Science.gov

Sample records for acid aba treatments

  1. Differences in phosphatidic acid signalling and metabolism between ABA and GA treatments of barley aleurone cells.

    PubMed

    Villasuso, Ana Laura; Di Palma, Maria A; Aveldaño, Marta; Pasquaré, Susana J; Racagni, Graciela; Giusto, Norma M; Machado, Estela E

    2013-04-01

    Phosphatidic acid (PA) is the common lipid product in abscisic acid (ABA) and gibberellic acid (GA) response. In this work we investigated the lipid metabolism in response to both hormones. We could detect an in vivo phospholipase D activity (PLD, EC 3.1.4.4). This PLD produced [(32)P]PA (phosphatidic acid) rapidly (minutes) in the presence of ABA, confirming PA involvement in signal transduction, and transiently, indicating rapid PA removal after generation. The presence of PA removal by phosphatidate phosphatase 1 and 2 isoforms (E.C. 3.1.3.4) was verified in isolated aleurone membranes in vitro, the former but not the latter being specifically responsive to the presence of GA or ABA. The in vitro DGPP phosphatase activity was not modified by short time incubation with GA or ABA while the in vitro PA kinase - that allows the production of 18:2-DGPP from 18:2-PA - is stimulated by ABA. The long term effects (24 h) of ABA or GA on lipid and fatty acid composition of aleurone layer cells were then investigated. An increase in PC and, to a lesser extent, in PE levels is the consequence of both hormone treatments. ABA, in aleurone layer cells, specifically activates a PLD whose product, PA, could be the substrate of PAP1 and/or PAK activities. Neither PLD nor PAK activation can be monitored by GA treatment. The increase in PAP1 activity monitored after ABA or GA treatment might participate in the increase in PC level observed after 24 h hormone incubation.

  2. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    PubMed Central

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  3. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants.

    PubMed

    Minkoff, Benjamin B; Stecker, Kelly E; Sussman, Michael R

    2015-05-01

    Abscisic acid (ABA)¹ is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  4. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  5. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation.

    PubMed

    Verslues, Paul E; Bray, Elizabeth A

    2006-01-01

    The mechanisms by which plants respond to reduced water availability (low water potential) include both ABA-dependent and ABA-independent processes. Pro accumulation and osmotic adjustment are two important traits for which the mechanisms of regulation by low water potential, and the involvement of ABA, is not well understood. The ABA-deficient mutant, aba2-1, was used to investigate the regulatory role of ABA in low water potential-induced Pro accumulation and osmotic adjustment in seedlings of Arabidopsis thaliana. Low water potential-induced Pro accumulation required wild-type levels of ABA, as well as a change in ABA sensitivity or ABA-independent events. Osmotic adjustment, in contrast, occurred independently of ABA accumulation in aba2-1. Quantification of low water potential-induced ABA and Pro accumulation in five ABA-insensitive mutants, abi1-1, abi2-1, abi3, abi4, and abi5, revealed that abi4 had increased Pro accumulation at low water potential, but a reduced response to exogenous ABA. Both of these responses were modified by sucrose treatment, indicating that ABI4 has a role in connecting ABA and sugar in regulating Pro accumulation. Of the other abi mutants, only abi1 had reduced Pro accumulation in response to low water potential and ABA application. It was also observed that abi1-1 and abi2-1 had increased ABA accumulation. The involvement of these loci in feedback regulation of ABA accumulation may occur through an effect on ABA catabolism or conjugation. These data provide new information on the function of ABA in seedlings exposed to low water potential and define new roles for three of the well-studied abi loci.

  6. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.

    PubMed

    Cruz, Tiago M D; Carvalho, Raquel F; Richardson, Dale N; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  7. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    PubMed Central

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  8. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism

    PubMed Central

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-01-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8’OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy. PMID:25560179

  9. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism.

    PubMed

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-03-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8'OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy.

  10. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1990-05-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. {sup 18}O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of ({sup 18}O)ABA which contains two {sup 18}O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this ({sup 18}O)t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the {sup 18}O in ABA-aldehyde is trapped in the side chain by reduction to ({sup 18}O)ABA-alcohol, followed by isomerization to ({sup 18}O)t-ABA-alcohol and oxidation with {sup 18}O{sub 2} to ({sup 18}O)t-ABA. The ({sup 18}O)t-ABA is then rapidly converted to ({sup 18}O)t-ABA-GE. Because ({sup 18}O)ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway.

  11. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries

    PubMed Central

    Giribaldi, Marzia; Gény, Laurence; Delrot, Serge; Schubert, Andrea

    2010-01-01

    The control of ripening of the non-climacteric grapevine fruit is still a matter of debate, but several lines of evidence point to an important role for the hormone abscisic acid (ABA). The effects of ABA treatments on Cabernet Sauvignon berries before and at véraison were studied using a 2-DE proteomic approach. Proteins from whole deseeded berries (before véraison) and berry flesh and skin (at véraison) treated with 0.76 mM ABA and collected 24 h after treatment were separated and analysed. A total of 60 protein spots showed significant variations between treated and control berries, and 40 proteins, mainly related to general metabolism and cell defence, were identified by LC MS/MS. Our results show that ABA acts mainly through the regulation of mostly the same proteins which are involved in the ripening process, and that several of these changes share common elements with the ABA-induced responses in vegetative tissues. PMID:20388747

  12. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  13. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  14. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction.

  15. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Dolle, Miranda J; Ligterink, Wilco; Hilhorst, Henk W M

    2014-07-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this stress response and in DT re-establishment. However, the path from the sensing of an osmotic cue and its signaling to DT re-establishment is still largely unknown. Analyses of DT, ABA sensitivity, ABA content and gene expression were performed in desiccation-sensitive (DS) and desiccation-tolerant Arabidopsis thaliana seeds. Furthermore, loss and re-establishment of DT in germinated Arabidopsis seeds was studied in ABA-deficient and ABA-insensitive mutants. We demonstrate that the developmental window in which DT can be re-established correlates strongly with the window in which ABA sensitivity is still present. Using ABA biosynthesis and signaling mutants, we show that this hormone plays a key role in DT re-establishment. Surprisingly, re-establishment of DT depends on the modulation of ABA sensitivity rather than enhanced ABA content. In addition, the evaluation of several ABA-insensitive mutants, which can still produce normal desiccation-tolerant seeds, but are impaired in the re-establishment of DT, shows that the acquisition of DT during seed development is genetically different from its re-establishment during germination.

  16. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana.

    PubMed

    Schwartz, S H; Léon-Kloosterziel, K M; Koornneef, M; Zeevaart, J A

    1997-05-01

    Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis thaliana (L.) Hynh. (K.M. Léon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10: 655-661), and the biochemical characterization of these mutants is presented here. Protein extracts from aba2 and aba3 plants displayed a greatly reduced ability to convert xanthoxin to ABA relative to the wild type. The next putative intermediate in ABA synthesis, ABA-aldehyde, was efficiently converted to ABA by extracts from aba2 but not by extracts from aba3 plants. This indicates that the aba2 mutant is blocked in the conversion of xanthoxin to ABA-aldehyde and that aba3 is impaired in the conversion of ABA-aldehyde to ABA. Extracts from the aba3 mutant also lacked additional activities that require a molybdenum cofactor (Moco). Nitrate reductase utilizes a Moco but its activity was unaffected in extracts from aba3 plants. Moco hydroxylases in animals require a desulfo moiety of the cofactor. A sulfido ligand can be added to the Moco by treatment with Na2S and dithionite. Treatment of aba3 extracts with Na2S restored ABA-aldehyde oxidase activity. Therefore, the genetic lesion in aba3 appears to be in the introduction of S into the Moco. PMID:9159947

  17. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress

    PubMed Central

    Sun, Xuecheng; Hu, Chengxiao; Tan, Qilin; Liu, Jinshan; Liu, Hongen

    2009-01-01

    Background and Aims Molybdenum (Mo) is an essential trace element for higher plants. It has been shown that application of Mo enhances the cold resistance of winter wheat. In order to improve our understanding of the molecular mechanisms of cold resistance arising from application of Mo in winter wheat, investigations were made regarding the transcription of cold-responsive (COR) genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat regulated by Mo application under low-temperature stress. Methods Two cultivars of winter wheat (Triticum aestivum), Mo-efficient cultivar ‘97003’ and Mo-inefficient cultivar ‘97014’, were grown in control (−Mo) and Mo fertilizer (+Mo) treatments for 40 d at 15/12 °C (day/night), and the temperature was then reduced to 5/2 °C (day/night) to create low-temperature stress. Aldehyde oxidase (AO) activities, ABA contents, the transcripts of basic leucine zipper (bZIP)-type transcription factor (TF) genes, ABA-dependent COR genes, CBF/DREB transcription factor genes and ABA-independent COR genes were investigated at 0, 3, 6 and 48 h post cold stress. Key Results Mo application significantly increased AO activity, ABA levels, and expression of bZIP-type TF genes (Wlip19 and Wabi5) and ABA-dependent COR genes (Wrab15, Wrab17, Wrab18 and Wrab19). Mo application increased expression levels of CBF/DREB transcription factor genes (TaCBF and Wcbf2-1) and ABA-independent COR genes (Wcs120, Wcs19, Wcor14 and Wcor15) after 3 and 6 h exposure to low temperature. Conclusions Mo might regulate the expression of ABA-dependent COR genes through the pathway: Mo → AO → ABA → bZIP → ABA-dependent COR genes in winter wheat. The response of the ABA-dependent pathway to Mo was prior to that of the ABA-independent pathway. Similarities and differences between the Mo-efficient and Mo-inefficient wheat cultivars in response to Mo under cold stress are discussed. PMID:19491090

  18. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana.

    PubMed

    Oide, Shinichi; Bejai, Sarosh; Staal, Jens; Guan, Na; Kaliff, Maria; Dixelius, Christina

    2013-12-01

    Pathogenesis-related protein 2 (PR2) is known to play a major role in plant defense and general stress responses. Resistance against the fungal pathogen Leptosphaeria maculans in Arabidopsis requires abscisic acid (ABA), which promotes the deposition of callose, a β-1,3-glucan polymer. Here, we examined the role of PR2 in callose deposition in relation to ABA treatment and challenge with L. maculans and Pseudomonas syringae. Characterization of PR2-overexpressing plants and the knockout line indicated that PR2 negatively affects callose deposition. Recombinant PR2 purified from Pichia pastoris showed callose-degrading activity, and a considerable reduction in the callose-degrading activity was observed in the leaf extract of the PR2 knockout line compared with the wild-type. ABA pretreatment before challenge with L. maculans concomitantly repressed PR2 and enhanced callose accumulation. Likewise, overexpression of an ABA biosynthesis gene NCED3 resulted in reduced PR2 expression and increased callose deposition. We propose that ABA promotes callose deposition through the transcriptional repression of PR2 in Arabidopsis challenged by L. maculans and P. syringae. Callose by itself is likely to act antagonistically on salicylic acid (SA) defense signaling, suggesting that PR2 may function as a modulator of callose- and SA-dependent defense responses.

  19. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose. PMID:26899030

  20. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose.

  1. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    PubMed

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting.

  2. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.

  3. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus.

    PubMed

    Iida, Satoko; Ikeda, Miyuki; Amano, Momoe; Sakayama, Hidetoshi; Kadono, Yasuro; Kosuge, Keiko

    2016-09-01

    Heterophyllous aquatic plants produce aerial (i.e., floating and terrestrial) and submerged leaves-the latter lack stomata-while homophyllous plants contain only submerged leaves, and cannot survive on land. To identify whether differences in morphogenetic potential and/or physiological stress responses are responsible for variation in phenotypic plasticity between two plants types, responses to abscisic acid (ABA) and salinity stress were compared between the closely related, but ecologically diverse pondweeds, Potamogeton wrightii (heterophyllous) and P. perfoliatus (homophyllous). The ABA-treated (1 or 10 μM) P. wrightii plants exhibited heterophylly and produced leaves with stomata. The obligate submerged P. perfoliatus plants were able to produce stomata on their leaves, but there were no changes to leaf shape, and stomatal production occurred only at a high ABA concentration (10 μM). Under salinity stress conditions, only P. wrightii leaves formed stomata. Additionally, the expression of stress-responsive NCED genes, which encode a key enzyme in ABA biosynthesis, was consistently up-regulated in P. wrightii, but only temporarily in P. perfoliatus. The observed species-specific gene expression patterns may be responsible for the induction or suppression of stomatal production during exposure to salinity stress. These results suggest that the two Potamogeton species have an innate morphogenetic ability to form stomata, but the actual production of stomata depends on ABA-mediated stress responses specific to each species and habitat. PMID:27324202

  4. The effects of GA and ABA treatments on metabolite profile of germinating barley.

    PubMed

    Huang, Yuqing; Cai, Shengguan; Ye, Lingzhen; Hu, Hongliang; Li, Chengdao; Zhang, Guoping

    2016-02-01

    Sugar degradation during grain germination is important for malt quality. In malting industry, gibberellin (GA) is frequently used for improvement of malting quality. In this study, the changes of metabolite profiles and starch-degrading enzymes during grain germination, and as affected by GA and abscisic acid (ABA) were investigated using two wild barley accessions XZ72 and XZ95. Totally fifty-two metabolites with known structures were detected and the change of metabolite during germination was time- and genotype dependent. Sugars and amino acids were the most dramatically changed compounds. Addition of GA enhanced the activities of starch-degrading enzymes, and increased most metabolites, especially sugars and amino acids, whereas ABA had the opposite effect. The effect varied with the barley accessions. The current study is the first attempt in investigating the effect of hormones on metabolite profiles in germinating barley grain, being helpful for identifying the factors affecting barley germination or malt quality. PMID:26304431

  5. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    PubMed

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles.

  6. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    PubMed

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles. PMID:27448955

  7. ABA flow modelling in Ricinus communis exposed to salt stress and variable nutrition

    PubMed Central

    Peuke, Andreas D.

    2016-01-01

    In a series of experiments with Ricinus communis, abscisic acid (ABA) concentrations in tissues and transport saps, its de novo biosynthesis, long-distance transport, and metabolism (degradation) were affected by nutritional conditions, nitrogen (N) source, and nutrient limitation, or salt stress. In the present study these data were statistically re-evaluated, and new correlations presented that underpin the importance of this universal phytohormone. The biggest differences in ABA concentration were observed in xylem sap. N source had the strongest effect; however, nutrient limitation (particularly phosphorus limitation) and salt also had significant effects. ABA was found in greater concentration in phloem sap compared with xylem sap; however, the effect of treatment on ABA concentration in phloem was lower. In the leaves, ABA concentration was most variable compared with the other tissues. This variation was only affected by the N source. In roots, ABA was significantly decreased by nutrient limitation. Of the compartments in which ABA was quantified, xylem sap ABA concentration was most significantly correlated with leaf stomatal conductance and leaf growth. Additionally, ABA concentration in xylem was significantly correlated to that in phloem, indicating a 6-fold concentration increase from xylem to phloem. The ABA flow model showed that biosynthesis of ABA in roots affected the xylem flow of ABA. Moreover, ABA concentration in xylem affected the degradation of the phytohormone in shoots and also its export from shoots via phloem. The role of phloem transport is discussed since it stimulates ABA metabolism in roots. PMID:27440939

  8. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants

    PubMed Central

    Cao, Minjie; Liu, Xue; Zhang, Yan; Xue, Xiaoqian; Zhou, X Edward; Melcher, Karsten; Gao, Pan; Wang, Fuxing; Zeng, Liang; Zhao, Yang; Zhao, Yang; Deng, Pan; Zhong, Dafang; Zhu, Jian-Kang; Xu, H Eric; Xu, Yong

    2013-01-01

    Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules. PMID:23835477

  9. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation.

    PubMed

    Li, Ying; Zhang, Liang; Li, Dekuan; Liu, Zhibin; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant growth and development. The function of ABA is mediated by a group of newly discovered ABA receptors, named PYRABACTIN RESISTANCE 1/PYR-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORs (PYR1/PYLs/RCARs). Here, we report that an Arabidopsis thaliana F-box protein RCAR3 INTERACTING F-BOX PROTEIN 1 (RIFP1) interacts with ABA receptor (RCAR3) and SCF E3 ligase complex subunits Arabidopsis SKP1-LIKE PROTEINs (ASKs) in vitro and in vivo. The rifp1 mutant plants displayed increased ABA-mediated inhibition of seed germination and water loss of detached leaves, while the overexpression of RIFP1 in Arabidopsis led to plants being insensitive to ABA. Meanwhile, the rifp1 mutant plants showed greater tolerance to water deficit. In addition, the RCAR3 protein level was more stable in the rifp1 mutant plants than in the wild-type plants, indicating that RIFP1 facilitates the proteasome degradation of RCAR3. Accordingly, the loss of RIFP1 increased the transcript levels of several ABA-responsive genes. Taken together, these data indicate that RIFP1 plays a negative role in the RCAR3-mediated ABA signalling pathway and likely functions as an adaptor subunit of the SCF ubiquitin ligase complex to regulate ABA receptor RCAR3 stability. PMID:26386272

  10. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    PubMed Central

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  11. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion

    PubMed Central

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-01-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis. Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  12. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    PubMed

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes.

  13. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    PubMed

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  14. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses1[OPEN

    PubMed Central

    Yang, Chen-Ru

    2016-01-01

    Heat stress response (HSR) is a conserved mechanism developed to increase the expression of heat shock proteins (HSPs) via a heat shock factor (HSF)-dependent mechanism. Signaling by the stress phytohormone abscisic acid (ABA) is involved in acquired thermotolerance as well. Analysis of Arabidopsis (Arabidopsis thaliana) microarray databases revealed that the expression of HSFA6b, a class A HSF, extensively increased with salinity, osmotic, and cold stresses, but not heat. Here, we show that HSFA6b plays a pivotal role in the response to ABA and in thermotolerance. Salt-inducible HSFA6b expression was down-regulated in ABA-insensitive and -deficient mutants; however, exogenous ABA application restored expression in ABA-deficient, but not -insensitive plants. Thus, ABA signaling is required for proper HSFA6b expression. A transcriptional activation assay of protoplasts revealed that ABA treatment and coexpression of an ABA signaling master effector, ABA-RESPONSIVE ELEMENT-BINDING PROTEIN1, could activate the HSFA6b promoter. In addition, HSFA6b directly bound to the promoter of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2A and enhanced its expression. Analysis of ABA responses in seed germination, cotyledon greening, and root growth as well as salt and drought tolerance in HSFA6b-null, overexpression, and dominant negative mutants revealed that HSFA6b is a positive regulator participating in ABA-mediated salt and drought resistance. Thermoprotection tests showed that HSFA6b was required for thermotolerance acquisition. Our study reveals a network in which HSFA6b operates as a downstream regulator of the ABA-mediated stress response and is required for heat stress resistance. This new ABA-signaling pathway is integrated into the complex HSR network in planta. PMID:27493213

  15. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    SciTech Connect

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  16. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    PubMed Central

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases. PMID:22160701

  17. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance

    DOE PAGES

    Stevenson, Sean Ross; Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Jenkins, Jerry W.; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A.; Rensing, Stefan A.; Lang, Daniel; et al

    2016-05-18

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. Themore » crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.« less

  18. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.

    PubMed

    Stevenson, Sean R; Kamisugi, Yasuko; Trinh, Chi H; Schmutz, Jeremy; Jenkins, Jerry W; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A; Rensing, Stefan A; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J; Li, Fay-Wei; Larsson, Anders; Wong, Gane K-S; Edwards, Thomas A; Cuming, Andrew C

    2016-06-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  19. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance[OPEN

    PubMed Central

    Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Muchero, Wellington; Melkonian, Michael; Rothfels, Carl J.; Li, Fay-Wei; Larsson, Anders; Edwards, Thomas A.

    2016-01-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  20. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.

    PubMed

    Stevenson, Sean R; Kamisugi, Yasuko; Trinh, Chi H; Schmutz, Jeremy; Jenkins, Jerry W; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A; Rensing, Stefan A; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J; Li, Fay-Wei; Larsson, Anders; Wong, Gane K-S; Edwards, Thomas A; Cuming, Andrew C

    2016-06-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.

  1. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  2. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.

    PubMed

    Sharma, Sandeep; Verslues, Paul E

    2010-11-01

    Proline accumulation in response to abiotic stress is controlled partially by transcriptional regulation of key enzymes including Δ¹-pyrroline-carboxylate synthetase1 (P5CS1), proline dehydrogenase (ProDH), ornithine amino transferase (OAT) and Δ¹-pyrroline-carboxylate dehydrogenase (P5CDH). For these genes, the role of abscisic acid (ABA), role of feedback regulation by high proline and the mechanisms of gene regulation upon stress release remain unclear. An ABA-deficient (aba2-1) mutant, mutants deficient in proline accumulation (p5cs1), as well as double mutants deficient in both, were used to determine the importance of these factors in transcriptional regulation of proline metabolism. Upregulation of P5CS1 by low water potential was less dependent on ABA than that of stress-marker genes used for comparison. ProDH downregulation by low water potential and upregulation by stress release was not impaired in aba2-1, p5cs1 or p5cs1/aba2-1 compared with wild type despite differing ABA and proline levels in these mutants. Thus, ProDH is a model for characterization of novel regulatory mechanisms associated with low water potential and stress recovery. Both OAT and P5CDH were upregulated during low water potential. This contrasts with previous salt stress experiments and raises questions about the flux of metabolites through proline metabolism under low water potential when high levels of proline accumulate.

  3. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl−4) treatment

    PubMed Central

    Shukla, Devesh; Krishnamurthy, Sneha; Sahi, Shivendra V.

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl−4 In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- h in presence of gold solution (HAuCl4) using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit), ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4− treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE), suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE) points to the operation of a predominant signaling mechanism in response to AuCl−4 exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of candidate genes

  4. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.

    PubMed

    Shukla, Devesh; Krishnamurthy, Sneha; Sahi, Shivendra V

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl(-) 4 In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- h in presence of gold solution (HAuCl4) using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit), ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4(-) treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE), suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE) points to the operation of a predominant signaling mechanism in response to AuCl(-) 4 exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of candidate genes

  5. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  6. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    PubMed

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression.

  7. Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    PubMed Central

    Yang, Xiang; Wang, Yaqin; Su, Xiaojun; Du, Jinju; Yang, Chengwei

    2011-01-01

    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently. PMID:21556325

  8. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  9. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening

    PubMed Central

    Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  10. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments.

    PubMed

    Qin, Shujun; Zhang, Zongzheng; Ning, Tangyuan; Ren, Shizhong; Su, Licheng; Li, Zengjia

    2013-09-01

    This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3). PMID:23770596

  11. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments.

    PubMed

    Qin, Shujun; Zhang, Zongzheng; Ning, Tangyuan; Ren, Shizhong; Su, Licheng; Li, Zengjia

    2013-09-01

    This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3).

  12. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis.

    PubMed

    Milborrow, B V

    2001-06-01

    The pathway of biosynthesis of abscisic acid (ABA) can be considered to comprise three stages: (i) early reactions in which small phosphorylated intermediates are assembled as precursors of (ii) intermediate reactions which begin with the formation of the uncyclized C40 carotenoid phytoene and end with the cleavage of 9'-cis-neoxanthin (iii) to form xanthoxal, the C15 skeleton of ABA. The final phase comprising C15 intermediates is not yet completely defined, but the evidence suggests that xanthoxal is first oxidized to xanthoxic acid by a molybdenum-containing aldehyde oxidase and this is defective in the aba3 mutant of Arabidopsis and present in a 1-fold acetone precipitate of bean leaf proteins. This oxidation precludes the involvement of AB-aldehyde as an intermediate. The oxidation of the 4'-hydroxyl group to the ketone and the isomerization of the 1',2'-epoxy group to the 1'-hydroxy-2'-ene may be brought about by one enzyme which is defective in the aba2 mutant and is present in the 3-fold acetone fraction of bean leaves. Isopentenyl diphosphate (IPP) is now known to be derived by the pyruvate-triose (Methyl Erythritol Phosphate, MEP) pathway in chloroplasts. (14C)IPP is incorporated into ABA by washed, intact chloroplasts of spinach leaves, but (14C)mevalonate is not, consequently, all three phases of biosynthesis of ABA occur within chloroplasts. The incorporation of labelled mevalonate into ABA by avocado fruit and orange peel is interpreted as uptake of IPP made in the cytoplasm, where it is the normal precursor of sterols, and incorporated into carotenoids after uptake by a carrier in the chloroplast envelope. An alternative bypass pathway becomes more important in aldehyde oxidase mutants, which may explain why so many wilty mutants have been found with this defect. The C-1 alcohol group is oxidized, possibly by a mono-oxygenase, to give the C-1 carboxyl of ABA. The 2-cis double bond of ABA is essential for its biological activity but it is not known

  13. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  14. Seed dormancy and ABA signaling

    PubMed Central

    del Carmen Rodríguez-Gacio, María; Matilla-Vázquez, Miguel A

    2009-01-01

    The seed is an important organ in higher plants, it is an important organ for plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. These events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signaling transduction. However, new publications seem to show that almost all these receptors lack several properties to consider them as such. PMID:19875942

  15. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-01-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca2+-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  16. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed.

  17. ABA Receptors: Past, Present and Future

    SciTech Connect

    Guo, Jianjun; Yang, Xiaohan; Weston, David; Chen, Jay

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  18. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit

    PubMed Central

    Zhang, Mei; Yuan, Bing; Leng, Ping

    2009-01-01

    In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence of tomato, two cDNAs (LeNCED1 and LeNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, two cDNAs (LeACS2 and LeACS4) which encode 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, and one cDNA (LeACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from tomato fruit using a reverse transcription-PCR (RT-PCR) approach. The relationship between ABA and ethylene during ripening was also investigated. Among six sampling times in tomato fruits, the LeNCED1 gene was highly expressed only at the breaker stage when the ABA content becomes high. After this, the LeACS2, LeACS4, and LeACO1 genes were expressed with some delay. The change in pattern of ACO activity was in accordance with ethylene production reaching its peak at the pink stage. The maximum ABA content preceded ethylene production in both the seeds and the flesh. The peak value of ABA, ACC, and ACC oxidase activity, and ethylene production all started to increase earlier in seeds than in flesh tissues, although they occurred at different ripening stages. Exogenous ABA treatment increased the ABA content in both flesh and seed, inducing the expression of both ACS and ACO genes, and promoting ethylene synthesis and fruit ripening, while treatment with fluridone or nordihydroguaiaretic acid (NDGA) inhibited them, delaying fruit ripening and softening. Based on the results obtained in this study, it was concluded that LeNCED1 initiates ABA biosynthesis at the onset of fruit ripening, and might act as an original inducer, and ABA accumulation might play a key role in the regulation of ripeness and senescence of tomato fruit. PMID:19246595

  19. The regulatory network of ThbZIP1 in response to abscisic acid treatment

    PubMed Central

    Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Nie, Xianguang; Zheng, Lei; Wang, Yucheng

    2015-01-01

    Previously, a bZIP transcription factor from Tamarix hispida, ThbZIP1, was characterized: plants overexpressing ThbZIP1 displayed improved salt stress tolerance but were sensitive to abscisic acid (ABA). In the current study, we further characterized the regulatory network of ThbZIP1 and the mechanism of ABA sensitivity mediated by ThbZIP1. An ABF transcription factor from T. hispida, ThABF1, directly regulates the expression of ThbZIP1. Microarray analysis identified 1662 and 1609 genes that were respectively significantly upregulated or downregulated by ThbZIP1 when exposed to ABA. Gene ontology (GO) analysis showed that the processes including “response to stimulus,” “catalytic activity,” “binding function,” and “metabolic process” were highly altered in ThbZIP1 expressing plants exposed to ABA. The gene expression in ThbZIP1 transformed plants were compared between exposed to ABA and salt on the genome scale. Genes differentially regulated by both salt and ABA treatment only accounted for 9.75% of total differentially regulated genes. GO analysis showed that structural molecule activity, organelle part, membrane-enclosed lumen, reproduction, and reproductive process are enhanced by ABA but inhibited by salt stress. Conversely, immune system and multi-organism process were improved by salt but inhibited by ABA. Transcription regulator activity, enzyme regulator activity, and developmental process were significantly altered by ABA but were not affected by salt stress. Our study provides insights into how ThbZIP1 mediates ABA and salt stress response at the molecular level. PMID:25713576

  20. Conformationally restricted 3'-modified ABA analogs for controlling ABA receptors.

    PubMed

    Takeuchi, Jun; Ohnishi, Toshiyuki; Okamoto, Masanori; Todoroki, Yasushi

    2015-04-14

    The physiological functions of abscisic acid (ABA) are regulated by a signal transduction pathway involving cytosolic ABA receptors, which include 14 PYR/PYL/RCAR (PYL) proteins in Arabidopsis. The development of a PYL antagonist could be a valuable tool to improve our understanding of the roles of ABA. We previously developed 3'-hexylsulfanyl-ABA (AS6), whose S-hexyl chain blocks protein phosphatase 2C (PP2C) binding by steric hindrance. This finding not only validated our structure-based approach to the design of a PYL antagonist, but also provided a basis for the development of a more potent or subclass/subtype selective PYL antagonist. In the present study, we synthesized a conformationally restricted analog of AS6, namely propenyl-ABA with an O-butyl chain (PAO4), to improve the affinity for PYL proteins by reducing the entropic penalty for binding to the receptors. In seed germination assays, (+)-PAO4 was a slightly stronger antagonist than AS6 in Arabidopsis and a significantly stronger antagonist in lettuce. Analysis of the thermodynamic parameters associated with the formation of the Arabidopsis PYL-(+)-PAO4 complex revealed that (+)-PAO4 binds more strongly to PYL5 than AS6 owing to an entropic advantage. In PP2C assays, this enhancement effect was observed only for the monomeric PYL subclass containing PYL5, suggesting that (+)-PAO4 is more effective than AS6 in physiological events involving monomeric PYL proteins as ABA receptors. PMID:25758810

  1. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.

    PubMed

    Baccelli, Ivan; Mauch-Mani, Brigitte

    2016-08-01

    Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.

  2. Overexpression of the Artemisia Orthologue of ABA Receptor, AaPYL9, Enhances ABA Sensitivity and Improves Artemisinin Content in Artemisia annua L

    PubMed Central

    Zhang, Fangyuan; Lu, Xu; Lv, Zongyou; Zhang, Ling; Zhu, Mengmeng; Jiang, Weiming; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2013-01-01

    The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. In this study, we cloned an ABA receptor orthologue, AaPYL9, from Artemisia annua L. AaPYL9 is expressed highly in leaf and flower. AaPYL9 protein can be localized in both nucleus and cytoplasm. Yeast two-hybrid assay shows AaPYL9 can specifically interact with AtABI1 but not with AtABI2, AtHAB1 or AtHAB2. ABA can enhance the interaction between AaPYL9 and AtABI1 while AaPYL9-89 Pro→Ser and AaPYL9-116 His→Ala point mutations abolishes the interaction. BiFC assay shows that AaPYL9 interacts with AtABI1 in nucleus in planta. Transgenic Arabidopsis plants over-expressing AaPYL9 are more sensitive to ABA in the seed germination and primary root growth than wild type. Consistent with this, ABA report genes have higher expression in AaPYL9 overexpressing plants compared to wild type after ABA treatment. Moreover, overexpression of AaPYL9 in A. annua increases not only drought tolerance, but also artemisinin content after ABA treatment, with significant enhancement of the expression of key genes in artemisinin biosynthesis. This study provides a way to develop A. annua with high-yielding artemisinin and high drought resistance. PMID:23437216

  3. ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling.

    PubMed

    Kaliff, Maria; Staal, Jens; Myrenås, Mattias; Dixelius, Christina

    2007-04-01

    Abscisic acid (ABA) is a defense hormone with influence on callose-dependent and -independent resistance against Leptosphaeria maculans acting in the RLMcol pathway. ABA-deficient and -insensitive mutants in Ler-0 background (abal-3 and abil-1) displayed susceptibility to L. maculans, along with a significantly decreased level of callose depositions, whereas abi2-1 and abi3-1 remained resistant, together with the abi5-1 mutant of Ws-0 background. Suppressor mutants of abil-1 confirmed that the L. maculans-susceptible response was due to the dominant negative nature of the abil-1 mutant. Highly induced camalexin levels made ABA mutants in Col-0 background (aba2-1, aba3-1, and abi4-1) appear resistant, but displayed enhanced susceptibility as double mutants with pad3-1, impaired in camalexin biosynthesis. beta-Aminobutyric acid (BABA) pretreatment of Ler-0 contributed to an elevated level of endogenous ABA after L. maculans inoculation. Comparisons between (RLM1co1)pad3 and rlmlLerpad3 showed that ABA and BABA enhancement of callose deposition requires induction from RLM1col. ABII, but not ABI2, was found to be involved in a feedback mechanism that modulates RLM1co, expression. Genetic analysis showed further that this feedback occurs upstream of ABI4 and that components downstream of ABI4 modulate ABIJ activity. ABA and BABA treatments of the L. maculans-susceptible callose synthase mutant pmr4 showed that ABA also induces a callose-independent resistance. Similar treatments enhanced callose depositions and induced resistance to L. maculans in oilseed rape, and BABA-induced resistance was found to be independent of salicylic acid.

  4. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  5. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response. PMID:27486921

  6. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat.

    PubMed

    Himi, Eiko; Mares, Daryl J; Yanagisawa, Akira; Noda, Kazuhiko

    2002-07-01

    The level of grain dormancy and sensitivity to ABA of the embryo, a key factor in grain dormancy, were examined in developing grains of a white-grained wheat line, Novosibirskaya 67 (NS-67), and its red-grained near-isogenic lines (ANK-1A to -1D); a red-grained line, AUS 1490, and its white-grained mutant line (EMS-AUS). ANK lines showed higher levels of grain dormancy than NS-67 at harvest maturity. AUS 1490 grain also showed higher dormancy than EMS-AUS grain. These results suggest that the R gene for grain colour can enhance grain dormancy. However, the dormancy effect conferred by the R gene was not large, suggesting that it plays a minor role in the development of grain dormancy. Water extracts of AUS 1490 and EMS-AUS bran contained germination inhibitors equivalent to 1-10 microM ABA, although there was no difference in the amount of inhibitors between AUS 1490 and EMS-AUS. Thus, the grain colour gene of AUS 1490 did not appear to enhance the level of grain dormancy by accumulating germination inhibitors in its bran. Sensitivity to ABA of embryos was higher in grains collected around harvest-maturity for ANK lines and AUS 1490, compared with NS-67 and EMS-AUS. The R gene might enhance grain dormancy by increasing the sensitivity of embryos to ABA.

  7. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley☆

    PubMed Central

    Chen, Zhiwei; Huang, Jianhua; Muttucumaru, Nira; Powers, Stephen J.; Halford, Nigel G.

    2013-01-01

    The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation. PMID:24748715

  8. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence

    PubMed Central

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-01-01

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties. DOI: http://dx.doi.org/10.7554/eLife.13768.001 PMID:27697148

  9. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

    PubMed Central

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2016-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222

  10. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica).

    PubMed

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2015-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.

  11. A Randomized Clinical Trial Comparison Between Pivotal Response Treatment (PRT) and Structured Applied Behavior Analysis (ABA) Intervention for Children with Autism

    PubMed Central

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaee, Mohammad; Rafiee, Seyed Majid

    2014-01-01

    Accumulating studies are documenting specific motivational variables that, when combined into a naturalistic teaching paradigm, can positively influence the effectiveness of interventions for children with autism spectrum disorder (ASD). The purpose of this study was to compare two ABA intervention procedures, a naturalistic approach, Pivotal Response Treatment (PRT) with a structured ABA approach in a school setting. A Randomized Clinical Trial design using two groups of children, matched according to age, sex and mean length of utterance was used to compare the interventions. The data showed that the PRT approach was significantly more effective in improving targeted and untargeted areas after three months of intervention. The results are discussed in terms of variables that produce more rapid improvements in communication for children with ASD. PMID:24840596

  12. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis.

    PubMed

    Dong, Hui; Zhen, Zhiqin; Peng, Jinying; Chang, Li; Gong, Qingqiu; Wang, Ning Ning

    2011-10-01

    The phytohormones ethylene and abscisic acid (ABA) play essential roles in the abiotic stress adaptation of plants, with both cross-talk of ethylene signalling and ABA biosynthesis and signalling reported. Any reciprocal effects on each other's biosynthesis, however, remain elusive. ACC synthase (ACS) acts as the key enzyme in ethylene biosynthesis. A pilot study on changes in ACS promoter activities in response to abiotic stresses revealed the unique involvement in abiotic stress responses of the only type 3 ACC synthase, ACS7, among all nine ACSs of Arabidopsis. Hence an acs7 mutant was characterized and its abiotic stress responses were analysed. The acs7 mutant germinated slightly faster than the wild type and subsequently maintained a higher growth rate at the vegetative growth stage. Ethylene emission of acs7 was merely one-third of that of the wild type. acs7 exhibited enhanced tolerance to salt, osmotic, and heat stresses. Furthermore, acs7 seeds were hypersensitive to both ABA and glucose during germination. Transcript analyses revealed that acs7 had elevated transcript levels of the stress-responsive genes involved in the ABA-dependent pathway under salt stress. The ABA level was also higher in acs7 following salt treatment. Our data suggest that ACS7 acts as a negative regulator of ABA sensitivity and accumulation under stress and appears as a node in the cross-talk between ethylene and ABA.

  13. Effects of Abscisic Acid Treatment on the Thermostability of the Photosynthetic Apparatus in Barley Chloroplasts 1

    PubMed Central

    Ivanov, Alexander G.; Kitcheva, Maia I.; Christov, Alexander M.; Popova, Losanka P.

    1992-01-01

    Thermostability of the photosynthetic apparatus of abscisic acid (ABA)-treated seedlings of barley (Hordeum vulgare) was studied by light-scattering and by fluorescence measurements of isolated chloroplasts. ABA treatment markedly decreased heat damage of the chloroplast ultrastructure; an exogenous ABA concentration of 10−5 molar was most effective. Heat-induced increase of the 77 kilodalton fluorescence ratio F740/F685 was also smaller at this ABA concentration. The heat-induced increase of the initial chlorophyll fluorescence level (Fo) was virtually eliminated in ABA-treated (10−5 molar) chloroplasts up to 45°C and slightly increased at 50°C, relative to control chloroplasts where Fo increased even at 35°C and reached its maximal value at 45°C. In control chloroplasts, Fo increased with a 5-minute pretreatment temperature, an effect observed as low as 35°C. Fo was maximal at 45°C. In contrast, chloroplasts treated with 10−5 molar ABA did not exhibit a heat-induced increase in Fo until 50°C. PMID:16668780

  14. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  15. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling

    PubMed Central

    Aleman, Fernando; Yazaki, Junshi; Lee, Melissa; Takahashi, Yohei; Kim, Alice Y.; Li, Zixing; Kinoshita, Toshinori; Ecker, Joseph R.; Schroeder, Julian I.

    2016-01-01

    Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways. PMID:27357749

  16. BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis.

    PubMed

    Shang, Yun; Dai, Changbo; Lee, Myeong Min; Kwak, June M; Nam, Kyoung Hee

    2016-03-01

    Stomatal movements are critical in regulating gas exchange for photosynthesis and water balance between plant tissues and the atmosphere. The plant hormone abscisic acid (ABA) plays key roles in regulating stomatal closure under various abiotic stresses. In this study, we revealed a novel role of BAK1 in guard cell ABA signaling. We found that the brassinosteroid (BR) signaling mutant bak1 lost more water than wild-type plants and showed ABA insensitivity in stomatal closure. ABA-induced OST1 expression and reactive oxygen species (ROS) production were also impaired in bak1. Unlike direct treatment with H2O2, overexpression of OST1 did not completely rescue the insensitivity of bak1 to ABA. We demonstrated that BAK1 forms a complex with OST1 near the plasma membrane and that the BAK1/OST1 complex is increased in response to ABA in planta. Brassinolide, the most active BR, exerted a negative effect on ABA-induced formation of the BAK1/OST1 complex and OST1 expression. Moreover, we found that BAK1 and ABI1 oppositely regulate OST1 phosphorylation in vitro, and that ABI1 interacts with BAK1 and inhibits the interaction of BAK1 and OST1. Taken together, our results suggest that BAK1 regulates ABA-induced stomatal closure in guard cells.

  17. Chelator profiling in Deschampsia cespitosa (L.) Beauv. Reveals a Ni reaction, which is distinct from the ABA and cytokinin associated response to Cd.

    PubMed

    Hayward, Allison R; Coates, Kahlan E; Galer, Amy L; Hutchinson, Thomas C; Emery, R J Neil

    2013-03-01

    Plant hormones, including abscisic acid (ABA) and cytokinins (CKs), fluctuate as a result of excess metal exposure. Changes in hormonal concentration regulate plant growth and may also signal activation of metal chelators. The grass Deschampsia cespitosa was dosed with either Ni or Cd or pulsed with exogenous ABA. The roots were analyzed for ABA and CKs and for multiple potential metal chelators including: amino acids, nicotianamine (NA), and phytochelatins (PCs). They were quantified after 3 h and after 7 days, using LC-ESI MS/MS. The Ni treatment caused no measurable change in ABA or CK concentration; however, an increase in NA was documented. The Cd treatment resulted in a short-term ABA increase followed by a reduction in CKs and an increase in PC concentration. An exogenous ABA pulse in non-metal challenged plants induced changes in CKs and PCs that followed those of Cd treatment. Ni and Cd stress resulted in distinctly different detoxification responses. Since the reaction of CKs and putative metal chelators to Cd stress can be mimicked by an exogenous ABA pulse, it is suggested that ABA acts as a stress signal, resulting in reduced growth by way of decreased CK concentration and reduced metal toxicity through increased PC production.

  18. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling.

    PubMed

    Chae, Min-Ju; Lee, Jung-Sook; Nam, Myung-Hee; Cho, Kun; Hong, Ji-Yeon; Yi, Sang-A; Suh, Seok-Cheol; Yoon, In-Sun

    2007-01-01

    By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn(2+) over Mg(2+). By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress

  19. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements.

    PubMed

    Rojas-Pierce, Marcela; Whippo, Craig W; Davis, Phillip A; Hangarter, Roger P; Springer, Patricia S

    2014-10-01

    The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.

  20. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening

    PubMed Central

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process. PMID:26053166

  1. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening.

    PubMed

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.

  2. The induction of free proline accumulation by endogenous ABA in Arabidopsis thaliana during drought

    SciTech Connect

    Gottlieb, M.L.; Bray, E.A. )

    1991-05-01

    Endogenous levels of abscisic acid (ABA) and free proline increase in response to drought stress. Exogenous ABA has been shown to induce proline accumulation, suggesting that ABA triggers the amino acid response. To determine if endogenous ABA induces free proline accumulation, increases in ABA and proline during drought stress were compared between wild type (WT), ABA-insensitive (abi) and ABA-deficient (aba) mutants of Arabidopsis thaliana. If elevated levels of endogenous ABA signal the proline response, then the mutants would not be expected to accumulate proline during stress. abi should be unable to respond to increased levels of endogenous ABA, while aba should be unable to accumulate sufficient ABA to elicit a proline response. Drought-stressed three week old shoots of WT, abi, and aba exhibited different patterns of endogenous ABA accumulation, but similar patterns of proline accumulation over 24 hours. Although the patterns of endogenous ABA accumulation differed, maximum levels were similar in WT and abi, but aba produced approximately 25% less. However, free proline accumulated in all three plant lines. abi exhibited a greater, more rapid increase in free proline over that in either WT or aba. aba, however, showed the same pattern and levels of accumulation as that in WT. Since free proline accumulated to at least similar levels in both WT and mutants, regardless of the levels of ABA accumulation, it may be that only a small endogenous ABA accumulation is required for proline accumulation. Alternatively, endogenous ABA may not be the direct signal for the proline response during drought stress.

  3. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    PubMed

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation.

  4. (+)-Abscisic Acid Metabolism, 3-Ketoacyl-Coenzyme A Synthase Gene Expression, and Very-Long-Chain Monounsaturated Fatty Acid Biosynthesis in Brassica napus Embryos1

    PubMed Central

    Qi, Qungang; Rose, Patricia A.; Abrams, Garth D.; Taylor, David C.; Abrams, Suzanne R.; Cutler, Adrian J.

    1998-01-01

    Microspore-derived embryos of Brassica napus cv Reston were used to examine the effects of exogenous (+)-abscisic acid (ABA) and related compounds on the accumulation of very-long-chain monounsaturated fatty acids (VLCMFAs), VLCMFA elongase complex activity, and induction of the 3-ketoacyl-coenzyme A synthase (KCS) gene encoding the condensing enzyme of the VLCMFA elongation system. Of the concentrations tested, (+)-ABA at 10 μm showed the strongest effect. Maximum activity of the elongase complex, observed 6 h after 10 μm (+)-ABA treatment, was 60% higher than that of the untreated embryos at 24 h. The transcript of the KCS gene was induced by 10 μm (+)-ABA within 1 h and further increased up to 6 h. The VLCMFAs eicosenoic acid (20:1) and erucoic acid (22:1) increased by 1.5- to 2-fold in embryos treated with (+)-ABA for 72 h. Also, (+)-8′-methylene ABA, which is metabolized more slowly than ABA, had a stronger ABA-like effect on the KCS gene transcription, elongase complex activity (28% higher), and level of VLCMFAs (25–30% higher) than ABA. After 24 h approximately 60% of the added (+)-[3H]ABA (10 μm) was metabolized, yielding labeled phaseic and dihydrophaseic acid. This study demonstrates that (+)-ABA promotes VLCMFA biosynthesis via increased expression of the KCS gene and that reducing ABA catabolism would increase VLCMFAs in microspore-derived embryos. PMID:9662540

  5. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    PubMed

    Li, Dongdong; Li, Li; Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  6. Abscisic acid signaling through cyclic ADP-ribose in plants

    SciTech Connect

    Wu, Yan; Kuzma, J.; Marechal, E.

    1997-12-19

    Abscisic acid (ABA) is the primary hormone that mediates plant responses to stresses such as cold, drought, and salinity. Single-cell microinjection experiments in tomato were used to identify possible intermediates involved in ABA signal transduction. Cyclic ADP-ribose (cADPR) was identified as a signaling molecule in the ABA response and was shown to exert its effects by way of calcium. Bioassay experiments showed that the amounts of cADPR in Arabidopsis thaliana plants increased in response to ABA treatment and before ABA-induced gene expression.

  7. A Randomized Clinical Trial Comparison Between Pivotal Response Treatment (PRT) and Adult-Driven Applied Behavior Analysis (ABA) Intervention on Disruptive Behaviors in Public School Children with Autism

    PubMed Central

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaei, Mohammad; Bakhshi, Enayatolah

    2015-01-01

    Children with autism often demonstrate disruptive behaviors during demanding teaching tasks. Language intervention can be particularly difficult as it involves social and communicative areas, which are challenging for this population. The purpose of this study was to compare two intervention conditions, a naturalistic approach, Pivotal Response Treatment (PRT) with a structured ABA approach on disruptive behavior during language intervention in the public schools. A Randomized Clinical Trial (RCT) design was used with two groups of children, matched according to age, sex and mean length of utterance. The data showed that the children demonstrated significantly lower levels of disruptive behavior during the PRT condition. The results are discussed with respect to antecedent manipulations that may be helpful in reducing disruptive behavior. PMID:25953148

  8. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice.

    PubMed

    Cai, Shanlan; Jiang, Guobin; Ye, Nenghui; Chu, Zhizhan; Xu, Xuezhong; Zhang, Jianhua; Zhu, Guohui

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice. PMID:25647508

  9. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity.

    PubMed

    Arve, Louise E; Carvalho, Dália R A; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure. PMID:25763494

  10. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity.

    PubMed

    Arve, Louise E; Carvalho, Dália R A; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure.

  11. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity

    PubMed Central

    Arve, Louise E; Carvalho, Dália RA; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure. PMID:25763494

  12. MhNCED3 in Malus hupehensis Rehd. induces NO generation under osmotic stress by regulating ABA accumulation.

    PubMed

    Zhang, Wei-wei; Yang, Hong-qiang; You, Shu-zhen; Ran, Kun

    2015-11-01

    Abscisic acid (ABA) biosynthesis has been widely characterized in plants, whereas the effects of ABA biosynthesis on nitric oxide (NO) generation in osmotic stress are less well understood. In this study, Malus hupehensis Rehd. 9-cis-epoxycarotenoid dioxygenase gene (MhNCED3) which is the key gene in ABA biosynthesis was transformed into wild type (WT) and 129B08/nced3 mutant (AtNCED3 deficient), respectively, and two transgenic Arabidopsis lines were obtained. The transgenic Arabidopsis lines displayed higher endogenous ABA content, NO generation rate, AtNIA1 transcript level and nitrate reductase (NR) activity than WT and 129B08/nced3 mutant. Ectopic expression of MhNCED3 reduced the electrolyte leakage and relieved Arabidopsis damage caused by 20% PEG on the growth and development. The ABA content, NO generation rate, AtNIA1 expression and NR activity increased after 20% PEG treatment, importantly, their increases amplitude relative to that in control were higher in two transgenic lines. Additionally, during the treatment for the four genotype Arabidopsis, the time of ABA contents reaching the highest peak was earlier than the time of NO generation, AtNIA1 expression and NR activity reaching their highest peak. These results show that NCED gene indirectly induced endogenous NO generation in osmotic-stressed Arabidopsis partially contributing to the up-regulation of AtNIA1 expression and NR activity.

  13. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments.

    PubMed

    Tonetto de Freitas, Sergio; McElrone, Andrew J; Shackel, Kenneth A; Mitcham, Elizabeth J

    2014-01-01

    The mechanisms regulating Ca(2+) partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca(2+) partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca(2+) partitioning and allocation on fruit susceptibility to the Ca(2+) deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca(2+) conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l(-1) ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l(-1) ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16-19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36-40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca(2+) movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca(2+) concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca(2+) movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca(2+) concentrations and reduced fruit susceptibility to BER to a lesser extent.

  14. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    PubMed

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  15. ABA and cytokinins: challenge and opportunity for plant stress research.

    PubMed

    Verslues, Paul E

    2016-08-01

    Accumulation of the stress hormone abscisic acid (ABA) induces many cellular mechanisms associated with drought resistance. Recent years have seen a rapid advance in our knowledge of how increased ABA levels are perceived by ABA receptors, particularly the PYL/RCAR receptors, but there has been relatively less new information about how ABA accumulation is controlled and matched to stress severity. ABA synthesis and catabolism, conjugation and deconjugation to glucose, and ABA transport all are involved in controlling ABA levels. This highly buffered system of ABA metabolism represents both a challenge and opportunity in developing a mechanistic understanding of how plants detect and respond to drought. Recent data have also shown that direct manipulation of cytokinin levels in transgenic plants has dramatic effect on drought phenotypes and prompted new interest in the role of cytokinins and cytokinin signaling in drought. Both ABA and cytokinins will continue to be major foci of drought research but likely with different trajectories both in terms of basic research and in translational research aimed at increasing plant performance during drought. PMID:26910054

  16. The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress

    PubMed Central

    Baek, Dongwon; Cha, Joon-Yung; Kang, Songhwa; Park, Bokyung; Lee, Hyo-Jung; Hong, Hyewon; Chun, Hyun Jin; Kim, Doh Hoon; Kim, Min Chul; Lee, Sang Yeol; Yun, Dae-Jin

    2015-01-01

    The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species (ROS), which can disrupt seed dormancy and plant development. Here, we report the isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc finger domain, two nuclear localization signal (NLS) domains, and one nuclear export signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest that ARS1 modulates seed germination and ROS homeostasis in response to ABA and oxidative stress in plants. PMID:26583028

  17. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.

    PubMed

    Hermann, Katrin; Meinhard, Juliane; Dobrev, Peter; Linkies, Ada; Pesek, Bedrich; Hess, Barbara; Machácková, Ivana; Fischer, Uwe; Leubner-Metzger, Gerhard

    2007-01-01

    The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.

  18. A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

    PubMed Central

    Baek, Dongwon; Chun, Hyun Jin; Kang, Songhwa; Shin, Gilok; Park, Su Jung; Hong, Hyewon; Kim, Chanmin; Kim, Doh Hoon; Lee, Sang Yeol; Kim, Min Chul; Yun, Dae-Jin

    2016-01-01

    MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b. PMID:26674968

  19. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening

    PubMed Central

    Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient’s biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA’s role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future. PMID:26053069

  20. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.

    PubMed

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-03-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat.

  1. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition

    PubMed Central

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-01-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat. PMID:23641187

  2. Abscisic acid and pyrabactin improve vitamin C contents in raspberries.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2016-07-15

    Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability.

  3. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots.

    PubMed

    Yang, Dongfeng; Ma, Pengda; Liang, Xiao; Wei, Zheng; Liang, Zongsuo; Liu, Yan; Liu, Fenghua

    2012-10-01

    Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots.

  4. ABA-deficiency results in reduced plant and fruit size in tomato.

    PubMed

    Nitsch, L; Kohlen, W; Oplaat, C; Charnikhova, T; Cristescu, S; Michieli, P; Wolters-Arts, M; Bouwmeester, H; Mariani, C; Vriezen, W H; Rieu, I

    2012-06-15

    Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.

  5. ABA says NO to UV-B: a universal response?

    PubMed

    Tossi, Vanesa; Cassia, Raul; Bruzzone, Santina; Zocchi, Elena; Lamattina, Lorenzo

    2012-09-01

    Abscisic acid (ABA) signaling pathways have been widely characterized in plants, whereas the function of ABA in animals is less well understood. However, recent advances show ABA production by a wide range of lower animals and higher mammals. This enables a new evaluation of ABA signaling pathways in different organisms in response to common environmental stress, such as ultraviolet (UV)-B. In this opinion article, we propose that the induction of common signaling components, such as ABA, nitric oxide (NO) and Ca(2+), in plant and animal cells in response to high doses of UV-B, suggests that the evolution of a general mechanism activated by UV-B is conserved in divergent multicellular organisms challenged by a changing common environment.

  6. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    PubMed

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint.

  7. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins

    PubMed Central

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  8. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins.

    PubMed

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  9. Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants.

    PubMed

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M

    2013-12-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography-multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼ 350 million guard cell protoplasts from ∼ 30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca(2+)-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1.

  10. Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus"Dutch Master").

    PubMed

    Hunter, Donald Alexander; Ferrante, Antonio; Vernieri, Paolo; Reid, Michael Stuart

    2004-06-01

    Daffodil (Narcissus pseudonarcissus L. 'Dutch Master') flowers detached at the base of their ovaries and held with their cut ends in 10-100 microM abscisic acid (ABA) senesced prematurely. Symptoms of the ABA treatment included water-soaking of the tepals and early collapse of the corona. No water-soaking was seen in tepals of flowers held in water. Instead, the tepals of these flowers dried. The ABA content increased in tepals of the potted flowers as they senesced. The rise in tepal ABA content coincided with the appearance of visual signs of senescence. When the flowers were cut and placed in water, a treatment that accelerated their senescence, the increase in ABA occurred earlier. Exogenously applied ABA enhanced the premature accumulation of senescence-associated transcripts in the tepals. Their ABA-mediated induction was not prevented when the flowers were pre-treated with 1-methylcyclopropene, an inhibitor of ethylene action, indicating that ABA induced the transcripts independently of ethylene. The transcripts accumulated in opened control flowers before the rise in endogenous ABA. Attempts to extend floral longevity by using putative inhibitors of ABA biosynthesis [tungstate, fluridone (applied as Sonar((R))) and 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS)] were unsuccessful. However, inclusion of 100 microM gibberellic acid (GA(3)) in the vase solution reduced the senescence-inducing effects of 50 microM ABA suggesting a possible mechanism for in-vivo control of senescence.

  11. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress.

  12. The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves

    NASA Astrophysics Data System (ADS)

    An, Lizhe; Wang, Jianhui; Liu, Yanhong; Chen, Tuo; Xu, Shijian; Feng, Huyuan; Wang, Xunling

    2003-06-01

    Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore

  13. ABA signaling in stomatal guard cells: lessons from Commelina and Vicia.

    PubMed

    Mori, Izumi C; Murata, Yoshiyuki

    2011-07-01

    Abscisic acid (ABA) signaling mechanisms have been studied in a broad variety of plant species using complementary analyses, taking advantage of different methodologies suitable for each plant species. Early studies on ABA biosynthesis using Solanum lycopersicum mutants suggested an importance of ABA synthesis in stomatal closure. To understand ABA signaling in guard cells, cellular, biochemical and electrophysiological studies in Vicia faba and Commelina communis have been conducted, providing fundamental knowledge that was further reconfirmed by molecular genetic studies of Arabidopsis. In this article, examples of stomatal studies in several plants and prospects in ABA research are discussed.

  14. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).

    PubMed

    Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong

    2014-05-01

    The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin. PMID:24443499

  15. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).

    PubMed

    Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong

    2014-05-01

    The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin.

  16. A Randomized Clinical Trial Comparison between Pivotal Response Treatment (PRT) and Structured Applied Behavior Analysis (ABA) Intervention for Children with Autism

    ERIC Educational Resources Information Center

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaee, Mohammad; Rafiee, Seyed Majid

    2014-01-01

    Accumulating studies are documenting specific motivational variables that, when combined into a naturalistic teaching paradigm, can positively influence the effectiveness of interventions for children with autism spectrum disorder (ASD). The purpose of this study was to compare two applied behavior analysis (ABA) intervention procedures, a…

  17. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... Treatment of amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please ... this page It's been added to your dashboard . Amino acid metabolism disorders are rare health conditions that affect ...

  18. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  19. ABA receptor PYL9 promotes drought resistance and leaf senescence

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A.; Zhu, Jian-Kang

    2016-01-01

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  20. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  1. Function of ABA in Stomatal Defense against Biotic and Drought Stresses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  2. Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Han, Sang-Wook; Lee, Sung Chul

    2013-12-01

    Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been suggested to be important, the function of each ABA receptor remains elusive in dehydration condition. Here, we show that ABA receptor, pyrabactin resistance-like protein 8 (PYL8), functions in dehydration conditions. Transgenic plants overexpressing PYL8 exhibited hypersensitive phenotype to ABA in seed germination, seedling growth and establishment. We found that hypersensitivity to ABA of transgenic plants results in high degrees of stomatal closure in response to ABA leading to low transpiration rates and ultimately more vulnerable to drought than the wild-type plants. In addition, high expression of ABA maker genes also contributes to altered drought tolerance phenotype. Overall, this work emphasizes the importance of ABA signaling by ABA receptor in stomata during defense response to drought stress. PMID:25288979

  3. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar 'Zak'.

    PubMed

    Schramm, Elizabeth C; Nelson, Sven K; Kidwell, Kimberlee K; Steber, Camille M

    2013-03-01

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat "Zak". Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouting in wheat, especially those cultivars with white kernels. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature grain. Three mutant lines called Zak ERA8, Zak ERA19A, and Zak ERA19B (Zak ENHANCED RESPONSE to ABA) were recovered based on failure to germinate on 5 μM ABA. All three mutants resulted in increased ABA sensitivity over a wide range of concentrations such that a phenotype can be detected at very low ABA concentrations. Wheat loses sensitivity to ABA inhibition of germination with extended periods of dry after-ripening. All three mutants recovered required more time to after-ripen sufficiently to germinate in the absence of ABA and to lose sensitivity to 5 μM ABA. However, an increase in ABA sensitivity could be detected after as long as 3 years of after-ripening using high ABA concentrations. The Zak ERA8 line showed the strongest phenotype and segregated as a single semi-dominant mutation. This mutation resulted in no obvious decrease in yield and is a good candidate gene for breeding preharvest sprouting tolerance. PMID:23212773

  4. Function of ABA in Stomatal Defense against Biotic and Drought Stresses

    PubMed Central

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  5. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    PubMed

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  6. ABA Regulates Subcellular Redistribution of OsABI-LIKE2, a Negative Regulator in ABA Signaling, to Control Root Architecture and Drought Resistance in Oryza sativa.

    PubMed

    Li, Chengxiang; Shen, Hongyun; Wang, Tao; Wang, Xuelu

    2015-12-01

    The phytohormone ABA is a key stress signal in plants. Although the identification of ABA receptors led to significant progress in understanding the Arabidopsis ABA signaling pathway, there are still many unsolved mysteries regarding ABA signaling in monocots, such as rice. Here, we report that a rice ortholog of AtABI1 and AtABI2, named OsABI-LIKE2 (OsABIL2), plays a negative role in rice ABA signaling. Overexpression of OsABIL2 not only led to ABA insensitivity, but also significantly altered plant developmental phenotypes, including stomatal density and root architecture, which probably caused the hypersensitivity to drought stress. OsABIL2 interacts with OsPYL1, SAPK8 and SAPK10 both in vitro and in vivo, and the phosphatase activity of OsABIL2 was repressed by ABA-bound OsPYL1. However, unlike many other solely nuclear-localized clade A type 2C protein phosphatases (PP2Cs), OsABIL2 is localized in both the nucleus and cytosol. Furthermore, OsABIL2 interacts with and co-localized with OsPYL1 mainly in the cytosol, and ABA treatment regulates the nucleus-cytosol distribution of OsABIL2, suggesting a different mechanism for the activation of ABA signaling. Taken together, this study provides significant insights into rice ABA signaling and indicates the important role of OsABIL2 in regulating root development. PMID:26491145

  7. Influence of chilling and drought on water relations and abscisic acid accumulation in bean

    SciTech Connect

    Vernieri, P.; Pardossi, A.; Tognoni, F. )

    1991-01-01

    Intact bean seedlings were subjected to either chilling (4{degree}C) or drought stress. Leaf water relations and abscisic acid (ABA) content were monitored throughout a stress-recovery cycle. Chilling at low relative humidity (RH) and drought caused similar water deficits, as indicated by the decline in relative water content and water potentials, but they had different effects on ABA accumulation. There was a rapid increase in ABA levels in the leaves of water-deprived plants while only slight ABA accumulation was observed after 48 h of chilling (4{degree}C). After 24 h cold treatment there were large changes in turgor but no change in ABA content. Plants chilled for 24 h accumulated ABA only when transferred to recovery conditions (20{degree}C, 90-95% RH, in the dark) to an extent that was related to the rate of leaf rehydration. When the chilling treatment was performed in a water-saturated atmosphere, plants did not suffer any water stress and ABA levels did not increase over a period of 48 h. However, when the chilling treatment lasted for a longer period (72 h), a significant increase in ABA levels was found also in the absence of water deficit. Experiments performed with leaf discs incubated in a mannitol solution (osmotic potential {minus}1{center dot}6 MPa) at different temperatures indicated that low temperature markedly inhibits ABA synthesis and that water stress induces increases in ABA content only at non-limiting warm temperatures.

  8. Abscisic Acid Levels and Seed Dormancy

    PubMed Central

    Sondheimer, E.; Tzou, D. S.; Galson, Eva C.

    1968-01-01

    Dormant seeds from Fraxinus species require cold-temperature after-ripening prior to germination. Earlier, we found that abscisic acid (ABA) will inhibit germination of excised nondormant embryos and that this can be reversed with a combination of gibberellic acid and kinetin. Using Milborrow's quantitative “racemate dilution” method the ABA concentration in 3 types of Fraxinus seed and pericarp were determined. While ABA was present in all tissues, the highest concentration was found in the seed and pericarp of dormant F. americana. During the chilling treatment of F. americana the ABA levels decreased 37% in the pericarp and 68% in the seed. The ABA concentration of the seed of the nondormant species, F. ornus, is as low as that found in F. americana seeds after cold treatment. Experiments with exogenously added ABA solutions indicate that it is unlikely that the ABA in the pericarp functions in the regulation of seed dormancy. However, the ABA in the seed does seem to have a regulatory role in germination. Images PMID:16656935

  9. Crucial Roles of Abscisic Acid Biogenesis in Virulence of Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Spence, Carla A.; Lakshmanan, Venkatachalam; Donofrio, Nicole; Bais, Harsh P.

    2015-01-01

    Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through jasmonic acid (JA)- and ethylene (ETH)-mediated ISR. Abscisic acid (ABA) acts antagonistically toward salicylic acid (SA), JA, and ETH signaling, to impede plant defense responses. EA105 may be reducing the virulence of M. oryzae by preventing the pathogen from up-regulating the key ABA biosynthetic gene NCED3 in rice roots, as well as a β-glucosidase likely involved in activating conjugated inactive forms of ABA. However, changes in total ABA concentrations were not apparent, provoking the question of whether ABA concentration is an indicator of ABA signaling and response. In the rice-M. oryzae interaction, ABA plays a dual role in disease severity by increasing plant susceptibility and accelerating pathogenesis in the fungus itself. ABA is biosynthesized by M. oryzae. Further, exogenous ABA increased spore germination and appressoria formation, distinct from other plant growth regulators. EA105, which inhibits appressoria formation, counteracted the virulence-promoting effects of ABA on M. oryzae. The role of endogenous fungal ABA in blast disease was confirmed through the inability of a knockout mutant impaired in ABA biosynthesis to form lesions on rice. Therefore, it appears that EA105 is invoking multiple strategies in its protection of rice from blast including direct mechanisms as well as those mediated through plant signaling. ABA is a molecule that is likely implicated in both tactics. PMID:26648962

  10. Importance of ABA homeostasis under terminal drought stress in regulating grain filling events.

    PubMed

    Govind, Geetha; Seiler, Christiane; Wobus, Ulrich; Sreenivasulu, Nese

    2011-08-01

    Recent studies suggest that abscisic acid (ABA) at its basal level plays an important role during seed set and grain filling events. Under drought stress ABA levels were found to be significantly enhanced in the developing seed. Until now we lack an understanding of (A) ABA homeostasis in developing seeds under terminal drought and (B) the interactive role of ABA in regulating the starch biosynthesis pathway in developing grains under terminal drought. We have recently reported the possible regulation of ABA homeostasis in source (flag leaf) and sink (developing grains) tissues under post-anthesis drought stress in barley and concluded that significantly enhanced ABA levels in developing grains are due to strong activation of the ABA deconjugation pathway and fine regulation of the ABA biosynthesis-degradation pathway.1 Additionally, we provided evidence for the role of ABA in differential regulation of starch biosynthesis genes and a significant upregulation of starch degradation beta amylase genes under drought, i.e. ABA not only influences the rate of starch accumulation but also starch quality.

  11. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana).

    PubMed

    Escher, Peter; Peuke, Andreas D; Bannister, Peter; Fink, Siegfried; Hartung, Wolfram; Jiang, Fan; Rennenberg, Heinz

    2008-01-01

    Leaves of the mistletoe Viscum album (L.) show a high rate of transpiration, even when the host is under severe drought stress. The hypothesis that a strong control of ABA influx from the xylem sap of the host into the mistletoe prevents stomatal closure in mistletoe leaves was tested under the following conditions: sections of poplar twigs carrying a mistletoe were perfused with artificial xylem sap that contained different ABA concentrations and both transpiration and ABA levels were analysed in mistletoe leaves. Despite variation by a factor of 10(4), the ABA content of the host xylem did not affect ABA levels, leaf transpiration, CO(2) assimilation, WUE, or the degree of stomatal aperture in mistletoe leaves. These observations support the hypothesis of a strong control of ABA influx from the host of the xylem into the mistletoe, although degradation of ABA before it enters the mistletoe leaves cannot be excluded. This mechanism may ensure a water and nutritional status favourable for the mistletoe, even if the water status of the host is impaired. Despite the lack of short-term sensitivity of ABA levels in mistletoe leaves to even strong changes of ABA levels in the xylem sap of the host, ABA levels in mistletoe leaves were relatively high compared to ABA levels in the leaves of several tree species including poplar. Since significant transpiration of the mistletoe leaves was observed despite high ABA levels, a diminished sensitivity of the stomata of mistletoe leaves to ABA has to be concluded. The stomatal density of adaxial Viscum leaves of 89+/-23 stomata per mm is lower than those reported in a study performed at the end of the 19th century.

  12. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores[OPEN

    PubMed Central

    2016-01-01

    Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth. PMID:26887919

  13. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  14. cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1.

    PubMed

    Dubovskaya, Lyudmila V; Bakakina, Yulia S; Kolesneva, Ekaterina V; Sodel, Dmitry L; McAinsh, Martin R; Hetherington, Alistair M; Volotovski, Igor D

    2011-07-01

    • The drought hormone abscisic acid (ABA) is widely known to produce reductions in stomatal aperture in guard cells. The second messenger cyclic guanosine 3', 5'-monophosphate (cGMP) is thought to form part of the signalling pathway by which ABA induces stomatal closure. • We have examined the signalling events during cGMP-dependent ABA-induced stomatal closure in wild-type Arabidopsis plants and plants of the ABA-insensitive Arabidopsis mutant abi1-1. • We show that cGMP acts downstream of hydrogen peroxide (H(2) O(2) ) and nitric oxide (NO) in the signalling pathway by which ABA induces stomatal closure. H(2) O(2) - and NO-induced increases in the cytosolic free calcium concentration ([Ca(2+) ](cyt) ) were cGMP-dependent, positioning cGMP upstream of [Ca(2+) ](cyt) , and involved the action of the type 2C protein phosphatase ABI1. Increases in cGMP were mediated through the stimulation of guanylyl cyclase by H(2) O(2) and NO. We identify nucleoside diphosphate kinase as a new cGMP target protein in Arabidopsis. • This study positions cGMP downstream of ABA-induced changes in H(2) O(2) and NO, and upstream of increases in [Ca(2+) ](cyt) in the signalling pathway leading to stomatal closure.

  15. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  16. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.

    PubMed

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  17. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    SciTech Connect

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  18. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    PubMed Central

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  19. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.

    PubMed

    Kwak, June M; Mori, Izumi C; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L; Bloom, Rachel E; Bodde, Sara; Jones, Jonathan D G; Schroeder, Julian I

    2003-06-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.

  20. Ultrastructural and cytochemical aspects of induced apogamy following abscisic acid pre-treatment of secondary moss protonema.

    PubMed

    Menon, M K; Bell, P R

    1981-05-01

    Abscisic acid (ABA) treatment of secondary protonema of Physcomitrium pyriforme Brid in the presence of sucrose does not prevent cell division but results in shorter cells with vesicular cytoplasm and an accumulation of lipid. When transferred to sucrose medium without ABA and with low irradiance isodiametric intercalary cells are cut off which give rise to apogamous sporophytes either directly or after the formation of a small amount of callus. The organization of the cells leading up to the apogamous sporophyte is described. The cells initiating the sporophyte develop dense cytoplasm and the walls become labyrinthine and callosed, but they do not form any recognizable placenta. It is proposed that labyrinthine walls are a consequence of a perturbation of cell wall metabolism as growth changes from gametophytic to sporophytic. The use of the term "transfer cell" for this kind of cell is questioned and the need for a causal approach to the investigation of labyrinthine walls is stressed. PMID:24302107

  1. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  2. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    PubMed

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  3. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    PubMed Central

    Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  4. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. PMID:26825039

  5. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    PubMed

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots. PMID:27285781

  6. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    PubMed

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots.

  7. A Nuclear Factor Regulates Abscisic Acid Responses in Arabidopsis1[W][OA

    PubMed Central

    Kim, Min Jung; Shin, Ryoung; Schachtman, Daniel P.

    2009-01-01

    Abscisic acid (ABA) is a plant hormone that regulates plant growth as well as stress responses. In this study, we identified and characterized a new Arabidopsis (Arabidopsis thaliana) protein, Nuclear Protein X1 (NPX1), which was up-regulated by stress and treatment with exogenous ABA. Stomatal closure, seed germination, and primary root growth are well-known ABA responses that were less sensitive to ABA in NPX1-overexpressing plants. NPX1-overexpressing plants were more drought sensitive, and the changes in response to drought were due to the altered guard cell sensitivity to ABA in transgenic plants and not to a lack of ABA production. The nuclear localization of NPX1 correlated with changes in the expression of genes involved in ABA biosynthesis and ABA signal transduction. To understand the function of NPX1, we searched for interacting proteins and found that an ABA-inducible NAC transcription factor, TIP, interacted with NPX1. Based on the whole plant phenotypes, we hypothesized that NPX1 acts as a transcriptional repressor, and this was demonstrated in yeast, where we showed that TIP was repressed by NPX1. Our results indicate that the previously unknown protein NPX1 acts as a negative regulator in plant response to changes in environmental conditions through the control of ABA-regulated gene expression. The characterization of this factor enhances our understanding of guard cell function and the mechanisms that plants use to modulate water loss from leaves under drought conditions. PMID:19759343

  8. Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana

    PubMed Central

    Takatani, Shogo; Hirayama, Takashi; Hashimoto, Takashi; Takahashi, Taku; Motose, Hiroyasu

    2015-01-01

    Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization. PMID:26068445

  9. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana.

    PubMed Central

    Hong, S W; Jon, J H; Kwak, J M; Nam, H G

    1997-01-01

    A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed. PMID:9112773

  10. Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants.

    PubMed

    Vilardell, J; Martínez-Zapater, J M; Goday, A; Arenas, C; Pagès, M

    1994-02-01

    The abscisic acid-responsive gene rab17 is induced during maize embryo maturation and in vegetative tissues under water stress conditions. To investigate how ABA is involved in the induction of the rab17 gene, we present here a genetic approach to analyse the transcriptional regulation of the 1.3 kb rab17 promoter fragment in transgenic wild-type Arabidopsis and mutants which are deficient (aba) and insensitive (abi1, abi2 and abi3) to ABA. During seed development the rab17 promoter fragment confers similar temporal and spatial regulation on the reporter gene GUS, both in transgenic wild-type and ABA-deficient and ABA-insensitive mutants. The rab17 promoter was only active in embryo and endosperm during late seed development, although the ABA-deficient embryo mutant showed a reduction in the level of GUS activity. During germination rab17 promoter activity decreases, and GUS activity is not enhanced by water stress in transgenic wild-type and mutant plants. In contrast, transcription of the Arabidopsis endogenous rab gene is stimulated by water stress, both in wild-type and ABA-insensitive mutants. Our data suggest that different molecular mechanisms mediate seed-specific expression and ABA water stress induction of the rab17 gene and indicate strong conservation of the seed-specific regulatory mechanism for rab genes in monocot and dicot plants.

  11. Dual Function of NAC072 in ABF3-Mediated ABA-Responsive Gene Regulation in Arabidopsis

    PubMed Central

    Li, Xiaoyun; Li, Xiaoling; Li, Meijuan; Yan, Youcheng; Liu, Xu; Li, Ling

    2016-01-01

    The NAM, ATAF1/2, and CUC2 (NAC) domain proteins play various roles in plant growth and stress responses. Arabidopsis NAC transcription factor NAC072 has been reported as a transcriptional activator in Abscisic acid (ABA)-responsive gene expression. However, the exact function of NAC072 in ABA signaling is still elusive. In this study, we present evidence for the interrelation between NAC072 and ABA-responsive element binding factor 3 (ABF3) that act as a positive regulator of ABA-responsive gene expression in Arabidopsis. The transcript of NAC072 is up-regulated by ABF3 in ABA response, and NAC072 protein interacts with ABF3. Enhanced ABA sensitivity occurs in nac072 mutant plants that overexpressed ABF3. However, overexpression of NAC072 weakened the ABA sensitivity in the abf3 mutant plants, but instead of recovering the ABA sensitivity of abf3. NAC072 and ABF3 cooperate to regulate RD29A expression, but are antagonistic when regulating RD29B expression. Therefore, NAC072 displays a dual function in ABF3-mediated ABA-responsive gene regulation. PMID:27486475

  12. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response.

  13. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response. PMID:26869261

  14. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  15. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves.

    PubMed

    Arve, Louise E; Terfa, Meseret T; Gislerød, Hans Ragnar; Olsen, Jorunn E; Torre, Sissel

    2013-02-01

    Plants developed under high (90%) relative air humidity (RH) have previously been shown to have large, malfunctioning stomata, which results in high water loss during desiccation and reduced dark induced closure. Stomatal movement is to a large extent regulated by abscisic acid (ABA). It has therefore been proposed that low ABA levels contribute to the development of malfunctioning stomata. In this study, we investigated the regulation of ABA content in rose leaves, through hormone analysis and β-glucosidase quantification. Compared with high RH, rose plants developed in moderate RH (60%) and 20 h photoperiod contained higher levels of ABA and β-glucosidase activity. Also, the amount of ABA increased during darkness simultaneously as the ABA-glucose ester (GE) levels decreased. In contrast, plants developed under high RH with 20 h photoperiod showed no increase in ABA levels during darkness, and had low β-glucosidase activity converting ABA-GE to ABA. Continuous lighting (24 h) resulted in low levels of β-glucosidase activity irrespective of RH, indicating that a dark period is essential to activate β-glucosidase. Our results provide new insight into the regulation of ABA under different humidities and photoperiods, and clearly show that β-glucosidase is a key enzyme regulating the ABA pool in rose plants. PMID:22812416

  16. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    PubMed Central

    Schramm, Elizabeth C.; Nelson, Sven K.; Kidwell, Kimberlee K.

    2014-01-01

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat “Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouting in wheat, especially those cultivars with white kernels. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature grain. Three mutant lines called Zak ERA8, Zak ERA19A, and Zak ERA19B (Zak ENHANCED RESPONSE to ABA) were recovered based on failure to germinate on 5 µM ABA. All three mutants resulted in increased ABA sensitivity over a wide range of concentrations such that a phenotype can be detected at very low ABA concentrations. Wheat loses sensitivity to ABA inhibition of germination with extended periods of dry after-ripening. All three mutants recovered required more time to after-ripen sufficiently to germinate in the absence of ABA and to lose sensitivity to 5 µM ABA. However, an increase in ABA sensitivity could be detected after as long as 3 years of after-ripening using high ABA concentrations. The Zak ERA8 line showed the strongest phenotype and segregated as a single semi-dominant mutation. This mutation resulted in no obvious decrease in yield and is a good candidate gene for breeding preharvest sprouting tolerance. PMID:23212773

  17. Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.)

    PubMed Central

    Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin

    2015-01-01

    Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830

  18. Cytosolic alkalinization mediated by abscisic Acid is necessary, but not sufficient, for abscisic Acid-induced gene expression in barley aleurone protoplasts.

    PubMed

    van der Veen, R; Heimovaara-Dijkstra, S; Wang, M

    1992-10-01

    We investigated whether intracellular pH (pH(i)) is a causal mediator in abscisic acid (ABA)-induced gene expression. We measured the change in pH(i) by a "null-point" method during stimulation of barley (Hordeum vulgare cv Himalaya) aleurone protoplasts with ABA and found that ABA induces an increase in pH(i) from 7.11 to 7.30 within 45 min after stimulation. This increase is inhibited by plasma membrane H(+)-ATPase inhibitors, which induce a decrease in pH(i), both in the presence and absence of ABA. This ABA-induced pH(i) increase precedes the expression of RAB-16 mRNA, as measured by northern analysis. ABA-induced pH(i) changes can be bypassed or clamped by addition of either the weak acids 5,5-dimethyl-2,4-oxazolidinedione and propionic acid, which decrease the pH(i), or the weak bases methylamine and ammonia, which increase the pH(i). Artificial pH(i) increases or decreases induced by weak bases or weak acids, respectively, do not induce RAB-16 mRNA expression. Clamping of the pH(i) at a high value with methylamine or ammonia treatment affected the ABA-induced increase of RAB-16 mRNA only slightly. However, inhibition of the ABA-induced pH(i) increase with weak acid or proton pump inhibitor treatments strongly inhibited the ABA-induced RAB-16 mRNA expression. We conclude that, although the ABA-induced the pH(i) increase is correlated with and even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.

  19. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis.

    PubMed

    Dekkers, Bas J W; Schuurmans, Jolanda A M J; Smeekens, Sjef C M

    2008-05-01

    Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought.

  20. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration

    PubMed Central

    Rodrigo, María J.

    2012-01-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components. PMID:22888124

  1. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    PubMed

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components. PMID:22888124

  2. Treatment of Bile Acid Amidation Defects with Glycocholic Acid

    PubMed Central

    Heubi, James E.; Setchell, Kenneth D.R.; Jha, Pinky; Buckley, Donna; Zhang, Wujuan; Rosenthal, Philip; Potter, Carol; Horslen, Simon; Suskind, David

    2014-01-01

    Bile acid amidation defects were predicted to present with fat/fat soluble vitamin malabsorption with minimal cholestasis. We identified and treated 5 patients (1 male/4 females) from 4 families with defective bile acid amidation due to a genetically confirmed deficiency in bile acid CoA:amino acid N-acyl transferase (BAAT) with the conjugated bile acid, glycocholic acid (GCA). Fast atom bombardment-mass spectrometry analysis of urine and bile at baseline revealed predominantly unconjugated cholic acid and absence of the usual glycine and taurine conjugated primary bile acids. Treatment with 15 mg/kg GCA resulted in total duodenal bile acid concentrations of 23.3 ± 19.1 mmol/L (mean ± SD) and 63.5 ± 4.0% of the bile acids were secreted in bile in the conjugated form of which GCA represented 59.6 ± 9.3% of the total biliary bile acids. Unconjugated cholic acid continued to be present in high concentrations in bile because of partial intestinal deconjugation of orally administered GCA. Serum total bile acid concentrations did not significantly differ between pretreatment and post-treatment samples and serum contained predominantly unconjugated cholic acid. These findings confirmed efficient intestinal absorption, hepatic extraction and biliary secretion of the administered GCA. Oral tolerance tests for vitamin D2 (1000 IU vitamin D2/kg) and tocopherol (100 IU/kg tocopherol acetate) demonstrated improvement in fat-soluble vitamin absorption after GCA treatment. Growth improved in 3/3 growth-delayed prepubertal patients. Conclusions: Oral glycocholic acid therapy is safe and effective in improving growth and fat-soluble vitamin absorption in children and adolescents with inborn errors of bile acid metabolism due to amidation defects. PMID:25163551

  3. ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.

    PubMed

    Kim, Hani; Kim, Soon-Hee; Seo, Dong Hye; Chung, Sunglan; Kim, Sang-Woo; Lee, Jeong-Soo; Kim, Woo Taek; Lee, Jae-Hoon

    2016-02-01

    To elucidate the contribution of CRL3-ABA-mediated responses, we attempted to find CRL3 substrate receptors involved in ABA signaling. One gene named ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 (AHT1) was upregulated more than 2.5 times by ABA, and its coding region possessed a BTB/POZ domain, which is the common feature of CRL3 substrate receptors. Loss of AHT1 led to retardation of the germination process, not inhibition of root growth. AHT1 transcripts also increased in response to mannitol, NaCl and drought treatments at the seedling stage and in dry seeds. High expression of AHT1 in dry seeds was inhibited by the defect of ABA signaling components such as ABI1, ABI3 and SRKs indicating that the expression of AHT1 is dependent on ABA signaling. Among bZIP transcription factors participating in ABA signaling, the losses of ABI5/DPBF1, AREB1/ABF2, EEL/DPBF4 and DPBF2/bZIP67 resulted in reduced AHT1 expression, showing that these transcription factors play a positive role in ABA-induced AHT1 expression. While loss of AHT1 did not affect the expression pattern of NCED3, ABI2, SRKs and AREB/ABF genes, it led to hyperinduction of ABI5/DPBF genes such as ABI5/DPBF1, EEL/DPBF4 and AREB3/DPBF3, which are mainly involved in seed development and germination, as well as ABA-inducible genes transactivated by ABI5. Overall, these findings indicate that AHT1 negatively regulates ABA-mediated inhibition of germination, possibly by repressing the expression of a subset of ABI5/DPBF subfamily genes, and that AHT1 may be regulated by a negative feedback process through its linkage with a part of ABI5/DPBF proteins. PMID:26667153

  4. The Role of MAPK Modules and ABA during Abiotic Stress Signaling.

    PubMed

    de Zelicourt, Axel; Colcombet, Jean; Hirt, Heribert

    2016-08-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. PMID:27143288

  5. Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening1[W][OA

    PubMed Central

    Jia, Hai-Feng; Chai, Ye-Mao; Li, Chun-Li; Lu, Dong; Luo, Jing-Jing; Qin, Ling; Shen, Yuan-Yue

    2011-01-01

    The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA. PMID:21734113

  6. ABA in bryophytes: how a universal growth regulator in life became a plant hormone?

    PubMed

    Takezawa, Daisuke; Komatsu, Kenji; Sakata, Yoichi

    2011-07-01

    Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.

  7. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants

    PubMed Central

    2014-01-01

    Background Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. Results Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. Conclusions Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production. PMID:24460926

  8. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses.

  9. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses. PMID:26175353

  10. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone.

    PubMed

    Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C

    2013-08-01

    To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques.

  11. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity.

    PubMed

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A Egrinya; Li, Weijiang

    2016-04-01

    Non-uniform root salinity increases the Na(+)efflux, water use, and growth of the root in non-saline side, which may be regulated by some form of signaling induced by the high-salinity side. However, the signaling and its specific function have remained unknown. Using a split-root system to simulate a non-uniform root zone salinity in Gossypium hirsutum L., we showed that the up-regulated expression of sodium efflux-related genes (SOS1, SOS2, PMA1, and PMA2) and water uptake-related genes (PIP1 and PIP2) was possibly involved in the elevated Na(+) efflux and water use in the the roots in the non-saline side. The increased level of indole acetic acid (IAA) in the non-saline side was the likely cause of the increased root growth. Also, the abscisic acid (ABA) and H2O2 contents in roots in the non-saline side increased, possibly due to the increased expression of their key biosynthesis genes, NCED and RBOHC, and the decreased expression of ABA catabolic CYP707A genes. Exogenous ABA added to the non-saline side induced H2O2 generation by up-regulating the RBOHC gene, but this was decreased by exogenous fluridone. Exogenous H2O2 added to the non-saline side reduced the ABA content by down-regulating NCED genes, which can be induced by diphenylene iodonium (DPI) treatment in the non-saline side, suggesting a feedback mechanism between ABA and H2O2.Both exogenous ABA and H2O2 enhanced the expression of SOS1, PIP1;7 ,PIP2;2, and PIP2;10 genes, but these were down-regulated by fluridone and DPI, suggesting that H2O2 and ABA are important signals for increasing root Na(+) efflux and water uptake in the roots in the non-saline side.

  12. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    PubMed Central

    Daszkowska-Golec, Agata; Chorazy, Edyta; Maluszynski, Miroslaw; Szarejko, Iwona

    2013-01-01

    Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress. PMID:23807502

  13. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings.

    PubMed

    Song, Weiwei; Ma, Xinrong; Tan, Hong; Zhou, Jinyan

    2011-07-01

    The plant hormone abscisic acid (ABA) is an important regulator in many aspects of plant growth and development, as well as stress resistance. Here, we investigated the effects of exogenous ABA application on the interaction between tomato (Solanum lycopersicon L.) and Alternaria solani (early blight). Foliar spraying of 7.58 μM ABA was effective in reducing disease severity in tomato plants. Previously, increased activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) were observed in exogenous ABA-treated tomato leaves. Moreover, these enzyme activities were maintained at higher levels in ABA-pretreated and A. solani challenged tomato plants. Tomato defense genes, such as PR1, β-1, 3-glucanase (GLU), PPO, POD, and superoxide dismutase (SOD), were rapidly and significantly up-regulated by exogenous ABA treatment. Furthermore, a subsequent challenge of ABA-pretreated plants with the pathogen A. solani resulted in higher expression of defense genes, compared to water-treated or A. solani inoculated plants. Therefore, our results suggest that exogenous ABA could enhance disease resistance against A. solani infection in tomato through the activation of defense genes and via the enhancement of defense-related enzymatic activities.

  14. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings.

    PubMed

    Duan, Lina; Dietrich, Daniela; Ng, Chong Han; Chan, Penny Mei Yeen; Bhalerao, Rishikesh; Bennett, Malcolm J; Dinneny, José R

    2013-01-01

    The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments.

  15. ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa.

    PubMed

    Wang, Wenyi; Liu, Bohan; Xu, Mengyun; Jamil, Muhammad; Wang, Guoping

    2015-08-14

    Water deficit causes multiple negative impacts on plants, such as reactive oxygen species (ROS) accumulation, abscisic acid (ABA) induction, stomatal closure, and decreased photosynthesis. Here, we characterized OsC3H47, which belongs to CCCH zinc-finger families, as a drought-stress response gene. It can be strongly induced by NaCl, PEG, ABA, and drought conditions. Overexpression of OsC3H47 significantly enhanced tolerance to drought and salt stresses in rice seedlings, which indicates that OsC3H47 plays important roles in post-stress recovery. However, overexpression of OsC3H47 reduced the ABA sensitivity of rice seedlings. This suggests that OsC3H47 is a newly discovered gene that can control rice drought-stress response, and it may play an important role in ABA feedback and post-transcription processes. PMID:26047696

  16. Acid peptic diseases: pharmacological approach to treatment

    PubMed Central

    Mejia, Alex; Kraft, Walter K

    2011-01-01

    Acid peptic disorders are the result of distinctive, but overlapping pathogenic mechanisms leading to either excessive acid secretion or diminished mucosal defense. They are common entities present in daily clinical practice that, owing to their chronicity, represent a significant cost to healthcare. Key elements in the success of controlling these entities have been the development of potent and safe drugs based on physiological targets. The histamine-2 receptor antagonists revolutionized the treatment of acid peptic disorders owing to their safety and efficacy profile. The proton-pump inhibitors (PPIs) represent a further therapeutic advance due to more potent inhibition of acid secretion. Ample data from clinical trials and observational experience have confirmed the utility of these agents in the treatment of acid peptic diseases, with differential efficacy and safety characteristics between and within drug classes. Paradigms in their speed and duration of action have underscored the need for new chemical entities that, from a single dose, would provide reliable duration of acid control, particularly at night. Moreover, PPIs reduce, but do not eliminate, the risk of ulcers in patients taking NSAIDs, reflecting untargeted physiopathologic pathways and a breach in the ability to sustain an intragastric pH of more than 4. This review provides an assessment of the current understanding of the physiology of acid production, a discussion of medications targeting gastric acid production and a review of efficacy in specific acid peptic diseases, as well as current challenges and future directions in the treatment of acid-mediated diseases. PMID:21822447

  17. GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway

    PubMed Central

    Mauri, Nuria; Fernández-Marcos, María; Costas, Celina; Desvoyes, Bénédicte; Pichel, Antonio; Caro, Elena; Gutierrez, Crisanto

    2016-01-01

    Abscisic acid (ABA) is fundamental for plant development. Multiple factors have been identified that participate in the ABA signaling network, although a role of many proteins still await to be demonstrated. Here we have investigated the role of GEM (GL2 EXPRESSION MODULATOR), originally annotated as an ABA-responsive protein. GEM contains a GRAM domain, a feature shared with other eight Arabidopsis proteins for which we propose the name of GRE (GEM-RELATED) proteins. We found that (i) GEM expression responds to ABA, (ii) its promoter contains ABRE sites required for ABA response, and (iii) GEM expression depends on members of the ABA signaling pathway. This is consistent with the expression pattern of GEM during development in plant locations were ABA is known to play a direct role. We also found that GEM binds various phospholipids, e.g. mono and diphosphates and phosphatidic acid, suggesting a potential link of GEM with membrane-associated processes. Consistent with this, we found that the phosphoinositol-4-phosphate kinase PIP5K9 binds GEM in vivo. Finally, we demonstrated a role of GEM in seed dormancy. Together, our data led us to propose that GEM is an ABA-responsive protein that may function downstream of ABI5 as part of the ABA signaling pathway. PMID:26939893

  18. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake

    PubMed Central

    Fan, Shi Kai; Fang, Xian Zhi; Guan, Mei Yan; Ye, Yi Quan; Lin, Xian Yong; Du, Shao Ting; Jin, Chong Wei

    2014-01-01

    Cadmium (Cd) contamination of agricultural soils is an increasingly serious problem. Measures need to be developed to minimize Cd entering the human food chain from contaminated soils. We report here that, under Cd exposure condition, application with low doses of (0.1–0.5 μM) abscisic acid (ABA) clearly inhibited Cd uptake by roots and decreased Cd level in Arabidopsis wild-type plants (Col-0). Expression of IRT1 in roots was also strongly inhibited by ABA treatment. Decrease in Cd uptake and the inhibition of IRT1 expression were clearly lesser pronounced in an ABA-insensitive double mutant snrk2.2/2.3 than in the Col-0 in response to ABA application. The ABA-decreased Cd uptake was found to correlate with the ABA-inhibited IRT1 expression in the roots of Col-0 plants fed two different levels of iron. Furthermore, the Cd uptake of irt1 mutants was barely affected by ABA application. These results indicated that inhibition of IRT1 expression is involved in the decrease of Cd uptake in response to exogenous ABA application. Interestingly, ABA application increased the iron level in both Col-0 plants and irt1 mutants, suggesting that ABA-increased Fe acquisition does not depend on the IRT1 function, but on the contrary, the ABA-mediated inhibition of IRT1 expression may be due to the elevation of iron level in plants. From our results, we concluded that ABA application might increase iron acquisition, followed by the decrease in Cd uptake by inhibition of IRT1 activity. Thus, for crop production in Cd contaminated soils, developing techniques based on ABA application potentially is a promising approach for reducing Cd accumulation in edible organs in plants. PMID:25566293

  19. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture.

    PubMed

    Lee, S P; Chen, T H

    1993-03-01

    Abscisic acid (ABA) increases the freezing tolerance of bromegrass (Bromus inermis Leyss) cell-suspension cultures at 23 degrees C and elicits many metabolic changes similar to those observed during cold acclimation. Induction and maintenance of freezing tolerance by ABA is accompanied by the expression of novel polypeptides and translatable RNAs. The objective of this study was to isolate and characterize ABA-responsive cDNAs associated with ABA-induced freezing tolerance in bromegrass cell cultures. Among the 16 ABA-responsive cDNA clones isolated, 9 were expressed only with ABA treatment, 7 showed increased transcript level, and 1 was transiently expressed. Cold responsiveness was determined in three clones with increased transcript levels and in the transiently expressed clone. Deacclimation of ABA-hardened cells was a relatively slow process, because all of the novel transcripts persisted for at least 7 d after cells were cultured in ABA-free medium. Preliminary sequencing of cDNAs has identified several clones that share high sequence homology with genes associated with sugar metabolism, osmotic stress, and protease activity. Clone pBGA61 was fully sequenced and tentatively identified as an NADPH-dependent aldose reductase. The predicted amino acid sequence of the coding region shared 92% similarity with that predicted for barley aldose reductase cDNA. It is proposed that expression of genes related to sugar metabolism and osmotic stress may be required for ABA-induced hardening. PMID:8310047

  20. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    PubMed

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  1. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    PubMed Central

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  2. The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat preharvest sprouting (PHS) is the germination of mature grain on the mother plant when rain occurs before harvest. Higher abscisic acid (ABA) hormone levels and sensitivity are associated with higher seed dormancy and PHS tolerance. Consistent with this, the ABA hypersensitive ERA8 (Enhanced...

  3. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes.

    PubMed

    Graeber, Kai; Linkies, Ada; Müller, Kerstin; Wunchova, Andrea; Rott, Anita; Leubner-Metzger, Gerhard

    2010-05-01

    Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum ('garden cress') is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative

  4. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability.

  5. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  6. Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants.

    PubMed

    Pla, M; Gómez, J; Goday, A; Pagès, M

    1991-12-01

    We have isolated a new maize gene, rab28, that responds to abscisic acid (ABA) treatment. This gene has been characterized by determining the sequence of the cDNA and corresponding genomic copy, and by mapping the start site of its transcript. The rab 28 gene encodes a protein of predicted molecular weight 27713 Da which shows strong homology with the Lea D-34 protein identified in cotton. The proximal promoter region contains the conserved ABA-response element, CACGTGG, reported in other plant genes to be responsible for ABA induction. rab 28 mRNA has been identified as ABA-inducible in embryos and young leaves. It is also induced by water-stress in leaves of wild-type plants. Regulation of the rab 28 gene was studied in maize viviparous mutants. The results obtained with the ABA-insensitive vp1 mutant show that rab 28 transcripts do not accumulate to a significant level during embryogenesis. Surprisingly, induction of rab 28 mRNA can be achieved in young embryos by exogenous ABA treatment. Moreover, water-stressed or ABA-treated seedlings of vp1 contain significant levels of rab 28 mRNA which is not detectable in well-watered seedlings. Regulation of the rab 28 gene in excised young embryos of ABA-deficient vp2 mutants, in which influences of the maternal environment are absent, closely resembles that found in non-mutant excised young embryos. The significance of these results is discussed.

  7. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Hai-Jun; Zhang, Na; Yang, Rong-Chao; Wang, Li; Sun, Qian-Qian; Li, Dian-Bo; Cao, Yun-Yun; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2014-10-01

    Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the

  8. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

    PubMed Central

    Hu, Xiuli; Li, Nana; Wu, Liuji; Li, Chunqi; Li, Chaohai; Zhang, Li; Liu, Tianxue; Wang, Wei

    2015-01-01

    Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades. PMID:26503333

  9. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases

    PubMed Central

    Kong, Lingyao; Cheng, Jinkui; Zhu, Yujuan; Ding, Yanglin; Meng, Jingjing; Chen, Zhizhong; Xie, Qi; Guo, Yan; Li, Jigang; Yang, Shuhua; Gong, Zhizhong

    2015-01-01

    Clade A protein phosphatase 2Cs (PP2Cs) are abscisic acid (ABA) co-receptors that block ABA signalling by inhibiting the downstream protein kinases. ABA signalling is activated after PP2Cs are inhibited by ABA-bound PYR/PYL/RCAR ABA receptors (PYLs) in Arabidopsis. However, whether these PP2Cs are regulated by other factors remains unknown. Here, we report that ABI1 (ABA-INSENSITIVE 1) can interact with the U-box E3 ligases PUB12 and PUB13, but is ubiquitinated only when it interacts with ABA receptors in an in vitro assay. A mutant form of ABI1-1 that is unable to interact with PYLs is more stable than the wild-type protein. Both ABI1 degradation and all tested ABA responses are reduced in pub12 pub13 mutants compared with the wild type. Introducing the abi1-3 loss-of-function mutation into pub12 pub13 mutant recovers the ABA-insensitive phenotypes of the pub12 pub13 mutant. We thus uncover an important regulatory mechanism for regulating ABI1 levels by PUB12 and PUB13. PMID:26482222

  10. ABA-Mediated Inhibition of Germination Is Related to the Inhibition of Genes Encoding Cell-Wall Biosynthetic and Architecture: Modifying Enzymes and Structural Proteins in Medicago truncatula Embryo Axis

    PubMed Central

    Gimeno-Gilles, Christine; Lelièvre, Eric; Viau, Laure; Malik-Ghulam, Mustafa; Ricoult, Claudie; Niebel, Andreas; Leduc, Nathalie; Limami, Anis M.

    2009-01-01

    Radicle emergence and reserves mobilization are two distinct programmes that are thought to control germination. Both programs are influenced by abscissic acid (ABA) but how this hormone controls seed germination is still poorly known. Phenotypic and microscopic observations of the embryo axis of Medicago truncatula during germination in mitotic inhibition condition triggered by 10 μM oryzalin showed that cell division was not required to allow radicle emergence. A suppressive subtractive hybridization showed that more than 10% of up-regulated genes in the embryo axis encoded proteins related to cell-wall biosynthesis. The expression of α-expansins, pectin-esterase, xylogucan-endotransglycosidase, cellulose synthase, and extensins was monitored in the embryo axis of seeds germinated on water, constant and transitory ABA. These genes were overexpressed before completion of germination in the control and strongly inhibited by ABA. The expression was re-established in the ABA transitory-treatment after the seeds were transferred back on water and proceeded to germination. This proves these genes as contributors to the completion of germination and strengthen the idea that cell-wall loosening and remodeling in relation to cell expansion in the embryo axis is a determinant feature in germination. Our results also showed that ABA controls germination through the control of radicle emergence, namely by inhibiting cell-wall loosening and expansion. PMID:19529818

  11. Metabolism of 5'alpha,8'-cycloabscisic acid, a highly potent and long-lasting abscisic acid analogue, in radish seedlings.

    PubMed

    Todoroki, Yasushi; Sawada, Masao; Matsumoto, Miyuki; Tsukada, Shigeko; Ueno, Kotomi; Isaka, Masatoshi; Owaki, Mariko; Hirai, Nobuhiro

    2004-01-15

    We synthesized 5'alpha,8'-cycloabscisic acid (CycloABA), a highly potent and long-lasting abscisic acid (ABA) analogue, by a different method from that reported before. CycloABA fed to radish seedlings had more metabolic tolerance than ABA. The major metabolite of CycloABA was the glucose conjugate, which was the minor metabolite of ABA. The 8'-hydroxylated metabolite and its cyclized isomer, which were major metabolites of ABA, were not found as metabolites of CycloABA. The present results suggest that the highly potent and long-lasting activity of CycloABA is caused by resistance to ABA 8'-hydroxylase, and that CycloABA is partially metabolized to the glucose conjugate by ABA glucosyltransferase.

  12. Treatment of broiler litter with organic acids.

    PubMed

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  13. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis

    PubMed Central

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486

  14. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.

    PubMed

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC-RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC-RGL2-ABI5 module integrates GA and ABA signalling pathways during seed germination.

  15. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.

    PubMed

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC-RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC-RGL2-ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486

  16. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana.

    PubMed

    Li, Wenbin; Wang, Tao; Zhang, Yuhang; Li, Yongguang

    2016-01-01

    MiRNAs play crucial roles in many aspects of plant development and the response to the environment. The miR172 family has been shown to participate in the control of flowering time and the response to abiotic stress. This family regulates the expression of APETALA2 (AP2)-like transcription factors in Arabidopsis. In the present study, soybean (Glycine max L. Merr.) miR172c, a member of the miR172 family, and its target gene were investigated for abiotic stress responses in transgenic Arabidopsis. gma-miR172c was induced by abscisic acid (ABA) treatments and abiotic stresses, including salt and water deficit. 5'-RACE (5'-rapid amplification of cDNA ends) assays indicated that miR172c directed Glyma01g39520 mRNA cleavage in soybeans. Overexpression of gma-miR172c in Arabidopsis resulted in reduced leaf water loss and increased survival rate under stress conditions. Meanwhile, the root length, germination rate, and cotyledon greening of transgenic plants were improved during both high salt and water deficit conditions. In addition, transgenic plants exhibited hypersensitivity to ABA during both the seed germination and post-germination seedling growth stages. Stress-related physiological indicators and the expression of stress/ABA-responsive genes were affected by abiotic treatments. The overexpression of gma-miR172c in Arabidopsis promoted earlier flowering compared with the wild type through modulation of the expression of flowering genes, such as FT and LFY during long days, especially under drought conditions. Glyma01g39520 weakened ABA sensitivity and reduced the tolerance to drought stress in the snz mutant of Arabidopsis by reducing the expression of ABI3 and ABI5. Overall, the present results demonstrate that gma-miR172c confers water deficit and salt tolerance but increased ABA sensitivity by regulating Glyma01g39520, which also accelerates flowering under abiotic stresses.

  17. Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements.

    PubMed

    Ghosh, Totan K; Kaneko, Midori; Akter, Khaleda; Murai, Shuhei; Komatsu, Kenji; Ishizaki, Kimitsune; Yamato, Katsuyuki T; Kohchi, Takayuki; Takezawa, Daisuke

    2016-04-01

    Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the β-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes. PMID:26456006

  18. Influence of postharvest treatments on quality, carotenoids, and abscisic acid content of stored "spring belle" peach (prunus persica) fruit.

    PubMed

    Caprioli, Ivano; Lafuente, María T; Rodrigo, María J; Mencarelli, Fabio

    2009-08-12

    The influence of four postharvest treatments, 1-methylcyclopropene (1-MCP), carbon dioxide (CO2), and nitrogen (N2), followed by fruit storage at 10 degrees C or of hydrocooling (H2O) at 1 degrees C, followed by storage at 0 degrees C on fruit quality, carotenoids, and abscisic acid (ABA) content as well as on ethylene and carbon dioxide production of "Spring Belle" peach fruits, has been examined. Ethylene production was reduced by all the treatments and raised after transfer the fruits at 20 degrees C, their ethylene production in general being lower than that of fruits continuously held at 20 degrees C. Nevertheless, 1-MCP removal enhanced the rise in ethylene occurring at 20 degrees C by the end of storage. Those changes were likely related to fruit softening but not to changes in color or in the soluble solid content (SSC). HPLC analyses showed a relative high content of xanthophylls, particularly violaxanthin. In fruits maintained in air at 20 degrees C, violaxanthin and beta-carotene contents decreased while beta-criptoxanthin increased. ABA content showed a great increase in 1-MCP and significant decrease in carbon dioxide and hydrocooling treated peaches. The results indicated hydrocooling, in combination with low temperature storage, as the best treatment maintaining fruit firmness due to the lowered respiration rate and the content of relevant carotenoids.

  19. Parents' Experiences of Applied Behaviour Analysis (ABA)-Based Interventions for Children Diagnosed with Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    McPhilemy, Catherine; Dillenburger, Karola

    2013-01-01

    Applied behaviour analysis (ABA)-based programmes are endorsed as the gold standard for treatment of children with autistic spectrum disorder (ASD) in most of North America. This is not the case in most of Europe, where instead a non-specified "eclectic" approach is adopted. We explored the social validity of ABA-based interventions with…

  20. Nitric oxide modulates sensitivity to ABA.

    PubMed

    Lozano-Juste, Jorge; León, José

    2010-03-01

    Nitric oxide (NO) is a gas with crucial signaling functions in plant defense and development. As demonstrated by generating a triple nia1nia2noa1-2 mutant with extremely low levels of NO (February 2010 issue of Plant Physiology), NO is synthesized in plants through mainly two different pathways involving nitrate reductase (NR/NIA) and NO Associated 1 (AtNOA1) proteins. Depletion of basal NO levels leads to a priming of ABA-triggered responses that causes hypersensitivity to this hormone and results in enhanced seed dormancy and decreased seed germination and seedling establishment in the triple mutant. NO produced under non-stressed conditions represses inhibition of seed developmental transitions by ABA. Moreover, NO plays a positive role in post-germinative vegetative development and also exerts a critical control of ABA-related functions on stomata closure. The triple nia1nia2noa1-2 mutant is hypersensitive to ABA in stomatal closure thus resulting in a extreme phenotype of resistance to drought. In the light of the recent discovery of PYR/PYL/RCAR as a family of potential ABA receptors, regulation of ABA sensitivity by NO may be exerted either directly on ABA receptors or on downstream signaling components; both two aspects that deserve our present and future attention.

  1. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    PubMed

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).

  2. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    PubMed Central

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  3. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    PubMed

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  4. POLYAMINE OXIDASE2 of Arabidopsis contributes to ABA mediated plant developmental processes.

    PubMed

    Wimalasekera, Rinukshi; Schaarschmidt, Frank; Angelini, Riccardo; Cona, Alessandra; Tavladoraki, Parasklevi; Scherer, Günther F E

    2015-11-01

    Polyamines (PA) are catabolised by two groups of amine oxidases, the copper-binding amine oxidases (CuAOs) and the FAD-binding polyamine oxidases (PAOs). Previously, we have shown that CuAO1 is involved in ABA associated growth responses and ABA- and PA-mediated rapid nitric oxide (NO) production. Here we report the differential regulation of expression of POLYAMINE OXIDASE2 of Arabidopsis (AtPAO2) in interaction with ABA, nitrate and ammonium. Without ABA treatment germination, cotyledon growth and fresh weight of pao2 knockdown mutants as well as PAO2OX over-expressor plants were comparable to those of the wild type (WT) plants irrespective of the N source. In the presence of ABA, in pao2 mutants cotyledon growth and fresh weights were more sensitive to inhibition by ABA while PAO2OX over-expressor plants showed a rather similar response to WT. When NO3(-) was the only N source primary root lengths and lateral root numbers were lower in pao2 mutants both without and with exogenous ABA. PAO2OX showed enhanced primary and lateral root growth in media with NO3(-) or NH4(+). Vigorous root growth of PAO2OX and the hypersensitivity of pao2 mutants to ABA suggest a positive function of AtPAO2 in root growth. ABA-induced NO production in pao2 mutants was lower indicating a potential contributory function of AtPAO2 in NO-mediated effects on root growth. PMID:26310141

  5. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.

    PubMed

    Komatsu, Setsuko; Han, Chao; Nanjo, Yohei; Altaf-Un-Nahar, Most; Wang, Kun; He, Dongli; Yang, Pingfang

    2013-11-01

    Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin.

  6. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  7. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts.

    PubMed

    Knetsch, MLW.; Wang, M.; Snaar-Jagalska, B. E.; Heimovaara-Dijkstra, S.

    1996-06-01

    Abscisic acid (ABA) induces a rapid and transient mitogen-activated protein (MAP) kinase activation in barley aleurone protoplasts. MAP kinase activity, measured as myelin basic protein phosphorylation by MAP kinase immunoprecipitates, increased after 1 min, peaked after 3 min, and decreased to basal levels after ~5 min of ABA treatment in vivo. Antibodies recognizing phosphorylated tyrosine residues precipitate with myelin basic protein kinase activity that has identical ABA activation characteristics and demonstrate that tyrosine phosphorylation of MAP kinase occurs during activation. The half-maximal concentration of ABA required for MAP kinase activation, 3 x 10-7 M, is very similar to that required for ABA-induced rab16 gene expression. The tyrosine phosphatase inhibitor phenylarsine oxide can completely block ABA-induced MAP kinase activation and rab16 gene expression. These results lead us to conclude that ABA activates MAP kinase via a tyrosine phosphatase and that these steps are a prerequisite for ABA induction of rab16 gene expression.

  8. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts.

    PubMed Central

    Knetsch, MLW.; Wang, M.; Snaar-Jagalska, B. E.; Heimovaara-Dijkstra, S.

    1996-01-01

    Abscisic acid (ABA) induces a rapid and transient mitogen-activated protein (MAP) kinase activation in barley aleurone protoplasts. MAP kinase activity, measured as myelin basic protein phosphorylation by MAP kinase immunoprecipitates, increased after 1 min, peaked after 3 min, and decreased to basal levels after ~5 min of ABA treatment in vivo. Antibodies recognizing phosphorylated tyrosine residues precipitate with myelin basic protein kinase activity that has identical ABA activation characteristics and demonstrate that tyrosine phosphorylation of MAP kinase occurs during activation. The half-maximal concentration of ABA required for MAP kinase activation, 3 x 10-7 M, is very similar to that required for ABA-induced rab16 gene expression. The tyrosine phosphatase inhibitor phenylarsine oxide can completely block ABA-induced MAP kinase activation and rab16 gene expression. These results lead us to conclude that ABA activates MAP kinase via a tyrosine phosphatase and that these steps are a prerequisite for ABA induction of rab16 gene expression. PMID:12239411

  9. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. PMID:25780993

  10. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  11. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  12. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  13. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits. PMID:25306090

  14. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits.

  15. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling

    PubMed Central

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  16. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    PubMed

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  17. Abscisic acid and pyrabactin improve vitamin C contents in raspberries.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2016-07-15

    Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability. PMID:26948608

  18. Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling.

    PubMed

    Choi, Du Seok; Hwang, Byung Kook

    2011-02-01

    Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.

  19. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96.

    PubMed

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  20. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    PubMed Central

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  1. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth.

    PubMed

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  2. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  3. ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65-1a in Maize Plants.

    PubMed

    Zhu, Yuan; Liu, Weijuan; Sheng, Yu; Zhang, Juan; Chiu, Tsanyu; Yan, Jingwei; Jiang, Mingyi; Tan, Mingpu; Zhang, Aying

    2015-07-01

    Brassinosteroids (BRs) and ABA co-ordinately regulate water deficit tolerance in maize leaves. ZmMAP65-1a, a maize microtubule-associated protein (MAP) which plays an essential role in BR-induced antioxidant defense, has been characterized previously. However, the interactions among BR, ABA and ZmMAP65-1a in water deficit tolerance remain unexplored. In this study, we demonstrated that ABA was required for BR-induced antioxidant defense via ZmMAP65-1a by using biochemical blocking and ABA biosynthetic mutants. The expression of ZmMAP65-1a in maize leaves and mesophyll protoplasts could be increased under polyethylene glycol- (PEG) stimulated water deficit and ABA treatments. Furthermore, the importance of ABA in the early pathway of BR-induced water deficit tolerance was demonstrated by limiting ABA availability. Blocking ABA biosynthesis biochemically or by a null mutation inhibited the downstream gene expression of ZmMAP65-1a and the activity of ZmMAPK5 in the pathway. It also affected the activities of BR-induced antioxidant defense-related enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD) and NADPH oxidase. In addition, combining results from transiently overexpressed or silenced ZmMAP65-1a in mesophyll protoplasts, we discovered that ZmMAP65-1a mediated the ABA-induced gene expression and activities of APX and SOD. Surprisingly, silencing of ZmMAP65-1a in mesophyll protoplasts did not alter the gene expression of ZmCCaMK and vice versa in response to ABA. Taken together, our data indicate that water deficit-induced ABA is a key mediator in BR-induced antioxidant defense via ZmMAP65-1a in maize.

  4. Counteractive Effects of ABA and GA3 on Extracellular and Intracellular pH and Malate in Barley Aleurone.

    PubMed

    Heimovaara-Dijkstra, S.; Heistek, J. C.; Wang, M.

    1994-09-01

    Barley (Hordeum vulgare L.) aleurone layers are known to constitutively acidify their surroundings, primarily by L-malic acid release (J. Mikola, M. Virtanen [1980] Plant Physiol 66: S-142). Here we demonstrate the antagonistic effects of the plant hormones gibberellic acid (GA3) and abscisic acid (ABA) on the regulation of extracellular pH (pHe) of barley aleurone layers. We observed a strong correlation between ABA-induced enhancement of extracellular acidification and an ABA-induced increase in L-malic acid release. In addition, ABA caused an increase in intracellular L-malate level. GA3 caused a slight decrease in intracellular L-malate level and was able to inhibit the ABA-induced increase in L-malate intracellular concentration and release. In addition, this ABA-induced L-malate release could be completely inhibited by GA3. The ABA-induced release of L-malic acid could not account for the total ABA-induced pHe decrease, suggesting the existence of an additional mechanism involved in the regulation of pHe. It has been reported that ABA induces an intracellular pH (pHi) increase, possibly due to the activation of plasma membrane proton pumps (R. Van der Veen, S. Heimovaara-Dijkstra, M. Wang [1992] Plant Physiol 100: 699-705). A pHi increase, such as that caused by ABA, might be correlated with the intracellular L-malate increase as suggested by the pH stat model of D.D. Davies ([1986] Physiol Plant 67: 702-706). We studied if the effects of GA3 on L-malate concentration were correlated with changes in pHi and found that GA3 caused a pHi decrease and that GA3 and ABA could interfere in the regulation of pHi. In addition, we were able to mimic the effect of both hormones on L-malate release by bringing about artifical pHi changes with the weak acid 5,5-dimethyl-2,4-oxazolidinedione and the weak base methylamine. The physiological meaning of the effects of GA3 and ABA on the regulation of both pHe and pHi during grain germination are discussed.

  5. Counteractive Effects of ABA and GA3 on Extracellular and Intracellular pH and Malate in Barley Aleurone.

    PubMed Central

    Heimovaara-Dijkstra, S.; Heistek, J. C.; Wang, M.

    1994-01-01

    Barley (Hordeum vulgare L.) aleurone layers are known to constitutively acidify their surroundings, primarily by L-malic acid release (J. Mikola, M. Virtanen [1980] Plant Physiol 66: S-142). Here we demonstrate the antagonistic effects of the plant hormones gibberellic acid (GA3) and abscisic acid (ABA) on the regulation of extracellular pH (pHe) of barley aleurone layers. We observed a strong correlation between ABA-induced enhancement of extracellular acidification and an ABA-induced increase in L-malic acid release. In addition, ABA caused an increase in intracellular L-malate level. GA3 caused a slight decrease in intracellular L-malate level and was able to inhibit the ABA-induced increase in L-malate intracellular concentration and release. In addition, this ABA-induced L-malate release could be completely inhibited by GA3. The ABA-induced release of L-malic acid could not account for the total ABA-induced pHe decrease, suggesting the existence of an additional mechanism involved in the regulation of pHe. It has been reported that ABA induces an intracellular pH (pHi) increase, possibly due to the activation of plasma membrane proton pumps (R. Van der Veen, S. Heimovaara-Dijkstra, M. Wang [1992] Plant Physiol 100: 699-705). A pHi increase, such as that caused by ABA, might be correlated with the intracellular L-malate increase as suggested by the pH stat model of D.D. Davies ([1986] Physiol Plant 67: 702-706). We studied if the effects of GA3 on L-malate concentration were correlated with changes in pHi and found that GA3 caused a pHi decrease and that GA3 and ABA could interfere in the regulation of pHi. In addition, we were able to mimic the effect of both hormones on L-malate release by bringing about artifical pHi changes with the weak acid 5,5-dimethyl-2,4-oxazolidinedione and the weak base methylamine. The physiological meaning of the effects of GA3 and ABA on the regulation of both pHe and pHi during grain germination are discussed. PMID:12232334

  6. Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves.

    PubMed

    Bertrand, A; Robitaille, G; Nadeau, P; Boutin, R

    1994-04-01

    In 1991 and 1992, mature maple trees (Acer saccharum Marsh.) were freeze-stressed or drought-stressed by preventing precipitation (snow or rain) from reaching the forest floor under selected trees. Lack of snow cover caused a decrease in soil temperature to well below 0 degrees C from December to April and a lowering of the soil water content to 10%. The abscisic acid (ABA) concentration in the spring sap of deep-soil frost-stressed trees was significantly higher than in control or drought-stressed trees. The increase in ABA concentration in the xylem sap in the spring of 1991 and 1992 preceded symptoms of canopy decline and a decrease in leaf area that were observed during the summers of 1991 and 1992. These results suggest a role for ABA in root-to-shoot communication in response to environmental stress. The largest differences in ABA concentration induced by the treatments was found in sap collected at the end of sap flow. The increase in ABA concentration in spring sap at the end of the sap flow could be used as an early indicator of stress suffered by trees during the winter. Not only did the increase in ABA concentration occur before any visible symptoms of tree decline appeared, but the trees that showed the most evident decline had the highest ABA concentrations in the spring sap. Leaf ABA concentration was not a good indicator of induced stress. PMID:14967696

  7. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest.

    PubMed

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  8. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  9. Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves.

    PubMed

    Bertrand, A; Robitaille, G; Nadeau, P; Boutin, R

    1994-04-01

    In 1991 and 1992, mature maple trees (Acer saccharum Marsh.) were freeze-stressed or drought-stressed by preventing precipitation (snow or rain) from reaching the forest floor under selected trees. Lack of snow cover caused a decrease in soil temperature to well below 0 degrees C from December to April and a lowering of the soil water content to 10%. The abscisic acid (ABA) concentration in the spring sap of deep-soil frost-stressed trees was significantly higher than in control or drought-stressed trees. The increase in ABA concentration in the xylem sap in the spring of 1991 and 1992 preceded symptoms of canopy decline and a decrease in leaf area that were observed during the summers of 1991 and 1992. These results suggest a role for ABA in root-to-shoot communication in response to environmental stress. The largest differences in ABA concentration induced by the treatments was found in sap collected at the end of sap flow. The increase in ABA concentration in spring sap at the end of the sap flow could be used as an early indicator of stress suffered by trees during the winter. Not only did the increase in ABA concentration occur before any visible symptoms of tree decline appeared, but the trees that showed the most evident decline had the highest ABA concentrations in the spring sap. Leaf ABA concentration was not a good indicator of induced stress.

  10. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    PubMed

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  11. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana.

    PubMed

    Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin

    2016-04-01

    Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. PMID:26865090

  12. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.

    PubMed

    Zimmerli, Céline; Ribot, Cécile; Vavasseur, Alain; Bauer, Hubert; Hedrich, Rainer; Poirier, Yves

    2012-10-01

    Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up-regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro-grafting a pho1 shoot scion onto wild-type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild-type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re-established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.

  13. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    PubMed

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-01

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  14. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis

    PubMed Central

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-01-01

    ABSTRACT Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K+in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant. PMID:27171851

  15. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu²⁺, Zn²⁺, NaCl and simulated acid rain stresses.

    PubMed

    Wang, Yanping; Wang, Ya; Kai, Wenbin; Zhao, Bo; Chen, Pei; Sun, Liang; Ji, Kai; Li, Qian; Dai, Shengjie; Sun, Yufei; Wang, Yidong; Pei, Yuelin; Leng, Ping

    2014-03-01

    Abscisic acid (ABA) is an important phytohormone that regulates lots of physiological and biochemical processes in plant life cycle, especially in seed germination and stress responses. For exploring the transcriptional regulation of ABA signal transduction during cucumber (Cucumis sativus L.) seed germination and under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, nine CsPYLs, three group A CsPP2Cs and two subclass III CsSnRK2s were identified from cucumber genome, which respectively showed high sequence similarities and highly conserved domains with homologous genes in Arabidopsis. Based on Real-time PCR analysis, most of the tested genes' expression decreased during cucumber seed germination, which was in accordance with the ABA level variation. In addition, according to the absolute expression, CsPYL1, CsPYL3, CsPP2C5, CsABI1, CsSnRK2.3 and CsSnRK2.4 were highly expressed, indicating that they may play more important roles in ABA signaling during cucumber seed germination. Moreover, most of these highly expressed genes, except CsPYL3, were up-regulated by ABA treatment. Meanwhile, most of the tested genes' expression dramatically changed at the initial water uptake phase, indicating that this period may be critical in the regulation of ABA on seed germination. Under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, cucumber seed germination percentage decreased and ABA content increased. Meanwhile, the expression of ABA signal transduction core components genes showed specific response to a particular stress and was not always consist with ABA variation. Generally, the expression of CsPYL1, CsPYL3, CsABI1, CsSnRK2.3 and CsSnRK2.4 was sensitive to 120 mM NaCl and 0.5 mM Cu(2+) treatments.

  16. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu²⁺, Zn²⁺, NaCl and simulated acid rain stresses.

    PubMed

    Wang, Yanping; Wang, Ya; Kai, Wenbin; Zhao, Bo; Chen, Pei; Sun, Liang; Ji, Kai; Li, Qian; Dai, Shengjie; Sun, Yufei; Wang, Yidong; Pei, Yuelin; Leng, Ping

    2014-03-01

    Abscisic acid (ABA) is an important phytohormone that regulates lots of physiological and biochemical processes in plant life cycle, especially in seed germination and stress responses. For exploring the transcriptional regulation of ABA signal transduction during cucumber (Cucumis sativus L.) seed germination and under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, nine CsPYLs, three group A CsPP2Cs and two subclass III CsSnRK2s were identified from cucumber genome, which respectively showed high sequence similarities and highly conserved domains with homologous genes in Arabidopsis. Based on Real-time PCR analysis, most of the tested genes' expression decreased during cucumber seed germination, which was in accordance with the ABA level variation. In addition, according to the absolute expression, CsPYL1, CsPYL3, CsPP2C5, CsABI1, CsSnRK2.3 and CsSnRK2.4 were highly expressed, indicating that they may play more important roles in ABA signaling during cucumber seed germination. Moreover, most of these highly expressed genes, except CsPYL3, were up-regulated by ABA treatment. Meanwhile, most of the tested genes' expression dramatically changed at the initial water uptake phase, indicating that this period may be critical in the regulation of ABA on seed germination. Under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, cucumber seed germination percentage decreased and ABA content increased. Meanwhile, the expression of ABA signal transduction core components genes showed specific response to a particular stress and was not always consist with ABA variation. Generally, the expression of CsPYL1, CsPYL3, CsABI1, CsSnRK2.3 and CsSnRK2.4 was sensitive to 120 mM NaCl and 0.5 mM Cu(2+) treatments. PMID:24486581

  17. Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines.

    PubMed

    Alonso, Rodrigo; Berli, Federico J; Bottini, Rubén; Piccoli, Patricia

    2015-06-01

    The independent and interactive effects of solar ultraviolet-B radiation (UV-B), moderate water deficit and sprayed abscisic acid (ABA) on leaves gas exchange and biochemical aspects of field-grown grapevines of the cv. Malbec were investigated in a high altitude vineyard (1450 m a.s.l.). Two UV-B treatments (ambient solar UV-B or reduced UV-B), two watering treatments (well watered or moderate water deficit) and two ABA treatments (no ABA and sprayed ABA) were given alone and combined in a factorial design. Gas exchange and photosynthesis were reduced by water deficit and highly impaired in the UV-B and water deficit combined treatment. UV-absorbing compounds were stimulated independently by UV-B. The monoterpenes α-pinene, 3-carene and terpinolene, and the sesquiterpene nerolidol were augmented by UV-B, water deficit or sprayed ABA. Levels of the triterpene squalene and the diterpene phytol were significantly higher in the treatment that combined UV-B, water deficit and ABA applications. Environment signals (solar UV-B and moderate water deficit) and sprayed ABA elicited mechanisms of acclimation by augmenting the content of terpenes with antioxidant and antifungal properties, thus enhancing the plant defensive mechanisms towards signals both biotic and abiotic.

  18. Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco.

    PubMed

    Zhang, Hongbo; Yang, Yuhong; Zhang, Zhijin; Chen, Jia; Wang, Xue-Chen; Huang, Rongfeng

    2008-10-01

    Ethylene response factor (ERF) proteins function as multiple regulators in the interaction of different stress-responsive pathways. During investigating the interaction of ethylene and abscisic acid (ABA) pathways, several GCC-box-binding repressors of ERF proteins have been reported to repress both ethylene- and ABA-related responses, but it is unclear how GCC-box-binding activator ERF proteins are involved in this interaction. Previously, we isolated an ERF protein tomato stress-responsive factor 1 (TSRF1) from tomato by yeast one hybrid, and showed that TSRF1 as a transcriptional activator physically interacts with GCC box, and activates the expression of GCC box-containing genes and enhances resistance to pathogens, while ABA treatment alters the binding ability of TSRF1 with this element and decreases resistance to pathogen Ralstonia solanacearum. Here, we further report that TSRF1 is able to interact with a GCC box-like sequence (indicated as CE1/GCC in this paper) containing the core sequence of ZmABI4-binding-CE1-like element, and regulates ABA responses. Overexpression of TSRF1 in tobacco enhances ABA sensitivity during germination, cotyledon expansion and root elongation. Biochemical and molecular analyses demonstrate that TSRF1 interacts with CE1/GCC. Importantly, ABA treatment enhances the interaction of TSRF1 with the ABA-responsive element and subsequently increasing the expression of ABA-responsive or CE1/GCC-containing genes. In addition, TSRF1 also promotes the expression of senescence-associated genes and tobacco seedling senescence in response to ABA. These results show that TSRF1, a GCC-box-binding activator in plant pathogen resistance, positively regulates ABA-related plant developmental processes.

  19. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral.

  20. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral. PMID:26455301

  1. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest

    PubMed Central

    2010-01-01

    Background The ripening of grape berry is generally regulated by abscisic acid (ABA), and has no relationship with ethylene function. However, functional interaction and synergism between ABA and ethylene during the beginning of grape berry ripening (véraison) has been found recently. Results The expressions of VvNCED1 encoding 9-cis-epoxycarotenoid dioxygenase (NCED) and VvGT encoding ABA glucosyltransferase were all increased rapidly at the stage of véraison and reached the highest level at 9th week after full bloom. However, VvCYP1 encoding ABA 8'-hydroxylase and VvβG1 encoding berry β-glucosidase are different, whose expression peak appeared at the 10th week after full bloom and in especial VvβG1 remained at a high level till harvest. The VvACO1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, the VvETR2 (ethylene response 2) and VvCTR1 (constitutive triple response 1) had a transient expression peak at pre-véraison, while the VvEIN4 (ethylene insensitive 4) expression gradually increased from the véraison to one week before harvest stage. The above mentioned changes happened again in the berry after harvest. At one week before véraison, double block treatment with NiCl2 plus 1-methylcyclopropene (1-MCP) not only inhibited the release of ethylene and the expression of related genes but also suppressed the transcription of VvNCED1 and the synthesis of ABA which all might result in inhibiting the fruit ripening onset. Treatment with ABA could relieve the double block and restore fruit ripening course. However, after harvest, double block treatment with NiCl2 plus 1-MCP could not suppress the transcription of VvNCED1 and the accumulation of ABA, and also could not inhibit the start of fruit senescence. Conclusion The trace endogenous ethylene induces the transcription of VvNCED1 and then the generation of ABA followed. Both ethylene and ABA are likely to be important and their interplaying may be required to start the process of berry ripening

  2. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility

    PubMed Central

    Sivakumaran, Anushen; Akinyemi, Aderemi; Mandon, Julian; Cristescu, Simona M.; Hall, Michael A.; Harren, Frans J. M.; Mur, Luis A. J.

    2016-01-01

    Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defense against this pathogen – occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production. PMID:27252724

  3. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility.

    PubMed

    Sivakumaran, Anushen; Akinyemi, Aderemi; Mandon, Julian; Cristescu, Simona M; Hall, Michael A; Harren, Frans J M; Mur, Luis A J

    2016-01-01

    Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production - an established mediator of defense against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production. PMID:27252724

  4. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2016-01-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD. Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD. We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD. In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  5. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling

    PubMed Central

    Lin, Fan; Ding, Haidong; Wang, Jinxiang; Zhang, Hong; Zhang, Aying; Zhang, Yun; Tan, Mingpu; Dong, Wen; Jiang, Mingyi

    2009-01-01

    In maize (Zea mays), abscisic acid (ABA)-induced H2O2 production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H2O2. However, the mechanism for the regulation of H2O2 production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (rboh) genes (ZmrbohA–D) were isolated and characterized in maize leaves. ABA treatment induced a biphasic response (phase I and phase II) in the expression of ZmrbohA–D and the activity of NADPH oxidase. Phase II induced by ABA was blocked by pretreatments with two MAPK kinase (MPKKK) inhibitors and two H2O2 scavengers, but phase I was not affected by these inhibitors or scavengers. Treatment with H2O2 alone also only induced phase II, and the induction was arrested by the MAPKK inhibitors. Furthermore, the ABA-activated p46MAPK was partially purified. Using primers corresponding to the sequences of internal tryptic peptides, the p46MAPK gene was cloned. Analysis of the tryptic peptides and the p46MAPK sequence indicate it is the known ZmMPK5. Treatments with ABA and H2O2 led to a significant increase in the activity of ZmMPK5, although ABA treatment only induced a slight increase in the expression of ZmMPK5. The data indicate that H2O2-activated ZmMPK5 is involved in the activation of phase II in ABA signalling, but not in phase I. The results suggest that there is a positive feedback loop involving NADPH oxidase, H2O2, and ZmMPK5 in ABA signalling. PMID:19592501

  6. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).

    PubMed

    Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru

    2016-03-15

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. PMID:26881925

  7. Acid mine treatment with open limestone channels

    SciTech Connect

    Ziemkiewicz, P.F.; Brant, D.L.; Skousen, J.G.

    1996-12-31

    Acid mine drainage (AMD) is often associated with mining of pyritic coal and metal deposits. Typical AMD associated with coal mines in the eastern US can have acidity and iron concentrations ranging from the teens to the thousands of mg/l. Aluminum and manganese can be present in concentrations ranging from zero to the low hundreds of mg/l. Much attention has been devoted to developing inexpensive, limestone (LS)-based systems for treating AMID with little or no maintenance. However, LS tends to coat with metal hydroxides when exposed to AMID in an oxidized state, a process known as {open_quotes}armoring{close_quotes}. It is generally assumed that once armored, LS ceases to neutralize acid. Another problem is that the hydroxides tend to settle into plug the pore spaces in LS beds forcing water to move around rather than through the LS. While both are caused by the precipitation of metal hydroxides, armoring and plugging are two different problems. Plugging of LS pores can be avoided by maintaining a high flushing rate through the LS bed. Armoring, however, occurs regardless of water velocity. This study investigated the influence of armoring on LS solubility and the implications of armoring and plugging on the construction of open (oxidizing) LS channels for treating AMD. We evaluated the AMID treatment performance of armored and unarmored LS in oxidizing environments both in laboratory and field studies.

  8. Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum.

    PubMed

    Puli, Mallikarjuna Rao; Raghavendra, Agepati S

    2012-02-01

    Pyrabactin, a synthetic agonist of abscisic acid (ABA), inhibits seed germination and hypocotyl growth and stimulates gene expression in a very similar way to ABA, implying the possible modulation of stomatal function by pyrabactin as well. The effect of pyrabactin on stomatal closure and secondary messengers was therefore studied in guard cells of Pisum sativum abaxial epidermis. Pyrabactin caused marked stomatal closure in a pattern similar to ABA. In addition, pyrabactin elevated the levels of reactive oxygen species (ROS), nitric oxide (NO), and cytoplasmic pH levels in guard cells, as indicated by the respective fluorophores. However, apyrabactin, an inactive analogue of ABA, did not affect either stomatal closure or the signalling components of guard cells. The effects of pyrabactin-induced changes were reversed by pharmalogical compounds that modulate ROS, NO or cytoplasmic pH levels, quite similar to ABA effects. Fusicoccin, a fungal toxin, could reverse the stomatal closure caused by pyrabactin, as well as that caused by ABA. Experiments on stomatal closure by varying concentrations of ABA, in the presence of fixed concentration of pyrabactin, and vice versa, revealed that the actions of ABA and pyrabactin were additive. Further kinetic analysis of data revealed that the apparent K(D) of ABA was increased almost 4-fold in the presence of ABA, suggesting that pyrabactin and ABA were competing with each other either at the same site or close to the active site. It is proposed that pyrabactin could be used to examine the ABA-related signal-transduction components in stomatal guard cells as well as in other plant tissues. It is also suggested that pyrabactin can be used as an antitranspirant or as a priming agent for improving the drought tolerance of crop plants.

  9. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress.

  10. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress. PMID:26644273

  11. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.).

    PubMed

    Mega, Ryosuke; Meguro-Maoka, Ayano; Endo, Akira; Shimosaka, Etsuo; Murayama, Seiji; Nambara, Eiji; Seo, Mitsunori; Kanno, Yuri; Abrams, Suzanne R; Sato, Yutaka

    2015-01-01

    Stress-induced abscisic acid (ABA) is mainly catabolized by ABA 8'-hydroxylase (ABA8ox), which also strictly regulates endogenous ABA levels. Although three members of the ABA8ox gene family are conserved in rice, it is not clear which stressors induce expression of these genes. Here, we found that OsABA8ox1 was induced by cold stress within 24 h and that OsABA8ox2 and OsABA8ox3 were not. In contrast, OsABA8ox2 and OsABA8ox3 were ABA-inducible, but OsABA8ox1 was not. OsABA8ox1, OsABA8ox2, and OsABA8ox3 restored germination of a cyp707a1/a2/a3 triple mutant of Arabidopsis to rates comparable to those of the wild type, indicating that OsABA8ox1, OsABA8ox2, and OsABA8ox3 function as ABA-catabolic genes in vivo. Transgenic rice lines overexpressing OsABA8ox1 showed decreased levels of ABA and increased seedling vigor at 15 °C. These results indicate that sustained low levels of ABA lead to increased seedling vigor during cold stress. On the other hand, excessively low endogenous ABA levels caused reduced drought and cold tolerance, although some of the transgenic rice lines expressing OsABA8ox1 at moderate levels did not show these harmful effects. Adequate regulation of endogenous ABA levels is thought to be crucial for maintaining seedling vigor under cold stress and for cold and drought tolerance in rice.

  12. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  13. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors.

    PubMed

    Xu, Zheng-Yi; Kim, Dae Heon; Hwang, Inhwan

    2013-06-01

    The plant hormone abscisic acid (ABA) plays pivotal roles in many important physiological processes including stomatal closure, seed dormancy, growth and various environmental stresses. In these responses, ABA action is under the control of complex regulatory mechanisms involving homeostasis, perception and signaling. Recent studies provide new insights into these processes, which are of great importance in understanding the mechanisms underlying the evolutionary principle of how plants can survive as a sessile organism under ever-changing environmental conditions. They also form the basis for designing plants that have an enhanced resistance to various stresses in particular abiotic stress.

  14. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    PubMed

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.

  15. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity.

    PubMed

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  16. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

    PubMed Central

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  17. Abscisic Acid Induction of Vacuolar H+-ATPase Activity in Mesembryanthemum crystallinum Is Developmentally Regulated1

    PubMed Central

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Maldonado-Gama, Minerva; Pantoja, Omar

    1999-01-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways. PMID:10398716

  18. ABA gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale.

    PubMed

    Sarah, De Laethauwer; Jan, De Riek; Geert, Haesaert

    2014-01-01

    Pre-harvest sprouting (PHS) during wet and cool harvest periods remains a serious problem in the production of cereals like barley, wheat and triticale. Being involved in dormancy induction and maintenance during seed development, abscisic acid (ABA) may play a key role to improve dormancy level and hence PHS-tolerance in these grains. In this study, we investigated the ABA levels and expression profiles of ABA biosynthesis and degradation genes during kernel development to explore the potential of these genes for improving PHS-tolerance in wheat and triticale. Plants of a PHS-tolerant and a PHS-susceptible variety of both wheat and triticale were grown under controlled conditions from flowering to harvest. At regular time points, kernels were harvested for ABA analysis and RNA extraction. RNA extracts were used in an RT-qPCR assay to obtain expression profiles of the ABA synthesis genes ZEP, NCED1 and NCED2 and the ABA degradation genes CYP707A1 and CYP707A2. In contrast to reports in Arabidopsis, the ZEP gene was predominantly expressed towards harvest maturity in both wheat and triticale. NCED1 expression coincided well with the observed ABA levels during kernel development, while NCED2 expression was mainly detected in early development, indicating a potential role for dormancy induction. ABA degradation towards harvest maturity was mainly associated with increased CYP707A1 expression, whereas CYP707A2 expression appeared to correlate with the regulation of ABA levels during kernel development. However, no differential expression of the investigated genes was detected between PHS-tolerant and PHS-susceptible varieties.

  19. Microwave treatment of naphthenic acids in water.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay K; Headley, John V; Peru, Kerry M; McMartin, Dena W

    2010-08-01

    Naphthenic acids (NAs) are natural constituents of bitumen and crude oil. These compounds are concentrated as part of the oil sands process water (OSPW) during petroleum refining and separation from oil sands. NAs are considered among the major water contaminants in OSPW due to their toxicity and environmental recalcitrance. A laboratory scale microwave system was developed and experiments were conducted to determine the efficiency of NA degradation during microwave treatment. The effects of water source and quality (deionized lab water and river water) and of TiO(2) catalyst in the degradation process were also investigated. Degradation kinetic parameters for both total NAs and individual z-family were calculated. The microwave system degraded OSPW NAs and commercial Fluka NAs in river water in the presence of TiO(2) rapidly, producing half-life values of 3.32 and 3.61 hours, respectively. Toxicity assessments of the NA samples pre-and post-treatment indicated that the microwave system reduced overall toxicity of water containing Fluka NAs from high (5 min. IC(50) v/v = 15.85%) to moderate (5 min. IC(50) v/v = 36.45%) toxicity levels. However, a slight increase in toxicity was noted post-treatment in OSPW NAs.

  20. Effect of Paclobutrazol on Water Stress-Induced Abscisic Acid in Apple Seedling Leaves

    PubMed Central

    Wang, Shiow Y.; Sun, Tung; Ji, Zuo L.; Faust, Miklos

    1987-01-01

    Abscisic acid (ABA) was quantitated by enzyme-linked immunosorbent assay (ELISA) in water-stressed leaves from control apple seedlings, and also from apple seedlings treated for 28 days with paclobutrazol ([2RS, 3RS]-1-[4-chlorophenyl]-4,4-dimethyl-2-[1,2,4-triazol-1-yl] pentan-3-ol). The ELISA quantitative estimates were also validated by gas chromatography-electron capture detector and lettuce seed germination inhibition bioassay. Paclobutrazol treatment reduced endogenous ABA levels by about one-third, and prevented the marked accumulation of water-stress-induced ABA that occurred in untreated seedlings. The presence of ABA in the apple leaf extracts was confirmed by gas chromatography-mass spectrometry. PMID:16665559

  1. Antitranspirant associated abscisic Acid effects on the water relations and yield of transplanted bell peppers.

    PubMed

    Berkowitz, G A; Rabin, J

    1988-02-01

    Greenhouse and field experiments were performed to determine if increased leaf resistance induced by exogenous application of abscisic acid (ABA) could enhance the water status of transplanted bell pepper seedlings. Seedling survival and yield were also monitored in the field experiment. When seedlings were transplanted into either wet or dry potting mix in the greenhouse, ABA increased leaf resistance and leaf water potential. In the field, plots were irrigated either immediately after, or 1 day after transplanting. Under both treatments, ABA application resulted in increased leaf resistance and water potential, but seedling survival and yield were enhanced due to ABA only in plots which were irrigated 1 day after transplanting. It is concluded that antitranspirant application can reduce transplant shock and increase yield of bell pepper. PMID:16665905

  2. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  3. PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24

    PubMed Central

    Delavault, Philippe

    2012-01-01

    After a conditioning period, seed dormancy in obligate root parasitic plants is released by a chemical stimulus secreted by the roots of host plants. Using Phelipanche ramosa as the model, experiments conducted in this study showed that seeds require a conditioning period of at least 4 d to be receptive to the synthetic germination stimulant GR24. A cDNA-AFLP procedure on seeds revealed 58 transcript-derived fragments (TDFs) whose expression pattern changed upon GR24 treatment. Among the isolated TDFs, two up-regulated sequences corresponded to an abscisic acid (ABA) catabolic gene, PrCYP707A1, encoding an ABA 8'-hydroxylase. Using the rapid amplification of cDNA ends method, two full-length cDNAs, PrCYP707A1 and PrCYP707A2, were isolated from seeds. Both genes were always expressed at low levels during conditioning during which an initial decline in ABA levels was recorded. GR24 application after conditioning triggered a strong up-regulation of PrCYP707A1 during the first 18h, followed by an 8-fold decrease in ABA levels detectable 3 d after treatment. In situ hybridization experiments on GR24-treated seeds revealed a specific PrCYP707A1 mRNA accumulation in the cells located between the embryo and the micropyle. Abz-E2B, a specific inhibitor of CYP707A enzymes, significantly impeded seed germination, proving to be a non-competitive antagonist of GR24 with reversible inhibitory activity. These results demonstrate that P. ramosa seed dormancy release relies on ABA catabolism mediated by the GR24-dependent activation of PrCYP707A1. In addition, in situ hybridization corroborates the putative location of cells receptive to the germination stimulants in seeds. Abbreviations:ABAabscisic acidAbzabscinazoleAECadenylate energy chargeAFLPamplified fragment length polymorphismRACErapid amplification of cDNA endsSLstrigolactoneTDFtranscript-derived fragment PMID:22859674

  4. A Maize Jasmonate Zim-Domain Protein, ZmJAZ14, Associates with the JA, ABA, and GA Signaling Pathways in Transgenic Arabidopsis

    PubMed Central

    Li, Suzhen; Li, Jie; Xu, Miaoyun; Liu, Xiaoqing; Zhang, Shaojun; Zhao, Qianqian; Li, Ye; Fan, Yunliu; Chen, Rumei; Wang, Lei

    2015-01-01

    Jasmonate (JA) is an important signaling molecule involved in the regulation of many physiological and stress-related processes in plants. Jasmonate ZIM-domain (JAZ) proteins have been implicated in regulating JA signaling pathways and the cross talk between various phytohormones. Maize is not only an important cereal crop, but also a model plant for monocotyledon studies. Although many JAZ proteins have been characterized in Arabidopsis and rice, few reports have examined the function of JAZ proteins in maize. In this report, we examined the phylogenetic relationship and expression pattern of JAZ family genes in maize. In addition, a tassel and endosperm-specific JAZ gene, ZmJAZ14, was identified using microarray data analysis and real-time RT-PCR, and its expression was induced by polyethylene glycol (PEG), jasmonate (JA), abscisic acid (ABA), and gibberellins (GAs). ZmJAZ14 was shown to be localized in the nucleus and possessed no transcriptional activating activity, suggesting that it functions as a transcriptional regulator. We found that overexpression of ZmJAZ14 in Arabidopsis enhanced plant tolerance to JA and ABA treatment, as well as PEG stress, while it promoted growth under GA stimulus. Moreover, ZmJAZ14 interacted with a subset of transcription factors in Arabidopsis, and the accumulation of several marker genes involved in JA, ABA, and GA signaling pathways were altered in the overexpression lines. These results suggest that ZmJAZ14 may serve as a hub for the cross talk among the JA, ABA, and GA signaling pathways. Our results can be used to further characterize the function of JAZ family proteins in maize, and the gene cloned in this study may serve as a candidate for drought tolerance and growth promotion regulation in maize. PMID:25807368

  5. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  6. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling1[OPEN

    PubMed Central

    Guo, Zhixin; Li, Huizi; Wang, Mengmeng; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan

    2016-01-01

    Light signaling and phytohormones both influence plant growth, development, and stress responses; however, cross talk between these two signaling pathways in response to cold remains underexplored. Here, we report that far-red light (FR) and red light (R) perceived by phytochrome A (phyA) and phyB positively and negatively regulated cold tolerance, respectively, in tomato (Solanum lycopersicum), which were associated with the regulation of levels of phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and transcript levels of ABA- and JA-related genes and the C-REPEAT BINDING FACTOR (CBF) stress signaling pathway genes. A reduction in the R/FR ratio did not alter cold tolerance, ABA and JA accumulation, and transcript levels of ABA- and JA-related genes and the CBF pathway genes in phyA mutant plants; however, those were significantly increased in wild-type and phyB plants with the reduction in the R/FR ratio. Even though low R/FR treatments did not confer cold tolerance in ABA-deficient (notabilis [not]) and JA-deficient (prosystemin-mediated responses2 [spr2]) mutants, it up-regulated ABA accumulation and signaling in the spr2 mutant, with no effect on JA levels and signaling in the not mutant. Foliar application of ABA and JA further confirmed that JA functioned downstream of ABA to activate the CBF pathway in light quality-mediated cold tolerance. It is concluded that phyA and phyB function antagonistically to regulate cold tolerance that essentially involves FR light-induced activation of phyA to induce ABA signaling and, subsequently, JA signaling, leading to an activation of the CBF pathway and a cold response in tomato plants. PMID:26527654

  7. Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat.

    PubMed

    Zabotin, Alexey I; Barisheva, Tatyana S; Trofimova, Oksana I; Toroschina, Tatyana E; Larskaya, Irina A; Zabotina, Olga A

    2009-09-01

    In this paper, we continue our studies of the previously discovered [O.A. Zabotina, D.A. Ayupova, O.N. Larskaya, O.N. Nikolaeva, G.I. Petrovicheva, A.I. Zabotin, Physiologically active oligosaccharides, accumulating in the roots of winter wheat during adaptation to low temperature, Russian Journal of Plant Physiology 45 (1998) 262] oligosaccharin (physiologically active oligosaccharide) GXAG, which stimulates the acquisition of freezing tolerance in winter varieties of Triticum aestivum L. The transient accumulation of GXAG in the tissues of winter wheat correlates with the temporal activation of cell wall glycosidases during the first hours of cold acclimation (2 degrees C). This finding suggests that the oligosaccharin is liberated as a result of the intensification of hemicellulose turnover. At low concentrations, GXAG initiates the acquisition of freezing tolerance in winter plants, in a manner similar to ABA, even at room temperature. The resultant effect of ABA and GXAG on the freezing tolerance of winter wheat depends on the sequence of pre-treatments with these two factors. When seedlings are pre-treated with GXAG a few hours before treatment with ABA, the effect is synergistic, and its impact depends on the duration of pre-treatment with GXAG. When ABA is applied first, the resultant effect on freezing tolerance is additive. The results obtained here lead to the conclusion that oligosaccharin, accumulating during the first hours of cold acclimation, functions as a partner of ABA during the initiation of freezing tolerance acquisition in winter plants. We hypothesize that GXAG increases cell receptivity to ABA signaling. PMID:19467881

  8. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

  9. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis[C][W

    PubMed Central

    Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan

    2011-01-01

    Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693

  10. Mapping Intercellular CO2 Mole Fraction (Ci) in Rosa rubiginosa Leaves Fed with Abscisic Acid by Using Chlorophyll Fluorescence Imaging1

    PubMed Central

    Meyer, Sylvie; Genty, Bernard

    1998-01-01

    Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low. PMID:9501127

  11. The Role of the Atypical Kinases ABC1K7 and ABC1K8 in Abscisic Acid Responses

    PubMed Central

    Manara, Anna; DalCorso, Giovanni; Furini, Antonella

    2016-01-01

    The ABC1K family of atypical kinases (activity of bc1 complex kinase) is represented in bacteria, archaea, and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA)-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement, and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling. PMID:27047531

  12. The Role of the Atypical Kinases ABC1K7 and ABC1K8 in Abscisic Acid Responses.

    PubMed

    Manara, Anna; DalCorso, Giovanni; Furini, Antonella

    2016-01-01

    The ABC1K family of atypical kinases (activity of bc1 complex kinase) is represented in bacteria, archaea, and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA)-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement, and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling. PMID:27047531

  13. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide

    PubMed Central

    Sorrentino, Giuseppe; Haworth, Matthew; Wahbi, Said; Mahmood, Tariq; Zuomin, Shi; Centritto, Mauro

    2016-01-01

    The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis. PMID:26862904

  14. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    PubMed

    Sorrentino, Giuseppe; Haworth, Matthew; Wahbi, Said; Mahmood, Tariq; Zuomin, Shi; Centritto, Mauro

    2016-01-01

    The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis. PMID:26862904

  15. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling.

    PubMed

    Dong, Ting; Park, Youngmin; Hwang, Inhwan

    2015-01-01

    The phytohormone abscisic acid (ABA) plays crucial roles in numerous physiological processes during plant growth and abiotic stress responses. The endogenous ABA level is controlled by complex regulatory mechanisms involving biosynthesis, catabolism, transport and signal transduction pathways. This complex regulatory network may target multiple levels, including transcription, translation and post-translational regulation of genes involved in ABA responses. Most of the genes involved in ABA biosynthesis, catabolism and transport have been characterized. The local ABA concentration is critical for initiating ABA-mediated signalling during plant development and in response to environmental changes. In this chapter we discuss the mechanisms that regulate ABA biosynthesis, catabolism, transport and homoeostasis. We also present the findings of recent research on ABA perception by cellular receptors, and ABA signalling in response to cellular and environmental conditions.

  16. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    SciTech Connect

    Wilen, R.W.; Mandel, R.M.; Pharis, R.P.; Moloney, M.M. ); Holbrook, L.A. )

    1990-11-01

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using ({sup 2}H{sub 6})ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos.

  17. A Dual-Function Transcription Factor, AtYY1, Is a Novel Negative Regulator of the Arabidopsis ABA Response Network.

    PubMed

    Li, Tian; Wu, Xiu-Yun; Li, Hui; Song, Jian-Hui; Liu, Jin-Yuan

    2016-05-01

    Abscisic acid (ABA) plays crucial roles in plant growth and development, as well as in response to various environmental stresses. To date, many regulatory genes involved in the ABA response network have been identified; however, their roles have remained to be fully elucidated. In this study, we identified AtYY1, an Arabidopsis homolog of the mammalian C2H2 zinc-finger transcription factor Yin Yang 1 (YY1), as a novel negative regulator of the ABA response. AtYY1 is a dual-function transcription factor with both repression and activation domains. The expression of AtYY1 was induced by ABA and stress conditions including high salt and dehydration. The yy1 mutant was more sensitive to ABA and NaCl than the wild-type, while overexpressing AtYY1 plants were less sensitive. AtYY1 loss also enhanced ABA-induced stomatal closing and drought resistance. Moreover, AtYY1 can bind the ABA REPRESSOR1 (ABR1) promoter and directly upregulate ABR1 expression, as well as negatively regulate ABA- and salt-responsive gene expression. Additional analysis indicated that ABA INSENSITIVE4 (ABI4) might positively regulate AtYY1 expression and that ABR1 can antagonize this regulation. Our findings provide direct evidence that AtYY1 is a novel negative regulator of the ABA response network and that the ABI4-AtYY1-ABR1 regulatory pathway may fine-tune ABA-responsive gene expression in Arabidopsis. PMID:26961720

  18. Endogenous Abscisic Acid and Indole-3-Acetic Acid and Somatic Embryogenesis in Cultured Leaf Explants of Pennisetum purpureum Schum. 1

    PubMed Central

    Rajasekaran, Kanniah; Hein, Mich B.; Vasil, Indra K.

    1987-01-01

    Effects of application in vivo of glyphosate, fluridone, and paclobutrazol to glasshouse-grown donor plants of Pennisetum purpureum Schum. on endogenous levels of abscisic acid (ABA) and indole-3-acetic acid (IAA) in young leaves and on somatic embryogenesis in cultured leaf explants were studied. Treatment of plants with glyphosate (100 milligrams per liter) resulted in elevated levels of endogenous ABA and IAA in young leaves. In contrast, paclobutrazol (50% active ingredient; 200 milligrams per liter) did not alter the endogenous levels of ABA and IAA. Fluridone (100 milligrams per liter) markedly inhibited synthesis of ABA and leaf explants from fluridone-treated plants lost the capacity for somatic embryogenesis. Explants from glyphosate- or paclobutrazol-treated plants did not show any reduction in embryogenic capacity when compared with untreated control plants. Glyphosate and fluridone were also incorporated into the culture media at various concentrations (0 to 20 milligrams per liter) to study their effects in vitro on somatic embryogenesis in leaf explants from untreated, field-grown plants. Glyphosate was inhibitory to somatic embryogenesis but only at concentrations above 5 milligrams per liter. Fluridone inhibited somatic embryogenesis at all concentrations tested. Inhibition of somatic embryogenesis by fluridone, by either in vivo or in vitro application, could be overcome partially by (±)-ABA added to the culture medium. Exogenous application of (±)-ABA enhanced somatic embryogenesis and reduced the formation of nonembryogenic callus. Application of IAA or gibberellic acid (GA3; >5 milligrams per liter) was inhibitory to somatic embryogenesis. These results indicate that endogenous ABA is one of the important factors controlling the embryogenic capacity of leaf explants in Napier grass. PMID:16665403

  19. Identification and Characterization of ABA-Responsive MicroRNAs in Rice.

    PubMed

    Tian, Caijuan; Zuo, Zhangli; Qiu, Jin-Long

    2015-07-20

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that silence genes through mRNA degradation or translational inhibition. The phytohormone abscisic acid (ABA) is essential for plant development and adaptation to abiotic and biotic stresses. In Arabidopsis, miRNAs are implicated in ABA functions. However, ABA-responsive miRNAs have not been systematically studied in rice. Here high throughput sequencing of small RNAs revealed that 107 miRNAs were differentially expressed in the rice ABA deficient mutant, Osaba1. Of these, 13 were confirmed by stem-loop RT-PCR. Among them, miR1425-5P, miR169a, miR169n, miR390-5P, miR397a and miR397b were up-regulated, but miR162b reduced in expression in Osaba1. The targets of these 13 miRNAs were predicted and validated by gene expression profiling. Interestingly, the expression levels of these miRNAs and their targets were regulated by ABA. Cleavage sites were detected on 7 of the miRNA targets by 5'-Rapid Amplification of cDNA Ends (5'-RACE). Finally, miR162b and its target OsTRE1 were shown to affect rice resistance to drought stress, suggesting that miR162b increases resistance to drought by targeting OsTRE1. Our work provides important information for further characterization and functional analysis of ABA-responsive miRNAs in rice. PMID:26233894

  20. A new look at stress: abscisic acid patterns and dynamics at high-resolution.

    PubMed

    Jones, Alexander M

    2016-04-01

    Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time.

  1. Sensitivity during the forced swim test is a key factor in evaluating the antidepressant effects of abscisic acid in mice.

    PubMed

    Qi, Cong-Cong; Shu, Yu-Mian; Chen, Fang-Han; Ding, Yu-Qiang; Zhou, Jiang-Ning

    2016-03-01

    Abscisic acid (ABA), a crucial phytohormone, is distributed in the brains of mammals and has been shown to have antidepressant effects in the chronic unpredictable mild stress test. The forced swim test (FST) is another animal model that can be used to assess antidepressant-like behavior in rodents. Here, we report that the antidepressant effects of ABA are associated with sensitivities to the FST in mice. Based on mean immobility in the 5-min forced swim pre-test, ICR mice were divided into short immobility mice (SIM) and long immobility mice (LIM) substrains. FST was carried out 8 days after drug administration. Learned helplessness, as shown by increased immobility, was only observed in SIM substrain and could be prevented by an 8-day ABA treatment. Our results show that ABA has antidepressant effects in SIM substrain and suggest that mice with learned helplessness might be more suitable for screening potential antidepressant drugs.

  2. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis.

    PubMed

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  3. The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in Arabidopsis

    PubMed Central

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  4. Lignor process for acidic rock drainage treatment.

    PubMed

    Zhuang, J M; Walsh, T

    2004-09-01

    The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the dotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 - 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability. PMID:15515269

  5. Treatment of NASH with ursodeoxycholic acid: pro.

    PubMed

    Ratziu, Vlad

    2012-09-01

    Ursodeoxycholic acid (UDCA) is one of hepatologists'oldest friends, always ready to help, throughout the years, in numerous and various liver and biliary tract diseases. On paper, it has had an impeccable track record of cytoprotection in vitro and in vivo due to its pleiotropic effects on many pathways leading to cell injury. Most of its hepatoprotective effects demonstrated under experimental conditions proved able to counteract pathogenic mechanisms involved in the transition from steatosis to steatohepatitis, and early clinical studies suggested a potentially beneficial effect in non-alcoholic steatohepatitis (NASH) as well. Yet, only scant data on the efficacy of UDCA specifically in experimental models of steatosis/NASH are available, and the few available randomized controlled clinical studies have substantial methodological issues and are discussed in this review. Thus, at this point, there is not enough evidence to either confirm or reject the efficacy of UDCA in NASH, although many NASH patients clearly experience biochemical improvements with prolonged UDCA treatment. Also, a few new UDCA derivatives have shown promising activity in preclinical models and may be worth testing in clinical trials. PMID:23141893

  6. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  7. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    PubMed

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K

    2015-01-01

    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  8. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    PubMed

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level.

  9. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  10. Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin.

    PubMed

    Liao, Chao-Jan; Lai, Zhibing; Lee, Sanghun; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-07-01

    Arabidopsis thaliana HOOKLESS1 (HLS1) encodes a putative histone acetyltransferase with known functions in seedling growth. Here, we show that HLS1 regulates plant responses to pathogens and abscisic acid (ABA) through histone acetylation at chromatin of target loci. The hls1 mutants show impaired responses to bacterial and fungal infection, accelerated senescence, and impaired responses to ABA. HLS1 modulates the expression of WRKY33 and ABA INSENSITIVE5 (ABI5), known regulators of pathogen and ABA responses, respectively, through direct association with these loci. Histone 3 acetylation (H3Ac), a positive mark of transcription, at WRKY33 and ABI5 requires HLS1 function. ABA treatment and pathogen infection enhance HLS1 recruitment and H3Ac at WRKY33. HLS1 associates with Mediator, a eukaryotic transcription coregulatory complex, through direct interaction with mediator subunit 18 (MED18), with which it shares multiple functions. HLS1 recruits MED18 to the WRKY33 promoter, boosting WKRY33 expression, suggesting the synergetic action of HLS1 and MED18. By contrast, MED18 recruitment to ABI5 and transcriptional activation are independent of HLS1. ABA-mediated priming of resistance to fungal infection was abrogated in hls1 and wrky33 mutants but correlated with ABA-induced HLS1 accumulation. In sum, HLS1 provides a regulatory node in pathogen and hormone response pathways through interaction with the Mediator complex and important transcription factors.

  11. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    PubMed Central

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  12. A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis

    PubMed Central

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade. PMID:25635681

  13. The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes1[W][OPEN

    PubMed Central

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  14. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency.

    PubMed

    Liu, Fulai; Shahnazari, Ali; Andersen, Mathias N; Jacobsen, Sven-Erik; Jensen, Christian R

    2006-01-01

    The physiological responses of potato (Solanum tuberosum L. cv. Folva) to partial root-zone drying (PRD) were investigated in potted plants in a greenhouse (GH) and in plants grown in the field under an automatic rain-out-shelter. In the GH, irrigation was applied daily to the whole root system (FI), or to one-half of the root system while the other half was dried, for 9 d. In the field, the plants were drip irrigated either to the whole root system near field capacity (FI) or using 70% water of FI to one side of the roots, and shifted to the other side every 5-10 d (PRD). PRD plants had a similar midday leaf water potential to that of FI, whereas in the GH their root water potential (Psi(r)) was significantly lowered after 5 d. Stomatal conductance (g(s)) was more sensitive to PRD than photosynthesis (A) particularly in the field, leading to greater intrinsic water use efficiency (WUE) (i.e. A/g(s)) in PRD than in FI plants on several days. In PRD, the xylem sap abscisic acid concentration ([ABA](xylem)) increased exponentially with decreasing Psi(r); and the relative [ABA](xylem) (PRD/FI) increased exponentially as the fraction of transpirable soil water (FTSW) in the drying side decreased. In the field, the leaf area index was slightly less in PRD than in FI treatment, while tuber biomass was similar for the two treatments. Compared with FI, PRD treatment saved 30% water and increased crop water use efficiency (WUE) by 59%. Restrictions on leaf area expansion and g(s) by PRD-induced ABA signals might have contributed to reduced water use and increased WUE.

  15. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  16. Prediction and validation of promoters involved in the abscisic acid response in Physcomitrella patens.

    PubMed

    Timmerhaus, Gerrit; Hanke, Sebastian T; Buchta, Karl; Rensing, Stefan A

    2011-07-01

    Detection of cis-regulatory elements, such as transcription factor binding sites (TFBS), through utilization of ortholog conservation is possible only if genomic data from closely related organisms are available. An alternative approach is the detection of TFBS based on their overrepresentation in promoters of co-regulated genes. However, this approach usually suffers from a high rate of false-positive prediction. Here, we have conducted a case study using promoters of genes known to be strongly induced by the phytohormone abscisic acid (ABA) in the model plant Physcomitrella patens, a moss. Putative TFBS were detected using three de novo motif detection tools in a strict consensus approach. The resulting motifs were validated using data from microarray expression profiling and were able to predict ABA-induced genes with high specificity (90.48%) at mediocre sensitivity (33.33%). In addition, 27 genes predicted to contain ABA-responsive TFBS were validated using real-time PCR. Here, a total of 37% of the genes could be shown to be induced upon ABA treatment, while 70% were found to be regulated by ABA. We conclude that the consensus approach for motif detection using co-regulation information can be used to identify genes that are regulated under a given stimulus. In terms of evolution, we find that the ABA response has apparently been conserved since the first land plants on the level of families involved in transcriptional regulation.

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  18. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  19. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  20. Effects of exogenous plant growth regulator abscisic acid-induced resistance in rice on the expression of vitellogenin mRNA in Nilaparvata lugens (Hemiptera: Delphacidae) adult females.

    PubMed

    Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew

    2014-01-01

    Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin (Nlvg) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants' defenses on phloem-feeding insects.

  1. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  2. Abscisic Acid Synthesis and Response

    PubMed Central

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  3. Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D.

    1985-07-01

    The effect of water stress on the redistribution of abscisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the apoplastic ABA, increased before bulk leaf stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. 32 references, 5 figures.

  4. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat.

    PubMed

    Buhrow, Leann M; Cram, Dustin; Tulpan, Dan; Foroud, Nora A; Loewen, Michele C

    2016-09-01

    Although the roles of salicylate (SA) and jasmonic acid (JA) have been well-characterized in Fusarium head blight (FHB)-infected cereals, the roles of other phytohormones remain more ambiguous. Here, the association between an array of phytohormones and FHB pathogenesis in wheat is investigated. Comprehensive profiling of endogenous hormones demonstrated altered cytokinin, gibberellic acid (GA), and JA metabolism in a FHB-resistant cultivar, whereas challenge by Fusarium graminearum increased abscisic acid (ABA), JA, and SA in both FHB-susceptible and -resistant cultivars. Subsequent investigation of ABA or GA coapplication with fungal challenge increased and decreased FHB spread, respectively. These phytohormones-induced effects may be attributed to alteration of the F. graminearum transcriptome because ABA promoted expression of early-infection genes, including hydrolases and cytoskeletal reorganization genes, while GA suppressed nitrogen metabolic gene expression. Neither ABA nor GA elicited significant effects on F. graminearum fungal growth or sporulation in axenic conditions, nor do these phytohormones affect trichothecene gene expression, deoxynivalenol mycotoxin accumulation, or SA/JA biosynthesis in F. graminearum-challenged wheat spikes. Finally, the combined application of GA and paclobutrazol, a Fusarium fungicide, provided additive effects on reducing FHB severity, highlighting the potential for combining fungicidal agents with select phytohormone-related treatments for management of FHB infection in wheat. PMID:27135677

  5. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis.

    PubMed

    Carvalho, Raquel Fonseca; Carvalho, Sofia Domingues; Duque, Paula

    2010-10-01

    The plant-specific SR45 belongs to the highly conserved family of serine/arginine-rich (SR) proteins, which play key roles in precursor-mRNA splicing and other aspects of RNA metabolism. An Arabidopsis (Arabidopsis thaliana) loss-of-function mutant, sr45-1, displays pleiotropic phenotypes, such as defects in flower and leaf morphology, root growth, and flowering time. Here, we show that the sr45-1 mutation confers hypersensitivity to glucose (Glc) during early seedling growth in Arabidopsis. Unlike wild-type plants, the sr45-1 mutant displays impaired cotyledon greening and expansion as well as reduced hypocotyl elongation of dark-grown seedlings when grown in the presence of low (3%) Glc concentrations. In addition, SR45 is involved in the control of Glc-responsive gene expression, as the mutant displays enhanced repression of photosynthetic and nitrogen metabolism genes and overinduction of starch and anthocyanin biosynthesis genes. Like many other sugar response mutants, sr45-1 also shows hypersensitivity to abscisic acid (ABA) but appears to be unaffected in ethylene signaling. Importantly, the sr45-1 mutant shows enhanced ability to accumulate ABA in response to Glc, and the ABA biosynthesis inhibitor fluridone partially rescues the sugar-mediated growth arrest. Moreover, three ABA biosynthesis genes and two key ABA signaling genes, ABI3 and ABI5, are markedly overinduced by Glc in sr45-1. These results provide evidence that the SR45 protein defines a novel player in plant sugar response that negatively regulates Glc signaling during early seedling development by down-regulating both Glc-specific ABA accumulation and ABA biosynthesis and signaling gene expression. PMID:20699397

  6. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.

  7. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli. PMID:24773210

  8. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.

    PubMed

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J; Zhang, Huiming; Tao, W Andy; Zhu, Jian-Kang

    2013-07-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.

  9. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action

    PubMed Central

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J.; Zhang, Huiming; Tao, W. Andy; Zhu, Jian-Kang

    2013-01-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments. PMID:23776212

  10. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis. PMID:27593466

  11. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    PubMed

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions. PMID:23630325

  12. The Mg-Chelatase H Subunit of Arabidopsis Antagonizes a Group of WRKY Transcription Repressors to Relieve ABA-Responsive Genes of Inhibition[W][OA

    PubMed Central

    Shang, Yi; Yan, Lu; Liu, Zhi-Qiang; Cao, Zheng; Mei, Chao; Xin, Qi; Wu, Fu-Qing; Wang, Xiao-Fang; Du, Shu-Yuan; Jiang, Tao; Zhang, Xiao-Feng; Zhao, Rui; Sun, Hai-Li; Liu, Rui; Yu, Yong-Tao; Zhang, Da-Peng

    2010-01-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant development and response to environmental challenges, but the complex networks of ABA signaling pathways are poorly understood. We previously reported that a chloroplast protein, the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), functions as a receptor for ABA in Arabidopsis thaliana. Here, we report that ABAR spans the chloroplast envelope and that the cytosolic C terminus of ABAR interacts with a group of WRKY transcription factors (WRKY40, WRKY18, and WRKY60) that function as negative regulators of ABA signaling in seed germination and postgermination growth. WRKY40, a central negative regulator, inhibits expression of ABA-responsive genes, such as ABI5. In response to a high level of ABA signal that recruits WRKY40 from the nucleus to the cytosol and promotes ABAR–WRKY40 interaction, ABAR relieves the ABI5 gene of inhibition by repressing WRKY40 expression. These findings describe a unique ABA signaling pathway from the early signaling events to downstream gene expression. PMID:20543028

  13. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis.

  14. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis.

    PubMed

    Li, Chun-Long; Wang, Mei; Ma, Xiao-Yan; Zhang, Wei

    2014-10-01

    Abscisic acid (ABA) regulates ion channel activity and stomatal movements in response to drought and other stresses. Here, we show that the Arabidopsis thaliana gene NRGA1 is a putative mitochondrial pyruvate carrier which negatively regulates ABA-induced guard cell signaling. NRGA1 transcript was abundant in the A. thaliana leaf and particularly in the guard cells, and its product was directed to the mitochondria. The heterologous co-expression of NRGA1 and AtMPC1 in yeast complemented a loss-of-function mitochondrial pyruvate carrier (MPC) mutant. The nrga1 loss-of-function mutant was very sensitive to the presence of ABA in the context of stomatal movements, and exhibited a heightened tolerance to drought stress. Disruption of NRGA1 gene resulted in increased ABA inhibition of inward K(+) currents and ABA activation of slow anion currents in guard cells. The nrga1/NRGA1 functional complementation lines restored the mutant's phenotypes. Furthermore, transgenic lines of constitutively overexpressing NRGA1 showed opposite stomatal responses, reduced drought tolerance, and ABA sensitivity of guard cell inward K(+) channel inhibition and anion channel activation. Our findings highlight a putative role for the mitochondrial pyruvate carrier in guard cell ABA signaling in response to drought.

  15. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  16. 15. INTERIOR MIDDLE BAY DETAIL VIEW, FACING WEST. ACID TREATMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR MIDDLE BAY DETAIL VIEW, FACING WEST. ACID TREATMENT, CUTTING EQUIPMENT, LOCKERS ABANDONED ON SITE. TRACKS FOR MOVEMENT OF MATERIALS VISIBLE HANGING FROM CEILING. - NASA Industrial Plant, Missile Research Laboratory, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA

  17. [Advances in the research of treatment of hydrofluoric acid burn].

    PubMed

    Wang, Xin-gang; Zhang, Yuan-hai; Han, Chun-mao

    2013-08-01

    Hydrofluoric acid (HF) is one of the most common inorganic acids used widely in industrial circle. HF not only causes cutaneous burn, but also induces systemic toxicity by its unique injury mechanism. Accurate and timely diagnosis and treatment are critical after HF burns. To date, the strategies for treating HF burns have been developed, mainly including topical treatments and systematic support. However, there is no standard treatment strategy with wide acceptance in the world. This paper presents a comprehensive overview of the advances in the research of strategies for the treatment of HF burns.

  18. Omega-3 fatty acids in the treatment of psychiatric disorders.

    PubMed

    Peet, Malcolm; Stokes, Caroline

    2005-01-01

    The importance of omega-3 fatty acids for physical health is now well recognised and there is increasing evidence that omega-3 fatty acids may also be important to mental health. The two main omega-3 fatty acids in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important biological functions in the CNS. DHA is a major structural component of neuronal membranes, and changing the fatty acid composition of neuronal membranes leads to functional changes in the activity of receptors and other proteins embedded in the membrane phospholipid. EPA has important physiological functions that can affect neuronal activity. Epidemiological studies indicate an association between depression and low dietary intake of omega-3 fatty acids, and biochemical studies have shown reduced levels of omega-3 fatty acids in red blood cell membranes in both depressive and schizophrenic patients. Five of six double-blind, placebo-controlled trials in schizophrenia, and four of six such trials in depression, have reported therapeutic benefit from omega-3 fatty acids in either the primary or secondary statistical analysis, particularly when EPA is added on to existing psychotropic medication. Individual clinical trials have suggested benefits of EPA treatment in borderline personality disorder and of combined omega-3 and omega-6 fatty acid treatment for attention-deficit hyperactivity disorder. The evidence to date supports the adjunctive use of omega-3 fatty acids in the management of treatment unresponsive depression and schizophrenia. As these conditions are associated with increased risk of coronary heart disease and diabetes mellitus, omega-3 fatty acids should also benefit the physical state of these patients. However, as the clinical research evidence is preliminary, large, and definitive randomised controlled trials similar to those required for the licensing of any new pharmacological treatment are needed.

  19. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  20. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition

    PubMed Central

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-01-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  1. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  2. 300 Area waste acid treatment system closure plan

    SciTech Connect

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  3. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...

  4. Registration of Zak ERA8 soft white spring wheat germplasm with enhanced response to ABA and increased seed dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZakERA8 is a unique mutant line selected from mutagenized soft white spring 'Zak' that has increased seed dormancy as a result of enhanced responsiveness to the plant hormone abscisic acid (ABA) during germination. This germplasm was developed by USDA-ARS, Pullman, WA in collaboration with Washingt...

  5. Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments.

    PubMed

    Kamaluddin, M; Zwiazek, Janusz J

    2004-10-01

    We investigated the effects of root medium pH on water transport in whole-plant and detached roots of paper birch (Betula papyrifera Marsh.). Exposure of seedling roots to pH 4 and 8 significantly decreased root hydraulic conductivity (Lp) and stomatal conductance (gs), compared with pH 6. When roots of solution-culture-grown (pH 6) seedlings were transferred to pH 4 or 8, their steady-state water flow (Qv) declined within minutes, followed by a decline in gs. The root oxygen uptake rates were not significantly affected by the pH treatments. Treatment of roots with mercuric chloride resulted in a large decrease in Qv at pH 6; the extent of this decrease was similar to that brought about by pH 4 and 8. Lowering root temperature from 21 to 4 degrees C decreased Qv irrespective of medium pH. Low root temperatures did not offset the effects of medium pH 4 on Qv and the roots in this treatment had a high activation energy for water flow. Conversely, roots exposed to pH 8 had a low activation energy, similar to that at pH 6. When 2 micro M abscisic acid, (+/-)-cis-trans-ABA, was added to the root medium, Qv increased in roots that were incubated at pH 6. It also increased slightly in roots incubated at pH 4, but not at pH 8. The increase at pH 4 and 6 was temperature-dependent, occurring at 21 degrees C, but not 4 degrees C. We suggest that the pH treatments are responsible for altering root water flow properties through their effects on the activity of water channels. These results support the concept that ABA effects on water channels are modulated by other, possibly metabolic- and pH-dependent factors.

  6. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.)

    PubMed Central

    2014-01-01

    Background The potential biodiesel plant castor bean (Ricinus communis) has been in the limelight for bioenergy research due to the availability of its genome which raises the bar for genome-wide studies claiming advances that impact the “genome-phenome challenge”. Here we report the application of phytohormone ABA as an exogenous factor for the improvement of storage reserve accumulation with a focus on the complex interaction of pathways associated with seed filling. Results After the application of exogenous ABA treatments, we measured an increased ABA levels in the developing seeds cultured in vitro using the ELISA technique and quantified the content of major biomolecules (including total lipids, sugars and protein) in treated seeds. Exogenous ABA (10 μM) enhanced the accumulation of soluble sugar content (6.3%) followed by deposition of total lipid content (4.9 %). To elucidate the possible ABA signal transduction pathways towards overall seed filling, we studied the differential gene expression analysis using Illumina RNA-Sequencing technology, resulting in 2568 (1507-up/1061-down regulated) differentially expressed genes were identified. These genes were involved in sugar metabolism (such as glucose-6-phosphate, fructose 1,6 bis-phosphate, glycerol-3-phosphate, pyruvate kinase), lipid biosynthesis (such as ACS, ACBP, GPAT2, GPAT3, FAD2, FAD3, SAD1 and DGAT1), storage proteins synthesis (such as SGP1, zinc finger protein, RING H2 protein, nodulin 55 and cytochrome P450), and ABA biosynthesis (such as NCED1, NCED3 and beta carotene). Further, we confirmed the validation of RNA-Sequencing data by Semi-quantitative RT-PCR analysis. Conclusions Taken together, metabolite measurements supported by genes and pathway expression results indicated in this study provide new insights to understand the ABA signaling mechanism towards seed storage filling and also contribute useful information for facilitating oilseed crop functional genomics on an aim for utilizing

  7. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  8. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  9. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  10. The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth.

    PubMed

    Brocard-Gifford, Inès; Lynch, Tim J; Garcia, M Emily; Malhotra, Bhupinder; Finkelstein, Ruth R

    2004-02-01

    Abscisic acid (ABA) regulates many aspects of plant growth and development, yet many ABA response mutants present only subtle phenotypic defects, especially in the absence of stress. By contrast, the ABA-insensitive8 (abi8) mutant, isolated on the basis of ABA-resistant germination, also displays severely stunted growth, defective stomatal regulation, altered ABA-responsive gene expression, delayed flowering, and male sterility. The stunted growth of the mutant is not rescued by gibberellin, brassinosteroid, or indoleacetic acid application and is not attributable to excessive ethylene response, but supplementing the medium with Glc improves viability and root growth. In addition to exhibiting Glc-dependent growth, reflecting decreased expression of sugar-mobilizing enzymes, abi8 mutants are resistant to Glc levels that induce developmental arrest of wild-type seedlings. Studies of genetic interactions demonstrate that ABA hypersensitivity conferred by the ABA-hypersensitive1 mutation or overexpression of ABI3 or ABI5 does not suppress the dwarfing and Glc dependence caused by abi8 but partially suppresses ABA-resistant germination. By contrast, the ABA-resistant germination of abi8 is epistatic to the hypersensitivity caused by ethylene-insensitive2 (ein2) and ein3 mutations, yet ABI8 appears to act in a distinct Glc response pathway from these EIN loci. ABI8 encodes a protein with no domains of known function but belongs to a small plant-specific protein family. Database searches indicate that it is allelic to two dwarf mutants, elongation defective1 and kobito1, previously shown to disrupt cell elongation, cellulose synthesis, vascular differentiation, and root meristem maintenance. The cell wall defects appear to be a secondary effect of the mutations because Glc treatment restores root growth and vascular differentiation but not cell elongation. Although the ABI8 transcript accumulates in all tested plant organs in both wild-type and ABA response mutants, an

  11. Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling.

    PubMed

    Richardt, Sandra; Timmerhaus, Gerrit; Lang, Daniel; Qudeimat, Enas; Corrêa, Luiz G G; Reski, Ralf; Rensing, Stefan A; Frank, Wolfgang

    2010-01-01

    Regulatory networks of salt stress and abscisic acid (ABA) responses have previously been analyzed in seed plants. Here, we report microarray expression profiles of 439 genes encoding transcription-associated proteins (TAPs) in response to salt stress and ABA in the salt-tolerant moss Physcomitrella patens. Fourteen and 56 TAP genes were differentially expressed within 60 min of NaCl and ABA treatment, respectively, indicating that these responses are regulated at the transcriptional level. Overlapping expression profiles, as well as the up-regulation of ABA biosynthesis genes, suggest that ABA mediates the salt stress responses in P. patens. Comparison to public gene expression data of Arabidopsis thaliana and phylogenetic analyses suggest that the role of DREB-like, Dof, and bHLH TAPs in salt stress responses have been conserved during embryophyte evolution, and that the function of ABI3-like, bZIP, HAP3, and CO-like TAPs in seed development and flowering emerged from pre-existing ABA and light signalling pathways.

  12. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia.

    PubMed

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy. PMID:26504568

  13. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration. PMID:26945480

  14. Changes in the Levels of Calmodulin and of a Calmodulin Inhibitor in the Early Phases of Radish (Raphanus sativus L.) Seed Germination: Effects of Aba and Fusicoccin.

    PubMed

    Cocucci, M; Negrini, N

    1988-11-01

    An inhibitor of Ca(2+)-calmodulin (Cam)-dependent brain phosphodiesterase was present in the soluble fraction of embryo axes from ungerminated radish (Raphanus sativus L.) seeds. This inhibitor is a Ca(2+)-dependent, Cam-binding protein; in fact: (a) its effect was strongly reduced by treatment with proteases; (b) the inhibition was counteracted by Cam but not by Ca(2+); (c) on gel filtration in the presence of Ca(2+), Cam co-chromatographed with the inhibitor. The inhibitor is heat stable and positively charged at pH 7.5. During early phases of germination, the fresh weight and the levels of DNA and RNA of embryo axes increased, the level of the inhibitor decreased, and the level of Cam increased. Abscisic acid (ABA) inhibited germination, the decrease of inhibitor, and the increase of Cam. Fusicoccin (FC) stimulated the increase in fresh weight but not the increase in the RNA and DNA levels; in this condition, the inhibitor level decreased and the increase in Cam level was higher than in the control. In the presence of both ABA and FC, there was an increase in fresh weight not accompanied by an increase in DNA and RNA levels; Cam increased and, on a fresh weight basis, reached the value of the control. These results indicate that the Ca(2+)-Cam system was activated in early germination of radish seeds by an increase in Cam and a decrease in the inhibitor levels, that FC, probably through the activation of membrane functions, increased Cam level, and that the ABA inhibition on germination was not mediated by the Ca(2+)-Cam system.

  15. Fumaric acid esters: an alternative systemic treatment for psoriasis.

    PubMed

    Ameen, M; Russell-Jones, R

    1999-09-01

    We report the successful clearance of severe chronic plaque psoriasis following treatment with fumaric acid esters (FAE) in two patients who had failed previous systemic therapy. FAE is gaining increasing acceptance for the treatment of psoriasis in countries such as Germany and the Netherlands, but at present remains unlicensed in Britain.

  16. The role of abscisic acid in the response of two different wheat varieties to water deficit.

    PubMed

    Mohamed, Hala Ezzat; Ismail, Ghada Saber M

    2009-01-01

    The changes in plant growth, transpiration rate, photosynthetic activity, plant pigments, electrolyte leakage, H2O2 content, lipid peroxidation, catalase activity and endogenous content of abscisic acid (ABA) were followed in the leaves of two wheat varieties (sakha 93 and 94) during drought stress and subsequent rehydration. Drought stress caused several inhibitory changes in the growth of both wheat varieties, particularly in sakha 94. Exogenous ABA treatment improved the growth of sakha 93 plants as indicated by a higher relative water content, transpiration rate and lower electrolyte leakage and also enhanced the growth during the recovery period. Such improvement may be the result of the induction of enzymatic (catalase) and non-enzymatic (carotenoid) systems. ABA treatment did not ameliorate the negative effect of drought on the growth of sakha 94.

  17. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society.

  18. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  19. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  20. Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells?

    PubMed Central

    Aliniaeifard, Sasan; van Meeteren, Uulke

    2013-01-01

    The response of stomata to many environmental factors is well documented. Multiple signalling pathways for abscisic acid (ABA)-induced stomatal closure have been proposed over the last decades. However, it seems that exposure of a leaf for a long time (several days) to some environmental conditions generates a sort of memory in the guard cells that results in the loss of suitable responses of the stomata to closing stimuli, such as desiccation and ABA. In this review paper we discuss changes in the normal pattern of signal transduction that could account for disruption of guard cell signalling after long-term exposure to some environmental conditions, with special emphasis on long-term low vapour pressure deficit (VPD). PMID:23956410

  1. Proteomic analysis of B-aminobutyric acid priming and aba-induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and model plants, the xenobiotic compound, DL-beta-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt, drought, and thermotolerance. BABA does not activate stress genes directly but rather sensitizes plants to respond more quickly a...

  2. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses.

    PubMed

    Gallé, Ágnes; Csiszár, Jolán; Benyó, Dániel; Laskay, Gábor; Leviczky, Tünde; Erdei, László; Tari, Irma

    2013-11-01

    Changes in water potential (ψw), stomatal conductance, abscisic acid (ABA) accumulation, expression of the major genes involved in ABA biosynthesis, activities of abscisic aldehyde oxidase (AO, EC 1.2.3.1) and antioxidant enzymes were studied in two wheat cultivars with contrasting acclimation strategies subjected to medium strength osmotic stress (-0.976MPa) induced by polyethylene glycol (PEG 6000). Because the biosynthetic pathway of ABA involves multiple gene products, the aim of this study was to unravel how these genes are regulated in isohydric and anisohydric wheat genotypes. In the root tissues of the isohydric cultivar, Triticum aestivum cv. Kobomugi, osmotic stress increased the transcript levels of 9-cis-epoxycarotenoid dioxygenase (NCED) gene, controlling the rate limiting step of ABA biosynthesis. Moreover, this cultivar exhibited a higher basal activity and a higher induction of aldehyde oxidase isoenzymes (AAO2-AAO3), responsible for converting ABAldehyde to ABA. It was found that the fast activation of the ABA biosynthesis in the roots generated an enhanced ABA pool in the shoot, which brought about a faster closure of the stomata upon increasing osmotic stress and, as a result, the plants could maintain ψw in the tissues close to the control level. In contrast, the anisohydric genotype, cv. GK Öthalom, exhibited a moderate induction of ABA biosynthesis in the roots, leading to the maintenance but no increase in the concentration of ABA on the basis of tissue water content in the leaves. Due to the slower response of their stomata to water deficit, the tissues of cv. GK Öthalom have to acclimate to much more negative water potentials during increasing osmotic stress. A decreased activity of superoxide dismutase (SOD) was found in the leaves and roots of both cultivars exposed to osmotic stress, but in the roots elevated activities of catalase (CAT), peroxidase (POX), glutathione reductase (GR) and glutathione transferase (GST) were detected in

  3. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    PubMed

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  4. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress

    PubMed Central

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M. Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P.

    2016-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  5. Hydrothermal acid treatment for sugar extraction from Golenkinia sp.

    PubMed

    Choi, Sun-A; Choi, Won-Il; Lee, Jin-Suk; Kim, Seung Wook; Lee, Gye-An; Yun, Jihyun; Park, Ji-Yeon

    2015-08-01

    In this study, hydrothermal acid treatment for efficient recovery of sugar from Golenkinia sp. was investigated. The initial glucose and XMG (xylose, mannose, and galactose) contents of a prepared Golenkinia sp. solution (40g/L) were 15.05 and 5.24g/L, respectively. The microalgal cell walls were hydrolyzed, for sugar recovery, by enzymatic saccharification and/or hydrothermal acid treatment. Among the various hydrothermal acid treatment conditions, the most optimal were the 2.0% H2SO4 concentration at 150°C for 15min, under which the glucose- and XMG-extraction yields were 71.7% and 64.9%, respectively. By pH 4.8, 50°C enzymatic hydrolysis after optimal hydrothermal acid treatment, the glucose- and XMG-extraction yields were additionally increased by 8.3% and 0.8%, respectively. After hydrothermal acid treatment, the combination with the enzymatic hydrolysis process improved the total sugar yield of Golenkinia sp. to 75.4%.

  6. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants.

    PubMed

    Lovelli, Stella; Scopa, Antonio; Perniola, Michele; Di Tommaso, Teodoro; Sofo, Adriano

    2012-02-15

    Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na(+) and Cl(-) in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψ(w)) decreased from an average value of approximately -1.0 MPa, measured on control plants and S10, to -1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g(-1) fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.

  7. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress.

    PubMed

    Li, Chao; Tan, Dun-Xian; Liang, Dong; Chang, Cong; Jia, Dongfeng; Ma, Fengwang

    2015-02-01

    Melatonin pre-treatment significantly increases the tolerance of both drought-tolerant Malus prunifolia and drought-sensitive M. hupehensis plants. Its beneficial effects include better water conservation in leaves, less electrolyte leakage, steady chlorophyll contents, and greater photosynthetic performance under stress conditions. Melatonin selectively down-regulates MdNCED3, an abscisic acid (ABA) synthesis gene, and up-regulates its catabolic genes, MdCYP707A1 and MdCYP707A2, thereby reducing ABA contents in drought-stressed plants. Melatonin also directly scavenges H2O2 and enhances the activities of antioxidant enzymes to detoxify H2O2 indirectly. These two mechanisms work synergistically to improve the functions of stomata, i.e. causing them to re-open. Plants can effectively regulate their water balance under drought conditions by up-regulating the expression of melatonin synthesis genes MdTDC1, MdAANAT2, MdT5H4, and MdASMT1. Therefore, inducing melatonin production is an important mechanism by which plants can counteract the influence of this abiotic stressor. PMID:25481689

  8. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress.

    PubMed

    Li, Chao; Tan, Dun-Xian; Liang, Dong; Chang, Cong; Jia, Dongfeng; Ma, Fengwang

    2015-02-01

    Melatonin pre-treatment significantly increases the tolerance of both drought-tolerant Malus prunifolia and drought-sensitive M. hupehensis plants. Its beneficial effects include better water conservation in leaves, less electrolyte leakage, steady chlorophyll contents, and greater photosynthetic performance under stress conditions. Melatonin selectively down-regulates MdNCED3, an abscisic acid (ABA) synthesis gene, and up-regulates its catabolic genes, MdCYP707A1 and MdCYP707A2, thereby reducing ABA contents in drought-stressed plants. Melatonin also directly scavenges H2O2 and enhances the activities of antioxidant enzymes to detoxify H2O2 indirectly. These two mechanisms work synergistically to improve the functions of stomata, i.e. causing them to re-open. Plants can effectively regulate their water balance under drought conditions by up-regulating the expression of melatonin synthesis genes MdTDC1, MdAANAT2, MdT5H4, and MdASMT1. Therefore, inducing melatonin production is an important mechanism by which plants can counteract the influence of this abiotic stressor.

  9. Amoxycillin and clavulanic acid in the treatment of urinary infection.

    PubMed Central

    Al Roomi, L G; Sutton, A M; Cockburn, F; McAllister, T A

    1984-01-01

    The pharmacokinetics and clinical efficacy of amoxycillin combined with clavulanic acid in the treatment of 32 children with urinary tract infection were studied. Twenty one (80%) of 26 children with proved urinary tract infection showed a favourable clinical and bacteriological response. Fifteen of these children had amoxycillin resistant organisms and were treated successfully. In 20 children the serum and urine concentrations of amoxycillin and clavulanic acid were measured after the first oral dose. PMID:6712275

  10. Abscisic acid transport in human erythrocytes.

    PubMed

    Vigliarolo, Tiziana; Guida, Lucrezia; Millo, Enrico; Fresia, Chiara; Turco, Emilia; De Flora, Antonio; Zocchi, Elena

    2015-05-22

    Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic β-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [(3)H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [(3)H]ABA and [(35)S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular tone.

  11. Effect of Obstructed Translocation on Leaf Abscisic Acid, and Associated Stomatal Closure and Photosynthesis Decline 1

    PubMed Central

    Setter, Tim L.; Brun, William A.; Brenner, Mark L.

    1980-01-01

    Pod removal or petiole girdling, which causes obstruction of translocation, was found in our previous study to cause reduced rates of photosynthesis in soybean leaves due to stomatal closure. The purpose of this research was to determine the involvement of photoassimilate accumulation and leaf abscisic acid (ABA) levels in the mechanism of stomatal closure induced by such treatments. Leaf glucose and sucrose levels increased during the initial 12-hour period after depodding or petiole girdling. Starch, which represents a much larger pool of leaf carbohydrate, was not perceptibly increased above control levels during the 12-hour posttreatment period. When leaflets were exposed to nonphotosynthetic environments (shading or CO2-free air) for a 24-hour period after the translocation-obstructing treatments were applied and then returned to normal light or CO2 concentration, stomatal diffusive conductivity was reduced 65% and 85% with depodding and girdling, respectively. These reductions were comparable to those previously observed without an intervening nonphotosynthetic exposure, thus indicating that photosynthate accumulations were not necessary for the observed response. Free and bound ABA (released on alkaline hydrolysis) were determined by gas liquid chromatography with electron capture detection following preparative high performance liquid chromatography. Free ABA in monitored leaves increased almost 10-fold 48 hours after complete depodding and 25-fold 24 hours after petiole girdling of such leaves. By 3 hours after treatment, in a time course study, free ABA had increased 2-fold above control values in depodded and 5-fold in girdled leaves. Leaf concentrations of bound ABA did not appear to be related to the treatment effects on stomata. Thus, the translocation-obstructing treatments cause an increased level of ABA by a mechanism not involving accumulation of photoassimilate. Increased leaf ABA levels, which were independent of water stress or leaf water

  12. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase

    PubMed Central

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-01-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants. PMID:21464159

  13. Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida

    PubMed Central

    Li, Lingfei; Zhang, Wenbin; Zhang, Lili; Li, Na; Peng, Jianzong; Wang, Yaqin; Zhong, Chunmei; Yang, Yuping; Sun, Shulan; Liang, Shan; Wang, Xiaojing

    2015-01-01

    Petal growth is central to floral morphogenesis, but the underlying genetic basis of petal growth regulation is yet to be elucidated. In this study, we found that the basal region of the ray floret petals of Gerbera hybrida was the most sensitive to treatment with the phytohormones gibberellin (GA) and abscisic acid (ABA), which regulate cell expansion during petal growth in an antagonistic manner. To screen for differentially expressed genes (DEGs) and key regulators with potentially important roles in petal growth regulation by GA or/and ABA, the RNA-seq technique was employed. Differences in global transcription in petals were observed in response to GA and ABA and target genes antagonistically regulated by the two hormones were identified. Moreover, we also identified the pathways associated with the regulation of petal growth after application of either GA or ABA. Genes relating to the antagonistic GA and ABA regulation of petal growth showed distinct patterns, with genes encoding transcription factors (TFs) being active during the early stage (2 h) of treatment, while genes from the “apoptosis” and “cell wall organization” categories were expressed at later stages (12 h). In summary, we present the first study of global expression patterns of hormone-regulated transcripts in G. hybrida petals; this dataset will be instrumental in revealing the genetic networks that govern petal morphogenesis and provides a new theoretical basis and novel gene resources for ornamental plant breeding. PMID:25852718

  14. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.

  15. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers. PMID:21410712

  16. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    PubMed Central

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  17. Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana.

    PubMed

    Tsuzuki, Tomo; Takahashi, Koji; Inoue, Shin-ichiro; Okigaki, Yukiko; Tomiyama, Masakazu; Hossain, Mohammad Anowar; Shimazaki, Ken-ichiro; Murata, Yoshiyuki; Kinoshita, Toshinori

    2011-07-01

    Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using (3)H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca(2+) was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements.

  18. Imidazolium-Containing ABA Triblock Copolymers as Electroactive Devices.

    PubMed

    Margaretta, Evan; Fahs, Gregory B; Inglefield, David L; Jangu, Chainika; Wang, Dong; Heflin, James R; Moore, Robert B; Long, Timothy E

    2016-01-20

    Two-step reversible addition-fragmentation chain transfer (RAFT) polymerization and two subsequent postpolymerization modification steps afforded well-defined ABA triblock copolymers featuring mechanically reinforcing polystyrene outer blocks and 1-methylimidazole-neutralized poly(acrylic acid)-based central blocks. Size exclusion chromatography and (1)H NMR spectroscopy confirmed predictable molecular weights and narrow distributions. The ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm][OTf]) was incorporated at 30 wt % into polymeric films. Thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis determined the thermomechanical properties of the polymers and polymer-IL composites. Atomic force microscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) determined surface and bulk morphologies, and poly(Sty-b-AA(MeIm)-b-Sty) exhibited a change from packed cylindrical to lamellar morphology in SAXS upon IL incorporation. Electrochemical impedance spectroscopy determined the in-plane ionic conductivities of the polymer-IL membranes (σ ∼ 10(-4) S/cm). A device fabricated from poly(Sty-b-AA(MeIm)-b-Sty) with 30 wt % incorporated IL demonstrated mechanical actuation under a low applied voltage of 4 V. PMID:26699795

  19. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element.

    PubMed

    Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao

    2016-07-01

    ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. PMID:26974851

  20. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  1. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis.

    PubMed

    Dutilleul, Christelle; Ribeiro, Iliana; Blanc, Nathalie; Nezames, Cynthia D; Deng, Xing Wang; Zglobicki, Piotr; Palacio Barrera, Ana María; Atehortùa, Lucia; Courtois, Martine; Labas, Valérie; Giglioli-Guivarc'h, Nathalie; Ducos, Eric

    2016-01-01

    The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes. PMID:26147561

  2. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid.

    PubMed

    Jahan, Md Sarwar; Nozulaidi, Mohd; Khairi, Mohd; Mat, Nashriyah

    2016-05-20

    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.

  3. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid.

    PubMed

    Jahan, Md Sarwar; Nozulaidi, Mohd; Khairi, Mohd; Mat, Nashriyah

    2016-05-20

    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure. PMID:26970687

  4. Abscisic Acid content of senescing petals on cut rose flowers as affected by sucrose and water stress.

    PubMed

    Borohov, A; Tirosh, T; Halevy, A H

    1976-08-01

    Leafless cut Superstar roses (Rosa hyb.) were kept in a 1% sucrose solution. During the first few days of treatment, the abscisic acid content and the water deficit in the petals was higher in treated flowers than in controls kept in water. Later and up to the termination of the flower's life, ABA content and water deficit values were lower in petals of sucrose-treated flowers than in controls. Water stress treatments resulted in higher water deficit values and higher ABA content of petals. An 8-day sucrose treatment following temporary water stress improved the quality of flowers and reduced the level of ABA in the petals. We conclude that the effect which sucrose has on the ABA content of rose petals is at least partly due to its effect on changes in water deficit in the petals. This happens in spite of the fact that rose petals have no stomata, and therefore, ABA is not involved in regulating water balance via the stomata.

  5. Treatment of facial molluscum contagiosum with trichloroacetic acid.

    PubMed

    Bard, Susan; Shiman, Michael I; Bellman, Betty; Connelly, Elizabeth Alvarez

    2009-01-01

    Molluscum contagiosum (MC) virus is a common cutaneous infection in the pediatric population, most commonly affecting school-aged children. Spontaneous clearing of lesions usually occurs over time; however, treatment is often sought due to cosmetic significance, pruritus, or concerns of transmission and autoinoculation. Chemical destruction with cantharidin, which is derived from blister beetle extract, is very safe and highly effective, making it the treatment of choice in the pediatric population. However, treatment of facial lesions or those in the diaper area are not recommended with this agent. Trichloroacetic acid is a safe and effective agent frequently utilized in dermatologic practice, most commonly in the treatment of verrucae. We have successfully used topical trichloroacetic acid to treat facial molluscum contagiousum and present the following technique for proper application. PMID:19689517

  6. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    PubMed

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. PMID:26610288

  7. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum

    PubMed Central

    Dodd, Ian C.

    2012-01-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40–60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil. PMID:23136167

  8. Neridronic acid for the treatment of bone metabolic diseases.

    PubMed

    Gatti, Davide; Viapiana, Ombretta; Idolazzi, Luca; Fracassi, Elena; Adami, Silvano

    2009-10-01

    Neridronic acid (6-amino-1-idroxyesilidene-1,1-bisphosphonate) is a nitrogen-containing bisphosphonate licensed in Italy for the treatment of osteogenesis imperfecta and Paget's disease of bone. The pharmacodynamic profile is similar to that of other nitrogen-containing bisphosphonates and is characterized by its high affinity for bone tissue particularly at sites undergoing a process of remodeling. In growing children affected by osteogenesis imperfect, neridronic acid rapidly increases bone mineral density as measured by dual X-ray absortiometry and this is associated with a significant decrease in fracture cumulative number. Similar results have been obtained also in newborns (< 12 month old) and in adult patients. In Paget's disease of bone, 200 mg intravenous neridronic acid is associated with a 65% rate of full remission and a biochemical response (decrease of > 75% of bone turnover markers) in 95% of the patients. Neridronic acid treatment has been reported to be effective also in other skeletal diseases such as osteoporosis, algodystrophy, hypercalcemia of malignancy and bone metastasis. Neridronic acid has been developed only for parenteral use, and it is the only one used as intramuscular injection. This avoids all the limitations of oral bisphosphonates and may be offered for a home treatment with simple nursing assistance. PMID:19761412

  9. Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought.

    PubMed

    Mioto, Paulo Tamaso; Mercier, Helenice

    2013-07-15

    Guzmania monostachia is an epiphyte tank bromeliad capable of up-regulating crassulacean acid metabolism (CAM) in response to several environmental stimuli, including drought and light stress. In other plant species, abscisic acid (ABA) and nitric oxide (NO) seem to be involved in CAM induction. Because the leaves of tank bromeliads perform different functions along their length, this study attempted to investigate whether ABA and NO are involved in regulation of CAM expression in this species by quantifying these compounds in apical and basal portions of the leaf, and whether there would be differences in this event for each leaf portion. Detached leaves exposed to a 30% polyethylene glycol solution showed a significant upregulation of CAM on the seventh day of treatment only in the apical portion, as indicated by nocturnal acid accumulation and phosphoenolpyruvate carboxylase (PEPC) activity. On the three days prior to CAM induction, ABA, NO and H₂O₂ were quantified. The amounts of ABA were higher in PEG-exposed leaves, along their entire length. NO, however, was higher only in the apical portion, precisely where CAM was up-regulated. H₂O₂ was higher only in the basal portion of PEG-exposed leaves. Our results suggest that ABA might be a systemic signal to drought, occurring in the entire leaf. NO and H₂O₂, however, may be signals restricted only to the apical or basal portions, respectively. PMID:23523467

  10. Hydrochloric acid-pumice treatment of fluorosis-stained enamel.

    PubMed

    Jagger, R G; al Rayes, S A

    1990-02-01

    The management of dark staining of teeth caused by dental fluorosis is discussed. The results of treatment of 20 patients with dental fluorosis by a hydrochloric acid-pumice technique are described. All patients showed considerable improvement in colour which was maintained for review periods of (up to) two years.

  11. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  12. Comparison of clindamycin 1% and benzoyl peroxide 5% gel to a novel composition containing salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid in the treatment of acne vulgaris.

    PubMed

    Baumann, Leslie S; Oresajo, Christian; Yatskayer, Margarita; Dahl, Amanda; Figueras, Kristian

    2013-03-01

    This study evaluated the tolerance and efficacy of 2 facial skin products in subjects with acne using the following acne treatments: 1) treatment A, a combination of salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid, and 2) treatment B (BenzaClin®, clindamycin 1% and benzoyl peroxide 5% gel). The treatment design included the split-face application of treatment A and treatment B and the full-face application of the cleanser, moisturizer, and sunscreen. Data were collected through physician visual assessments, subject irritation questionnaires and assessments, along with clinical photography. Results showed similar tolerance and efficacy for both treatments.

  13. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents. PMID:24691135

  14. Rapid acid treatment of Escherichia coli: transcriptomic response and recovery

    PubMed Central

    Kannan, Geetha; Wilks, Jessica C; Fitzgerald, Devon M; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2008-01-01

    Background Many E. coli genes show pH-dependent expression during logarithmic growth in acid (pH 5–6) or in base (pH 8–9). The effect of rapid pH change, however, has rarely been tested. Rapid acid treatment could distinguish between genes responding to external pH, and genes responding to cytoplasmic acidification, which occurs transiently following rapid external acidification. It could reveal previously unknown acid-stress genes whose effects are transient, as well as show which acid-stress genes have a delayed response. Results Microarray hybridization was employed to observe the global gene expression of E. coli K-12 W3110 following rapid acidification of the external medium, from pH 7.6 to pH 5.5. Fluorimetric observation of pH-dependent tetR-YFP showed that rapid external acidification led to a half-unit drop in cytoplasmic pH (from pH 7.6 to pH 6.4) which began to recover within 20 s. Following acid treatment, 630 genes were up-regulated and 586 genes were down-regulated. Up-regulated genes included amino-acid decarboxylases (cadA, adiY, gadA), succinate dehydrogenase (sdhABCD), biofilm-associated genes (bdm, gatAB, and ymgABC), and the Gad, Fur and Rcs regulons. Genes with response patterns consistent with cytoplasmic acid stress were revealed by addition of benzoate, a membrane-permeant acid that permanently depresses cytoplasmic pH without affecting external pH. Several genes (yagU, ygiN, yjeI, and yneI) were up-regulated specifically by external acidification, while other genes (fimB, ygaC, yhcN, yhjX, ymgABC, yodA) presented a benzoate response consistent with cytoplasmic pH stress. Other genes (the nuo operon for NADH dehydrogenase I, and the HslUV protease) showed delayed up-regulation by acid, with expression rising by 10 min following the acid shift. Conclusion Transcriptomic profiling of E. coli K-12 distinguished three different classes of change in gene expression following rapid acid treatment: up-regulation with or without recovery, and

  15. Effects of chilling and ABA on (/sup 3/H)gibberellin A/sub 4/ metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    SciTech Connect

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-06-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with (/sup 3/H)GA/sub 4/ (of high specific activity, 4.81 x 10/sup 19/ becquerel per millimole) for 48 hours at 26/sup 0/C. Chilling had little effect on the total amount of free (/sup 3/H)GA-like metabolites formed during incubation at 26/sup 0/C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble (/sup 3/H) metabolites formed at 26/sup 0/C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA/sub 12/ aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with (/sup 3/H)GA/sub 4/ treatment at 26/sup 0/C, reduced the uptake of (/sup 3/H) GA/sub 4/ but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26/sup 0/C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs).

  16. Abscisic acid in soil facilitates community succession in three forests in China.

    PubMed

    Zhao, Houben; Peng, Shaolin; Chen, Zhuoquan; Wu, Zhongmin; Zhou, Guangyi; Wang, Xu; Qiu, Zhijun

    2011-07-01

    Plants release secondary metabolites into the soil that change the chemical environment around them. Exogenous abscisic acid (ABA) is an important allelochemical whose role in successional trajectories has not been examined. We hypothesized that ABA can accumulate in the soil through successional processes and have an influence on forest dynamics. To this end, we investigated the distribution of ABA in forest communities from early to late successional stages and the response of dominant species to the gradient of ABA concentrations in three types of forests from northern to southern China. Concentrations of ABA in the soils of three forest types increased from early to late successional stages. Pioneer species' litters had the lowest ABA content, and their seed germination and seedling early growth were the most sensitive to the inhibitory effect of ABA. Mid- and late-successional species had a much higher ABA content in fallen leaves than pioneer species, and their seed germination and seedling early growth were inhibited by higher concentrations of ABA than pioneers. Late-successional species showed little response to the highest ABA concentration, possibly due to their large seed size. The results suggest that ABA accumulates in the soil as community succession proceeds. Sensitivity to ABA in the early stages, associated with other characteristics, may result in pioneer species losing their advantage in competition with late-successional species in an increasingly high ABA concentration environment, and being replaced by ABA-tolerant, late-successional species.

  17. Abscisic Acid Movement into the Apoplastic solution of Water-Stressed Cotton Leaves

    PubMed Central

    Hartung, Wolfram; Radin, John W.; Hendrix, Donald L.

    1988-01-01

    Leaves of cotton (Gossypium hirsutum L.) were subjected to overpressures in a pressure chamber, and the exuded sap was collected and analyzed. The exudate contained low concentrations of solutes that were abundant in total leaf extracts, and photosynthetic rates and stomatal conductance were completely unaffected by a cycle of pressurization and rehydration. These criteria and others indicate that the experimental techniques inflicted no damage upon the leaf cells. The pH and abscisic acid (ABA) content of the apoplastic fluid both increased greatly with pressure-induced dehydration. Although ABA concentrations did not reach a steady state, the peak levels were above 1 micromolar, an order of magnitude greater than bulk ABA concentrations of the leaf blades. Treatment of leaves with fusicoccin decreased the K+ concentration, greatly reduced the pH rise, and completely eliminated the increase in ABA in the apoplast upon dehydration. When water-stressed leaves were pressurized, the pH of the exuded sap was increased by 0.2 units per 1 megapascal decrease in initial leaf water potential. Buffer capacity of the sap was least in the pH range of interest (6.5-7.5), allowing extremely small changes in H+ fluxes to create large changes in apoplastic pH. The data indicate that dehydration causes large changes in apoplastic pH, perhaps by effects on ATPases; the altered pH then enhances the release of ABA from mesophyll cells into the apoplastic fluid. PMID:16666007

  18. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  19. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress.

    PubMed

    León, José; Castillo, Mari Cruz; Coego, Alberto; Lozano-Juste, Jorge; Mir, Ricardo

    2014-03-01

    The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.

  20. Treatments affecting maturation and germination of American chestnut somatic embryos.

    PubMed

    Robichaud, Rodney L; Lessard, Veronica C; Merkle, Scott A

    2004-08-01

    The effects of amino acids, abscisic acid (ABA), polyethylene glycol (PEG), and elevated sucrose were tested on the maturation and germination of American chestnut (Castanea dentata) somatic embryos. Somatic embryos from three lines were matured over an eight week period through a two-stage process. After maturation, somatic embryos were randomly divided into three groups to measure dry weight/ fresh weight ratios, starch levels, and germination rates. Prior to transfer to germination medium, somatic embryos received a four week cold treatment. While some treatments with amino acids, elevated sucrose, PEG or ABA increased either dry weight/fresh weight ratios, starch content or both, only addition of 25mM L-asparagine significantly increased germination rate and taproot length, and this response was only obtained with one of the three lines tested. Six plants survived the transfer to potting mix, acclimatization to greenhouse conditions and field planting. PMID:15384407

  1. Treatments affecting maturation and germination of American chestnut somatic embryos.

    PubMed

    Robichaud, Rodney L; Lessard, Veronica C; Merkle, Scott A

    2004-08-01

    The effects of amino acids, abscisic acid (ABA), polyethylene glycol (PEG), and elevated sucrose were tested on the maturation and germination of American chestnut (Castanea dentata) somatic embryos. Somatic embryos from three lines were matured over an eight week period through a two-stage process. After maturation, somatic embryos were randomly divided into three groups to measure dry weight/ fresh weight ratios, starch levels, and germination rates. Prior to transfer to germination medium, somatic embryos received a four week cold treatment. While some treatments with amino acids, elevated sucrose, PEG or ABA increased either dry weight/fresh weight ratios, starch content or both, only addition of 25mM L-asparagine significantly increased germination rate and taproot length, and this response was only obtained with one of the three lines tested. Six plants survived the transfer to potting mix, acclimatization to greenhouse conditions and field planting.

  2. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  3. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry. PMID:25212133

  4. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100.

    PubMed

    Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E

    2015-06-15

    The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.

  5. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100

    PubMed Central

    Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E

    2015-01-01

    The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity. DOI: http://dx.doi.org/10.7554/eLife.07295.001 PMID:26076231

  6. Effect of 82% Lactic Acid in Treatment of Melasma

    PubMed Central

    Singh, Rashmi; Goyal, Sapna; Ahmed, Qazi Rais; Gupta, Narendra; Singh, Sujata

    2014-01-01

    Melasma is an acquired, chronic, and symmetrical hypermelanosis, characterized by brown patches of variable darkness on sun exposed areas of body. There are numerous modalities of treatment currently in use for this disease, of which the chemical peeling is very commonly used. Therefore, the present work was done to see the effect of 82% lactic acid peel in the treatment of melasma. A total number of 20 patients of either sex attending the OPD of dermatology department with clinically evident melasma were included in the study. 82% Lactic acid peel was applied on the face for 12 weeks in each patient. Patients were evaluated clinically and photographically at various intervals and in follow-up till 24 weeks. Assessment of patient satisfaction and side effects were also noted. All the subjects completed the study. Application of this peel for 12 weeks significantly decreased the melasma area severity index score and also melasma severity scale score. Patient and physician analogue scales also showed the improvement by the treatment. Regarding the adverse effects, burning sensation was the only side effect noted in our study. In conclusion, 82% lactic acid peel is well tolerated and can be used for the treatment of melasma. PMID:27355080

  7. Prolonged treatment with ursodeoxycholic acid for primary biliary cirrhosis.

    PubMed

    Crippa, G; Cagnoni, C; Castelli, A; Concesi, C; Girometta, S; Pancotti, D; Sverzellati, E; Tacchini, G; Pierfranceschi, M G; Carrara, G C

    1995-05-01

    Eighteen patients affected with biopsy-proved primary biliary cirrhosis (PBC) (histological stage III and IV) received ursodeoxicholic acid (UDCA) 600 mg for 1 year. Signs and symptoms and biochemical tests (glutamic and oxalcetic transaminase, glutamic and pyruvic transaminase, bilirubine, gamma-glutamyl transpeptidase, alkaline phosphatase, leucine aminopeptidase, bile acids, plasma proteins electrophoresis, immunoglubulins A, G and M) and antimitochondrial antibodies were evaluated before the treatment and every four months during the treatment. The results were compared with those obtained in 8 untreated patients affected PBC. The control group of patients were comparable (as far as age, histological stage, biochemical tests are concerned) to the group who received UDCA. Bilirubine, ALP, gamma-GT and LAP decreased during the treatment with UDCA and remained lower than baseline values until the end of the observation (12 months), while no changes occurred in the untreated patients. Both in the treated and untreated group plasma protein electrophoresis, serum immunoglubulins A, G and M remained unchanged, as well as anti-mitochondrial antibody. A moderate reduction of transaminases and bile acids was observed in the group of patients receiving UDCA but it did not reach statistical significance. In 16 out of the 18 treated patients pruritus disappeared and resulted diminished in the remaining 2 patients. No significant amelioration of pruritus was observed in the patients who did not receive UDCA. In conclusion, our data show that prolonged treatment with UDCA drastically reduces pruritus and improves cholestasis biochemical tests in patients affected with symptomatic PBC.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4-in response to ABA and abiotic stresses during seed germination.

    PubMed

    Daszkowska-Golec, Agata; Wojnar, Weronika; Rosikiewicz, Marta; Szarejko, Iwona; Maluszynski, Miroslaw; Szweykowska-Kulinska, Zofia; Jarmolowski, Artur

    2013-01-01

    Although the importance of abscisic acid (ABA) in plant development and response to abiotic and biotic stresses is well recognized, the molecular basis of the signaling pathway has not been fully elucidated. Mutants in genes related to ABA are widely used as a tool for gaining insight into the mechanisms of ABA signal transduction and ABA-dependent stress response. We used a genetic approach of a suppressor screening in order to decipher the interaction between ABH1 (CBP80) and other components of ABA signaling. ABH1 (CBP80) encodes a large subunit of CBC (CAP BINDING COMPLEX) and the abh1 mutant is drought-tolerant and hypersensitive to ABA during seed germination. The suppressor mutants of abh1 were generated after chemical mutagenesis. The mutant named soa1 (suppressor of abh1 hypersensitivity to ABA 1) displayed an ABA-insensitive phenotype during seed germination. The genetic analysis showed that the soa1 phenotype is dominant in relation to abh1 and segregates as a single locus. Based on soa1's response to a wide spectrum of physiological assays during different stages of development, we used the candidate-genes approach in order to identify a suppressor gene. The molecular analysis revealed that mutation causing the phenotype of soa1 occurred in the ABI4 (ABA insensitive 4) gene. Analysis of pre-miR159 expression, whose processing depends on CBC, as well as targets of miR159: MYB33 and MYB101, which are positive regulators of ABA signaling, revealed a possible link between CBP80 (ABH1) and ABI4 presented here.

  9. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    PubMed

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-01-01

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses. PMID:26681214

  10. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    PubMed

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-12-17

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses.

  11. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.

  12. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  13. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  14. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED.

    PubMed

    Liu, Y; Chen, C; Liu, S; Liu, D; Xu, X; Chen, X; Shi, S

    2015-01-01

    Stem cells from exfoliated deciduous teeth (SHED) possess multipotent differentiation and immunomodulatory properties. They have been used for orofacial bone regeneration and autoimmune disease treatment. In this study, we show that acetylsalicylic acid (ASA) treatment is able to significantly improve SHED-mediated osteogenic differentiation and immunomodulation. Mechanistically, ASA treatment upregulates the telomerase reverse transcriptase (TERT)/Wnt/β-catenin cascade, leading to improvement of SHED-mediated bone regeneration, and also upregulates TERT/FASL signaling, leading to improvement of SHED-mediated T-cell apoptosis and ameliorating disease phenotypes in dextran sodium sulfate-induced colitis mice. These data indicate that ASA treatment is a practical approach to improving SHED-based cell therapy.

  15. Usefulness of retinoic acid in the treatment of melasma.

    PubMed

    Pathak, M A; Fitzpatrick, T B; Kraus, E W

    1986-10-01

    Melasma is a circumscribed brown macular hypermelanosis of the areas of the face and neck that are exposed to light. Clinical trials with various depigmenting formulations containing hydroquinone were conducted to determine the ideal concentration of hydroquinone, retinoic acid, and corticosteroids for the treatment of melasma. The compounds were tested with and without the concomitant use of topical sunscreen preparations. Based on the results of the trials and our earlier clinical experience, we conclude that treatment of melasma should involve the following: avoidance of sun exposure, constant use of broad-spectrum sunscreens, and topical application of a cream or lotion containing 2% hydroquinone and 0.05% to 0.1% retinoic acid (tretinoin). Patients should suspend use of oral contraceptives and other agents that promote skin pigmentation. The monobenzyl ether of hydroquinone should never be used in melasma therapy.

  16. Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings

    PubMed Central

    Humplík, Jan F; Turečková, Veronika; Fellner, Martin; Bergougnoux, Véronique

    2015-01-01

    The role of abscisic acid (ABA) during early development was investigated in tomato seedlings. The endogenous content of ABA in particular organs was analyzed in seedlings grown in the dark and under blue light. Our results showed that in dark-grown seedlings, the ABA accumulation was maximal in the cotyledons and elongation zone of hypocotyl, whereas under blue-light, the ABA content was distinctly reduced. Our data are consistent with the conclusion that ABA promotes the growth of etiolated seedlings and the results suggest that ABA plays an inhibitory role in de-etiolation and photomorphogenesis in tomato. PMID:26322576

  17. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  18. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  19. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis

    SciTech Connect

    Wang, Xiaoping; Liu, Shanda; Tian, Hainan; Wang, Shucai; Chen, Jin-Gui

    2015-11-26

    Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. In this article, we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water

  20. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis

    DOE PAGES

    Wang, Xiaoping; Liu, Shanda; Tian, Hainan; Wang, Shucai; Chen, Jin-Gui

    2015-11-26

    Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. In this article, we provide evidence that ERF96 ismore » a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  1. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis

    PubMed Central

    Wang, Xiaoping; Liu, Shanda; Tian, Hainan; Wang, Shucai; Chen, Jin-Gui

    2015-01-01

    Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF

  2. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis

    DOE PAGES

    Wang, Xiaoping; Liu, Shanda; Tian, Hainan; Wang, Shucai; Chen, Jin-Gui

    2015-11-26

    We report that ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96more » is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  3. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis

    SciTech Connect

    Wang, Xiaoping; Liu, Shanda; Tian, Hainan; Wang, Shucai; Chen, Jin-Gui

    2015-11-26

    We report that ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that

  4. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis.

    PubMed

    Wang, Xiaoping; Liu, Shanda; Tian, Hainan; Wang, Shucai; Chen, Jin-Gui

    2015-01-01

    Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96's transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96

  5. A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis[W

    PubMed Central

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A.; Yun, Dae-Jin; Hwang, Inhwan

    2012-01-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses. PMID:22582100

  6. The Top 10 Reasons Children With Autism Deserve ABA

    PubMed Central

    Walsh, Mary Beth

    2011-01-01

    We who advocate for applied behavior analysis (ABA) for children with autism spectrum disorders often construct our arguments based on the scientific evidence. However, the audience that most needs to hear this argument, that is, the parents of children, especially very young children, diagnosed with autism, may not be convinced by the science alone. This essay attempts to make the case for the multiple benefits of ABA intervention through the use of humor and anecdotes couched in a “Top Ten List,” and illustrating most points with stories of an engaging child with autism (my son, Ben). PMID:22532906

  7. The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus.

    PubMed

    Li, Ping; Zhou, Hua; Shi, Xiaoliang; Yu, Bo; Zhou, Yan; Chen, Suli; Wang, Yufeng; Peng, Yu; Meyer, Rhonda C; Smeekens, Sjef C; Teng, Sheng

    2014-03-01

    Seedling establishment is inhibited on media containing high levels (∼ 6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼ 12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity.

  8. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway

    PubMed Central

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-01-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. PMID:26443375

  9. The Plant-Specific SR45 Protein Negatively Regulates Glucose and ABA Signaling during Early Seedling Development in Arabidopsis1[W

    PubMed Central

    Carvalho, Raquel Fonseca; Carvalho, Sofia Domingues; Duque, Paula

    2010-01-01

    The plant-specific SR45 belongs to the highly conserved family of serine/arginine-rich (SR) proteins, which play key roles in precursor-mRNA splicing and other aspects of RNA metabolism. An Arabidopsis (Arabidopsis thaliana) loss-of-function mutant, sr45-1, displays pleiotropic phenotypes, such as defects in flower and leaf morphology, root growth, and flowering time. Here, we show that the sr45-1 mutation confers hypersensitivity to glucose (Glc) during early seedling growth in Arabidopsis. Unlike wild-type plants, the sr45-1 mutant displays impaired cotyledon greening and expansion as well as reduced hypocotyl elongation of dark-grown seedlings when grown in the presence of low (3%) Glc concentrations. In addition, SR45 is involved in the control of Glc-responsive gene expression, as the mutant displays enhanced repression of photosynthetic and nitrogen metabolism genes and overinduction of starch and anthocyanin biosynthesis genes. Like many other sugar response mutants, sr45-1 also shows hypersensitivity to abscisic acid (ABA) but appears to be unaffected in ethylene signaling. Importantly, the sr45-1 mutant shows enhanced ability to accumulate ABA in response to Glc, and the ABA biosynthesis inhibitor fluridone partially rescues the sugar-mediated growth arrest. Moreover, three ABA biosynthesis genes and two key ABA signaling genes, ABI3 and ABI5, are markedly overinduced by Glc in sr45-1. These results provide evidence that the SR45 protein defines a novel player in plant sugar response that negatively regulates Glc signaling during early seedling development by down-regulating both Glc-specific ABA accumulation and ABA biosynthesis and signaling gene expression. PMID:20699397

  10. GEm-Related 5 (GER5), an ABA and stress-responsive GRAM domain protein regulating seed development and inflorescence architecture.

    PubMed

    Baron, Kevin N; Schroeder, Dana F; Stasolla, Claudio

    2014-06-01

    We have identified an abscisic acid (ABA) and stress-responsive GRAM (Glucosyltransferases, Rab-like GTPase activators and Myotubularins) domain protein GER5 (GEm-Related 5) closely related to GEM (GLABRA2 Expression Modulator), a novel regulator of cell division and cell fate determination in epidermal cells. A loss-of-function T-DNA line (ger5-2) and transgenic lines silencing (GER5(RNAi)) or overexpressing (GER5(OE)) GER5 displayed several defects in reproductive development affecting seed and embryo development. RNA in situ studies revealed GER5 and related GRAM genes (GEM and GEm-Related 1 (GER1)) have both overlapping and unique expression domains in male and female reproductive organs. Hormone immunolocalization experiments further indicate GER5 transcripts preferentially localize to reproductive tissues which accumulate ABA. Expression analysis revealed members of the GRAM family (GER5, GER1, GEM) display tissue-specific expression patterns and are responsive to phytohormones and abiotic stress, in addition to genetic lesions (aba1, aba2, ctr1) affecting ABA biosynthesis or ethylene signalling. Mature seeds of ger5-2 mutants also exhibit reduced sensitivity to ABA during seed germination assays. Microarray analysis of aborting and developing seeds isolated from ger5-2 mutants revealed underlying transcriptional changes in carbohydrate metabolism, hormone signalling and catabolic processes (e.g. protein degradation, autophagy). Taken together, our results indicate ABA-responsive GRAM genes play a novel role in regulating the reproductive development of plants, and raise intriguing questions regarding the functional relationship between members of the GRAM gene family.

  11. Cathepsin K in treatment monitoring following intravenous zoledronic acid

    PubMed Central

    JAHN, OLIVER; WEX, THOMAS; KLOSE, SILKE; KROPF, SIEGFRIED; ADOLF, DANIELA; PIATEK, STEFAN

    2014-01-01

    Cathepsin K (CatK) is mainly expressed by osteoclasts and plays an important role in bone resorption. As CatK is expressed and secreted by osteoclasts during active bone resorption, it may be a useful and specific biochemical marker of osteoclastic activity. Therefore, CatK serum levels were studied for monitoring the treatment of females with postmenopausal osteoporosis by zoledronic acid. The serum CatK levels were determined in nine postmenopausal females before and after 3, 6 and 12 months of treatment. The levels were significantly reduced after 3 and 6 months (P<0.05), whereas they returned to baseline after 1 year. Taken together, the serum level of CatK may be suitable for monitoring anti-osteoporotic therapy in association with treatment response. PMID:25279169

  12. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins.

    PubMed

    Wang, Pengcheng; Zhu, Jian-Kang; Lang, Zhaobo

    2015-01-01

    Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation. Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development. Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of SnRK2.2 and SnRK2.3.

  13. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins

    PubMed Central

    Wang, Pengcheng; Zhu, Jian-Kang; Lang, Zhaobo

    2015-01-01

    Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation. Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development. Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of SnRK2.2 and SnRK2.3. PMID:26024299

  14. Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana

    PubMed Central

    Song, Yuwei; Xiang, Fuyou; Zhang, Guozeng; Miao, Yuchen; Miao, Chen; Song, Chun-Peng

    2016-01-01

    Many studies have shown that exogenous abscisic acid (ABA) promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas) that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling. PMID:26925086

  15. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    PubMed

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants.

  16. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    PubMed

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. PMID:27593465

  17. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis.

    PubMed

    Dong, Ting; Xu, Zheng-Yi; Park, Youngmin; Kim, Dae Heon; Lee, Yongjik; Hwang, Inhwan

    2014-05-01

    The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8'-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants. PMID:24676855

  18. Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress.

    PubMed

    Waqas, Muhammad; Shahzad, Raheem; Khan, Abdul Latif; Asaf, Sajjad; Kim, Yoon-Ha; Kang, Sang-Mo; Bilal, Saqib; Hamayun, Muhammad; Lee, In-Jung

    2016-02-01

    In this study, it was hypothesized that application of triacontanol, a ubiquitous saturated primary alcohol, at different times-before (TBHS), mid (TMHS), and after (TAHS) heat stress-will extend heat stress (HS) protection in mungbean. The effect of triacontanol on the levels of defense hormones abscisic acid (ABA) and jasmonic acid (JA) was investigated along with the plant growth promotion, nutrient and amino acid content with and without heat stress. Heat stress caused a prominent reduction in plant growth attributes, nutrient and amino acid content, which were attributed to the decreased level of ABA and JA. However, application of triacontanol, particularly in the TBHS and TMHS treatments, reversed the deleterious effects of HS by showing increased ABA and JA levels that favored the significant increase in plant growth attributes, enhanced nutrient content, and high amount of amino acid. TAHS, a short-term application of triacontanol, also significantly increased ABA and JA levels and thus revealed important information of its association with hormonal modulation. The growth-promoting effect of triacontanol was also confirmed under normal growth conditions. To the best of our knowledge, this study is the first to demonstrate the beneficial effects of triacontanol, with or without heat stress, on mungbean and its interaction with or regulation of the levels of defense hormones.

  19. Cell-free conversion of 1 prime -deoxy- sup 2 H-ABA to sup 2 H-ABA in extracts from Cercospora rosicola

    SciTech Connect

    Al-Nimri, L.; Coolbaugh, R.C. )

    1990-05-01

    The characteristics of the enzyme converting 1{prime}-deoxy-ABA into ABA have been studied in the fungus C. rosicola. Enzyme extracts were prepared from cold-pressed mycelia of C. rosicola. The suspension was a high speed supernatant and a microsomal fraction. A cell-free system was developed to convert 1{prime}-deoxy-{sup 2}H-ABA into {sup 2}H-ABA using a reaction mixture containing 300 {mu}l enzyme extract, 10 {mu}m 1{prime}-deoxy-{sup 2}H-ABA. The reaction products were chromatographed by reverse phase HPLC. The presumptive ABA fractions were collected and {sup 2}H-ABA was quantified by GC-MS using a {sup 2}H-(2Z, 4E)-ABA standard curve. 1{prime}-deoxy-{sup 2}H-ABA was converted to an average of 1.47 pmole {sup 2}H-ABA/mg protein per min. Most of the enzymic activity was found in the microsomal fraction. The reaction required NADPH and was enhanced by FAD. The reaction was not inhibited by triarimol.

  20. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Xing, Lu; Liu, Xiaodong; Hou, Yueh-Ju; Chinnusamy, Viswanathan; Wang, Pengcheng; Duan, Chengguo; Zhu, Jian-Kang

    2013-01-01

    Proteins in the PYR/PYL/RCAR family (PYLs) are known as receptors for the phytohormone ABA. Upon ABA binding, PYL adopts a conformation that allows it to interact with and inhibit clade A protein phosphatase 2Cs (PP2Cs), which are known as the co-receptors for ABA. Inhibition of the PP2Cs then leads to the activation of the SnRK2 family protein kinases that phosphorylate and activate downstream effectors in ABA response pathways. The PYL family has 14 members in Arabidopsis, 13 of which have been demonstrated to function as ABA receptors. The function of PYL13, a divergent member of the family, has been enigmatic. We report here that PYL13 differs from the other PYLs in three key residues that affect ABA perception, and mutations in these three residues can convert PYL13 into a partially functional ABA receptor. Transgenic plants overexpressing PYL13 show increased ABA sensitivity in seed germination and postgermination seedling establishment as well as decreased stomatal conductance, increased water-use efficiency, accelerated stress-responsive gene expression, and enhanced drought resistance. pyl13 mutant plants are less sensitive to ABA inhibition of postgermination seedling establishment. PYL13 interacts with and inhibits some members of clade A PP2Cs (PP2CA in particular) in an ABA-independent manner. PYL13 also interacts with the other PYLs and antagonizes their function as ABA receptors. Our results show that PYL13 is not an ABA receptor but can modulate the ABA pathway by interacting with and inhibiting both the PYL receptors and the PP2C co-receptors. PMID:24189045

  1. The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance. II. Effects on plasma membrane structure and function.

    PubMed

    Bakht, Jehan; Bano, Asghari; Dominy, Peter

    2006-01-01

    The frost hardiness of many plants such as chickpea can be increased by exposure to low non-freezing temperatures and/or the application of abscisic acid (ABA), a process known as frost acclimation. Experiments were conducted to study the response over a 14 d period of enriched plasma membrane fractions isolated from chickpea plants exposed to low temperature and sprayed with exogenous ABA. Measurement of the temperatures inducing 50% foliar cell death (LT50), and subsequent statistical analysis suggest that, like many plants, exposure to low temperatures (5/-2 degrees C; day/night) induces a significant level (P <0.05) of frost acclimation in chickpea when compared with control plants (20/7 degrees C; day/night). Spraying plants with exogenous ABA also increased frost tolerance (P <0.05), but was not as effective as low temperature-induced frost acclimation. Both pre-exposure to low temperatures and pre-treatment with ABA increased the levels of fatty acid desaturation in the plasma membrane (measured as the double bond index, DBI). Exposure of chickpea plants to low temperatures increased the DBI by 15% at day 4 and 19% at day 14 when compared with untreated control plants. Application of ABA alone did not increase the DBI by more than 6% at any time; the effects of both treatments applied together was more than additive, inducing a DBI increase of 27% at day 14 when compared with controls. There was a good correlation (P <0.05) between the DBI and LT50, suggesting that the presence of more unsaturated lipid in the plasma membrane may prevent cell lysis at low temperatures. Both pre-exposure to low, non-freezing temperatures and pre-treatment with ABA induced measurable changes in membrane fluidity, but these changes did not correlate with changes in LT50, suggesting that physical properties of the plasma membrane other than fluidity are involved in frost acclimation in chickpea.

  2. Evalution of toxicity of abcisic acid and gibberellic acid in rats: 50 days drinking water study.

    PubMed

    Celik, Ismail; Tuluce, Yasin; Isik, Ismail

    2007-04-01

    In the present study, the influence of subchronic effects of two plant growth regulators (PGRs) [Abcisic acid (ABA) and Gibberellic acid (GA3)] on antioxidant defense systems [reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (malondialdehyde = MDA) in various tissues of the rat were investigated during treatment as a drinking water model. 75 ppm of ABA and GA3 in drinking water were continuously administered orally to rats (Sprague-Dawley albino) ad libitum for 50 days. The PGRs treatments caused different effects on the antioxidant defense systems and MDA content of dosed rats compared to controls. The lipid peroxidation end product MDA significantly increased in the lungs, heart and kidney of rats treated with GA3 without significant change in the spleen. ABA caused also a significant increase in MDA content in the spleen, lungs, heart and kidney. The GSH levels were significantly depleted in the spleen, lungs and stomach of rats treated with ABA without any change in the tissues of rats treated with GA3 except the kidney where it increased. Antioxidant enzyme activities such as SOD significantly increased in the lungs and stomach and decreased in the spleen and heart tissues of rats treated with GA3. Meanwhile, SOD significantly decreased in the spleen, heart and kidney and increased in the lungs of rats treated with ABA. While CAT activity significantly decreased in the lungs of rats treated with GA3, a significant increase occurred in the heart of rats treated with both PGRs. On the other hand, the ancillary enzyme GR activity in the tissues were either significantly depleted or not changed with PGRs treatment. The drug metabolizing enzyme GST activity significantly decreased in the lungs of rats treated with ABA but increased in the stomach of rats treated with both PGRs. As a conclusion, the rats resisted oxidative stress via the antioxidant

  3. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge about the hormonal control of seed dormancy and dormancy loss is essential in wheat, because low seed dormancy at maturity is associated with the problem of preharvest sprouting (PHS) when rain occurs before harvest. Low GA (gibberellin) hormone sensitivity and high ABA (abscisic acid) sen...

  4. Dissociations among ABA, ABC, and AAB Recovery Effects

    ERIC Educational Resources Information Center

    Ungor, Metin; Lachnit, Harald

    2008-01-01

    In a human predictive learning experiment, the strengths of ABA, ABC, and AAB recovery effects after discrimination reversal learning were compared. Initially, a discrimination between two stimuli (X+, Y-) was trained in Context A. During Phase 2, participants received discrimination reversal training (X-, Y+) either in Context A (Group AAB) or in…

  5. Personality Traits Associated with Occupational "Burnout" in ABA Therapists

    ERIC Educational Resources Information Center

    Hurt, Amy A.; Grist, Cathy Lann; Malesky, Lann A., Jr.; McCord, David M.

    2013-01-01

    Background: Applied behaviour analysis (ABA) therapists typically work one-to-one with children with autism for extended periods of time, which often leads to high levels of job-related stress, lower levels of job satisfaction, increased frequency of occupational "burnout" and higher than average job turnover (Journal of Autism…

  6. ABA, AAB and ABC Renewal in Taste Aversion Learning

    ERIC Educational Resources Information Center

    Bernal-Gamboa, Rodolfo; Juarez, Yectivani; Gonzalez-Martin, Gabriela; Carranza, Rodrigo; Sanchez-Carrasco, Livia; Nieto, Javier

    2012-01-01

    Context renewal is identified when the conditioned response (CR) elicited by an extinguished conditioned stimulus (CS) reappears as a result of changing the contextual cues during the test. Two experiments were designed for testing contextual renewal in a conditioned taste aversion preparation. Experiment 1 assessed ABA and AAB context renewal,…

  7. ABA and Diverse Cultural and Linguistic Environments: A Welsh Perspective

    ERIC Educational Resources Information Center

    Jones, E. W.; Hoerger, M.; Hughes, J. C.; Williams, B. M.; Jones, B.; Moseley, Y.; Hughes, D. R.; Prys, D.

    2011-01-01

    Gwynedd Local Education Authority (LEA) in North West Wales, UK, is funding a small-scale autism-specific specialist education service using ABA methodology. The program is available through the medium of Welsh, English or bilingually, depending on the individual needs of the child (Jones and Hoerger in Eur J Behav Anal 10:249-253, "2009").…

  8. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    ERIC Educational Resources Information Center

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  9. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress.

    PubMed

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin; Cho, Seok Keun; Yang, Seong Wook; Kim, Woo Taek

    2016-01-01

    Plants have developed a variety of complicated responses to cope with drought, one of the most challenging environmental stresses. As a quick response, plants rapidly inhibit stomatal opening under the control of abscisic acid (ABA) signaling pathway, in order to preserve water. Here, we report that Arabidopsis Tóxicos en Levadura (ATL), a RING-type E3 ubiquitin ligase, mediates the ABA-dependent stomatal closure. In contrast to wild-type plants, the stomatal closure was fully impaired in atatl78 mutant plants even in the presence of exogenous ABA and reactive oxygen species (ROS). Besides, under high concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of AtATL78 in the modulation of ROS activity. Based on these results, we suggest that AtATL78 possibly plays a role in promoting ROS-mediated ABA signaling pathway during drought stress. PMID:26612255

  10. The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis.

    PubMed

    Meng, Lai-Sheng; Wang, Zhi-Bo; Yao, Shun-Qiao; Liu, Aizhong

    2015-11-01

    Seedlings of large-seeded plants are considered to be able to withstand abiotic stresses efficiently. The molecular mechanisms that underlie the involved signaling crosstalk between the large-seeded trait and abiotic tolerance are, however, largely unknown. Here, we demonstrate the molecular link that integrates plant abscisic acid (ABA) responses to drought stress into the regulation of seed mass. Both loss-of-function mutants of the Auxin Response Factor 2 (ARF2 encoding a transcription factor) and lines overexpressing AINTEGUMENTA (ANT; a transcription factor) under the 35S promoter exhibited large seed and drought-tolerant phenotypes as a result of abnormal ABA-auxin crosstalk signaling pathways in Arabidopsis. The target gene COLD-REGULATED15A (COR15a) was identified as participating in the regulation of seed development with ABA signaling through a negative regulation mechanism that is mediated by ANT. The molecular and genetic evidence presented indicate that ARF2, ANT and COR15A form an ABA-mediated signaling pathway to link modulation of seed mass with drought tolerance. These observations indicate that the ARF2 transcription factor serves as a molecular link that integrates plant ABA responses to drought stress into the regulation of seed mass. PMID:26395398

  11. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress

    PubMed Central

    Zandalinas, Sara I.; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio; Inupakutika, Madhuri A.; Mittler, Ron

    2016-01-01

    Abscisic acid (ABA) plays a key role in plant acclimation to abiotic stress. Although recent studies suggested that ABA could also be important for plant acclimation to a combination of abiotic stresses, its role in this response is currently unknown. Here we studied the response of mutants impaired in ABA signalling (abi1-1) and biosynthesis (aba1-1) to a combination of water deficit and heat stress. Both mutants displayed reduced growth, biomass, and survival when subjected to stress combination. Focusing on abi1-1, we found that although its stomata had an impaired response to water deficit, remaining significantly more open than wild type, its stomatal aperture was surprisingly reduced when subjected to the stress combination. Stomatal closure during stress combination in abi1-1 was accompanied by higher levels of H2O2 in leaves, suggesting that H2O2 might play a role in this response. In contrast to the almost wild-type stomatal closure phenotype of abi1-1 during stress combination, the accumulation of ascorbate peroxidase 1 and multiprotein bridging factor 1c proteins, required for acclimation to a combination of water deficit and heat stress, was significantly reduced in abi1-1. Our findings reveal a key function for ABA in regulating the accumulation of essential proteins during a combination of water deficit and heat stress. PMID:27497287

  12. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    PubMed

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  13. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    ERIC Educational Resources Information Center

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  14. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  15. Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh?

    PubMed Central

    Lu, G; Paul, A L; McCarty, D R; Ferl, R J

    1996-01-01

    Assignment of particular transcription factors to specific roles in promoter elements can be problematic, especially in systems such as the G-box, where multiple factors of overlapping specificity exist. In the Arabidopsis alcohol dehydrogenase (Adh) promoter, the G-box regulates expression in response to cold and dehydration, presumably through the action of abscisic acid (ABA), and is bound by a nuclear protein complex in vivo during expression in cell cultures. In this report, we test the conventional wisdom of biochemical approaches used to identify DNA binding proteins and assess their specific interactions by using the G-box and a nearby half G-box element of the Arabidopsis Adh promoter as a model system. Typical in vitro assays demonstrated specific interaction of G-box factor 3 (GBF3) with both the G-box and the half G-box element. Dimethyl sulfate footprint analysis confirmed that the in vitro binding signature of GBF3 essentially matches the footprint signature detected in vivo at the G-box. Because RNA gel blot data indicated that GBF3 is itself induced by ABA, we might have concluded that GBF3 is indeed the GBF responsible in cell cultures for binding to the Adh G-box and is therefore responsible for ABA-regulated expression of Adh. Potential limitations of this conclusion are exposed by the fact that other GBFs bind the G-box with the same signature as GBF3, and subtle differences between in vivo and in vitro footprint signatures indicate that factors other than or in addition to GBF3 interact with the half G-box element. PMID:8672884

  16. [PREPARATIONS OF PAMIDRONOVIC ACID IN COMPLEX TREATMENT ON OSTEOGENESIS IMPERFECTA].

    PubMed

    Zyma, A M; Guk, Yu M; Magomedov, O M; Gayko, O G; Kincha-Polishchuk, T A

    2015-07-01

    Modern view of drug therapy in the complex treatment of orthopedic manifestations of osteogenesis imperfecta (OI) was submitted. Developed and tested system of drug correction of structural and functional state of bone tissue (BT) using drugs pamidronovic acid, depending on osteoporosis severity and type of disease. Such therapy is appropriate to apply both independently and in conjunction with surgery to correct deformations of long bones of the lower extremities. Effectiveness and feasibility of the proposed methods of drug therapy was proved, most patients resume features walking and support. PMID:26591224

  17. Nitric-phosphoric acid treatment of TRU wastes

    SciTech Connect

    Smith, J.R.; Pierce, R.A.; Sturcken, E.F.

    1993-09-30

    A general process is being developed for the treatment of solid TRU and hazardous organic waste. Experimental data indicates that 100 lb/hr of aliphatic organic (plastics) and 1,000 lb/hr of non-aliphatic organic compounds can be quantitatively oxidized in a 1,000 gallon reaction vessel. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allows oxidation at temperatures up to 200{degrees}C and is relatively non-corrosive on 304-L stainless steel, especially at room temperature. Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution. Addition of 0.001M Pd{sup 2+} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. Polyethylene is quantitatively oxidized in 1.0M HNO{sub 3}/13.8M H{sub 3}PO{sub 4} solution while contained in pressure vessels heated with microwave energy. This is probably due to the high concentrations of NO{sub 2}{center_dot} obtained in the reaction environment.

  18. Treatment of vinasse from tequila production using polyglutamic acid.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable.

  19. Treatment of vinasse from tequila production using polyglutamic acid.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable. PMID:21600690

  20. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize.

    PubMed

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan; Liu, Lei; Sheng, Yu; Sun, Yue; Li, Yanyun; Scheller, Henrik Vibe; Jiang, Mingyi; Hou, Xilin; Ni, Lan; Zhang, Aying

    2016-07-01

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes. PMID:27208250

  1. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize1[OPEN

    PubMed Central

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan; Liu, Lei; Sheng, Yu; Sun, Yue; Li, Yanyun; Hou, Xilin; Ni, Lan

    2016-01-01

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes. PMID:27208250

  2. Conformationally constrained opioid ligands: the Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold.

    PubMed

    Ballet, Steven; Feytens, Debby; Wachter, Rien De; Vlaeminck, Magali De; Marczak, Ewa D; Salvadori, Severo; Graaf, Chris de; Rognan, Didier; Negri, Lucia; Lattanzi, Roberta; Lazarus, Lawrence H; Tourwé, Dirk; Balboni, Gianfranco

    2009-01-15

    Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent mu-selective agonists (Structures 5 and 12) as well as potent and selective delta-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure-activity data.

  3. Sucrose Loading in Isolated Veins of Pisum sativum: Regulation by Abscisic Acid, Gibberellic Acid, and Cell Turgor.

    PubMed

    Estruch, J J; Peretó, J G; Vercher, Y; Beltrán, J P

    1989-09-01

    Enzymatically isolated vein networks from mature pea (Pisum sativum L. cv Alaska) leaves were employed to investigate the properties of sucrose loading and the effect of phytohormones and cell turgor on this process. The sucrose uptake showed two components: a saturable and a first-order kinetics system. The high affinity system (K(m), 3.3 millimolar) was located at the plasmalemma (p-chloromercuriphenylsulfonic acid and orthovanadate sensitivity). Further characterization of this system, including pH dependence and effects of energy metabolism inhibitors, supported the H(+)-sugar symport concept for sucrose loading. Within a physiological range (0.1-100 micromolar) and after 90 min, abscisic acid (ABA) inhibited and gibberellic acid (GA(3)) promoted 1 millimolar sucrose uptake. These responses were partially (ABA) or totally (GA(3)) turgor-dependent. In experiments of combined hormonal treatments, ABA counteracted the GA(3) positive effects on sucrose uptake. The abolishment of these responses by p-chloromercuriphenylsulfonic acid and experiments on proton flux suggest that both factors (cell turgor and hormones) are modulating the H(+) ATPase plasmale