insights into the regulatory network of MYB transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:28270825

  16. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity.

    PubMed

    Arve, Louise E; Carvalho, Dália R A; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure.

  17. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves.

    PubMed

    Liu, Hong-Tao; Liu, Yan-Yan; Pan, Qiu-Hong; Yang, Hao-Ru; Zhan, Ji-Cheng; Huang, Wei-Dong

    2006-01-01

    Increasing evidence suggests that heat acclimation and exogenous salicylic acid (SA) and abscisic acid (ABA) may lead to the enhancement of thermotolerance in plants. In this study, the roles that free SA, conjugated SA, ABA, and phosphatidylinositol-4,5-bisphosphate (PIP(2))-specific phospholipase C (PLC) play in thermotolerance development induced by heat acclimation (38 degrees C) were investigated. To evaluate their potential functions, three inhibitors of synthesis or activity were infiltrated into pea leaves prior to heat acclimation treatment. The results showed that the burst of free SA in response to heat acclimation could be attributed to the conversion of SA 2-O-D-glucose, the main conjugated form of SA, to free SA. Inhibition of ABA biosynthesis also resulted in a defect in the free SA peak during heat acclimation. In acquired thermotolerance assessment, the greatest weakness of antioxidant enzyme activity and the most severe heat injury (malondialdehyde content and degree of wilting) were found in pea leaves pre-treated with neomycin, a well-known inhibitor of PIP(2)-PLC activity. PsPLC gene expression was activated by exogenous ABA, SA treatments, and heat acclimation after pre-treatments with a SA biosynthesis inhibitor. From these results, PIP(2)-PLC appears to play a key role in free SA- and ABA-associated reinforcement of thermotolerance resulting from heat acclimation.

  18. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO.

  19. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  20. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.

    PubMed Central

    Trgovcević, Z; Petranović, D; Petranović, M; Salaj-Smic, E

    1980-01-01

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA. PMID:6997276

  1. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    PubMed

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  2. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  3. Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone-boronic acid hybrids.

    PubMed

    Takahashi, Daisuke; Miura, Takuya; Toshima, Kazunobu

    2012-08-07

    Target-selective photodegradation of 3-deoxy-D-manno-2-octulopyranosonic acid (KDO) was achieved without additives and under neutral conditions using a designed anthraquinone-boronic acid hybrid and long wavelength UV light irradiation. The hybrid can photodegrade lipopolysaccharides (LPS) and inhibit macrophage activation induced by LPS.

  4. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  5. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  6. Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci

    PubMed Central

    2015-01-01

    We designed Lactococcus lactis to detect Enterococcus faecalis. Upon detection, L. lactis produce and secrete antienterococcal peptides. The peptides inhibit enterococcal growth and reduce viability of enterococci in the vicinity of L. lactis. The enterococcal sex pheromone cCF10 serves as the signal for detection. Expression vectors derived from pCF10, a cCF10-responsive E. faecalis sex-pheromone conjugative plasmid, were engineered in L. lactis for the detection system. Recombinant host strains were engineered to express genes for three bacteriocins, enterocin A, hiracin JM79 and enterocin P, each with potent antimicrobial activity against E. faecalis. Sensitive detection and specific inhibition occur both in agar and liquid media. The engineered L. lactis also inhibited growth of multidrug-resistant E. faecium strains, when induced by cCF10. The presented vectors and strains can be components of a toolbox for the development of alternative antibiotic technologies targeting enterococci at the site of infection. PMID:24896372

  7. Selective inhibition of leukotriene C/sub 4/ synthesis in human neutrophils by ethacrynic acid

    SciTech Connect

    Leung, K.H.

    1986-05-29

    Addition of glutathione S-transferase inhibitors, ethyacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA) to human neutrophils led to inhibition of leukotriene C/sub 4/ (LTC/sub 4/) synthesis induced by calcium ionophore A23187. ET is the most specific of these inhibitors for it had little effect on LTB/sub 4/, PGE/sub 2/, and 5-HETE synthesis. The inhibition of LTC/sub 4/ was irreversible and time dependent. ET also had little effect on /sup 3/H-AA release from A23187-stimulated neutrophils.

  8. Zoledronic acid inhibits aromatase activity and phosphorylation: potential mechanism for additive zoledronic acid and letrozole drug interaction.

    PubMed

    Schech, Amanda J; Nemieboka, Brandon E; Brodie, Angela H

    2012-11-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole. This combination significantly increased inhibition of aromatase activity of AC-1 cells when compared to letrozole alone. Treatment of 1 nM letrozole in combination with 1 μM or 10 μM ZA resulted in an additive drug interaction on inhibition of cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine residues. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1 μM and 10 μM ZA on cell viability following treatment for 72 h, as shown by a shift to the right in the estradiol dose-response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability.

  9. Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1990-03-01

    Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  10. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation.

  11. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.

    PubMed

    Ernst, Laura; Goodger, Jason Q D; Alvarez, Sophie; Marsh, Ellen L; Berla, Bert; Lockhart, Eric; Jung, Jiyul; Li, Pinghua; Bohnert, Hans J; Schachtman, Daniel P

    2010-07-01

    Recent reports suggest that early sensing of soil water stress by plant roots and the concomitant reduction in stomatal conductance may not be mediated by root-sourced abscisic acid (ABA), but that other xylem-borne chemicals may be the primary stress signal(s). To gain more insight into the role of root-sourced ABA, the timing and location of the expression of genes for key enzymes involved in ABA biosynthesis in Zea mays roots was measured and a comprehensive analysis of root xylem sap constituents from the early to the later stages of water stress was conducted. Xylem sap and roots were sampled from plants at an early stage of water stress when only a reduction in leaf conductance was measured, as well as at later stages when leaf xylem pressure potential decreased. It was found that the majority of ABA biosynthetic genes examined were only significantly expressed in the elongation region of roots at a later stage of water stress. Apart from ABA, sulphate was the only xylem-borne chemical that consistently showed significantly higher concentrations from the early to the later stages of stress. Moreover, there was an interactive effect of ABA and sulphate in decreasing maize transpiration rate and Vicia faba stomatal aperture, as compared to ABA alone. The expression of a sulphate transporter gene was also analysed and it was found that it had increased in the elongation region of roots from the early to the later stages of water stress. Our results support the suggestion that in the early stage of water stress, increased levels of ABA in xylem sap may not be due to root biosynthesis, ABA glucose ester catabolism or pH-mediated redistribution, but may be due to shoot biosynthesis and translocation to the roots. The analysis of xylem sap mineral content and bioassays indicate that the anti-transpirant effect of the ABA reaching the stomata at the early stages of water stress may be enhanced by the increased concentrations of sulphate in the xylem which is also

  12. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato.

    PubMed

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong; Xiao, Han

    2015-03-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening.

  13. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  14. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    PubMed

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  15. GSTF1 Gene Expression Analysis in Cultivated Wheat Plants under Salinity and ABA Treatments

    PubMed Central

    Niazi, Ali; Ramezani, Amin; Dinari, Ali

    2014-01-01

    Most plants encounter stress such as drought and salinity that adversely affect growth, development and crop productivity. The expression of the gene glutathione-s-transferases (GST) extends throughout various protective mechanisms in plants and allows them to adapt to unfavorable environmental conditions. GSTF1 (the first phi GSTFs class) gene expression patterns in the wheat cultivars Mahuti and Alamut were studied under salt and ABA treatments using a qRT-PCR technique. Results showed that gene expression patterns were significantly different in these two cultivars. Data showed that in Mahuti, there was an increase of transcript accumulation under salt and ABA treatments at 3h, 10h and 72h respectively. In Alamut, however, the pattern of transcript accumulation was different; the maximum was at 3h. In contrast, there were no significant differences observed between the cultivars for GSTF1 gene expression profiles at three levels of NaCl concentration (50, 100, and 200 mM) or in ABA (Abscisic Acid) treatment. It is likely that difference of gene expression patterns between the cultivars (Mahuti as a salt tolerant cultivar and Alamut as a salt sensitive cultivar) is due to distinct signaling pathways which activate GSTF1 expression. Lack of a significant difference between the GSTF1 gene expression profile under salt and ABA treatments suggests that the GSTF1 gene is not induced by stress stimuli. Of course it is possible that other levels of NaCl and ABA treatments cause a change in the GSTF1 gene. PMID:27843973

  16. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins

    PubMed Central

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  17. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    PubMed

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  18. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    PubMed

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B.

  19. Pepper CaREL1, a ubiquitin E3 ligase, regulates drought tolerance via the ABA-signalling pathway.

    PubMed

    Lim, Chae Woo; Park, Chanmi; Kim, Jung-Hyun; Joo, Hyunhee; Hong, Eunji; Lee, Sung Chul

    2017-03-28

    Drought stress conditions in soil or air hinder plant growth and development. Here, we report that the hot pepper (C apsicum a nnuum) RING type E3 Ligase 1 gene (CaREL1) is essential to the drought stress response. CaREL1 encodes a cytoplasmic- and nuclear-localized protein with E3 ligase activity. CaREL1 expression was induced by abscisic acid (ABA) and drought. CaREL1 contains a C3H2C3-type RING finger motif, which functions in ubiquitination of the target protein. We used CaREL1-silenced pepper plants and CaREL1-overexpressing (OX) transgenic Arabidopsis plants to evaluate the in vivo function of CaREL1 in response to drought stress and ABA treatment. CaREL1-silenced pepper plants displayed a drought-tolerant phenotype characterized by ABA hypersensitivity. In contrast, CaREL1-OX plants exhibited ABA hyposensitivity during the germination, seedling, and adult stages. In addition, plant growth was severely impaired under drought stress conditions, via a high level of transpirational water loss and decreased stomatal closure. Quantitative RT-PCR analyses revealed that ABA-related drought stress responsive genes were more weakly expressed in CaREL1-OX plants than in wild-type plants, indicating that CaREL1 functions in the drought stress response via the ABA-signalling pathway. Taken together, our results indicate that CaREL1 functions as a negative regulator of ABA-mediated drought stress tolerance.

  20. Quantitative Proteomic Analyses Identify ABA-Related Proteins and Signal Pathways in Maize Leaves under Drought Conditions.

    PubMed

    Zhao, Yulong; Wang, Yankai; Yang, Hao; Wang, Wei; Wu, Jianyu; Hu, Xiuli

    2016-01-01

    Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA) have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5 and its wild-type Vp5 under drought stress were examined and analyzed. Malondialdehyde content increased and quantum efficiency of photosystem II decreased under drought stress in both genotypes. However, the magnitude of the increase or decrease was significantly higher in vp5 than in Vp5. A total of 7051 proteins with overlapping expression patterns among three replicates in the two genotypes were identified by Multiplex run iTRAQ-based quantitative proteomic and liquid chromatography-tandem mass spectrometry methods, of which the expression of only 150 proteins (130 in Vp5, 27 in vp5) showed changes of at least 1.5-fold under drought stress. Among the 150 proteins, 67 and 60 proteins were up-regulated and down-regulated by drought stress in an ABA-dependent way, respectively. ABA was found to play active roles in regulating signaling pathways related to photosynthesis, oxidative phosphorylation (mainly related to ATP synthesis), and glutathione metabolism (involved in antioxidative reaction) in the maize response to drought stress. Our results provide an extensive dataset of ABA-dependent, drought-regulated proteins in maize plants, which may help to elucidate the underlying mechanisms of ABA-enhanced tolerance to drought stress in maize.

  1. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.

  2. Quantitative Proteomic Analyses Identify ABA-Related Proteins and Signal Pathways in Maize Leaves under Drought Conditions

    PubMed Central

    Zhao, Yulong; Wang, Yankai; Yang, Hao; Wang, Wei; Wu, Jianyu; Hu, Xiuli

    2016-01-01

    Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA) have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5 and its wild-type Vp5 under drought stress were examined and analyzed. Malondialdehyde content increased and quantum efficiency of photosystem II decreased under drought stress in both genotypes. However, the magnitude of the increase or decrease was significantly higher in vp5 than in Vp5. A total of 7051 proteins with overlapping expression patterns among three replicates in the two genotypes were identified by Multiplex run iTRAQ-based quantitative proteomic and liquid chromatography-tandem mass spectrometry methods, of which the expression of only 150 proteins (130 in Vp5, 27 in vp5) showed changes of at least 1.5-fold under drought stress. Among the 150 proteins, 67 and 60 proteins were up-regulated and down-regulated by drought stress in an ABA-dependent way, respectively. ABA was found to play active roles in regulating signaling pathways related to photosynthesis, oxidative phosphorylation (mainly related to ATP synthesis), and glutathione metabolism (involved in antioxidative reaction) in the maize response to drought stress. Our results provide an extensive dataset of ABA-dependent, drought-regulated proteins in maize plants, which may help to elucidate the underlying mechanisms of ABA-enhanced tolerance to drought stress in maize. PMID:28008332

  3. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    PubMed

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint.

  4. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  5. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder

    SciTech Connect

    Schlondorff, D.; Petty, E.; Oates, J.A.; Jacoby, M.; Levine, S.D. Vanderbilt Univ., Nashville, TN )

    1987-09-01

    In addition to cyclooxygenase and lipoxygenase pathways, the kidney can also metabolize arachidonic acid by a NADPH-dependent cytochrome P-450 enzyme to epoxyeicosatrienoic acids (EETs); furthermore, 5,6-EET has been shown to alter electrolyte transport across isolated renal tubules. The authors examined the effects of three ({sup 14}C-labeled)-EETs (5,6-, 11,12-, and 14,15-EET) on osmotic water flow across toad urinary bladder. All three EETs reversibly inhibited vasopressin-stimulated osmotic water flow with 5,6- and 11,12-EET being the most potent. The effects appeared to be independent of prostaglandins EETs inhibited the water flow response to forskolin but not the response to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) or 8-BrcAMP, consistent with an effect on cAMP generation. To determine whether these effects were due to the EETs or to products of their metabolism, they examined the effects of their vicinal diol hydrolysis products, the dihydroxyeicosatrienoic acids. Nonenzymatic conversion of labeled 5,6-EET to its vicinal diol occurred rapidly in the buffer, whereas 11,12-EET was hydrolyzed in a saturable manner only when incubated in the presence of bladder tissue. The dihydroxyeicosatrienoic acids formed inhibited water flow in a manner paralleling that of the EETs. The data support the hypothesis that EETs and their physiologically active dihydroxyeicosatrienoic acid metabolites inhibit vasopressin-stimulated water flow predominantly via inhibition of adenylate cyclase.

  6. Inhibition of tubulin polymerization by hypochlorous acid and chloramines.

    PubMed

    Landino, Lisa M; Hagedorn, Tara D; Kim, Shannon B; Hogan, Katherine M

    2011-04-15

    Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity.

  7. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis.

    PubMed

    Ho, Yi-Ping; Tan, Choon Meng; Li, Meng-Ying; Lin, Hong; Deng, Wen-Ling; Yang, Jun-Yi

    2013-04-01

    Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.

  8. Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana

    PubMed Central

    Chen, Zhizhong; Zhang, Hairong; Jablonowski, Daniel; Zhou, Xiaofeng; Ren, Xiaozhi; Hong, Xuhui; Schaffrath, Raffael; Zhu, Jian-Kang; Gong, Zhizhong

    2006-01-01

    The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IκB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Δ yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana. PMID:16943431

  9. Protein Synthesis in Bromegrass (Bromus inermis Leyss) Cultured Cells during the Induction of Frost Tolerance by Abscisic Acid or Low Temperature

    PubMed Central

    Robertson, Albert J.; Gusta, Lawrence V.; Reaney, Martin J. T.; Ishikawa, Masaya

    1987-01-01

    Bromus inermis Leyss cell cultures treated with 75 micromolar abscisic acid (ABA) at both 23 and 3°C developed more freezing resistance than cells cultured at 3°C. Protein synthesis in cells induced to become freezing tolerant by ABA and low temperature was monitored by [14C]leucine incorporation. Protein synthesis continued at 3°C, but net cell growth was stopped. Most of the major proteins detected at 23°C were synthesized at 3°C. However, some proteins were synthesized only at low temperatures, whereas others were inhibited. ABA showed similar effects on protein synthesis at both 23 and 3°C. Comparative electrophoretic analysis of [14C]leucine labeled protein detected the synthesis of 19, 21 and 47 kilodalton proteins in less than 8 hours after exposure to exogenous ABA. Proteins in the 20 kilodalton range were also synthesized at 3°C. In addition, a 31 kilodalton protein band showed increased expression in freezing resistant ABA treated cultures after 36 hours growth at both 3 and 23°C. Quantitative analysis of [14C]leucine labeled polypeptides in two-dimensional gels confirmed the increased expression of the 31 kilodalton protein. Two-dimensional analysis also resolved a 72 kilodalton protein enriched in ABA treated cultures and identified three proteins (24.5, 47, and 48 kilodaltons) induced by low temperature growth. Images Fig. 3 Fig. 4 PMID:16665607

  10. A Plasma Membrane Receptor Kinase, GHR1, Mediates Abscisic Acid- and Hydrogen Peroxide-Regulated Stomatal Movement in Arabidopsis[W][OA

    PubMed Central

    Hua, Deping; Wang, Cun; He, Junna; Liao, Hui; Duan, Ying; Zhu, Ziqiang; Guo, Yan; Chen, Zhizhong; Gong, Zhizhong

    2012-01-01

    The plant hormone abscisic acid (ABA) regulates stomatal movement under drought stress, and this regulation requires hydrogen peroxide (H2O2). We isolated GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), which encodes a receptor-like kinase localized on the plasma membrane in Arabidopsis thaliana. ghr1 mutants were defective ABA and H2O2 induction of stomatal closure. Genetic analysis indicates that GHR1 is a critical early component in ABA signaling. The ghr1 mutation impaired ABA- and H2O2-regulated activation of S-type anion currents in guard cells. Furthermore, GHR1 physically interacted with, phosphorylated, and activated the S-type anion channel SLOW ANION CHANNEL-ASSOCIATED1 when coexpressed in Xenopus laevis oocytes, and this activation was inhibited by ABA-INSENSITIVE2 (ABI2) but not ABI1. Our study identifies a critical component in ABA and H2O2 signaling that is involved in stomatal movement and resolves a long-standing mystery about the differential functions of ABI1 and ABI2 in this process. PMID:22730405

  11. Myrsinoic acid B inhibits the production of hydrogen sulfide by periodontal pathogens in vitro.

    PubMed

    Ito, Satomi; Shimura, Susumu; Tanaka, Tomoko; Yaegaki, Ken

    2010-06-01

    Recently, we reported that myrsinoic acid B purified from Myrsine seguinii inhibited methyl mercaptan (CH(3)SH) production by Fusobacterium nucleatum JCM8532. Since hydrogen sulfide (H(2)S) is the main component of physiological halitosis, while CH(3)SH is involved in pathological oral halitosis, the objective of this study is to determine whether myrsinoic acid B inhibits H(2)S production by oral microorganisms. F. nucleatum, Porphyromonas gingivalis and Treponema denticola were incubated with myrsinoic acid B and a substrate such as l-cysteine or l-methionine. H(2)S or CH(3)SH concentration in the headspace air, was determined using a gas chromatograph. The concentration of myrsinoic acid B inhibiting 50% (IC(50)) of H(2)S production by F. nucleatum was 0.142 µg ml(-1), and the IC(50) of P. gingivalis and T. denticola were 2.71 µg ml(-1) and 28.9 µg ml(-1), respectively. The presence of pyruvate, a by-product of H(2)S production, was determined. The IC(50) values of myrsinoic acid B for pyruvate production were 22.9 µg ml(-1) for F. nucleatum, 87.7 µg ml(-1) for P. gingivalis and 165 µg ml(-1) for T. denticola. We concluded that myrsinoic acid B inhibited the production of both H(2)S and pyruvate by periodontal pathogens.

  12. Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid

    PubMed Central

    Khatri, Dharmendra Kumar; Juvekar, Archana Ramesh

    2016-01-01

    Background: Curcumin and ellagic are the natural polyphenols having a wide range of pharmacological actions. They have been reported to have their use in various neurological disorders. Objective: This study was aimed to evaluate the effect of curcumin and ellagic acid on the activity of monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters which are pivotal for neuronal development and function. Materials and Methods: The in vitro effects of these selected polyphenols on MAO activities in mitochondria isolated from rat brains were examined. Brain mitochondria were assayed for MAO type-B (MAO-B) using benzylamine as substrates. Rat brain mitochondrial MAO preparation was used to study the kinetics of enzyme inhibition using double reciprocal Lineweaver–Burk plot. Results: MAO activity was inhibited by curcumin and ellagic acid; however, higher half maximal inhibitory concentrations of curcumin (500.46 nM) and ellagic acid (412.24 nM) were required compared to the known MAO-B inhibitor selegiline. It is observed that the curcumin and ellagic acid inhibit the MAO activity with both the competitive and noncompetitive type of inhibitions. Conclusions: Curcumin and ellagic acid can be considered a possible source of MAO inhibitor used in the treatment of Parkinson's and other neurological disorders. SUMMARY Monoamine oxidase (MAO) is involved in a variety of neurological disorders including Parkinson's disease (PD)Curcumin and ellagic acid inhibit the monoamine oxidase activityEllagic acid revealed more potent MAO type-B (MAO-B) inhibitory activity than curcuminKinetic studies of MAO inhibition using different concentrations of curcumin and ellagic acid were plotted as double reciprocal Lineweaver–Burk plotThe mode of inhibition of both compounds toward MAO-B is mixed (competitive and uncompetitive) type of inhibition with both the competitive and noncompetitive type of inhibitions. Abbreviations used: MAO: Monoamine oxidase

  13. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    PubMed

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  14. Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D.

    1985-07-01

    The effect of water stress on the redistribution of abscisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the apoplastic ABA, increased before bulk leaf stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. 32 references, 5 figures.

  15. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  16. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  17. Inhibition of hepatic gluconeogenesis by niflumic acid correlates with the concentration of the free form.

    PubMed

    Kelmer-Bracht, A M; Bracht, A

    1993-05-01

    Inhibition of hepatic gluconeogenesis by niflumic acid, a non-steroidal antiinflammatory drug, was measured in order to correlate the effect of the drug with the concentration of the free drug. The concentration of free drug was changed in two ways: (a) by changing the albumin concentration at a fixed total (free+bound) niflumic acid concentration; and, (b) by changing the drug concentration at a fixed albumin concentration. The degree of inhibition of gluconeogenesis by niflumic acid depends strictly on the concentration of the free drug, with half-maximal inhibition at 19.25 microM. This result is consistent with binding equilibrium in the extracellular space and with a flow-limited distribution between the extra- and intracellular spaces as proposed by our previous work.

  18. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  19. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  20. Abscisic Acid Synthesis and Response

    PubMed Central

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  1. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    1999-08-01

    Research. 56: 1189-1193, 1996. 19. Witters, L . and Kemp, B. Insulin activation of acetyl -CoA carboxylase accompanied by inhibition of the 5’-AMP...substrate for FAS, malonyl-CoA acts at the outer mitochondrial membrane to regulate fatty acid oxidation by inhibition of carnitine palmitoyltransferase 1...compared to the xenograft, it has about 10 fold higher levels of acetyl -CoA, and higher levels of other CoA derivatives. These data indicate significant

  2. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner.

    PubMed

    Payne, David E; Martin, Nicholas R; Parzych, Katherine R; Rickard, Alex H; Underwood, Adam; Boles, Blaise R

    2013-02-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization.

  3. Tannic Acid Inhibits Staphylococcus aureus Surface Colonization in an IsaA-Dependent Manner

    PubMed Central

    Payne, David E.; Martin, Nicholas R.; Parzych, Katherine R.; Rickard, Alex H.; Underwood, Adam

    2013-01-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization. PMID:23208606

  4. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Vicens, Marta; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCA transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.

  5. Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance.

    PubMed

    Yue, Yuesen; Zhang, Mingcai; Zhang, Jiachang; Duan, Liusheng; Li, Zhaohu

    2011-10-01

    Drought is a major environmental stress factor that affects growth and development of plants. Abscisic acid (ABA), osmotically active compounds, and synthesis of specific proteins, such as proteins that scavenge oxygen radicals, are crucial for plants to adapt to water deficit. LOS5/ABA3 (LOS5) encodes molybdenum-cofactor sulfurase, which is a key regulator of ABA biosynthesis. We overexpressed LOS5 in tobacco using Agrobacterium-mediated transformation. Detached leaves of LOS5-overexpressing seedlings showed lower transpirational water loss than that of nontransgenic seedlings in the same period under normal conditions. When subjected to water-deficit stress, transgenic plants showed less wilting, maintained higher water content and better cellular membrane integrity, accumulated higher quantities of ABA and proline, and exhibited higher activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, as compared with control plants. Furthermore, LOS5-overexpressing plants treated with 30% polyethylene glycol showed similar performance in cellular membrane protection, ABA and proline accumulation, and activities of catalase and peroxidase to those under drought stress. Thus, overexpression of LOS5 in transgenic tobacco can enhance drought tolerance.

  6. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance.

    PubMed

    Yang, Rongchao; Yang, Ting; Zhang, Haijun; Qi, Yan; Xing, Yanxia; Zhang, Na; Li, Ren; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2014-04-01

    The response and adaptation of plants to different environmental stresses are of great interest as they provide the key to understanding the mechanisms underlying stress tolerance. In this study, the changing patterns of four endogenous hormones and various physiological and biochemical parameters of both a salt-tolerant (LA2711) and a salt-sensitive (ZS-5) tomato cultivar were examined under salt stress and non-stress conditions. Additionally, the transcription of key genes in the abscisic acid (ABA) biosynthesis and metabolism were analyzed at different time points. The results indicated that gene expression responsible for ABA biosynthesis and metabolism coincided with the hormone level, and SlNCED1 and SlCYP707A3 may play major roles in the process. LA2711 performed superior to ZS-5 on various parameters, including seed germination, Na(+) compartmentation, selective absorption of K(+), and antioxidant enzymes activity. The difference in salt tolerance between the two genotypes could be attributed to the different levels of ABA due to differences in gene expression of key genes in ABA biosynthesis and metabolism. Although gibberellin, cytokinin and auxin were involved, our results indicated that ABA signaling plays a major role in tomato salt tolerance. As compared to ZS-5, LA2711 had a higher capability to selectively absorb and redistribute K(+) and a higher tolerance to Na(+) in young leaves, which may be the main physiological mechanisms of salt tolerance.

  7. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events.

    PubMed Central

    Schmidt, C; Schelle, I; Liao, Y J; Schroeder, J I

    1995-01-01

    Recent evidence suggests that slow anion channels in guard cells need to be activated to trigger stomatal closing and efficiently inactivated during stomatal opening. The patch-clamp technique was employed here to determine mechanisms that produce strong regulation of slow anion channels in guard cells. MgATP in guard cells, serving as a donor for phosphorylation, leads to strong activation of slow anion channels. Slow anion-channel activity was almost completely abolished by removal of cytosolic ATP or by the kinase inhibitors K-252a and H7. Nonhydrolyzable ATP, GTP, and guanosine 5'-[gamma-thio]triphosphate did not replace the ATP requirement for anion-channel activation. In addition, down-regulation of slow anion channels by ATP removal was inhibited by the phosphatase inhibitor okadaic acid. Stomatal closures in leaves induced by the plant hormone abscisic acid (ABA) and malate were abolished by kinase inhibitors and/or enhanced by okadaic acid. These data suggest that ABA signal transduction may proceed by activation of protein kinases and inhibition of an okadaic acid-sensitive phosphatase. This modulation of ABA-induced stomatal closing correlated to the large dynamic range for up- and down-regulation of slow anion channels by opposing phosphorylation and dephosphorylation events in guard cells. The presented opposing regulation by kinase and phosphatase modulators could provide important mechanisms for signal transduction by ABA and other stimuli during stomatal movements. PMID:11607582

  8. Registration of Zak ERA8 soft white spring wheat germplasm with enhanced response to ABA and increased seed dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZakERA8 is a unique mutant line selected from mutagenized soft white spring 'Zak' that has increased seed dormancy as a result of enhanced responsiveness to the plant hormone abscisic acid (ABA) during germination. This germplasm was developed by USDA-ARS, Pullman, WA in collaboration with Washingt...

  9. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...

  10. AtRAV and AtbZIP transcription factors positively regulate ABA responses: Overexpression in cotton enhances drought stress adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency, and gene expression during seed development and in response to environmental stresses. Ar...

  11. The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination.

    PubMed

    Xin, Zeyu; Wang, Anyou; Yang, Guohua; Gao, Peng; Zheng, Zhi-Liang

    2009-01-01

    Abscisic acid (ABA) is an important plant hormone for a wide array of growth and developmental processes and stress responses, but the mechanism of ABA signal perception on the plasma membrane remains to be dissected. A previous GeneChip analysis revealed that a member of the A4 subfamily of lectin receptor kinases (LecRKs) of Arabidopsis (Arabidopsis thaliana), At5g01540 (designated LecRKA4.1), is up-regulated in response to a low dose of ABA in the rop10-1 background. Here, we present functional evidence to support its role in ABA response. LecRKA4.1 is expressed in seeds and leaves but not in roots, and the protein is localized to the plasma membrane. A T-DNA knockout mutant, lecrka4.1-1, slightly enhanced ABA inhibition of seed germination. Interestingly, LecRKA4.1 is adjacent to two other members of the A4 subfamily of LecRK genes, At5g01550 (LecRKA4.2) and At5g01560 (LecRKA4.3). We found that loss-of-function mutants of LecRKA4.2 and LecRKA4.3 exhibited similarly weak enhancement of ABA response in seed germination inhibition. Furthermore, LecRKA4.2 suppression by RNA interference in lecrka4.1-1 showed stronger ABA inhibition of seed germination than lecrka4.1-1, while the response to gibberellic acid was not affected in lecrka4.1-1 and lecrka4.1-1; LecRKA4.2 (RNAi) lines. Expression studies, together with network-based analysis, suggest that LecRKA4.1 and LecRKA4.2 regulate some of the ABA-responsive genes. Taken together, our results demonstrate that the A4 subfamily of LecRKs has a redundant function in the negative regulation of ABA response in seed germination.

  12. Inhibition of the Epstein-Barr virus lytic cycle by moronic acid.

    PubMed

    Chang, Fang-Rong; Hsieh, Yi-Chung; Chang, Yung-Fu; Lee, Kuo-Hsiung; Wu, Yang-Chang; Chang, Li-Kwan

    2010-03-01

    Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle to activate the transcription of viral lytic genes. Our immunoblotting and flow cytometry analyses find that moronic acid, found in galls of Rhus chinensis and Brazilian propolis, at 10microM inhibits the expression of Rta, Zta, and an EBV early protein, EA-D, after lytic induction with sodium butyrate. This study also finds that moronic acids inhibits the capacity of Rta to activate a promoter that contains an Rta-response element, indicating that moronic acid interferes with the function of Rta. On the other hand, moronic acid does not appear to influence with the transactivation function of Zta. Therefore, the lack of expression of Zta and EA-D after moronic acid treatment is attributable to the inhibition of the transactivation functions of Rta. Because the expression of Zta, EA-D and many EBV lytic genes depends on Rta, the treatment of P3HR1 cells with moronic acid substantially reduces the numbers of EBV particles produced by the cells after lytic induction. This study suggests that moronic acid is a new structural lead for anti-EBV drug development.

  13. Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation

    PubMed Central

    Viegas, Cristina A.; Rosa, M. Fernanda; Sá-Correia, Isabel; Novais, Júlio M.

    1989-01-01

    The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation. PMID:16347826

  14. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana

    PubMed Central

    Riboni, Matteo; Robustelli Test, Alice; Galbiati, Massimo; Tonelli, Chiara; Conti, Lucio

    2016-01-01

    One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regulation of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS (CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that allows plants to co-ordinate the onset of the reproductive phase according to the available water resources. PMID:27733440

  15. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  16. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia.

    PubMed

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy.

  17. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia

    PubMed Central

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy. PMID:26504568

  18. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  19. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  20. Inhibition of cold insolubility of an IgA cryoglobulin by decanedicarboxylic acid and related compounds.

    PubMed

    Lalezari, P; Kumar, M; Kumar, K M; Lawrence, C

    1983-11-01

    Cold insolubility of a serum IgA cryoimmunoglobulin was found to be inhibited by the addition of 1.5 mM sodium decanedicarboxylate in vitro. The patient with the cryoglobulin had advanced multiple myeloma complicated by severe hyperviscosity that caused lethargy and episodic loss of consciousness. Decanedicarboxylic acid administered orally resulted in transient relief of symptoms and the loss of cryoprecipitability of the paraprotein. Further in vitro studies revealed that sodium salts of long-chain monocarboxylic acids with a minimum of eight carbons, and dicarboxylic acids with a minimum of 12 carbons inhibited cryoprecipitation. Salts of short-chain carboxylic acids, by contrast, enhanced cryoprecipitation. Sodium phenolate and sodium salts of benzoic acid, 2,4-DNP, phenylpropionic acid, and salicylic acid were also inhibitory. These latter compounds, which have a ring structure, did not cause precipitation at any concentration. It was demonstrated that the presence of a free carboxylic group was required for these activities; conversion of carboxylic acid to amide resulted in the loss of both the inhibitory and cryoprecipitation-enhancing effects. Normal plasma, or plasma from five other patients who had IgG, IgM, or mixed-type cryoglobulinemia, were not affected by any of these compounds. It is suggested that in selected cases of hyperviscosity syndrome associated with cryoglobulinemia, some of these compounds, especially monocarboxylic acids with appropriate chain lengths, or those with a ring structure, may have therapeutic applications.

  1. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation.

    PubMed

    Saeki, Tohru; Yui, Satoko; Hirai, Tadashi; Fujii, Takami; Okada, Sawami; Kanamoto, Ryuhei

    2012-01-01

    We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.

  2. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  3. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  4. Volatile Fatty Acids and the Inhibition of Escherichia coli Growth by Rumen Fluid1

    PubMed Central

    Wolin, Meyer J.

    1969-01-01

    Concentrations of volatile fatty acids (VFA) normally found in bovine rumen fluid inhibited growth of Escherichia coli in Antibiotic Medium 3. Acetic, propionic, and butyric acids each produced growth inhibition which was markedly pH-dependent. Little inhibition was observed at pH 7.0, and inhibition increased with decreasing pH. A combination of 60 μmoles of acetate, 20 μmoles of propionate, and 15 μmoles of butyrate per ml gave 96, 69, and 2% inhibition at pH 6.0, 6.5, and 7.0, respectively. Rumen fluid (50%) gave 89 and 48% inhibition at pH 6.0 and 6.5, respectively, and growth stimulation (22%) at pH 7.0. Rumen fluid inhibitory activity was heat-stable, was not precipitated by 63% ethyl alcohol, and was lost by dialysis and by treatment with anion-exchange resins but not with cation-exchange resins. These results are consistent with the idea that VFA are the inhibitory substances in rumen fluid. Previous results which indicated that rumen fluid VFA did not inhibit E. coli growth were due to lack of careful control of the final pH of the growth medium. The E. coli strain used does not grow in rumen fluid alone at pH 7.0. PMID:4886864

  5. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols.

    PubMed

    Ryckewaert, Lucie; Sacconnay, Lionel; Carrupt, Pierre-Alain; Nurisso, Alessandra; Simões-Pires, Claudia

    2014-09-02

    Ginkgolic acids and urushiols are natural alkylphenols known for their mutagenic, carcinogenic and genotoxic potential. However, the mechanism of toxicity of these compounds has not been thoroughly elucidated so far. Considering that the SIRT inhibitory potential of anacardic acids has been hypothesized by in silico techniques, we herein demonstrated through both in vitro and computational methods that structurally related compounds such as ginkgolic acids and urushiols are able to modulate SIRT activity. Moreover, their SIRT inhibitory profile and cytotoxicity were comparable to sirtinol, a non-specific SIRT inhibitor (SIRT1 and SIRT2), and different from EX-527, a SIRT1 specific inhibitor. This is the first report on the SIRT inhibition of ginkgolic acids and urushiols. The results reported here are in line with previously observed effects on the induction of apoptosis by this class of compounds, and the non-specific SIRT inhibition is suggested as a new mechanism for their in vitro cytotoxicity.

  6. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.

    PubMed

    De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M

    2013-05-01

    Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata

  7. BnSIP1-1, a Trihelix Family Gene, Mediates Abiotic Stress Tolerance and ABA Signaling in Brassica napus

    PubMed Central

    Luo, Junling; Tang, Shaohua; Mei, Fengling; Peng, Xiaojue; Li, Jun; Li, Xiaofei; Yan, Xiaohong; Zeng, Xinhua; Liu, Fang; Wu, Yuhua; Wu, Gang

    2017-01-01

    The trihelix family genes have important functions in light-relevant and other developmental processes, but their roles in response to adverse environment are largely unclear. In this study, we identified a new gene, BnSIP1-1, which fell in the SIP1 (6b INTERACTING PROTEIN1) clade of the trihelix family with two trihelix DNA binding domains and a fourth amphipathic α-helix. BnSIP1-1 protein specifically targeted to the nucleus, and its expression can be induced by abscisic acid (ABA) and different stresses. Overexpression of BnSIP1-1 improved seed germination under osmotic pressure, salt, and ABA treatments. Moreover, BnSIP1-1 decreased the susceptibility of transgenic seedlings to osmotic pressure and ABA treatments, whereas there was no difference under salt stress between the transgenic and wild-type seedlings. ABA level in the transgenic seedlings leaves was higher than those in the control plants under normal condition. Under exogenous ABA treatment and mannitol stress, the accumulation of ABA in the transgenic plants was higher than that in the control plants; while under salt stress, the difference of ABA content before treatment was gradually smaller with the prolongation of salt treatment time, then after 24 h of treatment the ABA level was similar in transgenic and wild-type plants. The transcription levels of several general stress marker genes (BnRD29A, BnERD15, and BnLEA1) were higher in the transgenic plants than the wild-type plants, whereas salt-responsive genes (BnSOS1, BnNHX1, and BnHKT) were not significantly different or even reduced compared with the wild-type plants, which indicated that BnSIP1-1 specifically exerted different regulatory mechanisms on the osmotic- and salt-response pathways in seedling period. Overall, these findings suggested that BnSIP1-1 played roles in ABA synthesis and signaling, salt and osmotic stress response. To date, information about the involvement of the Brassica napus trihelix gene in abiotic response is scarce

  8. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses.

    PubMed

    Gallé, Ágnes; Csiszár, Jolán; Benyó, Dániel; Laskay, Gábor; Leviczky, Tünde; Erdei, László; Tari, Irma

    2013-11-01

    Changes in water potential (ψw), stomatal conductance, abscisic acid (ABA) accumulation, expression of the major genes involved in ABA biosynthesis, activities of abscisic aldehyde oxidase (AO, EC 1.2.3.1) and antioxidant enzymes were studied in two wheat cultivars with contrasting acclimation strategies subjected to medium strength osmotic stress (-0.976MPa) induced by polyethylene glycol (PEG 6000). Because the biosynthetic pathway of ABA involves multiple gene products, the aim of this study was to unravel how these genes are regulated in isohydric and anisohydric wheat genotypes. In the root tissues of the isohydric cultivar, Triticum aestivum cv. Kobomugi, osmotic stress increased the transcript levels of 9-cis-epoxycarotenoid dioxygenase (NCED) gene, controlling the rate limiting step of ABA biosynthesis. Moreover, this cultivar exhibited a higher basal activity and a higher induction of aldehyde oxidase isoenzymes (AAO2-AAO3), responsible for converting ABAldehyde to ABA. It was found that the fast activation of the ABA biosynthesis in the roots generated an enhanced ABA pool in the shoot, which brought about a faster closure of the stomata upon increasing osmotic stress and, as a result, the plants could maintain ψw in the tissues close to the control level. In contrast, the anisohydric genotype, cv. GK Öthalom, exhibited a moderate induction of ABA biosynthesis in the roots, leading to the maintenance but no increase in the concentration of ABA on the basis of tissue water content in the leaves. Due to the slower response of their stomata to water deficit, the tissues of cv. GK Öthalom have to acclimate to much more negative water potentials during increasing osmotic stress. A decreased activity of superoxide dismutase (SOD) was found in the leaves and roots of both cultivars exposed to osmotic stress, but in the roots elevated activities of catalase (CAT), peroxidase (POX), glutathione reductase (GR) and glutathione transferase (GST) were detected in

  9. Bacteria and acid drainage from coal refuse: inhibition by sodium lauryl sulphate and sodium benzoate

    SciTech Connect

    Dugan, P.R.; Apel, W.A.

    1983-01-01

    Studies have shown that the application of an aqueous solution of sodium lauryl sulphate and sodium benzoate to the surface of high-sulphur coal refuse inhibits the activity of iron- and sulphur-oxidising chemo-autotrophic bacteria and reduces the amount of acid drainage from the refuse. Further studies are recommended to assess the usefulness of this method for controlling formation of acid mine drainage in the field.

  10. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    PubMed Central

    Van heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-01-01

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action. British Journal of Cancer (2002) 86, 605–611. DOI: 10.1038/sj/bjc/6600056 www.bjcancer.com © 2002 Cancer Research UK PMID:11870544

  11. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity.

    PubMed

    Van Heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-02-12

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC(50)-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg(-1). In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action.

  12. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past.

  13. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Hoch, A. R.; Reddy, M. M.; Aiken, G. R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO 3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (Ω = 4.5), P CO2 (10 -3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not.

  14. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  15. Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla.

    PubMed

    Yu, Kun; Wei, Jianrong; Ma, Qing; Yu, Dan; Li, Jiaru

    2009-05-15

    The effects of gibberellin A(3) (GA(3)) on natural senescence and the relationship between gibberellins (GAs), abscisic acid (ABA), and senescence are not fully understood. For example, it is still unclear whether GA and ABA act antagonistically. There are only few reports on senescence-related changes in physiological parameters of herbaceous perennials. This study was designed to investigate the effects of exogenous GA(3) on the senescence of aerial parts in a herbaceous perennial species, Paris polyphylla, and to test the hypothesis that GA and ABA display antagonistic effects in this process. Physiological changes associated with senescence, in particular of the hormonal and oxidative metabolisms, were also investigated. GA(3) was sprayed on mature leaves at weekly intervals, which significantly impeded senescence of aerial parts and slowed the decline of pigments and total soluble protein. Treated plants suffered less oxidative stress as revealed by reduced lipid peroxidation, a lower hydrogen peroxide level and modified activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and their respective isozyme profiles. In GA(3) treated plants GA(4)+GA(7) (GAs) levels increased progressively and became significantly higher than those of control plants, whereas ABA increased in controls. When plants were treated with GA-synthesis inhibitor paclobutrazol (PCB), GAs decreased, ABA increased, and senescence was promoted. Application of a mixture of GA(3) and PCB restored the accumulation of GAs, reduced ABA, and ultimately senescence was delayed. These results suggest that GA and ABA play antagonistic roles in the senescence of aerial parts in P. polyphylla, and this process is associated with oxidative stress and regulated by endogenous hormones and extrinsic factors. Possible mechanisms that control this GA(3)-mediated inhibition of senescence are discussed.

  16. Role of Abscisic Acid in the Induction of Desiccation Tolerance in Developing Seeds of Arabidopsis thaliana

    PubMed Central

    Meurs, Cor; Basra, Amarjit S.; Karssen, Cees M.; van Loon, Leendert C.

    1992-01-01

    In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance. ImagesFigure 1Figure 2Figure 4Figure 5Figure 6Figure 8 PMID:16668818

  17. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    PubMed

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA3 or GA4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature.

  18. Continuous or discontinuous tranexamic acid effectively inhibits fibrinolysis in children undergoing cardiac surgery with cardiopulmonary bypass.

    PubMed

    Couturier, Roland; Rubatti, Marina; Credico, Carmen; Louvain-Quintard, Virginie; Anerkian, Vregina; Doubine, Sylvie; Vasse, Marc; Grassin-Delyle, Stanislas

    2014-04-01

    Tranexamic acid is given continuously or discontinuously as an anti-fibrinolytic therapy during cardiac surgery, but the effects on fibrinolysis parameters remain poorly investigated. We sought to assess the effects of continuous and discontinuous tranexamic acid on fibrinolysis parameters in children undergoing cardiac surgery with cardiopulmonary bypass (CPB). Children requiring cardiac surgery or repeat surgery by sternotomy with CPB for congenital heart disease were randomized to receive either continuous or discontinuous tranexamic acid. Blood tranexamic acid, D-dimers, tissue plasminogen activator (tPA), tPA-plasminogen activator inhibitor 1 (tPA-PAI1) complexes, fibrinogen and fibrin monomers were measured and compared to values obtained from children who did not receive tranexamic acid. Tranexamic acid inhibited the CPB-induced increase in D-dimers, with a similar potency between continuous and discontinuous regimens. Time courses for tPA, fibrin monomers, and fibrinogen were also similar for both regimen, and there was a significant difference in tPA-PAI1 complex concentrations at the end of surgery, which may be related to a significantly higher tranexamic acid concentration. Continuous and discontinuous regimen are suitable for an effective inhibition of fibrinolysis in children undergoing cardiac surgery with CPB, but the continuous regimen was previously shown to be more effective to maintain stable tranexamic acid concentrations.

  19. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration.

  20. Proteomic analysis of B-aminobutyric acid priming and aba-induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and model plants, the xenobiotic compound, DL-beta-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt, drought, and thermotolerance. BABA does not activate stress genes directly but rather sensitizes plants to respond more quickly a...

  1. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX.

  2. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  3. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  4. Inhibition of Cervical Cancer by Promoting IGFBP7 Expression Using Ellagic Acid from Pomegranate Peel

    PubMed Central

    Guo, Hongjun; Zhang, Dongya; Fu, Qingrui

    2016-01-01

    Background The aim of this study was to explore the mechanism by which cervical cancer is inhibited by promoting IGFBP7 expression using ellagic acid from pomegranate peel extract. Material/Methods HeLa cells were divided into 6 groups: control group (NC), blank control group (BL), and IGFBP7 overexpression group (IGFBP7), and 2.5 uM, 5. 0 uM, and 10.0 uM ellagic acid-treated groups. The cell proliferation ability was detected and the degree of invasion in the 6 groups was measured by Transwell assay. The expression levels of IGFBP7 and AKT/mTOR in the 6 groups of cells were detected by RT-PCR technique. Results Compared with NC and BL groups, The IGFBP7 gene expressions of the IGFPB7 and ellagic acid-treated groups were significantly increased (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. The invasion ability of the IGFBP7 group and ellagic acid-treated groups was significantly lower than that of NC and BL groups in HeLa cells (P<0.05). The apoptosis rate of the IGFBP7 group and ellagic acid-treated groups was significantly higher than that of the NC and BL groups in HeLa cells (P<0.05). AKT and mTOR mRNA and protein expressions of the IGFBP7 group and ellagic acid-treated groups were significantly lower than that of the NC and BL groups (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. Conclusions The ellagic acid in pomegranate peel extract can inhibit the AKT/mTOR signaling pathway by enhancing the expression level of IGFBP7, which can inhibit the HeLa cells in cervical cancer. PMID:27941714

  5. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells.

    PubMed

    Liu, Shuanghu; Chen, Ren; Hagedorn, Curt H

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid's structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation.

  6. D‐amino acids do not inhibit Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Frye, Mitchell; Gagnon, Patricia; Vogel, Joseph P.; Chole, Richard

    2016-01-01

    Objective Pseudomonas aeruginosa, a known biofilm‐forming organism, is an opportunistic pathogen that plays an important role in chronic otitis media, tracheitis, cholesteatoma, chronic wounds, and implant infections. Eradication of biofilm infections has been a challenge because the biofilm phenotype provides bacteria with a protective environment from the immune system and antibiotics; thus, there has been great interest in adjunctive molecules that may inhibit biofilm formation or cause biofilm dispersal. There are reports that D‐amino acids may inhibit biofilms. In this study, we test the ability of various D‐amino acids to inhibit P. aeruginosa biofilm formation in vitro. Study Design We evaluated the effect of D‐alanine (10 mM), D‐leucine (10 mM), D‐methionine (10 mM), D‐tryptophan (10 mM), and D‐tyrosine (10 uM and 1 mM) on biofilm formation in two commonly studied laboratory strains of P. aeruginosa: PAO1 and PA14. Methods Biofilms were grown in 24‐well and 96‐well tissue culture plates, documented photographically and stained with 0.1% crystal violet and solubilized in 33% glacial acetic acid for quantification. Results In strains PAO1 and PA14, the addition of D‐amino acids did not result in an inhibitory effect on biofilm growth in 24‐well plates. Repeating the study in 96‐well plates confirmed our findings that D‐amino acids do not inhibit biofilm formation of P. aeruginosa. Conclusion We conclude that D‐amino acids only slow the production of biofilms rather than completely prevent biofilm formation; therefore, D‐amino acids represent a poor option for potential clinically therapeutic interventions. Level of Evidence N/A. PMID:28286870

  7. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  8. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction.

    PubMed

    Wang, Shaoguang; Meng, Xiaomei; Dong, Yaozhong

    2017-04-01

    Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.

  9. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  10. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  11. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma an