Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio
2012-01-01
Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505
[Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].
Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng
2016-02-01
To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.
Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying
2016-04-15
Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.
Muñoz-Bertomeu, Jesús; Bermúdez, María Angeles; Segura, Juan; Ros, Roc
2011-01-01
Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expression, but the mutant response to the hormone differed from that observed in wild-type plants. The gene expression of the transcription factor ABI4, involved in both sugar and ABA signalling, was altered in gapcp1gapcp2, suggesting that their ABA insensitivity is mediated, at least partially, through this transcriptional regulator. Serine supplementation was able partly to restore the ABA sensitivity of gapcp1gapcp2, indicating that amino acid homeostasis and/or serine metabolism may also be important determinants in the connections of ABA with primary metabolism. Overall, these studies provide new insights into the links between plant primary metabolism and ABA signalling, and demonstrate the importance of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in these interactions. PMID:21068209
Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng
2016-01-01
The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter aphid fecundity in water stresses plants. PMID:26546578
Pornsiriwong, Wannarat; Estavillo, Gonzalo M; Chan, Kai Xun; Tee, Estee E; Ganguly, Diep; Crisp, Peter A; Phua, Su Yin; Zhao, Chenchen; Qiu, Jiaen; Park, Jiyoung; Yong, Miing Tiem; Nisar, Nazia; Yadav, Arun Kumar; Schwessinger, Benjamin; Rathjen, John; Cazzonelli, Christopher I; Wilson, Philippa B; Gilliham, Matthew; Chen, Zhong-Hua; Pogson, Barry J
2017-03-21
Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis . Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1 -2. PAP also inhibits wild type and abi1 -1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca 2+ ; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.
Abscisic Acid Synthesis and Response
Finkelstein, Ruth
2013-01-01
Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463
Cross-talk in abscisic acid signaling
NASA Technical Reports Server (NTRS)
Fedoroff, Nina V.
2002-01-01
"Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.
Waadt, Rainer; Schroeder, Julian I.
2016-01-01
The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441
Abscisic Acid as Pathogen Effector and Immune Regulator
Lievens, Laurens; Pollier, Jacob; Goossens, Alain; Beyaert, Rudi; Staal, Jens
2017-01-01
Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans. PMID:28469630
The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis
Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang
2016-01-01
The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486
Evolution of Abscisic Acid Synthesis and Signaling Mechanisms
Hauser, Felix; Waadt, Rainer; Schroeder, Julian I.
2011-01-01
The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized. PMID:21549957
Yang, Cangjing; Liu, Jingjing; Dong, Xinran; Cai, Zhenying; Tian, Weidong; Wang, Xuelu
2014-05-01
The stress phytohormone, abscisic acid (ABA), plays important roles in facilitating plants to survive and grow well under a wide range of stress conditions. Previous gene expression studies mainly focused on plant responses to short-term ABA treatment, but the effect of sustained ABA treatment and their difference are poorly studied. Here, we treated plants with ABA for 1 h or 9 d, and our genome-wide analysis indicated the differentially regulated genes under the two conditions were tremendously different. We analyzed other hormones' signaling changes by using their whole sets of known responsive genes as reporters and integrating feedback regulation of their biosynthesis. We found that, under short-term ABA treatment, signaling outputs of growth-promoting hormones, brassinosteroids and gibberellins, and a biotic stress-responsive hormone, jasmonic acid, were significantly inhibited, while auxin and ethylene signaling outputs were promoted. However, sustained ABA treatment repressed cytokinin and gibberellin signaling, but stimulated auxin signaling. Using several sets of hormone-related mutants, we found candidates in corresponding hormonal signaling pathways, including receptors or transcription regulators, are essential in responding to ABA. Our findings indicate interactions of ABA-dependent stress signals with hormones at different levels are involved in plants to survive under transient stress and to adapt to continuing stressful environments.
Rodriguez, Lesia; Gonzalez-Guzman, Miguel; Diaz, Maira; Rodrigues, Americo; Izquierdo-Garcia, Ana C; Peirats-Llobet, Marta; Fernandez, Maria A; Antoni, Regina; Fernandez, Daniel; Marquez, Jose A; Mulet, Jose M; Albert, Armando; Rodriguez, Pedro L
2014-12-01
Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca(2+)-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling. © 2014 American Society of Plant Biologists. All rights reserved.
Rodriguez, Lesia; Diaz, Maira; Rodrigues, Americo; Izquierdo-Garcia, Ana C.; Peirats-Llobet, Marta; Fernandez, Maria A.; Antoni, Regina; Fernandez, Daniel; Marquez, Jose A.; Mulet, Jose M.; Albert, Armando; Rodriguez, Pedro L.
2014-01-01
Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca2+-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling. PMID:25465408
Pornsiriwong, Wannarat; Estavillo, Gonzalo M; Chan, Kai Xun; Tee, Estee E; Ganguly, Diep; Crisp, Peter A; Phua, Su Yin; Zhao, Chenchen; Qiu, Jiaen; Park, Jiyoung; Yong, Miing Tiem; Nisar, Nazia; Yadav, Arun Kumar; Schwessinger, Benjamin; Rathjen, John; Cazzonelli, Christopher I; Wilson, Philippa B; Gilliham, Matthew; Chen, Zhong-Hua; Pogson, Barry J
2017-01-01
Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses. DOI: http://dx.doi.org/10.7554/eLife.23361.001 PMID:28323614
Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng
2016-02-01
The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter aphid fecundity in water stresses plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Sussmilch, Frances C; Atallah, Nadia M; Brodribb, Timothy J; Banks, Jo Ann; McAdam, Scott A M
2017-09-02
Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (A CE ). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.
ABA signaling in stress-response and seed development.
Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko
2013-07-01
KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.
Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng
2016-09-01
Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 (K372E) with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Abscisic acid perception and signaling: structural mechanisms and applications
Ng, Ley Moy; Melcher, Karsten; Teh, Bin Tean; Xu, H Eric
2014-01-01
Adverse environmental conditions are a threat to agricultural yield and therefore exert a global effect on livelihood, health and the economy. Abscisic acid (ABA) is a vital plant hormone that regulates abiotic stress tolerance, thereby allowing plants to cope with environmental stresses. Previously, attempts to develop a complete understanding of the mechanisms underlying ABA signaling have been hindered by difficulties in the identification of bona fide ABA receptors. The discovery of the PYR/PYL/RCAR family of ABA receptors therefore represented a major milestone in the effort to overcome these roadblocks; since then, many structural and functional studies have provided detailed insights into processes ranging from ABA perception to the activation of ABA-responsive gene transcription. This understanding of the mechanisms of ABA perception and signaling has served as the basis for recent, preliminary developments in the genetic engineering of stress-resistant crops as well as in the design of new synthetic ABA agonists, which hold great promise for the agricultural enhancement of stress tolerance. PMID:24786231
Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans
2016-04-01
Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans
2016-01-01
Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372
Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.
2013-01-01
Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793
Novel Abscisic Acid Antagonists Identified with Chemical Array Screening.
Ito, Takuya; Kondoh, Yasumitsu; Yoshida, Kazuko; Umezawa, Taishi; Shimizu, Takeshi; Shinozaki, Kazuo; Osada, Hiroyuki
2015-11-01
Abscisic acid (ABA) signaling is involved in multiple processes in plants, such as water stress control and seed dormancy. Major regulators of ABA signaling are the PYR/PYL/RCAR family receptor proteins, group A protein phosphatases 2C (PP2Cs), and subclass III of SNF1-related protein kinase 2 (SnRK2). Novel ABA agonists and antagonists to modulate the functions of these proteins would not only contribute to clarification of the signaling mechanisms but might also be used to improve crop yields. To obtain small molecules that interact with Arabidopsis ABA receptor PYR1, we screened 24 275 compounds from a chemical library at the RIKEN Natural Products Depository by using a chemical array platform. Subsequent SnRK2 and PP2C assays narrowed down the candidates to two molecules. One antagonized ABA in a competitive manner and inhibited the formation of the PYR1-ABA-PP2C ternary complex. These compounds might have potential as bioprobes to analyze ABA signaling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Yunjung; Lee, Yuree; Kim, Soo Young; Lee, Youngsook; Hwang, Jae-Ung
2013-05-01
Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk. © 2012 Blackwell Publishing Ltd.
Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim
2013-07-01
Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.
Structural basis and functions of abscisic acid receptors PYLs
Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.
2015-01-01
Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428
WRKY transcription factors: key components in abscisic acid signalling.
Rushton, Deena L; Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Ringler, Patricia; Boken, Ashley K; Langum, Tanner J; Smidt, Lucas; Boomsma, Darius D; Emme, Nicholas J; Chen, Xianfeng; Finer, John J; Shen, Qingxi J; Rushton, Paul J
2012-01-01
WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR/PYL/RCAR-protein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stress-inducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Valdés, Ana Elisa; Overnäs, Elin; Johansson, Henrik; Rada-Iglesias, Alvaro; Engström, Peter
2012-11-01
Plants perceiving drought activate multiple responses to improve survival, including large-scale alterations in gene expression. This article reports on the roles in the drought response of two Arabidopsis thaliana homeodomain-leucine zipper class I genes; ATHB7 and ATHB12, both strongly induced by water-deficit and abscisic acid (ABA). ABA-mediated transcriptional regulation of both genes is shown to depend on the activity of protein phosphatases type 2C (PP2C). ATHB7 and ATHB12 are, thus, targets of the ABA signalling mechanism defined by the PP2Cs and the PYR/PYL family of ABA receptors, with which the PP2C proteins interact. Our results from chromatin immunoprecipitation and gene expression analyses demonstrate that ATHB7 and ATHB12 act as positive transcriptional regulators of PP2C genes, and thereby as negative regulators of abscisic acid signalling. In support of this notion, our results also show that ATHB7 and ATHB12 act to repress the transcription of genes encoding the ABA receptors PYL5 and PYL8 in response to an ABA stimulus. In summary, we demonstrate that ATHB7 and ATHB12 have essential functions in the primary response to drought, as mediators of a negative feedback effect on ABA signalling in the plant response to water deficit.
Duan, Lina; Dietrich, Daniela; Ng, Chong Han; Chan, Penny Mei Yeen; Bhalerao, Rishikesh; Bennett, Malcolm J.; Dinneny, José R.
2013-01-01
The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments. PMID:23341337
Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A.; Lü, Shiyou; Xiong, Liming
2014-01-01
The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. PMID:24812105
NASA Astrophysics Data System (ADS)
Miyakawa, Takuya; Tanokura, Masaru
The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.
Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L.; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng
2016-01-01
Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)–A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals. PMID:27566404
Wang, Yanping; Wang, Ya; Kai, Wenbin; Zhao, Bo; Chen, Pei; Sun, Liang; Ji, Kai; Li, Qian; Dai, Shengjie; Sun, Yufei; Wang, Yidong; Pei, Yuelin; Leng, Ping
2014-03-01
Abscisic acid (ABA) is an important phytohormone that regulates lots of physiological and biochemical processes in plant life cycle, especially in seed germination and stress responses. For exploring the transcriptional regulation of ABA signal transduction during cucumber (Cucumis sativus L.) seed germination and under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, nine CsPYLs, three group A CsPP2Cs and two subclass III CsSnRK2s were identified from cucumber genome, which respectively showed high sequence similarities and highly conserved domains with homologous genes in Arabidopsis. Based on Real-time PCR analysis, most of the tested genes' expression decreased during cucumber seed germination, which was in accordance with the ABA level variation. In addition, according to the absolute expression, CsPYL1, CsPYL3, CsPP2C5, CsABI1, CsSnRK2.3 and CsSnRK2.4 were highly expressed, indicating that they may play more important roles in ABA signaling during cucumber seed germination. Moreover, most of these highly expressed genes, except CsPYL3, were up-regulated by ABA treatment. Meanwhile, most of the tested genes' expression dramatically changed at the initial water uptake phase, indicating that this period may be critical in the regulation of ABA on seed germination. Under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, cucumber seed germination percentage decreased and ABA content increased. Meanwhile, the expression of ABA signal transduction core components genes showed specific response to a particular stress and was not always consist with ABA variation. Generally, the expression of CsPYL1, CsPYL3, CsABI1, CsSnRK2.3 and CsSnRK2.4 was sensitive to 120 mM NaCl and 0.5 mM Cu(2+) treatments. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Function of ABA in Stomatal Defense against Biotic and Drought Stresses
Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul
2015-01-01
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766
Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng
2014-01-01
Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610
Yang, Xiaorui; Bai, Yang; Shang, Jianxiu; Xin, Ruijiao; Tang, Wenqiang
2016-09-01
Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways. © 2016 John Wiley & Sons Ltd.
Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho
2005-12-01
The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.
Mang, Hyung-Gon; Qian, Weiqiang; Zhu, Ying; Qian, Jun; Kang, Hong-Gu; Klessig, Daniel F.; Hua, Jian
2012-01-01
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)–deficient mutant aba2 enhances resistance mediated by the resistance (R) gene SUPPRESSOR OF npr1-1 CONSTITUTIVE1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses. PMID:22454454
Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A; Lü, Shiyou; Xiong, Liming
2014-07-01
The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.
Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie
2015-11-27
The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.
de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R
2009-08-01
The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.
Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A
2011-03-01
Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.
Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui
2016-10-01
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio
2017-04-01
Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.
Yao, Xuan; Li, Juanjuan; Liu, Jianping; Liu, Kede
2015-10-01
The molecular mechanisms of abscisic acid (ABA) signalling have been studied for many years; however, how mitochondria-localized proteins play roles in ABA signalling remains unclear. Here an Arabidopsis mitochondria-localized protein RRL (RETARDED ROOT GROWTH-LIKE) was shown to function in ABA signalling. A previous study had revealed that the Arabidopsis mitochondria-localized protein RRG (RETARDED ROOT GROWTH) is required for cell division in the root meristem. RRL shares 54% and 57% identity at the nucleotide and amino acid sequences, respectively, with RRG; nevertheless, RRL shows a different function in Arabidopsis. In this study, disruption of RRL decreased ABA sensitivity whereas overexpression of RRL increased ABA sensitivity during seed germination and seedling growth. High expression levels of RRL were found in germinating seeds and developing seedlings, as revealed by β-glucuronidase (GUS) staining of ProRRL-GUS transgenic lines. The analyses of the structure and function of mitochondria in the knockout rrl mutant showed that the disruption of RRL causes extensively internally vacuolated mitochondria and reduced ABA-stimulated reactive oxygen species (ROS) production. Previous studies have revealed that the expression of alternative oxidase (AOX) in the alternative respiratory pathway is increased by mitochondrial retrograde regulation to regain ROS levels when the mitochondrial electron transport chain is impaired. The APETALA2 (AP2)-type transcription factor ABI4 is a regulator of ALTERNATIVE OXIDASE1a (AOX1a) in mitochondrial retrograde signalling. This study showed that ABA-induced AOX1a and ABI4 expression was inhibited in the rrl mutant, suggesting that RRL is probably involved in ABI4-mediated mitochondrial retrograde signalling. Furthermore, the results revealed that ABI4 is a downstream regulatory factor in RRL-mediated ABA signalling in seed germination and seedling growth. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.
Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J
2017-09-01
Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.
Teaster, Neal D; Motes, Christy M; Tang, Yuhong; Wiant, William C; Cotter, Matthew Q; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J; Hasenstein, Karl H; Gonzalez, Gabriel; Blancaflor, Elison B; Chapman, Kent D
2007-08-01
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.
Shoot-derived abscisic acid promotes root growth.
McAdam, Scott A M; Brodribb, Timothy J; Ross, John J
2016-03-01
The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.
Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng
2013-01-01
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.
Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng
2013-01-01
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778
Bi, Chao; Ma, Yu; Wang, Xiao-Fang; Zhang, Da-Peng
2017-11-01
Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.
Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C
2013-08-01
To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques. © 2013 John Wiley & Sons Ltd.
Villasuso, Ana Laura; Di Palma, Maria A; Aveldaño, Marta; Pasquaré, Susana J; Racagni, Graciela; Giusto, Norma M; Machado, Estela E
2013-04-01
Phosphatidic acid (PA) is the common lipid product in abscisic acid (ABA) and gibberellic acid (GA) response. In this work we investigated the lipid metabolism in response to both hormones. We could detect an in vivo phospholipase D activity (PLD, EC 3.1.4.4). This PLD produced [(32)P]PA (phosphatidic acid) rapidly (minutes) in the presence of ABA, confirming PA involvement in signal transduction, and transiently, indicating rapid PA removal after generation. The presence of PA removal by phosphatidate phosphatase 1 and 2 isoforms (E.C. 3.1.3.4) was verified in isolated aleurone membranes in vitro, the former but not the latter being specifically responsive to the presence of GA or ABA. The in vitro DGPP phosphatase activity was not modified by short time incubation with GA or ABA while the in vitro PA kinase - that allows the production of 18:2-DGPP from 18:2-PA - is stimulated by ABA. The long term effects (24 h) of ABA or GA on lipid and fatty acid composition of aleurone layer cells were then investigated. An increase in PC and, to a lesser extent, in PE levels is the consequence of both hormone treatments. ABA, in aleurone layer cells, specifically activates a PLD whose product, PA, could be the substrate of PAP1 and/or PAK activities. Neither PLD nor PAK activation can be monitored by GA treatment. The increase in PAP1 activity monitored after ABA or GA treatment might participate in the increase in PC level observed after 24 h hormone incubation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
2000-01-01
Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.
Yu, Jingling; Yang, Lei; Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi
2016-01-01
Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.
Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan
2011-01-01
Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693
Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong
2015-11-01
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.
Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation
Wang, Tao; Li, Chengxiang; Wu, Zhihua; Jia, Yancui; Wang, Hong; Sun, Shiyong; Mao, Chuanzao; Wang, Xuelu
2017-01-01
Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development. PMID:28702040
Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long
2017-08-01
Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.
Freschi, Luciano; Rodrigues, Maria Aurineide; Domingues, Douglas Silva; Purgatto, Eduardo; Van Sluys, Marie-Anne; Magalhaes, Jose Ronaldo; Kaiser, Werner M.; Mercier, Helenice
2010-01-01
Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up- and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants. PMID:20147491
Abscisic Acid and abiotic stress signaling.
Tuteja, Narendra
2007-05-01
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.
Abscisic Acid and Abiotic Stress Signaling
2007-01-01
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis. PMID:19516981
Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin
2016-04-01
Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Teaster, Neal D.; Motes, Christy M.; Tang, Yuhong; Wiant, William C.; Cotter, Matthew Q.; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J.; Hasenstein, Karl H.; Gonzalez, Gabriel; Blancaflor, Elison B.; Chapman, Kent D.
2007-01-01
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites. PMID:17766402
Chiu, Rex Shun; Saleh, Yazan; Gazzarrini, Sonia
2016-11-01
During seed imbibition at supra-optimal temperature, an increase in the abscisic acid (ABA)/gibberellin (GA) ratio imposes secondary dormancy to prevent germination (thermoinhibition). FUSCA3 (FUS3), a positive regulator of seed dormancy, accumulates in seeds imbibed at high temperature and increases ABA levels to inhibit germination. Recently, we showed that ABA inhibits FUS3 degradation at high temperature, and that ABA and high temperature also inhibit the ubiquitin-proteasome system, by dampening both proteasome activity and protein polyubiquitination. Here, we investigated the role of ABA signaling components and the ABA antagonizing hormone, GA, in the regulation of FUS3 levels. We show that the ABA receptor mutant, pyl1-1, is less sensitive to ABA and thermoinhibition. In this mutant background, FUS3 degradation in vitro is faster. Similarly, GA alleviates thermoinhibition and also increases FUS3 degradation. These results indicate that inhibition of FUS3 degradation at high temperature is dependent on a high ABA/GA ratio and a functional ABA signaling pathway. Thus, FUS3 constitutes an important node in ABA-GA crosstalk during germination at supra-optimal temperature.
Kang, Jiman; Mehta, Sohum; Turano, Frank J
2004-10-01
The involvement of the putative glutamate receptor 1.1 (AtGLR1.1) gene in the regulation of abscisic acid (ABA) biosynthesis and signaling was investigated in Arabidopsis. Seeds from AtGLR1.1-deficient (antiAtGLR1.1) lines had increased sensitivity to exogenous ABA with regard to the effect of the hormone on the inhibition of seed germination and root growth. Seed germination, which was inhibited by an animal ionotropic glutamate receptor antagonist, 6,7-dinitroquinoxaline-2,3-[1H,4H]-dione, was restored by co-incubation with an inhibitor of ABA biosynthesis, fluridone. These results confirm that germination in antiAtGLR1.1 lines was inhibited by increased ABA. When antiAtGLR1.1 and WT seeds were co-incubated in fluridone and exogenous ABA, the antiAtGLR1.1 seeds were more sensitive to ABA. In addition, the antiAtGLR1.1 lines exhibited altered expression of ABA biosynthetic (ABA) and signaling (ABI) genes, when compared with WT. Combining the physiological and molecular results suggest that ABA biosynthesis and signaling in antiAtGLR1.1 lines are altered. ABA levels in leaves of antiAtGLR1.1 lines are higher than those in WT. In addition, the antiAtGLR1.1 lines had reduced stomatal apertures, and exhibited enhanced drought tolerance due to deceased water loss compared with WT lines. The results from these experiments imply that ABA biosynthesis and signaling can be regulated through AtGLR1.1 to trigger pre- and post-germination arrest and changes in whole plant responses to water stress. Combined with our earlier results, these findings suggest that AtGLR1.1 integrates and regulates the different aspects of C, N and water balance that are required for normal plant growth and development.
Chen, Jingxin; Mao, Linchun; Lu, Wenjing; Ying, Tiejin; Luo, Zisheng
2016-01-01
Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.
Analysis of plant hormone profiles in response to moderate dehydration stress.
Urano, Kaoru; Maruyama, Kyonoshin; Jikumaru, Yusuke; Kamiya, Yuji; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2017-04-01
Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA 4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Qi, Cong-Cong; Zhang, Zhi; Fang, Hui; Liu, Ji; Zhou, Nan; Ge, Jin-Fang; Chen, Fang-Han; Xiang, Cheng-Bin; Zhou, Jiang-Ning
2014-10-31
Corticotrophin-releasing hormone (CRH) is considered to be the central driving force of the hypothalamic-pituitary-adrenal axis, which plays a key role in the stress response and depression. Clinical reports have suggested that excess retinoic acid (RA) is associated with depression. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share a similar molecular structure. Here, we proposed that ABA also plays a role in the regulation of CRH activity sharing with the RA signaling pathway. [3H]-ABA radioimmunoassay demonstrated that the hypothalamus of rats shows the highest concentration of ABA compared with the cortex and the hippocampus under basal conditions. Under acute stress, ABA concentrations increased in the serum, but decreased in the hypothalamus and were accompanied by increased corticosterone in the serum and c-fos expression in the hypothalamus. Moreover, chronic ABA administration increased sucrose intake and decreased the mRNA expression of CRH and retinoic acid receptor alpha (RARα) in the hypothalamus of rats. Furthermore, ABA improved the symptom of chronic unpredictable mild stress in model rats, as indicated by increased sucrose intake, increased swimming in the forced swim test, and reduced mRNA expression of CRH and RARα in the rat hypothalamus. In vitro, CRH expression decreased after ABA treatment across different neural cells. In BE(2)-C cells, ABA inhibited a series of retinoid receptor expression, including RARα, a receptor that could facilitate CRH expression directly. These results suggest that ABA may play a role in the pathogenesis of depression by downregulating CRH mRNA expression shared with the RA signaling pathway. © The Author 2014. Published by Oxford University Press on behalf of CINP.
Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai
2016-01-01
Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway.
Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai
2016-01-01
Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534
Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio
2017-01-01
Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This knowledge of the ABA cascade in berry skin contributes not only to the understanding of berry ripening regulation but might be useful to other areas of viticultural interest, such as bud dormancy regulation and drought stress tolerance. PMID:28680438
Yuan, Congying; Ai, Jianping; Chang, Hongping; Xiao, Wenjun; Liu, Lu; Zhang, Cheng; He, Zhuang; Huang, Ji; Li, Jinyan; Guo, Xinhong
2017-05-01
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.
Wu, Wei-Hua; Chen, Yi-Fang
2016-01-01
The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression. PMID:26829043
Evolutionary Conservation of ABA Signaling for Stomatal Closure1[OPEN
Huang, Yuqing; Dai, Fei; Franks, Peter J.; Nevo, Eviatar; Soltis, Douglas E.; Soltis, Pamela S.; Xue, Dawei; Zhang, Guoping; Pogson, Barry J.
2017-01-01
Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. PMID:28232585
Tougane, Ken; Komatsu, Kenji; Bhyan, Salma Begum; Sakata, Yoichi; Ishizaki, Kimitsune; Yamato, Katsuyuki T.; Kohchi, Takayuki; Takezawa, Daisuke
2010-01-01
Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the β -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts. PMID:20097789
Tougane, Ken; Komatsu, Kenji; Bhyan, Salma Begum; Sakata, Yoichi; Ishizaki, Kimitsune; Yamato, Katsuyuki T; Kohchi, Takayuki; Takezawa, Daisuke
2010-03-01
Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the beta -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts.
Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression
Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula
2014-01-01
Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622
Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.
Maia, Julio; Dekkers, Bas J W; Dolle, Miranda J; Ligterink, Wilco; Hilhorst, Henk W M
2014-07-01
During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this stress response and in DT re-establishment. However, the path from the sensing of an osmotic cue and its signaling to DT re-establishment is still largely unknown. Analyses of DT, ABA sensitivity, ABA content and gene expression were performed in desiccation-sensitive (DS) and desiccation-tolerant Arabidopsis thaliana seeds. Furthermore, loss and re-establishment of DT in germinated Arabidopsis seeds was studied in ABA-deficient and ABA-insensitive mutants. We demonstrate that the developmental window in which DT can be re-established correlates strongly with the window in which ABA sensitivity is still present. Using ABA biosynthesis and signaling mutants, we show that this hormone plays a key role in DT re-establishment. Surprisingly, re-establishment of DT depends on the modulation of ABA sensitivity rather than enhanced ABA content. In addition, the evaluation of several ABA-insensitive mutants, which can still produce normal desiccation-tolerant seeds, but are impaired in the re-establishment of DT, shows that the acquisition of DT during seed development is genetically different from its re-establishment during germination. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Zhang, Yu'e; Xu, Wenying; Li, Zhonghui; Deng, Xing Wang; Wu, Weihua; Xue, Yongbiao
2008-12-01
Guard cells, which form stoma in leaf epidermis, sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. Under drought stress, plants synthesize abscisic acid (ABA), which in turn induces a rapid closing of stoma, to prevent water loss by transpiration. However, many aspects of the molecular mechanism for ABA-mediated stomatal closure are still not understood. Here, we report a novel negative regulator of guard cell ABA signaling, DOR, in Arabidopsis (Arabidopsis thaliana). The DOR gene encodes a putative F-box protein, a member of the S-locus F-box-like family related to AhSLF-S(2) and specifically interacting with ASK14 and CUL1. A null mutation in DOR resulted in a hypersensitive ABA response of stomatal closing and a substantial increase of drought tolerance; in contrast, the transgenic plants overexpressing DOR were more susceptible to the drought stress. DOR is strongly expressed in guard cells and suppressed by ABA treatment, suggesting a negative feedback loop of DOR in ABA responses. Double-mutant analyses of dor with ABA-insensitive mutant abi1-1 showed that abi1-1 is epistatic to dor, but no apparent change of phospholipase Dalpha1 was detected between the wild type and dor. Affymetrix GeneChip analysis showed that DOR likely regulates ABA biosynthesis under drought stress. Taken together, our results demonstrate that DOR acts independent of phospholipase Dalpha1 in an ABA signaling pathway to inhibit the ABA-induced stomatal closure under drought stress.
Chen, Pei; Sun, Yu-Fei; Kai, Wen-Bin; Liang, Bin; Zhang, Yu-Shu; Zhai, Xia-Wan; Jiang, Li; Du, Yang-Wei; Leng, Ping
2016-10-20
Abscisic acid (ABA) regulates fruit development and ripening via its signaling. However, the exact role of ABA signaling core components in fruit have not yet been clarified. In this study, we investigated the potential interactions of tomato (Solanum lycopersicon) ABA signaling core components using yeast two-hybrid analysis, with or without ABA at different concentrations. The results showed that among 12 PYR/PYL/RCAR ABA receptors (SlPYLs), SlPYL1, SlPYL2, SlPYL4, SlPYL5, SlPYL 7, SlPYL8, SlPYL9, SlPYL10, SlPYL11, and SlPYL13 were ABA-dependent receptors, while SlPYL3 and SlPYL12 were ABA-independent receptors. Among five SlPP2Cs (type 2C protein phosphatases) and seven SlSnRK2s (subfamily 2 of SNF1-related kinases), all SlSnRK2s could interact with SlPP2C2, while SlSnRK2.8 also interacted with SlPP2C3. SlSnRK2.5 could interact with SlABF2/4 (ABA-responsive element binding factors). Expressions of SlPYL1, SlPYL2, SlPYL8, and SlPYL10 were upregulated under exogenous ABA but downregulated under nordihydroguaiaretic acid (NDGA) at the mature green stage of fruit ripening. The expressions of SlPP2C1, SlPP2C2, SlPP2C3, and SlPP2C5 were upregulated in ABA-treated fruit, but downregulated in NDGA-treated fruit at the mature green stage. The expressions of SlSnRK2.4, SlSnRK2.5, SlSnRK2.6, and SlSnRK2.7 were upregulated by ABA, but downregulated by NDGA. However, SlSnRK2.2 was down regulated by ABA. Expression of SlABF2/3/4 was enhanced by ABA but decreased by NDGA. Based on these results, we concluded that the majority of ABA receptor PYLs interact with SlPP2Cs in an ABA-dependent manner. SlPP2C2 and SlPP2C3 can interact with SlSnRK2s. SlSnRK2.5 could interact with SlABF2/4. Most ABA signaling core components respond to exogenous ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ferrero, Manuela; Pagliarani, Chiara; Novák, Ondrej; Ferrandino, Alessandra; Cardinale, Francesca; Visentin, Ivan; Schubert, Andrea
2018-04-23
Besides signalling to soil organisms, strigolactones (SLs) control above- and below-ground morphology, in particular shoot branching. Furthermore, SLs interact with stress responses, possibly thanks to a crosstalk with the abscisic acid (ABA) signal. In grapevine (Vitis vinifera L.), ABA drives the accumulation of anthocyanins over the ripening season. In this study, we investigated the effects of treatment with a synthetic strigolactone analogue, GR24, on anthocyanin accumulation in grape berries, in the presence or absence of exogenous ABA treatment. Experiments were performed both on severed, incubated berries, and on berries attached to the vine. Furthermore, we analysed the corresponding transcript concentrations of genes involved in anthocyanin biosynthesis, and in ABA biosynthesis, metabolism, and membrane transport. During the experiment time courses, berries showed the expected increase in soluble sugars and anthocyanins. GR24 treatment had no or little effect on anthocyanin accumulation, or on gene expression levels. Exogenous ABA treatment activated soluble sugar and anthocyanin accumulation, and enhanced expression of anthocyanin and ABA biosynthetic genes, and that of genes involved in ABA hydroxylation and membrane transport. Co-treatment of GR24 with ABA delayed anthocyanin accumulation, decreased expression of anthocyanin biosynthetic genes, and negatively affected ABA concentration. GR24 also enhanced the ABA-induced activation of ABA hydroxylase genes, while it down-regulated the ABA-induced activation of ABA transport genes. Our results show that GR24 affects the ABA-induced activation of anthocyanin biosynthesis in this non-climacteric fruit. We discuss possible mechanisms underlying this effect, and the potential role of SLs in ripening of non-ABA-treated berries.
Yang, Xi; Yang, Ya-Nan; Xue, Liang-Jiao; Zou, Mei-Juan; Liu, Jian-Ying; Chen, Fan; Xue, Hong-Wei
2011-01-01
Abscisic acid (ABA) regulates plant development and is crucial for plant responses to biotic and abiotic stresses. Studies have identified the key components of ABA signaling in Arabidopsis (Arabidopsis thaliana), some of which regulate ABA responses by the transcriptional regulation of downstream genes. Here, we report the functional identification of rice (Oryza sativa) ABI5-Like1 (ABL1), which is a basic region/leucine zipper motif transcription factor. ABL1 is expressed in various tissues and is induced by the hormones ABA and indole-3-acetic acid and stress conditions including salinity, drought, and osmotic pressure. The ABL1 deficiency mutant, abl1, shows suppressed ABA responses, and ABL1 expression in the Arabidopsis abi5 mutant rescued the ABA sensitivity. The ABL1 protein is localized to the nucleus and can directly bind ABA-responsive elements (ABREs; G-box) in vitro. A gene expression analysis by DNA chip hybridization confirms that a large proportion of down-regulated genes of abl1 are involved in stress responses, consistent with the transcriptional activating effects of ABL1. Further studies indicate that ABL1 regulates the plant stress responses by regulating a series of ABRE-containing WRKY family genes. In addition, the abl1 mutant is hypersensitive to exogenous indole-3-acetic acid, and some ABRE-containing genes related to auxin metabolism or signaling are altered under ABL1 deficiency, suggesting that ABL1 modulates ABA and auxin responses by directly regulating the ABRE-containing genes. PMID:21546455
Wang, Zhen-Yu; Gehring, Chris; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming
2015-01-01
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1. PMID:25416474
Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.
2015-01-01
Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329
Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi
2017-07-11
Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.
A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors.
Ye, Yajin; Zhou, Lijuan; Liu, Xue; Liu, Hao; Li, Deqiang; Cao, Minjie; Chen, Haifeng; Xu, Lin; Zhu, Jian-Kang; Zhao, Yang
2017-04-01
Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis ( Arabidopsis thaliana ). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture. © 2017 American Society of Plant Biologists. All Rights Reserved.
A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors1
Ye, Yajin; Liu, Xue; Liu, Hao; Li, Deqiang; Cao, Minjie; Chen, Haifeng; Zhu, Jian-kang
2017-01-01
Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis (Arabidopsis thaliana). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture. PMID:28193765
Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song
2015-01-01
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037
Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.
Wu, Xi; Liang, Chanjuan
2017-02-01
Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.
Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.
2015-01-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916
Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C
2015-04-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Mehdi, Saher; Derkacheva, Maria; Ramström, Margareta; Kralemann, Lejon; Bergquist, Jonas; Hennig, Lars
2016-01-01
MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis. © 2016 American Society of Plant Biologists. All rights reserved.
Waadt, Rainer; Hitomi, Kenichi; Nishimura, Noriyuki; Hitomi, Chiharu; Adams, Stephen R; Getzoff, Elizabeth D; Schroeder, Julian I
2014-01-01
Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration changes in response to environmental cues is essential for understanding ABA action. We have developed ABAleons: ABA-specific optogenetic reporters that instantaneously convert the phytohormone-triggered interaction of ABA receptors with PP2C-type phosphatases to send a fluorescence resonance energy transfer (FRET) signal in response to ABA. We report the design, engineering and use of ABAleons with ABA affinities in the range of 100–600 nM to map ABA concentration changes in plant tissues with spatial and temporal resolution. High ABAleon expression can partially repress Arabidopsis ABA responses. ABAleons report ABA concentration differences in distinct cell types, ABA concentration increases in response to low humidity and NaCl in guard cells and to NaCl and osmotic stress in roots and ABA transport from the hypocotyl to the shoot and root. DOI: http://dx.doi.org/10.7554/eLife.01739.001 PMID:24737861
Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission
Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley
2016-01-01
Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761
Abscisic Acid and Abiotic Stress Tolerance in Crop Plants
Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu
2016-01-01
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044
A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward
2010-01-12
Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loopsmore » that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.« less
Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2014-01-01
Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
Abscisic acid (ABA) receptors: light at the end of the tunnel
USDA-ARS?s Scientific Manuscript database
The plant hormone abscisic acid (ABA) plays a role in several aspects of plant growth and development. Understanding how this hormonal stimulus is sensed and transduced turned out to be one of the major tasks in the field of plant signaling. A series of recent papers proposed several different prote...
Roselló, Paula L; Vigliocco, Ana E; Andrade, Andrea M; Riera, Natalí V; Calafat, Mario; Molas, María L; Alemano, Sergio G
2016-05-01
Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.
Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon
2009-01-23
The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.
Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-01-01
Background & Aims Abscisic acid (ABA) is effective in preventing insulin resistance and obesity-related inflammation through a PPAR γ-dependent mechanism. The objective of this study was to assess the efficacy ABA in improving glucose homeostasis and suppress inflammation when administered in combination with rosiglitazone (Ros) and to determine whether PPAR γ activation by ABA is initiated via cAMP/protein kinase A (PKA) signaling. Methods Obese db/db mice were fed high-fat diets containing 0, 10, or 70 mg/kg Ros with and without racemic ABA (100 mg/kg) for 60 days. Glucose tolerance and fasting insulin levels were assessed at 6 and 8 weeks, respectively, and adipose tissue macrophage (ATM) infiltration was examined by flow cytometry. Gene expression was examined on white adipose tissue (WAT) and stromal vascular cells (SVCs) cultured with ABA, Ros, or an ABA/Ros combination. Results Both Ros and ABA improved glucose tolerance, and ABA decreased plasma insulin levels while having no effect on Ros-induced weight gain. ABA in combination with low-dose Ros (10 mg/kg; Roslo) synergistically inhibited ATM infiltration. Treatment of SVCs with Ros, ABA or ABA/Ros suppressed expression of the M1 marker CCL17. ABA and Ros synergistically increased PPAR γ activity and pretreatment with a cAMP-inhibitor or a PKA-inhibitor abrogated ABA-induced PPAR γ activation. Conclusions ABA and Ros act synergistically to modulate PPAR γ activity and macrophage accumulation in WAT and ABA enhances PPAR γ activity through a membrane-initiated mechanism dependent on cAMP/PKA signaling. PMID:20207056
Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-10-01
Abscisic acid (ABA) is effective in preventing insulin resistance and obesity-related inflammation through a PPAR γ-dependent mechanism. The objective of this study was to assess the efficacy ABA in improving glucose homeostasis and suppress inflammation when administered in combination with rosiglitazone (Ros) and to determine whether PPAR γ activation by ABA is initiated via cAMP/protein kinase A (PKA) signaling. Obese db/db mice were fed high-fat diets containing 0, 10, or 70 mg/kg Ros with and without racemic ABA (100 mg/kg) for 60 days. Glucose tolerance and fasting insulin levels were assessed at 6 and 8 weeks, respectively, and adipose tissue macrophage (ATM) infiltration was examined by flow cytometry. Gene expression was examined on white adipose tissue (WAT) and stromal vascular cells (SVCs) cultured with ABA, Ros, or an ABA/Ros combination. Both Ros and ABA improved glucose tolerance, and ABA decreased plasma insulin levels while having no effect on Ros-induced weight gain. ABA in combination with low-dose Ros (10 mg/kg; Roslo) synergistically inhibited ATM infiltration. Treatment of SVCs with Ros, ABA or ABA/Ros suppressed expression of the M1 marker CCL17. ABA and Ros synergistically increased PPAR γ activity and pretreatment with a cAMP-inhibitor or a PKA-inhibitor abrogated ABA-induced PPAR γ activation. ABA and Ros act synergistically to modulate PPAR γ activity and macrophage accumulation in WAT and ABA enhances PPAR γ activity through a membrane-initiated mechanism dependent on cAMP/PKA signaling. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu
2015-10-01
Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Liu, Hongyue; Ren, Xiaoqian; Zhu, Jiuzheng; Wu, Xi; Liang, Chanjuan
2018-05-31
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H + -ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H + -ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
Jiang, Jishan; Chen, Zhihong; Ban, Liping; Wu, Yudi; Huang, Jianping; Chu, Jinfang; Fang, Shuang; Wang, Zan; Gao, Hongwen; Wang, Xuemin
2017-01-01
P-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) is the first committed enzyme involved in the biosynthesis of vitamin E, and is characterized by catalyzing the conversion of p-hydroxyphenyl pyruvate (HPP) to homogentisic acid (HGA). Here, an HPPD gene was cloned from Medicago sativa L. and designated MsHPPD, which was expressed at high levels in alfalfa leaves. PEG 6000 (polyethylene glycol), NaCl, abscisic acid and salicylic acid were shown to significantly induce MsHPPD expression, especially in the cotyledons and root tissues. Overexpression of MsHPPD was found to significantly increase the level of β-tocotrienol and the total vitamin E content in Arabidopsis seeds. Furthermore, these transgenic Arabidopsis seeds exhibited an accelerated germination time, compared with wild-type seeds under normal conditions, as well as under NaCl and ABA treatments. Meanwhile, the expression level of several genes associated with ABA biosynthesis (NCED3, NCED5 and NCED9) and the ABA signaling pathway (RAB18, ABI3 and ABI5) were significantly down-regulated in MsHPPD-overexpressing transgenic lines, as well as the total free ABA content. Taken together, these results demonstrate that MsHPPD functions not only in the vitamin E biosynthetic pathway, but also plays a critical role in seed germination via affecting ABA biosynthesis and signaling. PMID:28084442
SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana
Ren, Ziyin; Zhi, Liya; Yao, Bin; Su, Chao; Liu, Liu; Li, Xia
2017-01-01
The phytohormone abscisic acid (ABA) is an essential part of the plant response to abiotic stressors such as drought. Upon the perception of ABA, pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) proteins interact with co-receptor protein phosphatase type 2Cs to permit activation Snf1-related protein kinase2 (SnRK2) kinases, which switch on ABA signaling by phosphorylating various target proteins. Thus, SnRK2 kinases are central regulators of ABA signaling. However, the mechanisms that regulate SnRK2 degradation remain elusive. Here, we show that SnRK2.3 is degradated by 26S proteasome system and ABA promotes its degradation. We found that SnRK2.3 interacts with AtPP2-B11 directly. AtPP2-B11 is an F-box protein that is part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex that negatively regulates plant responses to ABA by specifically promoting the degradation of SnRK2.3. AtPP2-B11 was induced by ABA, and the knockdown of AtPP2-B11 expression markedly increased the ABA sensitivity of plants during seed germination and postgerminative development. Overexpression of AtPP2-B11 does not affect ABA sensitivity, but inhibits the ABA hypersensitive phenotypes of SnRK2.3 overexpression lines. These results reveal a novel mechanism through which AtPP2-B11 specifically degrades SnRK2.3 to attenuate ABA signaling and the abiotic stress response in Arabidopsis. PMID:28787436
Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I
2015-01-01
A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964
Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; ...
2015-07-20
One central question is how specificity in cellular responses to the eukaryotic second messenger Ca 2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca 2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca 2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca 2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruplemore » mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca 2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca 2+-dependent and Ca 2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca 2+-signaling on a cellular, genetic, and biochemical level.« less
Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; ...
2015-07-29
A central question is how specificity in cellular responses to the eukaryotic second messenger Ca 2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca 2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca 2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca 2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruplemore » mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca 2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca 2+-dependent and Ca 2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca 2+-signaling on a cellular, genetic, and biochemical level.« less
Audenaert, Kris; De Meyer, Geert B.; Höfte, Monica M.
2002-01-01
Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea. PMID:11842153
Spence, Carla; Bais, Harsh
2015-10-01
Growth regulators act not only as chemicals that modulate plant growth but they also act as signal molecules under various biotic and abiotic stresses. Of all growth regulators, abscisic acid (ABA) is long known for its role in modulating plants response against both biotic and abiotic stress. Although the genetic information for ABA biosynthesis in plants is well documented, the knowledge about ABA biosynthesis in other organisms is still in its infancy. It is known that various microbes including bacteria produce and secrete ABA, but the overall functional significance of why ABA is synthesized by microbes is not known. Here we discuss the functional involvement of ABA biosynthesis by a pathogenic fungus. Furthermore, we propose that ABA biosynthesis in plant pathogenic fungi could be targeted for novel fungicidal discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Shou Ling; Shen, Si Shi; Xu, Zhi Hong; Xue, Hong Wei
2002-12-01
Abscisic acid (ABA) was critical in plant seed development and response to environmental factors such as stress situations. To study the possible ABA related signaling transduction pathways, we tried to isolate the ABA-regulated genes through fluorescent differential display PCR (FDD-PCR) technology using rice seedling as materials (treated with ABA for 2, 4, 8 and 12h). In the 17 fragments isolated, 14 and 3 clones were up-and down-regulated respectively. Sequence analyses revealed that the encoded proteins were involved in photosynthesis (7 fragments), signal transduction (1 fragments), transcription (2 fragments), metabolism and resistance (6 fragments), and unknown protein (1 fragments). 3 clones, encoding putative alpha/beta hydrolase fold, putative vacuolar H+ -ATPase B subunit, putative tyrosine phosphatase, were confirmed to be regulated under ABA treatment by RT-PCR and northern blot analysis. FDD-PCR and possible functional mechanisms of ABA were discussed.
Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.
Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X Edward; West, Graham M; Kovach, Amanda; Tan, M H Eileen; Suino-Powell, Kelly M; He, Yuanzheng; Xu, Yong; Chalmers, Michael J; Brunzelle, Joseph S; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R; Melcher, Karsten; Xu, H Eric
2012-01-06
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.
A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN
Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank
2014-01-01
It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944
González-García, Mary Paz; Rodríguez, Dolores; Nicolás, Carlos; Rodríguez, Pedro Luis; Nicolás, Gregorio; Lorenzo, Oscar
2003-01-01
FsPP2C1 was previously isolated from beech (Fagus sylvatica) seeds as a functional protein phosphatase type-2C (PP2C) with all the conserved features of these enzymes and high homology to ABI1, ABI2, and PP2CA, PP2Cs identified as negative regulators of ABA signaling. The expression of FsPP2C1 was induced upon abscisic acid (ABA) treatment and was also up-regulated during early weeks of stratification. Furthermore, this gene was specifically expressed in ABA-treated seeds and was hardly detectable in vegetative tissues. In this report, to provide genetic evidence on FsPP2C1 function in seed dormancy and germination, we used an overexpression approach in Arabidopsis because transgenic work is not feasible in beech. Constitutive expression of FsPP2C1 under the cauliflower mosaic virus 35S promoter confers ABA insensitivity in Arabidopsis seeds and, consequently, a reduced degree of seed dormancy. Additionally, transgenic 35S:FsPP2C1 plants are able to germinate under unfavorable conditions, as inhibitory concentrations of mannitol, NaCl, or paclobutrazol. In vegetative tissues, Arabidopsis FsPP2C1 transgenic plants show ABA-resistant early root growth and diminished induction of the ABA-response genes RAB18 and KIN2, but no effect on stomatal closure regulation. Seed and vegetative phenotypes of Arabidopsis 35S:FsPP2C1 plants suggest that FsPP2C1 negatively regulates ABA signaling. The ABA inducibility of FsPP2C1 expression, together with the transcript accumulation mainly in seeds, suggest that it could play an important role modulating ABA signaling in beechnuts through a negative feedback loop. Finally, we suggest that negative regulation of ABA signaling by FsPP2C1 is a factor contributing to promote the transition from seed dormancy to germination during early weeks of stratification. PMID:12970481
Zhang, Fan; Wei, Qiuhui; Shi, Jiaochun; Jin, Xia; He, Yuan; Zhang, Yang; Luo, Qingchen; Wang, Yuesheng; Chang, Junli; Yang, Guangxiao; He, Guangyuan
2017-01-01
The phytohormone abscisic acid (ABA) is essential in plant responding to biotic and abiotic stresses. Although ABA signaling model is well established in Arabidopsis, ABA receptor PYL family and clade A PP2C subfamily are not yet characterized in monocot model plant Brachypodium distachyon. In this study, we identified 12 PYLs and 8 clade A PP2Cs from B. distachyon genome and successfully cloned 12 PYLs and 7 clade A PP2Cs. Bioinformatic and expression analyses showed that most of the identified genes respond to several signal molecules and abiotic stresses. Protein–protein interaction analysis revealed that many BdPYLs and BdPP2CAs participate in the classic ABA-PYL-PP2C-SnRK2 signaling pathway. A clade A PP2C, designated BdPP2CA6, interacted with BdPYL11 in the absence of ABA and localized in nucleus. Most clade A PP2C members from Arabidopsis showed negatively regulation in ABA signaling pathway, whereas BdPP2CA6-overexpression transgenic Arabidopsis showed ABA hypersensitive phenotype, resulting in enhanced stomatal closure and salinity tolerance. Our results indicate that BdPP2CA6 positively regulates ABA and stress signal pathway in transgenic Arabidopsis plant seedlings. PMID:28293246
Li, Song; Assmann, Sarah M; Albert, Réka
2006-01-01
Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA) inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K+ efflux through slowly activating K+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited. PMID:16968132
Shi, Yiting; Wang, Zheng; Meng, Pei; Tian, Siqi; Zhang, Xiaoyan; Yang, Shuhua
2013-07-01
ALTERED MERISTEM PROGRAM1 (AMP1) encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We isolated a new mutant allele of AMP1, amp1-20, from a screen for abscisic acid (ABA) hypersensitive mutants and characterized the function of AMP1 in plant stress responses. amp1 mutants displayed ABA hypersensitivity, while overexpression of AMP1 caused ABA insensitivity. Moreover, endogenous ABA concentration was increased in amp1-20- and decreased in AMP1-overexpressing plants under stress conditions. Application of ABA reduced the AMP1 protein level in plants. Interestingly, amp1 mutants accumulated excess superoxide and displayed hypersensitivity to oxidative stress. The hypersensitivity of amp1 to ABA and oxidative stress was partially rescued by reactive oxygen species (ROS) scavenging agent. Furthermore, amp1 was tolerant to freezing and drought stress. The ABA hypersensitivity and freezing tolerance of amp1 was dependent on ABA signaling. Moreover, amp1 had elevated soluble sugar content and showed hypersensitivity to high concentrations of sugar. By contrast, the contents of amino acids were changed in amp1 mutant compared to the wild-type. This study suggests that AMP1 modulates ABA, oxidative and abotic stress responses, and is involved in carbon and amino acid metabolism in Arabidopsis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Mou, Wangshu; Li, Dongdong; Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin
2016-01-01
ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening.
Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin
2016-01-01
ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326
Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao
2016-07-01
ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Choi, Du Seok; Hwang, Byung Kook
2011-01-01
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism. PMID:21335377
Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses1[OPEN
Bakshi, Arkadipta; Fernandez, Jessica C.
2018-01-01
Ethylene is a gaseous plant hormone perceived by a family of receptors in Arabidopsis (Arabidopsis thaliana) including ETHYLENE RESPONSE1 (ETR1) and ETR2. Previously we showed that etr1-6 loss-of-function plants germinate better and etr2-3 loss-of-function plants germinate worse than wild-type under NaCl stress and in response to abscisic acid (ABA). In this study, we expanded these results by showing that ETR1 and ETR2 have contrasting roles in the control of germination under a variety of inhibitory conditions for seed germination such as treatment with KCl, CuSO4, ZnSO4, and ethanol. Pharmacological and molecular biology results support a model where ETR1 and ETR2 are indirectly affecting the expression of genes encoding ABA signaling proteins to affect ABA sensitivity. The receiver domain of ETR1 is involved in this function in germination under these conditions and controlling the expression of genes encoding ABA signaling proteins. Epistasis analysis demonstrated that these contrasting roles of ETR1 and ETR2 do not require the canonical ethylene signaling pathway. To explore the importance of receptor-protein interactions, we conducted yeast two-hybrid screens using the cytosolic domains of ETR1 and ETR2 as bait. Unique interacting partners with either ETR1 or ETR2 were identified. We focused on three of these proteins and confirmed the interactions with receptors. Loss of these proteins led to faster germination in response to ABA, showing that they are involved in ABA responses. Thus, ETR1 and ETR2 have both ethylene-dependent and -independent roles in plant cells that affect responses to ABA. PMID:29158332
Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.
Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C
2016-02-01
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Emerging roles of protein kinase CK2 in abscisic acid signaling.
Vilela, Belmiro; Pagès, Montserrat; Riera, Marta
2015-01-01
The phytohormone abscisic acid (ABA) regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2), the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015). CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.
Mechanisms of action and medicinal applications of abscisic Acid.
Bassaganya-Riera, J; Skoneczka, J; Kingston, D G J; Krishnan, A; Misyak, S A; Guri, A J; Pereira, A; Carter, A B; Minorsky, P; Tumarkin, R; Hontecillas, R
2010-01-01
Since its discovery in the early 1960's, abscisic acid (ABA) has received considerable attention as an important phytohormone, and more recently, as a candidate medicinal in humans. In plants it has been shown to regulate important physiological processes such as response to drought stress, and dormancy. The discovery of ABA synthesis in animal cells has generated interest in the possible parallels between its role in plant and animal systems. The importance of this molecule has prompted the development of several methods for the chemical synthesis of ABA, which differ significantly from the biosynthesis of ABA in plants through the mevalonic acid pathway. ABA recognition in plants has been shown to occur at both the intra- and extracellularly but little is known about the perception of ABA by animal cells. A few ABA molecular targets have been identified in vitro (e.g., calcium signaling, G protein-coupled receptors) in both plant and animal systems. A unique finding in mammalian systems, however, is that the peroxisome proliferator-activated receptor, PPAR gamma, is upregulated by ABA in both in vitro and in vivo studies. Comparison of the human PPAR gamma gene network with Arabidopsis ABA-related genes reveal important orthologs between these groups. Also, ABA can ameliorate the symptoms of type II diabetes, targeting PPAR gamma in a similar manner as the thiazolidinediones class of anti-diabetic drugs. The use of ABA in the treatment of type II diabetes, offers encouragement for further studies concerning the biomedical applications of ABA.
Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.
Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P
2016-08-11
Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience. Copyright © 2016 Elsevier Inc. All rights reserved.
Abscisic acid controlled sex before transpiration in vascular plants.
McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C
2016-10-26
Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO 2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.
Yamamoto, Yoshiko; Negi, Juntaro; Wang, Cun; Isogai, Yasuhiro; Schroeder, Julian I; Iba, Koh
2016-02-01
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. © 2016 American Society of Plant Biologists. All rights reserved.
Yamamoto, Yoshiko; Negi, Juntaro; Isogai, Yasuhiro; Schroeder, Julian I.; Iba, Koh
2016-01-01
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. PMID:26764376
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases
Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric
2013-01-01
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanismmore » that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.« less
Lim, Chae Woo; Baek, Woonhee; Lee, Sung Chul
2017-04-01
Ubiquitin-mediated protein modification occurs at multiple steps of abscisic acid (ABA) signaling. Here, we sought proteins responsible for degradation of the pepper ( Capsicum annuum ) type 2C protein phosphatase CaADIP1 via the 26S proteasome system. We showed that the RING-type E3 ligase CaAIRF1 ( Capsicum annuum ADIP1 Interacting RING Finger Protein 1) interacts with and ubiquitinates CaADIP1. CaADIP1 degradation was slower in crude proteins from CaAIRF1 -silenced peppers than in those from control plants. CaAIRF1 -silenced pepper plants displayed reduced ABA sensitivity and decreased drought tolerance characterized by delayed stomatal closure and suppressed induction of ABA- and drought-responsive marker genes. In contrast, CaAIRF1 -overexpressing Arabidopsis ( Arabidopsis thaliana ) plants exhibited ABA-hypersensitive and drought-tolerant phenotypes. Moreover, in these plants, CaADIP1-induced ABA hyposensitivity was strongly suppressed by CaAIRF1 overexpression. Our findings highlight a potential new route for fine-tune regulation of ABA signaling in pepper via CaAIRF1 and CaADIP1. © 2017 American Society of Plant Biologists. All Rights Reserved.
On the role of abscisic acid in seed dormancy of red rice.
Gianinetti, Alberto; Vernieri, Paolo
2007-01-01
Abscisic acid (ABA) is commonly assumed to be the primary effector of seed dormancy, but conclusive evidence for this role is lacking. This paper reports on the relationships occurring in red rice between ABA and seed dormancy. Content of free ABA in dry and imbibed caryopses, both dormant and after-ripened, the effects of inhibitors, and the ability of applied ABA to revert dormancy breakage were considered. The results indicate: (i) no direct correlation of ABA content with the dormancy status of the seed, either dry or imbibed; (ii) different sensitivity to ABA of non-dormant seed and seed that was forced to germinate by fluridone; and (iii) an inability of exogenous ABA to reinstate dormancy in fluridone-treated seed, even though applied at a pH which favoured high ABA accumulation. These considerations suggest that ABA is involved in regulating the first steps of germination, but unidentified developmental effectors that are specific to dormancy appear to stimulate ABA synthesis and to enforce the responsiveness to this phytohormone. These primary effectors appear physiologically to modulate dormancy and via ABA they effect the growth of the embryo. Therefore, it is suggested that ABA plays a key role in integrating the dormancy-specific developmental signals with the control of growth.
Seed dormancy and ABA signaling
del Carmen Rodríguez-Gacio, María; Matilla-Vázquez, Miguel A
2009-01-01
The seed is an important organ in higher plants, it is an important organ for plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. These events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signaling transduction. However, new publications seem to show that almost all these receptors lack several properties to consider them as such. PMID:19875942
Role of nitric oxide in regulating stomatal apertures
Ribeiro, Dimas M; Bright, Jo; Confraria, Ana; Harrison, Judith; Barros, Raimundo S; Desikan, Radhika; Neill, Steven J; Hancock, John T
2009-01-01
During stomatal closure, nitric oxide (NO) operates as one of the key intermediates in the complex, abscisic acid (ABA)-mediated, guard cell signaling network that regulates this process. However, data concerning the role of NO in stomatal closure that occurs in turgid vs. dehydrated plants is limited. The data presented demonstrate that, while there is a requirement for NO during the ABA-induced stomatal closure of turgid leaves, such a requirement does not exist for ABA-enhanced stomatal closure observed to occur during conditions of rapid dehydration. The data also indicate that the ABA signaling pathway must be both functional and to some degree activated for guard cell NO signaling to occur. These observations are in line with the idea that the effects of NO in guard cells are mediated via a Ca2+-dependent rather than a Ca2+-independent ABA signaling pathway. It appears that there is a role for NO in the fine tuning of the stomatal apertures of turgid leaves that occurs in response to fluctuations in the prevailing environment. PMID:19816112
Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku
2015-09-01
Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dinh, Son Truong; Baldwin, Ian T.; Galis, Ivan
2013-01-01
Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores. PMID:23784463
Xu, Shucheng
2010-09-01
The role of a calcium-dependent and calmodulin (CaM)-stimulated protein kinase in abscisic acid (ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays). In-gel kinase assays showed that treatments with ABA or H(2)O(2) induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly. Furthermore, we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase II (CaMK II) inhibitor KN-93 or CaM antagonist W-7. Treatments with ABA or H(2)O(2) not only induced the activation of the 52-kDa protein kinase, but also enhanced the total activities of the antioxidant enzymes, including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species (ROS) inhibitor or scavenger. Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H(2)O(2) production. Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger. These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H(2)O(2) plays a pivotal role in ABA signaling. We infer that CaMK acts both upstream and downstream of H(2)O(2), but mainly acts between ABA and H(2)O(2) in ABA-induced antioxidant-defensive signaling.
Chen, Yun; Ji, Fangfang; Xie, Hong; Liang, Jiansheng; Zhang, Jianhua
2006-01-01
The regulator of G-protein signaling (RGS) proteins, recently identified in Arabidopsis (Arabidopsis thaliana; named as AtRGS1), has a predicted seven-transmembrane structure as well as an RGS box with GTPase-accelerating activity and thus desensitizes the G-protein-mediated signaling. The roles of AtRGS1 proteins in Arabidopsis seed germination and their possible interactions with sugars and abscisic acid (ABA) were investigated in this study. Using seeds that carry a null mutation in the genes encoding RGS protein (AtRGS1) and the alpha-subunit (AtGPA1) of the G protein in Arabidopsis (named rgs1-2 and gpa1-3, respectively), our genetic evidence proved the involvement of the AtRGS1 protein in the modulation of seed germination. In contrast to wild-type Columbia-0 and gpa1-3, stratification was found not to be required and the after-ripening process had no effect on the rgs1-2 seed germination. In addition, rgs1-2 seed germination was insensitive to glucose (Glc) and sucrose. The insensitivities of rgs1-2 to Glc and sucrose were not due to a possible osmotic stress because the germination of rgs1-2 mutant seeds showed the same response as those of gpa1-3 mutants and wild type when treated with the same concentrations of mannitol and sorbitol. The gpa1-3 seed germination was hypersensitive while rgs1-2 was less sensitive to exogenous ABA. The different responses to ABA largely diminished and the inhibitory effects on seed germination by exogenous ABA and Glc were markedly alleviated when endogenous ABA biosynthesis was inhibited. Hypersensitive responses of seed germination to both Glc and ABA were also observed in the overexpressor of AtRGS1. Analysis of the active endogenous ABA levels and the expression of NCED3 and ABA2 genes showed that Glc significantly stimulated the ABA biosynthesis and increased the expression of NCED3 and ABA2 genes in germinating Columbia seeds, but not in rgs1-2 mutant seeds. These data suggest that AtRGS1 proteins are involved in the regulation of seed germination. The hyposensitivity of rgs1-2 mutant seed germination to Glc might be the result of the impairment of ABA biosynthesis during seed germination.
Chen, Yun; Ji, Fangfang; Xie, Hong; Liang, Jiansheng; Zhang, Jianhua
2006-01-01
The regulator of G-protein signaling (RGS) proteins, recently identified in Arabidopsis (Arabidopsis thaliana; named as AtRGS1), has a predicted seven-transmembrane structure as well as an RGS box with GTPase-accelerating activity and thus desensitizes the G-protein-mediated signaling. The roles of AtRGS1 proteins in Arabidopsis seed germination and their possible interactions with sugars and abscisic acid (ABA) were investigated in this study. Using seeds that carry a null mutation in the genes encoding RGS protein (AtRGS1) and the α-subunit (AtGPA1) of the G protein in Arabidopsis (named rgs1-2 and gpa1-3, respectively), our genetic evidence proved the involvement of the AtRGS1 protein in the modulation of seed germination. In contrast to wild-type Columbia-0 and gpa1-3, stratification was found not to be required and the after-ripening process had no effect on the rgs1-2 seed germination. In addition, rgs1-2 seed germination was insensitive to glucose (Glc) and sucrose. The insensitivities of rgs1-2 to Glc and sucrose were not due to a possible osmotic stress because the germination of rgs1-2 mutant seeds showed the same response as those of gpa1-3 mutants and wild type when treated with the same concentrations of mannitol and sorbitol. The gpa1-3 seed germination was hypersensitive while rgs1-2 was less sensitive to exogenous ABA. The different responses to ABA largely diminished and the inhibitory effects on seed germination by exogenous ABA and Glc were markedly alleviated when endogenous ABA biosynthesis was inhibited. Hypersensitive responses of seed germination to both Glc and ABA were also observed in the overexpressor of AtRGS1. Analysis of the active endogenous ABA levels and the expression of NCED3 and ABA2 genes showed that Glc significantly stimulated the ABA biosynthesis and increased the expression of NCED3 and ABA2 genes in germinating Columbia seeds, but not in rgs1-2 mutant seeds. These data suggest that AtRGS1 proteins are involved in the regulation of seed germination. The hyposensitivity of rgs1-2 mutant seed germination to Glc might be the result of the impairment of ABA biosynthesis during seed germination. PMID:16361523
Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang
2017-08-29
Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.
Li, Jianzhao; Xu, Ying; Niu, Qingfeng; He, Lufang; Teng, Yuanwen; Bai, Songling
2018-01-01
Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process. PMID:29361708
Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul
2015-09-01
Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.
Escalante-Pérez, María; Krol, Elzbieta; Stange, Annette; Geiger, Dietmar; Al-Rasheid, Khaled A. S.; Hause, Bettina; Neher, Erwin; Hedrich, Rainer
2011-01-01
Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca2+ signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca2+ signals. PMID:21896747
Escalante-Pérez, María; Krol, Elzbieta; Stange, Annette; Geiger, Dietmar; Al-Rasheid, Khaled A S; Hause, Bettina; Neher, Erwin; Hedrich, Rainer
2011-09-13
Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca(2+) signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca(2+) signals.
Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng
2013-03-01
Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.
Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong
2016-06-01
Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.
An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants
Cao, Minjie; Liu, Xue; Zhang, Yan; Xue, Xiaoqian; Zhou, X Edward; Melcher, Karsten; Gao, Pan; Wang, Fuxing; Zeng, Liang; Zhao, Yang; Zhao, Yang; Deng, Pan; Zhong, Dafang; Zhu, Jian-Kang; Xu, H Eric; Xu, Yong
2013-01-01
Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules. PMID:23835477
Skubacz, Anna; Daszkowska-Golec, Agata; Szarejko, Iwona
2016-01-01
ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants. PMID:28018412
Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
1999-01-01
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways. PMID:9880362
Savchenko, Tatyana; Kolla, Venkat A; Wang, Chang-Quan; Nasafi, Zainab; Hicks, Derrick R; Phadungchob, Bpantamars; Chehab, Wassim E; Brandizzi, Federica; Froehlich, John; Dehesh, Katayoon
2014-03-01
Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.
Tan, Wenrong; Zhang, Dawei; Zhou, Huapeng; Zheng, Ting; Yin, Yanhai; Lin, Honghui
2018-04-01
Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feedback mechanism and components negatively regulating this pathway are less well understood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1 which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition, ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress, suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3 were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation. Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their drought responses.
Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh
2017-01-01
Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276
Lyzenga, Wendy J.; Sullivan, Victoria; Liu, Hongxia; Stone, Sophia L.
2017-01-01
The Really Interesting New Gene (RING)-type E3 ligase, Keep on Going (KEG) plays a critical role in Arabidopsis growth after germination and the connections between KEG and hormone signaling pathways are expanding. With regards to abscisic acid (ABA) signaling, KEG targets ABA-responsive transcription factors abscisic acid insensitive 5, ABF1 and ABF3 for ubiquitination and subsequent degradation through the 26S proteasome. Regulation of E3 ligases through self-ubiquitination is common to RING-type E3 ligases and ABA promotes KEG self-ubiquitination and degradation. ABA-mediated degradation of KEG is phosphorylation-dependent; however, upstream signaling proteins that may regulate KEG stability have not been characterized. In this report, we show that CBL-Interacting Protein Kinase (CIPK) 26 can phosphorylate KEG in vitro. Using both in vitro and in planta degradation assays we provide evidence which suggests that the kinase activity of CIPK26 promotes the degradation of KEG. Furthermore, we found that the kinase activity of CIPK26 also influences its own stability; a constitutively active version is more stable than a wild type or a kinase dead version. Our results suggest a reciprocal regulation model wherein an activated and stable CIPK26 phosphorylates KEG to promote degradation of the E3. PMID:28443108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jian; Seng, Shanshan; Carianopol, Carina
Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancymore » with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy. - Highlights: • GhAFP-like is expessed in dormant corm. • Overexpressing GhAFP-like showed early germination and insensitivity to ABA. • Overexpressing GhAFP-like changed ABI5 downstream genes expression.« less
Holalu, Srinidhi V; Finlayson, Scott A
2017-02-01
Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Zang, Guangchao; Zou, Hanyan; Zhang, Yuchan; Xiang, Zheng; Huang, Junli; Luo, Li; Wang, Chunping; Lei, Kairong; Li, Xianyong; Song, Deming; Din, Ahmad Ud; Wang, Guixue
2016-01-01
DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1. Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice. PMID:27208292
He, Yuehui; Gan, Susheng
2004-01-01
Seed dormancy is an important developmental process that prevents pre-harvest sprouting in many grains and other seeds. Abscisic acid (ABA), a plant hormone, plays a crucial role in regulating dormancy but the underlying molecular regulatory mechanisms are not fully understood. An Arabidopsis zinc-finger gene, MEDIATOR OF ABA-REGULATED DORMANCY 1 ( MARD1 ) was identified and functionally analyzed. MARD1 expression is up-regulated by ABA. A T-DNA insertion in the promoter region downstream of two ABA-responsive elements (ABREs) renders MARD1 unable to respond to ABA. The mard1 seeds are less dormant and germinate in total darkness; their germination is resistant to external ABA at the stage of radicle protrusion. These results suggest that this novel zinc-finger protein with a proline-rich N-terminus is an important downstream component of the ABA signaling pathway that mediates ABA-regulated seed dormancy in Arabidopsis.
Ross, Christian; Shen, Qingxi J
2006-09-01
Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.
Akagi, Takashi; Katayama-Ikegami, Ayako; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo
2012-01-01
Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5. PMID:22190340
Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.
1996-01-01
The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398
Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua
2011-01-01
Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. PMID:21610183
Zhang, Fangyuan; Fu, Xueqing; Lv, Zongyou; Lu, Xu; Shen, Qian; Zhang, Ling; Zhu, Mengmeng; Wang, Guofeng; Sun, Xiaofen; Liao, Zhihua; Tang, Kexuan
2015-01-01
Artemisinin is a sesquiterpenoid especially synthesized in the Chinese herbal plant, Artemisia annua, which is widely used in the treatment of malaria. Artemisinin accumulation can be enhanced by exogenous abscisic acid (ABA) treatment. However, it is not known how ABA signaling regulates artemisinin biosynthesis. A global expression profile and phylogenetic analysis as well as the dual-LUC screening revealed that a basic leucine zipper family transcription factor from A. annua (namely AabZIP1) was involved in ABA signaling to regulate artemisinin biosynthesis. AabZIP1 had a higher expression level in the inflorescences than in other tissues; ABA treatment, drought, and salt stress strongly induced the expression of AabZIP1. Yeast one-hybrid assay and electrophoretic mobility shift assay (EMSA) showed that AabZIP1 bound to the ABA-responsive elements (ABRE) in the promoter regions of the amorpha-4,11-diene synthase (ADS) gene and CYP71AV1, which are two key structural genes of the artemisinin biosynthetic pathway. A mutagenesis assay showed that the C1 domain in the N-terminus of AabZIP1 was important for its transactivation activity. Furthermore, the activation of ADS and CYP71AV1 promoters by AabZIP1 was enhanced by ABA treatment in transient dual-LUC analysis. The AabZIP1 variant with C1 domain deletion lost the ability to activate ADS and CYP71AV1 promoters regardless of ABA treatment. Notably, overexpression of AabZIP1 in A. annua resulted in significantly increased accumulation of artemisinin. Our results indicate that ABA promotes artemisinin biosynthesis, likely through 1 activation of ADS and CYP71AV1 expression by AabZIP in A. annua. Meanwhile, our findings reveal the potential value of AabZIP1 in genetic engineering of artemisinin production. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Munemasa, Shintaro; Wang, Yong-Fei; Andreoli, Shannon; Tiriac, Hervé; Alonso, Jose M; Harper, Jeffery F; Ecker, Joseph R; Kwak, June M; Schroeder, Julian I
2006-01-01
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling. PMID:17032064
Perera, Imara Y.; Hung, Chiu-Yueh; Moore, Candace D.; Stevenson-Paulik, Jill; Boss, Wendy F.
2008-01-01
The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP3) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP3-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca2+ responses to a cold or salt stimulus were reduced by ∼30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP3 is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP3 signal reveals unanticipated interconnections between signaling pathways. PMID:18849493
ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination
Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie
2013-01-01
Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630
Benson, Chantel L; Kepka, Michal; Wunschel, Christian; Rajagopalan, Nandhakishore; Nelson, Ken M; Christmann, Alexander; Abrams, Suzanne R; Grill, Erwin; Loewen, Michele C
2015-05-01
Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design of ABA agonists. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Pre-mRNA splicing repression triggers abiotic stress signaling in plants.
Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A; Moustafa, Ahmed; Momin, Afaque A; Tashkandi, Manal; Richardson, Dale N; Fujii, Hiroaki; Arold, Stefan; Rodriguez, Pedro L; Duque, Paula; Mahfouz, Magdy M
2017-01-01
Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A::LUC and MAPKKK18::uidA in Arabidopsis thaliana and mimics the effects of ABA on stomatal aperture. Genome-wide analysis of AS by RNA-seq revealed that PB perturbs the splicing machinery and leads to a striking increase in intron retention and a reduction in other forms of AS. Interestingly, PB treatment activates the ABA signaling pathway by inhibiting the splicing of clade A PP2C phosphatases while still maintaining to some extent the splicing of ABA-activated SnRK2 kinases. Taken together, our data establish PB as an inhibitor and modulator of splicing and a mimic of abiotic stress signals in plants. Thus, PB reveals the molecular underpinnings of the interplay between stress responses, ABA signaling and post-transcriptional regulation in plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Alvarez, Sophie; Roy Choudhury, Swarup; Hicks, Leslie M; Pandey, Sona
2013-03-01
Abscisic acid (ABA) is proposed to be perceived by multiple receptors in plants. We have previously reported on the role of two GPCR-type G-proteins (GTG proteins) as plasma membrane-localized ABA receptors in Arabidopsis thaliana. However, due to the presence of multiple transmembrane domains, detailed structural and biochemical characterization of GTG proteins remains limited. Since ABA induces substantial changes in the proteome of plants, a labeling LC-based quantitative proteomics approach was applied to elucidate the global effects and possible downstream targets of GTG1/GTG2 proteins. Quantitative differences in protein abundance between wild-type and gtg1gtg2 were analyzed for evaluation of the effect of ABA on the root proteome and its dependence on the presence of functional GTG1/GTG2 proteins. The results presented in this study reveal the most comprehensive ABA-responsive root proteome reported to date in Arabidopsis. Notably, the majority of ABA-responsive proteins required the presence of GTG proteins, supporting their key role in ABA signaling. These observations were further confirmed by additional experiments. Overall, comparison of the ABA-dependent protein abundance changes in wild-type versus gtg1gtg2 provides clues to their possible links with some of the well-established effectors of the ABA signaling pathways and their role in mediating phytohormone cross-talk.
Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik
2017-01-01
Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987
Hong, S W; Jon, J H; Kwak, J M; Nam, H G
1997-01-01
A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed. PMID:9112773
Née, Guillaume; Kramer, Katharina; Nakabayashi, Kazumi; Yuan, Bingjian; Xiang, Yong; Miatton, Emma; Finkemeier, Iris; Soppe, Wim J J
2017-07-13
The time of seed germination is a major decision point in the life of plants determining future growth and development. This timing is controlled by seed dormancy, which prevents germination under favourable conditions. The plant hormone abscisic acid (ABA) and the protein DELAY OF GERMINATION 1 (DOG1) are essential regulators of dormancy. The function of ABA in dormancy is rather well understood, but the role of DOG1 is still unknown. Here, we describe four phosphatases that interact with DOG1 in seeds. Two of them belong to clade A of type 2C protein phosphatases: ABA-HYPERSENSITIVE GERMINATION 1 (AHG1) and AHG3. These phosphatases have redundant but essential roles in the release of seed dormancy epistatic to DOG1. We propose that the ABA and DOG1 dormancy pathways converge at clade A of type 2C protein phosphatases.The DOG1 protein is a major regulator of seed dormancy in Arabidopsis. Here, Née et al. provide evidence that DOG1 can interact with the type 2C protein phosphatases AHG1 and AHG3 and that this represents the convergence point of the DOG1-regulated dormancy pathway and signalling by the plant hormone abscisic acid.
Meimoun, Patrice; Vidal, Guillaume; Bohrer, Anne-Sophie; Lehner, Arnaud; Tran, Daniel; Briand, Joël; Bouteau, François
2009-01-01
In Arabidopsis thaliana cell suspension,abscisic acid (aBa) induces changes in cytosolic calcium concentration ([Ca2+]cyt) which are the trigger for aBa-induced plasma membrane anion current activation, H+-aTPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca2+ stores in aBa signal transduction through electrophysiological current measurements, cytosolic Ca2+ activity measurements with the apoaequorin Ca2+ reporter protein and external pH measurement. Intracellular Ca2+ stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca2+ release in the cytosol, (2) anion channel activation and H+-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca2+ release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana. PMID:19847112
Arabidopsis YAK1 regulates abscisic acid response and drought resistance.
Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming
2016-07-01
Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.
Bueso, Eduardo; Rodriguez, Lesia; Lorenzo-Orts, Laura; Gonzalez-Guzman, Miguel; Sayas, Enric; Muñoz-Bertomeu, Jesús; Ibañez, Carla; Serrano, Ramón; Rodriguez, Pedro L
2014-12-01
Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Wang, Shun; Li, Wei; Chang, Keke; Liu, Juan; Guo, Qingqian; Sun, Haifeng; Jiang, Min; Zhang, Hao; Chen, Jing
2017-01-01
Abscisic acid (ABA) plays an important role in abiotic stress response and physiological signal transduction resisting to the adverse environment. Therefore, it is very essential for the quantitative detection of abscisic acid (ABA) due to its indispensable role in plant physiological activities. Herein, a new detection method based on localized surface plasmon resonance (LSPR) using aptamer-functionalized gold nanoparticles (AuNPs) is developed without using expensive instrument and antibody. In the presence of ABA, ABA specifically bind with their aptamers to form the ABA-aptamer complexes with G-quadruplex-like structure and lose the ability to stabilize AuNPs against NaCl-induced aggregation. Meanwhile, the changes of the LSPR spectra of AuNP solution occur and therefore the detection of ABA achieved. Under optimized conditions, this method showed a good linear range covering from 5×10−7 M to 5×10−5 M with a detection limit of 0.33 μM. In practice, the usage of this novel method has been demonstrated by its application to detect ABA from fresh leaves of rice with the relative error of 6.59%-7.93% compared with ELISA bioassay. The experimental results confirmed that this LSPR-based biosensor is simple, selective and sensitive for the detection of ABA. The proposed LSPR method could offer a new analytical platform for the detection of other plant hormones by changing the corresponding aptamer. PMID:28953934
Loewenstein, Nancy J.; Pallardy, Stephen G.
1998-07-01
Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.
Rodrigues, Maria Aurineide; Hamachi, Leonardo; Mioto, Paulo Tamaso; Purgatto, Eduardo; Mercier, Helenice
2016-11-01
Guzmania monostachia is an epiphytic heteroblastic bromeliad that exhibits rosette leaves forming water-holding tanks at maturity. Different portions along its leaf blades can display variable degrees of crassulacean acid metabolism (CAM) up-regulation under drought. Since abscisic acid (ABA) can act as an important long-distance signal, we conducted a joint investigation of ontogenetic and drought impacts on CAM intensity and ABA levels in different leaf groups within the G. monostachia rosette. For this, three groups of leaves were analysed according to their position within the mature-tank rosette (i.e., younger, intermediate, and older leaves) to characterize the general growth patterns and magnitude of drought-modulated CAM expression. CAM activity was evaluated by analysing key molecules in the biochemical machinery of this photosynthetic pathway, while endogenous ABA content was comparatively measured in different portions of each leaf group after seven days under well-watered (control) or drought treatment. The results revealed that G. monostachia shows more uniform morphological characteristics along the leaves when in the atmospheric stage. The drought treatment of mature-tank rosettes generally induced in older leaves a more severe water loss, followed by the lowest CAM activity and a higher increase in ABA levels, while younger leaves showed an opposite response. Therefore, leaf groups at distinct ontogenetic stages within the tank rosette of G. monostachia responded to drought with variable degrees of water loss and CAM expression. ABA seems to participate in this tissue-compartmented response as a long-distance signalling molecule, transmitting the drought-induced signals originated in older leaves towards the younger ones. Copyright © 2016. Published by Elsevier Masson SAS.
Seiler, Christiane; Harshavardhan, Vokkaliga T.; Reddy, Palakolanu S.; Hensel, Götz; Kumlehn, Jochen; Eschen-Lippold, Lennart; Rajesh, Kalladan; Korzun, Viktor; Wobus, Ulrich; Lee, Justin; Selvaraj, Gopalan; Sreenivasulu, Nese
2014-01-01
Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8′-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8′-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley. PMID:24610749
Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance
Komatsu, Kenji; Suzuki, Norihiro; Kuwamura, Mayuri; Nishikawa, Yuri; Nakatani, Mao; Ohtawa, Hitomi; Takezawa, Daisuke; Seki, Motoaki; Tanaka, Maho; Taji, Teruaki; Hayashi, Takahisa; Sakata, Yoichi
2013-01-01
Vegetative desiccation tolerance is common in bryophytes, although this character has been lost in most vascular plants. The moss Physcomitrella patens survives complete desiccation if treated with abscisic acid (ABA). Group A protein phosphatases type 2C (PP2C) are negative regulators of abscisic acid signalling. Here we show that the elimination of Group A PP2C is sufficient to ensure P. patens survival to full desiccation, without ABA treatment, although its growth is severely hindered. Microarray analysis shows that the Group A PP2C-regulated genes exclusively overlap with genes exhibiting a high level of ABA induction. Group A PP2C disruption weakly affects ABA-activated kinase activity, indicating Group A PP2C action downstream of these kinases in the moss. We propose that Group A PP2C emerged in land plants to repress desiccation tolerance mechanisms, possibly facilitating plants propagation on land, whereas ABA releases the intrinsic desiccation tolerance from Group A PP2C regulation. PMID:23900426
Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang
2015-01-01
The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).
Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid
Steffens, Bianka; Sauter, Margret
2005-01-01
Programmed cell death (PCD) of epidermal cells that cover adventitious root primordia in deepwater rice (Oryza sativa) is induced by submergence. Early suicide of epidermal cells may prevent injury to the growing root that emerges under flooding conditions. Induction of PCD is dependent on ethylene signaling and is further promoted by gibberellin (GA). Ethylene and GA act in a synergistic manner, indicating converging signaling pathways. Treatment of plants with GA alone did not promote PCD. Treatment with the GA biosynthesis inhibitor paclobutrazol resulted in increased PCD in response to ethylene and GA presumably due to an increased sensitivity of epidermal cells to GA. Abscisic acid (ABA) was shown to efficiently delay ethylene-induced as well as GA-promoted cell death. The results point to ethylene signaling as a target of ABA inhibition of PCD. Accumulation of ethylene and GA and a decreased ABA level in the rice internode thus favor induction of epidermal cell death and ensure that PCD is initiated as an early response that precedes adventitious root growth. PMID:16169967
Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen
2015-01-01
Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916
Ma, Qi-Jun; Sun, Mei-Hong; Lu, Jing; Liu, Ya-Jing; You, Chun-Xiang; Hao, Yu-Jin
2017-10-01
Phytohormone abscisic acid (ABA) regulates many important processes in plants. It is a major molecule facilitating signal transduction during the abiotic stress response. In this study, an ABA-inducible transcription factor gene, MdAREB2, was identified in apple. Transgenic analysis was performed to characterize its function in ABA sensitivity. Overexpression of the MdAREB2 gene increased ABA sensitivity in the transgenic apple compared with the wild-type (WT) control. In addition, it was found that the protein MdAREB2 was phosphorylated at a novel site Thr 411 in response to ABA. A yeast two-hybridization screen of an apple cDNA library demonstrated that a protein kinase, MdCIPK22, interacted with MdAREB2. Their interaction was further verified with Pull Down and Co-IP assays. A series of transgenic analyses in apple calli and plantlets showed that MdCIPK22 was required for ABA-induced phosphorylation at Thr 411 of the MdAREB2 protein and enhanced its stability and transcriptional activity. Finally, it was found that MdCIPK22 increased ABA sensitivity in an MdAREB2-dependent manner. Our findings indicate a novel phosphorylation site in CIPK-AREB regulatory module for the ABA signalling pathway, which would be helpful for researchers to identify the functions of uncharacterized homologs in the future. © 2017 John Wiley & Sons Ltd.
Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C
2009-02-01
Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.
Ruggiero, Bruno; Koiwa, Hisashi; Manabe, Yuzuki; Quist, Tanya M.; Inan, Gunsu; Saccardo, Franco; Joly, Robert J.; Hasegawa, Paul M.; Bressan, Ray A.; Maggio, Albino
2004-01-01
We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na+ and K+ both for germination and subsequent growth but were hypersensitive to Li+. Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 [Phaseolus vulgaris] and to NCED3 GB:AB020817 [Arabidopsis]), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses. PMID:15466233
Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma
2015-01-01
NH4 + nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 + nutrition (N-NH4 +)-induced resistance (NH4 +-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 + plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 + toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 + plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 +-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 +-IR. The metabolic profile revealed that infected N-NH4 + plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 + nutrition) and resistance to subsequent Pst infection. PMID:26246613
Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate.
Pantin, Florent; Renaud, Jeanne; Barbier, François; Vavasseur, Alain; Le Thiec, Didier; Rose, Christophe; Bariac, Thierry; Casson, Stuart; McLachlan, Deirdre H; Hetherington, Alistair M; Muller, Bertrand; Simonneau, Thierry
2013-09-23
Plant water loss and CO2 uptake are controlled by valve-like structures on the leaf surface known as stomata. Stomatal aperture is regulated by hormonal and environmental signals. We show here that stomatal sensitivity to the drought hormone abscisic acid (ABA) is acquired during leaf development by exposure to an increasingly dryer atmosphere in the rosette plant Arabidopsis. Young leaves, which develop in the center of the rosette, do not close in response to ABA. As the leaves increase in size, they are naturally exposed to increasingly dry air as a consequence of the spatial arrangement of the leaves, and this triggers the acquisition of ABA sensitivity. Interestingly, stomatal ABA sensitivity in young leaves is rapidly restored upon water stress. These findings shed new light on how plant architecture and stomatal physiology have coevolved to optimize carbon gain against water loss in stressing environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ha, Jun-Ho; Kim, Ju-Heon; Kim, Sang-Gyu; Sim, Hee-Jung; Lee, Gisuk; Halitschke, Rayko; Baldwin, Ian T; Kim, Jeong-Il; Park, Chung-Mo
2018-06-01
Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Merlot, Sylvain; Leonhardt, Nathalie; Fenzi, Francesca; Valon, Christiane; Costa, Miguel; Piette, Laurie; Vavasseur, Alain; Genty, Bernard; Boivin, Karine; Müller, Axel; Giraudat, Jérôme; Leung, Jeffrey
2007-07-11
Light activates proton (H(+))-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO(2) to photosynthetic tissues. Light to darkness transition, high CO(2) levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H(+)-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO(2) and darkness. The OST2 gene encodes the major plasma membrane H(+)-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H(+)-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure.
Lim, Chae Woo; Lee, Sung Chul
2016-07-01
Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. © 2016 John Wiley & Sons Ltd.
Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma
2014-01-01
In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949
Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn
2016-10-04
Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.
Thiol-based Redox Proteins in Brassica napus Guard Cell Abscisic Acid and Methyl Jasmonate Signaling
Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C.; Assmann, Sarah M.; Chen, Sixue
2014-01-01
SUMMARY Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in different physiological processes. Little is known, however, about redox sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis (DIGE) and isotope-coded affinity tag (ICAT). In total, 65 and 118 potential redox responsive proteins were identified in ABA and MeJA treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of energy, stress and defense, and metabolism. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA and MeJA treated samples. A total of 44 cysteines was mapped in all the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a SNRK2 kinase and an isopropylmalate dehydrogenase were confirmed to be redox regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in guard cell ABA and MeJA signal transduction. PMID:24580573
Huang, Jianbei; Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik
2017-02-01
Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, EunJoo; Kim, Tae-Houn
Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1more » was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction. - Highlights: • Nuclear and cytoplasmic functions of PYR1 were studied in the mutant which lacked majority of ABA responses. • Nuclear PYR1 reconstituted partially the ABA responses during seed germination, root growth, and guard cell movement. • Both the nuclear and cytoplasmic functions of PYR1 were required for the full generation of ABA responses.« less
Uno, Yuichi; Furihata, Takashi; Abe, Hiroshi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2000-01-01
The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins. PMID:11005831
Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K
2000-10-10
The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.
ABFs, a family of ABA-responsive element binding factors.
Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y
2000-01-21
Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.
Loewenstein, Nancy J.; Pallardy, Stephen G.
1998-07-01
Patterns of water relations, xylem sap abscisic acid (ABA) concentration ([ABA]) and stomatal aperture were compared in drought-sensitive black walnut (Juglans nigra L.) and black willow (Salix nigra Marsh.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.). Strong correlations among reduction in predawn water potential, increase in xylem sap [ABA] and stomatal closure were observed in all species. Stomatal response was more highly correlated with xylem [ABA] than with ABA flux. Xylem sap pH and ion concentrations appeared not to play a major role in the stomatal response of these species. Stomata were more sensitive to relative changes in [ABA] in drought-sensitive black walnut and black willow than in sugar maple and white oak. In the early stages of drought, increased [ABA] in the xylem sap of black walnut and black willow was probably of root origin and provided a signal to the shoot of the water status of the roots. In sugar maple and white oak, leaf water potential declined with the onset of stomatal closure, so that stomatal closure also may have occurred in response to the change in leaf water potential.
Synthesis and biological activity of amino acid conjugates of abscisic acid.
Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro
2011-03-01
We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu
2016-01-01
Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640
Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu
2016-02-23
Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.
Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang
2015-01-01
The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187
The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants
Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K.; Lovisolo, Claudio; Zwieniecki, Maciej A.
2013-01-01
Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling. PMID:23263667
Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA?
Wong, Min May; Chong, Geeng Loo; Verslues, Paul E
2017-01-01
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling
Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando
2016-01-01
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.
Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando
2016-01-19
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.
Abscisic acid dynamics in roots detected with genetically encoded FRET sensors
Jones, Alexander M; Danielson, Jonas ÅH; ManojKumar, Shruti N; Lanquar, Viviane; Grossmann, Guido; Frommer, Wolf B
2014-01-01
Cytosolic hormone levels must be tightly controlled at the level of influx, efflux, synthesis, degradation and compartmentation. To determine ABA dynamics at the single cell level, FRET sensors (ABACUS) covering a range ∼0.2–800 µM were engineered using structure-guided design and a high-throughput screening platform. When expressed in yeast, ABACUS1 detected concentrative ABA uptake mediated by the AIT1/NRT1.2 transporter. Arabidopsis roots expressing ABACUS1-2µ (Kd∼2 µM) and ABACUS1-80µ (Kd∼80 µM) respond to perfusion with ABA in a concentration-dependent manner. The properties of the observed ABA accumulation in roots appear incompatible with the activity of known ABA transporters (AIT1, ABCG40). ABACUS reveals effects of external ABA on homeostasis, that is, ABA-triggered induction of ABA degradation, modification, or compartmentation. ABACUS can be used to study ABA responses in mutants and quantitatively monitor ABA translocation and regulation, and identify missing components. The sensor screening platform promises to enable rapid fine-tuning of the ABA sensors and engineering of plant and animal hormone sensors to advance our understanding of hormone signaling. DOI: http://dx.doi.org/10.7554/eLife.01741.001 PMID:24737862
Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E
2015-01-01
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity. DOI: http://dx.doi.org/10.7554/eLife.07295.001 PMID:26076231
Yang, Liang; Liu, Qiaohong; Liu, Zhibin; Yang, Hao; Wang, Jianmei; Li, Xufeng; Yang, Yi
2016-01-01
Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis. © 2015 The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric
2011-01-01
Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases. PMID:22160701
Leveraging abscisic acid receptors for efficient water use in Arabidopsis
Yang, Zhenyu; Liu, Jinghui; Tischer, Stefanie V.; Christmann, Alexander; Windisch, Wilhelm; Schnyder, Hans; Grill, Erwin
2016-01-01
Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis. WUE was assessed by three independent approaches involving gravimetric analyses, 13C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture. PMID:27247417
Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng
2015-10-01
Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J
2009-05-01
Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.
Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.
2016-01-01
Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission. PMID:27200027
Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J; Zhang, Huiming; Tao, W Andy; Zhu, Jian-Kang
2013-07-02
Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.
Abscisic acid is involved in the iron-induced synthesis of maize ferritin.
Lobréaux, S; Hardy, T; Briat, J F
1993-01-01
The ubiquitous iron storage protein ferritin has a highly conserved structure in plants and animals, but a distinct cytological location and a different level of control in response to iron excess. Plant ferritins are plastid-localized and transcriptionally regulated in response to iron, while animal ferritins are found in the cytoplasm and have their expression mainly controlled at the translational level. In order to understand the basis of these differences, we developed hydroponic cultures of maize plantlets which allowed an increase in the intracellular iron concentration, leading to a transient accumulation of ferritin mRNA and protein (Lobréaux,S., Massenet,O. and Briat,J.F., 1992, Plant Mol. Biol., 19, 563-575). Here, it is shown that iron induces ferritin and RAB (Responsive to Abscisic Acid) mRNA accumulation relatively with abscisic acid (ABA) accumulation. Ferritin mRNA also accumulates in response to exogenous ABA. Synergistic experiments demonstrate that the ABA and iron responses are linked, although full expression of the ferritin genes cannot be entirely explained by an increase in ABA concentration. Inducibility of ferritin mRNA accumulation by iron is dramatically decreased in the maize ABA-deficient mutant vp2 and can be rescued by addition of exogenous ABA, confirming the involvement of ABA in the iron response in plants. Therefore, it is concluded that a major part of the iron-induced biosynthesis of ferritin is achieved through a pathway involving an increase in the level of the plant hormone ABA. The general conclusion of this work is that the synthesis of the same protein in response to the same environmental signal can be controlled by separate and distinct mechanisms in plants and animals. Images PMID:8440255
Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.
2013-01-01
Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146
Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.
Creelman, R A; Mullet, J E
1991-04-01
Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.
Abscisic Acid Accumulates at Positive Turgor Potential in Excised Soybean Seedling Growing Zones 1
Creelman, Robert A.; Mullet, John E.
1991-01-01
Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Ψ = −0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29°C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Ψ;p = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues. Images Figure 2 PMID:16668113
The site of water stress governs the pattern of ABA synthesis and transport in peanut
Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling
2016-01-01
Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957
Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C; Assmann, Sarah M; Chen, Sixue
2014-05-01
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping
2016-01-01
Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368
Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng
2017-01-01
Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903
Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng
2017-01-01
Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.
Hsu, Yi-Feng; Chen, Yun-Chu; Hsiao, Yu-Chun; Wang, Bing-Jyun; Lin, Shih-Yun; Cheng, Wan-Hsing; Jauh, Guang-Yuh; Harada, John J; Wang, Co-Shine
2014-01-01
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Glennon, Elizabeth K K; Torrevillas, Brandi K; Morrissey, Shannon F; Ejercito, Jadrian M; Luckhart, Shirley
2017-07-13
Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-β-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment.
Synthesis and Biological Activity of 2',3'-iso-Aryl-abscisic Acid Analogs.
Wan, Chuan; Wang, Mingan; Yang, Dongyan; Han, Xiaoqiang; Che, Chuanliang; Ding, Shanshan; Xiao, Yumei; Qin, Zhaohai
2017-12-15
2',3'- iso -Benzoabscisic acid ( iso -PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and replacing the ring with heterocycles. Thus, 16 novel analogs of iso -PhABA were synthesized and screened with three bioassays, Arabidopsis and lettuce seed germination and rice seedling elongation. Some of them, i.e., 2',3'- iso -pyridoabscisic acid ( iso -PyABA) and 2',3'- iso -franoabscisic acid ( iso -FrABA), displayed good bioactivities that closed to iso -PhABA and natural (+)-ABA. Some others, for instance, substituted- iso -PhABA, exhibited certain selectivity to different physiological process when compared to iso -PhABA or (+)-ABA. These analogs not only provided new candidates of ABA-like synthetic plant growth regulators (PGRs) for practical application, but also new potential selective agonist/antagonist for probing the specific function of ABA receptors.
Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith
2016-07-01
Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Zang, Aiping; Xu, Xiaojie; Neill, Steven; Cai, Weiming
2010-01-01
Nucleo-cytoplasmic partitioning of regulatory proteins is increasingly being recognized as a major control mechanism for the regulation of signalling in plants. Ras-related nuclear protein (Ran) GTPase is required for regulating transport of proteins and RNA across the nuclear envelope and also has roles in mitotic spindle assembly and nuclear envelope (NE) assembly. However, thus far little is known of any Ran functions in the signalling pathways in plants in response to changing environmental stimuli. The OsRAN2 gene, which has high homology (77% at the amino acid level) with its human counterpart, was isolated here. Subcellular localization results showed that OsRan2 is mainly localized in the nucleus, with some in the cytoplasm. Transcription of OsRAN2 was reduced by salt, osmotic, and exogenous abscisic acid (ABA) treatments, as determined by real-time PCR. Overexpression of OsRAN2 in rice resulted in enhanced sensitivity to salinity, osmotic stress, and ABA. Seedlings of transgenic Arabidopsis thaliana plants overexpressing OsRAN2 were overly sensitive to salinity stress and exogenous ABA treatment. Furthermore, three ABA- or stress-responsive genes, AtNCED3, AtPLC1, and AtMYB2, encoding a key enzyme in ABA synthesis, a phospholipase C homologue, and a putative transcriptional factor, respectively, were shown to have differentially induced expression under salinity and ABA treatments in transgenic and wild-type Arabidopsis plants. OsRAN2 overexpression in tobacco epidermal leaf cells disturbed the nuclear import of a maize (Zea mays L.) leaf colour transcription factor (Lc). In addition, gene-silenced rice plants generated via RNA interference (RNAi) displayed pleiotropic developmental abnormalities and were male sterile. PMID:20018899
Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma
2015-11-01
NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Rodrigues, Américo; Adamo, Mattia; Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rabissi, Agnese; Lumbreras, Victoria; González-Guzmán, Miguel; Antoni, Regina; Rodriguez, Pedro L.; Baena-González, Elena
2013-01-01
Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways. PMID:24179127
Zhao, Yang; Zhang, Zhengjing; Gao, Jinghui; Wang, Pengcheng; Hu, Tao; Wang, Zegang; Hou, Yueh-Ju; Wan, Yizhen; Liu, Wenshan; Xie, Shaojun; Lu, Tianjiao; Xue, Liang; Liu, Yajie; Macho, Alberto P; Tao, W Andy; Bressan, Ray A; Zhu, Jian-Kang
2018-06-12
Abscisic acid (ABA) is an important phytohormone controlling responses to abiotic stresses and is sensed by proteins from the PYR/PYL/RCAR family. To explore the genetic contribution of PYLs toward ABA-dependent and ABA-independent processes, we generated and characterized high-order Arabidopsis mutants with mutations in the PYL family. We obtained a pyl quattuordecuple mutant and found that it was severely impaired in growth and failed to produce seeds. Thus, we carried out a detailed characterization of a pyl duodecuple mutant, pyr1pyl1/2/3/4/5/7/8/9/10/11/12. The duodecuple mutant was extremely insensitive to ABA effects on seed germination, seedling growth, stomatal closure, leaf senescence, and gene expression. The activation of SnRK2 protein kinases by ABA was blocked in the duodecuple mutant, but, unexpectedly, osmotic stress activation of SnRK2s was enhanced. Our results demonstrate an important role of basal ABA signaling in growth, senescence, and abscission and reveal that PYLs antagonize ABA-independent activation of SnRK2s by osmotic stress. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing
2014-01-01
Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein could mediate ABA signaling both in rose and in A. thaliana. PMID:25290154
Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing
2014-01-01
Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein could mediate ABA signaling both in rose and in A. thaliana.
de Sá, Marta; Ferreira, João P; Queiroz, Vagner T; Vilas-Boas, Luís; Silva, Maria C; Almeida, Maria H; Guerra-Guimarães, Leonor; Bronze, Maria R
2014-02-01
Plants have developed an efficient system of recognition that induces a complex network of signalling molecules such as salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) in case of a pathogenic infection. The use of specific and sensitive methods is mandatory for the analysis of compounds in these complex samples. In this study a liquid chromatography/electrospray ionisation tandem mass spectrometry method was developed and validated for the simultaneous quantification of SA, JA and ABA in Coffea arabica (L.) leaves in order to understand the role of these phytohormones in the signalling network involved in the coffee defence response against Hemileia vastatrix. The results showed that the method was specific, linear (r ≥ 0.99) in the range 0.125-1.00 µg mL⁻¹ for JA and ABA and 0.125-5.00 µg mL⁻¹ for SA, and precise (relative standard deviation ≤11%), and the limit of detection (0.010 µg g⁻¹ fresh weight) was adequate for quantifying these phytohormones in this type of matrix. In comparison with healthy leaves, those infected with H. vastatrix (resistance reaction) displayed an increase in SA level 24 h after inoculation, suggesting the involvement of an SA-dependent pathway in coffee resistance. © 2013 Society of Chemical Industry.
Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis.
Proietti, Silvia; Caarls, Lotte; Coolen, Silvia; Van Pelt, Johan A; Van Wees, Saskia C M; Pieterse, Corné M J
2018-05-31
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PDF1.2 was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions, but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signaling) were confirmed by T-DNA insertion mutant analysis to affect SA-JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA-JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance. This article is protected by copyright. All rights reserved.
Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas
2015-06-01
Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Physiological response to drought in radiata pine: phytohormone implication at leaf level.
De Diego, N; Pérez-Alfocea, F; Cantero, E; Lacuesta, M; Moncaleán, P
2012-04-01
Pinus radiata D. Don is one of the most abundant species in the north of Spain. Knowledge of drought response mechanisms is essential to guarantee plantation survival under reduced water supply as predicted in the future. Tolerance mechanisms are being studied in breeding programs, because information on such mechanisms can be used for genotype selection. In this paper, we analyze the changes of leaf water potential, hydraulic conductance (K(leaf)), stomatal conductance and phytohormones under drought in P. radiata breeds (O1, O2, O3, O4, O5 and O6) from different climatology areas, hypothesizing that they could show variable drought tolerance. As a primary signal, drought decreased cytokinin (zeatin and zeatin riboside-Z + ZR) levels in needles parallel to K(leaf) and gas exchange. When Z + ZR decreased by 65%, indole-3-acetic acid (IAA) and abscisic acid (ABA) accumulation started as a second signal and increments were higher for IAA than for ABA. When plants decreased by 80%, Z + ZR and K(leaf) doubled their ABA and IAA levels, the photosystem II yield decreased and the electrolyte leakage increased. At the end of the drought period, less tolerant breeds increased IAA over 10-fold compared with controls. External damage also induced jasmonic acid accumulation in all breeds except in O5 (P. radiata var. radiata × var. cedrosensis), which accumulated salicylic acid as a defense mechanism. After rewatering, only the most tolerant plants recovered their K(leaf,) perhaps due to an IAA decrease and 1-aminocyclopropane-1-carboxylic acid maintenance. From all phytohormones, IAA was the most representative 'water deficit signal' in P. radiata.
The pivotal role of abscisic acid signaling during transition from seed maturation to germination.
Yan, An; Chen, Zhong
2017-05-01
Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.
Abscisic acid controlled sex before transpiration in vascular plants
McAdam, Scott A. M.; Brodribb, Timothy J.; Hedrich, Rainer; Atallah, Nadia M.; Cai, Chao; Geringer, Michael A.; Lind, Christof; Nichols, David S.; Stachowski, Kye; Sussmilch, Frances C.
2016-01-01
Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA–SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant–atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA–SnRK2 signaling pathway in plant evolution and vegetation function. PMID:27791082
Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells
2011-01-01
Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate. Conclusions Our results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency. PMID:21554708
Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1
Hansen, Hauke; Grossmann, Klaus
2000-01-01
The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue. PMID:11080318
Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.
Hansen, H; Grossmann, K
2000-11-01
The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue.
Agrawal, Ganesh K; Rakwal, Randeep; Jwa, N-S; Agrawal, Vishwanath P
2002-09-01
In our search to identify gene(s) involved in the rice self-defense responses, we cloned a novel rice (Oryza sativa L. cv. Nipponbare) gene, OsATX, a single copy gene, from the JA treated rice seedling leaves cDNA library. This gene encodes a 69 amino acid polypeptide with a predicted molecular mass of 7649.7 and a pI of 5.6. OsATX was responsive to cutting (wounding by cutting the excised leaf), over its weak constitutive expression in the healthy leaves. The critical signalling molecules, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and hydrogen peroxide, together with protein phosphatase inhibitors, effectively up-regulated the OsATX expression with time, over the excised leaf cut control, whereas ethylene had no affect. Furthermore, copper, a heavy metal, also up-regulated OsATX expression. Moreover, induced expression of OsATX mRNA was influenced by light signal(s), and showed a requirement for de novo synthesized protein factors. Additionally, co-application of either JA or ABA with SA drastically suppressed the induced OsATX mRNA level. Finally, the blast pathogen, Magnaporthe grisea, triggered OsATX mRNA accumulation. These results strongly suggest a function/role(s) for OsATX in defense/stress responses in rice.
Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I; Huq, Enamul
2014-01-01
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions.
Baek, Woonhee; Lim, Chae Woo; Lee, Sung Chul
2017-10-01
Plant adaptive responses to abiotic stress are coordinated by restriction of plant growth and development. The plant hormone abscisic acid (ABA) is the key regulator of the response to abiotic stress, and its sensitivity determines abiotic stress tolerance levels. We previously showed that the E3 ubiquitin ligase CaAIRF1 functions as a positive regulator of ABA and drought stress via modulation of transcription and stability of the type 2C protein phosphatase CaADIP1. Here, we report the identification and functional analysis of a novel-type 2C phosphatase, CaAIPP1 (Capsicum annuum CaAIRF1 Interacting Protein Phosphatase 1). CaAIPP1 interacted with and was ubiquitinated by CaAIRF1. CaAIPP1 gene expression in pepper leaves was induced by ABA and drought. CaAIPP1 degradation was faster in crude protein extracts from ABA-treated pepper plants than in those from control plants. CaAIPP1-overexpressing plants displayed an ABA-hyposensitive phenotype during seed germination and seedling growth. Moreover, these plants exhibited a drought-sensitive phenotype characterized by high levels of transpirational water loss via decreased stomatal closure and reduced leaf temperatures. Our data indicate that CaAIPP1 is a negative regulator of the drought stress response via ABA-mediated signalling. Our findings provide a valuable insight into the plant defence mechanism that operates during drought stress. © 2017 John Wiley & Sons Ltd.
The 7B-1 mutant in tomato shows blue-light-specific resistance to osmotic stress and abscisic acid.
Fellner, Martin; Sawhney, Vipen K
2002-03-01
Germination of wild-type (WT) tomato ( Lycopersicon esculentum Mill.) seed is inhibited by mannitol (100-140 mM) in light, but not in darkness, suggesting that light amplifies the responsiveness of the seed to osmotic stress (M. Fellner, V.K. Sawhney (2001) Theor Appl Genet 102:215-221). Here we report that white light (W) and especially blue light (B) strongly enhance the mannitol-induced inhibition of seed germination, and that the effect of red light (R) is weak or nil. The inhibitory effect of mannitol could be completely overcome by fluridone, an inhibitor of abscisic acid (ABA) biosynthesis, indicating that mannitol inhibits seed germination via ABA accumulation in seeds. The inhibition of WT seed germination by exogenous ABA was also amplified by W or B, but not by R. In a recessive, ABA-overproducing, 7B-1 mutant of tomato, seed germination and hypocotyl growth were resistant to inhibition by mannitol or exogenous ABA, both in W or B. Experiments with fluridone suggested that inhibition of hypocotyl growth by W or B is also partially via ABA accumulation. De-etiolation in the mutant was especially less in B compared to the WT, and there was no difference in hypocotyl growth between the two genotypes in R. Our data suggest that B amplifies the responsiveness of tomato seeds and hypocotyls to mannitol and ABA, and that W- or B-specific resistance of the 7B-1 mutant to osmotic stress or ABA is a consequence of a defect in B perception or signal transduction.
Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel
2011-01-01
Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297
Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel
2011-01-28
Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.
Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi
2014-01-01
Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca2+-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719
Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén
2016-12-01
High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hu, Xiuli; Jiang, Mingyi; Zhang, Jianhua; Zhang, Aying; Lin, Fan; Tan, Mingpu
2007-01-01
* Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.
The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress1
Yu, Fang Wei; Zhu, Xiao Fang; Li, Guang Jie; Kronzucker, Herbert J.; Shi, Wei Ming
2016-01-01
Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1. Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling. PMID:27516532
Xu, Tao; Wang, Yanling; Liu, Xin; Gao, Song; Qi, Mingfang; Li, Tianlai
2015-07-01
2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Taniguchi, Yukimi Y; Taniguchi, Masatoshi; Tsuge, Tomohiko; Oka, Atsuhiro; Aoyama, Takashi
2010-01-01
Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) was localized to epidermal cells in the distal root elongation zone and lateral root cap cells adjacent to them, and that exogenous ABA enhanced the activity and extended its area to the entire root cap. Although pldzeta2 mutant root caps did not exhibit a morphological phenotype in either the absence or presence of exogenous ABA, the inhibitory effect of ABA on gravitropism, which was significant in wild-type roots, was not observed in pldzeta2 mutant roots. In root hydrotropism experiments, pldzeta2 mutations significantly retarded or disturbed root hydrotropic responses. A drought condition similar to that used in a hydrotropism experiment enhanced the PLDzeta2 promoter activity in the root cap, as did exogenous ABA. These results suggest that PLDzeta2 responds to drought through ABA signaling in the root cap and accelerates root hydrotropism through the suppression of root gravitropism.
Zhang, Ya-Wen; Fan, Wei-Wei; Li, Hui; Ni, He; Han, Han-Bing; Li, Hai-Hang
2015-10-01
Abscisic acid (ABA), a universal signaling molecule, plays important roles in regulating plant growth, development and stress responses. The low contents and complex components in plants make it difficult to be accurately analyzed. A novel one-step sample preparation method for ABA in plants was developed. Fresh peanut (Arachis hypogaea) plant materials were fixed by oven-drying, microwave drying, boiling or Carnoy's fixative, and loaded onto a mini-preparing column. After washed the impurities, ABA was eluted with a small amount of solvent. ABA in plant materials was completely extracted and purified in 2mL solution and directly analyzed by HPLC, with a 99.3% recovery rate. Multiple samples can be simultaneously prepared. Analyses using this method indicated that the endogenous ABA in oven-dried peanut leaves increased 20.2-fold from 1.01 to 20.37μgg(-1) dry weight within 12h and then decreased in 30% polyethylene glycol 6000 treated plants, and increased 3.34-fold from 0.85 to 2.84μgg(-1) dry weight in 5 days and then decreased in soil drought treated plants. The method combined the column chromatographic extraction and solid-phase separation technologies in one step and can completely extracted plant endogenous ABA in a purified and highly concentrated form for direct HPLC analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Planes, María D; Niñoles, Regina; Rubio, Lourdes; Bissoli, Gaetano; Bueso, Eduardo; García-Sánchez, María J; Alejandro, Santiago; Gonzalez-Guzmán, Miguel; Hedrich, Rainer; Rodriguez, Pedro L; Fernández, José A; Serrano, Ramón
2015-02-01
The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H(+) efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H(+) efflux (H(+)-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H(+)-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H(+) efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K(+) efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H(+)-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H(+)-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H(+)-ATPase while the guard-cell kinase SnRK2.6/OST1 did not. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L
2014-08-01
Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Radchuk, Ruslana; Radchuk, Volodymyr; Götz, Klaus-Peter; Weichert, Heiko; Richter, Andreas; Emery, R J Neil; Weschke, Winfriede; Weber, Hans
2007-09-01
Seed maturation responds to endogenous and exogenous signals like nutrient status, energy and hormones. We recently showed that phosphoenolpyruvate carboxylase (PEPC) overexpression in Vicia narbonensis seeds alters seed metabolism and channels carbon into organic acids, resulting in greater seed storage capacity and increased protein content. Thus, these lines represent models with altered sink strength and improved nutrient status. Here we analyse seed developmental and metabolic parameters, and C/N partitioning in these seeds. Transgenic embryos take up more carbon and nitrogen. Changes in dry to FW ratio, seed fill duration and major seed components indicate altered seed development. Array-based gene expression analysis of embryos reveals upregulation of seed metabolism, especially during the transition phase and at late maturation, in terms of protein storage and processing, amino acid metabolism, primary metabolism and transport, energy and mitochondrial activity, transcriptional and translational activity, stress tolerance, photosynthesis, cell proliferation and elongation, signalling and hormone action and regulated protein degradation. Stimulated cell elongation is in accordance with upregulated signalling pathways related to gibberellic acid/brassinosteroids. We discuss that activated organic and amino acid production leads to a wide-range activation of nitrogen metabolism, including the machinery of storage protein synthesis, amino acid synthesis, protein processing and deposition, translational activity and the methylation cycle. We suggest that alpha-ketoglutarate (alpha-KG) and/or oxalacetate provide signals for coordinate upregulation of amino acid biosynthesis. Activation of stress tolerance genes indicates partial overlap between nutrient, stress and abscisic acid (ABA) signals, indicating a common interacting or regulatory mechanism between nutrients, stress and ABA. In conclusion, analysis of PEPC overexpressing seeds identified pathways responsive to metabolic and nutrient control on the transcriptional level and its underlying signalling mechanisms.
Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M
2015-12-01
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.
Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón
2015-01-01
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705
Abscisic Acid Metabolism by a Cell-free Preparation from Echinocystis lobata Liquid Endoserum 1
Gillard, Douglas F.; Walton, Daniel C.
1976-01-01
A cell-free enzyme system capable of metabolizing abscisic acid has been obtained from Eastern Wild Cucumber (Echinocystis lobata Michx.) liquid endosperm. The reaction products were determined to be phaseic acid (PA) and dihydrophaseic acid (DPA) by co-chromatography on thin layer chromatograms as the free acids, methyl esters, and their respective oxidation or reduction products. The crude enzyme preparation was separated by centrifugation into a particulate abscisic acid (ABA)-hydroxylating activity and a soluble PA-reducing activity. The particulate ABA-hydroxylating enzyme showed a requirement for O2 and NADPH, inhibition by CO, and high substrate specificity for (+)-ABA. Acetylation of short term incubation mixtures gave evidence for the presence of 6′-hydroxymethyl-ABA as an intermediate in PA formation. Determinations of endogenous ABA and DPA concentrations suggest that the ABA-hydroxylating and PA-reducing enzymes are extensively metabolizing ABA in the intact E. lobata seed. PMID:16659768
Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo
2016-10-01
In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wang, Xiu-Qin; Zheng, Li-Li; Lin, Hao; Yu, Fei; Sun, Li-Hui; Li, Li-Mei
2017-05-01
Hexokinase (HXK, EC 2.7.1.1) is a multifunctional protein that both is involved in catalyzing the first step of glycolysis and plays an important role in sugar signaling. However, the supporting genetic evidence on hexokinases (CsHXKs) from grape (Vitis vinifera L. cv. Cabernet Sauvignon) berries has been lacking. Here, to investigate the role of CsHXK isoforms as glucose (Glc) and abscisic acid (ABA) sensors, we cloned two hexokinase isozymes, CsHXK1 and CsHXK2 with highly conserved genomic structure of nine exons and eight introns. We also found adenosine phosphate binding, substrate recognition and connection sites in their putative proteins. During grape berry development, the expression profiles of two CsHXK isoforms, sucrose synthases (SuSys) and cell wall invertase (CWINV) genes increased concomitantly with high levels of endogenous Glc and ABA. Furthermore, we showed that in wild type grape berry calli (WT), glucose repressed the expression levels of sucrose synthase (SuSy) and cell wall invertase (CWINV) genes, while ABA increased their expression levels. ABA could not only effectively improve the expression levels of SuSy and CWINV, but also block the repression induced by glucose on the expression of both genes. However, after silencing CsHXK1 or CsHXK2 in grape calli, SuSy and CWINV expression were enhanced, and the expressions of the two genes are insensitive in response to Glc treatment. Interestingly, exogenous ABA alone could not or less increase SuSy and CWINV expression in silencing CsHXK1 or CsHXK2 grape calli compared to WT. Meantime, ABA could not block the repression induced by glucose on the expression of SuSy and CWINV in CsHXK1 or CsHXK2 mutants. Therefore, Glc signal transduction depends on the regulation of CsHXK1 or CsHXK2. ABA signal was also disturbed by CsHXK1 or CsHXK2 silencing. The present results provide new insights into the regulatory role of Glc and ABA on the enzymes related to sugar metabolism in grape berry.
Gu, Lili; Jung, Hyun Ju; Kwak, Kyung Jin; Dinh, Sy Nguyen; Kim, Yeon-Ok; Kang, Hunseung
2016-12-01
Despite an increasing understanding of the essential role of the Mei2 gene encoding an RNA-binding protein (RBP) in premeiotic DNA synthesis and meiosis in yeasts and animals, the functional roles of the mei2-like genes in plant growth and development are largely unknown. Contrary to other mei2-like RBPs that contain three RNA-recognition motifs (RRMs), the mei2 C-terminal RRM only (MCT) is unique in that it harbors only the last C-terminal RRM. Although MCTs have been implicated to play important roles in plants, their functional roles in stress responses as well as plant growth and development are still unknown. Here, we investigated the expression and functional role of MCT1 (At1g37140) in plant response to abscisic acid (ABA). Confocal analysis of MCT1-GFP-expressing plants revealed that MCT1 is localized to the nucleus. The transcript level of MCT1 was markedly increased upon ABA treatment. Analysis of MCT1-overexpressing transgenic Arabidopsis plants and artificial miRNA-mediated mct1 knockdown mutants demonstrated that MCT1 inhibited seed germination and cotyledon greening of Arabidopsis plants under ABA. The transcript levels of ABA signaling-related genes, such as ABI3, ABI4, and ABI5, were markedly increased in the MCT1-overexpressing transgenic plant. Collectively, these results suggest that ABA-upregulated MCT1 plays a negative role in Arabidopsis seed germination and seedling growth under ABA by modulating the expression of ABA signaling-related genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.
Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki
2014-05-01
Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.
2015-01-01
The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513
Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; ...
2015-09-04
The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. Furthemore, these analyses, which were confirmed usingmore » bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. Our analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.« less
Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean
2015-01-01
Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID:26105185
Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis1[C][W][OPEN
Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I.; Huq, Enamul
2014-01-01
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions. PMID:24198318
Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo
2016-04-01
Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. © 2016 American Society of Plant Biologists. All Rights Reserved.
Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina
2016-01-01
Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278
Sang, Jianrong; Zhang, Aying; Lin, Fan; Tan, Mingpu; Jiang, Mingyi
2008-05-01
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H(2)O(2)), calcium (Ca(2+))-calmodulin (CaM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H(2)O(2), and CaCl(2) induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca(2+)-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca(2+) in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Our results suggest that Ca(2+)-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H(2)O(2)-induced antioxidant defense in leaves of maize plants.
Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin
2010-09-01
The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.
Kanno, Yuri; Jordan, Mark C.; Kamiya, Yuji; Seo, Mitsunori; Ayele, Belay T.
2013-01-01
Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals. PMID:23437172
Interaction Between ABA Signaling and Copper Homeostasis in Arabidopsis thaliana.
Carrió-Seguí, Àngela; Romero, Paco; Sanz, Amparo; Peñarrubia, Lola
2016-07-01
ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu uptake. Exogenous ABA inhibited pmCOPT expression and drastically modified COPT2-driven localization in roots. ABA regulated SPL7, the main transcription factor responsive for Cu deficiency responses, and subsequently affected expression of its targets. ABA biosynthesis (aba2) and signaling (hab1-1 abi1-2) mutants differentially responded to ABA according to Cu levels. Alteration of Cu homeostasis in the pmCOPT mutants affected ABA biosynthesis, transport and signaling as genes such as NCED3, WRKY40, HY5 and ABI5 were differentially modulated by Cu status, and also in the pmCOPT and ABA mutants. Altered Cu uptake resulted in modified plant sensitivity to salt-mediated increases in endogenous ABA. The overall results provide evidence for reciprocal cross-talk between Cu status and ABA metabolism and signaling. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying
2015-12-01
Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi
2012-01-01
The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants. PMID:22247272
Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi
2012-03-01
The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.
Reyes, David; Rodríguez, Dolores; González-García, Mary Paz; Lorenzo, Oscar; Nicolás, Gregorio; García-Martínez, José Luis; Nicolás, Carlos
2006-01-01
A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis. PMID:16815952
Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation.
Merilo, Ebe; Jalakas, Pirko; Laanemets, Kristiina; Mohammadi, Omid; Hõrak, Hanna; Kollist, Hannes; Brosché, Mikael
2015-09-01
The discovery of cytosolic ABA receptors is an important breakthrough in stomatal research; signaling via these receptors is involved in determining the basal stomatal conductance and stomatal responsiveness. However, the source of ABA in guard cells is still not fully understood. The level of ABA increases in guard cells by de novo synthesis, recycling from inactive conjugates via β-glucosidases BG1 and BG2 and by import, whereas it decreases by hydroxylation, conjugation, and export. ABA importers include the NRT1/PTR family protein AIT1, ATP-binding cassette protein ABCG40, and possibly ABCG22, whereas the DTX family member DTX50 and ABCG25 function as ABA exporters. Here, we review the proteins involved in ABA transport and homeostasis and their physiological role in stomatal regulation. Recent experiments suggest that functional redundancy probably exists among ABA transporters between vasculature and guard cells and ABA recycling proteins, as stomatal functioning remained intact in abcg22, abcg25, abcg40, ait1, and bg1bg2 mutants. Only the initial response to reduced air humidity was significantly delayed in abcg22. Considering the reports showing autonomous ABA synthesis in guard cells, we discuss that rapid stomatal responses to atmospheric factors might depend primarily on guard cell-synthesized ABA, whereas in the case of long-term soil water deficit, ABA synthesized in the vasculature might have a significant role. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young
2004-10-01
Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.
Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi
2014-07-01
Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Kim, Hee Jin; Hinchliffe, Doug J.; Triplett, Barbara A.; Chen, Z. Jeffrey; Stelly, David M.; Yeater, Kathleen M.; Moon, Hong S.; Gilbert, Matthew K.; Thyssen, Gregory N.; Turley, Rickie B.; Fang, David D.
2015-01-01
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta. PMID:25927364
Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu
2016-01-01
Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432
Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J
2015-07-01
Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.
Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu
2013-04-01
Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.
Nováková, Miroslava; Sašek, Vladimír; Dobrev, Petre I; Valentová, Olga; Burketová, Lenka
2014-07-01
According to general model, jasmonic acid (JA) and ethylene (ET) signaling pathways are induced in Arabidopsis after an attack of necrotroph, Sclerotinia sclerotiorum (Lib.) de Bary. However, abscisic acid (ABA) and salicylic acid (SA) also seem to play a role. While signaling events in Arabidopsis have been intensively studied recently, information for the natural host Brassica napus is limited. In this study, multiple plant hormone quantification and expression analysis of marker genes of the signaling pathways was used to gain a complete view of the interaction of B. napus with S. sclerotiorum. Strong response of ET biosynthetic gene ACS2 was observed, accompanied by increases of SA and JA levels that correspond to the elevated expression of marker genes PR1 and LOX3. Interestingly, the level of ABA and the expression of its marker gene RD26 were also elevated. Furthermore, induction of the SA-dependent defense decreased disease symptoms. In addition, SA signaling is suggested as a possible target for manipulation by S. sclerotiorum. A gene for putative chorismate mutase SS1G_14320 was identified that is highly expressed during infection but not in vitro. Our results bring the evidence of SA involvement in the interaction of plant with the necrotroph that conflict with the current model. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J.; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang
2015-01-01
Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836
Yasumura, Yuki; Pierik, Ronald; Kelly, Steven; Sakuta, Masaaki; Voesenek, Laurentius A.C.J.; Harberd, Nicholas P.
2015-01-01
Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants. PMID:26243614
Ariizumi, Tohru; Hauvermale, Amber L.; Nelson, Sven K.; Hanada, Atsushi; Yamaguchi, Shinjiro; Steber, Camille M.
2013-01-01
DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCFSLY1 E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination. PMID:23818171
An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.
Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert
2010-09-01
Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.
Corbin, Cyrielle; Renouard, Sullivan; Lopez, Tatiana; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe
2013-03-15
Pinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development. It is well accepted that gibberellins (GA) and ABA play antagonistic roles in the regulation of numerous developmental processes; therefore it is of interest to clarify their respective effects on lignan biosynthesis. Herein, using flax cell suspension cultures, we demonstrate that LuPLR1 gene expression and (+)-secoisolariciresinol synthesis are up-regulated by ABA and down-regulated by GA. The LuPLR1 gene promoter analysis and mutation experiments allow us to identify and characterize two important cis-acting sequences (ABRE and MYB2) required for these regulations. These results imply that a cross-talk between ABA and GA signaling orchestrated by transcription factors is involved in the regulation of lignan biosynthesis. This is particularly evidenced in the case of the ABRE cis-regulatory sequence of LuPLR1 gene promoter that appears to be a common target sequence of GA and ABA signals. Copyright © 2012 Elsevier GmbH. All rights reserved.
MhYTP1 and MhYTP2 from Apple Confer Tolerance to Multiple Abiotic Stresses in Arabidopsis thaliana
Wang, Na; Guo, Tianli; Wang, Ping; Sun, Xun; Shao, Yun; Jia, Xin; Liang, Bowen; Gong, Xiaoqing; Ma, Fengwang
2017-01-01
The first YTH domain-containing RNA binding protein (YTP) was found in rat, where it was related to oxidative stress. Unlike characterizations in yeast and animals, functions of plant YTPs are less clear. Malus hupehensis (Pamp.) Rehd. YTP1 and YTP2 (MhYTP1 and MhYTP2) are known to be active in leaf senescence and fruit ripening. However, no research has been published about their roles in stress responses. Here, we investigate the stress-related functions of MhYTP1 and MhYTP2 in Arabidopsis thaliana. Both of the two genes participated in salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) signaling and play roles in plant responses to oxidative stress, chilling, high temperature, high salinity, and mannitol induced physiological drought stress. Moreover, MhYTP1 plays leading roles in SA and ABA signaling, and MhYTP2 plays leading roles in JA signaling and oxidative stress responses. These results will fill a gap in our knowledge about plant YTPs and stress responses and provide a foundation for future attempts to improve stress tolerance in apple. PMID:28824695
Qi, Baoxiu
2014-01-01
IgASE1, a C18 Δ9-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ8 desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA. PMID:24609499
Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu
2014-04-01
IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.
Yoshida, Takuya; Fujita, Yasunari; Sayama, Hiroko; Kidokoro, Satoshi; Maruyama, Kyonoshin; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2010-02-01
A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.
Zhang, Aying; Jiang, Mingyi
2012-01-01
Nitric oxide (NO), hydrogen peroxide (H2O2), and calcium (Ca2+)/calmodulin (CaM) are all required for abscisic acid (ABA)-induced antioxidant defence. Ca2+/CaM-dependent protein kinase (CCaMK) is a strong candidate for the decoder of Ca2+ signals. However, whether CCaMK is involved in ABA-induced antioxidant defence is unknown. The results of the present study show that exogenous and endogenous ABA induced increases in the activity of ZmCCaMK and the expression of ZmCCaMK in leaves of maize. Subcellular localization analysis showed that ZmCCaMK is located in the nucleus, the cytoplasm, and the plasma membrane. The transient expression of ZmCCaMK and the RNA interference (RNAi) silencing of ZmCCaMK analysis in maize protoplasts revealed that ZmCCaMK is required for ABA-induced antioxidant defence. Moreover, treatment with the NO donor sodium nitroprusside (SNP) induced the activation of ZmCCaMK and the expression of ZmCCaMK. Pre-treatments with an NO scavenger and inhibitor blocked the ABA-induced increases in the activity and the transcript level of ZmCCaMK. Conversely, RNAi silencing of ZmCCaMK in maize protoplasts did not affect the ABA-induced NO production, which was further confirmed using a mutant of OsCCaMK, the homologous gene of ZmCCaMK in rice. Moreover, H2O2 was also required for the ABA activation of ZmCCaMK, and pre-treatments with an NO scavenger and inhibitor inhibited the H2O2-induced increase in the activity of ZmCCaMK. Taken together, the data clearly suggest that ZmCCaMK is required for ABA-induced antioxidant defence, and H2O2-dependent NO production plays an important role in the ABA-induced activation of ZmCCaMK. PMID:22865912
Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua
2015-05-01
Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Zou, J.; Abrams, G. D.; Barton, D. L.; Taylor, D. C.; Pomeroy, M. K.; Abrams, S. R.
1995-01-01
Microspore-derived (MD) embryos of Brassica napus L. cv Reston were used to test the effects of (+)-abscisic acid ([(+)-ABA]) and its metabolites, 8[prime]-hydroxyabscisic acid (8[prime]-OH ABA) and (-)-phaseic acid (PA), on the accumulation of very long-chain monounsaturated fatty acids (VLCMFAs) and induction of genes encoding a 19-kD oleosin protein and a [delta]15 desaturase during embryogenesis. Developing early to mid-cotyledonary MD embryos at 16 to 19 d in culture were treated with 10 [mu]M hormone/metabolite for 4 d. At various times during incubation, embryos and medium were analyzed to determine levels of hormone/metabolite, VLCMFAs, and oleosin or [delta]15 desaturase transcripts. The VLCMFAs, 20:1 and 22:1, primarily in triacylglycerols, increased by 200% after 72 h in the presence of (+)-ABA and 8[prime]-OH ABA relative to the control. In contrast, treatment with PA for 72 h had little effect (20% increase) on the level of VLCMFAs. The first 24 to 72 h of (+)-ABA treatment were critical in the induction of VLCMFA biosynthesis, with 8[prime]-OH ABA lagging slightly behind (+)-ABA in promoting this response. The accumulation of VLCMFAs was positively correlated with an increase in elongase activity. (+)-ABA and its 8[prime]-OH ABA metabolite induced the accumulation of a 19-kD oleosin transcript within 2 to 4 h in culture. In addition, both (+)-ABA and 8[prime]-OH ABA induced the same level of [delta]15 desaturase transcript by 8 h. PA had no effect on the induction of either oleosin or [delta]15 desaturase transcripts. To our knowledge, this is the first report of the biological activity of 8[prime]-OH ABA and of stimulatory effects of (+)-ABA and 8[prime]-OH ABA on lipid and oleosin biosynthesis. PMID:12228493
Synthesis, photostability and bioactivity of 2,3-cyclopropanated abscisic acid.
Wenjian, Liu; Xiaoqiang, Han; Yumei, Xiao; Jinlong, Fan; Yuanzhi, Zhang; Huizhe, Lu; Mingan, Wang; Zhaohai, Qin
2013-12-01
The plant hormone abscisic acid (ABA) plays a central role in the regulation of plant development and adaptation to environmental stress. The isomerization of ABA to the biologically inactive 2E-isomer by light considerably limits its applications in agricultural fields. To overcome this shortcoming, an ABA analogue, cis-2,3-cyclopropanated ABA, was synthesized, and its photostability and biological activities were investigated. This compound showed high photostability under UV light exposure, which was 4-fold higher than that of (±)-ABA. cis-2,3-cyclopropanated ABA exhibited high ABA-like activity, including the ability to effectively inhibit seed germination, seedling growth and stomatal movements of Arabidopsis. In some cases, its bioactivity approaches that of (±)-ABA. trans-2,3-cyclopropanated abscisic acid was also prepared, an isomer that was more photostable but which showed weak ABA-like activity. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Lim, Soohwan; Park, Jeongmoo; Lee, Nayoung; Jeong, Jinkil; Toh, Shigeo; Watanabe, Asuka; Kim, Junghyun; Kang, Hyojin; Kim, Dong Hwan; Kawakami, Naoto; Choi, Giltsu
2013-12-01
Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-insensitive3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination.
Xiang, Jianhua; Zhou, Xiaoyun; Zhang, Xianwen; Liu, Ailing; Xiang, Yanci; Yan, Mingli; Peng, Yan; Chen, Xinbo
2018-01-01
Potassium (K + ) is one of the essential macronutrients required for plant growth and development, and the maintenance of cellular K + homeostasis is important for plants to adapt to abiotic stresses and growth. However, the mechanism involved has not been understood clearly. In this study, we demonstrated that AtUNC-93 plays a crucial role in this process under the control of abscisic acid (ABA). AtUNC-93 was localized to the plasma membrane and mainly expressed in the vascular tissues in Arabidopsis thaliana . The atunc-93 mutants showed typical K + -deficient symptoms under low-K + conditions. The K + contents of atunc-93 mutants were significantly reduced in shoots but not in roots under either low-K + or normal conditions compared with wild type plants, whereas the AtUNC-93 -overexpressing lines still maintained relatively higher K + contents in shoots under low-K + conditions, suggesting that AtUNC-93 positively regulates K + translocation from roots to shoots. The atunc-93 plants exhibited dwarf phenotypes due to reduced cell expansion, while AtUNC-93 -overexpressing plants had larger bodies because of increased cell expansion. After abiotic stress and ABA treatments, the atunc-93 mutants was more sensitive to salt, drought, osmotic, heat stress and ABA than wild type plants, while the AtUNC-93 -overexpressing lines showed enhanced tolerance to these stresses and insensitive phenotype to ABA. Furthermore, alterations in the AtUNC-93 expression changed expression of many ABA-responsive and stress-related genes. Our findings reveal that AtUNC-93 functions as a positive regulator of abiotic stress tolerance and plant growth by maintaining K + homeostasis through ABA signaling pathway in Arabidopsis.
Shiono, Katsuhiro; Hashizaki, Riho; Nakanishi, Toyofumi; Sakai, Tatsuko; Yamamoto, Takushi; Ogata, Koretsugu; Harada, Ken-Ichi; Ohtani, Hajime; Katano, Hajime; Taira, Shu
2017-09-06
Plant hormones act as important signaling molecules that regulate responses to abiotic stress as well as plant growth and development. Because their concentrations of hormones control the physiological responses in the target tissue, it is important to know the distributions and concentrations in the tissues. However, it is difficult to determine the hormone concentration on the plant tissue as a result of the limitations of conventional methods. Here, we report the first multi-imaging of two plant hormones, one of cytokinin [i.e., trans-zeatin (tZ)] and abscisic acid (ABA) using a new technology, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging. Protonated signals of tZ (m/z 220.1) and ABA (m/z 265.3) were chosen on longitudinal sections of rice roots for MS imaging. tZ was broadly distributed about 40 mm behind the root apex but was barely detectable at the apex, whereas ABA was mainly detected at the root apex. Multi-imaging using MALDI-TOF-MS enabled the visualization of the localization and quantification of plant hormones. Thus, this tool is applicable to a wide range of plant species growing under various environmental conditions.
Sun, Fenglong; Cao, Jie; Huo, Na; Wuda, Bala; Du, Jinkun; Peng, Huiru; Ni, Zhongfu; Sun, Qixin
2018-01-01
Seed germination is important for grain yield and quality and rapid, near-simultaneous germination helps in cultivation; however, cultivars that germinate too readily can undergo preharvest sprouting (PHS), which causes substantial losses in areas that tend to get rain around harvest time. Moreover, our knowledge of mechanisms regulating seed germination in wheat (Triticum aestivum) remains limited. In this study, we analyzed function of a wheat-specific microRNA 9678 (miR9678), which is specifically expressed in the scutellum of developing and germinating seeds. Overexpression of miR9678 delayed germination and improved resistance to PHS in wheat through reducing bioactive gibberellin (GA) levels; miR9678 silencing enhanced germination rates. We provide evidence that miR9678 targets a long noncoding RNA (WSGAR) and triggers the generation of phased small interfering RNAs that play a role in the delay of seed germination. Finally, we found that abscisic acid (ABA) signaling proteins bind the promoter of miR9678 precursor and activate its expression, indicating that miR9678 affects germination by modulating the GA/ABA signaling. PMID:29567662
Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín
2017-05-01
Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.
Turecková, Veronika; Novák, Ondrej; Strnad, Miroslav
2009-11-15
We have developed a simple method for extracting and purifying (+)-abscisic acid (ABA) and eight ABA metabolites--phaseic acid (PA), dihydrophaseic acid (DPA), neophaseic acid (neoPA), ABA-glucose ester (ABAGE), 7'-hydroxy-ABA (7'-OH-ABA), 9'-hydroxy-ABA (9'-OH-ABA), ABAaldehyde, and ABAalcohol--before analysis by a novel technique for these substances, ultra-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS/MS). The procedure includes addition of deuterium-labelled standards, extraction with methanol-water-acetic acid (10:89:1, v/v), simple purification by Oasis((R)) HLB cartridges, rapid chromatographic separation by UPLC, and sensitive, accurate quantification by MS/MS in multiple reaction monitoring modes. The detection limits of the technique ranged between 0.1 and 1 pmol for ABAGE and ABA acids in negative ion mode, and 0.01-0.50 pmol for ABAGE, ABAaldehyde, ABAalcohol and the methylated acids in positive ion mode. The fast liquid chromatographic separation and analysis of ABA and its eight measured derivatives by UPLC-ESI-MS/MS provide rapid, accurate and robust quantification of most of the substances, and the low detection limits allow small amounts of tissue (1-5mg) to be used in quantitative analysis. To demonstrate the potential of the technique, we isolated ABA and its metabolites from control and water-stressed tobacco leaf tissues then analysed them by UPLC-ESI-MS/MS. Only ABA, PA, DPA, neoPA, and ABAGE were detected in the samples. PA was the most abundant analyte (ca. 1000 pmol/g f.w.) in both the control and water-stressed tissues, followed by ABAGE and DPA, which were both present at levels ca. 5-fold lower. ABA levels were at least 100-fold lower than PA concentrations, but they increased following the water stress treatment, while ABAGE, PA, and DPA levels decreased. Overall, the technique offers substantial improvements over previously described methods, enabling the detailed, direct study of diverse ABA metabolites in small amounts of plant tissue.
Zandalinas, Sara I; Rivero, Rosa M; Martínez, Vicente; Gómez-Cadenas, Aurelio; Arbona, Vicent
2016-04-27
In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in Carrizo that could allow a more efficient cooling of leaf surface ensuring optimal CO2 intake. Hence, SA induction in Cleopatra was not sufficient to protect PSII from photoinhibition, resulting in higher malondialdehyde (MDA) build-up. Inhibition of ABA accumulation during heat stress and combined stresses was achieved primarily through the up-regulation of CsCYP707A leading to phaseic acid (PA) and dehydrophaseic acid (DPA) production. To sum up, data indicate that specific physiological responses to the combination of heat and drought exist in citrus. In addition, these responses are differently modulated depending on the particular stress tolerance of citrus genotypes.
Misra, Anjali; McKnight, Thomas D; Mandadi, Kranthi K
2018-03-01
Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.
Dehkordi, Azam Nikbakht; Rubio, Manuel; Babaeian, Nadali; Albacete, Alfonso; Martínez-Gómez, Pedro
2018-05-03
Plum pox virus (PPV, sharka) is a limiting factor for peach production, and no natural sources of resistance have been described. Recent studies, however, have demonstrated that grafting the almond cultivar "Garrigues" onto the "GF305" peach infected with Dideron-type (PPV-D) isolates progressively reduces disease symptoms and virus accumulation. Furthermore, grafting "Garrigues" onto "GF305" prior to PPV-D inoculation has been found to completely prevent virus infection, showing that resistance is constitutive and not induced by the virus. To unravel the phytohormone signaling of this mechanism, we analyzed the following phytohormones belonging to the principal hormone classes: the growth-related phytohormones cytokinin trans-zeatin (tZ) and the gibberellins GA₃ and GA₄; and the stress-related phytohormones ethylene acid precursor 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA). PPV inoculation produced a significant increase in GA₃ and ABA in peach, and these imbalances were related to the presence of chlorosis symptoms. However, grafting "Garrigues" almond onto the PPV-inoculated "GF305" peach produced the opposite effect, reducing GA₃ and ABA contents in parallel to the elimination of symptoms. Our results showed the significant implication of SA in this induced resistance in peach with an additional effect on tZ and JA concentrations. This SA-induced resistance based in the decrease in symptoms seems to be different from Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), which are based in other reactions producing necrosis. Further studies are necessary, however, to validate these results against PPV-D isolates in the more aggressive Marcus-type (PPV-M) isolates.
Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong
2016-01-01
Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070
Yunta, Cristina; Martínez-Ripoll, Martín; Zhu, Jian-Kang; Albert, Armando
2013-01-01
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. PMID:21983340
Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón
2009-04-01
Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru
2017-01-01
Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.
Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen
2017-06-06
Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansson, Christer; Baguma, Yona; Sun, Chuanxin
Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstratingmore » that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.« less
Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Mueller, Martin J
2013-01-01
Defense signaling compounds and phytohormones play an essential role in the regulation of plant responses to various environmental abiotic and biotic stresses. Among the most severe stresses are herbivory, pathogen infection, and drought stress. The major hormones involved in the regulation of these responses are 12-oxo-phytodienoic acid (OPDA), the pro-hormone jasmonic acid (JA) and its biologically active isoleucine conjugate (JA-Ile), salicylic acid (SA), and abscisic acid (ABA). These signaling compounds are present and biologically active at very low concentrations from ng/g to μg/g dry weight. Accurate and sensitive quantification of these signals has made a significant contribution to the understanding of plant stress responses. Ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (MS/MS) has become an essential technique for the analysis and quantification of these compounds.
Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina
Cowan, A. Keith; Rose, Peter D.
1991-01-01
The interrelationship between abscisic acid (ABA) production and β-carotene accumulation was investigated in salt-stressed cells of the halotolerant green alga Dunaliella salina var bardawil. Cells were supplied with either R-[2-14C]mevalonolactone or [14C] sodium bicarbonate for 20 hours and then exposed to increased salinity (1.5 to 3.0 molar NaCl) for various lengths of time. Incorporation of label into abscisic acid and phaseic acid and the distribution of [14C]ABA between the cells and incubation media were monitored. [14C]ABA and [14C]phaseic acid were identified as products of both R-[2-14C]mevalonolactone and [14C]sodium bicarbonate metabolism. ABA metabolism was enhanced by hypersalinity stress. Actinomycin D, chloramphenicol, and cycloheximide abolished the stress-induced production of ABA, suggesting a role for gene activation in the process. Kinetic analysis of both ABA and β-carotene production demonstrated two stages of accelerated β-carotene production. In addition, ABA levels increased rapidly, and this increase occurred coincident with the early period of accelerated β-carotene production. A possible role for ABA as a regulator of carotenogenesis in cells of D. salina is therefore discussed. PMID:16668469
A new look at stress: abscisic acid patterns and dynamics at high-resolution.
Jones, Alexander M
2016-04-01
Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time. © 2015 Carnegie Institution for Science New Phytologist © 2015 New Phytologist Trust.
Hays, Dirk B.; Wilen, Ronald W.; Sheng, Chuxing; Moloney, Maurice M.; Pharis, Richard P.
1999-01-01
The induction of napin and oleosin gene expression in Brassica napus microspore-derived embryos (MDEs) was studied to assess the possible interaction between abscisic acid (ABA) and jasmonic acid (JA). Napin and oleosin transcripts were detected sooner following treatment with ABA than JA. Treatment of MDEs with ABA plus JA gave an additive accumulation of both napin and oleosin mRNA, the absolute amount being dependent on the concentration of each hormone. Endogenous ABA levels were reduced by 10-fold after treatment with JA, negating the possibility that the observed additive interaction was due to JA-induced ABA biosynthesis. Also, JA did not significantly increase the uptake of [3H-ABA] from the medium into MDEs. This suggests that the additive interaction was not due to an enhanced carrier-mediated ABA uptake by JA. Finally, when JA was added to MDEs that had been treated with the ABA biosynthesis inhibitor fluridone, napin mRNA did not increase. Based on these results with the MDE system, it is possible that embryos of B. napus use endogenous JA to modulate ABA effects on expression of both napin and oleosin. In addition, JA could play a causal role in the reduction of ABA that occurs during late stages of seed development. PMID:10069845
2013-01-01
Background Cotton (Gossypium spp.) is widely cultivated due to the important economic value of its fiber. However, extreme environmental degradation impedes cotton growth and production. Receptor-like kinase (RLK) proteins play important roles in signal transduction and participate in a diverse range of processes in response to plant hormones and environmental cues. Here, we introduced an RLK gene (GbRLK) from cotton into Arabidopsis and investigated its role in imparting abiotic stress tolerance. Results GbRLK transcription was induced by exogenously supplied abscisic acid (ABA), salicylic acid, methyl jasmonate, mock drought conditions and high salinity. We cloned the promoter sequence of this gene via self-formed adaptor PCR. Sequence analysis revealed that the promoter region contains many cis-acting stress-responsive elements such as ABRE, W-Box, MYB-core, W-Box core, TCA-element and others. We constructed a vector containing a 1,890-bp sequence in the 5′ region upstream of the initiation codon of this promoter and transformed it into Arabidopsis thaliana. GUS histochemical staining analysis showed that GbRLK was expressed mainly in leaf veins, petioles and roots of transgenic Arabidopsis, but not in the cotyledons or root hairs. GbRLK promoter activity was induced by ABA, PEG, NaCl and Verticillium dahliae. Transgenic Arabidopsis with constitutive overexpression of GbRLK exhibited a reduced rate of water loss in leaves in vitro, along with improved salinity and drought tolerance and increased sensitivity to ABA compared with non-transgenic Col-0 Arabidopsis. Expression analysis of stress-responsive genes in GbRLK Arabidopsis revealed that there was increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtRD26) and antioxidant genes (AtCAT1, AtCCS, AtCSD2 and AtCSD1) but not ion transporter genes (AtNHX1, AtSOS1). Conclusions GbRLK is involved in the drought and high salinity stresses pathway by activating or participating in the ABA signaling pathway. Overexpression of GbRLK may improve stress tolerance by regulating stress-responsive genes to reduce water loss. GbRLK may be employed in the genetic engineering of novel cotton cultivars in the future. Further studying of GbRLK will help elucidate abiotic stress signaling pathways. PMID:23915077
Zhao, Jun; Gao, Yulong; Zhang, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen
2013-08-06
Cotton (Gossypium spp.) is widely cultivated due to the important economic value of its fiber. However, extreme environmental degradation impedes cotton growth and production. Receptor-like kinase (RLK) proteins play important roles in signal transduction and participate in a diverse range of processes in response to plant hormones and environmental cues. Here, we introduced an RLK gene (GbRLK) from cotton into Arabidopsis and investigated its role in imparting abiotic stress tolerance. GbRLK transcription was induced by exogenously supplied abscisic acid (ABA), salicylic acid, methyl jasmonate, mock drought conditions and high salinity. We cloned the promoter sequence of this gene via self-formed adaptor PCR. Sequence analysis revealed that the promoter region contains many cis-acting stress-responsive elements such as ABRE, W-Box, MYB-core, W-Box core, TCA-element and others. We constructed a vector containing a 1,890-bp sequence in the 5' region upstream of the initiation codon of this promoter and transformed it into Arabidopsis thaliana. GUS histochemical staining analysis showed that GbRLK was expressed mainly in leaf veins, petioles and roots of transgenic Arabidopsis, but not in the cotyledons or root hairs. GbRLK promoter activity was induced by ABA, PEG, NaCl and Verticillium dahliae. Transgenic Arabidopsis with constitutive overexpression of GbRLK exhibited a reduced rate of water loss in leaves in vitro, along with improved salinity and drought tolerance and increased sensitivity to ABA compared with non-transgenic Col-0 Arabidopsis. Expression analysis of stress-responsive genes in GbRLK Arabidopsis revealed that there was increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtRD26) and antioxidant genes (AtCAT1, AtCCS, AtCSD2 and AtCSD1) but not ion transporter genes (AtNHX1, AtSOS1). GbRLK is involved in the drought and high salinity stresses pathway by activating or participating in the ABA signaling pathway. Overexpression of GbRLK may improve stress tolerance by regulating stress-responsive genes to reduce water loss. GbRLK may be employed in the genetic engineering of novel cotton cultivars in the future. Further studying of GbRLK will help elucidate abiotic stress signaling pathways.
Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.
Creelman, R A; Bell, E; Mullet, J E
1992-07-01
Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.
Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin
2016-10-12
The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.
NASA Astrophysics Data System (ADS)
Meguro, Ayano; Sato, Yutaka
2014-04-01
We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.
Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.
2016-01-01
ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789
Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M
2016-01-01
Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework.
Photophysics and photochemistry of 2-aminobenzoic acid anion in aqueous solution.
Pozdnyakov, Ivan P; Plyusnin, Victor F; Grivin, Vjacheslav P
2009-12-24
Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA(-)) in aqueous solutions. Excitation of this species gives rise to the ABA(-) triplet state to the ABA* radical and to the hydrated electron (e(aq)(-)). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA(-) triplet state, the ABA* radical, and e(aq)(-) are T-T annihilation, recombination, and capture by the ABA(-) anion, respectively.
Gibberellin Signaling: a Wake-up Call for Seed Germination
USDA-ARS?s Scientific Manuscript database
Making an appropriate decision to germinate is essential for the survival of plant species and is important for proper stand establishment in crop plants. Germination is regulated by the antagonistic effects to two plant hormones in Arabidopsis thaliana: abscisic acid (ABA) induces dormancy and repr...
S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth
Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar
2015-01-01
Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030
Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang
2016-01-01
The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665
Feurtado, J Allan; Ambrose, Stephen J; Cutler, Adrian J; Ross, Andrew R S; Abrams, Suzanne R; Kermode, Allison R
2004-02-01
Western white pine (Pinus monticola) seeds exhibit deep dormancy at maturity and seed populations require several months of moist chilling to reach their uppermost germination capacities. Abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxy ABA (7'OH ABA) and ABA-glucose ester (ABA-GE), were quantified in western white pine seeds during dormancy breakage (moist chilling) and germination using an HPLC-tandem mass spectrometry method with multiple reaction monitoring and internal standards incorporating deuterium-labeled analogs. In the seed coat, ABA and metabolite levels were high in dry seeds, but declined precipitously during the pre-moist-chilling water soak to relatively low levels thereafter. In the embryo and megagametophyte, ABA levels decreased significantly during moist chilling, coincident with an increase in the germination capacity of seeds. ABA catabolism occurred via several routes, depending on the stage and the seed tissue. Moist chilling of seeds led to increases in PA and DPA levels in both the embryo and megagametophyte. Within the embryo, 7'OH ABA and ABA-GE also accumulated during moist chilling; however, 7'OH ABA peaked early in germination. Changes in ABA flux, i.e. shifts in the ratio between biosynthesis and catabolism, occurred at three distinct stages during the transition from dormant seed to seedling. During moist chilling, the relative rate of ABA catabolism exceeded ABA biosynthesis. This trend became even more pronounced during germination, and germination was also accompanied by a decrease in the ABA catabolites DPA and PA, presumably as a result of their further metabolism and/or leaching/transport. The transition from germination to post-germinative growth was accompanied by a shift toward ABA biosynthesis. Dormant imbibed seeds, kept in warm moist conditions for 30 days (after an initial 13 days of soaking), maintained high ABA levels, while the amounts of PA, 7'OH ABA, and DPA decreased or remained at steady-state levels. Thus, in the absence of conditions required to break dormancy there were no net changes in ABA biosynthesis and catabolism.
Lim, Soohwan; Park, Jeongmoo; Lee, Nayoung; Jeong, Jinkil; Toh, Shigeo; Watanabe, Asuka; Kim, Junghyun; Kang, Hyojin; Kim, Dong Hwan; Kawakami, Naoto; Choi, Giltsu
2013-01-01
Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-INSENSITIVE3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination. PMID:24326588
Muñiz García, María Noelia; Giammaria, Verónica; Grandellis, Carolina; Téllez-Iñón, María Teresa; Ulloa, Rita María; Capiati, Daniela Andrea
2012-04-01
ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.
Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji
2016-01-01
The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sites of abscisic acid synthesis and metabolism in Ricinus communis L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeevaart, J.A.D.
1977-05-01
The sites of abscisic acid (ABA) synthesis and metabolism in Ricinus communis L. were investigated by analyzing the levels of ABA and its two metabolites phaseic acid (PA) and dihydrophaseic acid (DPA) in the shoot tips, mature leaves, and phloem sap of stressed and nonstressed plants. Water stress increased the concentration of ABA, PA, and DPA in phloem exudate and also increased the levels of all three compounds in mature leaves and in shoot tips. The latter had a very high DPA content (18.7 ..mu..g/g fresh weight) even in plants not subjected to water stress. When young and mature leavesmore » were excised and allowed to wilt, the level of ABA increased in both, demonstrating that leaves at an early stage of development have the capacity to produce ABA. These results have been interpreted to mean that in mature leaves of nonstressed Ricinus plants, ABA is synthesized and metabolized, and that ABA itself, as well as its metabolites, are translocated in the phloem to the shoot tips (sinks). Since DPA, but not ABA, accumulates in the shoot tips, it follows that ABA is metabolized rapidly in the apical region. To what extent ABA present in young leaves of nonstressed plants is the consequence of synthesis in situ and of import from older leaves remains to be determined.« less
Miao, Wenwen; Sun, Lirong; Tian, Mi; Wang, Ji
2017-01-01
Abscisic acid (ABA) receptor pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR1/PYL/RCAR) (named PYLs for simplicity) are core regulators of ABA signaling, and have been well studied in Arabidopsis and rice. However, knowledge is limited about the PYL family regarding genome organization, gene structure, phylogenesis, gene expression and protein interaction with downstream targets in Gossypium. A comprehensive analysis of the Gossypium PYL family was carried out, and 21, 20, 40 and 39 PYL genes were identified in the genomes from the diploid progenitor G. arboretum, G. raimondii and the tetraploid G. hirsutum and G. barbadense, respectively. Characterization of the physical properties, chromosomal locations, structures and phylogeny of these family members revealed that Gossypium PYLs were quite conservative among the surveyed cotton species. Segmental duplication might be the main force promoting the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in Gossypium. Additionally, the expression profiles of GhPYL genes were specific in tissues. Transcriptions of many GhPYL genes were inhibited by ABA treatments and induced by osmotic stress. A number of GhPYLs can interact with GhABI1A or GhABID in the presence and/or absence of ABA by the yeast-two hybrid method in cotton. PMID:29230363
Zhang, Gaofeng; Lu, Tingting; Miao, Wenwen; Sun, Lirong; Tian, Mi; Wang, Ji; Hao, Fushun
2017-01-01
Abscisic acid (ABA) receptor pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR1/PYL/RCAR) (named PYLs for simplicity) are core regulators of ABA signaling, and have been well studied in Arabidopsis and rice. However, knowledge is limited about the PYL family regarding genome organization, gene structure, phylogenesis, gene expression and protein interaction with downstream targets in Gossypium . A comprehensive analysis of the Gossypium PYL family was carried out, and 21, 20, 40 and 39 PYL genes were identified in the genomes from the diploid progenitor G. arboretum , G. raimondii and the tetraploid G. hirsutum and G. barbadense , respectively. Characterization of the physical properties, chromosomal locations, structures and phylogeny of these family members revealed that Gossypium PYLs were quite conservative among the surveyed cotton species. Segmental duplication might be the main force promoting the expansion of PYLs , and the majority of the PYLs underwent evolution under purifying selection in Gossypium . Additionally, the expression profiles of GhPYL genes were specific in tissues. Transcriptions of many GhPYL genes were inhibited by ABA treatments and induced by osmotic stress. A number of GhPYLs can interact with GhABI1A or GhABID in the presence and/or absence of ABA by the yeast-two hybrid method in cotton.
Wu, Chongming; Feng, Juanjuan; Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L; Qin, Huanju; Liu, Xin; Wang, Daowen
2012-01-01
In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H(+)-ATPase activity, than that of WT control. The plasmalemma H(+)-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H(+)-ATPase and the efficient elongation of LH and TZ cells.
Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L.; Qin, Huanju; Liu, Xin; Wang, Daowen
2012-01-01
In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H+-ATPase activity, than that of WT control. The plasmalemma H+-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells. PMID:22545134
Abscisic Acid Levels and Seed Dormancy
Sondheimer, E.; Tzou, D. S.; Galson, Eva C.
1968-01-01
Dormant seeds from Fraxinus species require cold-temperature after-ripening prior to germination. Earlier, we found that abscisic acid (ABA) will inhibit germination of excised nondormant embryos and that this can be reversed with a combination of gibberellic acid and kinetin. Using Milborrow's quantitative “racemate dilution” method the ABA concentration in 3 types of Fraxinus seed and pericarp were determined. While ABA was present in all tissues, the highest concentration was found in the seed and pericarp of dormant F. americana. During the chilling treatment of F. americana the ABA levels decreased 37% in the pericarp and 68% in the seed. The ABA concentration of the seed of the nondormant species, F. ornus, is as low as that found in F. americana seeds after cold treatment. Experiments with exogenously added ABA solutions indicate that it is unlikely that the ABA in the pericarp functions in the regulation of seed dormancy. However, the ABA in the seed does seem to have a regulatory role in germination. Images PMID:16656935
Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.
Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence
2009-07-01
In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.
Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling
2016-01-01
Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506
Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.
2016-01-01
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768
Involvement of a Lipoxygenase-Like Enzyme in Abscisic Acid Biosynthesis 1
Creelman, Robert A.; Bell, Erin; Mullet, John E.
1992-01-01
Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties. PMID:16668998
Petti, Carloalberto; Reiber, Kathrin; Ali, Shahin S; Berney, Margaret; Doohan, Fiona M
2012-11-22
Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA) and abscisic acid (ABA), are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens -mediated control of Fusarium head blight (FHB) disease of barley and to determine if biocontrol-associated hormones directly affect disease development. A previous study distinguished bacterium-responsive genes from bacterium-primed genes, distinguished by the fact that the latter are only up-regulated when both P. fluorescens and the pathogen Fusarium culmorum are present. In silico analysis of the promoter sequences available for a subset of the bacterium-primed genes identified several hormones, including IAA and ABA as potential regulators of transcription. Treatment with the bacterium or pathogen resulted in increased IAA and ABA levels in head tissue; both microbes had additive effects on the accumulation of IAA but not of ABA. The microbe-induced accumulation of ABA preceded that of IAA. Gene expression analysis showed that both hormones up-regulated the accumulation of bacterium-primed genes. But IAA, more than ABA up-regulated the transcription of the ABA biosynthesis gene NCED or the signalling gene Pi2, both of which were previously shown to be bacterium-responsive rather than primed. Application of IAA, but not of ABA reduced both disease severity and yield loss caused by F. culmorum, but neither hormone affect in vitro fungal growth. Both IAA and ABA are involved in the P. fluorescens-mediated control of FHB disease of barley. Gene expression studies also support the hypothesis that IAA plays a role in the primed response to F. culmorum. This hypothesis was validated by the fact that pre-application of IAA reduced both symptoms and yield loss asssociated with the disease. This is the first evidence that IAA plays a role in the control of FHB disease and in the bacterial priming of host defences.
2012-01-01
Background Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA) and abscisic acid (ABA), are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens –mediated control of Fusarium head blight (FHB) disease of barley and to determine if biocontrol-associated hormones directly affect disease development. Results A previous study distinguished bacterium-responsive genes from bacterium-primed genes, distinguished by the fact that the latter are only up-regulated when both P. fluorescens and the pathogen Fusarium culmorum are present. In silico analysis of the promoter sequences available for a subset of the bacterium-primed genes identified several hormones, including IAA and ABA as potential regulators of transcription. Treatment with the bacterium or pathogen resulted in increased IAA and ABA levels in head tissue; both microbes had additive effects on the accumulation of IAA but not of ABA. The microbe-induced accumulation of ABA preceded that of IAA. Gene expression analysis showed that both hormones up-regulated the accumulation of bacterium-primed genes. But IAA, more than ABA up-regulated the transcription of the ABA biosynthesis gene NCED or the signalling gene Pi2, both of which were previously shown to be bacterium-responsive rather than primed. Application of IAA, but not of ABA reduced both disease severity and yield loss caused by F. culmorum, but neither hormone affect in vitro fungal growth. Conclusions Both IAA and ABA are involved in the P. fluorescens-mediated control of FHB disease of barley. Gene expression studies also support the hypothesis that IAA plays a role in the primed response to F. culmorum. This hypothesis was validated by the fact that pre-application of IAA reduced both symptoms and yield loss asssociated with the disease. This is the first evidence that IAA plays a role in the control of FHB disease and in the bacterial priming of host defences. PMID:23173736
Tuan, Pham Anh; Bai, Songling; Saito, Takanori; Ito, Akiko; Moriguchi, Takaya
2017-08-01
In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R
2005-09-01
We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.
Zhang, Dongping; Chen, Li; Li, Dahong; Lv, Bing; Chen, Yun; Chen, Jingui; XuejiaoYan; Liang, Jiansheng
2014-01-01
The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction. PMID:24865690
Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.
Cornish, K; Zeevaart, J A
1985-07-01
The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.
Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites.
Balsevich, J. J.; Cutler, A. J.; Lamb, N.; Friesen, L. J.; Kurz, E. U.; Perras, M. R.; Abrams, S. R.
1994-01-01
The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies. PMID:12232311
Tonini, Patricia Pinho; Purgatto, Eduardo; Buckeridge, Marcos Silveira
2010-10-01
Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, α-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased α-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased α-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.
Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu
2017-01-01
Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress. PMID:28848576
Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu
2017-01-01
Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.
2014-01-01
Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714
NASA Astrophysics Data System (ADS)
Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos
2016-01-01
Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.
Raschke, K
1975-01-01
Open stomata of detached leaves of Xanthium strumarium L. closed only when carbon dioxide and abscisic acid (ABA) were presented simultaneously. Three parameters of stomatal closing were determined after additions of ABA to the irrigation water of detached leaves, while the leaves were exposed to various CO2 concentrations ([CO2]s) in the air; a) the delay between addition of ABA and a reduction of stomatal conductance by 5%, b) the velocity of stomatal closing, and c) the new conductance. Changes in all three parameters showed that stomatal responses to ABA were enhanced by CO2; this effect followed saturation kinetics. Half saturation occurred at an estimated [CO2] in the stomatal pore of 200 μl l(-1). With respect to ABA, stomata responded in normal air with half their maximal amplitude at [ABA]s between 10(-6) and 10(-5) M(+-)-ABA. The amounts of ABA taken up by the leaves during the delay increased with a power <1 (on the average, 0.67) of the [ABA] in the transpiration stream. The minimal amount of ABA found to produce a stomatal response was about 1 pmol of (+-)-ABA per cm(2) leaf area, almost two orders of magnitude smaller than the original content of the leaves in ABA indicating that most of the endogenous ABA was in a compartment isolated from the guard cells.An interaction between stomatal responses to CO2 and ABA was also found in Gossypium hirsutum L. and Commelina communis L.; it was however much weaker than in X. strumarium.Based on earlier findings and on the results of this investigation it is suggested that stomata close if the cytoplasm of the guard cells contains much malate and H(+). The acid content in turn is determined by the relative rates of production of malic acid (from endogenous as well as exogenous CO2) and its removal (by transport of the anion into the vacuole and exchange of the H(+) for K(+) with the environment of the guard cells). The simultaneous requirement of CO2 and ABA for stomatal closure leads to the inference that ABA inhibits the expulsion of H(+) from guard cells.
Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.
Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A
1987-11-01
RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.
Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium1
Creelman, Robert A.; Gage, Douglas A.; Stults, John T.; Zeevaart, Jan A. D.
1987-01-01
Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid. PMID:16665768
Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco1[W
Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence
2009-01-01
In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8′-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8′-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants. PMID:19420326
Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Walton, D.C.
The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9{prime}-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulationmore » of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an {sup 18}O{sub 2}-containing atmosphere resulted in the synthesis of ABA with levels of {sup 18}O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.« less
Romero, Paco; Lafuente, María T; Rodrigo, María J
2012-08-01
The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.
Rodrigo, María J.
2012-01-01
The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components. PMID:22888124
Ye, Nenghui; Zhang, Jianhua
2012-05-01
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.
Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A
1996-01-01
Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location. Images PMID:8665840
Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A
1996-05-15
Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.
Lee, Tien-Jui; Kinzig, Kimberly P
2017-09-01
Anorexia nervosa (AN) typically presents in adolescence and is highly comorbid with anxiety and depression, which often persist after elimination of AN symptomology. The activity-based anorexia (ABA) paradigm allows for evaluation of behavioral and neuroendocrine consequences of AN-like behaviors, including voluntary anorexia, hyperactivity, and disruption of the hypothalamic-pituitary-gonadal (HPG) and the hypothalamic pituitary adrenal (HPA) axis. Because ABA in adolescent females results in increased anxiety-like behavior in adulthood and the estrogen signaling system has been shown to play a role in anxiety and food intake, we investigated the role of ovarian hormones in adolescent ABA-treated rats, and long-term effects of mid- and late adolescent ABA exposure on behavior and estrogen signaling. While previous research demonstrated that two bouts of ABA during adolescence resulted in decreased time in the open arm of the elevated plus maze (EPM) and increased activity of the HPA axis in response to a novel stressor, here we show that one bout of ABA in mid-or late-adolescence did not result in the same behavioral outcome. Two exposures to ABA during adolescence were necessary to produce long-term anxiety-like behavior on the EPM. Finally, removal of ovarian hormones by ovariectomy (OVX) prior to puberty did not attenuate long-term behavioral consequences of ABA in adolescence, and estrogen receptor β (ERβ) expression level in the amygdala of ABA rats was significantly lower than control subjects. Taken together, these studies identify enduring effects of ABA in adolescent females that may be mediated by ABA-induced changes to CNS ERβ signaling that increase anxiety-like behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Gonai, Takeru; Kawahara, Shusuke; Tougou, Makoto; Satoh, Shigeru; Hashiba, Teruyoshi; Hirai, Nobuhiro; Kawaide, Hiroshi; Kamiya, Yuji; Yoshioka, Toshihito
2004-01-01
Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.
Cenzano, Ana M; Masciarelli, O; Luna, M Virginia
2014-10-01
The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rock, C.D.; Zeevaart, J.A.D.
Previous {sup 18}O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of ({sup 18}O)ABA with the label incorporated in the 1{prime}-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage (1989) Plant Physiol 91: 1594-1601). It was proposed that exchange of {sup 18}O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1{prime}-4{prime}-trans-ABA-diol (ABA-trans-diol) from {sup 18}O-labeled apple fruit tissue and measured the extent and position of {sup 18}O incorporation by tandemmore » mass spectrometry. {sup 18}O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of {sup 18}O in the carbonyl of ABA-aldehyde can be the cause of loss of {sup 18}O from the side chain of ({sup 18}O)ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde {yields} ABA {yields} ABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to {beta}-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed.« less
Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.
Liu, Ning; Staswick, Paul E; Avramova, Zoya
2016-11-01
Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought. © 2016 John Wiley & Sons Ltd.
Yang, Liang; Ji, Wei; Zhu, Yanming; Gao, Peng; Li, Yong; Cai, Hua; Bai, Xi; Guo, Dianjing
2010-05-01
Calcium/calmodulin-dependent kinases play vital roles in protein phosphorylation in eukaryotes, yet little is known about the phosphorylation process of calcium/calmodulin-dependent protein kinase and its role in stress signal transduction in plants. A novel plant-specific calcium-dependent calmodulin-binding receptor-like kinase (GsCBRLK) has been isolated from Glycine soja. A subcellular localization study using GFP fusion protein indicated that GsCBRLK is localized in the plasma membrane. Binding assays demonstrated that calmodulin binds to GsCBRLK with an affinity of 25.9 nM in a calcium-dependent manner and the binding motif lies between amino acids 147 to169 within subdomain II of the kinase domain. GsCBRLK undergoes autophosphorylation and Myelin Basis Protein phosphorylation in the presence of calcium. It was also found that calcium/calmodulin positively regulates GsCBRLK kinase activity through direct interaction between the calmodulin-binding domain and calmodulin. So, it is likely that GsCBRLK responds to an environmental stimulus in two ways: by increasing the protein expression level and by regulating its kinase activity through the calcium/calmodulin complex. Furthermore, cold, salinity, drought, and ABA stress induce GsCBRLK gene transcripts. Over-expression of GsCBRLK in transgenic Arabidopsis resulted in enhanced plant tolerance to high salinity and ABA and increased the expression pattern of a number of stress gene markers in response to ABA and high salt. These results identify GsCBRLK as a molecular link between the stress- and ABA-induced calcium/calmodulin signal and gene expression in plant cells.
Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L. 1
Cornish, Katrina; Zeevaart, Jan A. D.
1985-01-01
The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. PMID:16664294
Perata, Pierdomenico; Picciarelli, Piero; Alpi, Amedeo
1990-01-01
Free abscisic acid (ABA) content in suspensors, embryos, and integuments was determined during seed development of Phaseolus coccineus. A highly specific and sensitive solid-phase radioimmunoassay based on a monocional antibody raised against free (S)-ABA was used for ABA quantification. Very small amounts of ABA were detected in the suspensor during initial stages of development; later two peaks of ABA occurred. Levels of ABA in the embryo and integument show a coincident triphasic distribution: two maxima in ABA content occurred when the embryo was 11 to 12 and 15 to 16 millimeters in length; later, when the embryo was 19 to 20 millimeters long, a further increase was observed. The role of ABA in runner bean seeds is discussed in relation to the development of the different seed tissues. PMID:16667915
Selection and Characterization of Single Stranded DNA Aptamers for the Hormone Abscisic Acid
Gonzalez, Victor M.; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M.; Bellotti, Marta; Zocchi, Elena
2013-01-01
The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98±0.14 μM and 0.80±0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays. PMID:23971905
Physiological and molecular responses to drought in Petunia: the importance of stress severity
Kim, Jongyun
2012-01-01
Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204
Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.).
Tamburino, Rachele; Vitale, Monica; Ruggiero, Alessandra; Sassi, Mauro; Sannino, Lorenza; Arena, Simona; Costa, Antonello; Batelli, Giorgia; Zambrano, Nicola; Scaloni, Andrea; Grillo, Stefania; Scotti, Nunzia
2017-02-10
Drought is a major constraint for plant growth and crop productivity that is receiving an increased attention due to global climate changes. Chloroplasts act as environmental sensors, however, only partial information is available on stress-induced mechanisms within plastids. Here, we investigated the chloroplast response to a severe drought treatment and a subsequent recovery cycle in tomato through physiological, metabolite and proteomic analyses. Under stress conditions, tomato plants showed stunted growth, and elevated levels of proline, abscisic acid (ABA) and late embryogenesis abundant gene transcript. Proteomics revealed that water deficit deeply affects chloroplast protein repertoire (31 differentially represented components), mainly involving energy-related functional species. Following the rewatering cycle, physiological parameters and metabolite levels indicated a recovery of tomato plant functions, while proteomics revealed a still ongoing adjustment of the chloroplast protein repertoire, which was even wider than during the drought phase (54 components differentially represented). Changes in gene expression of candidate genes and accumulation of ABA suggested the activation under stress of a specific chloroplast-to-nucleus (retrograde) signaling pathway and interconnection with the ABA-dependent network. Our results give an original overview on the role of chloroplast as enviromental sensor by both coordinating the expression of nuclear-encoded plastid-localised proteins and mediating plant stress response. Although our data suggest the activation of a specific retrograde signaling pathway and interconnection with ABA signaling network in tomato, the involvement and fine regulation of such pathway need to be further investigated through the development and characterization of ad hoc designed plant mutants.
Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian
2017-12-02
The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.
Müller, Heike M; Schäfer, Nadine; Bauer, Hubert; Geiger, Dietmar; Lautner, Silke; Fromm, Jörg; Riederer, Markus; Bueno, Amauri; Nussbaumer, Thomas; Mayer, Klaus; Alquraishi, Saleh A; Alfarhan, Ahmed H; Neher, Erwin; Al-Rasheid, Khaled A S; Ache, Peter; Hedrich, Rainer
2017-10-01
Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl - medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying
2010-07-01
Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.
Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong
2014-05-01
The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin.
Delk, Nikkí A.; Johnson, Keith A.; Chowdhury, Naweed I.; Braam, Janet
2005-01-01
Changes in intracellular calcium (Ca2+) levels serve to signal responses to diverse stimuli. Ca2+ signals are likely perceived through proteins that bind Ca2+, undergo conformation changes following Ca2+ binding, and interact with target proteins. The 50-member calmodulin-like (CML) Arabidopsis (Arabidopsis thaliana) family encodes proteins containing the predicted Ca2+-binding EF-hand motif. The functions of virtually all these proteins are unknown. CML24, also known as TCH2, shares over 40% amino acid sequence identity with calmodulin, has four EF hands, and undergoes Ca2+-dependent changes in hydrophobic interaction chromatography and migration rate through denaturing gel electrophoresis, indicating that CML24 binds Ca2+ and, as a consequence, undergoes conformational changes. CML24 expression occurs in all major organs, and transcript levels are increased from 2- to 15-fold in plants subjected to touch, darkness, heat, cold, hydrogen peroxide, abscisic acid (ABA), and indole-3-acetic acid. However, CML24 protein accumulation changes were not detectable. The putative CML24 regulatory region confers reporter expression at sites of predicted mechanical stress; in regions undergoing growth; in vascular tissues and various floral organs; and in stomata, trichomes, and hydathodes. CML24-underexpressing transgenics are resistant to ABA inhibition of germination and seedling growth, are defective in long-day induction of flowering, and have enhanced tolerance to CoCl2, molybdic acid, ZnSO4, and MgCl2. MgCl2 tolerance is not due to reduced uptake or to elevated Ca2+ accumulation. Together, these data present evidence that CML24, a gene expressed in diverse organs and responsive to diverse stimuli, encodes a potential Ca2+ sensor that may function to enable responses to ABA, daylength, and presence of various salts. PMID:16113225
Yang, Zhong-Bao; Eticha, Dejene; Albacete, Alfonso; Rao, Idupulapati Madhusudana; Roitsch, Thomas; Horst, Walter Johannes
2012-01-01
Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought. PMID:22371077
Zhang, Li; Li, Xu-Hui; Gao, Zhen; Shen, Si; Liang, Xiao-Gui; Zhao, Xue; Lin, Shan; Zhou, Shun-Li
2017-09-01
Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development. Copyright © 2017 Elsevier GmbH. All rights reserved.
Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato.
Zhang, Yushu; Li, Qian; Jiang, Li; Kai, Wenbin; Liang, Bin; Wang, Juan; Du, Yangwei; Zhai, Xiawan; Wang, Jieling; Zhang, Yingqi; Sun, Yufei; Zhang, Lusheng; Leng, Ping
2018-01-01
Although ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA. The SlPP2C1 gene was expressed in all tomato tissues throughout development, particularly in flowers and fruits, and it was up-regulated by dehydration and ABA treatment. SlPP2C1 expression in fruits was increased at 30 d after full bloom and peaked at the B + 1 stage. Suppression of SlPP2C1 expression significantly accelerated fruit ripening which was associated with higher levels of ABA signaling genes that are reported to alter the expression of fruit ripening genes involved in ethylene release and cell wall catabolism. SlPP2C1-RNAi (RNA interference) led to increased endogenous ABA accumulation and advanced release of ethylene in transgenic fruits compared with wild-type (WT) fruits. SlPP2C1-RNAi also resulted in abnormal flowers and obstructed the normal abscission of pedicels. SlPP2C1-RNAi plants were hypersensitized to ABA, and displayed delayed seed germination and primary root growth, and increased resistance to drought stress compared with WT plants. These results demonstrated that SlPP2C1 is a functional component in the ABA signaling pathway which participates in fruit ripening, ABA responses and drought tolerance. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua
2012-01-01
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664
Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin
2017-05-01
This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Yanping; Wang, Ya; Ji, Kai; Dai, Shengjie; Hu, Ying; Sun, Liang; Li, Qian; Chen, Pei; Sun, Yufei; Duan, Chaorui; Wu, Yan; Luo, Hao; Zhang, Dian; Guo, Yangdong; Leng, Ping
2013-03-01
Cucumber (Cucumis sativus L.), a kind of fruit usually harvested at the immature green stage, belongs to non-climacteric fruit. To investigate the contribution of abscisic acid (ABA) to cucumber fruit development and ripening, variation in ABA level was investigated and a peak in ABA level was found in pulp before fruit get fully ripe. To clarify this point further, exogenous ABA was applied to cucumber fruits at two different development stages. Results showed that ABA application at the turning stage promotes cucumber fruit ripening, while application at the immature green stage had inconspicuous effects. In addition, with the purpose of understanding the transcriptional regulation of ABA, two partial cDNAs of CsNCED1 and CsNCED2 encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthetic pathway; one partial cDNA of CsCYP707A1 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA and two partial cDNAs of CsBG1 and CsBG2 for β-glucosidase (BG) that hydrolyzes ABA glucose ester (ABA-GE) to release active ABA were cloned from cucumber. The DNA and deduced amino acid sequences of these obtained genes respectively showed high similarities to their homologous genes in other plants. Real-time PCR analysis revealed that ABA content may be regulated by its biosynthesis (CsNCEDs), catabolism (CsCYP707A1) and reactivation genes (CsBGs) at the transcriptional level during cucumber fruit development and ripening, in response to ABA application, dehydration and pollination, among which CsNCED1, CsCYP707A1 and CsBG1 were highly expressed in pulp and may play more important roles in regulating ABA metabolism. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.
2011-01-01
Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335
Else, Mark A; Taylor, June M; Atkinson, Christopher J
2006-01-01
In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.
Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme.
Nishimura, Noriyuki; Tsuchiya, Wataru; Moresco, James J; Hayashi, Yuki; Satoh, Kouji; Kaiwa, Nahomi; Irisa, Tomoko; Kinoshita, Toshinori; Schroeder, Julian I; Yates, John R; Hirayama, Takashi; Yamazaki, Toshimasa
2018-06-06
Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.
Role of plant hormones in plant defence responses.
Bari, Rajendra; Jones, Jonathan D G
2009-03-01
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.
Zhang, Chao; Zhang, Lin; Zhang, Sheng; Zhu, Shuang; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang
2015-01-21
Physic nut (Jatropha curcas L.) is a small perennial tree or large shrub, which is well-adapted to semi-arid regions and is considered to have potential as a crop for biofuel production. It is now regarded as an excellent model for studying biofuel plants. However, our knowledge about the molecular responses of this species to drought stress is currently limited. In this study, genome-wide transcriptional profiles of roots and leaves of 8-week old physic nut seedlings were analyzed 1, 4 and 7 days after withholding irrigation. We observed a total of 1533 and 2900 differentially expressed genes (DEGs) in roots and leaves, respectively. Gene Ontology analysis showed that the biological processes enriched in droughted plants relative to unstressed plants were related to biosynthesis, transport, nucleobase-containing compounds, and cellular protein modification. The genes found to be up-regulated in roots were related to abscisic acid (ABA) synthesis and ABA signal transduction, and to the synthesis of raffinose. Genes related to ABA signal transduction, and to trehalose and raffinose synthesis, were up-regulated in leaves. Endoplasmic reticulum (ER) stress response genes were significantly up-regulated in leaves under drought stress, while a number of genes related to wax biosynthesis were also up-regulated in leaves. Genes related to unsaturated fatty acid biosynthesis were down-regulated and polyunsaturated fatty acids were significantly reduced in leaves 7 days after withholding irrigation. As drought stress increased, genes related to ethylene synthesis, ethylene signal transduction and chlorophyll degradation were up-regulated, and the chlorophyll content of leaves was significantly reduced by 7 days after withholding irrigation. This study provides us with new insights to increase our understanding of the response mechanisms deployed by physic nut seedlings under drought stress. The genes and pathways identified in this study also provide much information of potential value for germplasm improvement and breeding for drought resistance.
Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T
2012-04-01
Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.
Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.
2012-01-01
Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241
Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie
2004-04-01
The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.
Preliminary evidence that abscisic acid improves spatial memory in rats.
Qi, Cong-Cong; Ge, Jin-Fang; Zhou, Jiang-Ning
2015-02-01
Abscisic acid (ABA) is a crucial phytohormone that exists in a wide range of animals, including humans, and has multiple bioactivities. As direct derivatives of carotenoids, ABA and retinoic acid (RA) share similar molecular structures, and RA has been reported to improve spatial memory in rodents. To explore the potential effects of ABA on spatial learning and memory in rodents, 20mg/kg ABA was administered to young rats for 6weeks, and its effects on behaviour performance were evaluated through a series of behavioural tests. ABA pharmacokinetic analysis revealed that the exogenous ABA was distributed widely in the rat brain, characterised by rapid absorption and slow elimination. The behavioural tests showed that ABA increased both the duration spent in the target quadrant and the frequency it was entered in the probe test of the Morris water maze (MWM) and decreased the latency to locate the target quadrant. Moreover, ABA decreased the latency to enter the novel arm in the Y-maze test, accompanied by increases in the total entries and distance travelled in the three arms. However, there were no significant differences between the ABA-treated and control rats in the open field test and elevated plus-maze test. These results preliminarily indicate that ABA improves spatial memory in MWM and exploratory activity in Y-maze in young rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang
2017-01-01
High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022
Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An
2017-02-01
Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling growth stages, while mybs2 showed reduced responses. The ABA biosynthesis inhibitor fluridone rescued the mybs1 glucose-hypersensitive phenotype. Moreover, the mRNA levels of three ABA biosynthesis genes, ABA1, NCED9, and AAO3, and three ABA signaling genes, ABI3, ABI4, and ABI5, were increased upon glucose treatment of mybs1 seedlings, but were decreased in mybs2 seedlings. These results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development.
Delay of iris flower senescence by cytokinins and jasmonates.
van Doorn, Wouter G; Çelikel, Fisun G; Pak, Caroline; Harkema, Harmannus
2013-05-01
It is not known whether tepal senescence in Iris flowers is regulated by hormones. We applied hormones and hormone inhibitors to cut flowers and isolated tepals of Iris × hollandica cv. Blue Magic. Treatments with ethylene or ethylene antagonists indicated lack of ethylene involvement. Auxins or auxin inhibitors also did not change the time to senescence. Abscisic acid (ABA) hastened senescence, but an inhibitor of ABA synthesis (norflurazon) had no effect. Gibberellic acid (GA3 ) slightly delayed senescence in some experiments, but in other experiments it was without effect, and gibberellin inhibitors [ancymidol or 4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate (AMO-1618)] were ineffective as well. Salicylic acid (SA) also had no effect. Ethylene, auxins, GA3 and SA affected flower opening, therefore did reach the flower cells. Jasmonates delayed senescence by about 2.0 days. Similarly, cytokinins delayed senescence by about 1.5-2.0 days. Antagonists of the phosphatidylinositol signal transduction pathway (lithium), calcium channels (niguldipine and verapamil), calmodulin action [fluphenazine, trifluoroperazine, phenoxybenzamide and N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide hydrochloride (W-7)] or protein kinase activity [1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H-7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8) and N-(2-aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9)] had no effect on senescence, indicating no role of a few common signal transduction pathways relating to hormone effects on senescence. The results indicate that tepal senescence in Iris cv. Blue Magic is not regulated by endogenous ethylene, auxin, gibberellins or SA. A role of ABA can at present not be excluded. The data suggest the hypothesis that cytokinins and jasmonates are among the natural regulators. Copyright © Physiologia Plantarum 2012.
The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea
Siewers, Verena; Smedsgaard, Jørn; Tudzynski, Paul
2004-01-01
The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present here evidence that this “direct” pathway is indeed the only one used by an ABA-overproducing strain of B. cinerea. Targeted inactivation of the gene bccpr1 encoding a cytochrome P450 oxidoreductase reduced the ABA production significantly, proving the involvement of P450 monooxygenases in the pathway. Expression analysis of 28 different putative P450 monooxygenase genes revealed two that were induced under ABA biosynthesis conditions. Targeted inactivation showed that one of these, bcaba1, is essential for ABA biosynthesis: ΔBcaba1 mutants contained no residual ABA. Thus, bcaba1 represents the first identified fungal ABA biosynthetic gene. PMID:15240257
Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong
2018-05-03
Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.
Zeevaart, Jan A. D.
1980-01-01
The time course of abscisic acid (ABA) accumulation during water stress and of degradation following rehydration was investigated by analyzing the levels of ABA and its metabolites phaseic acid (PA) and alkalihydrolyzable conjugated ABA in excised leaf blades of Xanthium strumarium. Initial purification was by reverse-phase, preparative, high performance liquid chromatography (HPLC) which did not require prior partitioning. ABA and PA were purified further by analytical HPLC with a μBondapak-NH2 column, and quantified by GLC with an electron capture detector. The ABA content of stressed leaves increased for 4 to 5 hours and then leveled off due to a balance between synthesis and degradation. Since PA accumulated at a constant rate throughout the wilting period, it was concluded that the rate of ABA synthesis decreased after the first 4 to 5 hours stress. Conjugated ABA increased at a low rate during stress. This is interpreted to indicate that free ABA was converted to the conjugated form, rather than the reverse. Following rehydration of wilted leaves, the ABA level immediately ceased increasing; it remained constant for 1 hour and then declined rapidly to the prestress level over a 2- to 3-hour period with a concomitant rise in the PA level. In contrast to the rapid disappearance of ABA after relief of stress, the high PA content of rehydrated leaves declined only slowly. The level of conjugated ABA did not change following rehydration, indicating that conjugation of ABA was irreversible. Detached Xanthium leaves that were subjected to a wilting-recovery-rewilting cycle in darkness, responded to the second wilting period by formation of the same amount of ABA as accumulated after the first stress period. PMID:16661500
Zeevaart, J A
1980-10-01
The time course of abscisic acid (ABA) accumulation during water stress and of degradation following rehydration was investigated by analyzing the levels of ABA and its metabolites phaseic acid (PA) and alkalihydrolyzable conjugated ABA in excised leaf blades of Xanthium strumarium. Initial purification was by reverse-phase, preparative, high performance liquid chromatography (HPLC) which did not require prior partitioning. ABA and PA were purified further by analytical HPLC with a muBondapak-NH(2) column, and quantified by GLC with an electron capture detector.The ABA content of stressed leaves increased for 4 to 5 hours and then leveled off due to a balance between synthesis and degradation. Since PA accumulated at a constant rate throughout the wilting period, it was concluded that the rate of ABA synthesis decreased after the first 4 to 5 hours stress. Conjugated ABA increased at a low rate during stress. This is interpreted to indicate that free ABA was converted to the conjugated form, rather than the reverse.Following rehydration of wilted leaves, the ABA level immediately ceased increasing; it remained constant for 1 hour and then declined rapidly to the prestress level over a 2- to 3-hour period with a concomitant rise in the PA level. In contrast to the rapid disappearance of ABA after relief of stress, the high PA content of rehydrated leaves declined only slowly. The level of conjugated ABA did not change following rehydration, indicating that conjugation of ABA was irreversible.Detached Xanthium leaves that were subjected to a wilting-recovery-rewilting cycle in darkness, responded to the second wilting period by formation of the same amount of ABA as accumulated after the first stress period.
Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie
2010-07-01
*Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.
Hole, David J.; Smith, J. D.; Cobb, B. Greg
1989-01-01
Sectors of Zea mays cobs, with and without kernels were cultured in vitro in the presence and absence of fluridone. Cultured kernels, cob tissue, and embryos developed similarly to those grown in the field. Abscisic acid (ABA) levels in the embryos were evaluated by enzyme-linked immunosorbant assay. ABA levels in intact embryos cultured in the presence of fluridone were extremely low and indicate an inhibition of ABA synthesis. ABA levels in isolated cob tissue indicate that ABA can be produced by cob tissue. Sections containing kernels cultured in the presence of fluridone were transferred to medium containing fluridone and ABA. Dormancy was induced in more than 50% of the kernels transferred from 13 to 15 days after pollination, but all of the kernels transferred at 16 days after pollination or later were viviparous. ABA recovered from kernels that were placed in medium containing fluridone and ABA suggest that ABA can be transported through the cob tissue into developing embryos and that ABA is required for induction of dormancy in intact embryos. PMID:16666978
Gupta, Ravi; Min, Cheol Woo; Kramer, Katharina; Agrawal, Ganesh Kumar; Rakwal, Randeep; Park, Ki-Hun; Wang, Yiming; Finkemeier, Iris; Kim, Sun Tae
2018-04-01
Phytohormones are central to plant growth and development. Despite the advancement in our knowledge of hormone signaling, downstream targets, and their interactions upon hormones action remain largely fragmented, especially at the protein and metabolite levels. With an aim to get new insight into the effects of two hormones, ethylene (ET) and abscisic acid (ABA), this study utilizes an integrated proteomics and metabolomics approach to investigate their individual and combined (ABA+ET) signaling in soybean leaves. Targeting low-abundance proteins, our previously established protamine sulfate precipitation method was applied, followed by label-free quantification of identified proteins. A total of 4129 unique protein groups including 1083 differentially modulated in one (individual) or other (combined) treatments were discerned. Functional annotation of the identified proteins showed an increased abundance of proteins related to the flavonoid and isoflavonoid biosynthesis and MAPK signaling pathway in response to ET treatment. HPLC analysis showed an accumulation of isoflavones (genistin, daidzein, and genistein) upon ET treatment, in agreement with the proteomics results. A metabolome analysis assigned 79 metabolites and further confirmed the accumulation of flavonoids and isoflavonoids in response to ET. A potential cross-talk between ET and MAPK signaling, leading to the accumulation of flavonoids and isoflavonoids in soybean leaves is suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Agrawal, Anurag A; Hastings, Amy P; Patrick, Eamonn T; Knight, Anna C
2014-07-01
Despite the recognition that phytohormonal signaling mediates induced responses to herbivory, we still have little understanding of how such signaling varies among closely related species and may generate herbivore-specific induced responses. We studied closely related milkweeds (Asclepias) to link: 1) plant damage by two specialist chewing herbivores (milkweed leaf beetles Labidomera clivicolis and monarch caterpillars Danaus plexippus); 2) production of the phytohormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA); 3) induction of defensive cardenolides and latex; and 4) impacts on Danaus caterpillars. We first show that A. syriaca exhibits induced resistance following monarch herbivory (i.e., reduced monarch growth on previously damaged plants), while the defensively dissimilar A. tuberosa does not. We next worked with a broader group of five Asclepias, including these two species, that are highly divergent in defensive traits yet from the same clade. Three of the five species showed herbivore-induced changes in cardenolides, while induced latex was found in four species. Among the phytohormones, JA and ABA showed specific responses (although they generally increased) to insect species and among the plant species. In contrast, SA responses were consistent among plant and herbivore species, showing a decline following herbivore attack. Jasmonic acid showed a positive quantitative relationship only with latex, and this was strongest in plants damaged by D. plexippus. Although phytohormones showed qualitative tradeoffs (i.e., treatments that enhanced JA reduced SA), the few significant individual plant-level correlations among hormones were positive, and these were strongest between JA and ABA in monarch damaged plants. We conclude that: 1) latex exudation is positively associated with endogenous JA levels, even among low-latex species; 2) correlations among milkweed hormones are generally positive, although herbivore damage induces a divergence (tradeoff) between JA and SA; 3) induction of cardenolides and latex are not necessarily physiologically linked; and 4) even very closely related species show highly divergent induction, with some species showing strong defenses, hormonally-mediated induction, and impacts on herbivores, while other milkweed species apparently use alternative strategies to cope with insect attack.
Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response.
Verslues, Paul E
2017-01-01
Drought and low water potential induce large increases in Abscisic Acid (ABA ) content of plant tissue. This increased ABA content is essential to regulate downstream stress resistance responses; however, the mechanisms regulating ABA accumulation are incompletely known. Thus, the ability to accurately quantify ABA at high throughput and low cost is important for plant stress research. We have combined and modified several previously published protocols to establish a rapid ABA analysis protocol using gas chromatography-tandem mass spectrometry (GC-MS/MS). Derivatization of ABA is performed with (trimethylsilyl)-diazomethane rather than the harder to prepare diazomethane. Sensitivity of the analysis is sufficient that small samples of low water potential treated Arabidopsis thaliana seedlings can be routinely analyzed in reverse genetic studies of putative stress regulators as well as studies of natural variation in ABA accumulation.
The chrysanthemum leaf and root transcript profiling in response to salinity stress.
Cheng, Peilei; Gao, Jiaojiao; Feng, Yitong; Zhang, Zixin; Liu, Yanan; Fang, Weimin; Chen, Sumei; Chen, Fadi; Jiang, Jiafu
2018-06-23
RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (>132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport and homeostasis, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate ABA signaling. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed. Copyright © 2018. Published by Elsevier B.V.
Zhang, Lawrence; Sun, Tiefeng
2017-01-01
Activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses after plants sense an invading pathogen. Here, we show that MPK3 and MPK6, two Arabidopsis thaliana pathogen-responsive MAPKs, and their upstream MAPK kinases, MKK4 and MKK5, are essential to both stomatal and apoplastic immunity. Loss of function of MPK3 and MPK6, or their upstream MKK4 and MKK5, abolishes pathogen/microbe-associated molecular pattern- and pathogen-induced stomatal closure. Gain-of-function activation of MPK3/MPK6 induces stomatal closure independently of abscisic acid (ABA) biosynthesis and signaling. In contrast, exogenously applied organic acids such as malate or citrate are able to reverse the stomatal closure induced by MPK3/MPK6 activation. Gene expression analysis and in situ enzyme activity staining revealed that malate metabolism increases in guard cells after activation of MPK3/MPK6 or inoculation of pathogen. In addition, pathogen-induced malate metabolism requires functional MKK4/MKK5 and MPK3/MPK6. We propose that the pathogen-responsive MPK3/MPK6 cascade and ABA are two essential signaling pathways that control, respectively, the organic acid metabolism and ion channels, two main branches of osmotic regulation in guard cells that function interdependently to control stomatal opening/closure. PMID:28254778
Terry, Paul H.; Aung, Louis H.; De Hertogh, August A.
1982-01-01
A major growth inhibitory substance of tulip bulbs (Tulipa gesneriana L. cv Paul Richter) has been unequivocally shown to be abscisic acid (ABA). The ABA methyl ester of the free ether-soluble acid fractions of tulip organs had the identical retention time on gas-liquid chromatography with electron capture detector as authentic ABA methyl ester. In addition, the mass spectra were the same. On a unit dry matter basis, the basalplate and floral shoot contained 3.6 and 2.6 times more ABA than the fleshy scales, respectively. PMID:16662721
To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid.
Humplík, Jan F; Bergougnoux, Véronique; Van Volkenburgh, Elizabeth
2017-10-01
Physiologically, abscisic acid (ABA) is believed to be a general inhibitor of plant growth, including during the crucial early development of seedlings. However, this view contradicts many reports of stimulatory effects of ABA that, so far, have not been considered in the debate concerning ABA's function in plant development. To address this apparent contradiction, we propose a hypothetical mechanism to explain how ABA might contribute to the promotion of cell expansion. We wish to overturn conventional views on ABA's role during juvenile plant development and put forward the idea that, as for other phytohormones, the role of ABA is determined by dose and sensitivity and ranges from stimulatory to inhibitory effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uprooting an abscisic acid paradigm: Shoots are the primary source.
McAdam, Scott A M; Manzi, Matías; Ross, John J; Brodribb, Timothy J; Gómez-Cadenas, Aurelio
2016-06-02
In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress.
Abscisic acid is not necessary for gravitropism in primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.
1990-01-01
Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.
Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution
NASA Astrophysics Data System (ADS)
Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.
2009-11-01
Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.
NASA Technical Reports Server (NTRS)
Moore, R.; Dickey, K.
1985-01-01
The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.
Piterková, Jana; Luhová, Lenka; Hofman, Jakub; Turečková, Veronika; Novák, Ondřej; Petřivalský, Marek; Fellner, Martin
2012-01-01
Background and Aims Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Methods Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. Key Results The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. Conclusions As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and stress responses include NO-dependent signalling. PMID:22782244
Piterková, Jana; Luhová, Lenka; Hofman, Jakub; Turecková, Veronika; Novák, Ondrej; Petrivalsky, Marek; Fellner, Martin
2012-09-01
Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and stress responses include NO-dependent signalling.
Nazaruddin, Nazaruddin; Samad, Abdul Fatah A; Sajad, Muhammad; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan
2017-06-01
Persicaria minor (Kesum) is an important medicinal plant with high level of secondary metabolite contents, especially, terpenoids and flavonoids. Previous studies have revealed that application of exogenous phytohormone could increase secondary metabolite contents of the plant. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. In order to explore the possible role of miRNA in the regulation of these phytohormones signaling pathway and uncovering their potential correlation, we, for the first time, have generated the smallRNA library of Kesum plant. The library was developed in response to methyl jasmonate (MJ) and abscisic acid (ABA) treatment by using next-generation sequencing technology. Raw reads have been deposited to SRA database with the accession numbers, SRX2655642 and SRX2655643 (MJ-treated), SRXSRX2655644 and SRX2655645 (ABA-treated) and SRX2655646and SRX2655647 (Control).
López-Carbonell, Marta; Gabasa, Marta; Jáuregui, Olga
2009-04-01
An improved, quick and simple method for the extraction and quantification of the phytohormones (+)-abscisic acid (ABA) and its major glucose conjugate, abscisic acid glucose ester (ABA-GE) in plant samples is described. The method includes the addition of deuterium-labeled internal standards to the leaves at the beginning of the extraction for quantification, a simple extraction/centrifugation process and the injection into the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) system in multiple reaction monitoring mode (MRM). Quality parameters of the method (detection limits, repeatability, reproducibility and linearity) have been studied. The objective of this work is to show the applicability of this method for quantifying the endogenous content of both ABA and ABA-GE in Cistus albidus plants that have been grown during an annual cycle under Mediterranean field conditions. Leaf samples from winter plants have low levels of ABA which increase in spring and summer showing two peaks that corresponded to April and August. These increases are coincident with the high temperature and solar radiation and the low RWC and RH registered along the year. On the other hand, the endogenous levels of ABA-GE increase until maximum values in July just before the ABA content reaches its highest concentration, decreasing in August and during autumn and winter. Our results suggest that the method is useful for quantifying both compounds in this plant material and represents the advantage of a short-time sample preparation with a high accuracy and viability.
Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C
2016-01-01
Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.
Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael
2014-07-01
Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Rigui, Athos Poli; Gaspar, Marília; Oliveira, Vanessa F.; Purgatto, Eduardo; de Carvalho, Maria Angela Machado
2015-01-01
Background and Aims Chrysolaena obovata, an Asteraceae of the Brazilian Cerrado, presents seasonal growth, marked by senescence of aerial organs in winter and subsequent regrowth at the end of this season. The underground reserve organs, the rhizophores, accumulate inulin-type fructans, which are known to confer tolerance to drought and low temperature. Fructans and fructan-metabolizing enzymes show a characteristic spatial and temporal distribution in the rhizophores during the developmental cycle. Previous studies have shown correlations between abscisic acid (ABA) or indole acetic acid (IAA), fructans, dormancy and tolerance to drought and cold, but the signalling mechanism for the beginning of dormancy and sprouting in this species is still unknown. Methods Adult plants were sampled from the field across phenological phases including dormancy, sprouting and vegetative growth. Endogenous concentrations of ABA and IAA were determined by GC-MS-SIM (gas chromatography–mass spectrometry–selected ion monitoring), and measurements were made of fructan content and composition, and enzyme activities. The relative expression of corresponding genes during dormancy and sprouting were also determined. Key Results Plants showed a high fructan 1-exohydrolase (EC 3.2.1.153) activity and expression during sprouting in proximal segments of the rhizophores, indicating mobilization of fructan reserves, when ABA concentrations were relatively low and precipitation and temperature were at their minimum values. Concomitantly, higher IAA concentrations were consistent with the role of this regulator in promoting cell elongation and plant growth. With high rates of precipitation and high temperatures in summer, the fructan-synthesizing enzyme sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) showed higher activity and expression in distal segments of the rhizophores, which decreased over the course of the vegetative stage when ABA concentrations were higher, possibly signalling the entry into dormancy. Conclusions The results show that fructan metabolism correlates well with endogenous hormone concentrations and environmental changes, suggesting that the co-ordinated action of carbohydrate metabolism and hormone synthesis enables C. obovata to survive unfavourable field conditions. Endogenous hormone concentrations seem to be related to regulation of fructan metabolism and to the transition between phenophases, signalling for energy storage, reserve mobilization and accumulation of oligosaccharides as osmolytes. PMID:25921788
Grappin, P; Bouinot, D; Sotta, B; Miginiac, E; Jullien, M
2000-01-01
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA(3)) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA(3) in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA(3) inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds.
Sun, Zhongyao; Jin, Xiaofen; Albert, Réka; Assmann, Sarah M.
2014-01-01
Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 1031 distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems. PMID:25393147
Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid
Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin
2012-01-01
WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926
Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min
2012-08-01
A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.
Yang, Jiading; Worley, Eric
2014-01-01
Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602
Kakumanu, Akshay; Ambavaram, Madana M.R.; Klumas, Curtis; Krishnan, Arjun; Batlang, Utlwang; Myers, Elijah; Grene, Ruth; Pereira, Andy
2012-01-01
Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an “unstressed” level, and at lower ABA levels, which was correlated with successful resistance to drought stress. PMID:22837360
Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun
2018-01-01
Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance. PMID:29643863
Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun
2018-01-01
Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 ( lmm9150 ), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H 2 O 2 . Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150 . Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150 . Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150 . Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.
Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying
2014-01-01
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.
Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers
Vemula, Harika; Kitase, Yukiko; Ayon, Navid J.; Bonewald, Lynda; Gutheil, William G.
2016-01-01
Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight-aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of β-aminoisobutyric acid (β-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-β-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 μM), an intermediate level of l-BAIBA (0.8 μM), and low but detectable levels (<0.2 μM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules. PMID:27771391
Roles of plant hormones in the regulation of host-virus interactions.
Alazem, Mazen; Lin, Na-Sheng
2015-06-01
Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones. © 2014 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY JOHN WILEY & SONS LTD AND BSPP.
Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H
2006-10-01
We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.
Sulochana, Sujitha Balakrishnan; Arumugam, Muthu
2016-08-01
Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of an indirect enzyme linked immunoassay for abscisic acid. [Pisum sativum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, G.S.; Elder, P.A.; McWha, J.A.
1987-09-01
AN INDIRECT METHOD OF ENZYME-LINKED-IMMUNOSORBENT-ASSAY (ELISA) IS REPORTED FOR ABSCISIC ACID (ABA), UTILIZING A THYROGLOBULIN-ABA CONJUGATE FOR COATING WELLS. THE ASSAY CAN USE COMMERCIALLY AVAILABLE MONOCLONAL ANTIBODIES, IS SENSITIVE TO AS LITTLE AS 20 PICOGRAMS ABA PER WELL, AND IS MUCH MORE CONSERVATIVE OF ANTIBODY THAN DIRECT METHODS. THE MOST DILUTE ABA STANDARDS DID NOT RETAIN THEIR ANTIGENICITY DURING STORAGE, SO ABA STANDARD SETS WERE DILUTED IMMEDIATELY PRIOR TO USE. THE INDIRECT ELISA WAS USED SUCCESSFULLY TO ESTIMATE ABA CONCENTRATIONS IN DEVELOPING COTYLEDONS OF PISUM SATIVUM L., AFTER ONLY LITTLE PRELIMINARY PURIFICATION. IT WAS VALIDATED FOR THIS TISSUE THROUGH THEmore » USE OF GAS CHROMATOGRAPHY-ELECTRON CAPTURE DETECTION (GC-EC), AND CAPILLARY GC-SELECTED ION MONITORING (GC-MS-SIM) USING LABELLED ABA AS AN INTERNAL STANDARD. FULL SPECTRUM GC-MASS SPECTROMETRY WAS ALSO USED TO VERIFY THAT ABA WAS PRESENT IN A SAMPLE ASSAYED QUANTITATIVELY BY BOTH ELISA AND GC-MS-SIM.« less
Zhao, Shu-Ping; Xu, Zhao-Shi; Zheng, Wei-Jun; Zhao, Wan; Wang, Yan-Xia; Yu, Tai-Fei; Chen, Ming; Zhou, Yong-Bin; Min, Dong-Hong; Ma, You-Zhi; Chai, Shou-Cheng; Zhang, Xiao-Hong
2017-01-01
Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.). In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA) treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean. PMID:28634481
2011-01-01
Background Under drought, plants accumulate the signaling hormone abscisic acid (ABA), which induces the rapid closure of stomatal pores to prevent water loss. This event is trigged by a series of signals produced inside guard cells which finally reduce their turgor. Many of these events are tightly regulated at the transcriptional level, including the control exerted by MYB proteins. In a previous study, while identifying the grapevine R2R3 MYB family, two closely related genes, VvMYB30 and VvMYB60 were found with high similarity to AtMYB60, an Arabidopsis guard cell-related drought responsive gene. Results Promoter-GUS transcriptional fusion assays showed that expression of VvMYB60 was restricted to stomatal guard cells and was attenuated in response to ABA. Unlike VvMYB30, VvMYB60 was able to complement the loss-of-function atmyb60-1 mutant, indicating that VvMYB60 is the only true ortholog of AtMYB60 in the grape genome. In addition, VvMYB60 was differentially regulated during development of grape organs and in response to ABA and drought-related stress conditions. Conclusions These results show that VvMYB60 modulates physiological responses in guard cells, leading to the possibility of engineering stomatal conductance in grapevine, reducing water loss and helping this species to tolerate drought under extreme climatic conditions. PMID:22018045
Involvement of abscisic acid in correlative control of flower abscission in soybean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrow, G.L.
1985-01-01
Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both /sup 3/H-ABA and /sup 14/C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resultedmore » in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of /sup 3/H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA.« less
Giulia, Eccher; Alessandro, Botton; Mariano, Dimauro; Andrea, Boschetti; Benedetto, Ruperti; Angelo, Ramina
2013-01-01
Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners. A metabolomic study was conducted on the volatile organic compounds emitted by abscising fruitlets, allowing for identification of isoprene as an early marker of abscission induction. A strong correlation was also observed between isoprene production and abscisic acid (ABA) levels in the fruit cortex, which were shown to increase in abscising fruitlets with respect to nonabscising ones. Transcriptomic evidence indicated that abscission-related ABA is biologically active, and its increased biosynthesis is associated with the induction of a specific ABA-responsive 9-cis-epoxycarotenoid dioxygenase gene. According to a hypothetical model, ABA may transiently cooperate with other hormones and secondary messengers in the generation of an intrafruit signal leading to the downstream activation of the abscission zone. The shedding process therefore appears to be triggered by multiple interdependent pathways, whose fine regulation, exerted within a very short temporal window by both endogenous and exogenous factors, determines the final destiny of the fruitlets. PMID:23444344
Lin, Qibing; Wu, Fuqing; Sheng, Peike; Zhang, Zhe; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Cheng, Zhijun; Wang, Jie; Wang, Haiyang; Wan, Jianmin
2015-01-01
Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/CTE complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/CTE activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/CTE-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/CTE regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants. PMID:26272249
Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing
2007-02-01
Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.
Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin
2015-01-01
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830
Zandalinas, Sara I.; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio; Inupakutika, Madhuri A.; Mittler, Ron
2016-01-01
Abscisic acid (ABA) plays a key role in plant acclimation to abiotic stress. Although recent studies suggested that ABA could also be important for plant acclimation to a combination of abiotic stresses, its role in this response is currently unknown. Here we studied the response of mutants impaired in ABA signalling (abi1-1) and biosynthesis (aba1-1) to a combination of water deficit and heat stress. Both mutants displayed reduced growth, biomass, and survival when subjected to stress combination. Focusing on abi1-1, we found that although its stomata had an impaired response to water deficit, remaining significantly more open than wild type, its stomatal aperture was surprisingly reduced when subjected to the stress combination. Stomatal closure during stress combination in abi1-1 was accompanied by higher levels of H2O2 in leaves, suggesting that H2O2 might play a role in this response. In contrast to the almost wild-type stomatal closure phenotype of abi1-1 during stress combination, the accumulation of ascorbate peroxidase 1 and multiprotein bridging factor 1c proteins, required for acclimation to a combination of water deficit and heat stress, was significantly reduced in abi1-1. Our findings reveal a key function for ABA in regulating the accumulation of essential proteins during a combination of water deficit and heat stress. PMID:27497287
Hou, Bing-Zhu; Xu, Cheng; Shen, Yuan-Yue
2018-03-24
Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, its exact molecular mechanisms are yet not fully understood. In this study, a predicted leu-rich repeat (LRR) receptor-like kinase in strawberry, red-initial protein kinase 1 (FaRIPK1), was screened and, using a yeast two-hybrid assay, was shown to interact with a putative ABA receptor, FaABAR. This association was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation assays, and shown to occur in the nucleus. Expression analysis by real-time PCR showed that FaRIPK1 is expressed in roots, stems, leaves, flowers, and fruit, with a particularly high expression in white fruit at the onset of coloration. Down-regulation of FaRIPK1 expression in strawberry fruit, using Tobacco rattle virus-induced gene silencing, inhibited ripening, as evidenced by suppression of ripening-related physiological changes and reduced expression of several genes involved in softening, sugar content, pigmentation, and ABA biosynthesis and signaling. The yeast-expressed LRR and STK (serine/threonine protein kinase) domains of FaRIPK1 bound ABA and showed kinase activity, respectively. A fruit disc-incubation test revealed that FaRIPK1 expression was induced by ABA and ethylene. The synergistic action of FaRIPK1 with FaABAR in regulation of strawberry fruit ripening is discussed.
Qin, Xiaoqiong; Zeevaart, Jan A D
2002-02-01
The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels.
Qin, Xiaoqiong; Zeevaart, Jan A.D.
2002-01-01
The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels. PMID:11842158
Raschke, K; Zeevaart, J A
1976-08-01
Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.
Raschke, Klaus; Zeevaart, Jan A. D.
1976-01-01
Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640
Furihata, Takashi; Maruyama, Kyonoshin; Fujita, Yasunari; Umezawa, Taishi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2006-02-07
bZIP-type transcription factors AREBs/ABFs bind an abscisic acid (ABA)-responsive cis-acting element named ABRE and transactivate downstream gene expression in Arabidopsis. Because AREB1 overexpression could not induce downstream gene expression, activation of AREB1 requires ABA-dependent posttranscriptional modification. We confirmed that ABA activated 42-kDa kinase activity, which, in turn, phosphorylated Ser/Thr residues of R-X-X-S/T sites in the conserved regions of AREB1. Amino acid substitutions of R-X-X-S/T sites to Ala suppressed transactivation activity, and multiple substitution of these sites resulted in almost complete suppression of transactivation activity in transient assays. In contrast, substitution of the Ser/Thr residues to Asp resulted in high transactivation activity without exogenous ABA application. A phosphorylated, transcriptionally active form was achieved by substitution of Ser/Thr in all conserved R-X-X-S/T sites to Asp. Transgenic plants overexpressing the phosphorylated active form of AREB1 expressed many ABA-inducible genes, such as RD29B, without ABA treatment. These results indicate that the ABA-dependent multisite phosphorylation of AREB1 regulates its own activation in plants.
Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao
2016-09-01
Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse interactions among different plants and their endophytes.
Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru
2016-03-15
Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. Copyright © 2016 Elsevier GmbH. All rights reserved.
Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee
2004-04-01
Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.
Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee
2004-01-01
Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855
Spollen, William G.; LeNoble, Mary E.; Samuels, Timmy D.; Bernstein, Nirit; Sharp, Robert E.
2000-01-01
Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (ψw) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743–1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a ψw of −1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low ψw is to restrict ethylene production. PMID:10712561
Synthesis, resolution and biological evaluation of cyclopropyl analogs of abscisic acid.
Han, Xiaoqiang; Fan, Jinlong; Lu, Huizhe; Wan, Chuan; Li, Xiuyun; Li, Hong; Yang, Dongyan; Zhang, Yuanzhi; Xiao, Yumei; Qin, Zhaohai
2015-09-15
cis-2,3-Cyclopropanated abscisic acid (cis-CpABA) has high photostability and good ABA-like activity. To further investigate its activity and action mechanism, 2S,3S-2,3-cyclopropanated ABA (3a) and 2R,3R-2,3-cyclopropanated ABA (3b) were synthesized. Bioassay showed that 3a displayed higher inhibitory activity in germination than that of 3b and ABA at the concentration of 3.0 μM, but 3a and 3b had much weaker inhibitory activity in inhibition seedling growth compared to ABA. The study of photostability revealed that 3a and 3b showed high stability under UV light exposure, which were 4 times and 3 times greater than (±)-ABA, respectively. Action mechanism study showed that 3a presented higher inhibition on phosphatase activity of HAB1 than 3b, although they all inferior to ABA. Molecular docking studies of 3a, 3b and ABA receptor PYL10 were agreement with the bioassay data and confirmed the importance of the configuration of the 2,3-cyclopropyl ABA analogs for their bioactivity in somewhat. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai
2017-10-03
Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.
A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.
Aquea, Felipe; Federici, Fernan; Moscoso, Cristian; Vega, Andrea; Jullian, Pastor; Haseloff, Jim; Arce-Johnson, Patricio
2012-04-01
Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We show that application of BA reduces the size of root meristems, correlating with the inhibition of root growth. The decrease in meristem size is caused by a reduction of cell division. Mitotic cell number significantly decreases and the expression level of key core cell cycle regulators is modulated. The modulation of the cell cycle does not appear to act through cytokinin and auxin signalling. A global expression analysis reveals that boron toxicity induces the expression of genes related with abscisic acid (ABA) signalling, ABA response and cell wall modifications, and represses genes that code for water transporters. These results suggest that boron toxicity produces a reduction of water and BA uptake, triggering a hydric stress response that produces root growth inhibition. © 2011 Blackwell Publishing Ltd.
Clevenger, Josh; Marasigan, Kathleen; Liakos, Vasileios; Sobolev, Victor; Vellidis, George; Holbrook, Corley; Ozias-Akins, Peggy
2016-01-01
Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and breeding for PAC resistance has been slow. It has been shown that aflatoxin production can be induced by applying drought stress as peanut seeds mature. We have implemented an automated rainout shelter that controls temperature and moisture in the root and peg zone to induce aflatoxin production. Using polymerase chain reaction (PCR) and high performance liquid chromatography (HPLC), seeds meeting the following conditions were selected: infected with Aspergillus flavus and contaminated with aflatoxin; and not contaminated with aflatoxin. RNA sequencing analysis revealed groups of genes that describe the transcriptional state of contaminated vs. uncontaminated seed. These data suggest that fatty acid biosynthesis and abscisic acid (ABA) signaling are altered in contaminated seeds and point to a potential susceptibility factor, ABR1, as a repressor of ABA signaling that may play a role in permitting PAC. PMID:27827875
Mogami, Junro; Fujita, Yasunari; Yoshida, Takuya; Tsukiori, Yoshifumi; Nakagami, Hirofumi; Nomura, Yuko; Fujiwara, Toru; Nishida, Sho; Yanagisawa, Shuichi; Ishida, Tetsuya; Takahashi, Fuminori; Morimoto, Kyoko; Kidokoro, Satoshi; Mizoi, Junya; Shinozaki, Kazuo
2015-01-01
Protein phosphorylation events play key roles in maintaining cellular ion homeostasis in higher plants, and the regulatory roles of these events in Na+ and K+ transport have been studied extensively. However, the regulatory mechanisms governing Mg2+ transport and homeostasis in higher plants remain poorly understood, despite the vital roles of Mg2+ in cellular function. A member of subclass III sucrose nonfermenting-1-related protein kinase2 (SnRK2), SRK2D/SnRK2.2, functions as a key positive regulator of abscisic acid (ABA)-mediated signaling in response to water deficit stresses in Arabidopsis (Arabidopsis thaliana). Here, we used immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry analyses to identify Calcineurin B-like-interacting protein kinase26 (CIPK26) as a novel protein that physically interacts with SRK2D. In addition to CIPK26, three additional CIPKs (CIPK3, CIPK9, and CIPK23) can physically interact with SRK2D in planta. The srk2d/e/i triple mutant lacking all three members of subclass III SnRK2 and the cipk26/3/9/23 quadruple mutant lacking CIPK26, CIPK3, CIPK9, and CIPK23 showed reduced shoot growth under high external Mg2+ concentrations. Similarly, several ABA biosynthesis-deficient mutants, including aba2-1, were susceptible to high external Mg2+ concentrations. Taken together, our findings provided genetic evidence that SRK2D/E/I and CIPK26/3/9/23 are required for plant growth under high external Mg2+ concentrations in Arabidopsis. Furthermore, we showed that ABA, a key molecule in water deficit stress signaling, also serves as a signaling molecule in plant growth under high external Mg2+ concentrations. These results suggested that SRK2D/E/I- and CIPK26/3/9/23-mediated phosphorylation signaling pathways maintain cellular Mg2+ homeostasis. PMID:25614064
Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan
2012-05-01
Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.
Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng
2016-05-01
Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.
1990-01-01
We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.
Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu
2013-01-01
Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325
Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu
2013-01-01
Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.
Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin
2015-07-01
Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.
SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening
Ji, Kai; Kai, Wenbin; Zhao, Bo; Sun, Yufei; Yuan, Bing; Dai, Shengjie; Li, Qian; Chen, Pei; Wang, Ya; Pei, Yuelin; Wang, Hongqing; Guo, Yangdong; Leng, Ping
2014-01-01
Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8′-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. PMID:25039074
Wang, Feng; Hou, Xilin; Tang, Jun; Wang, Zhen; Wang, Shuming; Jiang, Fangling; Li, Ying
2012-04-01
WRKY TFs belong to one of the largest families of transcriptional regulators in plants and form integral parts of signaling webs that modulate many plant processes. BcWRKY46, a cDNA clone encoding a polypeptide of 284 amino acids and exhibited the structural features of group III of WRKY protein family, was isolated from the cold-treated leaves of Pak-choi (Brassica campestris ssp. chinensis Makino, syn. B. rapa ssp. chinensis) using the cDNA-AFLP technique. Expression of this gene was induced quickly and strongly in response to various environmental stresses, including low temperatures, ABA, salt and dehydration. Constitutive expression of BcWRKY46 in tobacco under the control of the CaMV35S promoter reduced the susceptibility of transgenic tobacco to freezing, ABA, salt and dehydration stresses. Our studies suggest that BcWRKY46 plays an important role in responding to ABA and abiotic stress.
Floral markers of strawberry tree (Arbutus unedo L.) honey.
Tuberoso, Carlo I G; Bifulco, Ersilia; Caboni, Pierluigi; Cottiglia, Filippo; Cabras, Paolo; Floris, Ignazio
2010-01-13
Strawberry tree honey, due to its characteristic bitter taste, is one of the most typical Mediterranean honeys, with Sardinia being one of the largest producers. According to specific chemical studies, homogentisic acid was identified as a possible marker of this honey. This work, based on HPLC-DAD-MS/MS analysis of strawberry tree (Arbutus unedo L.) honeys, previously selected by sensory evaluation and melissopalynological analysis, showed that, in addition to the above-mentioned acid, there were other high levels of substances useful for the botanical classification of this unifloral honey. Two of these compounds were isolated and identified as (+/-)-2-cis,4-trans-abscisic acid (c,t-ABA) and (+/-)-2-trans,4-trans-abscisic acid (t,t-ABA). A third compound, a new natural product named unedone, was characterized as an epoxidic derivative of the above-mentioned acids. Structures of c,t-ABA, t,t-ABA, and unedone were elucidated on the basis of extensive 1D and 2D NMR experiments, as well as HPLC-MS/MS and Q-TOF analysis. In selected honeys the average amounts of c,t-ABA, t,t-ABA, and unedone were 176.2+/-25.4, 162.3+/-21.1, and 32.9+/-7.1 mg/kg, respectively. Analysis of the A. unedo nectar confirmed the floral origin of these compounds found in the honey. Abscisic acids were found in other unifloral honeys but not in such high amount and with a constant ratio of about 1:1. For this reason, besides homogentisic acid, these compounds could be used as complementary markers of strawberry tree honey.
Barkla; Vera-Estrella; Maldonado-Gama; Pantoja
1999-07-01
Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.
Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan
2009-10-01
Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.
Yang, Qinsong; Niu, Qingfeng; Li, Jianzhao; Zheng, Xiaoyan; Ma, Yunjing; Bai, Songling; Teng, Yuanwen
2018-06-01
Homeodomain-leucine zipper (HD-Zip) proteins, which form one of the largest and most diverse families, regulate many biological processes in plants, including differentiation, flowering, vascular development, and stress signaling. Abscisic acid (ABA) has been proved to be one of the key regulators of bud dormancy and to influence several HD-Zip genes expression. However, the role of HD-Zip genes in regulating bud dormancy remains unclear. We identified 47 pear (P. pyrifolia White Pear Group) HD-Zip genes, which were classified into four subfamilies (HD-Zip I-IV). We further revealed that gene expression levels of some HD-Zip members were closely related to ABA concentrations in flower buds during dormancy transition. Exogenous ABA treatment confirmed that PpHB22 and several other HD-Zip genes responded to ABA. Yeast one-hybrid and dual luciferase assay results combining subcellular localization showed that PpHB22 was present in nucleus and directly induced PpDAM1 (dormancy associated MADS-box 1) expression. Thus, PpHB22 is a negative regulator of plant growth associated with the ABA response pathway and functions upstream of PpDAM1. These findings enrich our understanding of the function of HD-Zip genes related to the bud dormancy transition. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Interactions between red light, abscisic acid, and calcium in gravitropism
NASA Technical Reports Server (NTRS)
Leopold, A. C.; LaFavre, A. K.
1989-01-01
The effect of red light on orthogravitropism of Merit corn (Zea mays L.) roots has been attributed to its effects on the transduction phase of gravitropism (AC Leopold, SH Wettlaufer [1988] Plant Physiol 87:803-805). In an effort to characterize the orthogravitropic transduction system, comparative experiments have been carried out on the effects of red light, calcium, and abscisic acid (ABA). The red light effect can be completely satisfied with added ABA (100 micromolar) or with osmotic shock, which is presumed to increase endogenous ABA. The decay of the red light effect is closely paralleled by the decay of the ABA effect. ABA and exogenous calcium show strong additive effects when applied to either Merit or a line of corn which does not require red light for orthogravitropism. Measurements of the ABA content show marked increases in endogenous ABA in the growing region of the roots after red light. The interpretation is offered that red light or ABA may serve to increase the cytoplasmic concentrations of calcium, and that this may be an integral part of orthogravitropic transduction.
Abscisic acid enhances cold tolerance in honeybee larvae
Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo
2017-01-01
The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619
Abscisic acid enhances cold tolerance in honeybee larvae.
Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo
2017-04-12
The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).
Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.
Matsuno, Koya; Fujimura, Tatsuhito
2014-03-01
A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro
2012-10-01
In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu
2016-04-01
Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L
NASA Technical Reports Server (NTRS)
Moore, R.; Smith, J. D.
1985-01-01
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.
Abscisic acid and pyrabactin improve vitamin C contents in raspberries.
Miret, Javier A; Munné-Bosch, Sergi
2016-07-15
Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.
Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi
2018-01-01
The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.
Shu, Kai; Zhou, Wenguan; Yang, Wenyu
2018-02-01
The phytohormones abscisic acid (ABA) and gibberellin (GA) antagonistically mediate diverse plant developmental processes including seed dormancy and germination, root development, and flowering time control, and thus the optimal balance between ABA and GA is essential for plant growth and development. Although more than a half and one century have passed since the initial discoveries of ABA and GA, respectively, the precise mechanisms underlying ABA-GA antagonism still need further investigation. Emerging evidence indicates that two APETALA 2 (AP2)-domain-containing transcription factors (ATFs), ABI4 in Arabidopsis and OsAP2-39 in rice, play key roles in ABA and GA antagonism. These two transcription factors precisely regulate the transcription pattern of ABA and GA biosynthesis or inactivation genes, mediating ABA and GA levels. In this Viewpoint article, we try to shed light on the effects of ATFs on ABA-GA antagonism, and summarize the overlapping but distinct biological functions of these ATFs in the antagonism between ABA and GA. Finally, we strongly propose that further research is needed into the detailed roles of additional numerous ATFs in ABA and GA crosstalk, which will improve our understanding of the antagonism between these two phytohormones. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu
2017-01-01
The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143
Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław
2013-01-01
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity. PMID:23803653
Cloning and characterization of the ONAC106 gene from Oryza sativa cultivar Kuku Belang
NASA Astrophysics Data System (ADS)
Basri, Khairunnisa; Sukiran, Noor Liyana; Zainal, Zamri
2016-11-01
Plants possess different mechanisms in stress response, where induction of stress-responsive genes provides tolerance to unfavorable conditions. Stress-responsive genes are characterized for functional and regulatory genes that help in overcoming stress by molecular, biochemical and morphological adaptations. NAC transcription factors are one of the regulatory proteins that involved in stress signaling pathway. A putative NAC transcription factor, ONAC016 was identified from drought transcriptomic data. Our data suggested that ONAC106 was induced by drought, but its function in abiotic stress is still unclear. In silico analysis of ONAC106 showed that this gene encodes 334 amino acids, and its protein consists of NAM (No Apical Meristem) domain. The orthologue of ONAC106 was present in several Poaceae family members, suggesting that ONAC106 is unique to monocot plants only. We found that ONAC106 was induced by salt and cold stresses, indicating that this gene involves in abiotic stress response. In addition, we also found that ONAC106 might function in defense response to pathogen invasion. The ABRE (Abscisic Acid Regulatory Element) cis-element was identified in the promoter region of ONAC106, suggesting that it may involve in the abscisic acid (ABA)-dependent signaling pathway. Based on this preliminary result, we hypothesize that ONAC106 may play a role in abiotic stress response by regulating ABA-responsive genes.
Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants.
Wang, Shengman; Wang, Lihong; Hua, Weiqi; Zhou, Min; Wang, Qingqing; Zhou, Qing; Huang, Xiaohua
2015-11-01
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical in the environment that exerts potential harm to plants. Phytohormones play important roles both in regulating multiple aspects of plant growth and in plants' responses to environmental stresses. But how BPA affects plant growth by regulating endogenous hormones remains poorly understood. Here, we found that treatment with 1.5 mg L(-1) BPA improved the growth of soybean seedlings, companied by increases in the contents of indole-3-acetic acid (IAA) and zeatin (ZT), and decreases in the ratios of abscisic acid (ABA)/IAA, ABA/gibberellic acid (GA), ABA/ZT, ethylene (ETH)/GA, ETH/IAA, and ETH/ZT. Treatment with higher concentrations of BPA (from 3 to 96 mg L(-1)) inhibited the growth of soybean seedlings, meanwhile, decreased the contents of IAA, GA, ZT, and ETH, and increased the content of ABA and the ratios of ABA/IAA, ABA/GA, ABA/ZT, ETH/GA, ETH/IAA, and ETH/ZT. The increases in the ratios of growth and stress hormones were correlated with the increase in the BPA content of the roots. Thus, BPA could affect plant growth through changing the levels of single endogenous hormone and the ratios of growth and stress hormones in the roots because of BPA absorption by the roots.
Fidler, Justyna; Zdunek-Zastocka, Edyta; Prabucka, Beata; Bielawski, Wiesław
2016-12-01
Abscisic acid (ABA) is a plant hormone that plays a predominant role in the onset and maintenance of primary dormancy. Peak ABA accumulation in embryos of triticale grains was observed before any significant loss of water and was higher in Fredro, a cultivar less susceptible to pre-harvest sprouting (PHS), than in Leontino, a cultivar more sensitive to PHS. At full maturity, embryonic ABA content in Fredro was twice as high as in Leontino. Two full-length cDNAs of 9-cis-epoxycarotenoid dioxygenase (TsNCED1, TsNCED2), an enzyme involved in ABA biosynthesis, and two full-length cDNAs of ABA 8'-hydroxylase (TsABA8'OH1 and TsABA8'OH2), an enzyme involved in ABA catabolism, were identified in triticale grains and characterized. The maximum transcript level of both TsNCED1 and TsNCED2 preceded the peak of ABA accumulation, suggesting that both TsNCEDs contribute to reach this peak, although the expression of TsNCED1 was significantly higher in Fredro than in Leontino. High expression of TsABA8'OH2 and TsABA8'OH1 was observed long before and at the end of the ABA accumulation peak, respectively, but no differences were observed between cultivars. The obtained results suggest that mainly TsNCED1 might be related to the higher ABA content and higher resistance of Fredro to PHS. However, Fredro embryos not only have higher ABA content, but also exhibit greater sensitivity to ABA, which may also have a significant effect on grain dormancy and lower susceptibility to PHS for grains of this cultivar. Copyright © 2016 Elsevier GmbH. All rights reserved.
Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian
2016-04-01
Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. © 2015 BSPP and John Wiley & Sons Ltd.
Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium1
Cornish, Katrina; Zeevaart, Jan A.D.
1984-01-01
Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained. Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days. Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (±)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all ages rapidly conjugated PA to PA-glucose ester. Furthermore, when half expanded leaves were stressed on the intact plant, their rate of ABA catabolism was enhanced, an effect not observed in the young leaves. In conclusion, young leaves on intact Xanthium plants produce little stress-induced ABA themselves, but due to import and a low rate of catabolism accumulate more ABA and PA than mature leaves. PMID:16663944
Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.
Cornish, K; Zeevaart, J A
1984-12-01
Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained.Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days.Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all ages rapidly conjugated PA to PA-glucose ester. Furthermore, when half expanded leaves were stressed on the intact plant, their rate of ABA catabolism was enhanced, an effect not observed in the young leaves.In conclusion, young leaves on intact Xanthium plants produce little stress-induced ABA themselves, but due to import and a low rate of catabolism accumulate more ABA and PA than mature leaves.
Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley
2014-01-01
The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191